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The Whole Tutorial in One Slide

I Given GM = joint distribution p(x1, . . . , xn)
I Do inference = p(XQ | XE), in general
XQ ∪XE ⊂ {x1 . . . xn}

I If p(x1, . . . , xn) not given, estimate it from data
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Life without Graphical Models

. . . is fine mathematically:
I The universe is reduced to a set of random variables
x1, . . . , xn

I e.g., x1, . . . , xn−1 can be the discrete or continuous features
I e.g., xn ≡ y can be the discrete class label

I The joint p(x1, . . . , xn) completely describes how the universe
works

I “Machine learning”: estimate p(x1, . . . , xn) from training

data X(1), . . . , X(N), where X(i) = (x(i)
1 , . . . , x

(i)
n )

I “Prediction”: y∗ = argmax p(xn | x∗1, . . . , x∗n), a.k.a.
inference

I by the definition of conditional probability

p(xn | x∗1, . . . , x∗n) =
p(x∗1, . . . , x

∗
n, xn)∑

v p(x
∗
1, . . . , x

∗
n, xn = v)



Conclusion

I Life without graphical models is just fine

I So why are we still here?



Life can be Better for Computer Scientists

I Given GM = joint distribution p(x1, . . . , xn)
I exponential näıve storage (2n for binary r.v.)
I hard to interpret (conditional independence)

I Do inference = p(XQ | XE), in general
XQ ∪XE ⊂ {x1 . . . xn}

I Often can’t do it computationally

I If p(x1, . . . , xn) not given, estimate it from data
I Can’t do it either



Acknowledgments Before We Start

Much of this tutorial is based on

I Koller & Friedman, Probabilistic Graphical Models. MIT 2009

I Wainwright & Jordan, Graphical Models, Exponential
Families, and Variational Inference. FTML 2008

I Bishop, Pattern Recognition and Machine Learning. Springer
2006.
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Graphical-Model-Nots

I “Graphical model” is the study of probabilistic models

I Just because there is a graph with nodes and edges doesn’t
mean it’s GM

These are not graphical models

neural network decision tree network flow HMM template
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Bayesian Network

I A directed graph has nodes X = (x1, . . . , xn), some of them
connected by directed edges xi → xj

I A cycle is a directed path x1 → . . .→ xk where x1 = xk

I A directed acyclic graph (DAG) contains no cycles

I A Bayesian network on the DAG is a family of distributions
satisfying

{p | p(X) =
∏

i

p(xi | Pa(xi))}

where Pa(xi) is the set of parents of xi.

I p(xi | Pa(xi)) is the conditional probability distribution
(CPD) at xi

I By specifying the CPDs for all i, we specify a particular
distribution p(X)



Example: Alarm

Binary variables

P(A | B, E) = 0.95
P(A | B, ~E) = 0.94
P(A | ~B, E) = 0.29
P(A | ~B, ~E) = 0.001

P(J | A) = 0.9
P(J | ~A) = 0.05

P(M | A) = 0.7
P(M | ~A) = 0.01

A

J M

B E

P(E)=0.002P(B)=0.001

P (B,∼ E,A, J,∼M)
= P (B)P (∼ E)P (A | B,∼ E)P (J | A)P (∼M | A)
= 0.001× (1− 0.002)× 0.94× 0.9× (1− 0.7)
≈ .000253



Example: Naive Bayes

y y

x x. . .1 d x

d

I p(y, x1, . . . xd) = p(y)
∏d

i=1 p(xi | y)
I Used extensively in natural language processing

I Plate representation on the right



No Causality Whatsoever

P(A)=a
P(B|A)=b
P(B|~A)=c

A

B

B

A

P(B)=ab+(1−a)c
P(A|B)=ab/(ab+(1−a)c)
P(A|~B)=a(1−b)/(1−ab−(1−a)c)

The two BNs are equivalent in all respects

I Bayesian networks imply no causality at all

I They only encode the joint probability distribution (hence
correlation)

I However, people tend to design BNs based on causal relations



Example: Latent Dirichlet Allocation (LDA)

θ

Nd
w

D

αβ
T

zφ

A generative model for p(φ, θ, z, w | α, β):
For each topic t

φt ∼ Dirichlet(β)
For each document d

θ ∼ Dirichlet(α)
For each word position in d

topic z ∼ Multinomial(θ)
word w ∼ Multinomial(φz)

Inference goals: p(z | w,α, β), argmaxφ,θ p(φ, θ | w,α, β)
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Some Topics by LDA on the Wish Corpus

p(word | topic)

“troops” “election” “love”



Conditional Independence

I Two r.v.s A, B are independent if P (A,B) = P (A)P (B) or
P (A|B) = P (A) (the two are equivalent)

I Two r.v.s A, B are conditionally independent given C if
P (A,B | C) = P (A | C)P (B | C) or
P (A | B,C) = P (A | C) (the two are equivalent)

I This extends to groups of r.v.s

I Conditional independence in a BN is precisely specified by
d-separation (“directed separation”)



d-Separation Case 1: Tail-to-Tail

C

A B

C

A B

I A, B in general dependent

I A, B conditionally independent given C

I C is a tail-to-tail node, blocks the undirected path A-B



d-Separation Case 2: Head-to-Tail

A C B A C B

I A, B in general dependent

I A, B conditionally independent given C

I C is a head-to-tail node, blocks the path A-B



d-Separation Case 3: Head-to-Head

A B A B

C C

I A, B in general independent

I A, B conditionally dependent given C, or any of C’s
descendants

I C is a head-to-head node, unblocks the path A-B



d-Separation

I Any groups of nodes A and B are conditionally independent
given another group C, if all undirected paths from any node
in A to any node in B are blocked

I A path is blocked if it includes a node x such that either
I The path is head-to-tail or tail-to-tail at x and x ∈ C, or
I The path is head-to-head at x, and neither x nor any of its

descendants is in C.



d-Separation Example 1

I The path from A to B not blocked by either E or F

I A, B dependent given C

A

C

B

F

E



d-Separation Example 2

I The path from A to B is blocked both at E and F

I A, B conditionally independent given F

A

B

F

E

C
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Markov Random Fields

I The efficiency of directed graphical model (acyclic graph,
locally normalized CPDs) also makes it restrictive

I A clique C in an undirected graph is a fully connected set of
nodes (note: full of loops!)

I Define a nonnegative potential function ψC : XC 7→ R+

I An undirected graphical model (aka Markov Random Field)
on the graph is a family of distributions satisfying{

p | p(X) =
1
Z

∏
C

ψC(XC)

}

I Z =
∫ ∏

C ψC(XC)dX is the partition function



Example: A Tiny Markov Random Field

x x1 2

C

I x1, x2 ∈ {−1, 1}
I A single clique ψC(x1, x2) = eax1x2

I p(x1, x2) = 1
Z e

ax1x2

I Z = (ea + e−a + e−a + ea)
I p(1, 1) = p(−1,−1) = ea/(2ea + 2e−a)
I p(−1, 1) = p(1,−1) = e−a/(2ea + 2e−a)
I When the parameter a > 0, favor homogeneous chains

I When the parameter a < 0, favor inhomogeneous chains



Log Linear Models

I Real-valued feature functions f1(X), . . . , fk(X)
I Real-valued weights w1, . . . , wk

p(X) =
1
Z

exp

(
−

k∑
i=1

wifi(X)

)



Example: The Ising Model

θs
θ

xs xt
st

This is an undirected model with x ∈ {0, 1}.

pθ(x) =
1
Z

exp

∑
s∈V

θsxs +
∑

(s,t)∈E

θstxsxt


I fs(X) = xs, fst(X) = xsxt

I ws = −θs, wst = −θst



Example: Image Denoising

noisy image argmaxX P (X|Y )

[From Bishop PRML]



Example: Gaussian Random Field

p(X) ∼ N(µ,Σ) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(X − µ)>Σ−1(X − µ)

)

I Multivariate Gaussian

I The n× n covariance matrix Σ positive semi-definite

I Let Ω = Σ−1 be the precision matrix

I xi, xj are conditionally independent given all other variables, if
and only if Ωij = 0

I When Ωij 6= 0, there is an edge between xi, xj



Conditional Independence in Markov Random Fields

I Two group of variables A, B are conditionally independent
given another group C, if

I Remove C and all edges involving C
I A, B beome disconnected

A
C

B



Factor Graph

I For both directed and undirected graphical models

I Bipartite: edges between a variable node and a factor node

I Factors represent computation

A B

C

(A,B,C)ψ

A B

C

A B

C

(A,B,C)ψf

A B

C

f
P(A)P(B)P(C|A,B)
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Inference by Enumeration

I Let X = (XQ, XE , XO) for query, evidence, and other
variables.

I Infer P (XQ | XE)
I By definition

P (XQ | XE) =
P (XQ, XE)
P (XE)

=

∑
XO

P (XQ, XE , XO)∑
XQ,XO

P (XQ, XE , XO)

I Summing exponential number of terms: with k variables in
XO each taking r values, there are rk terms



Details of the summing problem

I There are a bunch of “other” variables x1, . . . , xk

I We sum over r values each variable can take
∑vr

xi=v1

I This is exponential (rk):
∑

x1...xk

I We want
∑

x1...xk
p(X)

I For a graphical model, the joint probability factors
p(X) =

∏m
j=1 fj(X(j))

I Each factor fj operates on X(j) ⊆ X



Eliminating a Variable

I Rearrange factors
∑

x1...xk
f−1 . . . f−l f

+
l+1 . . . f

+
m by whether

x1 ∈ X(j)

I Obviously equivalent:
∑

x2...xk
f−1 . . . f−l

(∑
x1
f+

l+1 . . . f
+
m

)
I Introduce a new factor f−m+1 =

(∑
x1
f+

l+1 . . . f
+
m

)
I f−m+1 contains the union of variables in f+

l+1 . . . f
+
m except x1

I In fact, x1 disappears altogether in
∑

x2...xk
f−1 . . . f−l f

−
m+1

I Dynamic programming: compute f−m+1 once, use it thereafter

I Hope: f−m+1 contains very few variables

I Recursively eliminate other variables in turn



Example: Chain Graph

A B C D

I Binary variables

I Say we want P (D) =
∑

A,B,C P (A)P (B|A)P (C|B)P (D|C)
I Let f1(A) = P (A). Note f1 is an array of size two:
P (A = 0)
P (A = 1)

I f2(A,B) is a table of size four:
P (B = 0|A = 0)
P (B = 0|A = 1)
P (B = 1|A = 0)
P (B = 1|A = 1))

I
∑

A,B,C f1(A)f2(A,B)f3(B,C)f4(C,D) =∑
B,C f3(B,C)f4(C,D)(

∑
A f1(A)f2(A,B))



Example: Chain Graph

A B C D

I f1(A)f2(A,B) an array of size four: match A values
P (A = 0)P (B = 0|A = 0)
P (A = 1)P (B = 0|A = 1)
P (A = 0)P (B = 1|A = 0)
P (A = 1)P (B = 1|A = 1)

I f5(B) ≡
∑

A f1(A)f2(A,B) an array of size two
P (A = 0)P (B = 0|A = 0) + P (A = 1)P (B = 0|A = 1)
P (A = 0)P (B = 1|A = 0) + P (A = 1)P (B = 1|A = 1)

I For this example, f5(B) happens to be P (B)
I
∑

B,C f3(B,C)f4(C,D)f5(B) =∑
C f4(C,D)(

∑
B f3(B,C)f5(B)), and so on

I In the end, f7(D) = (P (D = 0), P (D = 1))



Example: Chain Graph

A B C D

I Computation for P (D): 12 ×, 6 +

I Enumeration: 48 ×, 14 +

I Saving depends on elimination order. Finding optimal order
NP-hard; there are heuristic methods.

I Saving depends more critically on the graph structure (tree
width), can be intractable



Handling Evidence

I For evidence variables XE , simply plug in their value e

I Eliminate variables XO = X −XE −XQ

I The final factor will be the joint f(XQ) = P (XQ, XE = e)
I Normalize to answer query:

P (XQ | XE = e) =
f(XQ)∑
XQ

f(XQ)



Summary: Exact Inference

I Enumeration

I Variable elimination

I Not covered: junction tree (aka clique tree)

Exact, but intractable for large graphs
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Inference by Monte Carlo

I Consider the inference problem p(XQ = cQ | XE) where
XQ ∪XE ⊆ {x1 . . . xn}

p(XQ = cQ | XE) =
∫

1(xQ=cQ)p(xQ | XE)dxQ

I If we can draw samples x
(1)
Q , . . . x

(m)
Q ∼ p(xQ | XE), an

unbiased estimator is

p(XQ = cQ | XE) ≈ 1
m

m∑
i=1

1
(x

(i)
Q =cQ)

I The variance of the estimator decreases as V/m
I Inference reduces to sampling from p(xQ | XE)



Forward Sampling Example

P(A | B, E) = 0.95
P(A | B, ~E) = 0.94
P(A | ~B, E) = 0.29
P(A | ~B, ~E) = 0.001

P(J | A) = 0.9
P(J | ~A) = 0.05

P(M | A) = 0.7
P(M | ~A) = 0.01

A

J M

B E

P(E)=0.002P(B)=0.001

To generate a sample X = (B,E,A, J,M):
1. Sample B ∼ Ber(0.001): r ∼ U(0, 1). If (r < 0.001) then
B = 1 else B = 0

2. Sample E ∼ Ber(0.002)
3. If B = 1 and E = 1, sample A ∼ Ber(0.95), and so on

4. If A = 1 sample J ∼ Ber(0.9) else J ∼ Ber(0.05)
5. If A = 1 sample M ∼ Ber(0.7) else M ∼ Ber(0.01)

Works for Bayesian networks.



Inference with Forward Sampling

I Say the inference task is P (B = 1 | E = 1,M = 1)
I Throw away all samples except those with (E = 1,M = 1)

p(B = 1 | E = 1,M = 1) ≈ 1
m

m∑
i=1

1(B(i)=1)

where m is the number of surviving samples

I Can be highly inefficient (note P (E = 1) tiny)

I Does not work for Markov Random Fields



Gibbs Sampler Example: P (B = 1 | E = 1, M = 1)

I Gibbs sampler is a Markov Chain Monte Carlo (MCMC)
method.

I Directly sample from p(xQ | XE)
I Works for both graphical models
I Initialization:

I Fix evidence; randomly set other variables
I e.g. X(0) = (B = 0, E = 1, A = 0, J = 0,M = 1)

P(A | B, E) = 0.95
P(A | B, ~E) = 0.94
P(A | ~B, E) = 0.29
P(A | ~B, ~E) = 0.001

P(J | A) = 0.9
P(J | ~A) = 0.05

P(M | A) = 0.7
P(M | ~A) = 0.01

A

J M

B E

P(E)=0.002P(B)=0.001



Gibbs Update

I For each non-evidence variable xi, fixing all other nodes X−i,
resample its value xi ∼ P (xi | X−i)

I This is equivalent to xi ∼ P (xi | MarkovBlanket(xi))
I For a Bayesian network MarkovBlanket(xi) includes xi’s

parents, spouses, and children

P (xi | MarkovBlanket(xi)) ∝ P (xi | Pa(xi))
∏

y∈C(xi)

P (y | Pa(y))

where Pa(x) are the parents of x, and C(x) the children of x.
I For many graphical models the Markov Blanket is small.
I For example,
B ∼ P (B | E = 1, A = 0) ∝ P (B)P (A = 0 | B,E = 1)

P(A | B, E) = 0.95
P(A | B, ~E) = 0.94
P(A | ~B, E) = 0.29
P(A | ~B, ~E) = 0.001

P(J | A) = 0.9
P(J | ~A) = 0.05

P(M | A) = 0.7
P(M | ~A) = 0.01

A

J M

B E

P(E)=0.002P(B)=0.001



Gibbs Update

I Say we sampled B = 1. Then
X(1) = (B = 1, E = 1, A = 0, J = 0,M = 1)

I Starting from X(1), sample
A ∼ P (A | B = 1, E = 1, J = 0,M = 1) to get X(2)

I Move on to J , then repeat B,A, J,B,A, J . . .

I Keep all later samples. P (B = 1 | E = 1,M = 1) is the
fraction of samples with B = 1.

P(A | B, E) = 0.95
P(A | B, ~E) = 0.94
P(A | ~B, E) = 0.29
P(A | ~B, ~E) = 0.001

P(J | A) = 0.9
P(J | ~A) = 0.05

P(M | A) = 0.7
P(M | ~A) = 0.01

A

J M

B E

P(E)=0.002P(B)=0.001



Gibbs Example 2: The Ising Model

xs

A

B

C

D

This is an undirected model with x ∈ {0, 1}.

pθ(x) =
1
Z

exp

∑
s∈V

θsxs +
∑

(s,t)∈E

θstxsxt





Gibbs Example 2: The Ising Model

xs

A

B

C

D

I The Markov blanket of xs is A,B,C,D

I In general for undirected graphical models

p(xs | x−s) = p(xs | xN(s))

N(s) is the neighbors of s.

I The Gibbs update is

p(xs = 1 | xN(s)) =
1

exp(−(θs +
∑

t∈N(s) θstxt)) + 1



Gibbs Sampling as a Markov Chain

I A Markov chain is defined by a transition matrix T (X ′ | X)
I Certain Markov chains have a stationary distribution π such

that π = Tπ

I Gibbs sampler is such a Markov chain with
Ti((X−i, x

′
i) | (X−i, xi)) = p(x′i | X−i), and stationary

distribution p(xQ | XE)
I But it takes time for the chain to reach stationary distribution

(mix)
I Can be difficult to assert mixing
I In practice “burn in”: discard X(0), . . . , X(T )

I Use all of X(T+1), . . . for inference (they are correlated)
I Do not thin



Collapsed Gibbs Sampling

I In general, Ep[f(X)] ≈ 1
m

∑m
i=1 f(X(i)) if X(i) ∼ p

I Sometimes X = (Y, Z) where Z has closed-form operations

I If so,

Ep[f(X)] = Ep(Y )Ep(Z|Y )[f(Y, Z)]

≈ 1
m

m∑
i=1

Ep(Z|Y (i))[f(Y (i), Z)]

if Y (i) ∼ p(Y )
I No need to sample Z: it is collapsed

I Collapsed Gibbs sampler Ti((Y−i, y
′
i) | (Y−i, yi)) = p(y′i | Y−i)

I Note p(y′i | Y−i) =
∫
p(y′i, Z | Y−i)dZ



Example: Collapsed Gibbs Sampling for LDA

θ

Nd
w

D

αβ
T

zφ

Collapse θ, φ, Gibbs update:

P (zi = j | z−i,w) ∝
n

(wi)
−i,j + βn

(di)
−i,j + α

n
(·)
−i,j +Wβn

(di)
−i,· + Tα

I n
(wi)
−i,j : number of times word wi has been assigned to topic j,

excluding the current position

I n
(di)
−i,j : number of times a word from document di has been

assigned to topic j, excluding the current position

I n
(·)
−i,j : number of times any word has been assigned to topic j,

excluding the current position

I n
(di)
−i,·: length of document di, excluding the current position



Summary: Markov Chain Monte Carlo

I Gibbs sampling

I Not covered: block Gibbs, Metropolis-Hastings

Unbiased (after burn-in), but can have high variance

To learn more, come to Prof. Prasad Tetali’s tutorial “Markov
Chain Mixing with Applications” 2pm Monday.
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The Sum-Product Algorithm

I Also known as belief propagation (BP)

I Exact if the graph is a tree; otherwise known as “loopy BP”,
approximate

I The algorithm involves passing messages on the factor graph

I Alternative view: variational approximation (more later)



Example: A Simple HMM

I The Hidden Markov Model template (not a graphical model)

π  = π  = 1/21 2

P(x | z=1)=(1/2, 1/4, 1/4) P(x | z=2)=(1/4, 1/2, 1/4)

1 2

1/4 1/2

R     G     B R     G     B

I Observing x1 = R, x2 = G, the directed graphical model

z1

x =G2

z2

x =R1

I Factor graph
z1f 1 z2f 2

P(z )P(x | z ) P(z | z )P(x | z )1 1 1 2 1 2 2



Messages

A message is a vector of length K, where K is the number of
values x takes.
There are two types of messages:

1. µf→x: message from a factor node f to a variable node x
µf→x(i) is the ith element, i = 1 . . .K.

2. µx→f : message from a variable node x to a factor node f



Leaf Messages

I Assume tree factor graph. Pick an arbitrary root, say z2
I Start messages at leaves.

I If a leaf is a factor node f , µf→x(x) = f(x)
I If a leaf is a variable node x, µx→f (x) = 1

z1f 1 z2f 2

P(z )P(x | z ) P(z | z )P(x | z )1 1 1 2 1 2 2

µf1→z1(z1 = 1) = P (z1 = 1)P (R|z1 = 1) = 1/2 · 1/2 = 1/4
µf1→z1(z1 = 2) = P (z1 = 2)P (R|z1 = 2) = 1/2 · 1/4 = 1/8

π  = π  = 1/21 2

P(x | z=1)=(1/2, 1/4, 1/4) P(x | z=2)=(1/4, 1/2, 1/4)

1 2

1/4 1/2

R     G     B R     G     B



Message from Variable to Factor

I A node (factor or variable) can send out a message if all other
incoming messages have arrived

I Let x be in factor fs.

µx→fs(x) =
∏

f∈ne(x)\fs

µf→x(x)

I ne(x)\fs are factors connected to x excluding fs.

z1f 1 z2f 2

P(z )P(x | z ) P(z | z )P(x | z )1 1 1 2 1 2 2

µz1→f2(z1 = 1) = 1/4
µz1→f2(z1 = 2) = 1/8

π  = π  = 1/21 2

P(x | z=1)=(1/2, 1/4, 1/4) P(x | z=2)=(1/4, 1/2, 1/4)

1 2

1/4 1/2

R     G     B R     G     B



Message from Factor to Variable

I Let x be in factor fs. Let the other variables in fs be x1:M .

µfs→x(x) =
∑
x1

. . .
∑
xM

fs(x, x1, . . . , xM )
M∏

m=1

µxm→fs(xm)

z1f 1 z2f 2

P(z )P(x | z ) P(z | z )P(x | z )1 1 1 2 1 2 2

µf2→z2(s) =
2∑

s′=1

µz1→f2(s
′)f2(z1 = s′, z2 = s)

= 1/4P (z2 = s|z1 = 1)P (x2 = G|z2 = s)
+1/8P (z2 = s|z1 = 2)P (x2 = G|z2 = s)

We get
µf2→z2(z2 = 1) = 1/32
µf2→z2(z2 = 2) = 1/8



Up to Root, Back Down

I The message has reached the root, pass it back down

z1f 1 z2f 2

P(z )P(x | z ) P(z | z )P(x | z )1 1 1 2 1 2 2

µz2→f2(z2 = 1) = 1
µz2→f2(z2 = 2) = 1

π  = π  = 1/21 2

P(x | z=1)=(1/2, 1/4, 1/4) P(x | z=2)=(1/4, 1/2, 1/4)

1 2

1/4 1/2

R     G     B R     G     B



Keep Passing Down

z1f 1 z2f 2

P(z )P(x | z ) P(z | z )P(x | z )1 1 1 2 1 2 2

µf2→z1(s) =
∑2

s′=1 µz2→f2(s
′)f2(z1 = s, z2 = s′)

= 1P (z2 = 1|z1 = s)P (x2 = G|z2 = 1)
+ 1P (z2 = 2|z1 = s)P (x2 = G|z2 = 2). We get

µf2→z1(z1 = 1) = 7/16
µf2→z1(z1 = 2) = 3/8

π  = π  = 1/21 2

P(x | z=1)=(1/2, 1/4, 1/4) P(x | z=2)=(1/4, 1/2, 1/4)

1 2

1/4 1/2

R     G     B R     G     B



From Messages to Marginals

Once a variable receives all incoming messages, we compute its
marginal as

p(x) ∝
∏

f∈ne(x)

µf→x(x)

In this example

P (z1|x1, x2) ∝ µf1→z1 ·µf2→z1 =
( 1/4

1/8

)
·
( 7/16

3/8

)
=
( 7/64

3/64

)
⇒
(

0.7
0.3

)
P (z2|x1, x2) ∝ µf2→z2 =

( 1/32
1/8

)
⇒
(

0.2
0.8

)
One can also compute the marginal of the set of variables xs

involved in a factor fs

p(xs) ∝ fs(xs)
∏

x∈ne(f)

µx→f (x)



Handling Evidence

Observing x = v,

I we can absorb it in the factor (as we did); or

I set messages µx→f (x) = 0 for all x 6= v

Observing XE ,

I multiplying the incoming messages to x /∈ XE gives the joint
(not p(x|XE)):

p(x,XE) ∝
∏

f∈ne(x)

µf→x(x)

I The conditional is easily obtained by normalization

p(x|XE) =
p(x,XE)∑
x′ p(x′, XE)



Loopy Belief Propagation

I So far, we assumed a tree graph

I When the factor graph contains loops, pass messages
indefinitely until convergence

I But convergence may not happen

I But in many cases loopy BP still works well, empirically
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Example: The Ising Model

θs
θ

xs xt
st

The random variables x take values in {0, 1}.

pθ(x) =
1
Z

exp

∑
s∈V

θsxs +
∑

(s,t)∈E

θstxsxt





The Conditional

θs
θ

xs xt
st

I Markovian: the conditional distribution for xs is

p(xs | x−s) = p(xs | xN(s))

N(s) is the neighbors of s.

I This reduces to

p(xs = 1 | xN(s)) =
1

exp(−(θs +
∑

t∈N(s) θstxt)) + 1

I Gibbs sampling would draw xs like this.



The Mean Field Algorithm for Ising Model

p(xs = 1 | xN(s)) =
1

exp(−(θs +
∑

t∈N(s) θstxt)) + 1

I Instead of Gibbs sampling, let µs be the estimated marginal
p(xs = 1)

µs ←
1

exp(−(θs +
∑

t∈N(s) θstµt)) + 1

I The µ’s are updated iteratively

I The Mean Field algorithm is coordinate ascent and
guaranteed to converge to a local optimal (more later).
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Exponential Family

I Let φ(X) = (φ1(X), . . . , φd(X))> be d sufficient statistics,
where φi : X 7→ R

I Note X is all the nodes in a Graphical model

I φi(X) sometimes called a feature function

I Let θ = (θ1, . . . , θd)> ∈ Rd be canonical parameters.

I The exponential family is a family of probability densities:

pθ(x) = exp
(
θ>φ(x)−A(θ)

)



Exponential Family

pθ(x) = exp
(
θ>φ(x)−A(θ)

)
I The key is the inner product between parameters θ and

sufficient statistics φ.

I A is the log partition function,

A(θ) = log
∫

exp
(
θ>φ(x)

)
ν(dx)

I A = logZ



Minimal vs. Overcomplete Models

I Parameters for which the density is normalizable:

Ω = {θ ∈ Rd | A(θ) <∞}

I A minimal exponential family is where the φ’s are linearly
independent.

I An overcomplete exponential family is where the φ’s are
linearly dependent:

∃α ∈ Rd, α>φ(x) = constant ∀x

I Both minimal and overcomplete representations are useful.



Exponential Family Example 1: Bernoulli

p(x) = βx(1− β)1−x for x ∈ {0, 1} and β ∈ (0, 1).
I Does not look like an exponential family!

I Can be rewritten as

p(x) = exp (x log β + (1− x) log(1− β))

I Now in exponential family form with
φ1(x) = x, φ2(x) = 1− x, θ1 = log β, θ2 = log(1− β), and
A(θ) = 0.

I Overcomplete: α1 = α2 = 1 makes α>φ(x) = 1 for all x



Exponential Family Example 1: Bernoulli

p(x) = exp (x log β + (1− x) log(1− β))

I Can be further rewritten as

p(x) = exp (xθ − log(1 + exp(θ)))

I Minimal exponential family with
φ(x) = x, θ = log β

1−β , A(θ) = log(1 + exp(θ)).
Many distributions (e.g., Gaussian, exponential, Poisson, Beta) are
in the exponential family, but not all (e.g., the Laplace
distribution).



Exponential Family Example 2: Ising Model

θs
θ

xs xt
st

pθ(x) = exp

∑
s∈V

θsxs +
∑

(s,t)∈E

θstxsxt −A(θ)


I Binary random variable xs ∈ {0, 1}
I d = |V |+ |E| sufficient statistics: φ(x) = (. . . xs . . . xst . . .)>

I This is a regular (Ω = Rd), minimal exponential family.



Exponential Family Example 3: Potts Model

θs
θ

xs xt
st

I Similar to Ising model but generalizing xs ∈ {0, . . . , r − 1}.
I Indicator functions fsj(x) = 1 if xs = j and 0 otherwise, and
fstjk(x) = 1 if xs = j ∧ xt = k, and 0 otherwise.

pθ(x) = exp

∑
sj

θsjfsj(x) +
∑
stjk

θstjkfstjk(x)−A(θ)


I d = r|V |+ r2|E|
I Regular but overcomplete, because

∑r−1
j=0 θsj(x) = 1 for any

s ∈ V and all x.
I The Potts model is a special case where the parameters are

tied: θstkk = α, and θstjk = β for j 6= k.



Important Relation

For sufficient statistics defined by indicator functions

I e.g., φsj(x) = fsj(x) = 1 if xs = j and 0 otherwise

I The marginal can be obtained via the mean

Eθ[φsj(x)] = P (xs = j)

I Since inference is about computing the marginal, in this case
it is equivalent to computing the mean.



Mean Parameters

I Let p be any density (not necessarily in exponential family).

I Given sufficient statistics φ, the mean parameters
µ = (µ1, . . . , µd)> is

µi = Ep[φi(x)] =
∫
φi(x)p(x)dx

I The set of mean parameters

M = {µ ∈ Rd | ∃p s.t. Ep[φ(x)] = µ}

I If µ(1), µ(2) ∈M, there must exist p(1), p(2)

I The convex combinations of p(1), p(2) leads to another mean
parameter inM

I Therefore M is convex



Example: The First Two Moments

I Let φ1(x) = x, φ2(x) = x2

I For any p (not necessarily Gaussian) on x, the mean
parameters µ = (µ1, µ2) = (E(x),E(x2))>.

I Note V(x) = E(x2)− E2(x) = µ2 − µ2
1 ≥ 0 for any p

I M is not R2 but rather the subset µ1 ∈ R, µ2 ≥ µ2
1.



The Marginal Polytope

I The marginal polytope is defined for discrete xs

I Recall M = {µ ∈ Rd | µ =
∑

x φ(x)p(x) for some p}
I p can be a point mass function on a particular x.

I In fact any p is a convex combination of such point mass
functions.

I M = conv{φ(x),∀x} is a convex hull, called the marginal
polytope.



Marginal Polytope Example

Tiny Ising model: two nodes x1, x2 ∈ {0, 1} connected by an edge.

I minimal sufficient statistics φ(x1, x2) = (x1, x2, x1x2)>.

I only 4 different x = (x1, x2).
I the marginal polytope is
M = conv{(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 1)}

I the convex hull is a polytope inside the unit cube.

I the three coordinates are node marginals µ1 ≡ Ep[x1 = 1],
µ2 ≡ Ep[x2 = 1] and edge marginal µ12 ≡ Ep[x1 = x2 = 1],
hence the name.



The Log Partition Function A

I For any regular exponential family, A(θ) is convex in θ.

I Strictly convex for minimal exponential family.

I Nice property: ∂A(θ)
∂θi

= Eθ[φi(x)]
I Therefore, ∇A = µ, the mean parameters of pθ.



Conjugate Duality

The conjugate dual function A∗ to A is defined as

A∗(µ) = sup
θ∈Ω

θ>µ−A(θ)

Such definition, where a quantity is expressed as the solution to an
optimization problem, is called a variational definition.

I For any µ ∈M’s interior, let θ(µ) satisfy
Eθ(µ)[φ(x)] = ∇A(θ(µ)) = µ.

I Then A∗(µ) = −H(pθ(µ)) the negative entropy.

I The dual of the dual gives back A:
A(θ) = supµ∈M µ>θ −A∗(µ)

I For all θ ∈ Ω, the supremum is attained uniquely at the
µ ∈M0 by the moment matching conditions µ = Eθ[φ(x)].



Example: Conjugate Dual for Bernoulli

I Recall the minimal exponential family for Bernoulli with
φ(x) = x,A(θ) = log(1 + exp(θ)),Ω = R.

I By definition

A∗(µ) = sup
θ∈R

θµ− log(1 + exp(θ))

I Taking derivative and solve

A∗(µ) = µ logµ+ (1− µ) log(1− µ)

i.e., the negative entropy.



Inference with Variational Representation

A(θ) = supµ∈M µ>θ −A∗(µ) is attained by µ = Eθ[φ(x)].
I Want to compute the marginals P (xs = j)? They are the

mean parameters µsj = Eθ[φij(x)] under standard
overcomplete representation.

I Want to compute the mean parameters µsj? They are the
arg sup to the optimization problem above.

I This variational representation is exact, not approximate (will
relax it next to derive loopy BP and mean field)



The Difficulties with Variational Representation

A(θ) = sup
µ∈M

µ>θ −A∗(µ)

I Difficult to solve even though it is a convex problem
I Two issues:

I Although the marginal polytope M is convex, it can be quite
complex (exponential number of vertices)

I The dual function A∗(µ) usually does not admit an explicit
form.

I Variational approximation modifies the optimization problem
so that it is tractable, at the price of an approximate solution.

I Next, we cast mean field and sum-product algorithms as
variational approximations.



The Mean Field Method as Variational Approximation

I The mean field method replaces M with a simpler subset
M(F ) on which A∗(µ) has a closed form.

I Consider the fully disconnected subgraph F = (V, ∅) of the
original graph G = (V,E)

I Set all θi = 0 if φi involves edges

I The densities in this sub-family are all fully factorized:

pθ(x) =
∏
s∈V

p(xs; θs)



The Geometry ofM(F )

I Let M(F ) be the mean parameters of the fully factorized
sub-family. In general,M(F ) ⊂M

I Recall M is the convex hull of extreme points {φ(x)}.
I It turns out the extreme points {φ(x)} ∈ M(F ).
I Example:

I The tiny Ising model x1, x2 ∈ {0, 1} with φ = (x1, x2, x1x2)>
I The point mass distribution p(x = (0, 1)>) = 1 is realized as a

limit to the series p(x) = exp(θ1x1 + θ2x2 −A(θ)) where
θ1 → −∞ and θ2 →∞.

I This series is in F because θ12 = 0.
I Hence the extreme point φ(x) = (0, 1, 0) is in M(F ).



The Geometry ofM(F )

I Because the extreme points ofM are inM(F ), ifM(F )
were convex, we would have M =M(F ).

I But in general M(F ) is a true subset ofM
I Therefore,M(F ) is a nonconvex inner set ofM

M(F)
M

φ( )x



The Mean Field Method as Variational Approximation

I Recall the exact variational problem

A(θ) = sup
µ∈M

µ>θ −A∗(µ)

attained by solution to inference problem µ = Eθ[φ(x)].
I The mean field method simply replaces M with M(F )

L(θ) = sup
µ∈M(F )

µ>θ −A∗(µ)

I Obvious L(θ) ≤ A(θ).
I The original solution µ∗ may not be inM(F )
I Even if µ∗ ∈M(F ), may hit local maximum and not find it

I Why both? Because A∗(µ) = −H(pθ(µ)) has a very simple
form for M(F )



Example: Mean Field for Ising Model

I The mean parameters for the Ising model are the node and
edge marginals: µs = p(xx = 1), µst = p(xs = 1, xt = 1)

I Fully factorizedM(F ) means no edge. µst = µsµt

I ForM(F ), the dual function A∗(µ) has the simple form

A∗(µ) =
∑
s∈V

−H(µs) =
∑
s∈V

µs logµs + (1− µs) log(1− µs)

I Thus the mean field problem is

L(θ) = sup
µ∈M(F )

µ>θ −
∑
s∈V

(µs logµs + (1− µs) log(1− µs))

= max
(µ1...µm)∈[0,1]m

∑
s∈V

θsµs +
∑

(s,t)∈E

θstµsµt +
∑
s∈V

H(µs)





Example: Mean Field for Ising Model

L(θ) = max
(µ1...µm)∈[0,1]m

∑
s∈V

θsµs +
∑

(s,t)∈E

θstµsµt +
∑
s∈V

H(µs)


I Bilinear in µ, not jointly concave

I But concave in a single dimension µs, fixing others.

I Iterative coordinate-wise maximization: fixing µt for t 6= s and
optimizing µs.

I Setting the partial derivative w.r.t. µs to 0 yields:

µs =
1

1 + exp
(
−(θs +

∑
(s,t)∈E θstµt)

)
as we’ve seen before.

I Caution: mean field converges to a local maximum depending
on the initialization of µ1 . . . µm.



The Sum-Product Algorithm as Variational Approximation

A(θ) = sup
µ∈M

µ>θ −A∗(µ)

The sum-product algorithm makes two approximations:

I it relaxes M to an outer set L

I it replaces the dual A∗ with an approximation.

A(θ) = sup
µ∈L

µ>θ − Ã∗(µ)



The Outer Relaxation

I For overcomplete exponential families on discrete nodes, the
mean parameters are node and edge marginals
µsj = p(xs = j), µstjk = p(xs = j, xt = k).

I The marginal polytope is M = {µ | ∃p with marginals µ}.
I Now consider τ ∈ Rd

+ satisfying “node normalization” and
“edge-node marginal consistency” conditions:

r−1∑
j=0

τsj = 1 ∀s ∈ V

r−1∑
k=0

τstjk = τsj ∀s, t ∈ V, j = 0 . . . r − 1

r−1∑
j=0

τstjk = τtk ∀s, t ∈ V, k = 0 . . . r − 1

I Define L = {τ satisfying the above conditions}.



The Outer Relaxation

I If the graph is a tree thenM = L
I If the graph has cycles thenM⊂ L

I L is too lax to satisfy other constraints that true marginals
need to satisfy

I Nice property: L is still a polytope, but much simpler thanM.

φ( )x

L

M

τ

The first approximation in sum-product is to replace M with L.



Approximating A∗

I Recall µ are node and edge marginals

I If the graph is a tree, one can exactly reconstruct the joint
probability

pµ(x) =
∏
s∈V

µsxs

∏
(s,t)∈E

µstxsxt

µsxsµtxt

I If the graph is a tree, the entropy of the joint distribution is

H(pµ) = −
∑
s∈V

r−1∑
j=0

µsj logµsj −
∑

(s,t)∈E

∑
j,k

µstjk log
µstjk

µsjµtk

I Neither holds for graph with cycles.



Approximating A∗

Define the Bethe entropy for τ ∈ L on loopy graphs in the same
way:

HBethe(pτ ) = −
∑
s∈V

r−1∑
j=0

τsj log τsj −
∑

(s,t)∈E

∑
j,k

τstjk log
τstjk
τsjτtk

Note HBethe is not a true entropy. The second approximation in
sum-product is to replace A∗(τ) with −HBethe(pτ ).



The Sum-Product Algorithm as Variational Approximation

With these two approximations, we arrive at the variational
problem

Ã(θ) = sup
τ∈L

τ>θ +HBethe(pτ )

I Optimality conditions require the gradients vanish w.r.t. both
τ and the Lagrangian multipliers on constraints τ ∈ L.

I The sum-product algorithm can be derived as an iterative
fixed point procedure to satisfy optimality conditions.

I At the solution, Ã(θ) is not guaranteed to be either an upper
or a lower bound of A(θ)

I τ may not correspond to a true marginal distribution



Summary: Variational Inference

I The sum-product algorithm (loopy belief propagation)

I The mean field method

I Not covered: Expectation Propagation

Efficient computation. But often unknown bias in solution.
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Maximizing Problems

Recall the HMM example

π  = π  = 1/21 2

P(x | z=1)=(1/2, 1/4, 1/4) P(x | z=2)=(1/4, 1/2, 1/4)

1 2

1/4 1/2

R     G     B R     G     B

There are two senses of “best states” z1:N given x1:N :
1. So far we computed the marginal p(zn|x1:N )

I We can define “best” as z∗n = arg maxk p(zn = k|x1:N )
I However z∗1:N as a whole may not be the best
I In fact z∗1:N can even have zero probability!

2. An alternative is to find

z∗1:N = arg max
z1:N

p(z1:N |x1:N )

I finds the most likely state configuration as a whole
I The max-sum algorithm solves this
I Generalizes the Viterbi algorithm for HMMs



Intermediate: The Max-Product Algorithm

Simple modification to the sum-product algorithm: replace
∑

with
max in the factor-to-variable messages.

µfs→x(x) = max
x1

. . .max
xM

fs(x, x1, . . . , xM )
M∏

m=1

µxm→fs(xm)

µxm→fs(xm) =
∏

f∈ne(xm)\fs

µf→xm(xm)

µxleaf→f (x) = 1

µfleaf→x(x) = f(x)



Intermediate: The Max-Product Algorithm

I As in sum-product, pick an arbitrary variable node x as the
root

I Pass messages up from leaves until they reach the root

I Unlike sum-product, do not pass messages back from root to
leaves

I At the root, multiply incoming messages

pmax = max
x

 ∏
f∈ne(x)

µf→x(x)


I This is the probability of the most likely state configuration



Intermediate: The Max-Product Algorithm

I To identify the configuration itself, keep back pointers:

I When creating the message

µfs→x(x) = max
x1

. . .max
xM

fs(x, x1, . . . , xM )
M∏

m=1

µxm→fs(xm)

for each x value, we separately create M pointers back to the
values of x1, . . . , xM that achieve the maximum.

I At the root, backtrack the pointers.



Intermediate: The Max-Product Algorithm

z1f 1 z2f 2

P(z )P(x | z ) P(z | z )P(x | z )1 1 1 2 1 2 2

π  = π  = 1/21 2

P(x | z=1)=(1/2, 1/4, 1/4) P(x | z=2)=(1/4, 1/2, 1/4)

1 2

1/4 1/2

R     G     B R     G     B

I Message from leaf f1

µf1→z1(z1 = 1) = P (z1 = 1)P (R|z1 = 1) = 1/2 · 1/2 = 1/4
µf1→z1(z1 = 2) = P (z1 = 2)P (R|z1 = 2) = 1/2 · 1/4 = 1/8

I The second message
µz1→f2(z1 = 1) = 1/4
µz1→f2(z1 = 2) = 1/8



Intermediate: The Max-Product Algorithm

z1f 1 z2f 2

P(z )P(x | z ) P(z | z )P(x | z )1 1 1 2 1 2 2

π  = π  = 1/21 2

P(x | z=1)=(1/2, 1/4, 1/4) P(x | z=2)=(1/4, 1/2, 1/4)

1 2

1/4 1/2

R     G     B R     G     B

µf2→z2(z2 = 1)
= max

z1

f2(z1, z2)µz1→f2(z1)

= max
z1

P (z2 = 1 | z1)P (x2 = G | z2 = 1)µz1→f2(z1)

= max(1/4 · 1/4 · 1/4, 1/2 · 1/4 · 1/8) = 1/64

Back pointer for z2 = 1: either z1 = 1 or z1 = 2



Intermediate: The Max-Product Algorithm

z1f 1 z2f 2

P(z )P(x | z ) P(z | z )P(x | z )1 1 1 2 1 2 2

π  = π  = 1/21 2

P(x | z=1)=(1/2, 1/4, 1/4) P(x | z=2)=(1/4, 1/2, 1/4)

1 2

1/4 1/2

R     G     B R     G     B

The other element of the same message:

µf2→z2(z2 = 2)
= max

z1

f2(z1, z2)µz1→f2(z1)

= max
z1

P (z2 = 2 | z1)P (x2 = G | z2 = 2)µz1→f2(z1)

= max(3/4 · 1/2 · 1/4, 1/2 · 1/2 · 1/8) = 3/32

Back pointer for z2 = 2: z1 = 1



Intermediate: The Max-Product Algorithm

z1f 1 z2f 2

P(z )P(x | z ) P(z | z )P(x | z )1 1 1 2 1 2 2

π  = π  = 1/21 2

P(x | z=1)=(1/2, 1/4, 1/4) P(x | z=2)=(1/4, 1/2, 1/4)

1 2

1/4 1/2

R     G     B R     G     B

µf2→z2 =
( 1/64 →z1=1,2

3/32 →z1=1

)
At root z2,

max
s=1,2

µf2→z2(s) = 3/32

z2 = 2→ z1 = 1

z∗1:2 = arg max
z1:2

p(z1:2|x1:2) = (1, 2)

In this example, sum-product and max-product produce the same
best sequence; In general they differ.



From Max-Product to Max-Sum

The max-sum algorithm is equivalent to the max-product
algorithm, but work in log space to avoid underflow.

µfs→x(x) = max
x1...xM

log fs(x, x1, . . . , xM ) +
M∑

m=1

µxm→fs(xm)

µxm→fs(xm) =
∑

f∈ne(xm)\fs

µf→xm(xm)

µxleaf→f (x) = 0

µfleaf→x(x) = log f(x)

When at the root,

log pmax = max
x

 ∑
f∈ne(x)

µf→x(x)


The back pointers are the same.
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Parameter Learning

I Assume the graph structure is given

I Learning in exponential family: estimate θ from iid data
x1 . . .xn.

I Principle: maximum likelihood
I Distinguish two cases:

I fully observed data: all dimensions of x are observed
I partially observed data: some dimensions of x are unobserved.



Fully Observed Data

pθ(x) = exp
(
θ>φ(x)−A(θ)

)
I Given iid data x1 . . .xn, the log likelihood is

`(θ) =
1
n

n∑
i=1

log pθ(xi) = θ>

(
1
n

n∑
i=1

φ(xi)

)
−A(θ) = θ>µ̂−A(θ)

I µ̂ ≡ 1
n

∑n
i=1 φ(xi) is the mean parameter of the empirical

distribution on x1 . . .xn. Clearly µ̂ ∈M.

I Maximum likelihood: θML = arg supθ∈Ω θ
>µ̂−A(θ)

I The solution is θML = θ(µ̂), the exponential family density
whose mean parameter matches µ̂.

I When µ̂ ∈M0 and φ minimal, there is a unique maximum
likelihood solution θML.



Partially Observed Data

I Each item (x, z) where x observed, z unobserved

I Full data (x1, z1) . . . (xn, zn), but we only observe x1 . . .xn

I The incomplete likelihood `(θ) = 1
n

∑n
i=1 log pθ(xi) where

pθ(xi) =
∫
pθ(xi, z)dz

I Can be written as `(θ) = 1
n

∑n
i=1Axi(θ)−A(θ)

I New log partition function of pθ(z | xi), one per item:

Axi(θ) = log
∫

exp(θ>φ(xi, z′))dz′

I Expectation-Maximization (EM) algorithm: lower bound Axi



EM as Variational Lower Bound

I Mean parameter realizable by any distribution on z while
holding xi fixed:
Mxi = {µ ∈ Rd | µ = Ep[φ(xi, z)] for some p}

I The variational definition Axi(θ) = supµ∈Mxi
θ>µ−A∗xi

(µ)
I Trivial variational lower bound:
Axi(θ) ≥ θ>µi −A∗xi

(µi),∀µi ∈Mxi

I Lower bound L on the incomplete log likelihood:

`(θ) =
1
n

n∑
i=1

Axi(θ)−A(θ)

≥ 1
n

n∑
i=1

(
θ>µi −A∗xi

(µi)
)
−A(θ)

≡ L(µ1, . . . , µn, θ)



Exact EM: The E-Step

The EM algorithm is coordinate ascent on L(µ1, . . . , µn, θ).
I In the E-step, maximizes each µi

µi ← arg max
µi∈Mxi

L(µ1, . . . , µn, θ)

I Equivalently, argmaxµi∈Mxi
θ>µi −A∗xi

(µi)
I This is the variational representation of the mean parameter
µi(θ) = Eθ[φ(xi, z)]

I The E-step is named after this Eθ[] under the current
parameters θ



Exact EM: The M-Step

I In the M-step, maximize θ holding the µ’s fixed:

θ ← arg max
θ∈Ω
L(µ1, . . . , µn, θ) = arg max

θ∈Ω
θ>µ̂−A(θ)

I µ̂ = 1
n

∑n
i=1 µ

i

I The solution θ(µ̂) satisfies Eθ(µ̂)[φ(x)] = µ̂

I Standard fully observed maximum likelihood problem, hence
the name M-step



Variational EM

For loopy graphs E-step often intractable.

I Can’t maximize

max
µi∈Mxi

θ>µi −A∗xi
(µi)

I Improve but not necessarily maximize: “generalized EM”

I The mean field method maximizes

max
µi∈Mxi (F )

θ>µi −A∗xi
(µi)

I up to local maximum
I recallMxi(F ) is an inner approximation to Mxi

I Mean field E-step leads to generalized EM

I The sum-product algorithm does not lead to generalized EM
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Score-Based Structure Learning

I Let M be all allowed candidate features

I Let M ⊆M be a log-linear model structure

P (X |M, θ) =
1
Z

exp

(∑
i∈M

θifi(X)

)

I A score for the model M can be maxθ lnP (Data |M, θ)
I The score is always better for larger M – needs regularization

I M and θ treated separately



Structure Learning for Gaussian Random Fields

I Consider a p-dimensional multivariate Gaussian N(µ,Σ)
I The graphical model has p nodes x1, . . . , xp

I The edge between xi, xj is absent if and only if Ωij = 0,
where Ω = Σ−1

I Equivalently, xi, xj are conditionally independent given other
variables

x
x

x
x

1
2

3

4



Structure Learning for Gaussian Random Fields

I Let data be X(1), . . . , X(n) ∼ N(µ,Σ)
I The log likelihood is

n
2 log |Ω| − 1

2

∑n
i=1(X

(i) − µ)>Ω(X(i) − µ)
I The maximum likelihood estimate of Σ is the sample

covariance

S =
1
n

∑
i

(X(i) − X̄)>(X(i) − X̄)

where X̄ is the sample mean

I S−1 is not a good estimate of Ω when n is small



Structure Learning for Gaussian Random Fields

I For centered data, minimize a regularized problem instead:

− log |Ω|+ 1
n

n∑
i=1

X(i)>ΩX(i) + λ
∑
i6=j

|Ωij |

I Known as glasso



Recap

I Given GM = joint distribution p(x1, . . . , xn)
I BN or MRF
I conditional independence

I Do inference = p(XQ | XE), in general
XQ ∪XE ⊂ {x1 . . . xn}

I exact, MCMC, variational

I If p(x1, . . . , xn) not given, estimate it from data
I parameter and structure learning

Much on-going research!
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