Humans Perform Semi-Supervised Classification Too

Xiaojin Zhu, Timothy Rogers, Ruichen Qian and Chuck Kalish
Computer Sciences Department, Psychology Department
University of Wisconsin, Madison, WI, USA.

Abstract
This work explores the connections between machine learning and human learning. Under a specific setting, human behavior conforms well to a generative model (Gaussian Mixture Models) for semi-supervised learning. We seem to learn semi-supervisedly.

The semi-supervised learning task
Two-class classification. Two labeled examples. Decision boundary in the middle.

Procedure
Two groups: L-subjects and R-subjects. Each subject sees 6 blocks of stimuli. Order within each block is randomized. Only block 1 is labeled.

- [labeled] 10 (x=1,y=1), 10 (x=1,y=−1)
- [test-1] x=−1, 0, 0.9, …, 0.9, 1
- [unlabeled-1] 230 sampled from two Gaussian (left or right shifted). 21 “range stimuli” evenly in [-2.5, 2.5].
- [unlabeled-2] same as block 3
- [unlabeled-3] same as block 3
- [test-2] x=1, −0.9, …, 0.9, 1

Behavioral experiment results
Observation 1: Unlabeled data changes the decision boundary. [test-1] (0.11); L-subjects [test-2] (-0.1); R-subjects [test-2] (0.48)
The shift represents the effect of unlabeled data on subjects, and fits the expectation of semi-supervised classification.

Observation 2: Reaction time reflects decision boundary shift.
- The harder the stimuli, the longer the reaction time
- Peaks shift to follow new decision boundary

Observation 3: GMMs predict the decision boundary shift.

Observation 4: Unlabeled example weight λ controls the amount of decision boundary shift. Unlabeled data seems to be worth less than labeled data. Best fit: λ=0.06.

Observation 5: GMMs also explain reaction time \(t=aH(x)+b \), where \(H(x) \) is the entropy of class prediction for \(x \).

Conclusions
- Humans and machines both perform semi-supervised learning.
- Flatness of classification curves on [test-2] not well explained.
- Other forms of semi-supervised machine learning (e.g., manifold regularization, S3VMs, co-training) in humans should be explored.
- Further study may lead to new learning algorithms.