A Brief Introduction to Theoretical Foundations
of Machine Learning and Machine Teaching

Jerry Zhu

University of Wisconsin-Madison

Simons Workshop on Synthesis of Models and Systems
3/15/2021

Outline

Passive Learning (PAC Learning, Statistical Learning, Learning
from iid Data)

Hypothesis Space

» X: input space, e.g. natural numbers N (in general R%)

> Y output space, e.g. {0,1}

» h:X —Y: ahypothesis, e.g. hi(x) =1z > i] or
h;=0...0111111...

» 7 C YX: hypothesis space, e.g. H = {h; :i € N}

> target h* € YX

> h* € H: realizable, e.g. hog21
» h* ¢ H: agnostic, e.g. h* = 10111111...

Passive Learning Protocol

» Environment has P(z,y), e.g.
> P(z) = A(1 - \)*?
> Py |x) =1y =h"(z)]

» Environment draws training set
iid

S = (xlayl) s (xTMyTL) ~ P(.Z‘, y)
» Example 1: h* = hogo1, modest n
» S may not contain large z values.
» Say max] ; z; = 100, theny; = ... =y, =0
» Learner receives S and selects h € H

» In Example 1 h can be hio1, very different from h*
» But this is OK since machine learning only cares about the risk

True Risk and Empirical Risk

» Loss {(y,y') >0, e.g. 0-1 loss 1y # ¢/']

» True risk R(h) = Ep(¢(h(z),y))
» How P(z,y) relates to h*: h* = argmin,cyx R(h)
> Learner's goal is small R(h), not h = h*
> Test set error is a Monte Carlo estimate of R

> Empirical risk (training set error) on S:
R(h) = & 370 L(h(2:), vi)

Empirical Risk Minimization (ERM)

P Learner wants to minimize R, but only observes R

» ERM is a learning algorithm:

R . 1<
h € argmin R(h) = argmin — Zﬁ(h(xi), Yi)
heH heH N

> In Example 1 the argmin set is {h1017 h1io2, . . }
> The learned ERM h can be any one of them

Overfitting

Overfitting is a non-technical term, could mean

» R(h) > R(h), “my test error is much higher than training set
error”

> R(h)> R(h*), “I didn't get the best risk”

» R(h) > infpcy R(R'),"] didn't get the best risk even among
the models available to me”

Risk Decomposition

R(h) = [R(iz) — inf R(h’)] estimation error
heH

+ [inf R(W)— R(h*)] approximation error
h'eH

+[R(h*)] Bayes error

Example 2: H = {h; =0...0111111...:4 € N},
h* =10111111...

» Bayes error: P(y | x) not concentrated on y = h*(x)

» approximation error: h* ¢ H, closest to
arginfpeqy R(R') = hy = 111111... under geometric P(x)
» estimation error: S ~ P"(z,y) is finite and random. If S
contains z = 2 but not # = 1, ERM will pick i = hs

Probably-Approximately-Correct (PAC) Guarantee

Assume finite H.

Theorem
For any § >0

“ 2 2
Pg <R(h) — hllIEIE{ R(W) <4/ Elog T’) >1-94

» You probably will not receive a strange S

» Under typical S estimation error bound decreases as O(

)

S

> Can sharpen to O(%) for realizable case

» No control over approximation and Bayes errors

Probably-Approximately-Correct (PAC) Guarantee

How we get there:
1. Fixing h, |R(h) — R(R)| < ﬁ by Hoeffding's inequality (just
Monte Carlo)

2. Uniform convergence Yh € H : |R(h) — f%(h)| < Lgn\ﬂ\ by a
union bound

3. h chosen by ERM: R(h) < R(best i/ € H)

4. = R(h) cannot be much larger than R(best b/ € H)

Vapnik-Chervonenkis (VC) Dimension

» Recall our X ={h; =0...0111111...:4 € N}: |H| = 0
» Should be learnable: union bound too weak!
» VC(H): size t of the largest set {x;,,...,2;,} that can be
assigned all 2! labels by H (shattering)
» ¢t =1: {& = 1} assigned label 0 by ho, label 1 by h;
> ¢t =2: {& = 1,2 = 2} assigned labels 00 by h3, labels 01 by
ho, labels 11 by hq, but not 10

> No x; < z2 can be assigned 10 by H
> Our VC(H) =1

PAC Guarantee, Revisited

(Previously) finite #: with probability at least 1 — 4,

R(ﬁ) — inf R(h) <O <\/10g|7'l\ + log 1/5)

h'eH n

Theorem
Finite VC(H): with probability at least 1 — 4,

h'eH n

R(h) — inf R(M) <O (\/ VCH) + log 1/5)

Passive Learning Summary

» Environment draws training set
iid

S=(x1,91) ... (@n,yn) ~ P(z,y)
» Learner has no say in data
» Environment is not particularly helpful
» When VC(H) < oo, estimation error bound O(

P approximation and Bayes errors uncontrolled
» deep learning requires additional theory, active research area

7)

Outline

Active Learning

For Simplicity...

We will assume
» no Bayes error: P(y = h*(z) | x) =1
» no approximation error: h* € H

Both can be relaxed.

Active Learning Protocol

‘H is common knowledge. Environment has h* € H.

1. Fort=1,2,...

2. learner asks query x; € X based on history
3. oracle answers label y, = h*(xy)

4, learner estimates izt eH

Two flavors of query xy:

» learner synthesizes any z € X (the Membership Query of
[Angluin’'88] is a special case for binary Y)

» learner repeatedly draws x ~ P(z) until it likes the x
(assuming unlabeled data costs nothing)

Example: Binary Search

Example 3:
» X =10,1], P(z) = uniform(X),Y = {0,1}
» ho(z) =1z >a|,H={hs:a€ X}
» h* has threshold a* € X
» Query z; by binary search over X

Binary Search Analysis

> After n queries, the interval containing a* has length
/2"

» Pick any hy in that interval
» R(h;) <1/2" (recall P(z) = uniform|0, 1])

» Exponential speed up compared to passive learning's
R(h:) = O(1/n)

Beyond Binary Search

» Nice, but only works for threshold functions.
» New concepts
P version space

V ={h € H : h agrees with all data seen so far}
> disagreement region

DIS(V)={z € X :3h, 1 € V,h(z) # I ()}

CAL: A General Active Learning Algorithm

Assume |H| < oo, realizable
1. Version space V =H
2. While P(DIS(V)) > ¢
3. repeat x ~ P(X) until we have k points in DIS(V)
4, query these k points
5. V < {h € V : h agrees with these k points}
6. Output any heV

Intuition: In iteration ¢, k random points in DIS(V;) reduce V;'s
radius r(V;) = maxpey; R(h) by at least half.

CAL Guarantee

Let £k =20 (log ‘?—' + log log %) in step 3.

Theorem
With probability at least 1 — &, CAL terminates after log%

iterations, and R(h) < e. The number of queries is

0] <<log 1) 0 <log ‘7(;” + log log 1)) .

> Number of queries n = O (log 1) implies R(h) =0 (1/e")
» Depends on 6 being small

Disagreement Coefficient 6

» # = 1D thresholds

h* = hg»

B(h*,r) ={hs:a € [a* —r,a* +r|}
DISB(h*,r)) ={x:a*—r <z <a*+r}
P(DIS(B(h*,r))) = 2r

0 = sup, ¢ (g1 DRIEEE) _

» H = 1D intervals [a*, b*]
_ 1
> 0 = max (max(b*fa*,e)) 4)

» trouble when b* — a* small
> “warm start” problem (hit the interval) of active learning

» 7 = d-dim hyperplane 1[w'x +b > 0]: # = O(1) under mild
conditions on P(z,y)

vVVyVYVYY

Active Learning Summary

Learner queries x;

Environment answers h*(y;)

CAL error bound O(e™)

Potential exponential speed-up due to freedom in choosing x

Active Learning with Equivalence Queries?

—

. Fort=1,2,...

N

learner asks equivalence query hy 1 € H

w

oracle answers ‘“yes” or counterexample
(xt € DIS(h*, h—1),yr = h*(xt)>

4. learner estimates ﬁt eH

v

Not well-studied in machine learning
» In classic work z; is adversarial (least helpful oracle)

» But we can imagine a helpful oracle...

Helpful Oracle on Equivalence Queries

Recall Example 1: H = {h; =0...0111111...:¢ € N},
h* = hao21
» Least-helpful oracle
> query: h=111111...?
> answer: no. (x =1,y =0)
> query: h=011111...7
> answer: no. (z =2,y =0)
|
» Most-helpful oracle
> query: h=111111...?
> answer: no. (z = 2020,y = 0)
> query: i = hgggggs?
> answer: no. (x =2021,y =1)

Outline

Machine Teaching: Helpful Teachers

Teaching Protocol

H is common knowledge. Teacher has h* € H and knows the
learner’s algorithm

» Teacher creates teaching set S = (z1,y1) ... (Tp,yn) € X XY
> Learner receives S and selects h € H

» Teacher's goals:

» making the learner learn: h=h*
» using the least effort: minimize n

Teaching Dimension

For learners that arbitrarily pick i € V/(S):

» S is a teaching set for h* with respect to H, if h* is the only
consistent hypothesis in H.

> TD(h*, H) =
the size of the smallest teaching set for h* w.r.t. H
» TD(H) = maxpey TD(h,H)
Recall Example 1: H = {h; =0...0111111...:¢ € N},
h* = hap21
> S ={(2020,0),(2021,1)} is a teaching set
> .. sois S = {(2020,0),(2021,1), (2022,1)}
» ... but not S = {(2020,0)} nor S = {(2020,0), (2022,1)}
» TD(hi,H) = 1; TD(he,H) = 1,Va > 2
» ..and TD(H) =2

More Examples of Teaching Dimension

X1 ... Xn

ho
hl
h2
h3

hn

0000000000
1000000000
0100000000
0010000000

0000000001

TDH) =n> VOH) =1

More Examples of Teaching Dimension

x1 ...

hl | 1000000000 00000
h2 | 9100000000 : 00001
h3 | 010000000 00010
h4 | 2001000000 00011

hyt | 0000000001 11111

TD(H) =1 < VC(H) =k

Teaching as Coding

P> message: target concept h* € H
» language: S
» decoder: learning algorithm

A conceptual way to find S:
min |5
s

st. h(S)=h*

or
min_ effort(S) + |A(S) — h¥|

Machine Teaching Summary

» Teaching set S forces learner to learn h*
» Teaching Dimension T'D(h*,H) lower-bounds all
sample-based learning
» For example, on 1D threshold
» passive learning requires O(%) samples
> active learning requires O(log %)
» teaching only requires 2 regardless of ¢

Outline

Online Learning

Online Learning Protocol

H is common knowledge. Environment has h* € ‘H
1. Fort=1,2,...
2. environment shows an arbitrary z; € X
» no P(x) assumption
3. learner predicts ¥,
environment reveals true label h*(x;)

5. learner updates model

Mistake Bound

Example 7'[= {h, =0...0111111...: ¢ S N}, h* = h2021
» If env keeps showing = = 1: no hope to learn h*, but also no
further mistakes

» Mistake bound on any input sequence

» If env is a helpful teacher, mistake bound is TD(H).
> Assume worst case env instead

Some ERM Algorithms are No Good for Online Learning

» Trivial algorithm: Start with V' = 7. Repeat:
> Pickany he V.
> Receive x4, predict h(x), receive h*(z;)
> V< {heV:h(z)=h"(z)}
» Trivial mistake bound: |H|—1
> h*=hy, h=hy,z=N-1h=hy_1,2=N-2; ...

The Halving Algorithm

» Start with V = . Repeat:

> Receive x4, predict majority vote by V, receive h*(z;)
> Vi {heV:h(x:) =h"(z)}

> Any mistake cuts V' by at least half
» Mistake bound log, |H]

Online Learning Summary

» No separate training/test, no iid data assumption

» Mistake bound, can generalize to regret (learning from
experts)

» Halving is suboptimal: Littlestone dimension and Standard
Optimal Algorithm

Outline

Multi-Armed Bandits

(Stochastic) Multi-Armed Bandit Protocol

1. Environment has k reward distributions Ry, ..., R; with mean
By ooy Mk

2. Fort=1,2,...,T

3. learner pulls arm a; € {1...k}

4. environment generates reward r; ~ Ry,

» Learner chooses which arm to pull, like in active learning

» Learner knows the R family (e.g. Bernoulli, Gaussian) but not
the u's

» Generalizes A/B testing

Example: k£ = 2 Bernoulli{0,1} Arms

» Firstpullag=1,r =1
» Second pull as =2, 75 =0
» Third pull?

> What if we have pulled arm1 10 times with 47 = 0.7, and
arm2 5 times with jio = 0.47

Exploration Exploitation Tradeoff

Two distinct goals:

» Pure exploration = best arm identification
max P <aT+1 € argmax ,ua>
a
P> Regret minimization = maximizing cumulative reward Zthl Tt

Regret(T) = p*T — E

1" = max fig
a

Upper Confidence Bound: Exploration Bonus

The UCB algorithm:
» Fort=1,2,...,T

> learner pulls arm
N 4logT
a; € argmax 4 +
i€lk] T;
> receives 1, updates fiq,, Tq,
Theorem

k
Regret(T) < 8y/kTlogT + 3 Z(u* — 1)
i=1

“No regret” (per step, asymptotic)

With a Helpful Teacher

1. Fort=1,2,....,T

2 learner pulls arm a; € {1...k}

3. environment generates reward r; ~ R,
4

teacher modifies reward to r; 4 d; before giving it to learner

» Guides best-arm identification

» Same vulnerability to adversarial attacks

Contextual Bandit

A context is a state s € S
1. Environment has
> context distribution v

» [reward distributions per state s: Rg1,..., Rs with mean
Hs1s -5 sk
2. Fort=1,2,...,T
3. environment shows state s; ~ v
4. learner pulls arm a; € {1...k}
5. environment shows reward 7; ~ Ry, 4,

Useful if similar states share similar R's, e.g. linear bandits
p="0"¢(s,a)

Multi-Armed Bandit Summary

» Simplest exploration-exploitation tradeoff

> State-less (basic bandit) or memoryless (contextual bandit)

Outline

Reinforcement Learning

Markov Decision Process

Contextual bandit + first-order state transition. Environment:
> State space S
» Action space A
> State transitions P(s' | s,a)
» Reward distributions R(s, a)
» Initial state distribution v
>

Discounting parameter v € (0, 1)

Reinforcement Learning Interaction Protocol

The learner’s policies 7 : S — probability simplex on A

1. Learner picks initial policy g

2. Environment draws initial state so ~ v
3. Fort=0,1,2,...

4.

5.
6.
7

learner chooses (randomized) action a; ~ m:(s¢)
environment generates reward r; ~ R(s, at)
environment transits learner to sy11 ~ P(- |, s¢, at)

learner updates policy w41

Value Function, Optimal Policy, Regret

For a fixed 7, define state-value function V™ : S +— R

(e 9]

V7T(s) =E, [Z yire | s =s

t=0

Two distinct goals:

» Optimal policy identification

7w € argmax E;, V"™ (s)

P> Regret minimization

E

VT Z 'ytrt]
t

Solution Strategies
Three types of RL methods:

1. Model-based: estimate P,JA% from experience, then plan in the
estimated MDP

2. Value-based (e.g. Q-learning): estimate the optimal
action-value Q* function with value iteration (fixed point to
Bellman optimality equations)

Qls,a) R(5,0) + 1By p(jo) max Q(s',a)
Then extract the optimal policy
7(s) € argmax Q(s, a)
a

3. Policy gradient (e.g. REINFORCE): parametrize 7y, then
directly optimize
mgLXESNZ,V”(s)

Upper Confidence Bound Value Iteration (UCBVI)

Episodic MDP with horizon H. Assume reward function R known.
1. For episode £k =0,..., K —1

2. Form empirical transition estimate P,’f
3. F d bonus b Hy |5
: orm reward bonus by (s,a) = TFa)

4. 7k = ValueIteration(Pk, R+ bi :h=0...H-1)

5. Run 7* to generate a new trajectory, add to data

Theorem
Regret bound of UCBVI

K-1

Regret = E [Z (V* - V’rk)

k=0

< 2H?S\/AK log(SAH2K?)

RL With a Helpful Teacher 1

Imitation learning

P> Expert provides trajectories

(s0, a0, 51,01, .. .)

but no reward r; is observed.
» Goal: learn 7 as good as the expert

> Require specialized learner (not standard RL)

» Behavior cloning: reduction to supervised learning 7: S — A

» Inverse reinforcement learning: estimate reward function
R(s,a), then planning

RL With a Helpful Teacher 2

» Teacher shaping the interaction trajectories
on rewards: (sg, ag, 0 + o, S1,01,71 + 01, ..)

on transitions: (sg, ag, 7o, 81, a1,71, S5, ...)

or both.
» Standard RL learner

Goal: guide the learner to 7* faster

v

» Teacher planning for &; or s;: a higher-level RL problem; state
includes learner 7;

References

Passive learning, online learning

» Understanding Machine Learning: From Theory to
Algorithms. Shalev-Shwartz and Ben-David, 2014

Active learning
» Theory of Active Learning. Hanneke, 2014
Machine teaching

» An Overview of Machine Teaching. Zhu, Singla, Zilles, and
Rafferty. 2018

Multi-Armed Bandits
» Bandit Algorithms. Lattimore and Szepesvari. 2020
Reinforcement Learning

» Reinforcement Learning: Theory and Algorithms. Agarwal,
Jiang, Kakade, Sun. (draft 2021)

	Passive Learning (PAC Learning, Statistical Learning, Learning from iid Data)
	Active Learning
	Machine Teaching: Helpful Teachers
	Online Learning
	Multi-Armed Bandits
	Reinforcement Learning

