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Hypothesis Space

I X: input space, e.g. natural numbers N (in general Rd)

I Y : output space, e.g. {0, 1}
I h : X 7→ Y : a hypothesis, e.g. hi(x) = 1[x ≥ i] or
hi = 0 . . . 0111111 . . .

I H ⊆ Y X : hypothesis space, e.g. H = {hi : i ∈ N}
I target h∗ ∈ Y X

I h∗ ∈ H: realizable, e.g. h2021
I h∗ /∈ H: agnostic, e.g. h∗ = 10111111 . . .
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Passive Learning Protocol

I Environment has P (x, y), e.g.
I P (x) = λ(1− λ)x−1

I P (y | x) = 1[y = h∗(x)]

I Environment draws training set

S = (x1, y1) . . . (xn, yn)
iid∼ P (x, y)

I Example 1: h∗ = h2021, modest n
I S may not contain large x values.
I Say maxni=1 xi = 100, then y1 = . . . = yn = 0

I Learner receives S and selects ĥ ∈ H
I In Example 1 ĥ can be h101, very different from h∗

I But this is OK since machine learning only cares about the risk
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True Risk and Empirical Risk

I Loss `(y, y′) ≥ 0, e.g. 0-1 loss 1[y 6= y′]

I True risk R(h) = EP (`(h(x), y))
I How P (x, y) relates to h∗: h∗ = argminh∈YX R(h)
I Learner’s goal is small R(ĥ), not ĥ = h∗

I Test set error is a Monte Carlo estimate of R

I Empirical risk (training set error) on S:
R̂(h) = 1

n

∑n
i=1 `(h(xi), yi)
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Empirical Risk Minimization (ERM)

I Learner wants to minimize R, but only observes R̂

I ERM is a learning algorithm:

ĥ ∈ argmin
h∈H

R̂(h) = argmin
h∈H

1

n

n∑
i=1

`(h(xi), yi)

I In Example 1 the argmin set is {h101, h102, . . .}
I The learned ERM ĥ can be any one of them
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Overfitting

Overfitting is a non-technical term, could mean

I R(ĥ)� R̂(ĥ), “my test error is much higher than training set
error”

I R(ĥ)� R(h∗), “I didn’t get the best risk”

I R(ĥ)� infh′∈HR(h′),“I didn’t get the best risk even among
the models available to me”
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Risk Decomposition

R(ĥ) =

[
R(ĥ)− inf

h′∈H
R(h′)

]
estimation error

+

[
inf
h′∈H

R(h′)−R(h∗)

]
approximation error

+ [R(h∗)] Bayes error

Example 2: H = {hi = 0 . . . 0111111 . . . : i ∈ N},
h∗ = 10111111 . . .

I Bayes error: P (y | x) not concentrated on y = h∗(x)

I approximation error: h∗ /∈ H, closest to
arg infh′∈HR(h′) = h1 = 111111 . . . under geometric P (x)

I estimation error: S ∼ Pn(x, y) is finite and random. If S
contains x = 2 but not x = 1, ERM will pick ĥ = h3
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Probably-Approximately-Correct (PAC) Guarantee

Assume finite H.

Theorem
For any δ > 0

PS

(
R(ĥ)− inf

h′∈H
R(h′) ≤

√
2

n
log

2|H|
δ

)
≥ 1− δ

I You probably will not receive a strange S

I Under typical S estimation error bound decreases as O( 1√
n

)

I Can sharpen to O( 1
n) for realizable case

I No control over approximation and Bayes errors
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Probably-Approximately-Correct (PAC) Guarantee

How we get there:

1. Fixing h, |R(h)− R̂(h)| . 1√
n

by Hoeffding’s inequality (just

Monte Carlo)

2. Uniform convergence ∀h ∈ H : |R(h)− R̂(h)| .
√

log |H|
n by a

union bound

3. ĥ chosen by ERM: R̂(ĥ) ≤ R̂(best h′ ∈ H)

4. ⇒ R(ĥ) cannot be much larger than R(best h′ ∈ H)



11/55

Vapnik-Chervonenkis (VC) Dimension

I Recall our H = {hi = 0 . . . 0111111 . . . : i ∈ N}: |H| =∞
I Should be learnable: union bound too weak!
I V C(H): size t of the largest set {xi1 , . . . , xit} that can be

assigned all 2t labels by H (shattering)
I t = 1: {x = 1} assigned label 0 by h2, label 1 by h1
I t = 2: {x = 1, x = 2} assigned labels 00 by h3, labels 01 by

h2, labels 11 by h1, but not 10
I No x1 < x2 can be assigned 10 by H
I Our V C(H) = 1
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PAC Guarantee, Revisited

(Previously) finite H: with probability at least 1− δ,

R(ĥ)− inf
h′∈H

R(h′) ≤ O

(√
log |H|+ log 1/δ

n

)

Theorem
Finite V C(H): with probability at least 1− δ,

R(ĥ)− inf
h′∈H

R(h′) ≤ O

(√
V C(H) + log 1/δ

n

)
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Passive Learning Summary

I Environment draws training set

S = (x1, y1) . . . (xn, yn)
iid∼ P (x, y)

I Learner has no say in data
I Environment is not particularly helpful

I When V C(H) <∞, estimation error bound O( 1√
n

)

I approximation and Bayes errors uncontrolled
I deep learning requires additional theory, active research area
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For Simplicity...

We will assume

I no Bayes error: P (y = h∗(x) | x) = 1

I no approximation error: h∗ ∈ H
Both can be relaxed.
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Active Learning Protocol

H is common knowledge. Environment has h∗ ∈ H.

1. For t = 1, 2, . . .

2. learner asks query xt ∈ X based on history

3. oracle answers label yt = h∗(xt)

4. learner estimates ĥt ∈ H
Two flavors of query xt:

I learner synthesizes any x ∈ X (the Membership Query of
[Angluin’88] is a special case for binary Y )

I learner repeatedly draws x ∼ P (x) until it likes the x
(assuming unlabeled data costs nothing)
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Example: Binary Search

Example 3:

I X = [0, 1], P (x) = uniform(X), Y = {0, 1}
I ha(x) = 1[x ≥ a],H = {ha : a ∈ X}
I h∗ has threshold a∗ ∈ X
I Query xt by binary search over X
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Binary Search Analysis

I After n queries, the interval containing a∗ has length

1/2n

I Pick any ĥt in that interval

I R(ĥt) ≤ 1/2n (recall P (x) = uniform[0, 1])

I Exponential speed up compared to passive learning’s
R(ĥt) = O(1/n)
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Beyond Binary Search

I Nice, but only works for threshold functions.
I New concepts

I version space

V = {h ∈ H : h agrees with all data seen so far}

I disagreement region

DIS(V ) = {x ∈ X : ∃h, h′ ∈ V, h(x) 6= h′(x)}
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CAL: A General Active Learning Algorithm

Assume |H| <∞, realizable

1. Version space V = H
2. While P (DIS(V )) ≥ ε
3. repeat x ∼ P (X) until we have k points in DIS(V )

4. query these k points

5. V ← {h ∈ V : h agrees with these k points}
6. Output any ĥ ∈ V

Intuition: In iteration i, k random points in DIS(Vi) reduce Vi’s
radius r(Vi) = maxh∈Vi R(h) by at least half.
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CAL Guarantee

Let k = 2θ
(

log |H|δ + log log 1
ε

)
in step 3.

Theorem
With probability at least 1− δ, CAL terminates after log 1

ε

iterations, and R(ĥ) ≤ ε. The number of queries is

O

((
log

1

ε

)
θ

(
log
|H|
δ

+ log log
1

ε

))
.

I Number of queries n = O
(
log 1

ε

)
implies R(ĥ) = O (1/en)

I Depends on θ being small
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Disagreement Coefficient θ

θ = sup
r∈(0,1)

P (DIS(B(h∗, r)))

r

I H = 1D thresholds
I h∗ = ha∗
I B(h∗, r) = {ha : a ∈ [a∗ − r, a∗ + r]}
I DIS(B(h∗, r)) = {x : a∗ − r ≤ x ≤ a∗ + r}
I P (DIS(B(h∗, r))) = 2r
I θ = supr∈(0,1)

P (DIS(B(h∗,r)))
r = 2

I H = 1D intervals [a∗, b∗]

I θ = max
(

1
max(b∗−a∗,ε) , 4

)
I trouble when b∗ − a∗ small
I “warm start” problem (hit the interval) of active learning

I H = d-dim hyperplane 1[w>x + b ≥ 0]: θ = O(1) under mild
conditions on P (x, y)
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Active Learning Summary

I Learner queries xt
I Environment answers h∗(yt)

I CAL error bound O(e−
n
θ )

I Potential exponential speed-up due to freedom in choosing x
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Active Learning with Equivalence Queries?

1. For t = 1, 2, . . .

2. learner asks equivalence query ĥt−1 ∈ H
3. oracle answers “yes” or counterexample(

xt ∈ DIS(h∗, ĥt−1), yt = h∗(xt)
)

4. learner estimates ĥt ∈ H

I Not well-studied in machine learning

I In classic work xt is adversarial (least helpful oracle)

I But we can imagine a helpful oracle...
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Helpful Oracle on Equivalence Queries

Recall Example 1: H = {hi = 0 . . . 0111111 . . . : i ∈ N},
h∗ = h2021
I Least-helpful oracle

I query: ĥ = 111111 . . .?
I answer: no. (x = 1, y = 0)
I query: ĥ = 011111 . . .?
I answer: no. (x = 2, y = 0)
I ...

I Most-helpful oracle
I query: ĥ = 111111 . . .?
I answer: no. (x = 2020, y = 0)
I query: ĥ = h999999?
I answer: no. (x = 2021, y = 1)
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Teaching Protocol

H is common knowledge. Teacher has h∗ ∈ H and knows the
learner’s algorithm

I Teacher creates teaching set S = (x1, y1) . . . (xn, yn) ∈ X ×Y
I Learner receives S and selects ĥ ∈ H
I Teacher’s goals:

I making the learner learn: ĥ = h∗

I using the least effort: minimize n
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Teaching Dimension

For learners that arbitrarily pick ĥ ∈ V (S):

I S is a teaching set for h∗ with respect to H, if h∗ is the only
consistent hypothesis in H.

I TD(h∗,H) =
the size of the smallest teaching set for h∗ w.r.t. H

I TD(H) = maxh∈H TD(h,H)

Recall Example 1: H = {hi = 0 . . . 0111111 . . . : i ∈ N},
h∗ = h2021

I S = {(2020, 0), (2021, 1)} is a teaching set

I ... so is S = {(2020, 0), (2021, 1), (2022, 1)}
I ... but not S = {(2020, 0)} nor S = {(2020, 0), (2022, 1)}
I TD(h1,H) = 1; TD(ha,H) = 1,∀a ≥ 2

I ... and TD(H) = 2
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More Examples of Teaching Dimension

TD(H) = n� V C(H) = 1
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More Examples of Teaching Dimension

TD(H) = 1� V C(H) = k
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Teaching as Coding

I message: target concept h∗ ∈ H
I language: S

I decoder: learning algorithm

A conceptual way to find S:

min
S

|S|

s.t. ĥ(S) = h∗

or
min
S

effort(S) + ‖ĥ(S)− h∗‖
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Machine Teaching Summary

I Teaching set S forces learner to learn h∗

I Teaching Dimension TD(h∗,H) lower-bounds all
sample-based learning

I For example, on 1D threshold
I passive learning requires O( 1

ε ) samples
I active learning requires O(log 1

ε )
I teaching only requires 2 regardless of ε
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Online Learning Protocol

H is common knowledge. Environment has h∗ ∈ H
1. For t = 1, 2, . . .

2. environment shows an arbitrary xt ∈ X
I no P (x) assumption

3. learner predicts ŷt

4. environment reveals true label h∗(xt)

5. learner updates model
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Mistake Bound

Example H = {hi = 0 . . . 0111111 . . . : i ≤ N}, h∗ = h2021

I If env keeps showing x = 1: no hope to learn h∗, but also no
further mistakes

I Mistake bound on any input sequence
I If env is a helpful teacher, mistake bound is TD(H).
I Assume worst case env instead
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Some ERM Algorithms are No Good for Online Learning

I Trivial algorithm: Start with V = H. Repeat:
I Pick any ĥ ∈ V
I Receive xt, predict ĥ(xt), receive h∗(xt)
I V ← {h ∈ V : h(xt) = h∗(xt)}

I Trivial mistake bound: |H| − 1

I h∗ = h1, ĥ = hN , x = N − 1; ĥ = hN−1, x = N − 2; . . .
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The Halving Algorithm

I Start with V = H. Repeat:
I Receive xt, predict majority vote by V , receive h∗(xt)
I V ← {h ∈ V : h(xt) = h∗(xt)}

I Any mistake cuts V by at least half

I Mistake bound log2 |H|
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Online Learning Summary

I No separate training/test, no iid data assumption

I Mistake bound, can generalize to regret (learning from
experts)

I Halving is suboptimal: Littlestone dimension and Standard
Optimal Algorithm
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(Stochastic) Multi-Armed Bandit Protocol

1. Environment has k reward distributions R1, . . . , Rk with mean
µ1, . . . , µk

2. For t = 1, 2, . . . , T

3. learner pulls arm at ∈ {1 . . . k}
4. environment generates reward rt ∼ Rat

I Learner chooses which arm to pull, like in active learning

I Learner knows the R family (e.g. Bernoulli, Gaussian) but not
the µ’s

I Generalizes A/B testing
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Example: k = 2 Bernoulli{0, 1} Arms

I First pull a1 = 1, r1 = 1

I Second pull a2 = 2, r2 = 0

I Third pull?

I What if we have pulled arm1 10 times with µ̂1 = 0.7, and
arm2 5 times with µ̂2 = 0.4?
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Exploration Exploitation Tradeoff

Two distinct goals:

I Pure exploration = best arm identification

maxP

(
aT+1 ∈ argmax

a
µa

)
I Regret minimization = maximizing cumulative reward

∑T
t=1 rt

Regret(T ) = µ∗T − E

[
T∑
t=1

rt

]

µ∗ = max
a

µa
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Upper Confidence Bound: Exploration Bonus

The UCB algorithm:

I For t = 1, 2, . . . , T

I learner pulls arm

at ∈ argmax
i∈[k]

µ̂i +

√
4 log T

Ti

I receives rt, updates µ̂at , Tat

Theorem

Regret(T ) ≤ 8
√
kT log T + 3

k∑
i=1

(µ∗ − µi).

“No regret” (per step, asymptotic)
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With a Helpful Teacher

1. For t = 1, 2, . . . , T

2. learner pulls arm at ∈ {1 . . . k}
3. environment generates reward rt ∼ Rat
4. teacher modifies reward to rt+ δt before giving it to learner

I Guides best-arm identification

I Same vulnerability to adversarial attacks
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Contextual Bandit

A context is a state s ∈ S
1. Environment has

I context distribution ν
I k reward distributions per state s: Rs1, . . . , Rsk with mean

µs1, . . . , µsk

2. For t = 1, 2, . . . , T

3. environment shows state st ∼ ν
4. learner pulls arm at ∈ {1 . . . k}
5. environment shows reward rt ∼ Rst,at

Useful if similar states share similar R’s, e.g. linear bandits
µ = θ>φ(s, a)
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Multi-Armed Bandit Summary

I Simplest exploration-exploitation tradeoff

I State-less (basic bandit) or memoryless (contextual bandit)
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Markov Decision Process

Contextual bandit + first-order state transition. Environment:

I State space S

I Action space A

I State transitions P (s′ | s, a)

I Reward distributions R(s, a)

I Initial state distribution ν

I Discounting parameter γ ∈ (0, 1)
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Reinforcement Learning Interaction Protocol

The learner’s policies π : S 7→ probability simplex on A

1. Learner picks initial policy π0

2. Environment draws initial state s0 ∼ ν
3. For t = 0, 1, 2, . . .

4. learner chooses (randomized) action at ∼ πt(st)
5. environment generates reward rt ∼ R(st, at)

6. environment transits learner to st+1 ∼ P (· |, st, at)
7. learner updates policy πt+1
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Value Function, Optimal Policy, Regret

For a fixed π, define state-value function V π : S 7→ R

V π(s) = Eπ

[ ∞∑
t=0

γtrt | s0 = s

]

Two distinct goals:

I Optimal policy identification

π∗ ∈ argmax
π

Es∼νV π(s)

I Regret minimization

E

[
V π∗ −

∑
t

γtrt

]
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Solution Strategies

Three types of RL methods:

1. Model-based: estimate P̂ , R̂ from experience, then plan in the
estimated MDP

2. Value-based (e.g. Q-learning): estimate the optimal
action-value Q∗ function with value iteration (fixed point to
Bellman optimality equations)

Q(s, a)← R(s, a) + γEs′∼P (·|s,a) max
a′

Q(s′, a′)

Then extract the optimal policy

π∗(s) ∈ argmax
a

Q(s, a)

3. Policy gradient (e.g. REINFORCE): parametrize πθ, then
directly optimize

max
θ

Es∼νV πθ(s)
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Upper Confidence Bound Value Iteration (UCBVI)

Episodic MDP with horizon H. Assume reward function R known.

1. For episode k = 0, . . . ,K − 1

2. Form empirical transition estimate P̂ kh

3. Form reward bonus bkh(s, a) = H

√
log SAHK

δ

Tkh (s,a)

4. πk = ValueIteration(P̂ k, R+ bkh : h = 0 . . . H − 1)

5. Run πk to generate a new trajectory, add to data

Theorem
Regret bound of UCBVI

Regret = E

[
K−1∑
k=0

(
V ∗ − V πk

)]
≤ 2H2S

√
AK log(SAH2K2)
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RL With a Helpful Teacher 1

Imitation learning

I Expert provides trajectories

(s0, a0, s1, a1, . . .)

but no reward rt is observed.
I Goal: learn π̂ as good as the expert

I Require specialized learner (not standard RL)
I Behavior cloning: reduction to supervised learning π : S 7→ A
I Inverse reinforcement learning: estimate reward function

R(s, a), then planning
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RL With a Helpful Teacher 2

I Teacher shaping the interaction trajectories

on rewards: (s0, a0, r0 + δ0, s1, a1, r1 + δ1, . . .)

on transitions: (s0, a0, r0, s
′
1, a1, r1, s

′
2, . . .)

or both.

I Standard RL learner

I Goal: guide the learner to π∗ faster

I Teacher planning for δt or s′t: a higher-level RL problem; state
includes learner π̂t
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