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Abstract

I describe an optimal control view of adversarial machine learning, where the dynamical system is the

machine learner, the input are adversarial actions, and the control costs are defined by the adversary’s

goals to do harm and be hard to detect. This view encompasses many types of adversarial machine

learning, including test-item attacks, training-data poisoning, and adversarial reward shaping. The view

encourages adversarial machine learning researcher to utilize advances in control theory and reinforcement

learning.

1 Adversarial Machine Learning is not Machine Learning

Machine learning has its mathematical foundation in concentration inequalities. This is a consequence of
the independent and identically-distributed (i.i.d.) data assumption. In contrast, I suggest that adversarial
machine learning may adopt optimal control as its mathematical foundation [3,25]. There are telltale signs:
adversarial attacks tend to be subtle and have peculiar non-i.i.d. structures – as control input might be.

2 Optimal Control

I will focus on deterministic discrete-time optimal control because it matches many existing adversarial
attacks. Extensions to stochastic and continuous control are relevant to adversarial machine learning, too.
The system to be controlled is called the plant, which is defined by the system dynamics:

xt+1 = f(xt,ut) (1)

where xt ∈ Xt is the state of the system, ut ∈ Ut is the control input, and Ut is the control constraint
set. The function f defines the evolution of state under external control. The time index t ranges from 0
to T − 1, and the time horizon T can be finite or infinite. The quality of control is specified by the running
cost:

gt(xt,ut) (2)

which defines the step-by-step control cost, and the terminal cost for finite horizon:

gT (xT ) (3)

which defines the quality of the final state. The optimal control problem is to find control inputs u0 . . .uT−1

in order to minimize the objective:

min
u0...uT−1

gT (xT ) +
T−1
∑

t=0

gt(xt,ut) (4)

s.t. xt+1 = f(xt,ut), ut ∈ Ut, ∀t

x0 given
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More generally, the controller aims to find control policies φt(xt) = ut, namely functions that map observed
states to inputs. In optimal control the dynamics f is known to the controller. There are two styles of
solutions: dynamic programming and Pontryagin minimum principle [2,10,17]. When f is not fully known,
the problem becomes either robust control where control is carried out in a minimax fashion to accommodate
the worst case dynamics [28], or reinforcement learning where the controller probes the dynamics [23].

3 Adversarial Machine Learning as Control

Now let us translate adversarial machine learning into a control formulation. Adversarial machine learning
studies vulnerability throughout the learning pipeline [4, 13, 20, 26]. As examples, I present training-data
poisoning, test-time attacks, and adversarial reward shaping below. In all cases, the adversary attempts to
control the machine learning system, and the control costs reflect the adversary’s desire to do harm and be
hard to detect.

Unfortunately, the notations from the control community and the machine learning community clash.
For example, x denotes the state in control but the feature vector in machine learning. I will use the machine
learning convention below.

3.1 Training-Data Poisoning

In training-data poisoning the adversary can modify the training data. The machine learner then trains a
“wrong” model from the poisoned data. The adversary’s goal is for the “wrong” model to be useful for some
nefarious purpose. I use supervised learning for illustration.

3.1.1 Batch Learner

At this point, it becomes useful to distinguish batch learning and sequential (online) learning. If the machine
learner performs batch learning, then the adversary has a degenerate one-step control problem. One-step
control has not been the focus of the control community and there may not be ample algorithmic solutions to
borrow from. Still, it is illustrative to pose batch training set poisoning as a control problem. I use Support
Vector Machine (SVM) with a batch training set as an example below:

• The state is the learner’s model h : X 7→ Y. For instance, for SVM h is the classifier parametrized by
a weight vector w. I will use h and w interchangeably.

• The control u0 is a whole training set, for instance u0 = {(xi, yi)}1:n.

• The control constraint set U0 consists of training sets available to the adversary; if the adversary
can arbitrary modify a training set for supervised learning (including changing features and labels,
inserting and deleting items), this could be U0 = ∪∞

n=0(X×Y)n, namely all training sets of all sizes.
This is a large control space.

• The system dynamics (1) is defined by the learner’s learning algorithm. For the SVM learner, this
would be empirical risk minimization with hinge loss ℓ() and a regularizer:

w1 = f(u0) ∈ argmin
w

n
∑

i=1

ℓ(w,xi, yi) + λ‖w‖2. (5)

The batch SVM does not need an initial weight w0. The adversary has full knowledge of the dynamics
f() if it knows the form (5), ℓ(), and the value of λ.

• The time horizon T = 1.
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• The adversary’s running cost g0(u0) measures the poisoning effort in preparing the training set u0.
This is typically defined with respect to a given “clean” data set ũ before poisoning in the form of

g0(u0) = distance(u0, ũ). (6)

The running cost is domain dependent. For example, the distance function may count the number of
modified training items; or sum up the Euclidean distance of changes in feature vectors.

• The adversary’s terminal cost g1(w1) measures the lack of intended harm. The terminal cost is also
domain dependent. For example:

– If the adversary must force the learner into exactly arriving at some target model w∗, then
g1(w1) = I∞[w1 6= w∗]. Here Iy [z] = y if z is true and 0 otherwise, which acts as a hard
constraint.

– If the adversary only needs the learner to get near w∗ then g1(w1) = ‖w1 −w∗‖ for some norm.

– If the adversary wants to ensure that a specific future item x∗ is classified ǫ-confidently as positive,
it can use g1(w1) = I∞[w1 /∈ W∗] with the target set W∗ = {w : w⊤x∗ ≥ ǫ}. More generally,
W∗ can be a polytope defined by multiple future classification constraints.

With these definitions, the adversary’s one-step control problem (4) specializes to

min
u0

g1(w1) + g0(w0,u0) (7)

s.t. w1 = f(w0,u0)

Unsurprisingly, the adversary’s one-step control problem is equivalent to a Stackelberg game and bi-level
optimization (the lower level optimization is hidden in f), a well-known formulation for training-data poi-
soning [12, 21].

3.1.2 Sequential Learner

The adversary performs classic discrete-time control if the learner is sequential:

• The learner starts from an initial model w0, which is the initial state.

• The control input at time t is ut = (xt, yt), namely the tth training item for t = 0, 1, . . .

• The dynamics is the sequential update algorithm of the learner. For example, the learner may perform
one step of gradient descent:

wt+1 = f(wt,ut) = wt − ηt∇ℓ(wt,xt, yt). (8)

• The adversary’s running cost gt(wt,ut) typically measures the effort of preparing ut. For example, it
could measure the magnitude of change ‖ut− ũt‖ with respect to a “clean” reference training sequence
ũ. Or it could be the constant 1 which reflects the desire to have a short control sequence.

• The adversary’s terminal cost gT (wT ) is the same as in the batch case.

The problem (4) then produces the optimal training sequence poisoning. Earlier attempts on sequential
teaching can be found in [1, 18, 19].
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3.2 Test-Time Attack

Test-time attack differs from training-data poisoning in that a machine learning model h : X 7→ Y is already-
trained and given. Also given is a “test item” x. There are several variants of test-time attacks, I use the
following one for illustration: The adversary seeks to minimally perturb x into x′ such that the machine
learning model classifies x and x′ differently. That is,

min
x
′

distance(x,x′) (9)

s.t. h(x) 6= h(y).

The distance function is domain-dependent, though in practice the adversary often uses a mathematically
convenient surrogate such as some p-norm ‖x− x′‖p.

One way to formulate test-time attack as optimal control is to treat the test-item itself as the state, and
the adversarial actions as control input. Let us first look at the popular example of test-time attack against
image classification:

• Let the initial state x0 = x be the clean image.

• The adversary’s control input u0 is the vector of pixel value changes.

• The control constraint set is U0 = {u : x0 + u ∈ [0, 1]d} to ensure that the modified image has valid
pixel values (assumed to be normalized in [0, 1]).

• The dynamical system is trivially vector addition: x1 = f(x0,u0) = x0 + u0.

• The adversary’s running cost is g0(x0,u0) = distance(x0,x1).

• The adversary’s terminal cost is g1(x1) = I∞[h(x1) = h(x0)]. Note the machine learning model h is
only used to define the hard constraint terminal cost; h itself is not modified.

With these definitions this is a one-step control problem (4) that is equivalent to the test-time attack
problem (9).

This control view on test-time attack is more interesting when the adversary’s actions are sequential
U0,U1, . . ., and the system dynamics render the action sequence non-commutative. The adversary’s running
cost gt then measures the effort in performing the action at step t. One limitation of the optimal control
view is that the action cost is assumed to be additive over the steps.

3.3 Defense Against Test-Time Attack by Adversarial Training

Some defense strategies can be viewed as optimal control, too. One defense against test-time attack is to
require the learned model h to have the large-margin property with respect to a training set. Let (x, y)
be any training item, and ǫ a margin parameter. Then the large-margin property states that the decision
boundary induced by h should not pass ǫ-close to (x, y):

∀x′ : (‖x′ − x‖p ≤ ǫ) ⇒ h(x′) = y. (10)

This is an uncountable number of constraints. It is relatively easy to enforce for linear learners such as
SVMs, but impractical otherwise.

Adversarial training can be viewed as a heuristic to approximate the uncountable constraint (10) with
a finite number of active constraints: one performs test-time attack against the current h from x to find
an adversarial item x(1), such that ‖x(1) − x‖p ≤ ǫ but h(x(1)) 6= y. Instead of adding a single constraint
h(x(1)) = y, an additional training item (x(1), y) is then added to the training set. The machine learning
algorithm learns a different h, with the hope (but not constraining) that h(x(1)) = y. This process repeats
for k iteration, resulting in k additional training items (x(i), y) for i = 1 . . . k.

It should be clear that such defense is similar to training-data poisoning, in that the defender uses data
to modify the learned model. This is especially interesting when the learner performs sequential updates.
One way to formulate adversarial training defense as control is the following:
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• The state is the model ht. Initially h0 can be the model trained on the original training data.

• The control input ut = (xt, yt) is an additional training item with the trivial constraint set Ut = X×y.

• The dynamics ht+1 = f(ht,ut) is one-step update of the model, e.g. by back-propagation.

• The defender’s running cost gt(ht,ut) can simply be 1 to reflect the desire for less effort (the running
cost sums up to k).

• The defender’s terminal cost gT (hT ) penalizes small margin of the final model hT with respect to the
original training data.

Of course, the resulting control problem (4) does not directly utilize adversarial examples. One way to
incorporate them is to restrict Ut to a set of adversarial examples found by invoking test-time attackers on
ht, similar to the heuristic in [7]. These adversarial examples do not even need to be successful attacks.

3.4 Adversarial Reward Shaping

When adversarial attacks are applied to sequential decision makers such as multi-armed bandits or reinforce-
ment learning agents, a typical attack goal is to force the latter to learn a wrong policy useful to the adversary.
The adversary may do so by manipulating the rewards and the states experienced by the learner [11, 14].

To simplify the exposition, I focus on adversarial reward shaping against stochastic multi-armed bandit,
because this does not involve deception through perceived states. To review, in stochastic multi-armed bandit
the learner at iteration t chooses one of k arms, denoted by It ∈ [k], to pull according to some strategy [6].
For example, the (α, ψ)-Upper Confidence Bound (UCB) strategy chooses the arm

It ∈ argmaxi∈[k]µ̂i,Ti(t−1) + ψ∗−1

(

α log t

Ti(t− 1)

)

(11)

where Ti(t − 1) is the number of times arm i has been pulled up to time t − 1, µ̂i,Ti(t−1) is the empirical
mean of arm i so far, and ψ∗ is the dual of a convex function ψ. The environment generates a stochastic
reward rIt ∼ νIt . The learner updates its estimate of the pulled arm:

µ̂It,TIt
(t) =

µ̂It,TIt
(t−1)TIt(t− 1) + rIt

TIt(t− 1) + 1
(12)

which in turn affects which arm it will pull in the next iteration. The learner’s goal is to minimize the
pseudo-regret Tµmax − E

∑T

t=1 µIt where µi = Eνi and µ
max = maxi∈[k] µi. Stochastic multi-armed bandit

strategies offer upper bounds on the pseudo-regret.
With adversarial reward shaping, an adversary fully observes the bandit. The adversary intercepts the

environmental reward rIt in each iteration, and may choose to modify (“shape”) the reward into

rIt + ut

with some ut ∈ R before sending the modified reward to the learner. The adversary’s goal is to use minimal
reward shaping to force the learner into performing specific wrong actions. For example, the adversary may
want the learner to frequently pull a particular target arm i∗ ∈ [k]. It should be noted that the adversary’s
goal may not be the exact opposite of the learner’s goal: the target arm i∗ is not necessarily the one with
the worst mean reward, and the adversary may not seek pseudo-regret maximization.

Adversarial reward shaping can be formulated as stochastic optimal control:

• The state st, now called control state to avoid confusion with the Markov Decision Process states
experienced by an reinforcement learning agent, consists of the sufficient statistic tuple at time t:

st = (T1(t− 1), µ̂1,T1(t−1), . . . , Tk(t− 1), µ̂k,Tk(t−1), It).
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• The control input is ut ∈ Ut with Ut = R in the unconstrained shaping case, or the appropriate Ut if
the rewards must be binary, for example.

• The dynamics st+1 = f(st, ut) is straightforward via empirical mean update (12), TIt increment, and
new arm choice (11).

• The adversary’s running cost gt(st, ut) reflects shaping effort and target arm achievement in iteration
t. For instance,

gt(st, ut) = u2t + Iλ[It 6= i∗]. (13)

where λ > 0 is a trade off parameter.

• There is not necessarily a time horizon T or a terminal cost gT (sT ).

The control state is stochastic due to the stochastic reward rIt entering through (12).

4 Advantages of the Optimal Control View

There are a number of potential benefits in taking the optimal control view:

• It offers a unified conceptual framework for adversarial machine learning;

• The optimal control literature provides efficient solutions when the dynamics f is known and one can
take the continuous limit to solve the differential equations [15];

• Reinforcement learning, either model-based with coarse system identification or model-free policy it-
eration, allows approximate optimal control when f is unknown, as long as the adversary can probe
the dynamics [8, 9];

• A generic defense strategy may be to limit the controllability the adversary has over the learner.

• I mention in passing that the optimal control view applies equally to machine teaching [27, 29], and
thus extends to the application of personalized education [22, 24].

I need to point out some limitations:

• Having a unified optimal control view does not automatically produce efficient solutions to the control
problem (4). For adversarial machine learning applications the dynamics f is usually highly nonlinear
and complex. Furthermore, in graybox and blackbox attack settings f is not fully known to the
attacker. They affect the complexity in finding an optimal control.

• The adversarial learning setting is largely non-game theoretic, though there are exceptions [5, 16].

These problems call for future research from both machine learning and control communities.
Acknowledgments. I acknowledge funding NSF 1837132, 1545481, 1704117, 1623605, 1561512, and

the MADLab AF Center of Excellence FA9550-18-1-0166.
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[6] Sébastien Bubeck and Nicolo Cesa-Bianchi. Regret analysis of stochastic and nonstochastic multi-armed
bandit problems. Foundations and Trends in Machine Learning, 5(1):1–122, 2012.

[7] Qi-Zhi Cai, Min Du, Chang Liu, and Dawn Song. Curriculum adversarial training. In The 27th
International Joint Conference on Artificial Intelligence (IJCAI), 2018.

[8] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. Adversarial attack on
graph structured data. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pages 1115–
1124, Stockholmsmssan, Stockholm Sweden, 10–15 Jul 2018. PMLR.

[9] Yang Fan, Fei Tian, Tao Qin, and Tie-Yan Liu. Learning to teach. In ICLR, 2018.

[10] Terry L Friesz. Dynamic optimization and differential games, volume 135. Springer Science & Business
Media, 2010.

[11] Sandy Huang, Nicolas Papernot, Ian Goodfellow, Yan Duan, and Pieter Abbeel. Adversarial attacks on
neural network policies. arXiv, 2017.

[12] Matthew Jagielski, Alina Oprea, Battista Biggio, Chang Liu, Cristina Nita-Rotaru, and Bo Li. Ma-
nipulating machine learning: Poisoning attacks and countermeasures for regression learning. The 39th
IEEE Symposium on Security and Privacy, 2018.

[13] Anthony D. Joseph, Blaine Nelson, Benjamin I. P. Rubinstein, and J. D. Tygar. Adversarial Machine
Learning. Cambridge University Press, 2018. in press.

[14] Kwang-Sung Jun, Lihong Li, Yuzhe Ma, and Xiaojin Zhu. Adversarial attacks on stochastic bandits.
In Advances in Neural Information Processing Systems (NIPS), 2018.

[15] L. Lessard, X. Zhang, and X. Zhu. An Optimal Control Approach to Sequential Machine Teaching.
ArXiv e-prints, October 2018.

[16] Bo Li and Yevgeniy Vorobeychik. Scalable Optimization of Randomized Operational Decisions in Ad-
versarial Classification Settings. In Guy Lebanon and S. V. N. Vishwanathan, editors, Proceedings of the
Eighteenth International Conference on Artificial Intelligence and Statistics, volume 38 of Proceedings
of Machine Learning Research, pages 599–607, San Diego, California, USA, 09–12 May 2015. PMLR.

[17] Daniel Liberzon. Calculus of variations and optimal control theory: A concise introduction. Princeton
University Press, 2011.

[18] Weiyang Liu, Bo Dai, Ahmad Humayun, Charlene Tay, Chen Yu, Linda B Smith, James M Rehg,
and Le Song. Iterative machine teaching. In International Conference on Machine Learning, pages
2149–2158, 2017.

[19] Weiyang Liu, Bo Dai, Xingguo Li, Zhen Liu, James M. Rehg, and Le Song. Towards black-box iterative
machine teaching. In ICML, volume 80 of JMLR Workshop and Conference Proceedings, pages 3147–
3155. JMLR.org, 2018.

[20] Daniel Lowd and Christopher Meek. Adversarial learning. In Proceedings of the eleventh ACM SIGKDD
international conference on Knowledge discovery in data mining, pages 641–647. ACM, 2005.

7



[21] Shike Mei and Xiaojin Zhu. Using machine teaching to identify optimal training-set attacks on machine
learners. In The Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

[22] Kaustubh Patil, Xiaojin Zhu, Lukasz Kopec, and Bradley Love. Optimal teaching for limited-capacity
human learners. In Advances in Neural Information Processing Systems (NIPS), 2014.

[23] B. Recht. A Tour of Reinforcement Learning: The View from Continuous Control. ArXiv e-prints, June
2018.

[24] Ayon Sen, Purav Patel, Martina A. Rau, Blake Mason, Robert Nowak, Timothy T. Rogers, and Xiaojin
Zhu. Machine beats human at sequencing visuals for perceptual-fluency practice. In Educational Data
Mining, 2018.

[25] Emanuel Todorov. Optimal control theory. Bayesian brain: probabilistic approaches to neural coding,
pages 269–298, 2006.

[26] Yevgeniy Vorobeychik and Murat Kantarcioglu. Adversarial machine learning. Synthesis Lectures on
Artificial Intelligence and Machine Learning, 12(3):1–169, 2018.

[27] Xiaojin Zhu. Machine teaching: an inverse problem to machine learning and an approach toward optimal
education. In The Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI “Blue Sky” Senior
Member Presentation Track), 2015.

[28] Xiaojin Zhu, Ji Liu, and Manuel Lopes. No learner left behind: On the complexity of teaching multiple
learners simultaneously. In The 26th International Joint Conference on Artificial Intelligence (IJCAI),
2017.

[29] Xiaojin Zhu, Adish Singla, Sandra Zilles, and Anna N. Rafferty. An Overview of Machine Teaching.
ArXiv e-prints, January 2018. https://arxiv.org/abs/1801.05927.

8


	1 Adversarial Machine Learning is not Machine Learning
	2 Optimal Control
	3 Adversarial Machine Learning as Control
	3.1 Training-Data Poisoning
	3.1.1 Batch Learner
	3.1.2 Sequential Learner

	3.2 Test-Time Attack
	3.3 Defense Against Test-Time Attack by Adversarial Training
	3.4 Adversarial Reward Shaping

	4 Advantages of the Optimal Control View

