Statistical Machine Learning for NLP

Xiaojin Zhu

jerryzhu@cs.wisc.edu
Department of Computer Sciences
University of Wisconsin–Madison, USA

CCF/ADL46 2013
Outline

1 Basics of Statistical Learning
 - Probability
 - Statistical Estimation
 - Regularization
 - Decision Theory

2 Graphical Models
 - Directed Graphical Models (Bayesian Networks)
 - Undirected Graphical Models (Markov Random Fields)
 - Factor Graph
 - Markov Chain Monte Carlo
 - Belief Propagation
 - Mean Field Algorithm
 - Maximizing Problems (Viterbi)

3 Bayesian Non-Parametric Models
 - Dirichlet Processes
Outline

1 Basics of Statistical Learning
 - Probability
 - Statistical Estimation
 - Regularization
 - Decision Theory

2 Graphical Models
 - Directed Graphical Models (Bayesian Networks)
 - Undirected Graphical Models (Markov Random Fields)
 - Factor Graph
 - Markov Chain Monte Carlo
 - Belief Propagation
 - Mean Field Algorithm
 - Maximizing Problems (Viterbi)

3 Bayesian Non-Parametric Models
 - Dirichlet Processes
Outline

1 Basics of Statistical Learning
 • Probability
 • Statistical Estimation
 • Regularization
 • Decision Theory

2 Graphical Models
 • Directed Graphical Models (Bayesian Networks)
 • Undirected Graphical Models (Markov Random Fields)
 • Factor Graph
 • Markov Chain Monte Carlo
 • Belief Propagation
 • Mean Field Algorithm
 • Maximizing Problems (Viterbi)

3 Bayesian Non-Parametric Models
 • Dirichlet Processes
Probability

- The probability of a discrete random variable A taking the value a is $P(A = a) \in [0, 1]$.
- Sometimes written as $P(a)$ when no danger of confusion.
- Normalization $\sum_{\text{all } a} P(A = a) = 1$.
- Joint probability $P(A = a, B = b) = P(a, b)$, the two events both happen at the same time.
- Marginalization $P(A = a) = \sum_{\text{all } b} P(A = a, B = b)$, “summing out B”.
- Conditional probability $P(a|b) = \frac{P(a,b)}{P(b)}$, a happens given b happened.
- The product rule $P(a, b) = P(a)P(b|a) = P(b)P(a|b)$.
Bayes Rule

- Bayes rule: \(P(a|b) = \frac{P(b|a)P(a)}{P(b)} \).
- In general, \(P(a|b, C) = \frac{P(b|a, C)P(a|C)}{P(b|C)} \) where \(C \) can be one or more random variables.
- Bayesian approach: when \(\theta \) is model parameter, \(D \) is observed data, we have
 \[p(\theta|D) = \frac{p(D|\theta)p(\theta)}{p(D)} , \]
 - \(p(\theta) \) is the prior,
 - \(p(D|\theta) \) the likelihood function (of \(\theta \), not normalized: \(\int p(D|\theta) d\theta \neq 1 \)),
 - \(p(D) = \int p(D|\theta)p(\theta) d\theta \) the evidence,
 - \(p(\theta|D) \) the posterior.
Independence

- The product rule can be simplified as $P(a, b) = P(a)P(b)$ iff A and B are independent.
- Equivalently, $P(a|b) = P(a)$, $P(b|a) = P(b)$.

Zhu (Univ. Wisconsin) Statistical Machine Learning for NLP CCF/ADL46 2013 7 / 125
Probability density

- A continuous random variable x has a probability density function (pdf) $p(x) \in [0, \infty]$.
- $p(x) > 1$ is possible! Integrates to 1.

$$\int_{-\infty}^{\infty} p(x) \, dx = 1$$

- $P(x_1 < X < x_2) = \int_{x_1}^{x_2} p(x) \, dx$
- Marginalization $p(x) = \int_{-\infty}^{\infty} p(x, y) \, dy$
Expectation and Variance

- The expectation ("mean" or "average") of a function f under the probability distribution P is

$$\mathbb{E}_P[f] = \sum_a P(a) f(a)$$

$$\mathbb{E}_p[f] = \int_x p(x) f(x) \, dx$$

- In particular if $f(x) = x$, this is the mean of the random variable x.

- The variance of f is

$$\text{Var}(f) = \mathbb{E}[(f(x) - \mathbb{E}[f(x)])^2] = \mathbb{E}[f(x)^2] - \mathbb{E}[f(x)]^2$$

- The standard deviation is $\text{std}(f) = \sqrt{\text{Var}(f)}$.
Multivariate Statistics

- When x, y are vectors, $\mathbb{E}[x]$ is the mean vector
- $\text{Cov}(x, y)$ is the covariance matrix with i, j-th entry being $\text{Cov}(x_i, y_j)$.

$$
\text{Cov}(x, y) = \mathbb{E}_{x,y}[(x - \mathbb{E}[x])(y - \mathbb{E}[y])] = \mathbb{E}_{x,y}[xy] - \mathbb{E}[x] \mathbb{E}[y]
$$
Some Discrete Distributions

- **Dirac** or point mass distribution $X \sim \delta_a$ if $P(X = a) = 1$

- **Binomial.** n (number of trials) and p (head probability)

 $$f(x) = \begin{cases} \binom{n}{x} p^x (1 - p)^{n-x} & \text{for } x = 0, 1, \ldots, n \\ 0 & \text{otherwise} \end{cases}$$

- **Bernoulli.** Binomial with $n = 1$.

- **Multinomial** $p = (p_1, \ldots, p_d)^\top$ (d-sided die)

 $$f(x) = \begin{cases} \binom{n}{x_1, \ldots, x_d} \prod_{k=1}^d p_k^{x_k} & \text{if } \sum_{k=1}^d x_k = n \\ 0 & \text{otherwise} \end{cases}$$
More Discrete Distributions

- **Poisson.** $X \sim \text{Poisson}(\lambda)$ if

 $$f(x) = e^{-\lambda} \frac{\lambda^x}{x!}$$

 for $x = 0, 1, 2, \ldots$

- λ the rate or intensity parameter

- mean: λ, variance: λ

- If $X_1 \sim \text{Poisson}(\lambda_1)$ and $X_2 \sim \text{Poisson}(\lambda_2)$ then
 $X_1 + X_2 \sim \text{Poisson}(\lambda_1 + \lambda_2)$.

- This is a distribution on unbounded counts with a probability mass function “hump” (mode at $\lceil \lambda \rceil - 1$).
Some Continuous Distributions

- **Gaussian (Normal):** \(X \sim N(\mu, \sigma^2) \) with parameters \(\mu \in \mathbb{R} \) (the mean) and \(\sigma^2 \) (the variance)

\[
f(x) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left(-\frac{(x - \mu)^2}{2\sigma^2} \right).
\]

- \(\sigma \) is the standard deviation.
- If \(\mu = 0, \sigma = 1 \), \(X \) has a **standard normal distribution**.
- (Scaling) If \(X \sim N(\mu, \sigma^2) \), then \(Z = (X - \mu)/\sigma \sim N(0, 1) \)
- (Independent sum) If \(X_i \sim N(\mu_i, \sigma_i^2) \) are independent, then \(\sum_i X_i \sim N \left(\sum_i \mu_i, \sum_i \sigma_i^2 \right) \)
Some Continuous Distributions

- **Multivariate Gaussian.** Let $x, \mu \in \mathbb{R}^d$, $\Sigma \in S_+^d$ a symmetric, positive definite matrix of size $d \times d$. Then $X \sim N(\mu, \Sigma)$ with PDF

$$f(x) = \frac{1}{|\Sigma|^{1/2}(2\pi)^{d/2}} \exp \left(-\frac{1}{2}(x - \mu)^\top \Sigma^{-1}(x - \mu)\right).$$

- μ is the mean vector, Σ is the covariance matrix, $|\Sigma|$ its determinant, and Σ^{-1} its inverse
Marginal and Conditional of Gaussian

- If two (groups of) variables x, y are jointly Gaussian:
 \[
 \begin{bmatrix}
 x \\
 y
 \end{bmatrix} \sim N \left(\begin{bmatrix}
 \mu_x \\
 \mu_y
 \end{bmatrix}, \begin{bmatrix}
 A & C \\
 C^\top & B
 \end{bmatrix} \right)
 \]

- (Marginal) $x \sim N(\mu_x, A)$
- (Conditional) $y | x \sim N(\mu_y + C^\top A^{-1} (x - \mu_x), B - C^\top A^{-1} C)$
More Continuous Distributions

- The **Gamma function** (not distribution) is $\Gamma(\alpha) = \int_0^\infty y^{\alpha-1}e^{-y}dy$ with $\alpha > 0$.
- Generalizes factorial: $\Gamma(n) = (n-1)!$ when n is a positive integer.
- $\Gamma(\alpha + 1) = \alpha \Gamma(\alpha)$ for $\alpha > 0$.
- X has a **Gamma distribution** $X \sim \text{Gamma}(\alpha, \beta)$ with shape parameter $\alpha > 0$ and scale parameter $\beta > 0$
 \[f(x) = \frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha-1} e^{-x/\beta}, \ x > 0. \]
- Conjugate prior for Poisson rate.
More Continuous Distributions

- **Beta.** $X \sim \text{Beta}(\alpha, \beta)$ with parameters $\alpha, \beta > 0$, if

$$f(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1}, \ x \in (0, 1).$$

A draw from a beta distribution can be thought of as generating a (biased) coin.

- Beta$(1, 1)$ is uniform in $[0, 1]$.
- Beta$(\alpha < 1, \beta < 1)$ has a U-shape.
- Beta$(\alpha > 1, \beta > 1)$ is unimodal with mean $\alpha/(\alpha + \beta)$ and mode $$(\alpha - 1)/(\alpha + \beta - 2).$$
- Beta distribution is conjugate to the binomial and Bernoulli distributions. A draw from the corresponding Bernoulli distribution can be thought of as a flip of that coin.
More Continuous Distributions

- **Dirichlet.** Multivariate version of beta. $X \sim \text{Dir}(\alpha_1, \ldots, \alpha_d)$ with parameters $\alpha_i > 0$, if

$$f(x) = \frac{\Gamma\left(\sum_i^d \alpha_i\right)}{\prod_i^d \Gamma(\alpha_i)} \prod_i^d x_i^{\alpha_i-1}$$

where $x = (x_1, \ldots, x_d)$ with $x_i > 0$, $\sum_i^d x_i = 1$.

- The support is called the open $(d-1)$ dimensional simplex.

- Dirichlet is conjugate to multinomial.

- Dice factory (Dirichlet) and die rolls (multinomial)

- Modeling bag-of-word documents. Also in Dirichlet Processes.
Outline

1 Basics of Statistical Learning
 - Probability
 - Statistical Estimation
 - Regularization
 - Decision Theory

2 Graphical Models
 - Directed Graphical Models (Bayesian Networks)
 - Undirected Graphical Models (Markov Random Fields)
 - Factor Graph
 - Markov Chain Monte Carlo
 - Belief Propagation
 - Mean Field Algorithm
 - Maximizing Problems (Viterbi)

3 Bayesian Non-Parametric Models
 - Dirichlet Processes
Parametric Models

- A *statistical model* \mathcal{H} is a set of distributions.
- In machine learning, we call \mathcal{H} the hypothesis space.
- A *parametric model* can be parametrized by a finite number of parameters: $f(x) \equiv f(x; \theta)$ with parameter $\theta \in \mathbb{R}^d$:

$$\mathcal{H} = \left\{ f(x; \theta) : \theta \in \Theta \subset \mathbb{R}^d \right\}$$

where Θ is the *parameter space.*
Parametric Models

- We denote the expectation

\[E_\theta(g) = \int g(x) f(x; \theta) \, dx \]

- \(E_\theta \) means \(E_{x \sim f(x;\theta)} \), not over different \(\theta \)'s.

- For parametric model \(\mathcal{H} = \{ N(\mu, 1) : \mu \in \mathbb{R} \} \), given iid data \(x_1, \ldots, x_n \), the optimal estimator of the mean is \(\hat{\mu} = \frac{1}{n} \sum x_i \).

- All (parametric) models are wrong. Some are more useful than others.
Nonparametric model

- A nonparametric model cannot be parametrized by a fixed number of parameters.
- Model complexity grows indefinitely with sample size.
- Example: $\mathcal{H} = \{ P : \text{Var}_P(X) < \infty \}$.
- Given iid data x_1, \ldots, x_n, the optimal estimator of the mean is again $\hat{\mu} = \frac{1}{n} \sum x_i$.
- Nonparametric makes weaker model assumptions and thus is preferred.
- But parametric models converge faster and are more practical.
Estimation

- Given $X_1 \ldots X_n \sim F \in \mathcal{H}$, an estimator $\hat{\theta}_n$ is any function of $X_1 \ldots X_n$ that attempts to estimate a parameter θ.
- This is the “learning” in machine learning!
- Example: In classification $X_i = (x_i, y_i)$ and $\hat{\theta}_n$ is the learned model.
- $\hat{\theta}_n$ is a random variable because the training set is random.
- An estimator is consistent if $\hat{\theta}_n \overset{P}{\to} \theta$.
- Consistent estimators learn the correct model with more training data eventually.
Bias

- Since $\hat{\theta}_n$ is a random variable, it has an expectation $\mathbb{E}_\theta(\hat{\theta}_n)$.
- \mathbb{E}_θ is w.r.t. the joint distribution $f(x_1, \ldots, x_n; \theta) = \prod_{i=1}^n f(x_i; \theta)$.
- The bias of the estimator is
 \[
 \text{bias}(\hat{\theta}_n) = \mathbb{E}_\theta(\hat{\theta}_n) - \theta
 \]
- An estimator is unbiased if $\text{bias}(\hat{\theta}_n) = 0$.
- The standard error of an estimator is $\text{se}(\hat{\theta}_n) = \sqrt{\text{Var}_\theta(\hat{\theta}_n)}$.
- Example: Let $\hat{\mu} = \frac{1}{n} \sum_i x_i$, where $x_i \sim N(0, 1)$. Then the standard deviation of x_i is 1 regardless of n. In contrast, $\text{se}(\hat{\mu}) = 1/\sqrt{n} = n^{-1/2}$ which decreases with n.

Zhu (Univ. Wisconsin) Statistical Machine Learning for NLP CCF/ADL46 2013
The mean squared error of an estimator is
\[\text{mse}(\hat{\theta}_n) = \mathbb{E}_\theta \left((\hat{\theta}_n - \theta)^2 \right) \]

Bias-variance decomposition
\[\text{mse}(\hat{\theta}_n) = \text{bias}^2(\hat{\theta}_n) + \text{se}^2(\hat{\theta}_n) = \text{bias}^2(\hat{\theta}_n) + \text{Var}_\theta(\hat{\theta}_n) \]

If \(\text{bias}(\hat{\theta}_n) \to 0 \) and \(\text{Var}_\theta(\hat{\theta}_n) \to 0 \) then \(\text{mse}(\hat{\theta}_n) \to 0 \).
This implies \(\hat{\theta}_n \overset{P}{\to} \theta \), so that \(\hat{\theta}_n \) is consistent.
Maximum Likelihood

- Let $x_1, \ldots, x_n \sim f(x; \theta)$ where $\theta \in \Theta$.
- The likelihood function is
 \[
 L_n(\theta) = f(x_1, \ldots, x_n; \theta) = \prod_{i=1}^{n} f(x_i; \theta)
 \]
- The log likelihood function is $\ell_n(\theta) = \log L_n(\theta)$.
- The maximum likelihood estimator (MLE) is
 \[
 \hat{\theta}_n = \arg\max_{\theta \in \Theta} L_n(\theta) = \arg\max_{\theta \in \Theta} \ell_n(\theta)
 \]
MLE examples

- The MLE for $p(\text{head})$ from n coin flips is $\text{count(\text{head})}/n$
- The MLE for $X_1, \ldots, X_N \sim N(\mu, \sigma^2)$ is $\hat{\mu} = 1/n \sum_i X_i$ and $\hat{\sigma}^2 = 1/n \sum (X_i - \hat{\mu})^2$.
- The MLE does not always agree with intuition. The MLE for $X_1, \ldots, X_n \sim \text{uniform}(0, \theta)$ is $\hat{\theta} = \max(X_1, \ldots, X_n)$.
Properties of MLE

- When \mathcal{H} is identifiable, under certain conditions (see Wasserman Theorem 9.13), the MLE $\hat{\theta}_n \xrightarrow{P} \theta^*$, where θ^* is the true value of the parameter θ. That is, the MLE is consistent.

- Asymptotic Normality: Let $se = \sqrt{Var_\theta(\hat{\theta}_n)}$. Under appropriate regularity conditions, $se \approx \sqrt{1/I_n(\theta)}$ where $I_n(\theta)$ is the Fisher information, and

\[
\frac{\hat{\theta}_n - \theta}{se} \xrightarrow{d} N(0, 1)
\]

- The MLE is asymptotically efficient (achieves the Cramér-Rao lower bound), “best” among unbiased estimators.
Frequentist statistics

- Probability refers to limiting relative frequency.
- Data are random.
- Estimators are random because they are functions of data.
- Parameters are fixed, unknown constants not subject to probabilistic statements.
- Procedures are subject to probabilistic statements, for example 95% confidence intervals trap the true parameter value 95.
- Classifiers, even learned with deterministic procedures, are random because the training set is random.
- PAC bound is frequentist. Most procedures in machine learning are frequentist methods.
Bayesian statistics

- Probability refers to degree of belief.
- Inference about a parameter θ is by producing a probability distributions on it.
- Starts with \textit{prior} distribution $p(\theta)$.
- \textit{Likelihood function} $p(x \mid \theta)$, a function of θ not x.
- After observing data x, one applies the Bayes rule to obtain the \textit{posterior}

\[
p(\theta \mid x) = \frac{p(\theta)p(x \mid \theta)}{\int p(\theta')p(x \mid \theta')d\theta'} = \frac{1}{Z} p(\theta)p(x \mid \theta)
\]

$Z \equiv \int p(\theta')p(x \mid \theta')d\theta' = p(x)$ is the \textit{normalizing constant} or \textit{evidence}.

- Prediction by integrating parameters out:

\[
p(x \mid Data) = \int p(x \mid \theta)p(\theta \mid Data)d\theta
\]
Frequentist vs Bayesian in machine learning

- Frequentists produce a \textit{point estimate} \(\hat{\theta} \) from Data, and predict with \(p(x \mid \hat{\theta}) \).
- Bayesians keep the posterior distribution \(p(\theta \mid \text{Data}) \), and predict by integrating over \(\theta \)s.
- Bayesian integration is often intractable, need either “nice” distributions or approximations.
- The \textit{maximum a posteriori} (MAP) estimate

\[
\theta^{MAP} = \arg\max_{\theta} p(\theta \mid x)
\]

is a point estimate and not Bayesian.
Outline

1 Basics of Statistical Learning
 • Probability
 • Statistical Estimation
 • Regularization
 • Decision Theory

2 Graphical Models
 • Directed Graphical Models (Bayesian Networks)
 • Undirected Graphical Models (Markov Random Fields)
 • Factor Graph
 • Markov Chain Monte Carlo
 • Belief Propagation
 • Mean Field Algorithm
 • Maximizing Problems (Viterbi)

3 Bayesian Non-Parametric Models
 • Dirichlet Processes
Regularization for Maximum Likelihood

- Recall the MLE $\hat{\theta}_n = \arg\max_{\theta \in \Theta} \ell_n(\theta)$
- Can overfit.
- Regularized likelihood

$$\hat{\theta}_n = \arg\min_{\theta \in \Theta} -\ell_n(\theta) + \lambda \Omega(\theta)$$

- $\Omega(\theta)$ is the regularizer, for example $\Omega(\theta) = \|\theta\|^2$.
- Coincides with MAP estimate with prior distribution $p(\theta) \propto \exp(-\lambda \Omega(\theta))$
Graph-based regularization

- **Nodes:** \(x_1 \ldots x_n, \theta = \mathbf{f} = (f(x_1), \ldots, f(x_n)) \)
- **Edges:** similarity weights computed from features, e.g.,
 - \(k \)-nearest-neighbor graph, unweighted (0, 1 weights)
 - fully connected graph, weight decays with distance
 \[w = \exp \left(-\|x_i - x_j\|^2 / \sigma^2 \right) \]
 - \(\epsilon \)-radius graph
- **Assumption** Nodes connected by heavy edge tend to have the same value.
Graph energy

- f incurs the energy
 \[
 \sum_{i \sim j} w_{ij} (f(x_i) - f(x_j))^2
 \]
- smooth f has small energy
- constant f has zero energy
An electric network interpretation

- Edges are resistors with conductance w_{ij}
- Nodes clamped at voltages specified by f
- Energy = heat generated by the network in unit time

\[R_{ij} = \frac{1}{w_{ij}} \]
The graph Laplacian

We can express the energy of f in closed-form using the graph Laplacian.

- $n \times n$ weight matrix W on $X_l \cup X_u$
 - symmetric, non-negative
- Diagonal degree matrix D: $D_{ii} = \sum_{j=1}^{n} W_{ij}$
- Graph Laplacian matrix Δ

$$\Delta = D - W$$

- The energy

$$\sum_{i \sim j} w_{ij} (f(x_i) - f(x_j))^2 = f^\top \Delta f$$
Graph Laplacian as a Regularizer

- Regression problem with training data \(x_i \in \mathbb{R}^d, y_i \in \mathbb{R}, i = 1 \ldots n \)
- Allow \(f(X_i) \) to be different from \(Y_i \), but penalize the difference with a Gaussian log likelihood
- Regularizer \(\Omega(f) = f^\top \Delta f \)

\[
\min_f \sum_{i=1}^{n} (f(x_i) - y_i)^2 + \lambda f^\top \Delta f
\]

- Equivalent to MAP estimate with
 - Gaussian likelihood \(y_i = f(x_i) + \epsilon_i \) where \(\epsilon_i \sim N(0, \sigma^2) \), and
 - Gaussian Random Field prior \(p(f) = \frac{1}{Z} \exp \left(-\lambda f^\top \Delta f \right) \)
Graph Spectrum and Regularization

Assumption: labels are “smooth” on the graph, characterized by the graph spectrum (eigen-values/vectors \(\{(\lambda_i, \phi_i)\}_{i=1}^n \) of the Laplacian \(L \):

- \(L = \sum_{i=1}^{n} \lambda_i \phi_i \phi_i^\top \)
- a graph has \(k \) connected components if and only if \(\lambda_1 = \ldots = \lambda_k = 0 \).
- the corresponding eigenvectors are constant on individual connected components, and zero elsewhere.
- any \(f \) on the graph can be represented as \(f = \sum_{i=1}^{n} a_i \phi_i \)
- graph regularizer \(f^\top L f = \sum_{i=1}^{n} a_i^2 \lambda_i \)
- smooth function \(f \) uses smooth basis (those with small \(\lambda_i \))
Example graph spectrum

The graph

Eigenvalues and eigenvectors of the graph Laplacian

$\lambda_1 = 0.00 \quad \lambda_2 = 0.00 \quad \lambda_3 = 0.04 \quad \lambda_4 = 0.17 \quad \lambda_5 = 0.38$

$\lambda_6 = 0.38 \quad \lambda_7 = 0.66 \quad \lambda_8 = 1.00 \quad \lambda_9 = 1.38 \quad \lambda_{10} = 1.38$

$\lambda_{11} = 1.79 \quad \lambda_{12} = 2.21 \quad \lambda_{13} = 2.62 \quad \lambda_{14} = 2.62 \quad \lambda_{15} = 3.00$

$\lambda_{16} = 3.34 \quad \lambda_{17} = 3.62 \quad \lambda_{18} = 3.62 \quad \lambda_{19} = 3.83 \quad \lambda_{20} = 3.96$
Outline

1 Basics of Statistical Learning
 - Probability
 - Statistical Estimation
 - Regularization
 - Decision Theory

2 Graphical Models
 - Directed Graphical Models (Bayesian Networks)
 - Undirected Graphical Models (Markov Random Fields)
 - Factor Graph
 - Markov Chain Monte Carlo
 - Belief Propagation
 - Mean Field Algorithm
 - Maximizing Problems (Viterbi)

3 Bayesian Non-Parametric Models
 - Dirichlet Processes
Comparing Estimators

- Training set $D = (x_1, \ldots, x_n) \sim p(x; \theta)$
- Learned model: $\hat{\theta} \equiv \hat{\theta}(D)$ an estimator of θ based on data D.
- Loss function $L(\theta, \hat{\theta}) : \Theta \times \Theta \mapsto \mathbb{R}_+$
- Squared loss $L(\theta, \hat{\theta}) = (\theta - \hat{\theta})^2$
- 0-1 loss $L(\theta, \hat{\theta}) = \begin{cases} 0 & \theta = \hat{\theta} \\ 1 & \theta \neq \hat{\theta} \end{cases}$
- KL loss $L(\theta, \hat{\theta}) = \int p(x; \theta) \log \left(\frac{p(x; \theta)}{p(x; \hat{\theta})} \right) \, dx$
- Since D is random, both $\hat{\theta}(D)$ and $L(\theta, \hat{\theta})$ are random variables
Risk

- The risk $R(\theta, \hat{\theta})$ is the expected loss

$$R(\theta, \hat{\theta}) = \mathbb{E}_D[L(\theta, \hat{\theta}(D))]$$

- \mathbb{E}_D averaged over training sets D sampled from the true θ
- The risk is the “average training set” behavior of a learning algorithm when the world is θ
- Not computable: we don’t know which θ the world is in.
- Example: Let $D = X_1 \sim N(\theta, 1)$. Let $\hat{\theta}_1 = X_1$ and $\hat{\theta}_2 = 3.14$. Assume squared loss. Then $R(\theta, \hat{\theta}_1) = 1$ (hint: variance), $R(\theta, \hat{\theta}_2) = \mathbb{E}_D(\theta - 3.14)^2 = (\theta - 3.14)^2$.
- Smart learning algorithm $\hat{\theta}_1$ and a dumb one $\hat{\theta}_2$. However, for tasks $\theta \in (3.14 - 1, 3.14 + 1)$ the dumb algorithm is better.
Minimax Estimator

- **maximum risk**
 \[R_{\text{max}}(\hat{\theta}) = \sup_{\theta} R(\theta, \hat{\theta}) \]

- The minimax estimator \(\hat{\theta}_{\text{minimax}} \) minimizes the maximum risk
 \[\hat{\theta}_{\text{minimax}} = \arg \inf_{\hat{\theta}} \sup_{\theta} R(\theta, \hat{\theta}) \]

- The infimum is over all estimators \(\hat{\theta} \).
- The minimax estimator is the “best” in guarding against the worst possible world.
Outline

1 Basics of Statistical Learning
 - Probability
 - Statistical Estimation
 - Regularization
 - Decision Theory

2 Graphical Models
 - Directed Graphical Models (Bayesian Networks)
 - Undirected Graphical Models (Markov Random Fields)
 - Factor Graph
 - Markov Chain Monte Carlo
 - Belief Propagation
 - Mean Field Algorithm
 - Maximizing Problems (Viterbi)

3 Bayesian Non-Parametric Models
 - Dirichlet Processes
The envelope quiz

\[E \in \{1, 0\}, B \in \{r, b\} \]

\[P(E = 1) = P(E = 0) = \frac{1}{2} \]

\[P(B = r | E = 1) = \frac{1}{2}, P(B = r | E = 0) = 0 \]

We ask:

\[P(E = 1 | B = b) \geq \frac{1}{2} ? \]

\[P(E = 1 | B = b) = P(B = b | E = 1) P(E = 1) P(B = b) = \frac{1}{2} \times \frac{1}{2} \times \frac{3}{4} = \frac{1}{3} \]
The envelope quiz

- Random variables $E \in \{1, 0\}, B \in \{r, b\}$
- $P(E = 1) = P(E = 0) = 1/2$
- $P(B = r \mid E = 1) = 1/2, P(B = r \mid E = 0) = 0$
- We ask: $P(E = 1 \mid B = b) \geq 1/2$?
- $P(E = 1 \mid B = b) = \frac{P(B=b \mid E=1)P(E=1)}{P(B=b)} = \frac{1/2 \times 1/2}{3/4} = 1/3$
- Switch.
- The graphical model:
Probabilistic Reasoning

- The world is reduced to a set of random variables x_1, \ldots, x_n
 - e.g. (x_1, \ldots, x_{n-1}) a feature vector, $x_n \equiv y$ the class label
- Inference: given joint distribution $p(x_1, \ldots, x_n)$, compute $p(X_Q \mid X_E)$ where $X_Q \cup X_E \subseteq \{x_1 \ldots x_n\}$
 - e.g. $Q = \{n\}$, $E = \{1 \ldots n-1\}$, by the definition of conditional

$$p(x_n \mid x_1, \ldots, x_{n-1}) = \frac{p(x_1, \ldots, x_{n-1}, x_n)}{\sum_v p(x_1, \ldots, x_{n-1}, x_n = v)}$$

- Learning: estimate $p(x_1, \ldots, x_n)$ from training data $X^{(1)}, \ldots, X^{(N)}$, where $X^{(i)} = (x_1^{(i)}, \ldots, x_n^{(i)})$
It is difficult to reason with uncertainty

- **joint distribution** $p(x_1, \ldots, x_n)$
 - exponential naïve storage (2^n for binary r.v.)
 - hard to interpret (conditional independence)

- **inference** $p(X_Q \mid X_E)$
 - Often can’t afford to do it by brute force

- If $p(x_1, \ldots, x_n)$ not given, estimate it from data
 - Often can’t afford to do it by brute force
Graphical models

- Graphical models: efficient representation, inference, and learning on $p(x_1, \ldots, x_n)$, exactly or approximately
- Two main “flavors”:
 - directed graphical models = Bayesian Networks (often frequentist instead of Bayesian)
 - undirected graphical models = Markov Random Fields
- Key idea: make conditional independence explicit
Outline

1 Basics of Statistical Learning
 - Probability
 - Statistical Estimation
 - Regularization
 - Decision Theory

2 Graphical Models
 - Directed Graphical Models (Bayesian Networks)
 - Undirected Graphical Models (Markov Random Fields)
 - Factor Graph
 - Markov Chain Monte Carlo
 - Belief Propagation
 - Mean Field Algorithm
 - Maximizing Problems (Viterbi)

3 Bayesian Non-Parametric Models
 - Dirichlet Processes
Bayesian Network

- Directed graphical models are also called Bayesian networks.
- A directed graph has nodes \(X = (x_1, \ldots, x_n) \), some of them connected by directed edges \(x_i \rightarrow x_j \).
- A cycle is a directed path \(x_1 \rightarrow \ldots \rightarrow x_k \) where \(x_1 = x_k \).
- A directed acyclic graph (DAG) contains no cycles.
- A Bayesian network on the DAG is a family of distributions satisfying

\[
\{ p \mid p(X) = \prod_i p(x_i \mid Pa(x_i)) \}
\]

where \(Pa(x_i) \) is the set of parents of \(x_i \).

- \(p(x_i \mid Pa(x_i)) \) is the conditional probability distribution (CPD) at \(x_i \).
- By specifying the CPDs for all \(i \), we specify a particular distribution \(p(X) \).
Example: Alarm

Binary variables

\[P(B, \sim E, A, J, \sim M) = P(B)P(\sim E)P(A | B, \sim E)P(J | A)P(\sim M | A) \]
\[= 0.001 \times (1 - 0.002) \times 0.94 \times 0.9 \times (1 - 0.7) \]
\[\approx 0.000253 \]
Example: Naive Bayes

\[p(y, x_1, \ldots x_d) = p(y) \prod_{i=1}^{d} p(x_i \mid y) \]

- Used extensively in natural language processing
- Plate representation on the right
No Causality Whatsoever

The two BNs are equivalent in all respects

- Bayesian networks imply no causality at all
- They only encode the joint probability distribution (hence correlation)
- However, people tend to design BNs based on causal relations
Example: Latent Dirichlet Allocation (LDA)

A generative model for \(p(\phi, \theta, z, w \mid \alpha, \beta) \):

For each topic \(t \)
\[
\phi_t \sim \text{Dirichlet}(\beta)
\]

For each document \(d \)
\[
\theta \sim \text{Dirichlet}(\alpha)
\]

For each word position in \(d \)
\[
\text{topic } z \sim \text{Multinomial}(\theta) \\
\text{word } w \sim \text{Multinomial}(\phi_z)
\]

Inference goals: \(p(z \mid w, \alpha, \beta), \arg\max_{\phi,\theta} p(\phi, \theta \mid w, \alpha, \beta) \)
Example: Latent Dirichlet Allocation (LDA)

A generative model for $p(\phi, \theta, z, w | \alpha, \beta)$:

For each topic t
\[\phi_t \sim \text{Dirichlet}(\beta) \]

For each document d
\[\theta \sim \text{Dirichlet}(\alpha) \]

For each word position in d
\[\text{topic } z \sim \text{Multinomial}(\theta) \]
\[\text{word } w \sim \text{Multinomial}(\phi_z) \]

Inference goals: $p(z | w, \alpha, \beta), \arg\max_{\phi, \theta} p(\phi, \theta | w, \alpha, \beta)$
Example: Latent Dirichlet Allocation (LDA)

A generative model for \(p(\phi, \theta, z, w | \alpha, \beta) \):

For each topic \(t \)
\[\phi_t \sim \text{Dirichlet}(\beta) \]

For each document \(d \)
\[\theta \sim \text{Dirichlet}(\alpha) \]

For each word position in \(d \)
- topic \(z \sim \text{Multinomial}(\theta) \)
- word \(w \sim \text{Multinomial}(\phi_z) \)

Inference goals: \(p(z | w, \alpha, \beta), \arg\max_{\phi, \theta} p(\phi, \theta | w, \alpha, \beta) \)
Example: Latent Dirichlet Allocation (LDA)

A generative model for \(p(\phi, \theta, z, w \mid \alpha, \beta) \):

For each topic \(t \)
\[\phi_t \sim \text{Dirichlet}(\beta) \]

For each document \(d \)
\[\theta \sim \text{Dirichlet}(\alpha) \]

For each word position in \(d \)
\[\text{topic } z \sim \text{Multinomial}(\theta) \]
\[\text{word } w \sim \text{Multinomial}(\phi_z) \]

Inference goals: \(p(z \mid w, \alpha, \beta) \), \(\text{argmax}_{\phi, \theta} p(\phi, \theta \mid w, \alpha, \beta) \)
Example: Latent Dirichlet Allocation (LDA)

A generative model for \(p(\phi, \theta, z, w \mid \alpha, \beta) \):

For each topic \(t \)
\[
\phi_t \sim \text{Dirichlet}(\beta)
\]

For each document \(d \)
\[
\theta \sim \text{Dirichlet}(\alpha)
\]

For each word position in \(d \)
\[
\text{topic } z \sim \text{Multinomial}(\theta) \\
\text{word } w \sim \text{Multinomial}(\phi_z)
\]

Inference goals: \(p(z \mid w, \alpha, \beta), \arg\max_{\phi, \theta} p(\phi, \theta \mid w, \alpha, \beta) \)
Example: Latent Dirichlet Allocation (LDA)

A generative model for \(p(\phi, \theta, z, w \mid \alpha, \beta) \):

For each topic \(t \)
\[\phi_t \sim \text{Dirichlet}(\beta) \]

For each document \(d \)
\[\theta \sim \text{Dirichlet}(\alpha) \]

For each word position in \(d \)
\[\text{topic } z \sim \text{Multinomial}(\theta) \]
\[\text{word } w \sim \text{Multinomial}(\phi_z) \]

Inference goals: \(p(z \mid w, \alpha, \beta), \arg\max_{\phi, \theta} p(\phi, \theta \mid w, \alpha, \beta) \)
Example: Latent Dirichlet Allocation (LDA)

A generative model for $p(\phi, \theta, z, w \mid \alpha, \beta)$:

For each topic t

$$\phi_t \sim \text{Dirichlet}(\beta)$$

For each document d

$$\theta \sim \text{Dirichlet}(\alpha)$$

For each word position in d

- topic $z \sim \text{Multinomial}(\theta)$
- word $w \sim \text{Multinomial}(\phi_z)$

Inference goals: $p(z \mid w, \alpha, \beta), \arg\max_{\phi, \theta} p(\phi, \theta \mid w, \alpha, \beta)$
Example: Latent Dirichlet Allocation (LDA)

A generative model for $p(\phi, \theta, z, w \mid \alpha, \beta)$:

For each topic t

$\phi_t \sim \text{Dirichlet}(\beta)$

For each document d

$\theta \sim \text{Dirichlet}(\alpha)$

For each word position in d

topic $z \sim \text{Multinomial}(\theta)$

word $w \sim \text{Multinomial}(\phi_z)$

Inference goals: $p(z \mid w, \alpha, \beta)$, $\arg\max_{\phi, \theta} p(\phi, \theta \mid w, \alpha, \beta)$
Some Topics by LDA on the Wish Corpus

\[p(\text{word} \mid \text{topic}) \]

“troops”

“election”

“love”
Conditional Independence

- Two r.v.s A, B are independent if $P(A, B) = P(A)P(B)$ or $P(A|B) = P(A)$ (the two are equivalent)
- Two r.v.s A, B are conditionally independent given C if $P(A, B | C) = P(A | C)P(B | C)$ or $P(A | B, C) = P(A | C)$ (the two are equivalent)
- This extends to groups of r.v.s
- Conditional independence in a BN is precisely specified by \textit{d-separation} ("directed separation")
d-Separation Case 1: Tail-to-Tail

- A, B in general dependent
- A, B conditionally independent given C (observed nodes are shaded)
- An observed C is a tail-to-tail node, blocks the undirected path A-B
d-Separation Case 2: Head-to-Tail

- A, B in general dependent
- A, B conditionally independent given C
- An observed C is a head-to-tail node, blocks the path A-B
d-Separation Case 3: Head-to-Head

- A, B in general independent
- A, B conditionally dependent given C, or any of C’s descendants
- An observed C is a head-to-head node, unblocks the path A-B
d-Separation

- Any groups of nodes A and B are conditionally independent given another group C, if all undirected paths from any node in A to any node in B are *blocked*.
- A path is blocked if it includes a node x such that either
 - The path is head-to-tail or tail-to-tail at x and $x \in C$, or
 - The path is head-to-head at x, and neither x nor any of its descendants is in C.
d-Separation Example 1

- The undirected path from A to B is unblocked by E (because of C), and is not blocked by F
- A, B dependent given C
d-Separation Example 2

- The path from A to B is blocked both at E and F
- A, B conditionally independent given F

A → E → C → F → B
Outline

1 Basics of Statistical Learning
 - Probability
 - Statistical Estimation
 - Regularization
 - Decision Theory

2 Graphical Models
 - Directed Graphical Models (Bayesian Networks)
 - Undirected Graphical Models (Markov Random Fields)
 - Factor Graph
 - Markov Chain Monte Carlo
 - Belief Propagation
 - Mean Field Algorithm
 - Maximizing Problems (Viterbi)

3 Bayesian Non-Parametric Models
 - Dirichlet Processes
Markov Random Fields

- Undirected graphical models are also called Markov Random Fields
- The efficiency of directed graphical model (acyclic graph, locally normalized CPDs) also makes it restrictive
- A clique C in an undirected graph is a fully connected set of nodes (note: full of loops!)
- Define a nonnegative potential function $\psi_C : X_C \mapsto \mathbb{R}_+$
- An undirected graphical model is a family of distributions satisfying
 \[
 \left\{ p \mid p(X) = \frac{1}{Z} \prod_C \psi_C(X_C) \right\}
 \]
- $Z = \int \prod_C \psi_C(X_C) dX$ is the partition function
Example: A Tiny Markov Random Field

- $x_1, x_2 \in \{-1, 1\}$
- A single clique $\psi_C(x_1, x_2) = e^{ax_1 x_2}$
- $p(x_1, x_2) = \frac{1}{Z} e^{ax_1 x_2}$
- $Z = (e^a + e^{-a} + e^{-a} + e^a)$
- $p(1, 1) = p(-1, -1) = e^a/(2e^a + 2e^{-a})$
- $p(-1, 1) = p(1, -1) = e^{-a}/(2e^a + 2e^{-a})$
- When the parameter $a > 0$, favor homogeneous chains
- When the parameter $a < 0$, favor inhomogeneous chains
Log Linear Models

- Real-valued feature functions $f_1(X), \ldots, f_k(X)$
- Real-valued weights w_1, \ldots, w_k

$$p(X) = \frac{1}{Z} \exp \left(- \sum_{i=1}^{k} w_i f_i(X) \right)$$
Example: The Ising Model

This is an undirected model with \(x \in \{0, 1\} \).

\[
p_\theta(x) = \frac{1}{Z} \exp \left(\sum_{s \in V} \theta_s x_s + \sum_{(s,t) \in E} \theta_{st} x_s x_t \right)
\]

- \(f_s(X) = x_s \), \(f_{st}(X) = x_s x_t \)
- \(w_s = -\theta_s \), \(w_{st} = -\theta_{st} \)
Example: Image Denoising

\[p_\theta(X \mid Y) = \frac{1}{Z} \exp \left(\sum_{s \in V} \theta_s x_s + \sum_{(s,t) \in E} \theta_{st} x_s x_t \right) \]

\[\theta_s = \begin{cases} c & y_s = 1 \\ -c & y_s = 0 \end{cases} \]
Example: Gaussian Random Field

\[p(X) \sim N(\mu, \Sigma) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp \left(-\frac{1}{2} (X - \mu)^\top \Sigma^{-1} (X - \mu) \right) \]

- Multivariate Gaussian
- The \(n \times n \) covariance matrix \(\Sigma \) positive semi-definite
- Let \(\Omega = \Sigma^{-1} \) be the precision matrix
- \(x_i, x_j \) are conditionally independent given all other variables, if and only if \(\Omega_{ij} = 0 \)
- When \(\Omega_{ij} \neq 0 \), there is an edge between \(x_i, x_j \)
Conditional Independence in Markov Random Fields

- Two group of variables A, B are conditionally independent given another group C, if:
- A, B become disconnected by removing C and all edges involving C
Outline

1 Basics of Statistical Learning
 - Probability
 - Statistical Estimation
 - Regularization
 - Decision Theory

2 Graphical Models
 - Directed Graphical Models (Bayesian Networks)
 - Undirected Graphical Models (Markov Random Fields)
 - Factor Graph
 - Markov Chain Monte Carlo
 - Belief Propagation
 - Mean Field Algorithm
 - Maximizing Problems (Viterbi)

3 Bayesian Non-Parametric Models
 - Dirichlet Processes
Factor Graph

- For both directed and undirected graphical models
- Bipartite: edges between a variable node and a factor node
- Factors represent computation

\[
\psi(A,B,C) \quad \psi(A,B,C)
\]

\[
P(A)P(B)P(C|A,B)
\]
Outline

1. Basics of Statistical Learning
 - Probability
 - Statistical Estimation
 - Regularization
 - Decision Theory

2. Graphical Models
 - Directed Graphical Models (Bayesian Networks)
 - Undirected Graphical Models (Markov Random Fields)
 - Factor Graph
 - Markov Chain Monte Carlo
 - Belief Propagation
 - Mean Field Algorithm
 - Maximizing Problems (Viterbi)

3. Bayesian Non-Parametric Models
 - Dirichlet Processes
Inference by Monte Carlo

- Consider the inference problem \(p(X_Q = c_Q \mid X_E) \) where \(X_Q \cup X_E \subseteq \{x_1 \ldots x_n\} \)

\[
p(X_Q = c_Q \mid X_E) = \int 1_{(x_Q = c_Q)} p(x_Q \mid X_E) dx_Q
\]

- If we can draw samples \(x_Q^{(1)}, \ldots, x_Q^{(m)} \sim p(x_Q \mid X_E) \), an unbiased estimator is

\[
p(X_Q = c_Q \mid X_E) \approx \frac{1}{m} \sum_{i=1}^{m} 1_{(x_Q^{(i)} = c_Q)}
\]

- The variance of the estimator decreases as \(O(1/m) \)

- Inference reduces to sampling from \(p(x_Q \mid X_E) \)

- We discuss two methods: forward sampling and Gibbs sampling
To generate a sample $X = (B, E, A, J, M)$:

1. Sample $B \sim \text{Ber}(0.001)$: $r \sim U(0, 1)$. If $(r < 0.001)$ then $B = 1$ else $B = 0$

2. Sample $E \sim \text{Ber}(0.002)$

3. If $B = 1$ and $E = 1$, sample $A \sim \text{Ber}(0.95)$, and so on

4. If $A = 1$ sample $J \sim \text{Ber}(0.9)$ else $J \sim \text{Ber}(0.05)$

5. If $A = 1$ sample $M \sim \text{Ber}(0.7)$ else $M \sim \text{Ber}(0.01)$
Inference with Forward Sampling

- Say the inference task is $P(B = 1 \mid E = 1, M = 1)$
- **Throw away** all samples except those with $(E = 1, M = 1)$

$$p(B = 1 \mid E = 1, M = 1) \approx \frac{1}{m} \sum_{i=1}^{m} 1(B(i) = 1)$$

where m is the number of surviving samples
- Can be highly inefficient (note $P(E = 1)$ tiny)
- Does not work for Markov Random Fields
Gibbs Sampler: Example $P(B = 1 \mid E = 1, M = 1)$

- Gibbs sampler is a Markov Chain Monte Carlo (MCMC) method.
- Directly sample from $p(x_Q \mid X_E)$
- Works for both graphical models
- Initialization:
 - Fix evidence; randomly set other variables
 - e.g. $X^{(0)} = (B = 0, E = 1, A = 0, J = 0, M = 1)$

P(B) = 0.001
P(E) = 0.002
P(A | B, E) = 0.95
P(A | B, ~E) = 0.94
P(A | ~B, E) = 0.29
P(A | ~B, ~E) = 0.001
P(J | A) = 0.9
P(J | ~A) = 0.05
P(M | A) = 0.7
P(M | ~A) = 0.01
P(E) = 0.002
P(B) = 0.001
Gibbs Update

- For each non-evidence variable x_i, fixing all other nodes X_{-i}, resample its value

 $x_i \sim P(x_i \mid X_{-i})$

- This is equivalent to

 $x_i \sim P(x_i \mid \text{MarkovBlanket}(x_i))$

- For a Bayesian network $\text{MarkovBlanket}(x_i)$ includes x_i’s parents, spouses, and children

 $$P(x_i \mid \text{MarkovBlanket}(x_i)) \propto P(x_i \mid Pa(x_i)) \prod_{y \in C(x_i)} P(y \mid Pa(y))$$

 where $Pa(x)$ are the parents of x, and $C(x)$ the children of x.

- For many graphical models the Markov Blanket is small.

- For example, $B \sim P(B \mid E = 1, A = 0) \propto P(B)P(A = 0 \mid B, E = 1)$
Gibbs Update

- Say we sampled $B = 1$. Then
 $X^{(1)} = (B = 1, E = 1, A = 0, J = 0, M = 1)$
- Starting from $X^{(1)}$, sample $A \sim P(A \mid B = 1, E = 1, J = 0, M = 1)$ to get $X^{(2)}$
- Move on to J, then repeat $B, A, J, B, A, J \ldots$
- Keep all later samples. $P(B = 1 \mid E = 1, M = 1)$ is the fraction of samples with $B = 1$.

- \[P(B) = 0.001 \]
- \[P(E) = 0.002 \]
- \[P(A \mid B, E) = 0.95 \]
- \[P(A \mid B, \neg E) = 0.94 \]
- \[P(A \mid \neg B, E) = 0.29 \]
- \[P(A \mid \neg B, \neg E) = 0.001 \]
- \[P(J \mid A) = 0.9 \]
- \[P(J \mid \neg A) = 0.05 \]
- \[P(M \mid A) = 0.7 \]
- \[P(M \mid \neg A) = 0.01 \]
Gibbs Example 2: The Ising Model

This is an undirected model with $x \in \{0, 1\}$.

$$p_\theta(x) = \frac{1}{Z} \exp \left(\sum_{s \in V} \theta_s x_s + \sum_{(s,t) \in E} \theta_{st} x_s x_t \right)$$
Gibbs Example 2: The Ising Model

- The Markov blanket of x_s is A, B, C, D
- In general for undirected graphical models

$$p(x_s \mid x_{-s}) = p(x_s \mid x_{N(s)})$$

$N(s)$ is the neighbors of s.

- The Gibbs update is

$$p(x_s = 1 \mid x_{N(s)}) = \frac{1}{\exp(-\theta_s + \sum_{t \in N(s)} \theta_{st} x_t) + 1}$$
Gibbs Sampling as a Markov Chain

- A Markov chain is defined by a transition matrix $T(X' \mid X)$
- Certain Markov chains have a stationary distribution π such that $\pi = T\pi$
- Gibbs sampler is such a Markov chain with $T_i((X_{-i}, x'_i) \mid (X_{-i}, x_i)) = p(x'_i \mid X_{-i})$, and stationary distribution $p(x_Q \mid X_E)$
- But it takes time for the chain to reach stationary distribution (mix)
 - Can be difficult to assert mixing
 - In practice “burn in”: discard $X^{(0)}, \ldots, X^{(T)}$
 - Use all of $X^{(T+1)}, \ldots$ for inference (they are correlated); Do not thin
Collapsed Gibbs Sampling

- In general, $\mathbb{E}_p[f(X)] \approx \frac{1}{m} \sum_{i=1}^{m} f(X^{(i)})$ if $X^{(i)} \sim p$

- Sometimes $X = (Y, Z)$ where Z has closed-form operations

- If so,

 $$
 \mathbb{E}_p[f(X)] = \mathbb{E}_p(Y) \mathbb{E}_p(Z|Y) [f(Y, Z)]
 \approx \frac{1}{m} \sum_{i=1}^{m} \mathbb{E}_p(Z|Y^{(i)}) [f(Y^{(i)}, Z)]
 $$

 if $Y^{(i)} \sim p(Y)$

- No need to sample Z: it is collapsed

- Collapsed Gibbs sampler $T_i((Y_{-i}, y_i^{'}) \mid (Y_{-i}, y_i)) = p(y_i^{'} \mid Y_{-i})$

- Note $p(y_i^{'} \mid Y_{-i}) = \int p(y_i^{'} , Z \mid Y_{-i})dZ$
Example: Collapsed Gibbs Sampling for LDA

Collapse \(\theta, \phi \), Gibbs update:

\[
P(z_i = j \mid z_{-i}, w) \propto \frac{n_{-i,j}^{(w_i)} + \beta n_{-i,j}^{(d_i)} + \alpha}{n_{-i,j}^{(\cdot)} + W \beta n_{-i,\cdot}^{(d_i)} + T \alpha}
\]

- \(n_{-i,j}^{(w_i)} \): number of times word \(w_i \) has been assigned to topic \(j \), excluding the current position
- \(n_{-i,j}^{(d_i)} \): number of times a word from document \(d_i \) has been assigned to topic \(j \), excluding the current position
- \(n_{-i,j}^{(\cdot)} \): number of times any word has been assigned to topic \(j \), excluding the current position
- \(n_{-i,\cdot}^{(d_i)} \): length of document \(d_i \), excluding the current position
Summary: Markov Chain Monte Carlo

- Forward sampling
- Gibbs sampling
- Collapsed Gibbs sampling
- Not covered: block Gibbs, Metropolis-Hastings, etc.
- Unbiased (after burn-in), but can have high variance
Outline

1. Basics of Statistical Learning
 - Probability
 - Statistical Estimation
 - Regularization
 - Decision Theory

2. Graphical Models
 - Directed Graphical Models (Bayesian Networks)
 - Undirected Graphical Models (Markov Random Fields)
 - Factor Graph
 - Markov Chain Monte Carlo
 - Belief Propagation
 - Mean Field Algorithm
 - Maximizing Problems (Viterbi)

3. Bayesian Non-Parametric Models
 - Dirichlet Processes
The Sum-Product Algorithm

- Also known as belief propagation (BP)
- Exact if the graph is a tree; otherwise known as “loopy BP”, approximate
- The algorithm involves passing messages on the factor graph
- Alternative view: variational approximation (more later)
Example: A Simple HMM

- The Hidden Markov Model template (not a graphical model)

$$
\begin{align*}
\pi_1 = \pi_2 &= 1/2 \\
P(x \mid z=1) &= (1/2, 1/4, 1/4) \\
P(x \mid z=2) &= (1/4, 1/2, 1/4) \\
\end{align*}
$$

```
R   G   B   R   G   B
\pi_1 = \pi_2 = 1/2
```

\[P(x \mid z=1)=\begin{pmatrix} 1/2 & 1/4 & 1/4 \end{pmatrix} \]
\[P(x \mid z=2)=\begin{pmatrix} 1/4 & 1/2 & 1/4 \end{pmatrix} \]
Example: A Simple HMM

- Observing $x_1 = R, x_2 = G$, the directed graphical model

- Factor graph

\[
P(z_1)P(x_1|z_1) \quad P(z_2|z_1)P(x_2|z_2)
\]
Messages

- A message is a vector of length K, where K is the number of values x takes.
- There are two types of messages:
 1. $\mu_{f \rightarrow x}$: message from a factor node f to a variable node x.
 $\mu_{f \rightarrow x}(i)$ is the ith element, $i = 1 \ldots K$.
 2. $\mu_{x \rightarrow f}$: message from a variable node x to a factor node f.
Leaf Messages

- Assume tree factor graph. Pick an arbitrary root, say z_2
- Start messages at leaves.
- If a leaf is a factor node f, $\mu_{f \rightarrow x}(x) = f(x)$

\[
\begin{align*}
\mu_{f_1 \rightarrow z_1}(z_1 = 1) &= P(z_1 = 1)P(R|z_1 = 1) = 1/2 \cdot 1/2 = 1/4 \\
\mu_{f_1 \rightarrow z_1}(z_1 = 2) &= P(z_1 = 2)P(R|z_1 = 2) = 1/2 \cdot 1/4 = 1/8
\end{align*}
\]
- If a leaf is a variable node x, $\mu_{x \rightarrow f}(x) = 1$

\[
\begin{align*}
P(z_1)P(x_1|z_1) &\quad P(z_2)P(x_2|z_2) \\
\frac{1}{4} &\quad \frac{1}{2} \\
1 &\quad 2 \\
P(x|z=1) = (1/2, 1/4, 1/4) &\quad P(x|z=2) = (1/4, 1/2, 1/4) \\
R &\quad G &\quad B &\quad R &\quad G &\quad B \\
\pi_1 = \pi_2 = 1/2
\end{align*}
\]
Message from Variable to Factor

- A node (factor or variable) can send out a message if all other incoming messages have arrived.
- Let x be in factor f_s. $\text{ne}(x) \setminus f_s$ are factors connected to x excluding f_s.

$$
\mu_{x \to f_s}(x) = \prod_{f \in \text{ne}(x) \setminus f_s} \mu_{f \to x}(x)
$$

$$
\begin{align*}
\mu_{z_1 \to f_2}(z_1 = 1) &= 1/4 \\
\mu_{z_1 \to f_2}(z_1 = 2) &= 1/8
\end{align*}
$$

\[
\begin{array}{ccc}
\text{f}_1 & \text{z}_1 & \text{f}_2 \\
1/4 & 1/2 & 1/2 \\
\end{array}
\]
Message from Factor to Variable

- Let x be in factor f_s. Let the other variables in f_s be $x_1:M$.

$$
\mu_{f_s \rightarrow x}(x) = \sum_{x_1} \cdots \sum_{x_M} f_s(x, x_1, \ldots, x_M) \prod_{m=1}^{M} \mu_{x_m \rightarrow f_s}(x_m)
$$

- In this example

$$
\mu_{f_2 \rightarrow z_2}(s) = \sum_{s' = 1}^{2} \mu_{z_1 \rightarrow f_2}(s') f_2(z_1 = s', z_2 = s)
$$

$$
= 1/4P(z_2 = s|z_1 = 1)P(x_2 = G|z_2 = s)
+ 1/8P(z_2 = s|z_1 = 2)P(x_2 = G|z_2 = s)
$$

- We get $\mu_{f_2 \rightarrow z_2}(z_2 = 1) = 1/32$, $\mu_{f_2 \rightarrow z_2}(z_2 = 2) = 1/8$
Up to Root, Back Down

• The message has reached the root, pass it back down

\[\mu_{z_2 \rightarrow f_2}(z_2 = 1) = 1 \]

\[\mu_{z_2 \rightarrow f_2}(z_2 = 2) = 1 \]
Keep Passing Down

- $\mu_{f_2 \rightarrow z_1}(s) = \sum_{s'}^{2} \mu_{z_2 \rightarrow f_2}(s') f_2(z_1 = s, z_2 = s')$

 $= 1 P(z_2 = 1|z_1 = s) P(x_2 = G|z_2 = 1)$

 $+ 1 P(z_2 = 2|z_1 = s) P(x_2 = G|z_2 = 2)$.

- We get

 $\mu_{f_2 \rightarrow z_1}(z_1 = 1) = 7/16$

 $\mu_{f_2 \rightarrow z_1}(z_1 = 2) = 3/8$
From Messages to Marginals

- Once a variable receives all incoming messages, we compute its marginal as

\[p(x) \propto \prod_{f \in \text{ne}(x)} \mu_{f \rightarrow x}(x) \]

- In this example

\[P(z_1 | x_1, x_2) \propto \mu_{f_1 \rightarrow z_1} \cdot \mu_{f_2 \rightarrow z_1} = \left(\frac{1}{4} \right) \cdot \left(\frac{7}{16} \right) = \left(\frac{7}{64} \right) \Rightarrow \left(\frac{0.7}{0.3} \right) \]

\[P(z_2 | x_1, x_2) \propto \mu_{f_2 \rightarrow z_2} = \left(\frac{1/32}{1/8} \right) \Rightarrow \left(\frac{0.2}{0.8} \right) \]

- One can also compute the marginal of the set of variables \(x_s \) involved in a factor \(f_s \)

\[p(x_s) \propto f_s(x_s) \prod_{x \in \text{ne}(f)} \mu_{x \rightarrow f}(x) \]
Handling Evidence

- Observing $x = v$,
 - we can absorb it in the factor (as we did); or
 - set messages $\mu_{x \rightarrow f}(x) = 0$ for all $x \neq v$

- Observing X_E,
 - multiplying the incoming messages to $x \notin X_E$ gives the joint (not $p(x|X_E)$):
 $$p(x, X_E) \propto \prod_{f \in \text{ne}(x)} \mu_{f \rightarrow x}(x)$$
 - The conditional is easily obtained by normalization
 $$p(x|X_E) = \frac{p(x, X_E)}{\sum_{x'} p(x', X_E)}$$
Loopy Belief Propagation

- So far, we assumed a tree graph
- When the factor graph contains loops, pass messages indefinitely until convergence
- But convergence may not happen
- But in many cases loopy BP still works well, empirically
Outline

1. Basics of Statistical Learning
 - Probability
 - Statistical Estimation
 - Regularization
 - Decision Theory

2. Graphical Models
 - Directed Graphical Models (Bayesian Networks)
 - Undirected Graphical Models (Markov Random Fields)
 - Factor Graph
 - Markov Chain Monte Carlo
 - Belief Propagation
 - Mean Field Algorithm
 - Maximizing Problems (Viterbi)

3. Bayesian Non-Parametric Models
 - Dirichlet Processes
Example: The Ising Model

The random variables x take values in $\{0, 1\}$.

$$p_{\theta}(x) = \frac{1}{Z} \exp \left(\sum_{s \in V} \theta_s x_s + \sum_{(s,t) \in E} \theta_{st} x_s x_t \right)$$
The Conditional

- **Markovian**: the conditional distribution for x_s is

 $$p(x_s \mid x_{-s}) = p(x_s \mid x_{N(s)})$$

 $N(s)$ is the neighbors of s.

- This reduces to (recall Gibbs sampling)

 $$p(x_s = 1 \mid x_{N(s)}) = \frac{1}{\exp(-\theta_s + \sum_{t \in N(s)} \theta_{st} x_t) + 1}$$
The Mean Field Algorithm for Ising Model

- Gibbs sampling would draw x_s from

$$p(x_s = 1 \mid x_{N(s)}) = \frac{1}{\exp(- (\theta_s + \sum_{t \in N(s)} \theta_{st} x_t)) + 1}$$

- Instead, let μ_s be the estimated marginal $p(x_s = 1)$

Mean field algorithm:

$$\mu_s \leftarrow \frac{1}{\exp(- (\theta_s + \sum_{t \in N(s)} \theta_{st} \mu_t)) + 1}$$

- The μ's are updated iteratively
- The Mean Field algorithm is coordinate ascent and guaranteed to converge to a local optimal (more later).
Outline

1 Basics of Statistical Learning
 - Probability
 - Statistical Estimation
 - Regularization
 - Decision Theory

2 Graphical Models
 - Directed Graphical Models (Bayesian Networks)
 - Undirected Graphical Models (Markov Random Fields)
 - Factor Graph
 - Markov Chain Monte Carlo
 - Belief Propagation
 - Mean Field Algorithm
 - Maximizing Problems (Viterbi)

3 Bayesian Non-Parametric Models
 - Dirichlet Processes
Maximizing Problems

Recall the HMM example

\[
\begin{align*}
\pi_1 &= \pi_2 = 1/2 \\
P(x \mid z=1) &= (1/2, 1/4, 1/4) \\
P(x \mid z=2) &= (1/4, 1/2, 1/4) \\
\end{align*}
\]

There are two senses of “best states” \(z_{1:N} \) given \(x_{1:N} \):

1. So far we computed the marginal \(p(z_n \mid x_{1:N}) \)
 - We can define “best” as \(z^*_n = \arg \max_k p(z_n = k \mid x_{1:N}) \)
 - However \(z^*_1:1 \) as a whole may not be the best
 - In fact \(z^*_1:1 \) can even have zero probability!

2. An alternative is to find

\[
z^*_1:N = \arg \max_{z_{1:N}} p(z_{1:N} \mid x_{1:N})
\]

- finds the most likely state configuration as a whole
- The max-sum algorithm solves this, generalizes the Viterbi algorithm for HMMs
Simple modification to the sum-product algorithm: replace \sum with \max in the factor-to-variable messages.

$$
\mu_{f_s \rightarrow x} (x) = \max_{x_1} \ldots \max_{x_M} f_s (x, x_1, \ldots, x_M) \prod_{m=1}^{M} \mu_{x_m \rightarrow f_s} (x_m)
$$

$$
\mu_{x_m \rightarrow f_s} (x_m) = \prod_{f \in \text{ne}(x_m) \setminus f_s} \mu_{f \rightarrow x_m} (x_m)
$$

$$
\mu_{x_{\text{leaf}} \rightarrow f} (x) = 1
$$

$$
\mu_{f_{\text{leaf}} \rightarrow x} (x) = f (x)
$$
Intermediate: The Max-Product Algorithm

- As in sum-product, pick an arbitrary variable node x as the root
- Pass messages up from leaves until they reach the root
- Unlike sum-product, do not pass messages back from root to leaves
- At the root, multiply incoming messages

\[
p_{\text{max}} = \max_x \left(\prod_{f \in \text{ne}(x)} \mu_{f \rightarrow x}(x) \right)
\]

- This is the probability of the most likely state configuration
Intermediate: The Max-Product Algorithm

- To identify the configuration itself, keep back pointers:
- When creating the message

\[
\mu_{f_s \rightarrow x}(x) = \max_{x_1} \ldots \max_{x_M} f_s(x, x_1, \ldots, x_M) \prod_{m=1}^{M} \mu_{x_m \rightarrow f_s}(x_m)
\]

for each \(x\) value, we separately create \(M\) pointers back to the values of \(x_1, \ldots, x_M\) that achieve the maximum.

- At the root, backtrack the pointers.
Intermediate: The Max-Product Algorithm

- **Message from leaf** f_1

 $\mu_{f_1 \rightarrow z_1}(z_1 = 1) = P(z_1 = 1)P(R|z_1 = 1) = 1/2 \cdot 1/2 = 1/4$

 $\mu_{f_1 \rightarrow z_1}(z_1 = 2) = P(z_1 = 2)P(R|z_1 = 2) = 1/2 \cdot 1/4 = 1/8$

- **The second message**

 $\mu_{z_1 \rightarrow f_2}(z_1 = 1) = 1/4$

 $\mu_{z_1 \rightarrow f_2}(z_1 = 2) = 1/8$
Intermediate: The Max-Product Algorithm

\[P(z_1) P(x_1 | z_1) \]
\[P(z_2 | z_1) P(x_2 | z_2) \]
\[P(x | z = 1) = (1/2, 1/4, 1/4) \]
\[P(x | z = 2) = (1/4, 1/2, 1/4) \]
\[\pi_1 = \pi_2 = 1/2 \]

\[\mu_{f_2 \rightarrow z_2} (z_2 = 1) \]
\[= \max_{z_1} f_2(z_1, z_2) \mu_{z_1 \rightarrow f_2} (z_1) \]
\[= \max_{z_1} P(z_2 = 1 | z_1) P(x_2 = G | z_2 = 1) \mu_{z_1 \rightarrow f_2} (z_1) \]
\[= \max (1/4 \cdot 1/4 \cdot 1/4, 1/2 \cdot 1/4 \cdot 1/8) = 1/64 \]

Back pointer for \(z_2 = 1 \): either \(z_1 = 1 \) or \(z_1 = 2 \)
Intermediate: The Max-Product Algorithm

\[
\begin{align*}
\mathbf{f}_1 & \rightarrow \mathbf{z}_1 \quad \mathbf{f}_2 \rightarrow \mathbf{z}_2 \\
P(z_1)P(x_1 | z_1) & \quad P(z_2 | z_1)P(x_2 | z_2) \\
P(z_1)P(x_1 | z_1) & \quad P(z_2 | z_1)P(x_2 | z_2) \\
P(x | z=1) & = (1/2, 1/4, 1/4) \quad P(x | z=2) = (1/4, 1/2, 1/4) \\
\pi_1 = \pi_2 & = 1/2
\end{align*}
\]

The other element of the same message:

\[
\begin{align*}
\mu_{f_2 \rightarrow z_2} (z_2 = 2) & = \max_{z_1} f_2(z_1, z_2) \mu_{z_1 \rightarrow f_2} (z_1) \\
& = \max_{z_1} P(z_2 = 2 \mid z_1) P(x_2 = G \mid z_2 = 2) \mu_{z_1 \rightarrow f_2} (z_1) \\
& = \max (3/4 \cdot 1/2 \cdot 1/4, 1/2 \cdot 1/2 \cdot 1/8) = 3/32
\end{align*}
\]

Back pointer for \(z_2 = 2 \): \(z_1 = 1 \)
Intermediate: The Max-Product Algorithm

\[P(z_1)P(x_1 | z_1) \quad P(z_2 | z_1)P(x_2 | z_2) \quad P(x | z=1) = (1/2, 1/4, 1/4) \quad P(x | z=2) = (1/4, 1/2, 1/4) \]

\[\pi_1 = \pi_2 = 1/2 \]

\[\mu_{f_2 \rightarrow z_2} = \left(\begin{array}{c} 1/64 \rightarrow z_1 = 1, 2 \\ 3/32 \rightarrow z_1 = 1 \end{array} \right) \]

At root \(z_2 \),

\[\max_{s=1,2} \mu_{f_2 \rightarrow z_2}(s) = 3/32 \]

\[z_2 = 2 \rightarrow z_1 = 1 \]

\[z_{1:2}^* = \arg \max_{z_{1:2}} p(z_{1:2} | x_{1:2}) = (1, 2) \]

In this example, sum-product and max-product produce the same best sequence; In general they differ.
From Max-Product to Max-Sum

The *max-sum algorithm* is equivalent to the max-product algorithm, but work in \log space to avoid underflow.

$$\mu_{f_{s \rightarrow x}(x)} = \max_{x_1 \ldots x_M} \log f_s(x, x_1, \ldots, x_M) + \sum_{m=1}^{M} \mu_{x_m \rightarrow f_s}(x_m)$$

$$\mu_{x_m \rightarrow f_s}(x_m) = \sum_{f \in \text{ne}(x_m) \setminus f_s} \mu_{f \rightarrow x_m}(x_m)$$

$$\mu_{x_{\text{leaf}} \rightarrow f}(x) = 0$$

$$\mu_{f_{\text{leaf}} \rightarrow x}(x) = \log f(x)$$

When at the root,

$$\log p_{\text{max}} = \max_x \left(\sum_{f \in \text{ne}(x)} \mu_{f \rightarrow x}(x) \right)$$

The back pointers are the same.
Outline

1. Basics of Statistical Learning
 - Probability
 - Statistical Estimation
 - Regularization
 - Decision Theory

2. Graphical Models
 - Directed Graphical Models (Bayesian Networks)
 - Undirected Graphical Models (Markov Random Fields)
 - Factor Graph
 - Markov Chain Monte Carlo
 - Belief Propagation
 - Mean Field Algorithm
 - Maximizing Problems (Viterbi)

3. Bayesian Non-Parametric Models
 - Dirichlet Processes
Stochastic Process

- Infinite collection of random variables indexed by a set \(\{x\} \).
- \(x \in \mathbb{R} \) for “time”
- More generally, \(x \in \mathbb{R}^d \) (e.g., space and time).
Outline

1 Basics of Statistical Learning
 - Probability
 - Statistical Estimation
 - Regularization
 - Decision Theory

2 Graphical Models
 - Directed Graphical Models (Bayesian Networks)
 - Undirected Graphical Models (Markov Random Fields)
 - Factor Graph
 - Markov Chain Monte Carlo
 - Belief Propagation
 - Mean Field Algorithm
 - Maximizing Problems (Viterbi)

3 Bayesian Non-Parametric Models
 - Dirichlet Processes
Base Distribution

- Let H be a \textit{base distribution} over a probability space Θ.
- Example: $\Theta = \mathbb{R}^d$.
- An element $\theta \in \mathbb{R}^d$ is an index to the stochastic process $H = N(0, \Sigma)$ is a base distribution over Θ, but not a stochastic process.
- $H(\theta) = N(\theta; 0, \Sigma)$ is \textit{not} a random variable (it is a fixed value for a given θ).
Stick-Breaking Construction of Dirichlet Process

\[\beta_k \sim \text{Beta}(1, \alpha) \]
\[\pi_k = \beta_k \prod_{i=1}^{k-1} (1 - \beta_i) \]
\[\theta^*_k \sim \mathcal{H} \]
\[G = \sum_{k=1}^{\infty} \pi_k \delta_{\theta^*_k} \]

- \(\delta_z \) is the point mass function on \(z \)
- \(\pi_1, \pi_2, \ldots \) are stick fragments which tend to (but not always) get smaller. Sum to 1.
- Each fragment is associated with an index \(\theta^*_k \) sampled from the base distribution \(\mathcal{H} \)
- \(G \) is a sample from a Dirichlet Process \(G \sim DP(\alpha, \mathcal{H}) \)
Properties of G

- G is a probability measure on Θ (naturally normalized), similar to the base distribution H.
- With probability one, G is a discrete measure (true even if H is a continuous measure, e.g. Gaussian).
- θ’s drawn from G have repeats. Useful to model clusters.
More Properties of Dirichlet Process

\[G \sim DP(\alpha, H) \]

- Marginals of \(G \) are Dirichlet-distributed: Let \(A_1, \ldots, A_r \) be any finite measurable partition of \(\Theta \), then

\[(G(A_1), \ldots, G(A_r)) \sim \text{Dirichlet}(\alpha H(A_1), \ldots, \alpha H(A_r)) \]

- For any measurable \(A \subseteq \Theta \),

\[\mathbb{E}[G(A)] = H(A) \quad \forall [G(A)] = \frac{H(A)(1 - H(A))}{1 + \alpha} \]

- As \(\alpha \to \infty \), \(G(A) \to H(A) \) for any measurable \(A \).
The Posterior of G

- Let $G \sim DP(\alpha, H)$ the prior.
- Suppose we observe $\theta_1, \ldots, \theta_n \sim G$.
- The posterior distribution of G given $\theta_1, \ldots, \theta_n$ is another DP:

$$G \mid \theta_1, \ldots, \theta_n \sim DP \left(\alpha + n, \frac{\alpha}{\alpha + n} H + \frac{1}{\alpha + n} \sum_{i=1}^{n} \delta_{\theta_i} \right)$$

- The predictive distribution of θ_{n+1} is

$$\theta_{n+1} \sim \frac{\alpha}{\alpha + n} H + \frac{1}{\alpha + n} \sum_{i=1}^{n} \delta_{\theta_i}$$

- There is a chance that $\theta_{n+1} = \theta_i$ for some $i \leq n$ (i.e. repeating).
The Blackwell-MacQueen Urn Scheme

- Assume samples from H do not repeat (e.g. Gaussian)
- Let $\theta^*_1 \ldots \theta^*_m$ be the unique values in $\theta_1 \ldots \theta_n$
- Let $n_k = \sum_{i=1}^{n} 1_{\theta_i = \theta^*_k}$ for $k = 1 \ldots m$.
- θ_{n+1} is generated with the following procedure:
 1. With probability $\alpha/(\alpha + n)$, draw a new value from H and assign it to θ_{n+1};
 2. Otherwise, reuse value θ^*_k with probability n_k/n.
 3. We add θ_{n+1} to the samples, and repeat this process.
The Chinese Restaurant Process

- The equality relationship in $\theta_1 \ldots \theta_n$ defines a partition of n items.
- The first customer sits at the first table.
- With probability $\alpha/(\alpha + n)$ the $(n + 1)$-th customer sits at a new table; otherwise he joins an existing table with probability proportional to the number of people already sitting there.
- *Chinese Restaurant Process* (CRP) defines a distribution over partitions of items.
- CRP + (for a new table draw a dish $\theta \sim H$; all customers sitting on this table eat the dish) = DP
Dirichlet Process Mixture Models (DPMMs)

- Infinite mixture models: unlimited number of clusters
 \[G \sim DP(\alpha, H) \]
 \[\theta_i \sim G \]
 \[x_i \sim F(\theta) \]

where \(F(\theta) \) is an appropriate distribution parametrized by \(\theta \) (e.g. multinomial).

- Each observation \(x_i \) has its own parameter \(\theta_i \).
- Many of the \(\theta_i \)'s are identical, naturally inducing a clustering structure over \(x \).
- Given \(x_1 \ldots x_n, \alpha, H, F \), use MCMC to infer \(\theta_1 \ldots \theta_n \)
References