Machine Teaching and Security

Jerry Zhu

University of Wisconsin-Madison

Workshop on Reliable Machine Learning in the Wild
ICML 2016 NYC
$D_{\theta_0} \rightarrow A(D, \theta_0) \rightarrow \theta$
“It didn’t take users long to learn that the Tay chatbot contained a ‘repeat after me’ command, which they promptly took advantage of.”

Here's a sampling of the things she said:

"N----- like @deray should be hung! #BlackLivesMatter"

"I f------ hate feminists and they should all die and burn in hell."

"Hitler was right I hate the jews."

"chill im a nice person! i just hate everybody"

[CNN]
\[D_{\theta_0} \rightarrow A(D, \theta_0) \rightarrow \theta \]

Data:

\[D \in \mathbb{D} := \bigcup_{n=1}^{\infty} (\mathcal{X} \times \mathcal{Y})^n \]

- constructive, can lie: \(\mathcal{X} = \mathbb{R}^d, \mathcal{Y} \in \{-1, 1\} \)
- constructive, honest: support(\(p(x, y))\)
- pool-based: \(\mathcal{X} = \{x_1, \ldots, x_N\} \sim p(x)\) candidate set
\[
D_{\theta_0} \rightarrow A(D, \theta_0) \rightarrow \theta
\]

Learning algorithm:

\[
A(D, \theta_0) = \arg\min_{\theta'} \sum_{i=1}^{n} \ell(\theta', x_i, y_i) + \lambda \|\theta' - \theta_0\|^2
\]
Machine teaching

Given

\[? \rightarrow A(D, \theta_0) \rightarrow \theta \]

Find \(D \).

- Note: \(\theta \) is given!
- Who would know \(\theta \)? Attackers, teachers, etc.
Machine teaching (special)

$$\min_{D \in \mathcal{D}} |D|$$

s.t. \(\{ \theta \} = \arg\min_{\theta'} \sum_{i=1}^{n} \ell(\theta', x_i, y_i) + \lambda \|\theta' - \theta_0\|^2 \)
Machine teaching (general)

$$\min_{D \in \mathcal{D}} \text{TeachingLoss}(A(D, \theta_0), \theta) + \text{TeachingEffort}(D)$$
Application: Data-Poisoning

Identifying optimal data-poisoning attacks

\[
\min_{\delta} \quad \text{TeachingEffort}(\delta, D_0) \\
\text{s.t.} \quad \text{TeachingLoss}(A(D_0 + \delta, \theta_0), \theta) \leq \epsilon
\]
Application: Data-Poisoning

Data-poisoning attack on regression
Lake Mendota, Wisconsin

\[(x, y)\]
Application: Data-Poisoning

Data-poisoning attack on regression

\[
\min_{\delta, \tilde{\beta}} \|\delta\|_p
\]

s.t.
\[
\tilde{\beta}_1 \geq 0
\]

\[
\tilde{\beta} = \arg\min_{\beta} \| (y + \delta) - X\beta \|_2^2
\]

[Mei, Z 15a]
Application: Data-Poisoning

Data-poisoning attack on latent Dirichlet allocation

[Mei, Z 15b]
Application: Defense

- Defender wishes to truthfully evaluate $f(x)$,
- Attacker can replace x with $x' \in S \subset X$, the attack set
- Defender can choose $S \in \{S_1, \ldots, S_k\}$

$$\min_{i\in[k]} \max_{x'\in S_i, x} \text{DefenderLoss}(f(x'), f(x))$$

[Alfeld, Barford, Z. This workshop]
Application: Data repair

Data repair to satisfy logical constraints

\[
\min_{\delta} \| \delta \|
\]

s.t. \[A(D_0 + \delta) \models \phi. \]

[Ghosh, Lincoln, Tiwari, Z. This workshop]
Application: Debugging Machine Learning

Training set debugging: test item x^* misclassified $A(D_0)(x^*) \neq y^*$

$$\min_{\delta} \|\delta\|$$

s.t. $A(D_0 + \delta)(x^*) = y^*$.

[Cadamuro, Gilad-Bachrach, Z. This workshop]
Application: Education

- Human categorization 1D threshold $\theta^* = 0.5$
- $A =$ kernel density estimator
- Optimal D:

![Diagram showing human categorization](image)

<table>
<thead>
<tr>
<th>teaching human with</th>
<th>human test accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>optimal D</td>
<td>72.5%</td>
</tr>
<tr>
<td>random items</td>
<td>69.8%</td>
</tr>
</tbody>
</table>

(Statistically significant)

[Patil, Z, Kopec, Love 14]
Application: Interactive machine learning

$$TD := \min_{D \in \mathcal{D}} |D|$$

s.t. \(\{\theta\} = A(D) \)

Teaching dimension \(TD \leq \) active learning query complexity

[Suh, Z, Amershi 16]
Open research question: Finding TD

\[TD := \min_{D \in \mathcal{D}} |D| \]

s.t. \(\{\theta\} = A(D) \)

TD (size of minimum teaching set) bounds “hacking difficulty”

- property of hypothesis space \(\Theta \) (and \(A \))
- distinct from VC-dim
- known for intervals, hypercubes, monotonic decision trees, monomials, binary relations and total orders, linear learners, etc.
TD of Linear Learners

\[A(D) = \arg\min_{\theta \in \mathbb{R}^d} \sum_{i=1}^{n} \ell(\theta^\top x_i, y_i) + \frac{\lambda}{2} \| \theta \|^2 \]

<table>
<thead>
<tr>
<th>attack ↓</th>
<th>homogeneous parameter</th>
<th>ridge</th>
<th>SVM</th>
<th>logistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>boundary</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

[Liu, Z 16]
Conjecture: $TD = 2d^2 + 2d$ [w. Jha, Seshia]
Open research question: Optimizing teaching set

Karush-Kuhn-Tucker relaxation

\[
\min_{D \in \mathbb{D}} |D| \\
\text{s.t.} \quad \{\theta\} = \arg\min_{\theta'} \sum_{i=1}^{n} \ell(\theta', x_i, y_i) + \lambda \|\theta' - \theta_0\|^2 \\
\sum_{i=1}^{n} \partial \ell(\theta, x_i, y_i) + 2\lambda (\theta - \theta_0) = 0
\]
More open questions

- sequential learner
 - e.g. $TD = 1$ for linear perceptron [w. Ohannessian, Alfeld, Sen]

- uncertainty in learner
 - e.g. $A(D, \theta_0) = \arg\min_{\theta} \sum_{i=1}^{n} \ell(\theta, x_i, y_i) + \lambda \|\theta - \theta_0\|^2$ only knowing $\lambda \in [a, b]$. [w. Lopes]

- ϵTD

- Teaching by features as well as items
Thank you

http://pages.cs.wisc.edu/~jerryzhu/machineteaching/