Machine Teaching and Security

Jerry Zhu

University of Wisconsin-Madison

Workshop on Reliable Machine Learning in the Wild ICML 2016 NYC

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\frac{D}{\theta_0} \to A(D,\theta_0) \to \theta$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

"It didn't take users long to learn that the Tay chatbot contained a 'repeat after me' command, which they promptly took advantage of."

Here's a sampling of the things she said:

"N------ like @deray should be hung! #BlackLivesMatter"

"I f----- hate feminists and they should all die and burn in hell."

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

"Hitler was right I hate the jews."

"chill im a nice person! i just hate everybody"

[CNN]

$$\frac{D}{\theta_0} \to A(D,\theta_0) \to \theta$$

Data:

$$D \in \mathbb{D} := \cup_{n=1}^{\infty} (\mathcal{X} \times \mathcal{Y})^n$$

- constructive, can lie: $\mathcal{X} = \mathbb{R}^d, \mathcal{Y} \in \{-1, 1\}$
- constructive, honest: support(p(x, y))
- ▶ pool-based: $X = \{x_1, ..., x_N\} \sim p(x)$ candidate set

$$\begin{array}{l} D\\ \theta_0 \end{array} \to A(D,\theta_0) \to \theta \end{array}$$

Learning algorithm:

$$A(D, \theta_0) = \operatorname{argmin}_{\theta'} \sum_{i=1}^n \ell(\theta', x_i, y_i) + \lambda \|\theta' - \theta_0\|^2$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Machine teaching

Given

$$\begin{array}{c} ?\\ \theta_0 \end{array} \to A(D,\theta_0) \to \theta \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Find D.

- Note: θ is given!
- Who would know θ ? Attackers, teachers, etc.

Machine teaching (special)

$$\begin{split} \min_{D \in \mathbb{D}} & |D| \\ \text{s.t.} & \{\theta\} = \operatorname*{argmin}_{\theta'} \sum_{i=1}^n \ell(\theta', x_i, y_i) + \lambda \|\theta' - \theta_0\|^2 \end{split}$$

Machine teaching (general)

$\min_{D \in \mathbb{D}} \quad \text{TeachingLoss}(A(D, \theta_0), \theta) + \text{TeachingEffort}(D)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Identifying optimal data-poisoning attacks

- $\min_{\delta} \quad \text{TeachingEffort}(\delta, D_0)$
 - s.t. TeachingLoss $(A(D_0 + \delta, \theta_0), \theta) \le \epsilon$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Data-poisoning attack on regression Lake Mendota, Wisconsin

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Data-poisoning attack on regression

[Mei, Z 15a]

Data-poisoning attack on latent Dirichlet allocation class marijuanalaws state act courtstates bill federal

[Mei, Z 15b]

Application: Defense

- Defender wishes to truthfully evaluate f(x),
- Attacker can replace x with $x' \in S \subset X$, the attack set
- Defender can choose $S \in \{S_1, \ldots, S_k\}$

 $\min_{i \in [k]} \max_{x' \in S_i, x} \mathsf{DefenderLoss}(f(x'), f(x))$

[Alfeld, Barford, Z. This workshop]

Application: Data repair

Data repair to satisfy logical constraints

$$\min_{\delta} \quad \|\delta\|$$

s.t. $A(D_0 + \delta) \models \phi.$

(ロ)、(型)、(E)、(E)、 E) の(の)

[Ghosh, Lincoln, Tiwari, Z. This workshop]

Application: Debugging Machine Learning

Training set debugging: test item x^* misclassified $A(D_0)(x^*) \neq y^*$

$$\begin{split} \min_{\delta} & \|\delta\| \\ \text{s.t.} & A(D_0+\delta)(x^*) = y^*. \end{split}$$

[Cadamuro, Gilad-Bachrach, Z. This workshop]

Application: Education

• Human categorization 1D threshold $\theta^* = 0.5$

- A = kernel density estimator
- Optimal *D*:

teaching human with	human test accuracy	
optimal D	72.5%	
random items	69.8%	
	(statistically significant)	

[Patil, Z, Kopec, Love 14]

Application: Interactive machine learning

$$TD := \min_{D \in \mathbb{D}} |D|$$

s.t. $\{\theta\} = A(D)$

Teaching dimension $TD \leq$ active learning query complexity

[Suh, Z, Amershi 16]

▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)

Open research question: Finding TD

$$TD := \min_{D \in \mathbb{D}} |D|$$

s.t. $\{\theta\} = A(D)$

TD (size of minimum teaching set) bounds "hacking difficulty"

- ▶ property of hypothesis space Θ (and A)
- distinct from VC-dim
- known for intervals, hypercubes, monotonic decision trees, monomials, binary relations and total orders, linear learners, etc.

TD of Linear Learners

$$A(D) = \operatorname*{argmin}_{\theta \in \mathbb{R}^d} \sum_{i=1}^n \ell(\theta^\top x_i, y_i) + \frac{\lambda}{2} \|\theta\|_2^2$$

attack \downarrow	homogeneous		
	ridge	SVM	logistic
parameter	1	$\left\lceil \lambda \ \theta \ ^2 \right\rceil$	$\frac{\lambda \ \theta\ ^2}{\tau_{\max}}$
boundary	-	1	1

[Liu, Z 16]

TD of *d*-dim Octagon

(日) (個) (目) (目) (目) (目)

Conjecture: $TD = 2d^2 + 2d$ [w. Jha, Seshia]

Open research question: Optimizing teaching set

Karush-Kuhn-Tucker relaxation

More open questions

- sequential learner
 - e.g. TD = 1 for linear perceptron [w. Ohannessian, Alfeld, Sen]
- uncertainty in learner
 - ▶ e.g. $A(D, \theta_0) = \operatorname{argmin}_{\theta} \sum_{i=1}^n \ell(\theta, x_i, y_i) + \lambda \|\theta \theta_0\|^2$ only knowing $\lambda \in [a, b]$. [w. Lopes]

- ϵTD
- Teaching by features as well as items

Thank you

http://pages.cs.wisc.edu/~jerryzhu/machineteaching/