Machine Teaching as a Probe for Learning Mechanism in Humans

Jerry Zhu

University of Wisconsin-Madison

Tsinghua Laboratory of Brain and Intelligence Workshop on Brain and Artificial Intelligence Dec. 27, 2017 $| input | \rightarrow | human | \rightarrow | performance |$

Examples:

- human categorization
- human memorization

$$\begin{array}{c} \mathsf{input} & \to & \mathsf{human} & \to & \mathsf{performance} \\ \\ \mathsf{input} & \to & \mathsf{mathematical} \ \mathsf{model} \ A \end{array} \to \begin{bmatrix} \mathsf{performance} \ 2 \end{bmatrix}$$

The usual research flow:

- 1. run human experiments
- 2. tweak model A so that "performance 2" \approx "performance"
- publish

How to improve "already good" models?

- 1. no obvious improvements
- 2. multiple equally good models

Idea: feed atypical input to model \boldsymbol{A}

The most interesting atypical input

Input D^* that, according to model A, maximizes performance:

 $\max_{D} \quad \text{performance}(A(D))$ s.t. constraints on D

We call D^* the optimal teaching input

A little logic

 $\mathsf{E}1{=}A$ is a faithful model of human learning

 $\mathsf{E}2{=}D^*$ maximizes performance on A

E3= D^* maximizes performance on humans

$$E1 \land E2 \Rightarrow E3$$

contraposition

$$\neg E3 \Rightarrow (\neg E1 \lor \neg E2)$$

If humans do not perform well on D^* ($\neg E3$), and since Jerry has confidence in how he optimizes D^* (E2), then the only logical conclusion is $\neg E1$.

The new research flow

- 1. find the optimal teaching input D^{\ast} that maximizes performance for model A
- 2. run human experiments with input D^*
- 3. if human performance improved
 - ightharpoonup great! retain model A, publish
 - else
 - $lackbox{D}^*$ exposes problems, revise model A, publish

"Hedging"

Introducing machine teaching

Machine teaching: Finding the optimal teaching input D^*

- Given:
 - ightharpoonup model $A: \mathbb{D} \mapsto \Theta$
 - ▶ performance measure $p(\theta), \theta \in \Theta$
 - ightharpoonup constraints c(D)
- ▶ Optimize: input D^* that maximizes $p(A(D^*))$

Case study: humans categorization

- training data $D = (x_1, y_1), \dots, (x_n, y_n)$
- $ightharpoonup x_i$: feature vector, y_i : class label
- ▶ cognitive model A: a (machine) learning algorithm $\mathbb{D} \mapsto \Theta$
- ightharpoonup classifier $\theta: X \mapsto Y$
- ▶ performance measure $p(\theta)$: test set accuracy w.r.t. θ^* (This requires us to know the target model, or have a labeled test set)
- example constraints c(D):
 - $x_i \in \text{finite candidate pool (vs. } R^d)$
 - $|D| \le n$

Machine teaching: Finding the optimal teaching input

$$D^* := \underset{\substack{D,\theta}}{\operatorname{argmax}} \qquad p(\theta)$$
 s.t.
$$\theta = A(D)$$

$$|D| \le n$$

- first constraint = empirical risk minimization = optimization by itself
- bilevel combinatorial optimization
 - ▶ simple A (e.g. linear regression): closed-form D^*
 - ightharpoonup convex A (e.g. logistic regression): KKT+implicit function ightharpoonup nonlinear optimization, or mixed-integer nonlinear program
 - ightharpoonup complex A (e.g. neural networks): hill climbing etc.
- ▶ D^* usually not i.i.d.

Machine teaching example 1

Machine teaching example 2

Machine teaching example 3

Recent machine teaching research

- NIPS 2017 Workshop on Teaching Machines, Robots, and Humans (my tutorial http://pages.cs.wisc.edu/ ~jerryzhu/pub/NIPS17WStutorial.pdf)
- Applications:
 - education
 - adversarial attacks
 - human robot interaction
 - interactive machine learning
 - algorithmic fairness
 - machine learning debugging

Human Categorization Example 1

[Patil et al. 2014]

- Human categorization task: line length
- ▶ 1D threshold $\theta^* = 0.5$
- ▶ A: kernel density estimator
- ▶ Optimal D*:

human trained on	human test accuracy
random items	69.8%
optimal D^st	72.5%
	/ · · · · · · · · · · · · · · · · · · ·

(statistically significant)

Human Categorization Example 2

[Sen et al. in preparation]

▶ Human categorization task: same or different molecules

Lewis representation Space-filling representation

- ► A: neural network
- ▶ Optimal $D^*(n = 60)$:

human trained on	human pre-test error	post-test error
random input	31.7%	28.6%
expert input	28.7%	28.1%
D^*	30.6%	25.1%

(statistically significant)

Human Categorization Example 3

[Nosofsky & Sanders, Psychonomics 2017]

Human categorization task: rock type

- Model A: Generalized Context Model (GCM)
- ▶ Optimal D^* does not work better on humans

human trained on	human accuracy
random input	67.2%
coverage input	71.2%
D^*	69.3%

Experts are revising the model

Summary

- 1. Find D^* that maximizes performance for model A
- 2. Run human experiments with input D^*
 - either human performance improved
 - ightharpoonup or model A revised

http://pages.cs.wisc.edu/~jerryzhu/machineteaching/