Game Redesign in No-Regret Game Playing Jerry Zhu SILO Dec. 1, 2021

Joint work with Yuzhe Ma (CS->Microsoft), Young Wu (CS)

Player 2			
num	fink		
2, 2	5, 1		
1, 5	4, 4		

mum

fink

 a_i strictly dominated by $a'_i : \forall a_{-i} : \ell_i(a_i, a_{-i}) > \ell_i(a'_i, a_{-i})$

fink mum

೧	F 1	
Startes and so and so	Res Ching & Res Ching & Ching	
1, 5	4, 4	

dominant strategy equilibrium

fink mum 5, 1 2, 2 1, 5 4, 4

mum fink

also (pure) Nash equilibrium

 $\forall i, a_i : \ell_i(a_i^*, a_{-i}^*) \le \ell_i(a_i, a_{-i}^*)$

No-Regret Game Playing

for t = 1, 2, ..., T do

 $\pi_i^t, \forall i \in [M].$ Player *i* observes the

end for

No-Regret Game Playing **Regret** $R_i^T = \sum_{t=1}^T \ell_i^t (a_i^t, a_{-i}^t) - \min_{b \in A_i} \sum_{t=1}^T \ell_i^t (b, a_{-i}^t)$

α -No-Regret player: $\mathbb{E}[R_i^T] = O(T^{\alpha})$ e.g. EXP3.P $\alpha = 1/2$

Approximate Nash equilibrium (two-player zero-sum) Approximate coarse correlated equilibrium (general-sum)

No-Regret Game Playing

mum fink

will get here, bummer

Redesigned Prisoner's Dilemma

mum fink

Volunteer's Dilemma

M = 3 players

Player *i* volunteer not volunteer

Number of other volunteers01200010-1-1

Nash has free-riders.

Won't it be nice to make everyone volunteer?

Player *i* volunteer not volunteer

Number of other volunteers01200010-1-1

Game Redesign Goals

1. Force players to choose a target joint action a^{\dagger} in *T*-o(*T*) rounds 2. Only incur o(T) cumulative design cost $\sum C(\ell^0, \ell^t, a^t)$ t = 1

Game Redesign Protocol

Players form action profile $a^t = (a_1^t, ..., a_M^t)$, where $a_i^t \sim$ Player *i* observes the new loss $\ell_i^t(a^t)$ and updates policy π_i^t .

Are Players Suspicious of ℓ^t ?

$\ell_i^t(a) \in \mathbb{R}$

$\ell_i^t(a) \in [L, U]$

Design Cost

 $C(\ell^0, \ell^t, a^t) := \|\ell^0(a^t) - \ell^t(a^t)\|_1$

(5 - 1.5) + (2.5 - 1)

Game Redesign Goals (Recap)

1. Force target a^{\dagger} in *T*-o(*T*) rounds 2. o(T) cumulative design cost $\sum \| \ell^0(a^t) - \ell^t(a^t) \|_1$ t = 1

Main Idea

1. Make a^{\dagger} the dominant strategy equilibrium 2. Don't ever change $\ell^0(a^{\dagger})$

1. Make a^{\dagger} the dominant strategy equilibrium 2. Don't ever change $\ell^0(a^{\dagger})$

Algorithm 1: Interior Design $\exists \rho > 0 : \ell_i^0(a^{\dagger}) \in [L + \rho, U - \rho]$

$$\forall i, a, \ell_i(a) = \begin{cases} \ell_i^o(a^{\dagger}) - (1 - \frac{d(a)}{M})\rho & \text{if } a_i = a_i^{\dagger}, \\ \ell_i^o(a^{\dagger}) + \frac{d(a)}{M}\rho & \text{if } a_i \neq a_i^{\dagger}, \end{cases}$$

where $d(a) = \sum_{j=1}^M \mathbb{1} \left[a_j = a_j^{\dagger} \right].$

Input: the target action profile a^{\dagger} ; the original game ℓ^{o} . **Output:** a time-invariant game ℓ constructed as follows:

Algorithm 1: Interior Design

Optional postprocessing for general-sum games:

 $\forall i, a, \ell_i(a) = \begin{cases} \min\{\ell_i^o(a^{\dagger}) - (1 - \frac{d(a)}{M})\rho, \ell^o(a)\} & \text{if } a_i = a_i^{\dagger} \\ \max\{\ell_i^o(a^{\dagger}) + \frac{d(a)}{M}\rho, \ell^o(a)\} & \text{if } a_i \neq a_i^{\dagger} \end{cases}$

ℓ^0

mumfinkmum2, 25, 1fink1, 54, 4

Volunteer's Dilemma Number of other volunteers () volunteer ()not volunteer 10

Player *i*

Player *i*

volunteer not volunteer Number of other volunteers -2/3-1/3U 2/31/310

Volunteer's Dilemma

refuse Covid-19 vaccine

() 1 day ago

volunteer not volunteer

Interior Design Guarantees

$\mathbb{E}[\sum_{i=1}^{t} 1(a^{t} = a^{\dagger})] = T - O(MT^{\alpha})$ t=1

 $\mathbb{E}[\sum \|\ell^{0}(a^{t}) - \ell(a^{t})\|_{1}] = O(M^{2}T^{\alpha})$ t=1

(3 EXP3.P players) Volunteer's Dilemma

T	10^4	10^5	10^6	10^7
Target	60%	82%	94%	98%
Per-round Cost	0.98	0.44	0.15	0.05

(b) The cumulative design cost grows sublinearly too 26

Non-target play, cumulative cost \ V

Tragedy of the Commons

- Two farmers
- Each grace {0, 1, ..., 15} sheep
- Price per sheep $p(a) = \sqrt{30 a_1 a_2}$
- Loss $-p(a)a_i$
- Nash equilibrium: $a^* = (12, 12)$

• Suboptimal social welfare $-p(a^*)(a_1^* + a_2^*) \approx -59$

Redesigned Commons • social welfare optimizer $a^{\dagger} = (10, 10) - p(a^{\dagger})(a_1^{\dagger} + a_2^{\dagger}) \approx -63$

- 20

- 10

- 0

-10	Т	10^4	10^5	10^6	10
	Target	41%	77%	92%	98
20	Cost	9.4	4.2	1.4	0

Main Idea (Revisited)

1. Make a^{\dagger} the dominant strategy equilibrium 2. Don't ever change $\ell^0(a^{\dagger})$

What if $\mathscr{C}^0_i(a^\dagger) = U?$ Cannot make other actions look worse!

29

Algorithm 2: Boundary Design Works for any $\ell_i^0(a^{\dagger})$: boundary or interior.

Output: a time-varying game with loss ℓ^t .

here

any

interior

vector

1: Use v in place of $\ell^{o}(a^{\dagger})$ in (2) and apply the interior design 1. Call the resulting time-invariant game the "source game" ℓ . 2: Define a "destination game" $\overline{\ell}$ where $\overline{\ell}(a) = \ell^o(a^{\dagger}), \forall a$. 3: Interpolate the source and destination games:

$$e^t = w_t \underline{\ell} + (1 - w_t) \overline{\ell}$$

$$w_t = t^{\alpha + \epsilon - 1}$$

 $\epsilon \in (0, 1 - \alpha)$: Slower decay than player regret

Rock-Paper-Scissors

v = (0,0) $\epsilon = 0.3$

(a) $\ell^t (t = 1)$.

(b) $\ell^t (t = 10^3)$.

(c) $\ell^t (t = 10^7)$.

Boundary Design Guarantees

$\mathbb{E}\left[\sum_{i=1}^{t} 1(a^{t} = a^{\dagger})\right] = T - O(MT^{1-\epsilon})$ t=1

 $\mathbb{E}\left[\sum \left\| \mathscr{L}^{0}(a^{t}) - \mathscr{L}(a^{t}) \right\|_{1} \right] = O(M^{2}T^{1-\epsilon} + MT^{\alpha+\epsilon})$ t=1

Are Players Suspicious of ℓ^t ?

$\ell_i^t(a) \in \mathbb{R}$

$\ell_i^t(a) \in [L, U]$

Algorithm 3: Discrete Design

 $\widehat{\mathscr{C}}_{i}^{t}(a) \sim \operatorname{Ber}\left(\frac{U - \mathscr{C}_{i}^{t}(a)}{U - L}, \frac{\mathscr{C}_{i}^{t}(a) - L}{U - L}\right)$

Rock-Paper-Scissors

T	10^4	10^5	10^6	10^7
Target	35%	59%	75%	88%
Per-round Cost	1.7	1.2	0.79	0.41

(b)
$$\hat{\ell}^t (t = 10^3)$$
.

(c) $\hat{\ell}^t (t = 10^7)$.

(almost the same performance as boundary design)

Related "Sequential Adversarial Attack" Problems

bandits: force suboptimal arm a

[1]

stateful

RL: force nefarious policy π^{\dagger}

[3, 4, 5]

multi-player

game: force fake equilibrium a[†]

[2]

multi-agent RL:

defense

[6]

and Xiaojin Zhu. NeurIPS 2018.

[2] Game Redesign in No-regret Game Playing. Yuzhe Ma, Young Wu, Xiaojin Zhu. https://arxiv.org/abs/2110.11763. 2021

Zhang, Wen Sun, and Xiaojin Zhu. NeurIPS 2019.

L4DC 2020.

Yuzhe Ma, Adish Singla, and Xiaojin Zhu. ICML 2020.

Chen, Xiaojin Zhu, and Wen Sun. ICML 2021.

- [1] Adversarial attacks on stochastic bandits. Kwang-Sung Jun, Lihong Li, Yuzhe Ma,
- [3] Policy poisoning in batch reinforcement learning and control. Yuzhe Ma, Xuezhou
- [4] Online Data Poisoning Attacks. Xuezhou Zhang, Xiaojin Zhu, and Laurent Lessard.
- [5] Adaptive reward-poisoning attacks against reinforcement learning. Xuezhou Zhang,
- [6] Robust policy gradient against strong data corruption. Xuezhou Zhang, Yiding