Machine Teaching

for

Personalized Education, Security, Interactive Machine Learning

Jerry Zhu

NIPS 2015 Workshop on Machine Learning from and for Adaptive User Technologies

Supervised Learning Review

- ▶ D: training set $(x_1, y_1) \dots (x_n, y_n)$
- $\blacktriangleright \ \ \text{Learning algorithm} \ A:A(D)=\{\theta\}$
 - Example: regularized empirical risk minimization

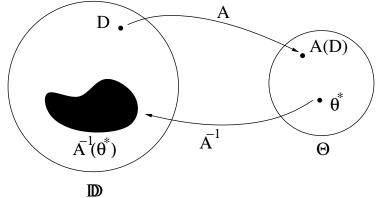
$$A(D) = \underset{\theta}{\operatorname{argmin}} \sum_{i=1}^{n} \ell(\theta, x_i, y_i) + \lambda \Omega(\theta)$$

Example: version space learner

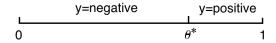
$$A(D) = \{\theta \text{ consistent with } D\}$$

Machine Teaching = Inverse Machine Learning

- ▶ Given: learning algorithm A, target model θ^*
- $\qquad \qquad \textbf{Find: the smallest } D \text{ such that } A(D) = \{\theta^*\}$

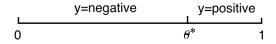


Machine Teaching Example

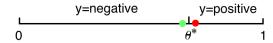


- ► Teach a 1D threshold classifier
- Given: A = SVM, $\theta^* = 0.6$
- ▶ What is the smallest *D*?

Machine Teaching Example



- ► Teach a 1D threshold classifier
- Given: A = SVM, $\theta^* = 0.6$
- ▶ What is the smallest *D*?



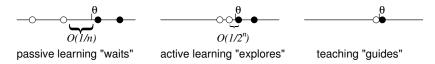
Machine Teaching as Communication

- ▶ sender = teacher
- ▶ message = θ^*
- ightharpoonup decoder = A
- ightharpoonup codeword = D

Machine Teaching "Stronger" Than Active Learning

Sample complexity to achieve ϵ error:

- ▶ passive learning $n = O(1/\epsilon)$)
- ▶ active learning $n = O(\log(1/\epsilon))$: needs binary search
- ▶ machine teaching n=2: teaching dimension [Goldman + Kearns 1995], the teacher knows θ^*



Why Machine Teaching?

Why bother if we already know θ^* ?

- 1. education
- 2. computer security
- 3. interactive machine learning

Education

Teacher answers three questions:

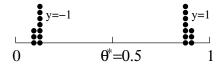
- 1. My student's cognitive model A is a ___ (a) SVM (b) logistic regression (c) neural net ...
- Children and a defined by
- 2. Student success is defined by ___
 - (a) learning a target model θ^* (b) excel on a test set
- 3. My teaching effort is defined by ___
 - (a) training set size (b) training item cost ...

Machine teaching finds the optimal, personalized lesson ${\cal D}$ for the student.

Education Example

[Patil et al. 2014]

- ▶ Human categorization task: 1D threshold $\theta^* = 0.5$
- A: kernel density estimator
- ▶ Optimal *D*:



► Teaching humans with *D*:

human trained on	human test accuracy
optimal D	72.5%
random items	69.8%
	(etatistically significant)

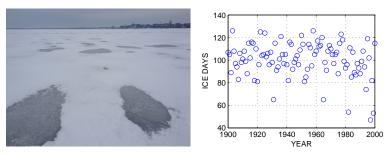
(statistically significant)

Security: Data Poisoning Attack

[Alfeld et al. 2016], [Mei + Zhu 2015]

- ▶ Given: learner A, attack target θ^* , clean training data D_0
- ▶ Find: the minimum "poison" δ such that $A(D_0 + \delta) = \{\theta^*\}$

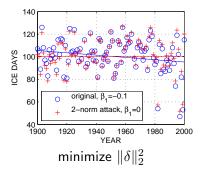
Security: Lake Mendota Data

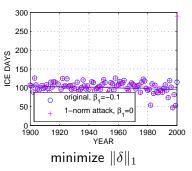


Lake Mendota, Wisconsin ice days

Security: Optimal Attacks on Ordinary Least Squares

$$\begin{split} \min_{\delta,\tilde{\beta}} & & \|\delta\|_p \\ \text{s.t.} & & \tilde{\beta}_1 \geq 0 \\ & & \tilde{\beta} = \operatorname*{argmin}_{\beta} \|(\mathbf{y} + \boldsymbol{\delta}) - X\beta\|^2 \end{split}$$





Security: Optimal Attack on Latent Dirichlet Allocation

[Mei + Zhu 2015]

class legislation marijuanalaws state act courtstates bill federal

Optimization for Machine Teaching

Bilevel optimization

$$\begin{split} & \min_{D \in \mathbb{D}} & |D| \\ & \text{s.t.} & \quad \theta^* = \operatorname*{argmin}_{\theta \in \Theta} \frac{1}{|D|} \sum_{(x_i, y_i) \in D} \ell(x_i, y_i, \theta) + \Omega(\theta) \end{split}$$

In general

$$\min_{D \in \mathbb{D}} \operatorname{TeachingLoss}(A(D), \theta^*) + \operatorname{TeachingEffort}(D)$$

- ► Sometimes closed-form solution [Alfeld et al. 2016] [Zhu 2013]
- Often nonconvex optimization [Bo Zhang, this workshop]

Theoretical Question: Teaching Dimension

- ▶ Given: A, θ^*
- ▶ Find: the smallest D such that $A(D) = \{\theta^*\}$

Teaching dimension TD = |D|

Theoretical Question: Teaching Dimension

- ▶ Given: A, θ^*
- ▶ Find: the smallest D such that $A(D) = \{\theta^*\}$

Teaching dimension TD = |D|

- A= version space learner: $TD=\infty$? [Goldman + Kearns 1995]
- A = SVM: TD = 2

Learner-specific teaching dimension

y=negative y=positive
$$\theta^*$$

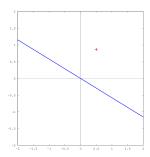
Teaching Dimension Example: Teaching an SVM

Learner $A(D) = \arg\min_{\theta \in \mathbb{R}^2} \sum_{i=1}^n \max(1 - y_i \mathbf{x}_i^{\top} \theta, 0) + \frac{1}{2} \|\theta\|^2$

- ▶ Target model: $\theta^* = (\frac{1}{2}, \frac{\sqrt{3}}{2})^{\top}$
- One training item is necessary and sufficient:

$$x_1 = (\frac{1}{2}, \frac{\sqrt{3}}{2})^{\top}, \ y_1 = 1$$

 $TD(\theta^*, A) = 1$



The Teaching Dimension of Linear Learners

[Liu & Zhu 2015]

$$A(D) = \operatorname*{argmin}_{\theta \in \mathbb{R}^d} \sum_{i=1}^n \ell(\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x}_i, y_i) + \frac{\lambda}{2} \|\boldsymbol{\theta}\|_2^2$$

goal ↓	homogeneous		inhomogeneous $\theta^* = [w^*; b^*]$			
	ridge	SVM	logistic	ridge	SVM	logistic
parameter	1	$\lceil \lambda \ \theta^*\ ^2 \rceil$	$\left\lceil \frac{\lambda \ \theta^*\ ^2}{ au_{\max}} \right\rceil$	2	$2\left\lceil \frac{\lambda \ \mathbf{w}^*\ ^2}{2}\right\rceil^{\dagger}$	$2 \left\lceil \frac{\lambda \ \mathbf{w}^*\ ^2}{2\tau_{\text{max}}} \right\rceil^{\dagger}$
boundary	-	1	1	-	2	2

The Teaching Dimension of Linear Learners

[Liu & Zhu 2015]

$$A(D) = \operatorname*{argmin}_{\theta \in \mathbb{R}^d} \sum_{i=1}^n \ell(\theta^{\mathsf{T}} x_i, y_i) + \frac{\lambda}{2} \|\theta\|_2^2$$

goal ↓	homogeneous		inhomogeneous $\theta^* = [w^*; b^*]$			
	ridge	SVM	logistic	ridge	SVM	logistic
parameter	1	$\lceil \lambda \ \theta^*\ ^2 \rceil$	$\left\lceil \frac{\lambda \ \theta^*\ ^2}{\tau_{\max}} \right\rceil$	2	$2\left\lceil \frac{\lambda \ \mathbf{w}^*\ ^2}{2}\right\rceil^{\dagger}$	$2 \left\lceil \frac{\lambda \ \mathbf{w}^*\ ^2}{2\tau_{\text{max}}} \right\rceil^{\dagger}$
boundary	-	1	1	-	2	2

Teaching Dimension (independent of d) distinct from VC-dimension (d+1)

Interactive Machine Learning

- You train a classifier
- lacksquare Only use item, label pairs $(x_1,y_1)\dots(x_n,y_n)$
- ightharpoonup Cost = n to reach small ϵ error

"Speed of Light"

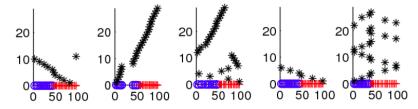
[Goldman+Kearns 1995], [Angluin 2004], [Cakmak+Thomaz 2011], [Zhu et al. in preparation]

Fundamental Cost of Interactive Machine Learning $n \geq \text{Teaching Dimension}$

- ▶ Optimal teacher achieves n =Teaching Dimension
- lacktriangle Can be much faster than active learning (recall 2 vs. $\log rac{1}{\epsilon})$
- Must allow teacher-initiated items (unlike active learning)
- But some humans are bad teachers . . .

Some Humans are Suboptimal Teachers

[Khan, Zhu, Mutlu 2011]



Challenge for the computer: make human behave more like the optimal teacher

Summary

Machine teaching

- ► Theory: teaching dimension
- Algorithm: bilevel optimization
- ► Applications: education, security, interactive machine learning

http://pages.cs.wisc.edu/~jerryzhu/machineteaching/