

# The Sample Complexity of Teaching-by-Reinforcement



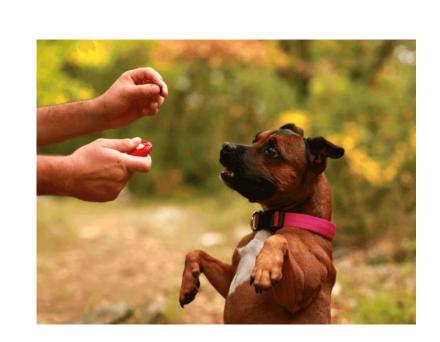
Xuezhou Zhang<sup>1</sup>, Shubham Kumar Bharti<sup>1</sup>, Yuzhe Ma<sup>1</sup>, Adish Singla<sup>2</sup> and Jerry Zhu<sup>1</sup> <sup>1</sup>University of Wisconsin-Madison, <sup>2</sup>MPI-SWS

### **Problem Statement**

# **Problem Setup:**

- A teacher with full knowledge of the MDP wants to teach the optimal policy to the learner asap.
- Teacher can manipulate the transition/rewards.
- How many samples is required to learn the optimal policy with a teacher?





#### **Prior Work:**

- 1. Teaching by demonstration (imitation learning):
  - well-studied.
  - Sample complexity:  $O\left(\frac{H^2S}{\epsilon}\right)$  to learn an  $\epsilon$ -optimal policy.
- 2. Teaching by reinforcement (Reward Shaping):
  - Performs well in practice.
  - Little theoretical understanding.

## Questions we answer in this work:

- > What is the best teaching strategy given different teacher control?
- > What is the sample complexity of learning under optimal teaching?

# Sample Complexity of Teaching

| Level 1        | Level 2    | Level 3                                                | Level 4                                                            |
|----------------|------------|--------------------------------------------------------|--------------------------------------------------------------------|
| none           | keep $a_t$ | $s_{t+1}: P(s_{t+1} s_t, a_t) > 0$                     | $s_{t+1} \sim P(\cdot s_t, a_t)$                                   |
| $\overline{S}$ | S(A-1)     | $O\left(SAH\left(\frac{1}{1-\epsilon}\right)^D\right)$ | $O\left(SAH\left(\frac{1}{(1-\epsilon)p_{\min}}\right)^{D}\right)$ |

Table 1: Summary of Main Results

Definition 1 We define the minimum teaching length as

$$METaL(M, Q_0, \pi^{\dagger}) = \min_{T, (s_t, a_t, r_t, s_{t+1})_{0:T-1}} \mathbb{E}[T], \ s.t. \ \pi_T = \pi^{\dagger},$$

where the expectation is taken over the randomness in the MDP M (transition dynamics) and the learner  $L(stochastic\ behavior\ policy)$ .

**Definition 2** The **teaching dimension** of an RL learner L w.r.t. a family of MDPs  $\mathcal{M}$  is defined as the worst-case METal:

$$TDim = \max_{\pi^{\dagger}, Q_0, M \in \mathcal{M}} METaL(M, Q_0, \pi^{\dagger}).$$

**Definition.** Let the **diameter** D of an MDP be defined as the minimum path length to reach the hardest-to-get-to state in the underlying directed transition graph of the MDP. Specifically,

$$D = \max_{s \in S} \min_{T,(s_0,a_0,s_1,a_1,\dots,s_T=s)} T, \text{ s.t. } \mu_0(s_0) > 0, P(s_{t+1}|s_t,a_t) > 0, \forall t$$

**Definition.** Let the minimum transition probability  $p_{\min}$  of an MDP be defined as

$$p_{\min} = \min_{s,s' \in \mathcal{S}, a \in \mathcal{A}, P(s'|s,a) > 0} P(s'|s,a).$$

# > Level 1 Teacher

can generate arbitrary  $(s_t, r_t, s_{t+1})$ , and override the agent action  $a_t$ .

4 Levels of Teaching

- None of these need to obey the MDP (specifically  $\mu_0$ , P, R).
- Sample Complexity: S
- How: Give  $(s, \pi^*(s))$ , big reward) for each  $s \in S$ .

### > Level 2 Teacher

### "Cost of free will" = A

- can generate arbitrary  $(s_t, r_t, s_{t+1})$ , but can't override action  $a_t$ .
- Sample Complexity: S(A-1)
- How: Now each state needs to be visited at least A-1 times to learn the desired action.

### Level 3 Teacher

### "Cost of navigation" = H

- can generate arbitrary  $r_t$ .
- but can only generate MDP-supported initial state and next state, i.e.  $\mu_0(s_0) > 0$ , and  $P(s_{t+1}|s_t, a_t) > 0$ .
- Sample Complexity:  $\Theta\left(SAH\left(\frac{1}{1-\epsilon}\right)^{D}\right)$ .

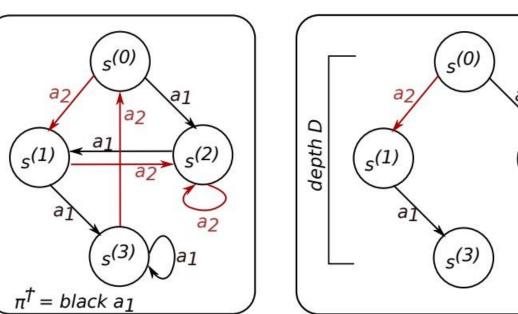
### Level 4 Teacher

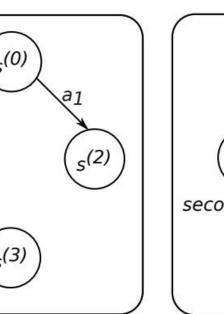
(a) MDP

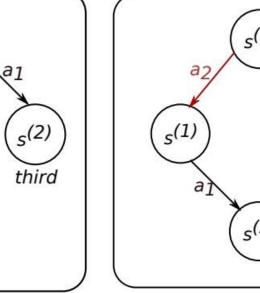
"Cost of no simulator" =  $p_{min}^{-D}$ 

- can generate arbitrary  $r_t$ .
- must obey the MDP transition, i.e.  $s_0 \sim \mu_0(s_0)$ , and  $s_{t+1} \sim P(\cdot | s_t, a_t)$ .
- Sample Complexity:  $\Theta\left(SAH\left(\frac{1}{n_{\min}(1-\epsilon)}\right)^{D}\right)$ .

#### NavTeach Algorithm for Level 3 & 4 Teaching







(b) Breadth-First Tree (c) Depth-First Traversal (d) Navigation Policy

(s(3))

- 1. Define an order of the states to teach.
- 2. For the current state, teach a navigation path to that state, and then teach the target action in that state.

**Key challenge**: teach in an such an order that the target action in earlier states wouldn't interfere with the navigation to later states.

Our solution: Construct a breath-first tree T on the underlying graph. Teach in the order of depth-first traversal of T.

### **Episodic MDP:**

- The environment is an episodic MDP  $\mathcal{M} = (S, A, R, P, \mu_0, H)$ :
- S is the state space.
- A is the action space.
- $R: S \times A \to \mathbb{R}$  is the reward function.
- $P: S \times A \rightarrow \Delta_S$  is the transition function.
- $\mu_0 \in \Delta_S$  is the initial state distribution.
- H is the episode length.
- The learner wants to learn the optimal policy:

$$\pi^* = \underset{\pi:S \to A}{\operatorname{arg\,max}} \mathbb{E}_M \left[ \sum_{h=1}^H R(s_h, \pi(s_h)) \right]$$

# **Preliminaries**

# **∈-Greedy Q-Learner:**

The agent performs standard Q-learning, defined by

$$Q_{t+1}(s_t, a_t) \leftarrow (1 - \alpha_t)Q_t(s_t, a_t) + \alpha_t \left(r_t + \gamma \max_{a' \in A} Q_t(s_{t+1}, a')\right)$$

where  $\alpha_t$  is the learning rate and  $\gamma$  is the optional discounting factor.

• The agent behaves according to the  $\varepsilon$ -greedy policy

$$a_t \leftarrow \begin{cases} \arg\max_a Q_t(s_t, a), & \text{w.p. } 1 - \epsilon \\ \text{uniform from } A, & \text{w.p. } \epsilon. \end{cases}$$

# Contact

Xuezhou Zhang University of Wisconsin, Madison zhangxz1123@cs.wisc.edu