OASIS:
Online Active Semi-Supervised Learning

Andrew Goldberg, Xiaojin Zhu*, Alex Furger, Jun-Ming Xu

University of Wisconsin-Madison

AAAI 2011
The Problem We Consider

1. At time t the world picks x_t, y_t, shows x_t
2. We predict y'_t
3. With small probability, world reveals y_t
4. If y_t not revealed we may query it
5. We update our model even if y_t unknown
Is this ...

- semi-supervised learning?
 - Yes, but *sequential input, active query*
- online learning?
 - Yes, but *learns on unlabeled items*
- active learning?
 - Yes, but *learns on un-queried items*

OASIS = Online Active Semi-Supervised Learning
Main idea: Be Bayesian!

• Track all gaps with the posterior.
 – semi-supervised learning
 – online learning
 – active learning

all naturally follow.
The Margin in Supervised Learning

- E.g. SVM linear classifier

\[f(x) = w^\top x \]
The Gap Assumption in SSL

- S3VM: find the largest unlabeled margin
The Need for a Multi-Modal Posterior

- There may be multiple candidate gaps
The Need for a Multi-Modal Posterior

- There may be multiple candidate gaps
The Need for a Multi-Modal Posterior

- There may be multiple candidate gaps
The Need for a Multi-Modal Posterior

- There may be multiple candidate gaps

OASIS learns the posterior distribution over classifiers.
Region in \(\mathcal{W} \) space maps to many classifiers in \(\mathcal{X} \) space.
Another Example of Multi-modal Posterior

[courtesy of Kwang-Sung Jun]
The “null-category” likelihood pushes w away from unlabeled points. ➔ semi-supervised learning

Inspired by [Lawrence & Jordan NIPS’04]
Life is Easy Being Bayesian: Update

- Sequential Bayesian update → online learning
 - assume iid, not adversarial
 - Cauchy prior
Life is Easy Being Bayesian: Predict

- Predict label
 \[\hat{y}_t = f(x_t) = \arg\max_{y \in \{-1,1\}} p(y | x_t, D_{t-1}) \]

- Integrate out w
 \[p(y | x_t, D_{t-1}) = \int p(y | x_t, w')p(w' | D_{t-1})dw' \]

- If the posterior strongly disagree on \(x_t \), ask for its label ☢ active learning
Life is Hard Being Bayesian!

\[p(y \mid x_t, D_{t-1}) = \int p(y \mid x_t, w') p(w' \mid D_{t-1}) dw' \]

- Particle filtering

Posterior approximated by \(m \) weighted particles:

\[p(w \mid D_{t-1}) \approx \sum_{i=1}^{m} \beta_i \delta(w - w^{(i)}) \]

Prediction using particles:

\[p(y \mid x_t, D_{t-1}) = \int p(y \mid x_t, w') p(w' \mid D_{t-1}) dw' \]

\[\approx \sum_{i=1}^{m} \beta_i p(y \mid x_t, w^{(i)}) \]

intractable
Particle Filtering Details

• Update weight β_i by a multiplicative factor:

 $p(y = y_t | x_t, w_{t-1}^{(i)})$ if y_t is revealed or queried

 $p(y \in \{-1, 1\} | x_t, w_{t-1}^{(i)})$ if unlabeled

• Occasional resample-move to rejuvenize particles

 – A single step of Metropolis-Hastings sampling
Active Learning using Particles

• Each incoming unlabeled point has a score:

\[
\text{score}(x) = \sum_{i=1}^{m} \beta_i \arg\max_{y \in \{-1, 1\}} p(y \mid x, w^{(i)})
\]

• Query for label if \(\text{score}(x) < s_0 \)
The Complete Algorithm

If unlabeled and \(\text{score}(x) < s_0 \), query its label

The null category likelihood for gap assumption

Approximate Metropolis-Hastings with a small buffer
Experiments: List of Algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Online</th>
<th>Active</th>
<th>SSL</th>
</tr>
</thead>
<tbody>
<tr>
<td>OASIS</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>OSIS</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>OS</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AROW (C=1)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AROW (C*)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OSIS=Online Semi-Supervised Learning
OS = Online Supervised learning
AROW = Adaptive Regularization of Weight Vectors
[Crammer et al. NIPS 09]
Experiments: Procedure

• 20 trials of T iterations
• Start with 2 labeled points
• To control the total number of labels:
 – First run OASIS, record the number of queries a
 – Run other algorithms with $2+a$ labeled points
• Same exact $x_1 \ldots x_T$ sequence across algorithms
Results on Letter

(a) letter A vs B ($d = 16$)

\[T = 1555, l = 2 \]

\[a = 5.10 (1.92) \]

OASIS \(\gg \) OS, AROW, OSIS \(\approx \) OS, AROW; active learning is key
Results on Pendigits

(b) pendigits 0 vs 1 ($d = 16$)

$T = 2286, l = 2$

$a = 2.60(1.14)$

OASIS, OSIS \(\Rightarrow \)

OS, AROW;
semi-supervised
learning is key
Results on MNIST

(c) MNIST 0 vs 1 \((d = 10)\)
\[
T = 10000, \; l = 2
\]
\[
a = 10.30(5.01)
\]

OASIS \gg OSIS \gg OS, AROW;
SSL + active learning are both key
Summary

• Online + active + semi-supervised learning
• Full Bayesian on gap assumption
• Particle filtering
• Future work:
 – Theory
 – Adversarial setting

Acknowledgments: NSF IIS-0916038, AFOSR FA9550-09-1-0313, and NSF IIS-0953219. We thank Rob Nowak for helpful discussions.