Learning Algorithms for Deep Architectures

Yoshua Bengio

December 12th, 2008

NIPS’2008 WORKSHOPS

Olivier Delalleau
Joseph Turian
Dumitru Erhan
Pierre-Antoine Manzagol
Jérôme Louradour
Neuro-cognitive inspiration

• Brains use a distributed representation
• Brains use a deep architecture
• Brains heavily use unsupervised learning
• Brains take advantage of multiple modalities
• Brains learn simpler tasks first
• Human brains developed with society / culture / education
Local vs Distributed Representation

Debate since early 80’s (connectionist models)

Local representations:
- still common in neurosc.
- many kernel machines & graphical models
- easier to interpret

Distributed representations:
- ≈ 1% active neurons in brains
- exponentially more efficient
- difficult optimization
What is Learning?
Learn underlying and previously unknown structure, from examples

= CAPTURE THE VARIATIONS
Locally capture the variations

true function: unknown

learnt = interpolated

*= training example

test point x
Easy when there are only a few variations

* = example \((x, y)\)

true unknown function

learned function: prediction = \(f(x)\)
Curse of dimensionality

To generalize locally, need examples representative of each possible variation.
Theoretical results

• **Theorem**: Gaussian kernel machines need at least k examples to learn a function that has $2k$ zero-crossings along some line

• **Theorem**: For a Gaussian kernel machine to learn some maximally varying functions over d inputs require $O(2^d)$ examples
Distributed Representations

Many neurons active simultaneously. Input represented by the activation of a set of features that are not mutually exclusive. Can be **exponentially more efficient** than local representations.
Neurally Inspired Language Models

• Classical statistical models of word sequences: local representations

• Input = sequence of symbols, each element of sequence = 1 of N possible words

• Distributed representations: learn to embed the words in a continuous-valued low-dimensional semantic space
Neural Probabilistic Language Models

Successes of this architecture and its descendents: beats localist state-of-the-art in NLP in many tasks (language model, chunking, semantic role labeling, POS)

Bengio et al. 2003, Schwenk et al. 2005, Collobert & Weston, ICML’08
Embedding Symbols

Blitzer et al 2005, NIPS
Nearby Words in Semantic Space

Show t-SNE embeddings of *Collobert & Weston (ICML’08)*, done by Joseph Turian
Deep Architecture in the Brain

- Retina
- Area V1
- Area V2
- Area V4

- Pixels
- Edge detectors
- Primitive shape detectors
- Higher level visual abstractions
Visual System

Sequence of transformations / abstraction levels
Architecture Depth

Computation performed by learned function can be decomposed into a graph of simpler operations
Insufficient depth = May require exponential-size architecture

Sufficient depth = Compact representation
2 layers of logic gates
formal neurons
RBF units

= universal approximator

Theorems for all 3:
(Hastad et al 86 & 91, Bengio et al 2007)
Functions representable compactly with k layers may require exponential size with k-1 layers

Good News, Bad News
Breakthrough!

Before 2006
Failure of deep architectures

After 2006
Train one level after the other, **unsupervised**, extracting abstractions of gradually higher level

Deep Belief Networks (Hinton et al 2006)
Success of deep distributed neural networks

Since 2006

• Records broken on MNIST handwritten character recognition benchmark
• State-of-the-art beaten in language modeling (Collobert & Weston 2008)
• NSF et DARPA are interested…
• Similarities between V1 & V2 neurons and representations learned with deep nets
 (Raina et al 2008)
Unsupervised greedy layer-wise pre-training
Why is unsupervised pre-training working?

- Learning can be mostly local with unsupervised learning of transformations (Bengio 2008)
- Generalizing better in presence of many factors of variation (Larochelle et al ICML’2007)
- Deep neural nets iterative training: stuck in poor local minima
- Pre-training moves into improbable region with better basins of attraction
- Training one layer after the other \(\approx\) continuation method (Bengio 2008)
Flower Power
Unsupervised pre-training acts as a regularizer

- Lower test error at same training error
- Hurts when capacity is too small
- Preference for transformations capturing input distribution, instead of $w=0$
- But helps to optimize lower layers.
Non-convex optimization

• Humans somehow find a good solution to an intractable non-convex optimization problem. How?
 – Shaping? The order of examples / stages in development / education

≈ approximate global optimization (continuation)
Continuation methods

First learn simpler tasks, then build on top and learn higher-level abstractions.
Experiments on multi-stage curriculum training

Stage 1 data:

Stage 2: data

Train deep net for 128 epochs. Switch from stage 1 to stage 2 data at epoch N in \{0, 2, 4, 8, 16, 32, 64, 128\}.
The wrong distribution helps
Parallelized exploration: Evolution of concepts

- Each brain explores a different potential solution
- Instead of exchanging synaptic configurations, exchange ideas through language
Evolution of concepts: memes

- Genetic algorithms need 2 ingredients:
 - Population of candidate solutions: brains
 - Recombination mechanism: culture/language
Conclusions

1. Representation: brain-inspired & distributed
2. Architecture: brain-inspired & deep
 1. Challenge: non-convex optimization
 2. Plan: understand the issues and try to view what brains do as strategies for solving this challenge