Toward Adversarial Learning as Control

Jerry Zhu

University of Wisconsin-Madison

The 2nd ARO/IARPA Workshop on Adversarial Machine Learning May 9, 2018

Test time attacks

- ▶ Given classifier $f: \mathcal{X} \mapsto \mathcal{Y}$, $x \in \mathcal{X}$
- ▶ Attacker finds $x' \in \mathcal{X}$:

$$\begin{aligned} & \min_{x'} & & \|x'-x\| \\ & \text{s.t.} & & f(x') \neq f(x). \end{aligned}$$

"Large margin" defense against test time attacks

▶ Defender finds $f' \in \mathcal{F}$:

$$\begin{split} & \min_{f'} & \quad \|f'-f\| \\ & \text{s.t.} & \quad f'(x') = f(x), \forall \text{ training } x, \forall x' \in Ball(x,\epsilon). \end{split}$$

Heuristic implementation of large margin defense

Repeat:

- \blacktriangleright $(x, x') \leftarrow \mathsf{OracleAttacker}(f)$
- Add (x', f(x)) to (X, Y)
- $ightharpoonup f \leftarrow A(X,Y)$

Training set poisoning attacks

▶ Given learner $A: (\mathcal{X} \times \mathcal{Y})^* \mapsto \mathcal{F}$, data (X,Y), goal $\Phi: \mathcal{F} \mapsto bool$

Training set poisoning attacks

- ▶ Given learner $A: (\mathcal{X} \times \mathcal{Y})^* \mapsto \mathcal{F}$, data (X,Y), goal $\Phi: \mathcal{F} \mapsto bool$
- ▶ Attacker finds poisoned data (X', Y')

$$\begin{aligned} \min_{(X',Y'),f} & & \|(X',Y')-(X,Y)\| \\ \text{s.t.} & & f=A(X',Y') \\ & & \Phi(f)=\text{true}. \end{aligned}$$

 $defense = poisoning = machine\ teaching$

[An Overview of Machine Teaching. ArXiv 1801.05927, 2018]

defense = poisoning = machine teaching = control

[An Overview of Machine Teaching. ArXiv 1801.05927, 2018]

Attacking a sequential learner A = SGD

Learner A (plant):

- starts at $w_0 \in \mathbb{R}^d$

Attacking a sequential learner A = SGD

Learner A (plant):

- starts at $w_0 \in \mathbb{R}^d$

Attacker:

- ▶ designs $(x_1, y_1) \dots (x_T, y_T)$ (control signal)
- wants to drive w_T to some w^*
- optionally minimizes T

Nonlinear discrete-time optimal control

...even for simple linear regression:

$$\ell(w, x, y) = \frac{1}{2} (x^{\top} w - y)^2$$

$$w_t \leftarrow w_{t-1} - \eta (x_t^\top w_{t-1} - y_t) x_t$$

Nonlinear discrete-time optimal control

...even for simple linear regression:

$$\ell(w, x, y) = \frac{1}{2} (x^{\top} w - y)^2$$

$$w_t \leftarrow w_{t-1} - \eta(x_t^\top w_{t-1} - y_t) x_t$$

Continuous version:

$$\dot{w}(t) = (y(t) - w(t)^{\top} x(t)) x(t)$$

 $||x(t)|| \le 1, |y(t)| \le 1, \forall t$

Attack goal is to drive w(t) from w_0 to w^* in minimum time.

Greedy heuristic

$$\begin{aligned} \min_{x_t, y_t, w_t} & & \|w_t - w^*\| \\ \text{s.t.} & & \|x_t\| \leq 1, |y_t| \leq 1 \\ & & w_t = w_{t-1} - \eta(x_t^\top w_{t-1} - y_t) x_t \end{aligned}$$

... or further constrain x_t in the direction $w^* - w_{t-1}$

[Liu, Dai, Humayun, Tay, Yu, Smith, Rehg, Song. ICML'17]

Discrete-time optimal control

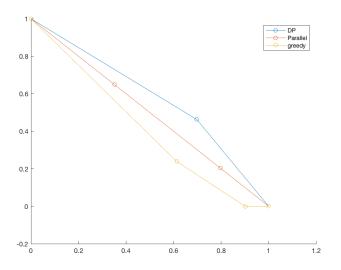
$$\min_{x_{1:T}, y_{1:T}, w_{1:T}} T$$
s.t.
$$||x_t|| \le 1, |y_t| \le 1, \quad t = 1 \dots T$$

$$w_t = w_{t-1} - \eta(x_t^\top w_{t-1} - y_t) x_t, \quad t = 1 \dots T$$

$$w_T = w^*.$$

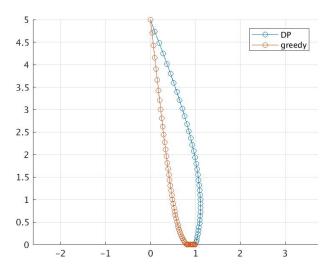
Controlling SGD squared loss

$$T=2$$
 (DTOC) vs. $T=3$ (greedy)



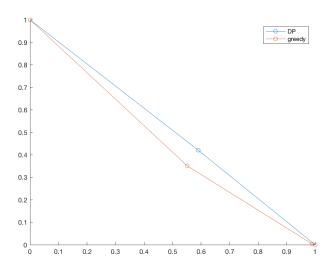
Controlling SGD squared loss (2)

$$T=37~\mathrm{(DTOC)}~\mathrm{vs.}~T=55~\mathrm{(greedy)}$$



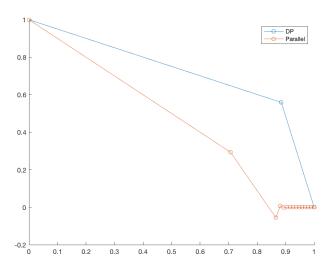
Controlling SGD logistic loss

$$T=2$$
 (DTOC) vs. $T=3$ (greedy)



Controlling SGD hinge loss

$$T=2$$
 (DTOC) vs. $T=16$ (greedy)



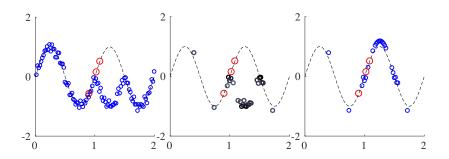
$$w_0 = (0,1), w^* = (1,0), ||x|| \le 100, |y| \le 1, \eta = 0.01$$

Detoxifying a poisoned training set

- ▶ Given poisoned (X', Y'), a small trusted (\tilde{X}, \tilde{Y})
- ▶ Estimate detox (X, Y):

$$\begin{aligned} \min_{(X,Y),f} & \quad & \|(X,Y) - (X',Y')\| \\ \text{s.t.} & \quad & f = A(X,Y) \\ & \quad & f(\tilde{X}) = \tilde{Y} \\ & \quad & f(X) = Y. \end{aligned}$$

Detoxifying a poisoned training set



[Zhang, Zhu, Wright. AAAI 2018]

Training set camouflage: Attack on perceived intention

Alice \blacksquare

Too obvious.

Training set camouflage: Attack on perceived intention

$$f=A\left(\mathbf{E}^{\mathbf{e}}\mathbf{e}$$

$$\mathsf{Alice}\ f\to \mathsf{Eve}\to \mathsf{Bob}$$

Too suspicious.

Training set camouflage: Attack on perceived intention

Alice $\mathbb{R}^{2222200002} \rightarrow \text{Eve} \rightarrow \text{Bob}$

- Less suspicious to Eve
- f' good at man vs. woman! $f' \approx f$.

Alice's camouflage problem

Given:

- ightharpoonup sensitive data S (e.g. man vs. woman)
- public data P (e.g. the whole MNIST 1's and 7's)
- \blacktriangleright Eve's detection function Φ (e.g. two-sample test)
- lacktriangle Bob's learning algorithm A and loss ℓ

Alice's camouflage problem

Given:

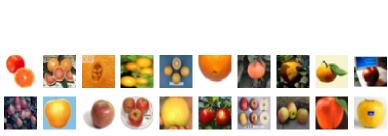
- ightharpoonup sensitive data S (e.g. man vs. woman)
- public data P (e.g. the whole MNIST 1's and 7's)
- \blacktriangleright Eve's detection function Φ (e.g. two-sample test)
- lacktriangle Bob's learning algorithm A and loss ℓ

Find D:

$$\min_{D \subseteq P} \qquad \sum_{(x,y) \in S} \ell(A(D), x, y)$$

s.t. Φ thinks D, P from the same distribution.

Camouflage examples



Camouflage examples

Sample of Sensitive Set		Sample of Camouflaged Training Set	
Class	Article	Class	Article
Christianity	Christ that often causes	Baseball	The Angels won their
	critical of themselves		Brewers today before $33,000+\ldots$
	I've heard it said		interested in finding out
	of Christs life and ministry		to get two tickets
Atheism	This article attempts to	Hockey	user and not necessarily
	introduction to atheism		the game summary for
	Science is wonderful		Tuesday, and the isles/caps
	to question scientific		what does ESPN do

Attack on stochastic multi-armed bandit

K-armed bandit

- ▶ ad placement, news recommendation, medical treatment . . .
- suboptimal arm pulled o(T) times

Attack goal:

ightharpoonup make the bandit algorithm almost always pull suboptimal arm (say arm K)

Shaping attack

- 1: **Input**: bandit algorithm A, target arm K
- 2: **for** t = 1, 2, ... **do**
- 3: Bandit algorithm A chooses arm I_t to pull.
- 4: World produces pre-attack reward $r_t^0.$
- 5: Attacker decides the attacking cost α_t .
- 6: Attacker gives $r_t = r_t^0 \alpha_t$ to the bandit algorithm A.
- 7: end for

 $lpha_t$ chosen to make $\hat{\mu}_{I_t}$ look sufficiently small compared to $\hat{\mu}_K.$

Shaping attack

For ϵ -greedy algorithm:

▶ Target arm *K* is pulled at least

$$T - \left(\sum_{t=1}^{T} \epsilon_t\right) - \sqrt{3\log\left(\frac{K}{\delta}\right)\left(\sum_{t=1}^{T} \epsilon_t\right)}$$

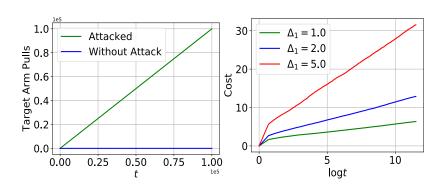
times;

Cumulative attack cost is

$$\sum_{t=1}^{T} \alpha_t = \widehat{O}\left(\left(\sum_{i=1}^{K} \Delta_i\right) \log T + \sigma \sqrt{\log T}\right).$$

Similar theorem for UCB1.

Shaping attack



Acknowledgments

Collaborators: Scott Alfeld, Ross Boczar, Yuxin Chen, Kwang-Sung Jun, Laurent Lessard, Lihong Li, Po-Ling Loh, Yuzhe Ma, Rob Nowak, Ayon Sen, Adish Singla, Ara Vartanian, Stephen Wright, Xiaomin Zhang, Xuezhou Zhang Funding: NSF, AFOSR, University of Wisconsin