Efficient Data Collection Requires Incentives

MADLab 2022 Summer Workshop

Yiding Chen, Young Wu, Jerry Zhu*

Department of Computer Sciences, University of Wisconsin-Madison. June 14, 2022

A Fishy Tale

- Collect *n* data points $x_1, ..., x_n \sim N(\mu, 1)$
- Maximum Likelihood Estimate $\hat{\mu} = \frac{1}{n} \sum_{j=1}^{n} x_j$
- Variance $V(\hat{\mu}) = \frac{1}{n}$
- Key assumption: Agents collect data for economic reasons

- Benefit to the agent: b(n) concave in n (diminishing return)
 - Example: $b(n) = \sqrt{1/V(\hat{\mu})} = \sqrt{n}$
- Cost to the agent: c(n)
 - Example: $c(n) = \alpha n$, α is unit data collection cost
- Payoff to agent u(n) = b(n) c(n)

How many fish would Rob want to measure?

$$\max_{n} u(n) = \sqrt{n - \alpha n}$$

$$\frac{1}{2\sqrt{n}} - \alpha = 0$$

$$n = \frac{1}{4\alpha^2}$$

$$n = \frac{1}{4\alpha^2}$$

"Continuous fish"

$$u(n) = \frac{1}{4\alpha}$$

Let's All Measure Fish

- m autonomous agents, each collecting n_1, \ldots, n_m iid points from $N(\mu, 1)$
- We will share our data

$$V(\hat{\mu}) = \frac{1}{\sum_{i=1}^{m} n_i}$$

• Payoff to agent *i*:

$$u_i(n_1, ..., n_i, ..., n_m) = \sqrt{\sum_{j=1}^m n_j - \alpha n_i}$$

Rationality

- Agent *i* action space $n_i \in \mathbb{R}_{\geq 0}$
- The Best Response to other agents who play $n_{-i} = (n_1, \dots, n_{i-1}, n_{i+1}, \dots, n_m)$:

$$n_i^{BR} \in \arg\max_{n_i} u_i(n_i, n_{-i})$$

- "If others play n_{-i} , I do not want to deviate from n_i^{BR} ."
- But what will others play?

Nash Equilibrium

• $(n_1^*, ..., n_m^*)$ is a Nash equilibrium if the components are BR to each other:

$$n_i^* \in \arg\max_{n_i} u_i(n_i, n_{-i}^*), \forall i \in [m]$$

- Our problem is symmetric
- Assume a symmetric NE $(n^*, ..., n^*)$

Multi-Agent Rational Data Collection

$$n_i^* \in \arg\max_{n_i} u_i(n_i, n_{-i}^*), \forall i \in [m]$$

$$\frac{\partial u_i(n_i, n_{-i} = n^*)}{\partial n_i} \bigg|_{n_i = n^*} = 0$$

$$n^* = \frac{1}{4\alpha^2 m}$$

Multi-Agent Rational Data Collection

$$n^* = \frac{1}{4\alpha^2 m}$$

$$u_i(n^*, ..., n^*) = \frac{1}{2\alpha} - \frac{1}{4\alpha m}, \forall i \in [m]$$

Tragedy of the Data Scientists

- But each of us could have done much better!
- Let's each collect n^{\dagger} points

$$u_i(n_i = n^{\dagger}, n_{-i} = n^{\dagger}) = \sqrt{mn^{\dagger}} - \alpha n^{\dagger}$$

$$\frac{du_i(n_i = n^{\dagger}, n_{-i} = n^{\dagger})}{dn^{\dagger}} = 0$$

$$n^{\dagger} = \frac{m}{4\alpha^2}$$

Tragedy of the Data Scientists

• $n^{\dagger} = \frac{m}{4\alpha^2}$ is the socially optimal fair assignment (SOFA), $u_i(n^{\dagger}...n^{\dagger}) = \frac{m}{4\alpha}$

Tragedy of the Data Scientists

- The tragedy: no one will play SOFA.
- If others collect n^{\dagger} , I want to cheat and collect *no data*

More than Fish

Another example: multi-armed bandit

- Two Gaussian arms $\Delta = \mu_2 \mu_1 > 0$
- m agents running the ETC algorithm
- Agent j pulls arm 1 $T_j/2$ time and arm 2 $T_j/2$ times (each pull costs α)
- Agents pool data together to find the best empirical arm $\hat{a} \in \{1,2\}$
- Each agent commits to \hat{a} for T' deployment rounds

$$u_j(T_1, ..., T_m) = \frac{T_j}{2}(\mu_1 - \alpha) + \frac{T_j}{2}(\mu_2 - \alpha) + T'(E[\mu_{\hat{a}}] - \alpha)$$

More than Fish

Another example: multi-armed bandit

• Nash equilibrium

$$T^* = \frac{4}{\Delta^2 m} W \left(\frac{T'^2 \Delta^6}{32\pi (2\alpha - \mu_1 - \mu_2)^2} \right)$$

SOFA

$$T^{\dagger} = \frac{4}{\Delta^2 m} W \left(\frac{m^2 T'^2 \Delta^6}{32\pi (2\alpha - \mu_1 - \mu_2)^2} \right)$$

Lambert W function: $xe^x = z \Rightarrow x = W(z)$

Data Collection Inefficiency in General

• Recall payoff = benefit - cost

$$u_i(n_1, ..., n_m) := b \left(\sum_{j=1}^m n_j \right) - c(n_i)$$

- Nash is the solution to $b'(mn^*) c'(n^*) = 0$
- SOFA is the solution to $mb'(mn^{\dagger}) c'(n^{\dagger}) = 0$

A Sufficient Condition for Tragedy

$$u_i(n_1, ..., n_m) := b \left(\sum_{j=1}^m n_j \right) - c(n_i)$$

If:

- b strictly concave and non-decreasing (diminishing return)
- $c = \alpha n_i$ linear (unit cost)

then

$$n^* < n^\dagger$$

Proof by Picture

• Nash: $b'(mn^*) = \alpha$

• SOFA: $b'(mn^{\dagger}) = \frac{\alpha}{m}$

Coercion Efficient Data Collection Requires Incentives

- Paying them a unit price p is not a solution: merely changes α into αp
- Server: takes all data, learn, sends model to agent i only if $n_i = n^{\dagger}$
 - Changes payoff $u_i(n_1, ..., n_m) = b(\sum_i n_j) \mathbf{1}[n_i = n^{\dagger}] c(n_i)$
 - $(n^{\dagger}, ..., n^{\dagger})$ now a Nash equilibrium
- Tyranny of the server: enslaves the agents by pushing n^{\dagger} toward the solution to $u_i = b(mn^{\dagger}) c(n^{\dagger}) \downarrow 0$
- What if agents fake data?