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Teaching as a machine learning problem

Binary classification

Input space X ⊆ Rd. item x ∈ X

Output space Y = {−1, 1}. label y ∈ Y

Unknown test distribution (x, y) iid∼ p

Goal: pick classifier f ∈ F , f : X 7→ Y to minimize Ep[f(x) 6= y]
Example: d = 1, X = [0, 1], F = {1x≥θ | θ ∈ [0, 1]} threshold
functions

Teaching/learning by labeled examples only!
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Teaching as a machine learning problem

Optimal computational teaching theory

The teacher picks two items (x1, y1 = −1), (x2, y2 = 1) next to the
decision boundary

Assuming the learner knows F
n = 2, teaching accomplished!

Formalized by the notion of teaching dimension
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Teaching as a machine learning problem

The teaching dimension [Goldman and Kearns 1995]

X = {x1, . . . , xn}

teaching set of f with respect to F : subset of X consistent with only
f , not any other f ′ ∈ F

TD(f): size of the smallest teaching set of f (1 or 2)

TD(F): TD(f) for the hardest f ∈ F (2)

Implication: for the 1D example optimal teaching should start around
the decision boundary.
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Teaching as a machine learning problem

Curriculum learning [Bengio et al. 2009]

An alternative suggestion for good teaching

Teaching should start from easy to hard, i.e., outside to inside.

A principle motivated by:

I psychology
I optimization (continuation method to avoid being trapped in bad local

optima)
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Human teaching behaviors in a 1D task

Teaching a robot

1D concepts to make teaching theory simple

robot behaviors consistent across conditions and trials (motion
tracking), facilitating experimental control

Participants (human teachers): undergraduate students at Wisconsin
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Human teaching behaviors in a 1D task “Graspability”
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Human teaching behaviors in a 1D task “Graspability”

Materials and procedure

1 place cards along ruler (x1:n)

2 label the back of each card (y1:n)

3 leave the room, let robot inspect x1:n

4 teach by showing one card at a time

5 instruction: use as few cards as possible
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Human teaching behaviors in a 1D task “Graspability”

Conditions

1 “natural”: the teacher can say anything

2 “constrained”: the teacher can only say “graspable” or “not
graspable”
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Human teaching behaviors in a 1D task “Graspability”

Strategy 1: “decision boundary” (0% subjects)

None
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Human teaching behaviors in a 1D task “Graspability”

Strategy 2: “curriculum learning” (48% subjects)
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Human teaching behaviors in a 1D task “Graspability”

Strategy 3: “linear” (42% subjects)
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Human teaching behaviors in a 1D task “Graspability”

Strategy 4: “positive only” (10% subjects)
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Human teaching behaviors in a 1D task “lines”

Outline
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Human teaching behaviors in a 1D task “lines”

Materials

Fail Pass

The master card
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Human teaching behaviors in a 1D task “lines”

Conditions

1 with master card: the teacher can use it during sorting but not
teaching (even participant IDs)

2 without master card: the teacher is shown the master card for 5
seconds at the very beginning (odd participant IDs)

(Wisconsin) Rationalize Human Teaching 18 / 41



Human teaching behaviors in a 1D task “lines”

Conditions

1 with master card: the teacher can use it during sorting but not
teaching (even participant IDs)

2 without master card: the teacher is shown the master card for 5
seconds at the very beginning (odd participant IDs)

(Wisconsin) Rationalize Human Teaching 18 / 41



Human teaching behaviors in a 1D task “lines”

Strategy 1: “decision boundary” (56% subjects)
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Human teaching behaviors in a 1D task “lines”

Strategy 2: “curriculum learning” (19% subjects)
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Human teaching behaviors in a 1D task “lines”

Strategy 3: “linear” (25% subjects)
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Human teaching behaviors in a 1D task “lines”

Strategy 4: “positive only” (0% subjects)

None
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Human teaching behaviors in a 1D task “lines”

Comparing the two experiments

strategy boundary curriculum linear positive

“graspability” (n = 31) 0% 48% 42% 10%
“lines” (n = 32) 56% 19% 25% 0%
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Our computational rationalize of the human teaching behaviors
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Our computational rationalize of the human teaching behaviors

Seeking a hypothesis

Under what assumptions is the human teaching behavior optimal?

Focus on decision boundary and curriculum learning

Not the linear strategy

Not the positive-only strategy
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Our computational rationalize of the human teaching behaviors

The hidden dimensionality

Humans represent objects by X ⊆ Rd, d � 1.

e.g., squirrel = Boolean vector ( graspable, shy, store supplies for the
winter, is not poisonous, has four paws, has teeth, has two ears, has
two eyes, is beautiful, is brown, lives in trees, rodent, doesn’t herd,
doesn’t sting, drinks water, eats nuts, feels soft, fluffy, gnaws on
everything, has a beautiful tail, has a large tail, has a mouth, has a
small head, has gnawing teeth, has pointy ears, has short paws, is
afraid of people, is cute, is difficult to catch, is found in Belgium, is
light, is not a pet, is not very big, is short haired, is sweet , jumps,
lives in Europe, lives in the wild, short front legs, small ears, smaller
than a horse, soft fur, timid animal, can’t fly, climbs in trees, collects
nuts, crawls up trees, eats acorns, eats plants, does not lay eggs ... )>

“Graspability” is probably a 1D subspace in X
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Our computational rationalize of the human teaching behaviors

Idealized problem setting

The first dimension determines label: p(yi = 1 | xi) = 1{xi1> 1
2
}

A pool of items x1, . . . ,xn ∼ unif[0, 1]d available to the teacher

At time t, the teacher picks one item xt from the pool, shows (xt, yt)
to the learner
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Our computational rationalize of the human teaching behaviors

Sufficient conditions
The following assumptions are sufficient (but not necessary) to explain
human’s “decision boundary” vs. “curriculum learning” behaviors:

1 The learner has an axis-parallel version space V

2 The learner is a Gibbs classifier
3 The teacher is computationally limited

I only pays attention to the target dimension
I does not teach by matching irrelevant dimensions

I ⇒ teaching items’ irrelevant dimensions are random

4 The teacher sequentially minimizes the learner’s risk (expected error)

R = E[f(x) 6= y]
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Our computational rationalize of the human teaching behaviors

The version space

After two items (x1, y1 = 1), (x2, y2 = −1) the version subspaces:

I V1 = {1x·1≥θ1 | θ1 ∈ [b, a]}, where b ≡ x11, a ≡ x21

I V2 = {x·2 ≥ θ2 : θ2 ∈ [min(x21, x22),max(x21, x22)]}, similarly for
V3 . . . Vd

The complete version space V = ∪d
i=1Vk
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Our computational rationalize of the human teaching behaviors

The error

The learner randomly selects one hypothesis from the version space

if the hypothesis is selected from dimension 1, error=|θ1 − 1
2 |
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Our computational rationalize of the human teaching behaviors

Risk minimization

The learner’s risk

R =
1
|V |

(∫ a

b
|θ1 −

1
2
|dθ1 +

d∑
k=2

∫ max(x1k,x2k)

min(x1k,x2k)

1
2
dθk

)

The teacher chooses a, b to minimize R. Trade off:

I a− b too small: learner frequently picks f in irrelevant dimensions ⇒
large error

I a− b too large: learner picks very wrong f in the relevant dimension
⇒ large error
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Our computational rationalize of the human teaching behaviors

Risk minimization

Theorem

The risk R is minimized by

a∗ =
√

c2 + 2c− c + 1
2

b∗ = 1− a∗

where c ≡
∑d

k=2 |x1k − x2k| is the version subspace size in irrelevant
dimensions.
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Our computational rationalize of the human teaching behaviors

Starting teaching where? d decides

|x1k − x2k| ∼ Beta(1, 2) for k = 2, . . . , d (order statistics)

c ≡
∑d

k=2 |x1k −x2k| is the sum of d− 1 Beta(1, 2) random variables.

Corollary

When d →∞, the minimizer of R is a∗ = 1, b∗ = 0.
When d = 1, the minimizer of R is a∗ → 1

2−, b∗ → 1
2+

.

For example, d = 10, a∗ = 0.94; d = 100, a∗ = 0.99
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Our computational rationalize of the human teaching behaviors

With more teaching items

Version subspace Vk survives t teaching items if the items are linearly
separable in dimension k = 2 . . . d

This happens with probability 2(
t
t0

) where t0 is the number of positive

items

If Vk does survive, its size ∼ Beta(1, t) (order statistics)
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Our computational rationalize of the human teaching behaviors

Teaching items should approach decision boundary

Theorem

Let the teaching sequence contain t0 negative labels and t− t0 positive
ones. Then the version space in dim k has size |Vk| = αkβk, where

αk ∼ Bernoulli
(
2/
(

t
t0

)
, 1− 2/

(
t
t0

))
βk ∼ Beta(1, t)

independently for k = 2 . . . d. Consequently, E(c) = 2(d−1)(
t
t0

)
(1+t)

.
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Our computational rationalize of the human teaching behaviors

Comparing theory to behaviors

On the “graspability” task with assumed d’s:

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

iteration t

|V
1|

 

 

d=1000
d=100
d=12
d=2

On the “lines” task, theory predicts |V1| at minimum in iteration 2

Curriculum learning and teaching dimension are both correct:
different cases of the same theory
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Our computational rationalize of the human teaching behaviors

Conclusion

Behavioral studies of human teaching

I “graspability”: curriculum learning strategy
I “lines”: decision boundary strategy

Potential computational teaching theory

I sequential risk minimization
I d controls behavior
I justifies curriculum learning for large d

Applications:

I robots that learn from grandma (and CS grads, too)
I more effective educational strategies for kids

Acknowledgments

I Collaborators: Kwangsung Jun, Faisal Khan, Bilge Mutlu, Burr Settles
I NSF CAREER IIS-0953219, AFOSR FA9550-09-1-0313, The Wisconsin

Alumni Research Foundation
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Our computational rationalize of the human teaching behaviors

Learning from iid data

The most common machine learning assumption

The learner passively receives a training sample

(x1, y1) . . . (xn, yn) iid∼ p

Risk decreases as O( 1
n)
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Our computational rationalize of the human teaching behaviors

Active learning

The learner picks xt

The teacher answers yt

The teacher does not pick xt!

Risk decreases as 1
2n (noiseless 1D case, equivalent to binary search)
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