
All of Graphical Models

Xiaojin Zhu

Department of Computer Sciences
University of Wisconsin–Madison, USA

Tutorial at ICMLA 2011

The Whole Tutorial in One Slide

I Given GM = joint distribution p(x1, . . . , xn)
I Do inference = p(XQ | XE), in general
XQ ∪XE ⊂ {x1 . . . xn}

I If p(x1, . . . , xn) not given, estimate it from data

Outline

Life without Graphical Models

Representation
Directed Graphical Models (Bayesian Networks)
Undirected Graphical Models (Markov Random Fields)

Inference
Exact Inference
Markov Chain Monte Carlo
Variational Inference

Loopy Belief Propagation
Mean Field Algorithm
Exponential Family

Maximizing Problems

Parameter Learning

Structure Learning

Outline

Life without Graphical Models

Representation
Directed Graphical Models (Bayesian Networks)
Undirected Graphical Models (Markov Random Fields)

Inference
Exact Inference
Markov Chain Monte Carlo
Variational Inference

Loopy Belief Propagation
Mean Field Algorithm
Exponential Family

Maximizing Problems

Parameter Learning

Structure Learning

Life without Graphical Models

. . . is fine mathematically:
I The universe is reduced to a set of random variables
x1, . . . , xn

I e.g., x1, . . . , xn−1 can be the discrete or continuous features
I e.g., xn ≡ y can be the discrete class label

I The joint p(x1, . . . , xn) completely describes how the universe
works

I “Machine learning”: estimate p(x1, . . . , xn) from training

data X(1), . . . , X(N), where X(i) = (x(i)
1 , . . . , x

(i)
n)

I “Prediction”: y∗ = argmax p(xn | x∗1, . . . , x∗n), a.k.a.
inference

I by the definition of conditional probability

p(xn | x∗1, . . . , x∗n) =
p(x∗1, . . . , x

∗
n, xn)∑

v p(x
∗
1, . . . , x

∗
n, xn = v)

Conclusion

I Life without graphical models is just fine

I So why are we still here?

Life can be Better for Computer Scientists

I Given GM = joint distribution p(x1, . . . , xn)
I exponential näıve storage (2n for binary r.v.)
I hard to interpret (conditional independence)

I Do inference = p(XQ | XE), in general
XQ ∪XE ⊂ {x1 . . . xn}

I Often can’t do it computationally

I If p(x1, . . . , xn) not given, estimate it from data
I Can’t do it either

Acknowledgments Before We Start

Much of this tutorial is based on

I Koller & Friedman, Probabilistic Graphical Models. MIT 2009

I Wainwright & Jordan, Graphical Models, Exponential
Families, and Variational Inference. FTML 2008

I Bishop, Pattern Recognition and Machine Learning. Springer
2006.

Outline

Life without Graphical Models

Representation
Directed Graphical Models (Bayesian Networks)
Undirected Graphical Models (Markov Random Fields)

Inference
Exact Inference
Markov Chain Monte Carlo
Variational Inference

Loopy Belief Propagation
Mean Field Algorithm
Exponential Family

Maximizing Problems

Parameter Learning

Structure Learning

Graphical-Model-Nots

I “Graphical model” is the study of probabilistic models

I Just because there is a graph with nodes and edges doesn’t
mean it’s GM

These are not graphical models

neural network decision tree network flow HMM template

Outline

Life without Graphical Models

Representation
Directed Graphical Models (Bayesian Networks)
Undirected Graphical Models (Markov Random Fields)

Inference
Exact Inference
Markov Chain Monte Carlo
Variational Inference

Loopy Belief Propagation
Mean Field Algorithm
Exponential Family

Maximizing Problems

Parameter Learning

Structure Learning

Bayesian Network

I A directed graph has nodes X = (x1, . . . , xn), some of them
connected by directed edges xi → xj

I A cycle is a directed path x1 → . . .→ xk where x1 = xk

I A directed acyclic graph (DAG) contains no cycles

I A Bayesian network on the DAG is a family of distributions
satisfying

{p | p(X) =
∏

i

p(xi | Pa(xi))}

where Pa(xi) is the set of parents of xi.

I p(xi | Pa(xi)) is the conditional probability distribution
(CPD) at xi

I By specifying the CPDs for all i, we specify a particular
distribution p(X)

Example: Alarm

Binary variables

P(A | B, E) = 0.95
P(A | B, ~E) = 0.94
P(A | ~B, E) = 0.29
P(A | ~B, ~E) = 0.001

P(J | A) = 0.9
P(J | ~A) = 0.05

P(M | A) = 0.7
P(M | ~A) = 0.01

A

J M

B E

P(E)=0.002P(B)=0.001

P (B,∼ E,A, J,∼M)
= P (B)P (∼ E)P (A | B,∼ E)P (J | A)P (∼M | A)
= 0.001× (1− 0.002)× 0.94× 0.9× (1− 0.7)
≈ .000253

Example: Naive Bayes

y y

x x. . .1 d x

d

I p(y, x1, . . . xd) = p(y)
∏d

i=1 p(xi | y)
I Used extensively in natural language processing

I Plate representation on the right

No Causality Whatsoever

P(A)=a
P(B|A)=b
P(B|~A)=c

A

B

B

A

P(B)=ab+(1−a)c
P(A|B)=ab/(ab+(1−a)c)
P(A|~B)=a(1−b)/(1−ab−(1−a)c)

The two BNs are equivalent in all respects

I Bayesian networks imply no causality at all

I They only encode the joint probability distribution (hence
correlation)

I However, people tend to design BNs based on causal relations

Example: Latent Dirichlet Allocation (LDA)

θ

Nd
w

D

αβ
T

zφ

A generative model for p(φ, θ, z, w | α, β):
For each topic t

φt ∼ Dirichlet(β)
For each document d

θ ∼ Dirichlet(α)
For each word position in d

topic z ∼ Multinomial(θ)
word w ∼ Multinomial(φz)

Inference goals: p(z | w,α, β), argmaxφ,θ p(φ, θ | w,α, β)

Example: Latent Dirichlet Allocation (LDA)

θ

Nd
w

D

αβ
T

zφ

A generative model for p(φ, θ, z, w | α, β):
For each topic t

φt ∼ Dirichlet(β)
For each document d

θ ∼ Dirichlet(α)
For each word position in d

topic z ∼ Multinomial(θ)
word w ∼ Multinomial(φz)

Inference goals: p(z | w,α, β), argmaxφ,θ p(φ, θ | w,α, β)

Example: Latent Dirichlet Allocation (LDA)

θ

Nd
w

D

αβ
T

zφ

A generative model for p(φ, θ, z, w | α, β):
For each topic t

φt ∼ Dirichlet(β)
For each document d

θ ∼ Dirichlet(α)
For each word position in d

topic z ∼ Multinomial(θ)
word w ∼ Multinomial(φz)

Inference goals: p(z | w,α, β), argmaxφ,θ p(φ, θ | w,α, β)

Example: Latent Dirichlet Allocation (LDA)

θ

Nd
w

D

αβ
T

zφ

A generative model for p(φ, θ, z, w | α, β):
For each topic t

φt ∼ Dirichlet(β)
For each document d

θ ∼ Dirichlet(α)
For each word position in d

topic z ∼ Multinomial(θ)
word w ∼ Multinomial(φz)

Inference goals: p(z | w,α, β), argmaxφ,θ p(φ, θ | w,α, β)

Example: Latent Dirichlet Allocation (LDA)

Nd
w

D

αβ
T

zφ θ

A generative model for p(φ, θ, z, w | α, β):
For each topic t

φt ∼ Dirichlet(β)
For each document d

θ ∼ Dirichlet(α)
For each word position in d

topic z ∼ Multinomial(θ)
word w ∼ Multinomial(φz)

Inference goals: p(z | w,α, β), argmaxφ,θ p(φ, θ | w,α, β)

Example: Latent Dirichlet Allocation (LDA)

θ

Nd
w

D

αβ
T

zφ

A generative model for p(φ, θ, z, w | α, β):
For each topic t

φt ∼ Dirichlet(β)
For each document d

θ ∼ Dirichlet(α)
For each word position in d

topic z ∼ Multinomial(θ)
word w ∼ Multinomial(φz)

Inference goals: p(z | w,α, β), argmaxφ,θ p(φ, θ | w,α, β)

Example: Latent Dirichlet Allocation (LDA)

θ

Nd
w

D

αβ
T

zφ

A generative model for p(φ, θ, z, w | α, β):
For each topic t

φt ∼ Dirichlet(β)
For each document d

θ ∼ Dirichlet(α)
For each word position in d

topic z ∼ Multinomial(θ)
word w ∼ Multinomial(φz)

Inference goals: p(z | w,α, β), argmaxφ,θ p(φ, θ | w,α, β)

Example: Latent Dirichlet Allocation (LDA)

θ

Nd
w

D

αβ
T

zφ

A generative model for p(φ, θ, z, w | α, β):
For each topic t

φt ∼ Dirichlet(β)
For each document d

θ ∼ Dirichlet(α)
For each word position in d

topic z ∼ Multinomial(θ)
word w ∼ Multinomial(φz)

Inference goals: p(z | w,α, β), argmaxφ,θ p(φ, θ | w,α, β)

Some Topics by LDA on the Wish Corpus

p(word | topic)

“troops” “election” “love”

Conditional Independence

I Two r.v.s A, B are independent if P (A,B) = P (A)P (B) or
P (A|B) = P (A) (the two are equivalent)

I Two r.v.s A, B are conditionally independent given C if
P (A,B | C) = P (A | C)P (B | C) or
P (A | B,C) = P (A | C) (the two are equivalent)

I This extends to groups of r.v.s

I Conditional independence in a BN is precisely specified by
d-separation (“directed separation”)

d-Separation Case 1: Tail-to-Tail

C

A B

C

A B

I A, B in general dependent

I A, B conditionally independent given C

I C is a tail-to-tail node, blocks the undirected path A-B

d-Separation Case 2: Head-to-Tail

A C B A C B

I A, B in general dependent

I A, B conditionally independent given C

I C is a head-to-tail node, blocks the path A-B

d-Separation Case 3: Head-to-Head

A B A B

C C

I A, B in general independent

I A, B conditionally dependent given C, or any of C’s
descendants

I C is a head-to-head node, unblocks the path A-B

d-Separation

I Any groups of nodes A and B are conditionally independent
given another group C, if all undirected paths from any node
in A to any node in B are blocked

I A path is blocked if it includes a node x such that either
I The path is head-to-tail or tail-to-tail at x and x ∈ C, or
I The path is head-to-head at x, and neither x nor any of its

descendants is in C.

d-Separation Example 1

I The path from A to B not blocked by either E or F

I A, B dependent given C

A

C

B

F

E

d-Separation Example 2

I The path from A to B is blocked both at E and F

I A, B conditionally independent given F

A

B

F

E

C

Outline

Life without Graphical Models

Representation
Directed Graphical Models (Bayesian Networks)
Undirected Graphical Models (Markov Random Fields)

Inference
Exact Inference
Markov Chain Monte Carlo
Variational Inference

Loopy Belief Propagation
Mean Field Algorithm
Exponential Family

Maximizing Problems

Parameter Learning

Structure Learning

Markov Random Fields

I The efficiency of directed graphical model (acyclic graph,
locally normalized CPDs) also makes it restrictive

I A clique C in an undirected graph is a fully connected set of
nodes (note: full of loops!)

I Define a nonnegative potential function ψC : XC 7→ R+

I An undirected graphical model (aka Markov Random Field)
on the graph is a family of distributions satisfying{

p | p(X) =
1
Z

∏
C

ψC(XC)

}

I Z =
∫ ∏

C ψC(XC)dX is the partition function

Example: A Tiny Markov Random Field

x x1 2

C

I x1, x2 ∈ {−1, 1}
I A single clique ψC(x1, x2) = eax1x2

I p(x1, x2) = 1
Z e

ax1x2

I Z = (ea + e−a + e−a + ea)
I p(1, 1) = p(−1,−1) = ea/(2ea + 2e−a)
I p(−1, 1) = p(1,−1) = e−a/(2ea + 2e−a)
I When the parameter a > 0, favor homogeneous chains

I When the parameter a < 0, favor inhomogeneous chains

Log Linear Models

I Real-valued feature functions f1(X), . . . , fk(X)
I Real-valued weights w1, . . . , wk

p(X) =
1
Z

exp

(
−

k∑
i=1

wifi(X)

)

Example: The Ising Model

θs
θ

xs xt
st

This is an undirected model with x ∈ {0, 1}.

pθ(x) =
1
Z

exp

∑
s∈V

θsxs +
∑

(s,t)∈E

θstxsxt


I fs(X) = xs, fst(X) = xsxt

I ws = −θs, wst = −θst

Example: Image Denoising

noisy image argmaxX P (X|Y)

[From Bishop PRML]

Example: Gaussian Random Field

p(X) ∼ N(µ,Σ) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(X − µ)>Σ−1(X − µ)

)

I Multivariate Gaussian

I The n× n covariance matrix Σ positive semi-definite

I Let Ω = Σ−1 be the precision matrix

I xi, xj are conditionally independent given all other variables, if
and only if Ωij = 0

I When Ωij 6= 0, there is an edge between xi, xj

Conditional Independence in Markov Random Fields

I Two group of variables A, B are conditionally independent
given another group C, if

I Remove C and all edges involving C
I A, B beome disconnected

A
C

B

Factor Graph

I For both directed and undirected graphical models

I Bipartite: edges between a variable node and a factor node

I Factors represent computation

A B

C

(A,B,C)ψ

A B

C

A B

C

(A,B,C)ψf

A B

C

f
P(A)P(B)P(C|A,B)

Outline

Life without Graphical Models

Representation
Directed Graphical Models (Bayesian Networks)
Undirected Graphical Models (Markov Random Fields)

Inference
Exact Inference
Markov Chain Monte Carlo
Variational Inference

Loopy Belief Propagation
Mean Field Algorithm
Exponential Family

Maximizing Problems

Parameter Learning

Structure Learning

Outline

Life without Graphical Models

Representation
Directed Graphical Models (Bayesian Networks)
Undirected Graphical Models (Markov Random Fields)

Inference
Exact Inference
Markov Chain Monte Carlo
Variational Inference

Loopy Belief Propagation
Mean Field Algorithm
Exponential Family

Maximizing Problems

Parameter Learning

Structure Learning

Inference by Enumeration

I Let X = (XQ, XE , XO) for query, evidence, and other
variables.

I Infer P (XQ | XE)
I By definition

P (XQ | XE) =
P (XQ, XE)
P (XE)

=

∑
XO

P (XQ, XE , XO)∑
XQ,XO

P (XQ, XE , XO)

I Summing exponential number of terms: with k variables in
XO each taking r values, there are rk terms

Details of the summing problem

I There are a bunch of “other” variables x1, . . . , xk

I We sum over r values each variable can take
∑vr

xi=v1

I This is exponential (rk):
∑

x1...xk

I We want
∑

x1...xk
p(X)

I For a graphical model, the joint probability factors
p(X) =

∏m
j=1 fj(X(j))

I Each factor fj operates on X(j) ⊆ X

Eliminating a Variable

I Rearrange factors
∑

x1...xk
f−1 . . . f−l f

+
l+1 . . . f

+
m by whether

x1 ∈ X(j)

I Obviously equivalent:
∑

x2...xk
f−1 . . . f−l

(∑
x1
f+

l+1 . . . f
+
m

)
I Introduce a new factor f−m+1 =

(∑
x1
f+

l+1 . . . f
+
m

)
I f−m+1 contains the union of variables in f+

l+1 . . . f
+
m except x1

I In fact, x1 disappears altogether in
∑

x2...xk
f−1 . . . f−l f

−
m+1

I Dynamic programming: compute f−m+1 once, use it thereafter

I Hope: f−m+1 contains very few variables

I Recursively eliminate other variables in turn

Example: Chain Graph

A B C D

I Binary variables

I Say we want P (D) =
∑

A,B,C P (A)P (B|A)P (C|B)P (D|C)
I Let f1(A) = P (A). Note f1 is an array of size two:
P (A = 0)
P (A = 1)

I f2(A,B) is a table of size four:
P (B = 0|A = 0)
P (B = 0|A = 1)
P (B = 1|A = 0)
P (B = 1|A = 1))

I
∑

A,B,C f1(A)f2(A,B)f3(B,C)f4(C,D) =∑
B,C f3(B,C)f4(C,D)(

∑
A f1(A)f2(A,B))

Example: Chain Graph

A B C D

I f1(A)f2(A,B) an array of size four: match A values
P (A = 0)P (B = 0|A = 0)
P (A = 1)P (B = 0|A = 1)
P (A = 0)P (B = 1|A = 0)
P (A = 1)P (B = 1|A = 1)

I f5(B) ≡
∑

A f1(A)f2(A,B) an array of size two
P (A = 0)P (B = 0|A = 0) + P (A = 1)P (B = 0|A = 1)
P (A = 0)P (B = 1|A = 0) + P (A = 1)P (B = 1|A = 1)

I For this example, f5(B) happens to be P (B)
I
∑

B,C f3(B,C)f4(C,D)f5(B) =∑
C f4(C,D)(

∑
B f3(B,C)f5(B)), and so on

I In the end, f7(D) = (P (D = 0), P (D = 1))

Example: Chain Graph

A B C D

I Computation for P (D): 12 ×, 6 +

I Enumeration: 48 ×, 14 +

I Saving depends on elimination order. Finding optimal order
NP-hard; there are heuristic methods.

I Saving depends more critically on the graph structure (tree
width), can be intractable

Handling Evidence

I For evidence variables XE , simply plug in their value e

I Eliminate variables XO = X −XE −XQ

I The final factor will be the joint f(XQ) = P (XQ, XE = e)
I Normalize to answer query:

P (XQ | XE = e) =
f(XQ)∑
XQ

f(XQ)

Summary: Exact Inference

I Enumeration

I Variable elimination

I Not covered: junction tree (aka clique tree)

Exact, but intractable for large graphs

Outline

Life without Graphical Models

Representation
Directed Graphical Models (Bayesian Networks)
Undirected Graphical Models (Markov Random Fields)

Inference
Exact Inference
Markov Chain Monte Carlo
Variational Inference

Loopy Belief Propagation
Mean Field Algorithm
Exponential Family

Maximizing Problems

Parameter Learning

Structure Learning

Inference by Monte Carlo

I Consider the inference problem p(XQ = cQ | XE) where
XQ ∪XE ⊆ {x1 . . . xn}

p(XQ = cQ | XE) =
∫

1(xQ=cQ)p(xQ | XE)dxQ

I If we can draw samples x
(1)
Q , . . . x

(m)
Q ∼ p(xQ | XE), an

unbiased estimator is

p(XQ = cQ | XE) ≈ 1
m

m∑
i=1

1
(x

(i)
Q =cQ)

I The variance of the estimator decreases as V/m
I Inference reduces to sampling from p(xQ | XE)

Forward Sampling Example

P(A | B, E) = 0.95
P(A | B, ~E) = 0.94
P(A | ~B, E) = 0.29
P(A | ~B, ~E) = 0.001

P(J | A) = 0.9
P(J | ~A) = 0.05

P(M | A) = 0.7
P(M | ~A) = 0.01

A

J M

B E

P(E)=0.002P(B)=0.001

To generate a sample X = (B,E,A, J,M):
1. Sample B ∼ Ber(0.001): r ∼ U(0, 1). If (r < 0.001) then
B = 1 else B = 0

2. Sample E ∼ Ber(0.002)
3. If B = 1 and E = 1, sample A ∼ Ber(0.95), and so on

4. If A = 1 sample J ∼ Ber(0.9) else J ∼ Ber(0.05)
5. If A = 1 sample M ∼ Ber(0.7) else M ∼ Ber(0.01)

Works for Bayesian networks.

Inference with Forward Sampling

I Say the inference task is P (B = 1 | E = 1,M = 1)
I Throw away all samples except those with (E = 1,M = 1)

p(B = 1 | E = 1,M = 1) ≈ 1
m

m∑
i=1

1(B(i)=1)

where m is the number of surviving samples

I Can be highly inefficient (note P (E = 1) tiny)

I Does not work for Markov Random Fields

Gibbs Sampler Example: P (B = 1 | E = 1, M = 1)

I Gibbs sampler is a Markov Chain Monte Carlo (MCMC)
method.

I Directly sample from p(xQ | XE)
I Works for both graphical models
I Initialization:

I Fix evidence; randomly set other variables
I e.g. X(0) = (B = 0, E = 1, A = 0, J = 0,M = 1)

P(A | B, E) = 0.95
P(A | B, ~E) = 0.94
P(A | ~B, E) = 0.29
P(A | ~B, ~E) = 0.001

P(J | A) = 0.9
P(J | ~A) = 0.05

P(M | A) = 0.7
P(M | ~A) = 0.01

A

J M

B E

P(E)=0.002P(B)=0.001

Gibbs Update

I For each non-evidence variable xi, fixing all other nodes X−i,
resample its value xi ∼ P (xi | X−i)

I This is equivalent to xi ∼ P (xi | MarkovBlanket(xi))
I For a Bayesian network MarkovBlanket(xi) includes xi’s

parents, spouses, and children

P (xi | MarkovBlanket(xi)) ∝ P (xi | Pa(xi))
∏

y∈C(xi)

P (y | Pa(y))

where Pa(x) are the parents of x, and C(x) the children of x.
I For many graphical models the Markov Blanket is small.
I For example,
B ∼ P (B | E = 1, A = 0) ∝ P (B)P (A = 0 | B,E = 1)

P(A | B, E) = 0.95
P(A | B, ~E) = 0.94
P(A | ~B, E) = 0.29
P(A | ~B, ~E) = 0.001

P(J | A) = 0.9
P(J | ~A) = 0.05

P(M | A) = 0.7
P(M | ~A) = 0.01

A

J M

B E

P(E)=0.002P(B)=0.001

Gibbs Update

I Say we sampled B = 1. Then
X(1) = (B = 1, E = 1, A = 0, J = 0,M = 1)

I Starting from X(1), sample
A ∼ P (A | B = 1, E = 1, J = 0,M = 1) to get X(2)

I Move on to J , then repeat B,A, J,B,A, J . . .

I Keep all later samples. P (B = 1 | E = 1,M = 1) is the
fraction of samples with B = 1.

P(A | B, E) = 0.95
P(A | B, ~E) = 0.94
P(A | ~B, E) = 0.29
P(A | ~B, ~E) = 0.001

P(J | A) = 0.9
P(J | ~A) = 0.05

P(M | A) = 0.7
P(M | ~A) = 0.01

A

J M

B E

P(E)=0.002P(B)=0.001

Gibbs Example 2: The Ising Model

xs

A

B

C

D

This is an undirected model with x ∈ {0, 1}.

pθ(x) =
1
Z

exp

∑
s∈V

θsxs +
∑

(s,t)∈E

θstxsxt



Gibbs Example 2: The Ising Model

xs

A

B

C

D

I The Markov blanket of xs is A,B,C,D

I In general for undirected graphical models

p(xs | x−s) = p(xs | xN(s))

N(s) is the neighbors of s.

I The Gibbs update is

p(xs = 1 | xN(s)) =
1

exp(−(θs +
∑

t∈N(s) θstxt)) + 1

Gibbs Sampling as a Markov Chain

I A Markov chain is defined by a transition matrix T (X ′ | X)
I Certain Markov chains have a stationary distribution π such

that π = Tπ

I Gibbs sampler is such a Markov chain with
Ti((X−i, x

′
i) | (X−i, xi)) = p(x′i | X−i), and stationary

distribution p(xQ | XE)
I But it takes time for the chain to reach stationary distribution

(mix)
I Can be difficult to assert mixing
I In practice “burn in”: discard X(0), . . . , X(T)

I Use all of X(T+1), . . . for inference (they are correlated)
I Do not thin

Collapsed Gibbs Sampling

I In general, Ep[f(X)] ≈ 1
m

∑m
i=1 f(X(i)) if X(i) ∼ p

I Sometimes X = (Y, Z) where Z has closed-form operations

I If so,

Ep[f(X)] = Ep(Y)Ep(Z|Y)[f(Y, Z)]

≈ 1
m

m∑
i=1

Ep(Z|Y (i))[f(Y (i), Z)]

if Y (i) ∼ p(Y)
I No need to sample Z: it is collapsed

I Collapsed Gibbs sampler Ti((Y−i, y
′
i) | (Y−i, yi)) = p(y′i | Y−i)

I Note p(y′i | Y−i) =
∫
p(y′i, Z | Y−i)dZ

Example: Collapsed Gibbs Sampling for LDA

θ

Nd
w

D

αβ
T

zφ

Collapse θ, φ, Gibbs update:

P (zi = j | z−i,w) ∝
n

(wi)
−i,j + βn

(di)
−i,j + α

n
(·)
−i,j +Wβn

(di)
−i,· + Tα

I n
(wi)
−i,j : number of times word wi has been assigned to topic j,

excluding the current position

I n
(di)
−i,j : number of times a word from document di has been

assigned to topic j, excluding the current position

I n
(·)
−i,j : number of times any word has been assigned to topic j,

excluding the current position

I n
(di)
−i,·: length of document di, excluding the current position

Summary: Markov Chain Monte Carlo

I Gibbs sampling

I Not covered: block Gibbs, Metropolis-Hastings

Unbiased (after burn-in), but can have high variance

To learn more, come to Prof. Prasad Tetali’s tutorial “Markov
Chain Mixing with Applications” 2pm Monday.

Outline

Life without Graphical Models

Representation
Directed Graphical Models (Bayesian Networks)
Undirected Graphical Models (Markov Random Fields)

Inference
Exact Inference
Markov Chain Monte Carlo
Variational Inference

Loopy Belief Propagation
Mean Field Algorithm
Exponential Family

Maximizing Problems

Parameter Learning

Structure Learning

Outline

Life without Graphical Models

Representation
Directed Graphical Models (Bayesian Networks)
Undirected Graphical Models (Markov Random Fields)

Inference
Exact Inference
Markov Chain Monte Carlo
Variational Inference

Loopy Belief Propagation
Mean Field Algorithm
Exponential Family

Maximizing Problems

Parameter Learning

Structure Learning

The Sum-Product Algorithm

I Also known as belief propagation (BP)

I Exact if the graph is a tree; otherwise known as “loopy BP”,
approximate

I The algorithm involves passing messages on the factor graph

I Alternative view: variational approximation (more later)

Example: A Simple HMM

I The Hidden Markov Model template (not a graphical model)

π = π = 1/21 2

P(x | z=1)=(1/2, 1/4, 1/4) P(x | z=2)=(1/4, 1/2, 1/4)

1 2

1/4 1/2

R G B R G B

I Observing x1 = R, x2 = G, the directed graphical model

z1

x =G2

z2

x =R1

I Factor graph
z1f 1 z2f 2

P(z)P(x | z) P(z | z)P(x | z)1 1 1 2 1 2 2

Messages

A message is a vector of length K, where K is the number of
values x takes.
There are two types of messages:

1. µf→x: message from a factor node f to a variable node x
µf→x(i) is the ith element, i = 1 . . .K.

2. µx→f : message from a variable node x to a factor node f

Leaf Messages

I Assume tree factor graph. Pick an arbitrary root, say z2
I Start messages at leaves.

I If a leaf is a factor node f , µf→x(x) = f(x)
I If a leaf is a variable node x, µx→f (x) = 1

z1f 1 z2f 2

P(z)P(x | z) P(z | z)P(x | z)1 1 1 2 1 2 2

µf1→z1(z1 = 1) = P (z1 = 1)P (R|z1 = 1) = 1/2 · 1/2 = 1/4
µf1→z1(z1 = 2) = P (z1 = 2)P (R|z1 = 2) = 1/2 · 1/4 = 1/8

π = π = 1/21 2

P(x | z=1)=(1/2, 1/4, 1/4) P(x | z=2)=(1/4, 1/2, 1/4)

1 2

1/4 1/2

R G B R G B

Message from Variable to Factor

I A node (factor or variable) can send out a message if all other
incoming messages have arrived

I Let x be in factor fs.

µx→fs(x) =
∏

f∈ne(x)\fs

µf→x(x)

I ne(x)\fs are factors connected to x excluding fs.

z1f 1 z2f 2

P(z)P(x | z) P(z | z)P(x | z)1 1 1 2 1 2 2

µz1→f2(z1 = 1) = 1/4
µz1→f2(z1 = 2) = 1/8

π = π = 1/21 2

P(x | z=1)=(1/2, 1/4, 1/4) P(x | z=2)=(1/4, 1/2, 1/4)

1 2

1/4 1/2

R G B R G B

Message from Factor to Variable

I Let x be in factor fs. Let the other variables in fs be x1:M .

µfs→x(x) =
∑
x1

. . .
∑
xM

fs(x, x1, . . . , xM)
M∏

m=1

µxm→fs(xm)

z1f 1 z2f 2

P(z)P(x | z) P(z | z)P(x | z)1 1 1 2 1 2 2

µf2→z2(s) =
2∑

s′=1

µz1→f2(s
′)f2(z1 = s′, z2 = s)

= 1/4P (z2 = s|z1 = 1)P (x2 = G|z2 = s)
+1/8P (z2 = s|z1 = 2)P (x2 = G|z2 = s)

We get
µf2→z2(z2 = 1) = 1/32
µf2→z2(z2 = 2) = 1/8

Up to Root, Back Down

I The message has reached the root, pass it back down

z1f 1 z2f 2

P(z)P(x | z) P(z | z)P(x | z)1 1 1 2 1 2 2

µz2→f2(z2 = 1) = 1
µz2→f2(z2 = 2) = 1

π = π = 1/21 2

P(x | z=1)=(1/2, 1/4, 1/4) P(x | z=2)=(1/4, 1/2, 1/4)

1 2

1/4 1/2

R G B R G B

Keep Passing Down

z1f 1 z2f 2

P(z)P(x | z) P(z | z)P(x | z)1 1 1 2 1 2 2

µf2→z1(s) =
∑2

s′=1 µz2→f2(s
′)f2(z1 = s, z2 = s′)

= 1P (z2 = 1|z1 = s)P (x2 = G|z2 = 1)
+ 1P (z2 = 2|z1 = s)P (x2 = G|z2 = 2). We get

µf2→z1(z1 = 1) = 7/16
µf2→z1(z1 = 2) = 3/8

π = π = 1/21 2

P(x | z=1)=(1/2, 1/4, 1/4) P(x | z=2)=(1/4, 1/2, 1/4)

1 2

1/4 1/2

R G B R G B

From Messages to Marginals

Once a variable receives all incoming messages, we compute its
marginal as

p(x) ∝
∏

f∈ne(x)

µf→x(x)

In this example

P (z1|x1, x2) ∝ µf1→z1 ·µf2→z1 =
(1/4

1/8

)
·
(7/16

3/8

)
=
(7/64

3/64

)
⇒
(

0.7
0.3

)
P (z2|x1, x2) ∝ µf2→z2 =

(1/32
1/8

)
⇒
(

0.2
0.8

)
One can also compute the marginal of the set of variables xs

involved in a factor fs

p(xs) ∝ fs(xs)
∏

x∈ne(f)

µx→f (x)

Handling Evidence

Observing x = v,

I we can absorb it in the factor (as we did); or

I set messages µx→f (x) = 0 for all x 6= v

Observing XE ,

I multiplying the incoming messages to x /∈ XE gives the joint
(not p(x|XE)):

p(x,XE) ∝
∏

f∈ne(x)

µf→x(x)

I The conditional is easily obtained by normalization

p(x|XE) =
p(x,XE)∑
x′ p(x′, XE)

Loopy Belief Propagation

I So far, we assumed a tree graph

I When the factor graph contains loops, pass messages
indefinitely until convergence

I But convergence may not happen

I But in many cases loopy BP still works well, empirically

Outline

Life without Graphical Models

Representation
Directed Graphical Models (Bayesian Networks)
Undirected Graphical Models (Markov Random Fields)

Inference
Exact Inference
Markov Chain Monte Carlo
Variational Inference

Loopy Belief Propagation
Mean Field Algorithm
Exponential Family

Maximizing Problems

Parameter Learning

Structure Learning

Example: The Ising Model

θs
θ

xs xt
st

The random variables x take values in {0, 1}.

pθ(x) =
1
Z

exp

∑
s∈V

θsxs +
∑

(s,t)∈E

θstxsxt



The Conditional

θs
θ

xs xt
st

I Markovian: the conditional distribution for xs is

p(xs | x−s) = p(xs | xN(s))

N(s) is the neighbors of s.

I This reduces to

p(xs = 1 | xN(s)) =
1

exp(−(θs +
∑

t∈N(s) θstxt)) + 1

I Gibbs sampling would draw xs like this.

The Mean Field Algorithm for Ising Model

p(xs = 1 | xN(s)) =
1

exp(−(θs +
∑

t∈N(s) θstxt)) + 1

I Instead of Gibbs sampling, let µs be the estimated marginal
p(xs = 1)

µs ←
1

exp(−(θs +
∑

t∈N(s) θstµt)) + 1

I The µ’s are updated iteratively

I The Mean Field algorithm is coordinate ascent and
guaranteed to converge to a local optimal (more later).

Outline

Life without Graphical Models

Representation
Directed Graphical Models (Bayesian Networks)
Undirected Graphical Models (Markov Random Fields)

Inference
Exact Inference
Markov Chain Monte Carlo
Variational Inference

Loopy Belief Propagation
Mean Field Algorithm
Exponential Family

Maximizing Problems

Parameter Learning

Structure Learning

Exponential Family

I Let φ(X) = (φ1(X), . . . , φd(X))> be d sufficient statistics,
where φi : X 7→ R

I Note X is all the nodes in a Graphical model

I φi(X) sometimes called a feature function

I Let θ = (θ1, . . . , θd)> ∈ Rd be canonical parameters.

I The exponential family is a family of probability densities:

pθ(x) = exp
(
θ>φ(x)−A(θ)

)

Exponential Family

pθ(x) = exp
(
θ>φ(x)−A(θ)

)
I The key is the inner product between parameters θ and

sufficient statistics φ.

I A is the log partition function,

A(θ) = log
∫

exp
(
θ>φ(x)

)
ν(dx)

I A = logZ

Minimal vs. Overcomplete Models

I Parameters for which the density is normalizable:

Ω = {θ ∈ Rd | A(θ) <∞}

I A minimal exponential family is where the φ’s are linearly
independent.

I An overcomplete exponential family is where the φ’s are
linearly dependent:

∃α ∈ Rd, α>φ(x) = constant ∀x

I Both minimal and overcomplete representations are useful.

Exponential Family Example 1: Bernoulli

p(x) = βx(1− β)1−x for x ∈ {0, 1} and β ∈ (0, 1).
I Does not look like an exponential family!

I Can be rewritten as

p(x) = exp (x log β + (1− x) log(1− β))

I Now in exponential family form with
φ1(x) = x, φ2(x) = 1− x, θ1 = log β, θ2 = log(1− β), and
A(θ) = 0.

I Overcomplete: α1 = α2 = 1 makes α>φ(x) = 1 for all x

Exponential Family Example 1: Bernoulli

p(x) = exp (x log β + (1− x) log(1− β))

I Can be further rewritten as

p(x) = exp (xθ − log(1 + exp(θ)))

I Minimal exponential family with
φ(x) = x, θ = log β

1−β , A(θ) = log(1 + exp(θ)).
Many distributions (e.g., Gaussian, exponential, Poisson, Beta) are
in the exponential family, but not all (e.g., the Laplace
distribution).

Exponential Family Example 2: Ising Model

θs
θ

xs xt
st

pθ(x) = exp

∑
s∈V

θsxs +
∑

(s,t)∈E

θstxsxt −A(θ)


I Binary random variable xs ∈ {0, 1}
I d = |V |+ |E| sufficient statistics: φ(x) = (. . . xs . . . xst . . .)>

I This is a regular (Ω = Rd), minimal exponential family.

Exponential Family Example 3: Potts Model

θs
θ

xs xt
st

I Similar to Ising model but generalizing xs ∈ {0, . . . , r − 1}.
I Indicator functions fsj(x) = 1 if xs = j and 0 otherwise, and
fstjk(x) = 1 if xs = j ∧ xt = k, and 0 otherwise.

pθ(x) = exp

∑
sj

θsjfsj(x) +
∑
stjk

θstjkfstjk(x)−A(θ)


I d = r|V |+ r2|E|
I Regular but overcomplete, because

∑r−1
j=0 θsj(x) = 1 for any

s ∈ V and all x.
I The Potts model is a special case where the parameters are

tied: θstkk = α, and θstjk = β for j 6= k.

Important Relation

For sufficient statistics defined by indicator functions

I e.g., φsj(x) = fsj(x) = 1 if xs = j and 0 otherwise

I The marginal can be obtained via the mean

Eθ[φsj(x)] = P (xs = j)

I Since inference is about computing the marginal, in this case
it is equivalent to computing the mean.

Mean Parameters

I Let p be any density (not necessarily in exponential family).

I Given sufficient statistics φ, the mean parameters
µ = (µ1, . . . , µd)> is

µi = Ep[φi(x)] =
∫
φi(x)p(x)dx

I The set of mean parameters

M = {µ ∈ Rd | ∃p s.t. Ep[φ(x)] = µ}

I If µ(1), µ(2) ∈M, there must exist p(1), p(2)

I The convex combinations of p(1), p(2) leads to another mean
parameter inM

I Therefore M is convex

Example: The First Two Moments

I Let φ1(x) = x, φ2(x) = x2

I For any p (not necessarily Gaussian) on x, the mean
parameters µ = (µ1, µ2) = (E(x),E(x2))>.

I Note V(x) = E(x2)− E2(x) = µ2 − µ2
1 ≥ 0 for any p

I M is not R2 but rather the subset µ1 ∈ R, µ2 ≥ µ2
1.

The Marginal Polytope

I The marginal polytope is defined for discrete xs

I Recall M = {µ ∈ Rd | µ =
∑

x φ(x)p(x) for some p}
I p can be a point mass function on a particular x.

I In fact any p is a convex combination of such point mass
functions.

I M = conv{φ(x),∀x} is a convex hull, called the marginal
polytope.

Marginal Polytope Example

Tiny Ising model: two nodes x1, x2 ∈ {0, 1} connected by an edge.

I minimal sufficient statistics φ(x1, x2) = (x1, x2, x1x2)>.

I only 4 different x = (x1, x2).
I the marginal polytope is
M = conv{(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 1)}

I the convex hull is a polytope inside the unit cube.

I the three coordinates are node marginals µ1 ≡ Ep[x1 = 1],
µ2 ≡ Ep[x2 = 1] and edge marginal µ12 ≡ Ep[x1 = x2 = 1],
hence the name.

The Log Partition Function A

I For any regular exponential family, A(θ) is convex in θ.

I Strictly convex for minimal exponential family.

I Nice property: ∂A(θ)
∂θi

= Eθ[φi(x)]
I Therefore, ∇A = µ, the mean parameters of pθ.

Conjugate Duality

The conjugate dual function A∗ to A is defined as

A∗(µ) = sup
θ∈Ω

θ>µ−A(θ)

Such definition, where a quantity is expressed as the solution to an
optimization problem, is called a variational definition.

I For any µ ∈M’s interior, let θ(µ) satisfy
Eθ(µ)[φ(x)] = ∇A(θ(µ)) = µ.

I Then A∗(µ) = −H(pθ(µ)) the negative entropy.

I The dual of the dual gives back A:
A(θ) = supµ∈M µ>θ −A∗(µ)

I For all θ ∈ Ω, the supremum is attained uniquely at the
µ ∈M0 by the moment matching conditions µ = Eθ[φ(x)].

Example: Conjugate Dual for Bernoulli

I Recall the minimal exponential family for Bernoulli with
φ(x) = x,A(θ) = log(1 + exp(θ)),Ω = R.

I By definition

A∗(µ) = sup
θ∈R

θµ− log(1 + exp(θ))

I Taking derivative and solve

A∗(µ) = µ logµ+ (1− µ) log(1− µ)

i.e., the negative entropy.

Inference with Variational Representation

A(θ) = supµ∈M µ>θ −A∗(µ) is attained by µ = Eθ[φ(x)].
I Want to compute the marginals P (xs = j)? They are the

mean parameters µsj = Eθ[φij(x)] under standard
overcomplete representation.

I Want to compute the mean parameters µsj? They are the
arg sup to the optimization problem above.

I This variational representation is exact, not approximate (will
relax it next to derive loopy BP and mean field)

The Difficulties with Variational Representation

A(θ) = sup
µ∈M

µ>θ −A∗(µ)

I Difficult to solve even though it is a convex problem
I Two issues:

I Although the marginal polytope M is convex, it can be quite
complex (exponential number of vertices)

I The dual function A∗(µ) usually does not admit an explicit
form.

I Variational approximation modifies the optimization problem
so that it is tractable, at the price of an approximate solution.

I Next, we cast mean field and sum-product algorithms as
variational approximations.

The Mean Field Method as Variational Approximation

I The mean field method replaces M with a simpler subset
M(F) on which A∗(µ) has a closed form.

I Consider the fully disconnected subgraph F = (V, ∅) of the
original graph G = (V,E)

I Set all θi = 0 if φi involves edges

I The densities in this sub-family are all fully factorized:

pθ(x) =
∏
s∈V

p(xs; θs)

The Geometry ofM(F)

I Let M(F) be the mean parameters of the fully factorized
sub-family. In general,M(F) ⊂M

I Recall M is the convex hull of extreme points {φ(x)}.
I It turns out the extreme points {φ(x)} ∈ M(F).
I Example:

I The tiny Ising model x1, x2 ∈ {0, 1} with φ = (x1, x2, x1x2)>
I The point mass distribution p(x = (0, 1)>) = 1 is realized as a

limit to the series p(x) = exp(θ1x1 + θ2x2 −A(θ)) where
θ1 → −∞ and θ2 →∞.

I This series is in F because θ12 = 0.
I Hence the extreme point φ(x) = (0, 1, 0) is in M(F).

The Geometry ofM(F)

I Because the extreme points ofM are inM(F), ifM(F)
were convex, we would have M =M(F).

I But in general M(F) is a true subset ofM
I Therefore,M(F) is a nonconvex inner set ofM

M(F)
M

φ()x

The Mean Field Method as Variational Approximation

I Recall the exact variational problem

A(θ) = sup
µ∈M

µ>θ −A∗(µ)

attained by solution to inference problem µ = Eθ[φ(x)].
I The mean field method simply replaces M with M(F)

L(θ) = sup
µ∈M(F)

µ>θ −A∗(µ)

I Obvious L(θ) ≤ A(θ).
I The original solution µ∗ may not be inM(F)
I Even if µ∗ ∈M(F), may hit local maximum and not find it

I Why both? Because A∗(µ) = −H(pθ(µ)) has a very simple
form for M(F)

Example: Mean Field for Ising Model

I The mean parameters for the Ising model are the node and
edge marginals: µs = p(xx = 1), µst = p(xs = 1, xt = 1)

I Fully factorizedM(F) means no edge. µst = µsµt

I ForM(F), the dual function A∗(µ) has the simple form

A∗(µ) =
∑
s∈V

−H(µs) =
∑
s∈V

µs logµs + (1− µs) log(1− µs)

I Thus the mean field problem is

L(θ) = sup
µ∈M(F)

µ>θ −
∑
s∈V

(µs logµs + (1− µs) log(1− µs))

= max
(µ1...µm)∈[0,1]m

∑
s∈V

θsµs +
∑

(s,t)∈E

θstµsµt +
∑
s∈V

H(µs)



Example: Mean Field for Ising Model

L(θ) = max
(µ1...µm)∈[0,1]m

∑
s∈V

θsµs +
∑

(s,t)∈E

θstµsµt +
∑
s∈V

H(µs)


I Bilinear in µ, not jointly concave

I But concave in a single dimension µs, fixing others.

I Iterative coordinate-wise maximization: fixing µt for t 6= s and
optimizing µs.

I Setting the partial derivative w.r.t. µs to 0 yields:

µs =
1

1 + exp
(
−(θs +

∑
(s,t)∈E θstµt)

)
as we’ve seen before.

I Caution: mean field converges to a local maximum depending
on the initialization of µ1 . . . µm.

The Sum-Product Algorithm as Variational Approximation

A(θ) = sup
µ∈M

µ>θ −A∗(µ)

The sum-product algorithm makes two approximations:

I it relaxes M to an outer set L

I it replaces the dual A∗ with an approximation.

A(θ) = sup
µ∈L

µ>θ − Ã∗(µ)

The Outer Relaxation

I For overcomplete exponential families on discrete nodes, the
mean parameters are node and edge marginals
µsj = p(xs = j), µstjk = p(xs = j, xt = k).

I The marginal polytope is M = {µ | ∃p with marginals µ}.
I Now consider τ ∈ Rd

+ satisfying “node normalization” and
“edge-node marginal consistency” conditions:

r−1∑
j=0

τsj = 1 ∀s ∈ V

r−1∑
k=0

τstjk = τsj ∀s, t ∈ V, j = 0 . . . r − 1

r−1∑
j=0

τstjk = τtk ∀s, t ∈ V, k = 0 . . . r − 1

I Define L = {τ satisfying the above conditions}.

The Outer Relaxation

I If the graph is a tree thenM = L
I If the graph has cycles thenM⊂ L

I L is too lax to satisfy other constraints that true marginals
need to satisfy

I Nice property: L is still a polytope, but much simpler thanM.

φ()x

L

M

τ

The first approximation in sum-product is to replace M with L.

Approximating A∗

I Recall µ are node and edge marginals

I If the graph is a tree, one can exactly reconstruct the joint
probability

pµ(x) =
∏
s∈V

µsxs

∏
(s,t)∈E

µstxsxt

µsxsµtxt

I If the graph is a tree, the entropy of the joint distribution is

H(pµ) = −
∑
s∈V

r−1∑
j=0

µsj logµsj −
∑

(s,t)∈E

∑
j,k

µstjk log
µstjk

µsjµtk

I Neither holds for graph with cycles.

Approximating A∗

Define the Bethe entropy for τ ∈ L on loopy graphs in the same
way:

HBethe(pτ) = −
∑
s∈V

r−1∑
j=0

τsj log τsj −
∑

(s,t)∈E

∑
j,k

τstjk log
τstjk
τsjτtk

Note HBethe is not a true entropy. The second approximation in
sum-product is to replace A∗(τ) with −HBethe(pτ).

The Sum-Product Algorithm as Variational Approximation

With these two approximations, we arrive at the variational
problem

Ã(θ) = sup
τ∈L

τ>θ +HBethe(pτ)

I Optimality conditions require the gradients vanish w.r.t. both
τ and the Lagrangian multipliers on constraints τ ∈ L.

I The sum-product algorithm can be derived as an iterative
fixed point procedure to satisfy optimality conditions.

I At the solution, Ã(θ) is not guaranteed to be either an upper
or a lower bound of A(θ)

I τ may not correspond to a true marginal distribution

Summary: Variational Inference

I The sum-product algorithm (loopy belief propagation)

I The mean field method

I Not covered: Expectation Propagation

Efficient computation. But often unknown bias in solution.

Outline

Life without Graphical Models

Representation
Directed Graphical Models (Bayesian Networks)
Undirected Graphical Models (Markov Random Fields)

Inference
Exact Inference
Markov Chain Monte Carlo
Variational Inference

Loopy Belief Propagation
Mean Field Algorithm
Exponential Family

Maximizing Problems

Parameter Learning

Structure Learning

Maximizing Problems

Recall the HMM example

π = π = 1/21 2

P(x | z=1)=(1/2, 1/4, 1/4) P(x | z=2)=(1/4, 1/2, 1/4)

1 2

1/4 1/2

R G B R G B

There are two senses of “best states” z1:N given x1:N :
1. So far we computed the marginal p(zn|x1:N)

I We can define “best” as z∗n = arg maxk p(zn = k|x1:N)
I However z∗1:N as a whole may not be the best
I In fact z∗1:N can even have zero probability!

2. An alternative is to find

z∗1:N = arg max
z1:N

p(z1:N |x1:N)

I finds the most likely state configuration as a whole
I The max-sum algorithm solves this
I Generalizes the Viterbi algorithm for HMMs

Intermediate: The Max-Product Algorithm

Simple modification to the sum-product algorithm: replace
∑

with
max in the factor-to-variable messages.

µfs→x(x) = max
x1

. . .max
xM

fs(x, x1, . . . , xM)
M∏

m=1

µxm→fs(xm)

µxm→fs(xm) =
∏

f∈ne(xm)\fs

µf→xm(xm)

µxleaf→f (x) = 1

µfleaf→x(x) = f(x)

Intermediate: The Max-Product Algorithm

I As in sum-product, pick an arbitrary variable node x as the
root

I Pass messages up from leaves until they reach the root

I Unlike sum-product, do not pass messages back from root to
leaves

I At the root, multiply incoming messages

pmax = max
x

 ∏
f∈ne(x)

µf→x(x)


I This is the probability of the most likely state configuration

Intermediate: The Max-Product Algorithm

I To identify the configuration itself, keep back pointers:

I When creating the message

µfs→x(x) = max
x1

. . .max
xM

fs(x, x1, . . . , xM)
M∏

m=1

µxm→fs(xm)

for each x value, we separately create M pointers back to the
values of x1, . . . , xM that achieve the maximum.

I At the root, backtrack the pointers.

Intermediate: The Max-Product Algorithm

z1f 1 z2f 2

P(z)P(x | z) P(z | z)P(x | z)1 1 1 2 1 2 2

π = π = 1/21 2

P(x | z=1)=(1/2, 1/4, 1/4) P(x | z=2)=(1/4, 1/2, 1/4)

1 2

1/4 1/2

R G B R G B

I Message from leaf f1

µf1→z1(z1 = 1) = P (z1 = 1)P (R|z1 = 1) = 1/2 · 1/2 = 1/4
µf1→z1(z1 = 2) = P (z1 = 2)P (R|z1 = 2) = 1/2 · 1/4 = 1/8

I The second message
µz1→f2(z1 = 1) = 1/4
µz1→f2(z1 = 2) = 1/8

Intermediate: The Max-Product Algorithm

z1f 1 z2f 2

P(z)P(x | z) P(z | z)P(x | z)1 1 1 2 1 2 2

π = π = 1/21 2

P(x | z=1)=(1/2, 1/4, 1/4) P(x | z=2)=(1/4, 1/2, 1/4)

1 2

1/4 1/2

R G B R G B

µf2→z2(z2 = 1)
= max

z1

f2(z1, z2)µz1→f2(z1)

= max
z1

P (z2 = 1 | z1)P (x2 = G | z2 = 1)µz1→f2(z1)

= max(1/4 · 1/4 · 1/4, 1/2 · 1/4 · 1/8) = 1/64

Back pointer for z2 = 1: either z1 = 1 or z1 = 2

Intermediate: The Max-Product Algorithm

z1f 1 z2f 2

P(z)P(x | z) P(z | z)P(x | z)1 1 1 2 1 2 2

π = π = 1/21 2

P(x | z=1)=(1/2, 1/4, 1/4) P(x | z=2)=(1/4, 1/2, 1/4)

1 2

1/4 1/2

R G B R G B

The other element of the same message:

µf2→z2(z2 = 2)
= max

z1

f2(z1, z2)µz1→f2(z1)

= max
z1

P (z2 = 2 | z1)P (x2 = G | z2 = 2)µz1→f2(z1)

= max(3/4 · 1/2 · 1/4, 1/2 · 1/2 · 1/8) = 3/32

Back pointer for z2 = 2: z1 = 1

Intermediate: The Max-Product Algorithm

z1f 1 z2f 2

P(z)P(x | z) P(z | z)P(x | z)1 1 1 2 1 2 2

π = π = 1/21 2

P(x | z=1)=(1/2, 1/4, 1/4) P(x | z=2)=(1/4, 1/2, 1/4)

1 2

1/4 1/2

R G B R G B

µf2→z2 =
(1/64 →z1=1,2

3/32 →z1=1

)
At root z2,

max
s=1,2

µf2→z2(s) = 3/32

z2 = 2→ z1 = 1

z∗1:2 = arg max
z1:2

p(z1:2|x1:2) = (1, 2)

In this example, sum-product and max-product produce the same
best sequence; In general they differ.

From Max-Product to Max-Sum

The max-sum algorithm is equivalent to the max-product
algorithm, but work in log space to avoid underflow.

µfs→x(x) = max
x1...xM

log fs(x, x1, . . . , xM) +
M∑

m=1

µxm→fs(xm)

µxm→fs(xm) =
∑

f∈ne(xm)\fs

µf→xm(xm)

µxleaf→f (x) = 0

µfleaf→x(x) = log f(x)

When at the root,

log pmax = max
x

 ∑
f∈ne(x)

µf→x(x)


The back pointers are the same.

Outline

Life without Graphical Models

Representation
Directed Graphical Models (Bayesian Networks)
Undirected Graphical Models (Markov Random Fields)

Inference
Exact Inference
Markov Chain Monte Carlo
Variational Inference

Loopy Belief Propagation
Mean Field Algorithm
Exponential Family

Maximizing Problems

Parameter Learning

Structure Learning

Parameter Learning

I Assume the graph structure is given

I Learning in exponential family: estimate θ from iid data
x1 . . .xn.

I Principle: maximum likelihood
I Distinguish two cases:

I fully observed data: all dimensions of x are observed
I partially observed data: some dimensions of x are unobserved.

Fully Observed Data

pθ(x) = exp
(
θ>φ(x)−A(θ)

)
I Given iid data x1 . . .xn, the log likelihood is

`(θ) =
1
n

n∑
i=1

log pθ(xi) = θ>

(
1
n

n∑
i=1

φ(xi)

)
−A(θ) = θ>µ̂−A(θ)

I µ̂ ≡ 1
n

∑n
i=1 φ(xi) is the mean parameter of the empirical

distribution on x1 . . .xn. Clearly µ̂ ∈M.

I Maximum likelihood: θML = arg supθ∈Ω θ
>µ̂−A(θ)

I The solution is θML = θ(µ̂), the exponential family density
whose mean parameter matches µ̂.

I When µ̂ ∈M0 and φ minimal, there is a unique maximum
likelihood solution θML.

Partially Observed Data

I Each item (x, z) where x observed, z unobserved

I Full data (x1, z1) . . . (xn, zn), but we only observe x1 . . .xn

I The incomplete likelihood `(θ) = 1
n

∑n
i=1 log pθ(xi) where

pθ(xi) =
∫
pθ(xi, z)dz

I Can be written as `(θ) = 1
n

∑n
i=1Axi(θ)−A(θ)

I New log partition function of pθ(z | xi), one per item:

Axi(θ) = log
∫

exp(θ>φ(xi, z′))dz′

I Expectation-Maximization (EM) algorithm: lower bound Axi

EM as Variational Lower Bound

I Mean parameter realizable by any distribution on z while
holding xi fixed:
Mxi = {µ ∈ Rd | µ = Ep[φ(xi, z)] for some p}

I The variational definition Axi(θ) = supµ∈Mxi
θ>µ−A∗xi

(µ)
I Trivial variational lower bound:
Axi(θ) ≥ θ>µi −A∗xi

(µi),∀µi ∈Mxi

I Lower bound L on the incomplete log likelihood:

`(θ) =
1
n

n∑
i=1

Axi(θ)−A(θ)

≥ 1
n

n∑
i=1

(
θ>µi −A∗xi

(µi)
)
−A(θ)

≡ L(µ1, . . . , µn, θ)

Exact EM: The E-Step

The EM algorithm is coordinate ascent on L(µ1, . . . , µn, θ).
I In the E-step, maximizes each µi

µi ← arg max
µi∈Mxi

L(µ1, . . . , µn, θ)

I Equivalently, argmaxµi∈Mxi
θ>µi −A∗xi

(µi)
I This is the variational representation of the mean parameter
µi(θ) = Eθ[φ(xi, z)]

I The E-step is named after this Eθ[] under the current
parameters θ

Exact EM: The M-Step

I In the M-step, maximize θ holding the µ’s fixed:

θ ← arg max
θ∈Ω
L(µ1, . . . , µn, θ) = arg max

θ∈Ω
θ>µ̂−A(θ)

I µ̂ = 1
n

∑n
i=1 µ

i

I The solution θ(µ̂) satisfies Eθ(µ̂)[φ(x)] = µ̂

I Standard fully observed maximum likelihood problem, hence
the name M-step

Variational EM

For loopy graphs E-step often intractable.

I Can’t maximize

max
µi∈Mxi

θ>µi −A∗xi
(µi)

I Improve but not necessarily maximize: “generalized EM”

I The mean field method maximizes

max
µi∈Mxi (F)

θ>µi −A∗xi
(µi)

I up to local maximum
I recallMxi(F) is an inner approximation to Mxi

I Mean field E-step leads to generalized EM

I The sum-product algorithm does not lead to generalized EM

Outline

Life without Graphical Models

Representation
Directed Graphical Models (Bayesian Networks)
Undirected Graphical Models (Markov Random Fields)

Inference
Exact Inference
Markov Chain Monte Carlo
Variational Inference

Loopy Belief Propagation
Mean Field Algorithm
Exponential Family

Maximizing Problems

Parameter Learning

Structure Learning

Score-Based Structure Learning

I Let M be all allowed candidate features

I Let M ⊆M be a log-linear model structure

P (X |M, θ) =
1
Z

exp

(∑
i∈M

θifi(X)

)

I A score for the model M can be maxθ lnP (Data |M, θ)
I The score is always better for larger M – needs regularization

I M and θ treated separately

Structure Learning for Gaussian Random Fields

I Consider a p-dimensional multivariate Gaussian N(µ,Σ)
I The graphical model has p nodes x1, . . . , xp

I The edge between xi, xj is absent if and only if Ωij = 0,
where Ω = Σ−1

I Equivalently, xi, xj are conditionally independent given other
variables

x
x

x
x

1
2

3

4

Structure Learning for Gaussian Random Fields

I Let data be X(1), . . . , X(n) ∼ N(µ,Σ)
I The log likelihood is

n
2 log |Ω| − 1

2

∑n
i=1(X

(i) − µ)>Ω(X(i) − µ)
I The maximum likelihood estimate of Σ is the sample

covariance

S =
1
n

∑
i

(X(i) − X̄)>(X(i) − X̄)

where X̄ is the sample mean

I S−1 is not a good estimate of Ω when n is small

Structure Learning for Gaussian Random Fields

I For centered data, minimize a regularized problem instead:

− log |Ω|+ 1
n

n∑
i=1

X(i)>ΩX(i) + λ
∑
i6=j

|Ωij |

I Known as glasso

Recap

I Given GM = joint distribution p(x1, . . . , xn)
I BN or MRF
I conditional independence

I Do inference = p(XQ | XE), in general
XQ ∪XE ⊂ {x1 . . . xn}

I exact, MCMC, variational

I If p(x1, . . . , xn) not given, estimate it from data
I parameter and structure learning

Much on-going research!

	Life without Graphical Models
	Representation
	Directed Graphical Models (Bayesian Networks)
	Undirected Graphical Models (Markov Random Fields)

	Inference
	Exact Inference
	Markov Chain Monte Carlo
	Variational Inference
	Maximizing Problems

	Parameter Learning
	Structure Learning

