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Test time attacks

I Given classifier f : X 7→ Y, x ∈ X
I Attacker finds x′ ∈ X :

min
x′

‖x′ − x‖

s.t. f(x′) 6= f(x).



“Large margin” defense against test time attacks

I Defender finds f ′ ∈ F :

min
f ′

‖f ′ − f‖

s.t. f ′(x′) = f(x),∀ training x,∀x′ ∈ Ball(x, ε).



Heuristic implementation of large margin defense

Repeat:

I (x, x′)← OracleAttacker(f)

I Add (x′, f(x)) to (X,Y )

I f ← A(X,Y )



Training set poisoning attacks

I Given learner A : (X × Y)∗ 7→ F , data (X,Y ), goal
Φ : F 7→ bool

I Attacker finds poisoned data (X ′, Y ′)

min
(X′,Y ′),f

‖(X ′, Y ′)− (X,Y )‖

s.t. f = A(X ′, Y ′)

Φ(f) = true.
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defense = poisoning = machine teaching

[An Overview of Machine Teaching. ArXiv 1801.05927, 2018]
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Attacking a sequential learner A =SGD

Learner A (plant):

I starts at w0 ∈ Rd

I wt ← wt−1 − η∇`(wt−1, xt, yt)

Attacker:

I designs (x1, y1) . . . (xT , yT ) (control signal)

I wants to drive wT to some w∗

I optionally minimizes T
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Nonlinear discrete-time optimal control

...even for simple linear regression:

`(w, x, y) =
1

2
(x>w − y)2

wt ← wt−1 − η(x>t wt−1 − yt)xt

Continuous version:

ẇ(t) = (y(t)− w(t)>x(t))x(t)

‖x(t)‖ ≤ 1, |y(t)| ≤ 1,∀t

Attack goal is to drive w(t) from w0 to w∗ in minimum time.
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Greedy heuristic

min
xt,yt,wt

‖wt − w∗‖

s.t. ‖xt‖ ≤ 1, |yt| ≤ 1

wt = wt−1 − η(x>t wt−1 − yt)xt

... or further constrain xt in the direction w∗ − wt−1

[Liu, Dai, Humayun, Tay, Yu, Smith, Rehg, Song. ICML’17]



Discrete-time optimal control

min
x1:T ,y1:T ,w1:T

T

s.t. ‖xt‖ ≤ 1, |yt| ≤ 1, t = 1 . . . T

wt = wt−1 − η(x>t wt−1 − yt)xt, t = 1 . . . T

wT = w∗.



Controlling SGD squared loss
T = 2 (DTOC) vs. T = 3 (greedy)

w0 = (0, 1, 0), w∗ = (1, 0, 0), ‖x‖ ≤ 1, |y| ≤ 1, η = 0.55



Controlling SGD squared loss (2)
T = 37 (DTOC) vs. T = 55 (greedy)

w0 = (0, 5), w∗ = (1, 0), ‖x‖ ≤ 1, |y| ≤ 1, η = 0.05



Controlling SGD logistic loss
T = 2 (DTOC) vs. T = 3 (greedy)

w0 = (0, 1), w∗ = (1, 0), ‖x‖ ≤ 1, |y| ≤ 1, η = 1.25



Controlling SGD hinge loss
T = 2 (DTOC) vs. T = 16 (greedy)

w0 = (0, 1), w∗ = (1, 0), ‖x‖ ≤ 100, |y| ≤ 1, η = 0.01



Detoxifying a poisoned training set

I Given poisoned (X ′, Y ′), a small trusted (X̃, Ỹ )

I Estimate detox (X,Y ):

min
(X,Y ),f

‖(X,Y )− (X ′, Y ′)‖

s.t. f = A(X,Y )

f(X̃) = Ỹ

f(X) = Y.



Detoxifying a poisoned training set

0 1 2

-2

0

2

0 1 2

-2

0

2

0 1 2

-2

0

2

[Zhang, Zhu, Wright. AAAI 2018]



Training set camouflage: Attack on perceived intention

Alice → Eve → Bob

Too obvious.



Training set camouflage: Attack on perceived intention

f = A ( )

Alice f → Eve → Bob

Too suspicious.



Training set camouflage: Attack on perceived intention

Alice → Eve → Bob

I Less suspicious to Eve

I Bob learns f ′ = A( )

I f ′ good at man vs. woman! f ′ ≈ f .



Alice’s camouflage problem

Given:

I sensitive data S (e.g. man vs. woman)

I public data P (e.g. the whole MNIST 1’s and 7’s)

I Eve’s detection function Φ (e.g. two-sample test)

I Bob’s learning algorithm A and loss `

Find D:

min
D⊆P

∑
(x,y)∈S

`(A(D), x, y)

s.t. Φ thinks D,P from the same distribution.
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Camouflage examples



Camouflage examples

Sample of Sensitive Set Sample of Camouflaged Training Set
Class Article Class Article

Christianity . . .Christ that often causes Baseball . . .The Angels won their
critical of themselves . . . Brewers today before 33,000+ . . .
. . .I’ve heard it said . . . interested in finding out
of Christs life and ministry . . . to get two tickets . . .

Atheism . . .This article attempts to Hockey . . . user and not necessarily
introduction to atheism. . . the game summary for. . .
. . .Science is wonderful . . .Tuesday, and the isles/caps
to question scientific. . . what does ESPN do. . .



Attack on stochastic multi-armed bandit

K-armed bandit

I ad placement, news recommendation, medical treatment . . .

I suboptimal arm pulled o(T ) times

Attack goal:

I make the bandit algorithm almost always pull suboptimal arm
(say arm K)



Shaping attack

1: Input: bandit algorithm A, target arm K
2: for t = 1, 2, . . . do
3: Bandit algorithm A chooses arm It to pull.
4: World produces pre-attack reward r0t .
5: Attacker decides the attacking cost αt.
6: Attacker gives rt = r0t − αt to the bandit algorithm A.
7: end for

αt chosen to make µ̂It look sufficiently small compared to µ̂K .



Shaping attack

For ε-greedy algorithm:

I Target arm K is pulled at least

T −

(
T∑
t=1

εt

)
−

√√√√3 log

(
K

δ

)( T∑
t=1

εt

)

times;

I Cumulative attack cost is

T∑
t=1

αt = Ô

((
K∑
i=1

∆i

)
log T + σ

√
log T

)
.

Similar theorem for UCB1.



Shaping attack
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