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Abstract

Training set bugs are flaws in the data that adversely affect
machine learning. The training set is usually too large for man-
ual inspection, but one may have the resources to verify a few
trusted items. The set of trusted items may not by itself be
adequate for learning, so we propose an algorithm that uses
these items to identify bugs in the training set and thus im-
proves learning. Specifically, our approach seeks the smallest
set of changes to the training set labels such that the model
learned from this corrected training set predicts labels of the
trusted items correctly. We flag the items whose labels are
changed as potential bugs, whose labels can be checked for
veracity by human experts. To find the bugs in this way is a
challenging combinatorial bilevel optimization problem, but
it can be relaxed into a continuous optimization problem. Ex-
periments on toy and real data demonstrate that our approach
can identify training set bugs effectively and suggest appro-
priate changes to the labels. Our algorithm is a step toward
trustworthy machine learning.

1 Introduction
A good training set is essential for machine learning. The
presence of bugs – mislabeled training items1 – has adverse
effects on learning (Brodley and Friedl 1999; Guruswami
and Raghavendra 2009; Caramanis and Mannor 2008). Bugs
can appear as outliers that are relatively easy to detect, or as
systematic biases. Systematic bugs are much harder to detect
because the data appear self-consistent.

We propose a novel algorithm DUTI (Debugging Using
Trusted Items) which can detect both outlier and systematic
training set bugs. In addition, it can propose fixes, namely
the corrected label for the bugs. To do so, DUTI utilizes the
knowledge of the machine learning algorithm and a small
set of additional “trusted items”. At its core, DUTI finds the
smallest changes to the training set such that, when trained
on the changed training set, the learned model agrees with the
trusted items. The changes are then shown to a domain expert
as suggested bug fixes. We will show how DUTI can be
relaxed and solved efficiently using continuous optimization,
and we demonstrate its debugging efficacy on multiple data
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1We focus on label bugs for simplicity, though our framework
can be extended to feature bugs in a straightforward manner.
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Figure 1: Harry Potter Toy Example

sets. All code and data are published at http://pages.
cs.wisc.edu/~jerryzhu/DUTI.

To build intuition, consider a toy example a la Harry Potter
in Figure 1a. Each blue point is a Hogwarts student whose
magical heritage ranges from 0 (muggle-born) to 1 (pure-
blood), and education ranges from 0 (failed school) to 1
(Hermione level). These blue points form a classification
training set, where the class label is ‘+’ (hired by Ministry
of Magic after graduation) or ‘o’ (not hired). This training
set shows historical bias against muggle-borns with high edu-
cation. Kernel logistic regression trained on the data reflects
this bias (black decision boundary). But suppose we know
two more students and how they should be classified (the red
points) – the assumption being that a fair decision is based
simply on education ≥ 0.5. These two points are the trusted
items. Simply training on the trusted items alone will be un-
satisfactory – the boundary will not be flat at education= 0.5.
Instead, DUTI can utilize the trusted items to flag potential
bugs in the training set (Fig. 1b). Darker color represents
higher confidence that a training item is a bug.

2 Training Set Debugging Formulation
DUTI needs three inputs:

1. The training set in the form of feature, label pairs
(X,Y ) = {(xi, yi)}1:n. The labels Y can be continuous
for regression or discrete for classification, and are poten-
tially buggy.

2. Trusted items (X̃, Ỹ ) = {(x̃i, ỹi, ci)}1:m. These are items
verified by domain experts typically at considerable ex-



pense. The domain expert can optionally specify a confi-
dence c ≥ 0 for each trusted item. We assume m � n
so that the amount of trusted data is insufficient to train a
good model. We do not assume the trusted items are iid.

3. The learning algorithm A. In this work, we focus on regu-
larized empirical risk minimizers

A(X,Y ) = argmin
θ∈Rp

1

n

n∑
i=1

`(xi, yi, θ) + λΩ(θ) (1)

with strongly convex and twice differentiable objective
function, such that argmin returns a unique solution, and
the Hessian matrix is always nonsingular.

Conceptually, DUTI solves the following optimization prob-
lem:

argmin
Y ′

Distance(Y ′, Y ) (2)

s.t. Predictor = A(X,Y ′) (3)

Predictor(X̃) = Ỹ ∧ Predictor(X) = Y ′ (4)

That is, we find an alternative labeling Y ′ for the training
data, as close as possible to the original labels Y , such that
the model trained with the original feature vectors X and the
alternative labels Y ′ correctly predicts the labels Ỹ of the
trusted items X̃ , and the alternative labeling is self-consistent.
We call the training items for which y′i 6= yi the flagged bugs;
we give them to the domain expert for further inspection to
see if they are true bugs.

Our next step is to relax it into a continuous single level
optimization problem that can be solved efficiently.

2.1 Debugging for Regression
In regression, Y ′ and Y are both vectors in Rn. We define δ ≡
Y ′−Y , and choose ‖δ‖1 as the distance metric to encourage
sparsity of δ. We will denote the predictor A(X,Y ′) as θ.
Instead of requiring equalities as in (4), we relax them by
the learner’s surrogate loss function, and place them in the
objective in the Lagrangian form:

min
δ∈Rn,θ

1

m

m∑
i=1

ci`(x̃i, ỹi, θ)

+
1

n

n∑
i=1

`(xi, yi + δi, θ) + γ
‖δ‖1
n

(5)

s.t. θ = argmin
β∈Rp

1

n

n∑
i=1

`(xi, yi + δi, β) + λΩ(β).

where ci’s are the confidence levels assigned to each of the
trusted items. This is a bilevel optimization problem. We
now convert the lower level problem to a nonlinear con-
straint. Notice that since the lower problem is unconstrained
and strongly convex, it can be replaced equivalently with its
Karush–Kuhn–Tucker (KKT) condition:

g(δ, θ) ≡ 1

n

n∑
i=1

∇θ`(xi, yi + δi, θ) + λ∇θΩ(θ) = 0. (6)

Now, since g is continuously differentiable and ∂g
∂θ is invert-

ible, the solution to g(δ, θ) = 0 defines an implicit function
θ(δ). We can now replace θ with θ(δ) in (5), and call the re-
sultOγ(δ). Using the fact d`dδ = ∂`

∂δ + ∂`
∂θ

∂θ
∂δ , we can compute

the gradient of Oγ(δ) as

∇δOγ =
1

m

m∑
i=1

ciJ
>∇θ`(x̃i, ỹi, θ)|θ(δ) (7)

+
1

n

n∑
i=1

∂`(xi, yi + δi, θ(δ))

∂δi
ei

+
1

n

n∑
i=1

J>∇θ`(xi, yi + δi, θ(δ)) +
γ

n
sgn(δ)

where ei is the ith canonical vector and J is defined by the
implicit function theorem:

J ≡ ∂θ

∂δ
= −


∂g1
∂θ1

· · · ∂g1
∂θp

...
...

∂gp
∂θ1

· · · ∂gp
∂θp


−1 

∂g1
∂δ1

· · · ∂g1
∂δn

...
...

∂gp
∂δ1

· · · ∂gp
∂δn

 .
With∇δOγ we then solve (5) with a gradient method.

2.2 Debugging for Classification
Let there be k classes. To avoid a combinatorial problem, we
relax the optimization variable to the k-probability simplex
∆k. Concretely, we first augment the learnerA so that it takes
weighted training items:

θ = argmin
β

1

n

n∑
i=1

k∑
j=1

wij`(xi, j, β) + λΩ(β) (8)

where wi ∈ ∆k, that is, wij ≥ 0 and
∑k
j=1 wij = 1, ∀i, j.

The original learner (1) can be recovered with wi = eyi ,∀i.
We then represent the ith proposed new class label y′i by

δi ∈ ∆k. Note that δi here represents the new set of labels, not
a difference in labels. One way to measure the distance to the
old label yi is 1−δi,yi , namely the probability mass siphoned
away from the old label. We thus obtain a bilevel optimization
problem with continuous variables similar to (5):

min
δ∈∆n

k ,θ

1

m

m∑
i=1

ci`(x̃i, ỹi, θ) (9)

+
1

n

n∑
i=1

k∑
j=1

δij`(xi, j, θ) +
γ

n

n∑
i=1

(1− δi,yi)

s.t. θ = argmin
β

1

n

n∑
i=1

k∑
j=1

δij`(xi, j, β) + λΩ(β).

Finally, we go through similar steps as in regression: replac-
ing the lower problem with its KKT condition; defining an
implicit function θ(δ); obtaining the objective Oγ(δ) of (9);
and computing its gradient ∇δOγ using implicit function
theorem. We then optimize Oγ(δ) to solve for δ. The details
can be found at the aforementioned website.



Input :Training set (X,Y ), trusted items (X̃, Ỹ , c),
learner A, examination budget b ≤ n;

1 Initialize t = 0, δ(0) = 0 in regression or Y in
classification, nflag = 0;

2 Initialize γ(0) = maxi |∇δOγ=0(δ(0))i| in regression, or
γ(0) = maxi∇δOγ=0(δ(0))i,yi in classification;

3 while nflag ≤ b do
4 t = t+ 1;
5 γ(t) = γ(t−1)/2;
6 δ(t) = argminOγ(t)(δ), initialized at δ(t−1);

7 F (t) = {i | δ(t)
i 6= 0} in regression, or

8 F (t) = {i | argmaxj(δ
(t)
ij ) 6= yi} in classification;

9 nflag = | ∪ts=1 F
(s)|;

10 end
Output :(γ1, δ

(1)), · · · , (γt, δ(t));
Algorithm 1: DUTI

2.3 The DUTI Algorithm
We now present a unified DUTI algorithm for debugging both
regression and classification, see Algorithm 1. As part of the
input, the domain expert can specify an examination budget
b, the preferred total number of flagged bugs that they are
willing to check. Recall that the debugging formulations (5)
and (9) have a sparsity parameter γ. DUTI automatically
chooses a sequence of γ’s, runs the corresponding debugging
formulation, and flags potential bugs F (t) by line 7 or 8, re-
spectively. F (1), F (2), . . . are not necessarily nested subsets.
DUTI accumulates all previously flagged bugs by ∪ts=1F

(s),
and only stops if its size exceeds the examination budget b.

DUTI outputs the sequence of sparsity parameters γ and
solutions δ, from which the F ’s can be recovered. This is
helpful for the domain expert to investigate the flagged bugs.
Specifically, DUTI’s output induces a ranking over all flagged
bugs. Bugs are ranked by the earliest time they appear in the
sequence F1, F2, . . .. When two bugs first appear at the same
time, the tie is broken by comparing the deviation of δ from
the initial value. Larger deviation = earlier order. Furthermore,
the value δ suggests the fix, namely what regression output
value or class label DUTI thinks the flagged bug should have
had.

DUTI chooses the γ sequence as follows. It starts with the
largest γ that returns a nontrivial solution δ, namely δ 6= 0
in regression and δ 6= Y in classification. One can show that
these are sufficient conditions for a nontrivial δ solution: In
the regression setting, γ(0) = maxi | [∇δOγ=0(0)]i |, where
∇δOγ=0 is the gradient of the debugging objective with
γ = 0, taken at δ = 0. In the multiclass classification setting,
γ(0) = maxi [∇δOγ=0(Y )]i,yi , where∇δOγ=0 is similarly
the gradient of the debugging objective with γ = 0, taken
at the initial value δ = Y . The i, yi-th entry of the gradient
is the probability mass assigned to the original label yi. A
positive entry will result in optimization taking a gradient
step, thus returning a nontrivial solution.

DUTI utilizes continuation method to speed up optimiza-
tion. Specifically, each iteration t is initialized using the pre-

vious solution δ(t−1). Moreover, DUTI uses a linear approx-
imation θ(t−1) + ∂θ

∂δ (δ(t) − δ(t−1))|δ(t−1) to initialize the
computation of θ(δ(t)).

3 Experiments
To the best of our knowledge, no machine learning debug-
ging repository is publicly available. That is, no data set has
provenance like “item i had the wrong label y; it should have
label z” for research in debugging. Curating such a reposi-
tory will be useful for trustworthy machine learning research.
Software debugging repository in the programming language
community, such as the Siemens test suite (Hutchins et al.
1994) and BugBench (Lu et al. 2005), are good examples to
follow. In this paper, we had to simulate – as plausible as
possible – true bugs on the real data sets.

3.1 Learner A Instantiation in DUTI
DUTI is a family of debuggers depending on the learnerA (1).
For illustration, in our experiments we let A be kernel ridge
regression for regression and multiclass kernel logistic regres-
sion for classification, both with RBF kernels. We recall the
relevant learner loss ` and regularizer Ω below; the derivation
of the corresponding debugging objective Oγ and gradient
∇δOγ is straightforward but tedious, and is left for a longer
version. Extension to other learners can be done similarly.

Kernel Ridge Regression Let (X,Y ) = {(xi, yi)}1:n

be the training data, and K = [k(xi, xj)]n×n be the ker-
nel matrix. Denote by Ki the i-th column of K, and let
α ∈ Rn be the learning parameter. Kernel ridge regression
can be written in the form of regularized ERM (1), where
`(xi, yi, α) = (yi −Kiα)2 and Ω(α) = 1

2α
>Kα.

Multiclass Kernel Logistic Regression with Ridge Regu-
larization Let α ∈ Rn×k be the learning parameter, and
denote by αj the j-th column of α. Kernel logistic regression
can be written in the form of weighted learner (8):

θ = argmin
α
− 1

n

n∑
i=1

k∑
j=1

δijK
>
i αj

+
1

n

n∑
i=1

log

 k∑
j=1

exp(K>i αj)

+
λ

2

k∑
j=1

α>j Kαj

where `(xi, j, α) = −K>i αj + log
(∑k

j=1 exp(K>i αj)
)

and Ω(α) = 1
2

∑k
j=1 α

>
j Kαj .

In all our experiments, the learner’s hyperparameters are
set by 10-fold cross validation on the original training data,
and confidence levels on all trusted items c are set to 100.

3.2 Baseline Debugging Methods for Comparison
We compare DUTI with three baselines: influence function
(INF) (Koh and Liang 2017), Nearest Neighbor (NN), and
Label Noise Detection (LND) (Bhadra and Hein 2015).



Influence Function (Koh and Liang 2017) describes how
perturbing a training point changes the prediction on a tested
point. The influence of training labels on the trusted items
can be written as

I =
1

m

m∑
i=1

J>∇θ`(x̃i, ỹi, θ)|θ(δ) (10)

This is in fact the first term of our objective gradient ∇δOγ
(assuming ci = 1,∀i). Therefore, one can view influence
function as a first-order approximation to a simplified version
of DUTI. Intuitively, a positive influence implies that decreas-
ing the y value will reduce the loss of trusted items, while a
negative influence implies that one should increase the cor-
responding y value to achieve the same result. In regression,
INF prioritizes training points with larger absolute values of
influence. In classification, each possible label of a training
point will have an influence. INF will flag training points
with positive influence on their original label, and prioritize
ones with larger influence value. In suggesting fixes for each
flagged training point, INF will suggest the label with the
largest negative influence value.

Since INF is a first-order approximation to DUTI, we
expect INF to be inferior for debugging due to nonlinearity
between labels and predictions. This is confirmed by our
experiments.

Nearest Neighbor NN is a simple heuristic: In regression,
NN flags training points based on the Euclidean distance
(after normalizing each feature dimension separately) to the
closest trusted item. In classification, NN flags each training
point whose label differs from the label of the closest trusted
point, and prioritizes them by this distance. When asked for a
suggested label fix, it recommends the label of closest trusted
item.

Label Noise Detection (Oracle) (Bhadra and Hein 2015)
uses a Gaussian kernel density estimator as the consistency
metric to define a combinatorial optimization problem:

argmax
η∈{1,−1}n

η>Qη. (11)

where Qij = yiyjKh(xi, xj), ηi = 1 represents a correct
original label, and ηi = −1 a bug. LND is only for binary
labels. The algorithm finds the best relabeling η that maxi-
mize this mutual consistency metric. In the case that there are
expert verified data, e.g. our trusted items, LND can incorpo-
rate them as constraints to reduce the search space. However,
LND requires the user to provide the number of positive mis-
labeled items and the number of negative mislabeled items.
In practice such information is usually unavailable, but in our
experiments we provide LND with the ground truth numbers
as a best-case scenario. For this reason we label this baseline
LND (Oracle). Also note that LND applies only to binary
classification problems, so we omit LND from baselines for
our regression and multiclass classification experiments.

3.3 Toy Data: Harry Potter (Cont.)
We can now fully define the Harry Potter toy example. The
true boundary is the line education= 0.5. A training point
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Figure 2: Harry Potter Toy Example, Continued

whose label disagrees with the true boundary is considered a
bug. Thus the true bugs are all the “not hired” training points
on the upper left. Figure 1b shows that DUTI is able to flag
true bugs with a budget b = 12. Figure 2(a–c) show the top
12 training items flagged by INF, NN and LND, respectively.
INF and NN flagged some training points below the true
boundary, which they should not. LND, thanks to the oracle
information, is able to flag mostly true bugs but also produced
one false positive. By varying how many training points we
ask each method (other than LND) to flag, we can produce
a precision-recall (PR) curve with respect to true bugs for
that method. LND is represented by a single point on the
PR curve, because it flags only a fixed number of points due
to the oracle information. Figure 2d shows the average PR
curves from 100 random runs, in which the training data
are randomly drawn with trusted items fixed. Overall, DUTI
dominates the baseline methods.

3.4 Real Data: German Loan Application
We study the UCI German Loan data set, which has been used
in recent work on algorithmic fairness (Zemel et al. 2013;
Feldman et al. 2015). Prior work suggested a systematic bias
of declining applicants younger than 25. We now detail the
way we simulate true bugs on German Loan. Throughout the
learning and debugging process we remove the age attribute.

Step 1. The original data set consists of 1000 applicants
with 190 young (age≤ 25) and 810 old (age> 25). We par-
tition the dataset into three subsets A,B,C. A contains 20
random young and 20 random old applicants. B contains the
remaining 170 young and another 170 random old applicants.
C contains the remaining 620 old applicants.

Step 2. We use group C to train a loan decision classifier
f∗, and use it as the ground truth concept.

Step 3. We relabel the applicants in group A using f∗, and
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Figure 3: Real Data Experiments

treat the relabeled group A as trusted items.
Step 4. Group B with the original UCI label is treated as

the buggy training set. Whenever Y disagrees with f∗(X),
that training point is considered a bug. This methodology
results in 96 bugs.

Figure 3a compares the PR curves of the four debugging
methods. DUTI clearly dominates other methods.

3.5 Real Data: Adult Income
Another dataset often used in algorithmic fairness is UCI
Adult Income (Kohavi 1996; Kamishima, Akaho, and
Sakuma 2011). The task is to classify whether an individual
receives an annual income of≥ 50k. Prior work suggests that
the data set contains systematic biases against females. In
this experiment, we simulate true bugs based on such biases.
Throughout the learning and debugging process we remove
the gender attribute and ‘wife & husband’ values in the family
relationship attribute.

Similar to the German Loan Dataset, we randomly subsam-
ple 3 disjoint subsets A,B,C. A contains 20 random male and
20 random female applicants. B contains 500 random males
and 500 random female applicants. C contains 2000 random
male applicants. We apply exactly the same steps 2,3,4 as in
the German Loan data set. This process results in 218 bugs.

Figure 3b compares the PR curves of the four debugging
methods and again DUTI dominates other methods.

3.6 Real Data: Handwritten Digits
In this section, we evaluate the debugging methods on a
10-class handwritten digit recognition problem (Mathworks
2017). The digit images are generated by applying random
affine transformations to digit images created using differ-
ent fonts. In multiclass classification, flagging the true bugs
and suggesting the correct fixes are no longer equivalent, so
we present evaluations on both criteria. Unlike the previous
two experiments, we now simulate a contamination mecha-
nism to generate buggy labels, while the original labels are
considered clean.

Step 1. We randomly set aside 5000 data points, 500 per
digit, to train a deepnet consisting of an autoencoder layer
followed by a softmax layer, achieving a cross validation
accuracy of 98%. Denote the trained neural net by f∗.

Step 2. Among the rest, we randomly sample 400 data
points, 40 per digit, to be the training set X . We then blur
the images heavily with a Gaussian filter, and classify on the

blurred images with the trained deepnet. The intention is to
simulate the generation of buggy labels by a human annotator
with poor eyesight. These classifications will be used as the
buggy labels of the training points, that is, Y = f∗(blur(X)).
Meanwhile, the original labels for X are retained as the
correct labels. A training image has a buggy label if Y and
the original label disagree. This process gives rise to a total of
133 bugs. Note that X is always the clear images; the blurred
images are only used to generate Y .

Step 3. Finally, among the rest, we randomly sample 160
data points, 16 per digit, to form the trusted items X̃ , and use
their original labels as trusted labels Ỹ .

Figure 3c shows the PR curves that indicate whether each
method flags the true bugs, regardless of whether their pro-
posed fix is correct or not. For this easier task, DUTI and
INF both excel, but DUTI has a slight advantage overall. Fig-
ure 3d plots the number of flagged bugs vs. the number of
correct fixes. This is a harder task. Nonetheless, DUTI still
dominates INF and NN, especially in the early stage. Specifi-
cally, DUTI successfully recovers more than half of the buggy
labels (there were 133) within less than 200 attempts.

Table 1 visualizes selected buggy training points. The first
row shows the original images, and the second row shows
the wrong label they received from the blurred deepnet. The
next three rows show the actions of DUTI, INF, and NN,
respectively: A numerical entry indicates that the debugging
method flagged this training image as a bug, and suggested
that number as the fixed label. The entry “–” indicates a false
negative: the debugging method missed the bug.

3.7 Regression Toy Examples
Finally, we demonstrate debugging for regression. We gen-
erate the clean data by uniformly sampling n = 100 points
x ∼ U [0, 2], and generating their label as

y = sin(2πx) + ε1, where ε1 ∼ N(0, 0.1). (12)

We then manually convert 24 of these points into systematic
bugs by flipping the second peak from positive to negative;
see Figure 4a. The dashed curve traces out sin(2πx) but is
not used in the experiment otherwise. For trusted items we
randomly pick m = 3 new points near one side of the flipped
peak, and generate their ỹ values using ỹ = sin(2πx̃). We
intentionally do not fully cover the bug region with the trusted
items.



X
Y = f∗(blur(X)) 3 7 1 8 3 4 1 3 8 8

DUTI 1 2 3 7 5 6 7 8 – 0
INF – – 5 – 5 – 7 0 – 0
NN 1 – 5 7 8 6 4 0 – 5

Table 1: Selected images with buggy training labels, and the debugging actions on them

0 1 2

-2

0

2

(a) training and trusted data
0 1 2

-2

0

2

(b) DUTI flagged bugs

0 1 2

-2

0

2

(c) INF flagged bugs
0 1 2

-2

0

2

(d) NN flagged bugs

0 0.5 1

Recall

0

0.5

1

P
re

c
is

io
n

DUTI

INF

NN

(e) Average PR Curves
0 1 2

-2

0

2

(f) DUTI suggested fixes

Figure 4: Regression toy data with systematic bugs

Figure 4b,c,d plot the top 25 flagged bugs by DUTI, INF,
and NN, respectively. Interestingly, DUTI successfully flags
bugs throughout the flipped peak. In contrast, INF and NN
are only able to flag points around the trusted items, and miss
half of the bugs. We repeat the experiment for 100 times, each
time with the training data randomly drawn according to (12).
Figure 4e shows the average PR curves, where DUTI clearly
dominates INF and NN. Figure 4f shows the suggested fixes
on buggy points (i.e. yi + δi) generated by DUTI. Impres-
sively, the fixes closely trace the sine curve, even though the
learner is an RBF kernel regressor and knows nothing about
sine function. This seems to be a smoothing effect of the

self-consistent term, which is Predictor(X) = Y ′ in the
conceptual formulation (4) or 1

n

∑n
i=1 `(xi, yi + δi, θ) in (5).

4 Related Work
Debugging has been studied extensively in the program-
ming language community (Shapiro 1983; Ball and Raja-
mani 2002). Only recently does the machine learning com-
munity start to investigate how to debug machine learning
systems, e.g. (Cadamuro, Gilad-Bachrach, and Zhu 2016;
Bhadra and Hein 2015). Our intuition is similar to that
of (Cadamuro, Gilad-Bachrach, and Zhu 2016), who provide
closed-form solutions to debugging Ordinary Least Squares.
Our work allows one to debug any ERM learners satisfying
mild conditions.

More generally, our work falls into the field of interpretable
and trustworthy machine learning, where the central question
is why a trained model makes certain predictions. One line of
work explains the prediction by highlighting the responsible
part of the test item. For example, (Selvaraju et al. 2016;
Smilkov et al. 2017; Sundararajan, Taly, and Yan 2016) iden-
tify regions in a test image that have the greatest influence
on the classification of that image. In other learning settings
where features are less explanatory, (Koh and Liang 2017)
propose to look instead at the most influential training items
that affects the prediction on the target test item. Though
the influence function is intuitive and easy to compute, we
show in experiments that it achieves similar performance
to the naive NN baseline, while DUTI provides better bug
recommendations and has the advantage of producing exact
fixes.

Our work is also related to data cleaning studied in data
science and statistics. Earlier work (Jiang and Zhou 2004;
Zhu, Wu, and Chen 2003; Brodley and Friedl 1996) applies an
ensemble of classifiers to the training examples, and detects
whether the class label assigned to each example is consis-
tent with the output of these classifiers. The main problem
with this approach is that the classifiers used to detect mis-
labeled examples are themselves constructed from contam-
inated training items. Another approach is to design robust
statistics with a high break-point against incorrect training
examples (Huber 2011). None of the above-mentioned meth-
ods can deal with systematic biases. Later, (Bhadra and Hein
2015; Valizadegan and Tan 2007) define a consistency metric
and perturb the training labels to maximize the consistency
metric. This approach results naturally in a combinatorial op-
timization problem. In particular, Bhadra and Hein’s method
is able to incorporate expert verified data as hard constraints



in their optimization formulation. However, their methods
requires information on the exact number of bugs which is
often not available. DUTI does not request such information.

Along the line of incorporating outside information in train-
ing set debugging, (Ghosh et al. 2016) requires the learned
model to satisfy certain Probabilistic Computation Tree Logic
(PCTL). That is, the bugs are revealed by the learned model
violating logical constraints rather than by the trusted items.
This approach complements DUTI and the two can poten-
tially be combined in the future. We note that in complex ma-
chine learning applications it can be more difficult for experts
to encode domain knowledge in rigorous logical statements,
whereas providing verified trusted items is often easier.

Our work is partly inspired by the need to identify his-
torical unfairness in a training set. DUTI thus joins re-
cent work (Hardt et al. 2016; Corbett-Davies et al. 2017;
Zemel et al. 2013; Feldman et al. 2015) on algorithmic fair-
ness. In our experiments, we demonstrated how DUTI can be
used to identify historical discrimination, with the hope that
such identification will improve fairness of machine learning
systems.

5 Limitations of DUTI and Future Work
This paper contributed to trustworthy machine learning by
proposing a novel training set debugging algorithm DUTI. As
the experiments demonstrated, DUTI was able to detect and
fix many bugs in diverse data sets. Like any method, DUTI
has its limitations. We discuss three major ones.

Applicability: While a violated trusted item often indi-
cates training set label bugs, it is not always the case. A
domain expert needs to bear in mind other reasons that vio-
late a trusted item while nothing is wrong with the training
labels. Figure 5(a,c,e) presents three common cases. In all
cases, the dashed line is the true decision boundary. The blue
points represent the training set, which obey (stochastically
in the third case) the true boundary. Therefore, there is no
bug in the training labels per se. The red points are the trusted
items, which also obey the true boundary. However, the solid
curve is the boundary learned from the training set. In all
three cases, some trusted items are indeed violated by the
learned boundary: In (a), the true boundary is nonlinear but
the hypothesis space is linear, resulting in underfitting and
thus violating both trusted items. In (c), the trusted items are
in a region of the feature space poorly covered by training
data, thus unreliable extrapolation. This happens in covariate
shift, for example. In (e), the underlying conditional distribu-
tion P (Y | X) has high Bayes error (e.g. close to 0.5 near
the true boundary), and the hypothesis space is too rich and
ill-regularized, resulting in overfitting.

In all three cases, it is inappropriate to apply DUTI in the
first place. In fact, blindly running DUTI will result in the
“flagged bugs” in (b, d, f), respectively, and none are true
bugs. Conversely, after the domain expert verifies that none
of DUTI flagged items are bugs, she should suspect some of
the above reasons in the machine learning pipeline.

Theoretical Guarantee: The trusted items need to be in-
formative for DUTI to work. For example, in Figure 1(a) if
the two trusted items were “hired” at (1, 1) and “not hired” at
(1, 0), they would still be correct but would not have revealed
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Figure 5: Trusted item violations not caused by label bugs

the systematic bias in the data. In our real data experiments
trusted items are i.i.d samples, but DUTI does not require
this. Future work should study theoretical guarantees of (po-
tentially non-iid) trusted items on debugging.

Scalability: The current implementation of DUTI has lim-
ited speed and scalability. At each step of optimization (5)
or (9), it has to compute θ(δ) which is equivalent to train-
ing the learner. Even with smart initialization, this repeated
learning subroutine still takes the majority of time. For large
data sets, one iteration can take minutes. DUTI currently can
handle training set size n in the thousands. Future work is
needed to yield a faster algorithm and implementation.

To conclude, in this work we designed DUTI, an efficient
algorithm that helps the users to identify and correct training
set bugs on any ERM learner, with the help of verified trusted
items. Empirical experiments demonstrated that DUTI is
able to tackle different types of realistic systematic bugs
and outperforms other related methods. Future work will
be dedicated to building a general theory of debugging and
improving scalability through smart optimization.
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