Machine Teaching

Jerry Zhu

Department of Computer Sciences
University of Wisconsin-Madison

ICML 2015 Workshop on Machine Learning for Education
Example 1: Teaching a support vector machine

- Here is an SVM:
 \[
 \min_{\theta \in \mathbb{R}^2} \sum_{i=1}^{n} \max(1 - y_i x_i^\top \theta, 0) + \frac{1}{2} \| \theta \|^2
 \]
Example 1: Teaching a support vector machine

- Here is an SVM: \(\min_{\theta \in \mathbb{R}^2} \sum_{i=1}^{n} \max(1 - y_i x_i^\top \theta, 0) + \frac{1}{2} \| \theta \|^2 \)

- What (batch) training set can teach the model: \(\theta^* = (\frac{1}{2}, \frac{\sqrt{3}}{2})^\top \)?
Example 1: Teaching a support vector machine

- Here is an SVM: \(\min_{\theta \in \mathbb{R}^2} \sum_{i=1}^{n} \max(1 - y_i x_i^\top \theta, 0) + \frac{1}{2} \|\theta\|^2 \)
- What (batch) training set can teach the model: \(\theta^* = \left(\frac{1}{2}, \frac{\sqrt{3}}{2} \right)^\top \)?
- Teach the exact \(\theta^* \), not just the decision boundary \(x^\top \theta^* = 0 \)
One training item is necessary and sufficient!

\[x_1 = \left(\frac{1}{2}, \frac{\sqrt{3}}{2} \right)^\top, \quad y_1 = 1 \]

You don’t even need negative training items.
What’s the catch?

[Liu & Zhu unpublished]

Theorem (Teaching Dimension of homogeneous SVM)

To teach any target model $\theta^* \neq 0$ to a homogeneous SVM

$$\min_{\theta \in \mathbb{R}^2} \sum_{i=1}^{n} \max(1 - y_i x_i^\top \theta, 0) + \frac{\lambda}{2} \|\theta\|^2$$

one needs $n = \lceil \lambda \|\theta^*\|^2 \rceil$ training items.
What’s the catch?

[Liu & Zhu unpublished]

Theorem (Teaching Dimension of homogeneous SVM)

To teach any target model $\theta^* \neq 0$ to a homogeneous SVM

$$\min_{\theta \in \mathbb{R}^2} \sum_{i=1}^{n} \max(1 - y_i x_i^\top \theta, 0) + \frac{\lambda}{2} \|\theta\|^2$$

one needs $n = \lceil \lambda \|\theta^*\|^2 \rceil$ training items.

Proposition

One such training set is $n = \lceil \lambda \|\theta^*\|^2 \rceil$ identical copies of the following item:

$$x = \frac{\lambda \theta^*}{n}, \quad y = 1.$$
Example 2: Teaching a Gaussian density estimator

- Given \(x_1 \ldots x_n \in \mathbb{R}^d \), the student computes sample mean and sample covariance:

\[
\hat{\mu} = \frac{1}{n} \sum x_i, \quad \hat{\Sigma} = \frac{1}{n-1} \sum (x_i - \hat{\mu})(x_i - \hat{\mu})^\top
\]
Example 2: Teaching a Gaussian density estimator

- Given \(x_1 \ldots x_n \in \mathbb{R}^d \), the student computes sample mean and sample covariance:
 \[
 \hat{\mu} = \frac{1}{n} \sum x_i, \quad \hat{\Sigma} = \frac{1}{n-1} \sum (x_i - \hat{\mu})(x_i - \hat{\mu})^\top
 \]

- The teacher wants to teach the model \(\mathcal{N}(\mu^*, \Sigma^*) \)
$d + 1$ training items necessary and sufficient

Vertices of d-dim tetrahedron
Two sides of a coin

- Machine learning: given data D, find model θ
Two sides of a coin

- Machine learning: given data D, find model θ
- Machine teaching: given model θ, find (the smallest) data D
Two sides of a coin

- **Machine learning**: given data D, find model θ
- **Machine teaching**: given model θ, find (the smallest) data D
 - for any given learner

> D will usually not be i.i.d.

Optimal teaching studied as optimal teaching (Goldman & Kearns 1995, many others)

Traditional emphasis: version-space learners

Our emphasis: modern optimization-based learners
Two sides of a coin

- Machine learning: given data D, find model θ
- **Machine teaching**: given model θ, find (the smallest) data D
 - for any given learner
 - D will usually not be i.i.d.
Two sides of a coin

- Machine learning: given data D, find model θ
- Machine teaching: given model θ, find (the smallest) data D
 - for any given learner
 - D will usually not be i.i.d.
 - studied as optimal teaching [Goldman & Kearns 1995, many others]
Two sides of a coin

- Machine learning: given data D, find model θ
- **Machine teaching**: given model θ, find (the smallest) data D
 - for any given learner
 - D will usually not be $i.i.d.$
 - studied as optimal teaching [Goldman & Kearns 1995, many others]
 - traditional emphasis: version-space learners
Two sides of a coin

- **Machine learning**: given data D, find model θ
- **Machine teaching**: given model θ, find (the smallest) data D
 - for any given learner
 - D will usually not be i.i.d.
 - studied as optimal teaching [Goldman & Kearns 1995, many others]
 - traditional emphasis: version-space learners
 - our emphasis: modern optimization-based learners
(Optimization-based) machine learning

Given $D = \{z_1 \ldots z_n\}$, we consider any learner with regularized empirical risk minimization:

$$
\hat{\theta} \leftarrow \arg\min_{\theta \in \Theta} \frac{1}{|D|} \sum_{z_i \in D} \ell(z_i, \theta) + \Omega(\theta)
$$

- $z_i = (x_i, y_i)$ for supervised learning, $z_i = x_i$ for unsupervised learning
(Optimization-based) machine learning

Given $D = \{z_1 \ldots z_n\}$, we consider any learner with regularized empirical risk minimization:

$$\hat{\theta} \leftarrow \arg\min_{\theta \in \Theta} \frac{1}{|D|} \sum_{z_i \in D} \ell(z_i, \theta) + \Omega(\theta)$$

- $z_i = (x_i, y_i)$ for supervised learning, $z_i = x_i$ for unsupervised learning
- $|D| = n$
(Optimization-based) machine learning

Given $D = \{z_1 \ldots z_n\}$, we consider any learner with regularized empirical risk minimization:

$$
\hat{\theta} \leftarrow \arg \min_{\theta \in \Theta} \frac{1}{|D|} \sum_{z_i \in D} \ell(z_i, \theta) + \Omega(\theta)
$$

- $z_i = (x_i, y_i)$ for supervised learning, $z_i = x_i$ for unsupervised learning
- $|D| = n$
- $\ell(\cdot, \cdot)$ a loss function
(Optimization-based) machine learning

Given $D = \{z_1 \ldots z_n\}$, we consider any learner with regularized empirical risk minimization:

$$\hat{\theta} \leftarrow \arg\min_{\theta \in \Theta} \frac{1}{|D|} \sum_{z_i \in D} \ell(z_i, \theta) + \Omega(\theta)$$

- $z_i = (x_i, y_i)$ for supervised learning, $z_i = x_i$ for unsupervised learning
- $|D| = n$
- $\ell(\cdot, \cdot)$ a loss function
- $\Omega(\cdot)$ a regularizer
(Optimization-based) machine learning

Given $D = \{z_1 \ldots z_n\}$, we consider any learner with regularized empirical risk minimization:

$$\hat{\theta} \leftarrow \operatorname{argmin}_{\theta \in \Theta} \frac{1}{|D|} \sum_{z_i \in D} \ell(z_i, \theta) + \Omega(\theta)$$

- $z_i = (x_i, y_i)$ for supervised learning, $z_i = x_i$ for unsupervised learning
- $|D| = n$
- $\ell(\cdot, \cdot)$ a loss function
- $\Omega(\cdot)$ a regularizer
- \operatorname{argmin} is the learning algorithm A
The math of machine teaching

\[\mathbb{A}(\theta)^{-1} \mathbb{A}(D) \theta^* \]
Machine teaching

Given θ^* and A, find the smallest training set:

$$D^* \leftarrow \arg \min_{D \in \mathcal{D}} \quad |D| \quad \text{Teacher’s problem}$$

subject to

$$\theta^* = \arg \min_{\theta \in \Theta} \frac{1}{|D|} \sum_{z_i \in D} \ell(z_i, \theta) + \Omega(\theta) \quad \text{learner’s algorithm } A$$

Bilevel optimization
Solution idea

Convert lower level problem to nonlinear constraints:

\[
D^* \leftarrow \arg\min_{D \in \mathbb{D}} |D|
\]

s.t. Karush-Kuhn-Tucker conditions of \(A \) at \(\theta^* \)
Machine teaching is stronger than active learning

Sample complexity to achieve ϵ error
- passive learning $1/\epsilon$
Machine teaching is stronger than active learning

- **Passive learning** "waits" with $O(1/n)$ sample complexity.
- **Active learning** "explores" with $O(1/2^n)$ sample complexity.
- **Teaching** "guides" with $O(1/2^n)$ sample complexity.

Sample complexity to achieve ϵ error:
- Passive learning: $1/\epsilon$
- Active learning: $\log(1/\epsilon)$
Machine teaching is stronger than active learning

Sample complexity to achieve ϵ error

- passive learning $1/\epsilon$
- active learning $\log(1/\epsilon)$
- machine teaching 2: the teacher knows θ
Education potentials

Education

- **Assumption 1**: The educational goal can be reasonably approximated by an objective function on θ^*
Assumption 1: The educational goal can be reasonably approximated by an objective function on θ^*
- e.g. $\|\hat{\theta} - \theta^*\|^2$
Assumption 1: The educational goal can be reasonably approximated by an objective function on θ^*
- e.g. $\|\hat{\theta} - \theta^*\|^2$
- e.g. test set accuracy
Assumption 1: The educational goal can be reasonably approximated by an objective function on θ^*
- e.g. $\|\hat{\theta} - \theta^*\|^2$
- e.g. test set accuracy

Assumption 2: The student can be reasonably approximated by a machine learning algorithm $A: \mathbb{D} \mapsto \Theta$
Education

- **Assumption 1:** The educational goal can be reasonably approximated by an objective function on θ^*
 - e.g. $\|\hat{\theta} - \theta^*\|^2$
 - e.g. test set accuracy

- **Assumption 2:** The student can be reasonably approximated by a machine learning algorithm $A : \mathbb{D} \mapsto \Theta$
 - e.g. regression, SVM, neural network
Machine teaching for education

1. \(D^* \leftarrow \text{MachineTeaching}(\theta^*, A) \)
Machine teaching for education

1. $D^* \leftarrow \text{MachineTeaching}(\theta^*, A)$
2. Train human on D^*
Machine teaching for education

1. \(D^* \leftarrow \text{MachineTeaching}(\theta^*, A) \)
2. Train human on \(D^* \)
3. Test human on a test set
Machine teaching for education

1. \(D^* \leftarrow \text{MachineTeaching}(\theta^*, A) \)
2. Train human on \(D^* \)
3. Test human on a test set
Machine teaching for education

1. \(D^* \leftarrow \text{MachineTeaching}(\theta^*, A)\)
2. Train human on \(D^*\)
3. Test human on a test set

\(D^*\) should be better than any other lesson \(D\) by definition!
Machine teaching for education

1. $D^* \leftarrow \text{MachineTeaching}(\theta^*, A)$
2. Train human on D^*
3. Test human on a test set

D^* should be better than any other lesson D by definition!
What if it isn’t?
Machine teaching for education

1. \[D^* \leftarrow \text{MachineTeaching}(\theta^*, A) \]
2. Train human on \(D^* \)
3. Test human on a test set

\(D^* \) should be better than any other lesson \(D \) by definition!

What if it isn’t?

... blame yourself (choice of \(A \))
Machine teaching for education

1. \(D^* \leftarrow \text{MachineTeaching}(\theta^*, A) \)
2. Train human on \(D^* \)
3. Test human on a test set

\(D^* \) should be better than any other lesson \(D \) by definition!

What if it isn’t?

... blame yourself (choice of \(A \))
... blame us (bilevel optimization)
Evidence from cognitive psychology

Human categorization [Patil Z Kopeć Love 2014]
Evidence from cognitive psychology

- Human categorization [Patil Z Kopeć Love 2014]
- A is a limited capacity retrieval cognitive model \approx kernel density classifier
Evidence from cognitive psychology

- Human categorization [Patil Z Kopeć Love 2014]
- A is a limited capacity retrieval cognitive model \approx kernel density classifier
Evidence from cognitive psychology

- **Human categorization** [Patil Z Kopec Love 2014]
- A is a limited capacity retrieval cognitive model \(\approx \) kernel density classifier

<table>
<thead>
<tr>
<th>human trained on</th>
<th>human test accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>optimal lesson (D^*)</td>
<td>72.5%</td>
</tr>
<tr>
<td>iid</td>
<td>69.8%</td>
</tr>
</tbody>
</table>

(statistically significant)
Open research questions in machine teaching

- approximate teaching: \[\| \hat{\theta} - \theta^* \| \leq \epsilon \]
Open research questions in machine teaching

- approximate teaching: $\|\hat{\theta} - \theta^*\| \leq \epsilon$
- teaching under budget: $n \leq B$
Open research questions in machine teaching

- approximate teaching: \[\|\hat{\theta} - \theta^*\| \leq \epsilon \]
- teaching under budget: \[n \leq B \]
- uncertainty in learner \[A \]: unknown \[\lambda \]
Open research questions in machine teaching

- approximate teaching: \(\| \hat{\theta} - \theta^* \| \leq \epsilon \)
- teaching under budget: \(n \leq B \)
- uncertainty in learner \(A \): unknown \(\lambda \)
- sequential learner
Open research questions in machine teaching

- approximate teaching: $||\hat{\theta} - \theta^*|| \leq \epsilon$
- teaching under budget: $n \leq B$
- uncertainty in learner A: unknown λ
- sequential learner
- reinforcement learner
Open research questions in machine teaching

- approximate teaching: \[\| \hat{\theta} - \theta^* \| \leq \epsilon \]
- teaching under budget: \(n \leq B \)
- uncertainty in learner \(A \): unknown \(\lambda \)
- sequential learner
- reinforcement learner
- real world applications
Open research questions in machine teaching

- approximate teaching: $\|\hat{\theta} - \theta^*\| \leq \epsilon$
- teaching under budget: $n \leq B$
- uncertainty in learner A: unknown λ
- sequential learner
- reinforcement learner
- real world applications
- ...
Summary

\[D^* \leftarrow \text{MachineTeaching}(\theta^*, A) \]

- not machine learning
Summary

\[D^* \leftarrow \text{MachineTeaching}(\theta^*, A) \]

- not machine learning
- reverse engineering
Summary

\[D^* \leftarrow \text{MachineTeaching}(\theta^*, A) \]

- not machine learning
- reverse engineering
- potential new paradigm for education
Summary

\[D^* \leftarrow \text{MachineTeaching}(\theta^*, A) \]

- not machine learning
- reverse engineering
- potential new paradigm for education
Summary

\[D^* \leftarrow \text{MachineTeaching}(\theta^*, A) \]
- not machine learning
- reverse engineering
- potential new paradigm for education

http://pages.cs.wisc.edu/~jerryzhu/machineteaching/
Summary

\[D^* \leftarrow \text{MachineTeaching}(\theta^*, A) \]

- not machine learning
- reverse engineering
- potential new paradigm for education

http://pages.cs.wisc.edu/~jerryzhu/machineteaching/

Collaborators: Scott Alfeld, Martha Alibali, Michael Ferris, Ji Liu, Bradley Love, Percival Matthews, Shike Mei, Bilge Mutlu, Gorune Ohannessian, Martina Rau, Tim Rogers, Ayon Sen, Steve Wright.