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Neuro-cognitive inspiration

 Brains use a distributed representation

* Brains use a deep architecture

 Brains heavily use unsupervised learning

 Brains take advantage of multiple modalities

 Brains learn simpler tasks first

 Human brains developed with society / culture / education




Local vs Distributed
Representation

Debate since early 80’s
(connectionist models)

Local representations:

» still common in neurosc.

» many kernel machines & graphical models
* easier to interpret

Distributed representations:
» = 1% active neurons in brains
« exponentially more efficient
« difficult optimization
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What is Learning?

Learn underlying and previously unknown
structure, from examples




Locally capture the variations

prediction .-** learnt = interpolated




Easy when there are
only a few variations

learned function: prediction = {(X)
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Curse of dimensionnality

1o generalize
locally, need
examples
representative of
each possible
variation.

» 3 dimensions:

1000 positions!




Theoretical results
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: Gaussian kernel machines ojier
need at least k examples to learn a R
function that has 2k zero-crossings
along some line

. For.a Gaussian kernel
machine tolearn some maximally
vanyifig functions over d inputs
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requrre 0O(27d) examples
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Distributed Representations

Many neurons active simultaneously. Input represented by the
activation of a set of features that are not mutually exclusive. Can be
than local representations

regions
defined
by learned
prototypes

Sub—partitiQiis

DISTRIBUTED PARTITION




Neurally Inspired Language Models

Classical statistical models of word sequences:
local representations

Input = sequence of symbols, each element of
sequence = 1 of N possible words

Distributed representations: learn to embed the
words.insa continuous-valued low-dimensional

_.sem@'iﬂc space




Neural Probabilistic Language
MOdeIS Successes of this

P(w[t]=1 | context) = exp(-E(i,w[t—1] architecture and
= softmax(~E(..w[t-1] its descendents:
beats localist
state-of-the-art in
NLP in many
tasks (language

model, chunking,
semantic role
labeling, POS)

C(w[t—n]) C(w[t=2]) C(w[t=1])

shared parameters
across words

w[t—1] 1in {1...IVI}




Embedding Symbols
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Nearby Words in Semantic Space

Show t-SNE embeddings of
, done by Joseph Turian
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Deep Architecture in the Brain

AreaVV4y ®# 0 ®

. Highenrlevel visual
/| abstractions

A ¥

Area V2 Primitive shape
detectors

Edge detectors

pixels




Visual System
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Architecture Depth

Computation performed by learned function can be
decomposed into a graph of simpler operations
output
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Insufficient Depth

May require exponential- Compact representation

size architecture ’/,.\
Q...




Good News, Bad News

logic gates
2 layers of< formal neurons = universal approximator

_ RBF units

Theorems for all 3:

(Hastad et al 86 & 91, @
Bengio et al 2007)
Functions

representable 000
compactly with kllayers 123
may require

exponential size with

k-1 layers .
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Breakthrough'

Failure of deep
architectures

After 2006

Train one level after the
other,
extra_c@t«g,abstractlons of
graduaﬂyﬁlgher level

/

Deep Belief Networks
(Hinton et al 20006)
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Success of deep distributed neural networks

Records broken on MNIST handwritten
character recognition benchmark

State-of-the-art beaten in language
modeling (Collobert & Weston 2008)

NSF et DARPA are interested...

Slmllarltles between V1 & V2 neurons and
-représentatlons learned with deep nets

s~“(Raina et al 2008)




Unsupervised greedy layer-wise
pre-training
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Why Is unsupervised pre-
training working?

Learning can be mostly local with unsupervised
learning of transformations (Bengio 2008)

generalizing better in presence of many factors
of variation (Larochelle et al ICML2007)

deep neural nets iterative training: stuck in poor
local minima

pre-training moves into improbable region with
betterbasins of attraction

-Tram:lﬂg one layer after the other = Contlnuatmn
~method (Bengio 2008)




2 layers wlo pretraining

2 layers w pretraining Dumitru
5 ? | Erhan

Pierre-
Antoing
Manzagol




Unsupervised pre-training acts
as a regularlzer ™ %

+3Iayers W|thout pretramlng ;j
SRR +3Iayers with pretrammg a

T ¥

log(train nll)

error at same
training error

* Hurts when
capacity is too
small

* Preference for
transformations
capturing input
distribution,
instead of w=0

*But helps to,
optimize lower
layers.




Non-convex optimization

Humans somehow find a good
solution to an intractable non-
convex optimization problem.
How?

— Shaping? The order of

examples / stages in
development/ education

R 9..‘. 'x|mate global optimization
s (Qontlnuatlon)




Continuation methods

First learn
simpler
tasks, then
build on top
and learn
higher-level

abstractions.

target
criterion

moderate

smoothing

final
solution

track thg minimum

easy to find the global minimum




Experiments on multi-stage

curriculum training
Stage 1 data: Stage 2: data

Jéerome
Louradour

Tram@mﬁ for 128 epochs. Switch from stage 1 to stage
2data atepochN in {0, 2, 4, 8, 16, 32, 64, 128}.
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Parallelized exploration:
Evolution of concepts

» Each brain
explores a
different potential
solution

* Instead of
exchanging synaptic
configurations,

Brain space exchange ideas

through language
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Evolution of concepts: memes

* Genetic algorithms need 2 ingredients:
— Population of candidate solutions: brains
— Recombination mechanism: culture/language




Conclusions

1. Representation: brain-inspired & distributed

2. Architecture: brain-inspired & deep
1. Challenge: non-convex optimization

2. Plan: understand the issues and try to view what

brains do as strategies for solving this challenge
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