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ABSTRACT

In many real-world learning scenarios, acquiring a large amount of labeled training data is
expensive and time-consuming. Semi-supervised learning (SSL) is the machine learning paradigm
concerned with utilizing unlabeled data to try to build better classifiers and regressors. Unlabeled
data is a powerful resource, yet SSL can be difficult to apply in practice. The objective of this
dissertation is to move the field toward more practical and robust SSL. This is accomplished by
several key contributions.

First, we introduce the online (and active) semi-supervised learning setting, which considers
large amounts of mostly unlabeled data arriving constantly over time. An online SSL classifier
must be able to make efficient predictions at any moment and update itself in response to labeled
and unlabeled data. Previously, almost all SSL assumed a fixed dataset was available before train-
ing began, and receiving new data meant retraining a potentially slow model. We present two
families of online semi-supervised learners that reformulate the popular manifold and cluster as-
sumptions into theoretically motivated and efficient online learning algorithms.

We also invent several novel model assumptions and corresponding algorithms for the more
common batch SSL setting. Principled in nature, these assumptions are geared toward making SSL
easier to apply to a wider variety of situations in the real world. Many SSL algorithms construct
a graph over the data, to approximate an assumed (single) underlying low-dimensional manifold.
In contrast, our novel multi-manifold assumption handles data lying on multiple manifolds that
may differ in dimensionality, orientation, and density. The work also introduces a novel low-
rank assumption, based on recent developments in matrix completion, which enables multi-label
transduction with many unobserved features. Other contributions utilize several new forms of weak

side information, such as dissimilarity relationships or order preferences over predictions. Finally,



SSL is applied to sentiment or opinion analysis, exploring domain-specific assumptions and graphs
to extend SSL to this challenging area of natural language processing.

The dissertation provides extensive experimental results demonstrating that these novel SSL
learning settings and modeling assumptions lead to algorithms with significant performance bene-

fits in computer vision, text classification, bioinformatics, and other prediction tasks.



ACKNOWLEDGMENTS

First off, none of this would have been possible without the constant support and encourage-
ment of my advisor Jerry. | was quite fortunate to begin my graduate career at exactly the same
time that Jerry started his own next chapter as a professor here in Madison. It was his artificial in-
telligence course in Fall 2005 and especially the elective in advanced natural language processing
and machine learning in Spring 2006 that solidified my interest in pursuing this line of research. He
almost immediately took me under his wing, getting me excited about semi-supervised learning, as
well as the entire research process. Jerry has always been instrumental in helping formulate ideas
and master tough mathematical concepts. On numerous occasions, he has pushed me to step out
of my comfort zone, and | am especially thankful for this. It was a pleasure to have been invited
to be a co-author on our introductory textbook on semi-supervised learning; this experience and
exposure to the larger research community is largely responsible for my upcoming job! Jerry’s
sustained confidence in me over the past 5 years has left a lasting mark, and | will look back on
this period of my life with a great sense of accomplishment.

| must also thank my other committee members and professors who have contributed to my in-
terest in machine learning and desire to do research. Professor Steve Wright was the first professor
| ever made contact with at Wisconsin, when he personally notified me of my acceptance into the
Ph.D. program. This friendly, welcoming, and unpretentious tone has permeated my entire time
here. Whether in the classroom, doing research together, or figuring out how the Perl scripts on
optimization-online.org work, | have appreciated getting to work closely with Steve.

Professor Jude Shavlik was also one of the first people | met upon moving to Madison. During
the summer before officially enrolling, Jude encouraged me to read Tom Mitchell's diéasiine

Learningtext, which whetted my appetite for what lay ahead. Jude was also responsible for setting



me up to do an independent study with Professor Michael Ferris, in which | learned to use Matlab
and code my first support vector machine. Itis hard to believe how much has happened since these
early experiences.

Professor Mark Craven has also been a lasting influence on my graduate career. He and Profes-
sor David Page’s sequence of bioinformatics courses really got me excited about the potential ap-
plications of machine learning. | have since tried to ensure my research remains practical-minded,
though without sacrificing mathematical sophistication or justification. Working with Mark in
courses, TREC Genomics, and other projects has always been a pleasure. | am also especially
grateful for his frequent presence and helpful feedback at various practice talks and presentations.

| am thankful for the experience of working closely with ECE Professor Rob Nowak over the
last three or four years. Applying ideas from network tomography to the seemingly unrelated task
of reassembling texts deconstructed into bags of words provided my first opportunity for interde-
partmental collaboration and helped broaden my research perspective. | have enjoyed getting to
known Rob and his students who bring a different set of skills and technical background to the
table (or should | say whiteboard?). Rob has been directly involved in several of the projects rep-
resented in this thesis, and has often been like a second advisor to me, inviting me to participate in
his reading groups and private group workshops.

Grace Wahba served on my preliminary exam committee and has also been an inspiration. Her
course in Reproducing Kernel Hilbert Spaces forced me to push my limits, and as a result, | have
come to appreciate the long history of research in Statistics that forms the foundation for most of
modern machine learning.

Several mentors from outside the university have played an important role in preparing me for
completing this dissertation. My summer internships with Peng Xu at Google Research, and with
Ariel Fuxman and Anitha Kannan at Microsoft Research Silicon Valley, provided great hands-on
exposure trying to tackle real-world problems. | enjoyed open access to vast resources, including
large stores of unlabeled data and computing power. Peng, Ariel, and Anitha taught me a lot about
how research gets done in the "real world,” which has stayed with me as | finished my dissertation

research and planned for the future.



Vi

In addition to those named above, | could not have made it this far without the help of many co-
authors on the work presented here, as well as other projects along the way. In alphabetical order
(with current affiliations in parentheses): Rakesh Agrawal (MSR), David Andrzejewski (UW),
Charles R. Dyer (UW), Mohamed Eldawy (Google), Nathanael Fillmore (UW), Alex Furger (UW),
Arthur Glenberg (Arizona State), Bryan Gibson (UW), Lijie Heng (UW), Tushar Khot (UW),
Ming Li (Nanjing), Michael Rabbat (McGill), Ben Recht (UW), Burr Settles (CMU), John Shafer
(MSR), Aarti Singh (CMU), Bradley Strock (UW), Panayiotis Tsaparas (MSR), Jurgen Van Gael
(Cambridge), Junming Xu (UW), and Zhiting Xu (UW).

Throughout this process, | have benefited from the support and friendship of many other fellow
classmates and colleagues in Computer Sciences and beyond. There are too many specific people to
name individually, but | want to thank the members of the Al Reading Group, HAMLET (Human
and Machine Learning Experiments and Theory), Graduates Anonymous, the ECE Comm-DSP
reading group, and the Wednesday Night Drinking Club.

| could not have done this without the love and support of my family: my dad Steve, brother
Jonathan, sister-in-law Jen, and grandparents Hilda, Evelyn, and Selig. | must also thank my
aunt Martha Siegel (U. of Rochester, Ph.D. Mathematics '69) for being an inspiration throughout
graduate school. Finally, my late mother Susan would have been so proud to see her little boy get
his Ph.D. She is part of what keeps me going through the challenges and frustrations of research.

Last but not least, | owe much thanks to my best friend and soon-to-be wife Amy Becker (UW-
Madison, Ph.D. Mass Communications '10). She has been a great sounding board for ideas over
the last couple years, and | always enjoy our nerdy discussions about statistics and other shared
research interests. Amy has helped me retain my sanity through the final stages of this endeavor,
encouraging me to get things done so we can move on to the next chapter in our life together. It
has been very comforting to navigate the job market and finish our dissertations together as a team;

| would probably still be working on mine if it were not for her constant encouragement.



DISCARD THIS PAGE



TABLE OF CONTENTS

Page

ABSTRACT . . . ii

LISTOF TABLES . . . . . . e e e e e e Xi

LISTOFFIGURES . . . . . . e e e Xiii
PREFACE . . . . . e XV

| Background Material 1
1 Introduction to Semi-Supervised Learning . . . . . . ... ... oL 2
1.1 Review of Statistical Machine Learning . . . . ... ... ... ......... 2
1.2 Learning with Labeled and UnlabeledData . . . . ... ... .......... 6.
1.3 The Practical Value of Semi-Supervised Learning . . . . .. ... ... .... 1.
1.4 How is Semi-Supervised Learning Possible? . . . . . . ... ... ... .... 9.
1.5 Inductive vs. Transductive Semi-Supervised Learning . . . . . . . ... . ... 10.
1.6 Caveats . . . . . . . e 11

2 Popular Semi-Supervised Learning Methods. . . . .. ... .. .. ... ...... 13
2.1 Self-Training . . . . . . . e 13
2.2 Probabilistic Generative Models . . . . . . ... ... L o 15
2.3 Cluster-then-LabelMethods . . . . . . . .. .. ... ... ... . 18
2.4 Co-Training and Multiview Learning . . . . . . . . . . . ... . ... . ..... 19
241 Co-Training . . . . . . o o e e e e e 19

2.4.2 MultiviewLearning . . . . . . . ... 21

2.5 Graph-BasedMethods . .. .. .. ... .. ... .. .. ... .. .. ... 24
2.6 Semi-Supervised Support Vector Machines . . . ... .. ... .. ...... 35.

Vii



viii

Page
2.7 OtherModels . . . . . . . . . 40
Online SSL: New Learning Settings 42
Online Manifold Regularization . . . . . ... ... ... ... ... ... ...... 43
3.1 Online Learning with UnlabeledData . . . . ... ... ... ......... 45
3.2 From Batch to Online Semi-Supervised Learning . . . . . .. ... ... ... 45.
3.3 Sparse ApproxXimations . . . . . ... e e e e e 49
3.3.1 Buffering . . . .. . ... 49
3.3.2 RandomProjectionTree . . . . . . . . . . . . ... 50
3.4 EXPeriments . . . . . . . . 53
3.4.1 DatasetsandProtocol . . . . .. ... ... .. ... ... .. 54
3.4.2 Online MR Scales Better than BatchMR . . . . . .. ... ... ... 55
3.4.3 Online MR Achieves ComparableRisks . . . . . ... .. ... .. .. 55
3.4.4 Generalization Errorof OnlineMR . . . . . .. .. ... .. ... ... 56
3.4.5 Online MR Handles ConceptDrift . . . . .. ... ... ... ...... 58
3.5 Conclusionsand Future Work . . . . . . . . . . .. ... ... 59
OASIS: Online Active Seml-Supervised Learning . . . . . . . . ... ... ..... 62
4.1 OASIS: Online Active Seml-Supervised Learning . . . . . . ... ... .. .. 63
4.1.1 Bayesian Model for the Gap Assumption . . . .. .. .. ... .... 63
4.1.2 Online SSL via Particle Filtering . . . . . . ... ... ... ....... 66
4.1.3 Guaranteeing Bounded Time and Space Complexity Per Time Step .69. .
4.1.4 Incorporating Active Learning . . . . . . . . ... 69
4.2 Empirical Evaluation . . . . ... ... 70
421 SyntheticData . ... .. ... ... . . .. ... 72
422 Real-WorldData . . . .. ... ... .. .. 73
4.3 Conclusionsand Future Work . . . . . . . . . ... .. 75
Batch SSL: New Assumptions 78
Multi-Manifold Semi-Supervised Learning . . . . . . . . . .. ... ... ... 79
5.1 Theoretic Perspectives on Multi-Manifold Semi-Supervised Learning . . . . . 80.
5.1.1 SingleManifoldCase . . . . . . . . .. . ... ... 83

5.1.2 Multi-Manifold Case . . . . . . . . . . . . 84



Page

5.2 A Multi-Manifold Learning Algorithm . . . . . . ... ... ... ... ... .. 85
5.2.1 Hellinger Distance Graph . . . . . . . . .. . . ... 87
5.2.2 Size-Constrained Spectral Clustering . . . . ... ... ... ..... 90.

5.3 EXperiments . . . . . ... e 93
5.3.1 Datasets . . . . . . .. 93
5.3.2 Methodology & ImplementationDetails . . . . . ... ... ....... 94
533 ResultsofLargd/ . . . . . . ... .. ... 95
5.3.4 Effectof TooSmallans/ . ... ... ... ... ... .. ........ 97
5.3.5 Manifold Regularization using the Hellinger Graph . . . . . .. .. .. 98

5.4 Conclusions . . . . . . . . e e e e 98
Transduction with Matrix Completion: A Low-Rank Assumptionfor SSL . . . . . 100
6.1 Problem Formulation . . . . . .. .. ... ... 100
6.1.1 Model Assumptions . . . . . . . ... 101
6.1.2 Matrix Completion for Heterogeneous Matrix Entries . . . . . . . . .. 102

6.2 Optimization Techniques . . . . . . . . . . . . . . 104
6.2.1 Fixed Point ContinuationforMC-b . . . . . ... ... ... ... .. 104
6.2.2 Fixed Point ContinuationforMC-1 . . . . . .. ... .. ... .... 105

6.3 EXperiments . . . . . . ... e e e 106
6.3.1 Synthetic Data Experiments . . . . . .. ... ... .. ... ... .. 108
6.3.2 Music Emotions Data Experiments . . . . . . . ... ... ... ... 111
6.3.3 Yeast Microarray Data Experiments . . . .. .. ... ... ...... 112

6.4 Discussionsand FutureWork . . . . . . ... . o 113
Dissimilarity in Semi-Supervised Learning . . . . . . . . . .. ... ... 115
7.1 Dissimilarity in Binary Classification . . . .. ... ... ... ........ 116
7.2 Dissimilarity in Multiclass Classification . . . . .. . .. ... ... ...... 118
7.3 EXperiments . . . . . .. e 122
7.3.1 StandardBinaryDatasets . . . . . .. ... ... ... ... ... 122
7.3.2 Multiclass Handwritten Digit Recognition Dataset . . . . .. ... .. 125
7.3.3 Predicting Political Affiliation Using Heuristic Dissimilarity Edges . . 126

7.4 Conclusions . . . . . . 129
Regularization with Order Preferences . . . . . . . . . . . .. ... ... ..... 130
8.1 Regression with Order Preferences . . . . . . . . . . . ... ... .. .... 131.
8.2 AlLinear Program Formulation . . . . . . ... ... ... ... ........ 133

8.3 EXperiments . . . . . . . . . .. 134



Page
831 AToyExample . . . . . . . . ... ... 135
8.3.2 BenchmarkDatasets . ... .. ... ... ... ... .. ....... 136
8.3.3 Sentiment Analysisin Movie Reviews . . . . . .. ... ... ..... 140

8.3.4 Predicting Housing Prices Using Heuristic Order Preferences . . . . . 141 .
8.4 Conclusions . . . . . . . . e e e e 142
9 Graph-Based Semi-Supervised Learning for Sentiment Categorization. . . . . . . 143
9.1 A Graph for Sentiment Categorization . . . . .. ... ... ... ....... 145
9.2 Applying the Harmonic Function . . . . . . . .. .. .. ... ... ...... 146
9.3 EXPeriments . . . . . . . . . 148
9.3.1 Regression . . . . . . .. 149
9.3.2 Metriclabeling . . . .. .. ... ... .. .. ... ... 149
9.3.3 Semi-SupervisedLearning . . . . .. ... oo e 152
9.3.4 Alternate Similarity Measures . . . . . ... .. ... .. ... 152
9.35 Results .. .. .. . .. 153
9.4 Conclusions . . . . . .. e 155

IV Conclusion 156
10 Summary and Future Work . . . . . . .. ... 157
10.1 Key Contributions . . . . . . . . . . . 157
10.2 Future ChallengesforSSL . . . . . . . . . . . .. . . 159
10.2.1 “Safe” Semi-SupervisedLearning . . . . . . . .. ... ... ... 159

10.2.2 Unifying Multiple Types of Relations in Graph-Based SSL . . . . . . . 160

10.2.3 Non-topical Text Classification with Limited Supervision. . . . . . . . 161

10.2.4 Domain Adaptation Using Only Unlabeled Target-Domain Data . . . 161.

10.3 Final Summary . . . . . . . . e e 162

Bibliography . . . . . . . e 163



DISCARD THIS PAGE



Xi

LIST OF TABLES

Table Page

5.1 Conjectured finite sample performance of SSL and SL for regression ofde iy,
a > 1, smooth function (with respect to geodesic distance in the manifold cases). 82 .

5.2  Multi-manifold SSL results for handwritten digit recognition . . . . . . . ... . . ! 97
6.1 Transductive label error of six algorithms on the 24 synthetic datasets. . . . . . 100. .
6.2 Relative feature imputation error on the synthetic datasets. . . . . .. ... ... 110 .

6.3 More tasks help matrix completion & 10%, n = 400, r = 2, d = 20, 62 = 0.01). . . 111
6.4 Performance on the musicemotionsdata. . . ... ... ... .......... 112.
6.5 Performanceontheyeastdata. . . . ... .. ... .. ... ... ........ 113.

7.1 Mean error rate with varying numbers of dissimilarity edges in the USPS dataset using
the multiclass SVM formulation. . . . . . . .. .. ... .. L o oL 126

7.2 Mean error rates with and without dissimilarity edges on the politics dataset. . 128 .
8.1 Benchmark data. All improvements are statistically significant. . . . . . . . . .. 138.

8.2 Movie review sentiment analysis mean-absolute-error for each author. Statistically
significant improvements by SSL are highlighted inbold. . . . . . ... ... .. 141

8.3 Using “real-world” order preferences generated from domain knowledge. The im-
provement is statistically significant. . . . . . .. ... .. ... ... ... .. 142

9.1 Accuracy using shared & 0.2, « = 1.5) versus author-specific parameters, with
LI =090, . . o o 151

9.2 Sentiment analysis results across different labeled set sizes and methods. . . 154 . .

10.1 Summary of online semi-supervised learning contributions. . . . . .. ... .. 158 .



Xii

Table Page

10.2 Summary of new assumptions allowing unlabeled data to improve learning in various
classification and regression settings. . . . . . . . . ... oL 159.



DISCARD THIS PAGE



Xiii

LIST OF FIGURES

Figure Page
1.1 A simple example to demonstrate how semi-supervised learning is possible. . . .10. .
2.1 A graph constructed from labeled instanggsx, and unlabeled instances. . . . . . 26
2.2 Multiple interpretations of the harmonic function. . . . . . .. .. ... ...... 29
2.3 Comparison of SVM and S3VM decision boundaries. . . . . . ... ... ... .. 35.
2.4 The hinge loss versus the semi-supervised hatloss. . . . . ... ... ...... 37. .
3.1 Arandom projection tree onthe Swissrolldata. . . . . .. ... ... ... .... 51.
3.2 Runtime comparison for batch and online manifold regularization. . . . . . . . .. 55.

3.3 Online MR’s average instantaneous risk (7) approaches batch MR’s risk( f*) as
TINCrEASES. . . . . . v v v e i e e e e e e e 56

3.4 Generalization error of batch MRf§ and online MR’sf asT increases. . . .. . . . 57

3.5 Online MR (buffer) has much better generalization error than batch MR when faced
with concept drift in the rotating spiralsdataset. . . . . . . ... ... ... .... 59

4.1 “Null category” likelihood function to encourage low-density separation and an ex-
ample dataset where tracking the full posterior is beneficial over S3VM'’s point esti®ate.

4.2 Sliced-cubet synthetic data results far = 1000,1=2. . . . . . ... .. ... ... 73
4.3 Diced-cubet synthetic data results far = 1000, 1 =2. . . . . . ... .. ... ... 74
44 Resultsonreal-world OCRdata. . . . .. ... ... ... ... ... ....... 17.
5.1 Hellingerdistance. . . . . . . . . . . 389

5.2 Thegraphonthedollarsigndataset. . . . .. ... ... .............. 90.



Xiv

Figure Page
5.3 The Minimum Cost Flow problem equivalent to the step of constrdinmeans clus-

tering in which data points are reassigned to clusters (with cluster cerfieesl). . . 93
5.4 Regression MSE (a-c) and classification error (d-e) for synthetic datasets. . . . .96. .

5.5 Effect of varyingV/ on multi-manifold SSL performance for the surface-helix datasé8
5.6 Empirical comparison of single-manifold and multi-manifold assumption. . . . . . 99.
7.1 Varying the number of dissimilarity edges in the g50c and mac-windows datasetd.24. .
7.2 Changing the weight of dissimilarity edges. . . . . . ... ... ... .. .... 125
8.1 Atoy example comparing SVR and SSL, showing the benefit of order preferencels36. .

8.2 The effect of various parameters on SSL on the Benchmark gadais is test-set
mean-absolute-error. . . . . . .. L 139

9.1 The graph for semi-supervised rating inference. . . . . . ... ... ... .... 146 .

9.2 Positive Sentence Percentage (PSP) for reviews expressing each fine-grain ratirighO. . .



XV

PREFACE

This preface outlines the overall structure of the dissertation. | have organized the chapters into

several parts described below.

Part |, Background Material

Chapter 1 begins with a quick introduction to machine learning and relevant concepts, such as
regularization, that will appear throughout the dissertation. This is followed by a beginner’s intro-
duction to semi-supervised learning, providing intuitive examples to help convey the fundamental
ideas behind how unlabeled data may be able to improve the learning process.

In Chapter 2, the most popular SSL modeling assumptions and corresponding families of clas-
sification algorithms are reviewed. Two of the families of algorithms discussed—graph-based
methods, which make the so-calletnifold assumptigrand semi-supervised support vector ma-
chines (S3VMs), which assume the classes are separated by a low-density gap (also known as the

cluster assumptigr—play a key role in many of the remaining chapters.

Part I, Online SSL: New Learning Settings

Chapters 3 and 4 introduce two closely related novel SSL problem settings with great practical
value: (1) online semi-supervised learning and (2) onéinve semi-supervised learning. Most
SSL algorithms are inherently batch operations requiring all the data to be available when learning
begins. My work introduces online or incremental SSL as a natural setting for many tasks. Data

arrives in a streaming fashion, and most of it is unlabeled. In the active variant, the learner may
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actively request the labels on some incoming data to expedite the learning process. The goal in both
cases is to be able to process and learn from labeled and unlabeled items as soon as they become
available; the classifier must be able to make accurate predictions at any time, while achieving
bounded time and space complexity per time step to allow for life-long or infinite learning. These
chapters present two radically different algorithms to achieve these goals. Both are demonstrated
to work effectively on synthetic and real-world datasets.

Chapter 3 develops an online SSL framework capable of transforming any batch SSL algo-
rithm with a convex loss function into an online SSL algorithm. This is achieved by applying
online convex programming (e.g., gradient descent) to semi-supervised regularized risk minimiza-
tion objective functions. After setting up this general framework, the chapter focuses on the special
case of adapting manifold-based methods to work in this online settirige Maplementation of
this idea requires storing a graph of increasing size as more data arrives. Efficient sparse approx-
imations are introduced to remedy this problem and thus permit learning on an infinite stream of
both labeled and unlabeled data.

While Chapter 3 looks at online graph or manifold-based algorithms, Chapter 4 addresses the
gap or cluster assumption. Existing formulations based on this assumption involve solving a non-
convex optimization problem to identify a decision boundary in a low-density region. In contrast,
the fully Bayesian approach presented here introduces a new likelihood function that is sensitive to
unlabeled data, and maintains an evolving estimate of the posterior distribution over the hypothesis
space. Doing so allows the method to keep track of all local minima and avoid the pitfalls of
existing methods that locate only a single point estimate. Bounded space complexity is achieved
through patrticle filtering with a special Metropolis-Hastings resample-move step. Maintaining the
posterior also enables the use of a principled active learning selection criterion, resulting in Online

Active Seml-Supervised learning (or OASIS for short).

Part Ill, Batch SSL: New Model Assumptions

The five chapters in this part examine previously unexplored ways to use unlabeled data in

the batch SSL setting, where a set of labeled and unlabeled data is available all at once, and the
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goal is to either predict labels for the unlabeled examples (transductive learning) or leverage the
unlabeled data to learn a classifier that can make more well-informed predictions on new test data
(inductive learning). The aim is that the new assumptions introduced allow SSL to be applied
more readily and reliably in practice, as some of the existing assumptions and formulations may
be overly restrictive.

Chapter 5 relaxes the manifold assumption that is prevalent in graph-based SSL—data is typi-
cally assumed to lie on a single or multiple well-separated low-dimensional manifolds. An empir-
ically constructed graph over items (nodes) is then used to approximate this underlying structure
and define a regularizer that encourages similar predictions at nodes that are close to each other
in the graph. In our work on multi-manifold SSL, we refine this assumption to allow for data ly-
ing on multiple intersecting or overlapping manifolds that may differ in dimensionality, density,
and orientation. This is the case for many real-world computer vision datasets (e.g., multiple ob-
jects or people moving through space trace out arbitrary low-dimensional manifolds). The chapter
introduces a novel graph-construction method that avoids placing edges between different mani-
folds. Backed by statistical learning theory, a simple cluster-then-label algorithm is built on top
of this new Hellinger-distance-based graph. Empirical results demonstrate this new approach to
graph-based SSL is both accurate and robust.

Chapter 6 introduces of a ndaw-rank assumption for SSL. We pose transductive classifica-
tion as a matrix completion problem and leverage recent advances in nuclear norm minimization
to develop efficient optimization techniques. By assuming that the underlying matrices of data
items and labels are low rank, our formulation is able to handle three problems simultaneously:
(i) multi-label learning, where each item has more than one label, (ii) transduction, where most of
these labels are unspecified, and (iii) missing data, where a large number of features are missing.
The low-rank assumption effectively couples multiple related learning tasks, leading to improved
performance over baselines that treat the tasks separately. In addition, the matrix completion for-
mulation provides an elegant one-step solution to data imputation and label prediction.

Many SSL assumptions rely on some notion of similarity to help connect unlabeled data to

labeled data. For example, in a text categorization task, two documents containing many of the
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same words may be assumed to discuss the same topic and belong to the same category. As
a result, unlabeled documents may be assigned a putative category label on account of words
shared with other labeled documents; several unlabeled documents may be strung together and
treated as stepping stones to propagate labels even to documents with no words in common with
the labeled documents. However, in many applications similarity in input features (e.g., words)
does not align well with the task at hand—in opinion classification, documents may share many
of the same words but describe very different opinions. This dissertation therefore develops new
assumptions and semi-supervised regularizers that go beyond similarity. The next few chapters
consider dissimilarity, directional ordering relations, and other task-specific relationships between
items to incorporate unlabeled data.

Chapter 7 modifies existing graph-based approaches to include dissimilarity between unlabeled
items to improve binary and multiclass classification. For example, in an application about pre-
dicting Internet users’ political views, we find that it is relatively easy to automatically find users
who likely disagree with each other. However, we still do not know which view each user holds.
This chapter introduces a novel regularizer that elegantly combines readily available dissimilarity
information, optional similarity information, and small amounts of labeled data to significantly
boost classification accuracy.

Chapter 8 shows how to introduce SSL into kernel regression problems through a new regular-
izer based on known or predicted ordering relations between unlabeled items. For example, in a
real-estate application, we may be able to assert that house A is expected tohingiver aelling
price than house B because it contains more bedrooms. In many applications, such weak forms of
knowledge involving large amounts of unlabeled items can be easily built with simple heuristics
and limited manual effort. Combined with small numbers of labeled examples (e.g., houses with
known selling prices), this side information can lead to significant reductions in regression error.

Finally, Chapter 9 considers the application of SSL to sentiment categorization. In particular,
we show how to transform graph-based SSL, originally designed for binary classification or re-
gression, to the rating inference problem where the goal is to predict the number of stars (e.g., 1

to 4) assigned to a movie review by examining its text alone. A novel graph is constructed that
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encodes several domain-specific assumptions and allows the resulting graph-based SSL method to
outperform supervised baselines. This chapter provides a clear demonstration of how SSL can be

customized for a specific real-world application.

Part IV, Conclusion

Chapter 10 summarizes the key contributions made throughout the dissertation and discusses

several key remaining open questions for the future of SSL research.

Please note that much of the background material in Chapters 1-2 are drawn from a book |
co-authored with Professor Xiaojin (Jerry) Zhu (Zhu and Goldberg, 2009), and Chapters 3—-9 are
based on published papers or manuscripts under review at the time of this publication. References

within each chapter give credit to co-authors where possible.
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Chapter 1
Introduction to Semi-Supervised Learning

1.1 Review of Statistical Machine Learning

We begin by providing a brief review of basic concepts in statistical machine learning, before
presenting a comprehensive overview of the subfield of semi-supervised learning. After explaining
the many motivations for wanting to learn with small amounts of labeled data, we discuss some of
the most common methods. We try to offer intuitive explanations and key insights into how and
why these methods work, while also including enough mathematical sophistication to support the

material in the remaining chapters.

Basic Terminology and Notation

An instancex signifies a specific object and is typically represented bydimensional feature
vectorx = (z1,...,zp) € RP. Note that boldface is used to denote the whole instance, apd
to denote thel-th feature ofx. (Note: In some chapters, we use slight variations on this notation;
the differences and their meaning should be clear from context.)

A collection of instance$x;} , = {xi,...,x,} is a training sample and serves as the input
to the learning process. We will usg; to denote the-th instance’si-th feature. In most settings,
we assume these instances are independently and identically distributed (i.i.d.) according to an
underlying (but unknown to us) distributid?(x). Formally, we write this as{x; } , ) P(x).

As the name suggests, semi-supervised learning falls somewhere on the learning spectrum
between unsupervised and supervised learning. On the one hand, unsupervised learning algorithms

work on a training sample with instanceqx;}! ;. There is no teacher providing supervision as to



how individual instances should be handled—this is the defining property of unsupervised learning.

Common unsupervised learning tasks include:
e clustering: separating theinstances into groups;
e novelty detection: identifying the few instances that are very different from the rest;

e dimensionality reduction: finding a lower dimensional feature vector to represent each in-

stance, while maintaining key characteristics of the overall training sample.

In contrast, supervised learning operates on a training sample consisting df(pairs) }- ,,
wherey; is the label onk; provided by nature or some teacher (hence the reupervisedearn-
ing). Such (instance, label) pairs are called labeled data, while instances alone without labels (as
in unsupervised learning) are called unlabeled data.

Let the domain of instances b¥, and the domain of labels 8. Let P(x,y) be an (un-
known) joint probability distribution on instances and lab&isx ). Given a training sample
{(xi,y:) }y i P(x,y), supervised learning tries to find a functign X — ) in some func-
tion family F, such thatf (x) predicts the true label on future data, where(x, y) i P(x,y),
too.

The two most common types of supervised learning problems are classification and regression.
The difference lies in the domaji. Classification is the supervised learning problem to find a
classifierf that can predict one of a set of discrete claggeRegression is the problem of learning
to predict a continuous value Y using a learned regression functibnMost of this work will be
described in terms of classification, though the methods largely apply to both problem settings.

Given these classes of problems, we can begin to describe methods for finding and comparing
different f functions. By definition, the begtis the one that minimizes the following quantity

fr=argminE y)p [c(x,y, f(x))], (1.1)
fer
where the expectation is over random test data drawn ffont-) is a loss function that determines
the cost or impact of making a predictigiix) that is different from the true labgl Some typical

loss functions will be described later in this section.



Recall that the underlying distributidf(x, ) is unknown to us, so it is not possible to compute
the above expectation and firfd directly. This highlights the key task (and difficulty) in statistical
machine learning: induction—generalizing predictions from a finite training sample to future un-
seen test data. A natural first strategy to overcome this difficulty is to me#@'syserformance on
the training data (i.e., replace the unknown expectation by the average over the training sample).
This may lead to overfitting, however; thfeghat minimizes training error is likely to fit itself to the
statistical noise in the particular training sample instead of the true relationship beteea) .

As a result, the learnefl will have small training sample error, but is likely to perform less well
on future test data than some other predigtar F.

Research in computational learning theory studies the issue of overfitting and establishes rig-
orous connections between the training sample error and the true error, using a formal notion of
complexity such as the Vapnik-Chervonenkis dimension or Rademacher complexity. Informed by
computational learning theory, one reasonable training strategy is to s¢fethan“almost” min-
imizes the training sample error, while “regularizing”so that it is not too complex in a certain
sense. Regularization will play a key role in this work, as unlabeled data often enters a semi-
supervised learning method through the regularizer.

Before exploring regularization in more detail, let us introduce one final basic concept: the

i.0.d.

test sample, a separate sample of labeled instafisesy;)}"*" | "~ P(x,y) that can be used

j=n—+1
to estimatef’s future performance. A test sample is held aside and not used during training, and

therefore provides an unbiased estimate of future performance.

Regularization

Recall that, in general, we can define a loss function to specify the cost of mistakes in pre-
diction. Formally, a loss function(x, y, f(x)) € [0,00) measures the amount of loss, or cost,
of the predictionf(x) for instancex with true labely. For example, in regression we can de-
fine the squared lossx, y, f(x)) = (y — f(x))?. In classification we can define the 0/1 loss as

c(x,y, f(x)) = 1if y # f(x), and O otherwise. Alternatively, we may train a classifier based



on hinge lossc(x, y, f(x)) = max(l — yf(x),0) (assuming each labgl € {—1,1}). See Fig-
ure 2.4(a) for an illustration. In some applications (e.g., medical), the loss can depend on the
specific type of misclassification or the specific instaxce
The empirical risk off is the average loss incurred lfyon a labeled training sampléi(f) =
%Zﬁzl c(x;,yi, f(x;)). As mentioned above, it may seem natural to find thiat minimizes the

empirical risk (i.e., the principle of empirical risk minimization (ERM)):

FERM — aremin R(f), (1.2)
fer

whereF is the set of all hypotheses we consider. For classification with 0/1 loss, ERM is equivalent
to minimizing the training sample error. Howevéf;*M can overfit the particular training sample.

As a consequencegZM is not necessarily the classifier fiwith the smallest true risk on future
data.

One remedy for overfitting is to regularize the empirical risk by a regulafi4gy. The reg-
ularizerQ(f) is a non-negative functional, i.e., it takes a functjpas input and outputs a non-
negative real value. If is “simple” or “smooth” in some sens&( f) will be close to zero; iff is
too “wiggly” (i.e., it overfits and attempts to pass through all labeled training instariees) will
be large.

The regularized risk is the weighted sum of the empirical risk and the regularizer, with weight
A > 0: R(f)+AQ(f). The principle of regularized risk minimization is to find tfi¢hat minimizes

the regularized risk:
f* = argmin R(f) + ANQ(f). (1.3)
fer
The success of regularized risk minimization depends on the regul&izer Different regu-

larizers imply different assumptions of the task. For example, a commonly used regularizer for

f(x) = w'xis Q(f) = 3|lw|*>. This particular regularizer penalizes the squared norm of the

parametersv. It is helpful to view f as a point whose coordinates are determineavbiy the

parameter space. An equivalent form for the optimization problem in (1.3) is

min - R(f) (1.4)

subjectto  Q(f) < s,



wheres is determined by. Note the regularization term in (1.3) has been converted to an inequal-
ity constraint in (1.4). This formulation makes it easier to see that the squared norm regularizer
constrains the radius of a ball in the parameter space (i.e., the constraint is §i|mp1|§/ < 9).
Within the ball, the functiory (parameterized by) that best fits the training data is chosen. This
controls the complexity of and limits overfitting.

This concludes the brief overview of standard terminology and notation for statistical machine
learning, including unsupervised and supervised learning. We are now ready to introduce semi-

supervised learning in more detail.

1.2 Learning with Labeled and Unlabeled Data

Semi-supervised learning falls somewhere between unsupervised and supervised learning. In
fact, most semi-supervised learning strategies are based on extending either unsupervised or su-
pervised learning to include additional information typical of the other learning paradigm. Specif-

ically, semi-supervised learning encompasses several different settings, including:

e Semi-supervised classification and regressidso known as classification or regression
with labeled and unlabeled data (or partially labeled data), these are extensions to the su-
pervised problems of the same name. The training data consists of labiled instances
{(x:,:)}'_; andu unlabeled instancegx; é.jl‘ﬂ. In classification, the labels are discrete,
while regression operates on real-valued labels. One typically assumes that there is much
more unlabeled data than labeled data, e3> [. The goal of semi-supervised classifi-
cation (regression) is to train a classifier (regresgdirom both the labeled and unlabeled

data, such that it is better than a supervised learner trained on the labeled data alone.

e Constrained clusteringThis is an extension to unsupervised clustering. The training data
consists of unlabeled instancés; }7_,, as well as some “supervised information” about
the clusters. For example, such information can be so-catlest-linkconstraints, which
specify that two instances;, x; must be in the same cluster, acannot-linkconstraints,

which indicatex;, x; cannot be in the same cluster. One can also constrain the size of the



clusters based on limited supervision. The goal of constrained clustering is to obtain a better

clustering than the clustering from unlabeled data alone.

There are other semi-supervised learning settings, too, including dimensionality reduction (la-
beled instances’ reduced feature representation is given), learning from positive and unlabeled data
(no negative labeled instances), and so on. This work will focus on semi-supervised classification
and regression. For clarity, though, this overview section will concentrate on classification. Con-
strained clustering is discussed in detail in the book by Basu et al. (2008) and will be described
briefly in Chapter 7.

Historically, the study of semi-supervised learning has been motivated largely by its practi-
cal value in building better classifiers and regressors than supervised learning and/or at a reduced
labeling cost. Recently, researchers have also begun to consider semi-supervised learning’s theo-
retical value in understanding learning in both machines and humans. Notice the striking parallel:
children learn concepts from a combination of parental feedback (labeled data) and unsupervised
observations of the world around them (unlabeled data). We focus on the former motivation in this
work; see Chapter 7 of Zhu and Goldberg (2009) for a review of recent work in bridging human

and machine learning.

1.3 The Practical Value of Semi-Supervised Learning

Semi-supervised learning has tremendous practical value. In many tasks, there is a dearth of
labeled data. The labejanay be difficult to obtain because they require human annotators, special

devices, or expensive and slow experiments. For example,

¢ In query intent classification (Fuxman et al., 2009), an instance a Web search query
(a few words of text), and the labglis an indication of the search user’s intent (e.g., buy
a product, find a map, etc). Since queries tend to be short and ambiguous, accurate label-
ing often requires examining search results and the user’s clicking behavior. Large search
companies are interested in millions of queries, so this can be a tedious and time-consuming

process.



e In speech recognition, an instancés a speech utterance, and the laped the correspond-
ing transcript. Accurate transcription by human expert annotators can be extremely time
consuming: it took as long as 400 hours to transcribe 1 hour of speech at the phonetic level
for the Switchboard telephone conversational speech data (Godfrey et al., 1992) (recordings
of randomly paired participants discussing various topics such as social, economic, political,

and environmental issues).

¢ In natural language parsing, an instamds a sentence, and the lahglk the corresponding
parse tree. The training data, consisting of (sentence, parse tree) pairs, is known as a tree-
bank. Treebanks are time consuming to construct, and require the expertise of linguists. For
a mere 4000 sentences in the Penn Chinese Treebank, experts took two years to manually

create the corresponding parse trees (Xue and Palmer, 2005).

¢ In spam filtering, an instanceis an email, and the labglis the user’s judgment (spam or
ham). In this situation, the bottleneck is an average user’s patience to label a large number

of emails.

¢ In video surveillance, an instanceis a video frame, and the labglis the identity of the
object in the video. Manually labeling the objects in a large number of surveillance video

frames is tedious and time consuming.

e In protein-structure prediction, an instankds a DNA sequence, and the labglis the
3D folded protein structure. It can take months of expensive laboratory work by expert

crystallographers to identify the 3D structure of a single protein.

While labeled datdx, y) is difficult to obtain in these domains, unlabeled dates available in

large quantity and easy to collect: text queries can be scraped from search engine logs; speech
utterances can be recorded from radio broadcasts; text sentences can be crawled from the World
Wide Web; emails are sitting on the mail server; surveillance cameras run 24 hours a day; and DNA
protein sequences are readily available from databases. However, traditional supervised learning

methods cannot use unlabeled data in training classifiers.



Semi-supervised learning is attractive because it can potentially utilize both labeled and unla-
beled data to achieve better performance than supervised learning. From a different perspective,
semi-supervised learning may achieve the same level of performance as supervised learning, but

with fewer labeled instances. This reduces the annotation effort, which leads to reduced cost.

1.4 How is Semi-Supervised Learning Possible?

At first glance, it might seem paradoxical that one can learn anything about a prgdictor—
Y from unlabeled data. After all; is about the mapping from instangdo labely, yet unlabeled
data does not provide any examples of such a mapping. The answer lies in the assumptions one
makes about the link between the distribution of unlabeled Béata and the target label.

Figure 1.1 shows a simple example of semi-supervised learning. Let each instance be repre-
sented by a one-dimensional feature R. There are two classes: positive and negative. Consider

the following two scenarios:

1. In supervised learning, we are given only two labeled training instapgeg;) = (—1, —)
and(x2,y2) = (1,4), shown as the red (x) and blue (0) symbols in the figure, respectively.
The best estimate of the decision boundary is obviowsky 0: all instances withx < 0

should be classified as= —, while those withx > 0 asy = +.

2. In addition, we are also given a large number of unlabeled instances, shown as green dots
in the figure. The correct class labels for these unlabeled instances are unknown. However,
we observe that they form two groupEinder the assumptiothat instances in each class
form a coherent group (e.gx(x|y) is a Gaussian distribution, such that the instances from
each class cluster around a central mean), this unlabeled data gives us more information.
Specifically, it seems that the two labeled instances are not the most prototypical examples
for the classes. Owemi-supervisedstimate of the decision boundary should be between

the two groups instead, at~ 0.4.

If our assumption is true, then using both labeled and unlabeled data gives us a more reliable es-

timate of the decision boundary. Intuitively, the distribution of unlabeled data helps to identify
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Figure 1.1: A simple example to demonstrate how semi-supervised learning is possible.

regions with the same label, and the few labeled instances then provide the actual labels. In Chap-
ter 2, we review several other commonly used semi-supervised learning assumptions and example

algorithms implementing these assumptions.

1.5 Inductive vs. Transductive Semi-Supervised Learning

There are actually two slightly different semi-supervised learning settings: inductive and trans-
ductive semi-supervised learning. In supervised classification with a fully labeled training sample,
one is always interested in the performance on future test data. In semi-supervised classification,

however, the training sample contains some unlabeled data, and two distinct goals are possible.

e (Inductive) Predict the labels on future test data: Given a training sarfpte y;)}'_,,
{x; é.jjﬂ, inductive semi-supervised learning learns a functfon X — )Y so thatf
is expected to be a good predictor on future data beypoty ?:;H. Like in supervised
learning, one can estimate the performance on future data by using a separate test sample

{(xx, yx) } 7>, which is not available during training.
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¢ (TransductivePredict the labels on the unlabeled instances in the training sanGilen a
training sample{ (x;, y;)}._,, {x;}/},,, transductive learning trains a functign X' —

Y'*u so thatf is expected to be a good predictor on the unlabeled dat ... Notefis
defined only on the given training sample, and is not required to make predictions outside.

It is therefore a simpler function.

There is an interesting analogy: inductive semi-supervised learning is like an in-class exam,
where the questions are not known in advance, and a student needs to prepare for all possible
guestions; in contrast, transductive learning is like a take-home exam, where the student knows the

exam questions and needs not prepare beyond those.

1.6 Caveats

By now it should be clear why (in some cases) semi-supervised learning can use additional
unlabeled data to learn a better predictoil he key lies in the semi-supervised modssumptions
about the link between the marginal distributiétix) and the conditional distributiod(y|x).

There are many different semi-supervised learning methods, and each makes slightly different
assumptions about this link. These methods include self-training, probabilistic generative models,
co-training, graph-based models, semi-supervised support vector machines, and so on. In the
next chapter, we will introduce these methods and discuss their assumptions. Empirically, these
semi-supervised learning methods do produce better classifiers than supervised learning on some
datasets.

However, it is worth pointing out that blindly selecting a semi-supervised learning method
for a specific task will not necessarily improve performance over supervised learning. In fact,
unlabeled data can lead worse performance with the wrong link assumptions. Recently, we
observed evidence of this sensitivity to model assumptions in our empirical study (Goldberg and

Zhu, 2009). Also, multiple researchers have informally noted that semi-supervised learning does

'Some authors may describe this setting equivalently as performing supervised learning with early access to the test
sample (without the labels, of course). In both cases, labeled and unlabeled instances influence the learning process,
and the end goal is simply to predict the labels of these specific unlabeled instances.
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not alwayshelp. Little is written about it, though, except a few papers (Cozman et al., 2003;
Elworthy, 1994). This is presumably due to “publication bias” against publishing negative results.
Several examples throughout this dissertation, as well as Zhu and Goldberg (2009), test the limits
of common model assumptions to highlight this sensitivity.

In short, model assumptions play a key role in semi-supervised learning. They make up for
the lack of labeled data and can determine the quality of the predictor. However, making the
right assumptions (or detecting wrong assumptions) remains an open question in semi-supervised
learning. One aim of this work is to develop “safe” SSL methods that can mitigate the risks
involved in using unlabeled data. This may be achieved through new, weaker assumptions, such as

the multi-manifold learning assumption introduced in Chapter 5.
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Chapter 2

Popular Semi-Supervised Learning Methods

We now summarize several popular families of semi-supervised learning methods. This is
meant to highlight the variety in model assumptions, as well as set the stage for our new work

described in the remaining chapters.

2.1 Self-Training

Perhaps the simplest and easiest-to-apply semi-supervised learning technique, self-training is
characterized by the fact that the learning process uses its own predictions to teach itself. For
this reason, it is also called self-teaching or bootstrapping (not to be confused with the statistical
procedure with the same name). Self-training (Algorithm 1) can be either inductive or transductive,
depending on the nature of the predicfor

The main idea is to first trairf on labeled data. The functiofiis then used to predict the
labels for the unlabeled data. A subsgebf the unlabeled data, together with their predicted
labels, is then selected to augment the labeled data. Typicakipnsists of the few unlabeled
instances with the most confidefipredictions. The functiorf is re-trained on the now larger set
of labeled data, and the procedure repeats for some number of iterations or until some termination
criterion is met. It is also possible f¢f to be the whole unlabeled dataset. In this casndU
remain the whole training sample, but the assigned labels on unlabeled instances might vary from
iteration to iteration. One of the first successful applications of self-training was in word-sense
disambiguation (Yarowsky, 1995). There have also been recent successes in natural language

parsing (McClosky et al., 2006).
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Input: labeled datd (x;, y;)}'_,, unlabeled datdx;}:

j=l+1"

1. Initially, let L = {(x;,5;)}\=, andU = {x;}\7},,.

2. Repeat:

3. Train f from L using supervised learning.

4, Apply f to the unlabeled instancesin

5. Remove a subsétfrom U; add{(x, f(x)) | x € S} to L.

Algorithm 1: Generic self-training algorithm.

Self-Training Assumption: The model's own predictions, at least the high confidence ones,
tend to be correct. This is likely to be the case when the classes form well-separated clusters.

The major advantages of self-training are its simplicity and the fact that wrappermethod.
This means that the choice of learner foin step 3 is left completely open. For example, the
learner can be a simpleNN algorithm (see Mitchell (1997, Chapter 8)), or a very complicated
classifier. The self-training procedure “wraps” around the learner without changing its inner work-
ings. This is important for many real-world tasks like natural language processing, where the
learners can be complicated black boxes not amenable to changes.

On the other hand, it is conceivable that an early mistake madeé(lashich is not perfect to
start with, due to a small initial) can reinforce itself by generating incorrectly labeled data. Re-
training with this data will lead to an even worgen the next iteration. Various heuristics have
been proposed to alleviate this problem. Example applications of self-training, with specific details
elaborated, can be found elsewhere (Maeireizo et al., 2004; Riloff et al., 2003; Rosenberg et al.,
2005).

While theoretical analyses of self-training do exist for specific learning algorithms (Culp and
Michailidis, 2007; Haffari and Sarkar, 2007), self-training is difficult to analyze in the more general

case with an arbitrary inner classifier.
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2.2 Probabilistic Generative Models

Another natural formulation of semi-supervised learning uses probabilistic generative models.
Unlabeled data tells us how the instances fralhthe classes, mixed together, are distributed. If
we know how the instances froeachclass are distributed, we may decompose the mixture into
individual classes. This is the idea behimkture model$or semi-supervised learning.

Suppose we know that (or assume) the data comes from two Gaussian distributions, but we do
not know their parameters (the mean, variance, and prior probabilities). We can use the data (la-
beled and unlabeled) to estimate these parameters for both distributions. As we saw in Figure 1.1,
the labeled data can actually be misleading: the labeled instances are away from the means of the
true distributions. The unlabeled data, however, helps us to identify the means of the two Gaussian
distributions. Computationally, we select parameters to maximize the probability of generating
such training data from the proposed model. If we only have labeled data, finding this set of pa-
rameters is straightforward, and the maximum likelihood estimate (MLE) can often be computed
in closed form.

In semi-supervised learning, however, the dat@sebnsists of both labeled and unlabeled data.
The likelihood depends on both the labeled and unlabeled data—this is how unlabeled data might
help semi-supervised learning in mixture models. It is no longer possible to solve for the MLE
analytically. Given the labeled and unlabeled data {(x1,y1), ..., (X5, Y1), X141, - - - s X110 > the

log likelihood function (what we are trying to maximize) is defined as

I4+u
logp(D | ) = log (Hp (xiwi 10) T o pxme) (2.1)
i=l+1
I+u
= Zlogp vi | O)p(xi | y:,0) + Y logp(x; | 6), (2.2)

=1 i=l+1
wheref is a set of model parameters (e.g., Gaussian means, variances). The second term, for
unlabeled instances, is the only thing that differentiates this semi-supervised log likelihood from
the standard supervised log likelihood. Intuitively, a semi-supervised Bl need to fit both

the labeled and unlabeled instances.
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Note that the marginal probabilityx | #), the probability of generating from any class, is
defined as

C C

p(x[0) = p(xy[0) = ply|Op(x|y,6). (2.3)

y=1 y=1
The marginal probabilities therefore account for the fact that we know which unlabeled instances
are present, but not which classes they belong to. Semi-supervised learning in mixture models
amounts to optimizing or finding the MLE of (2.2).

Solving the MLE optimization problem is non-trivial. The added complexity comes from the
fact that we must treat the unobserved lahgls, . . ., v, as hidden variables, which make the
log likelihood (2.2) non-concave and hard to optimize. Fortunately, the Expectation Maximization
(EM) algorithm (Dempster et al., 1977) can be used to find a (local) MLE when unlabeled data is
present. The EM algorithm consists of an initialization step, where model parameters are assigned

initial values, and two alternating steps:

e E step: model's expected sufficient statistics are computed under the current model parame-

ters (i.e., given some current assignment of the unlabeled instances to classes)

e M step: model parameters are updated to maximize the likelihood of observing data with

these sufficient statistics (i.e., update the mean and variance of the two class distributions)

In the case of semi-supervised mixture models, the EM algorithm can be thought of as assigning
“soft labels” to the unlabeled data according to the current médel Because (2.2) is non-
concave, EM can converge only to a local optimum, and the specific one depends on the initial
parametef®. A common choice of® is the MLE on the small labeled training set.

It is instructive to note the similarity between EM and self-training. EM can be viewed as
a special form of self-training where the current classti@ssigns both labels to the unlabeled
instances, but with fractional weight$H | D, 6), whereH is a hidden variable indicating a class

label. Unlike self-training, which usually labels only the few most confident unlabeled instances,

! Direct optimization methods are possible, too, for example quasi-Newton methods like L-BFGS (Liu and Nocedal,
1989).
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the mixture-model approach updates the classifier based on all of the unlabeled data (fractionally
assigned to both classes).

Mixture Model Assumption: The data actually comes from the mixture model, where the
number of components, pripfy), and conditionap(x | y) are all correct.

Unfortunately, it can be difficult to assess the model correctness since we do not have much
labeled data. Many times one would choose a generative model based on domain knowledge
and/or mathematical convenience. However, if the model is wrong, semi-supervised learning could
actually hurt performance (see, for example, Cozman et al., 2003). One way to alleviate this danger
is to use domain knowledge to create a task-specific model (e.g., multiple components per class).
Another way is to de-emphasize the unlabeled data: scale the contribution from unlabeled data in
the semi-supervised log likelihood (2.2) by a small positive weight 1:

l4+u

I
Zlogp(yi | O)p(x; | yi, 0) + A Z log p(x; | 0).

=1 1=[+1
As A — 0, the influence of unlabeled data vanishes and one recovers the supervised learning
objective.

Mixture models provide a framework for semi-supervised learning in which the role of unla-
beled data is clear. The theoretical value of labeled and unlabeled data in the context of parametric
mixture models has been previously analyzed (Castelli and Cover, 1995; Ratsaby and Venkatesh,
1995). In practice, this form of semi-supervised learning can be highly effective if the generative
model is (nearly) correct. In a seminal empirical paper, Nigam et al. (2000) applied a mixture
of multinomial distributions for semi-supervised learning to the task of text document categoriza-
tion. Similar algorithms have been successfully applied to other tasks, too (Baluja, 1998; Fujino
et al., 2005, 2008). Some variations that use more than one mixture component per class, or down-
weight unlabeled data relative to labeled data, can be found in the literature (Callison-Burch et al.,
2004; Corduneanu and Jaakkola, 2001; Miller and Uyar, 1997; Nigam et al., 2000; Shahshahani
and Landgrebe, 1994).
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Input: labeled datdx;,vy1), ..., (x;,y), unlabeled data; 1, . . ., X; 4,
a clustering algorithrod, and a supervised learning algorithin
1. Clusterxy, . .., x4, USINg.A.
2. For each resulting cluster, |18tbe the labeled instances in this cluster:
3. If S'is non-empty, learn a supervised predictor frémfs = L(.5).
Apply fs to all unlabeled instances in this cluster.
4. If S is empty, use the predictgrtrained from all labeled data to label
the unlabeled instances in this cluster.

Output: labels on unlabeled datg, 1, . . ., ¥11u.

Algorithm 2: General purpose Cluster-then-Label algorithm.

2.3 Cluster-then-Label Methods

In the preceding section, we introduced probabilistic generative models that identify mix-
ing components from unlabeled data. Similarly, another straightforward way to perform semi-
supervised learning is to first identify clusters using unlabeled data and some unsupervised clus-
tering algorithm, then label or learn within each cluster. This high-level idea is often referred to as
a Cluster-then-Label procedure for semi-supervised classification (Algorithm 2).

In step 1, the clustering algorithm is unsupervised. In step 2, we learn one supervised pre-
dictor using the labeled instances that fall into each cluster, and use the predictor to label the
unlabeled instances in that cluster. One can use any clustering algotitind supervised learner
L. In Chapter 5, we discuss a specific Cluster-then-Label algorithm that involves identifying clus-
ters that correspond to different low-dimensional manifolds (Goldberg et al., 2009). Under certain
conditions (El-Yaniv and Gerzon, 2005; Singh et al., 2008), theoretic analysis also justifies the
Cluster-then-Label procedure (Demiriz et al., 1999; Dara et al., 2002; Goldberg et al., 2009).

Cluster-then-Label Assumption: The instances can be clustered into two or more coherent

groups, such that each cluster contains only instances belonging to a single class.
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2.4 Co-Training and Multiview Learning

Another broad class of semi-supervised learning methods rely on using multiple views (sets of
features) or multiple classifiers. We discuss one concrete example Co-Training next, followed by

a more general multiview learning framework that makes fewer assumptions.

2.4.1 Co-Training

Co-training is similar to self-training with a critical difference. In self-training, one classifier
is used to make predictions on the unlabeled data, and then this data is fed back into the algorithm
with predicted labels. In co-trainingwo classifiers are used, each (potentially) operating on a
different view of the same instance. As an example of multiple views, consider Web page classi-
fication intoStudent or Faculty Web pages. In this task, the first vies#!) can be the words on
the Web page in question. The second vie# can be the words in all the hyperlinks that point to
the Web page. The main idea is that a classifier trained on the first view assigns predicted labels,
which are given to the classifier operating on the second view, and vice versa. One can formalize
this process into &o-Trainingalgorithm (Algorithm 3), similar to that which was first proposed
by Blum and Mitchell (1998) and Mitchell (1999).

Note (U is a view-1 classifier: although we give it the complete featyieonly pays attention
to the first viewx") and ignores the second viext?. f is the other way around. They each
provide their most confident unlabeled-data predictions as the training data for the other view. In
this process, the unlabeled data is eventually exhausted.

Like self-training, co-training is a wrapper method that can work with any two classffiers
and £ that can assign a confidence score to their predictions (to decide which putatively-labeled
instances to add as training data). Co-training is widely applicable to many tasks, especially where
it is possible to obtain two views of each instance. For examples, see Collins and Singer (1999),

and Jones (2005) on named-entity classification in text processing.
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Input: labeled datd (x;, y;)}'_,, unlabeled datﬁxj}é.jl‘ﬂ, a learning spee&.
(2)

Each instance has two views = [x\" x{?].
1. Initially let the training sample b&; = Ly = {(x1,¥1), .., (X5, 1) }-
2. Repeat until unlabeled data is used up:
3. Train a view-1 classifief™") from L, and a view-2 classifief®) from L.
4, Classify the remaining unlabeled data with and f®) separately.
5. Add s top k most-confident predictionst, £V (x)) to L.
Add f®)’s top & most-confident predictions, f?)(x)) to L.

Remove these from the unlabeled data.

Algorithm 3: Co-Training algorithm.

Many co-training-style algorithms exist. While the original Co-Training algorithm picks the
top k£ most confident unlabeled instances in each view during each iteration, the so-called Co-
EM algorithm (Nigam and Ghani, 2000) is less categorical and assigns fractionally-weighted class
labels to all unlabeled instances (potentially different weights for each view). The step in which
view 1 (2) addsall augmented unlabeled instancedto(L,) is equivalent to the E-step in the EM
algorithm. The M-step involves updating the two views’ parameters using expectations from the
other view. For certain tasks, Co-EM empirically performs better than co-training. Other variations
include single-view co-training (Goldman and Zhou, 2000; Chawla and Karakoulas, 2005), single-
view multiple-learner Democratic Co-learning (Zhou and Goldman, 2004), Tri-Training (Zhou and
Li, 2005b), and Canonical Correlation Analysis (Zhou et al., 2007).

Co-training makes several assumptions. The most obvious one is the existence of two separate
viewsx = [x(!), x(?]. For a general task, the features may not naturally split into two views. To ap-
ply co-training in this case, one can randomly split the features into two artificial views. Assuming

there are two views, the success of co-training depends on the following two assumptions.
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Co-Training Assumptions:
1. Each view alone is sufficient to make good classifications, given enough labeled data.

2. The two views are conditionally independent given the class label.

The first assumption is easy to understand: we needisgfulviews. The second assumption
is subtle but strongP(x) | y,x®) = P(xV | ) and P(x® | y,xV) = P(x® | y). In other
words, if we know the true label, then knowing one view (e.gx(®) does not affect what we
will observe for the other view (it will simply b&(x(!) | y)). Thus, the instances added to one
view from the other will be representative (i.e., appear to be distributed at random likeia \dew
labeled training sample). If the assumption does not hold, the newly added instances could all be
highly similar and thus be less informative for the view-1 classifier.

It can be shown that if the two assumptions hold, co-training can learn successfully from la-
beled and unlabeled data. When the conditional independence assumption is violated, co-training
may not perform well. The assumptions have been empirically examined for some natural lan-
guage processing tasks (Nigam and Ghani, 2000), and some work has investigated relaxing the
conditional independence assumption (Johnson and Zhang, 2007b), since it is actually difficult to
find tasks in practice in which it is satisfied.

While there is some theoretical analysis of co-training (Balcan et al., 2005b; Balcan and Blum,
2006; Dasgupta et al., 2001), it is merely a means to an end: making the two clagsiiensd
@ agree (i.e., predict the same label) on the unlabeled data. Such agreement is justified by
learning theory, and the intuition is simple: there are not many candidate predictors that can agree
on unlabeled data in two views, so the hypothesis space is small. If a candidate predictor in this
small hypothesis space also fits the labeled data well, it is less likely to be overfitting, and can be

expected to be a good predictor.

2.4.2 Multiview Learning

We now discuss so-called multiview learning algorithms that explicitly enforce hypothesis

agreement, without requiring explicit feature splits or the iterative mutual-teaching procedure.
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These methods build on the regularized risk minimization framework introduced in Section 1.1.
Recall that this approach tries to minimizes the weighted combination of an empirical training er-
ror with a regularization term. For semi-supervised learning, one can often define the regularizer

Q(f) using the unlabeled data. For example,

Q(f) = Qsn(f) + NQssr.(f), (2.4)

whereQgy(f) is a supervised regularizer, atds; (f) is a semi-supervised regularizer that de-
pends on some available unlabeled dai¥henQsgs; (f) indeed fits the task (makes the correct
assumption about what “simple” means), such regularization can produce afbettan that pro-
duced by s, (f) alone. As we will see in this section and in later ones, specific fornissof
result in different semi-supervised learning algorithms.

In particular for multiview learning§2ss.(f) can be defined to encourage agreement among
multiple hypotheses. We assume the algorithm has accesséparate learners. This is the
generalization of co-training té views, hence the name multiview. However, this is a bit of a
misnomer, as each learner need not use a different view. The learners might be of different types
(e.g., decision tree, neural network, etc.) but take the same featuxegsofhput. This is similar
to an ensemble method (Opitz and Maclin, 1999). In either case, the goal is foileheners to

produce hypothese§ . ..., f; to minimize the following regularized risk:

l
(fl*v R fl:) - argmlnfl ..... Z <ZC leyﬂf’u Xi ) + AlQSL(f’J)
v=1 =1
k l+u

+>\2ZZ Z (x4, fi(Xi), fo(xi)). (2.5)

t=1 v=1 i=l+1
The intuition is for each hypothesis to not only minimize its own empirical risk, but also to agree

with all the other hypotheses.

2Note that\’ is a weight on the SSL component in (2.4), whilavas used previously in (1.3) to refer to the weight
on the entire regularizer in the regularized risk minimization objective.
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The first part of the multiview regularized risk is simply the sum of individual (supervised)
regularized risks. The second part defines a semi-supervised regularizer, which measures the dis-

agreement of thoske hypotheses on unlabeled instances:

QSSL(fl, cee fk) = Z Z Z C(Xi7 ft(Xi)7 fv(xz)) (2.6)

Notice pairwise disagreement is defined as the loss on an unlabeled ingtameen pretending
fi(z;) is the label andf,(x;) is the prediction. Such disagreement is to be minimized. The final

prediction for inputx is the label least objected to by all the hypotheses:

y(x) = argmin ) _ e(x,y, f3(x))-

yey v=1

Differentc and(2s;, lead to different instantiations of multiview learning.

In a regularized risk framework, the semi-supervised learning assumption is encoded in the
regularizerQ)ss;, (2.6) to be minimized. In this case, we assume multiple hypothéses., f;
should agree with each other. However, to ensure that multiview learning is better than single-view
learning, the set of agreeing hypotheses also needs temalésubset of the hypothesis spage
Consider a counter-example where/alliews contain the same exact features; this will leaé to
identical hypotheses that, by definition, all agree, but do not narrow down the hypothesis space.
Thek identical hypotheses can still be anywhereFinThis leads to the following.

Multiview Learning Assumption: Multiview learning is effective when a set of hypotheses
fi,..., fr agree with each other. Furthermore, there are not many such agreeing sets, and the
agreeing set happens to have a small empirical risk.

Multiview learning was proposed as early as 1993 (de Sa, 1993). It has been applied to semi-
supervised regression (Brefeld et al., 2006; Sindhwani et al., 2005b), and the more challenging
problem of classification with structured outputs (Brefeld et al., 2005; Brefeld and Scheffer, 2006).
Some theoretical analysis on the value of agreement among multiple learners can be found in the

literature (Farquhar et al., 2006; Leskes, 2005; Sindhwani and Rosenberg, 2008; Yu et al., 2008).
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2.5 Graph-Based Methods

Graph-based semi-supervised learning plays a large role in this work. Much of the work pre-
sented in the rest of this dissertation falls into this class of algorithms. In most cases, graph-based
semi-supervised learning starts by constructing a graph from the training data. Given training data
{(xi,yi) Yier, {x; 1155, the vertices are the labeled and unlabeled instaffea$}’_, U{x;}\*}, .

Clearly, this is a large graphif, the unlabeled data size, is big.

Once the graph is built, learning will involve assignipgalues to the vertices in the graph.

This is made possible by edges that connect labeled vertices to unlabeled vertices. The graph edges
are usually undirected. An edge between two vertiges; traditionally represents the similarity

of the two instances; some of our work extends this to include other types of relationships; Let

be the edge weight. The idea is thatif is large, then the two labels, y; are expected to be the

same.

Before diving into specific algorithms, one can imagine a process that spreads or propagates
labels from the labeled vertices to the unlabeled vertices across the graph edges, with the amount of
propagation depending on the edge weights. Note that intermediate unlabeled vertices can be used
as stepping stones, allowing a label to spread to unlabeled instances that are not directly connected
to any labeled vertices. Therefore, the graph edge weights are of great importance. People often

specify the edge weights with one of the following heuristics:

¢ Fully connected graph, where every pair of vertiggst; is connected by an edge. The edge
weight decreases as the Euclidean distdpce— x;||, or some other problem-dependent
distance, increases. One popular weight function is

% |]2
Wjj = exp (——HXZ a1 ) ) (2.7)

202
where o is known as the bandwidth parameter and controls how quickly the weight de-
creases. This weight has the same form as an unnormalized Gaussian probability density

function, and it is also called a Gaussian kernel or a Radial Basis Function (RBF) kernel.

Note the weight is 1 wher; = x;, and 0 wherj|x; — x,|| approaches infinity.
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e kNN graph. Each vertex defines itsnearest neighbor (kNN) vertices in some distance
metric. Note ifx; is amongx;’s kNN, the reverse is not necessarily true; may not be
amongx;’s KNN. Typically, a symmetrized kNN graph is usexl; andx; are connected if
one of them is among the other’s KNN. This means that a vertex may have moredtiges.

One may use an unweighted kNN graphxjfx; are connected, the edge weighy is the
constant 1. The weight can also be a function of the distance as in (2x),xlf are not
connectedy;; = 0. KNN graphs automatically adapt to the density of instances in feature
space: in a dense region, the kNN neighborhood radius will be small; in a sparse region, the

radius will be large. Empirically, kNN graphs with smaltend to perform well.

e bh-matching graph. A graph constructed usingitfmeatching method ensures that the weights

are symmetric (without the ad hoc symmetrization post-processing step used in building
kNN graphs). The method solves an optimization problem to select a subset of possible
edges with maximum weight (or minimum distance), subject to constraints that each vertex
is connected to exactly other vertices. Once a sparse set of edges is chosen, they may be
weighted using (2.7) or set to weight 1, with all other weights equal to 0. It has recently
been shown that this problem can be solved quickly using loopy belief propagation (Huang
and Jebara, 2007). Also, empirical evidence (Jebara et al., 2009) suggests using balanced
b-matching graphs like this can lead to significantly improved semi-supervised learning per-

formance on some datasets.

e «NN graph. We connect;, x; if ||x; — x;|| < e. The edges can either be unweighted or
weighted. Ifx;, x; are not connected,;; = 0. eNN graphs are easier to construct than kNN

graphs, but are less adaptive to changes in density.

These are very generic methods. Of course, better graphs can be constructed if one has knowledge
of the problem domain and can define better distance functions, connectivity, and edge weights.
For example, in Chapter 9, we consider edge weights based on a opinion-centric similarity function

to handle the sentiment analysis task of assigning opinion ratings to movie reviews.
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Figure 2.1: A graph constructed from labeled instansgsx, and unlabeled instances. The label
of unlabeled instance; will be affected more by the label af;, which is closer in the
graph, than by the label of,, which is farther in the graph, even thoughis closer
in Euclidean distance.

Figure 2.1 shows an example graph, where the edges are sparsg, x£be the two labeled
instances (vertices). Recall that the edges represent the “same label” assumption. For an unlabeled
instancexs, its labelys is assumed to be similar to its neighbors in the graph, which in turn are
similar to the neighbor’s neighbors. Through this sequence of unlabeled data steppingstsnes,
assumed to be more similar $o than toy,. This is significant because; is in fact closer ta, in
Euclidean distance; without the graph, one would assyynremore similar tay,.

Formally, this intuition corresponds to estimating a label functioon the graph so that it
satisfies two things: 1) the predictigf{x) is close to the given label on labeled vertices; 2)

f should be smooth on the whole graph. This can be expressed in a regularization framework,
where the former is encoded by the loss function, and the latter is encoded by a special graph-
based regularizer. In the following sections, we introduce several different graph-based semi-
supervised learning algorithms. They differ in the choice of the loss function and the regularizer.
For simplicity, we will assume binary labejsc {—1,1}.

The idea of encouraging the target function to be smooth on a graph (i.e., using a graph as
the basis for a regularizer) is very natural. Therefore, there are many related methods that exploit
this idea, including mincut (Blum and Chawla, 2001) and randomized mincut (Blum et al., 2004),

Boltzmann machines (Getz et al., 2005; Zhu and Ghahramani, 2002), graph random walk (Azran,
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2007; Szummer and Jaakkola, 2001), harmonic function (Zhu et al., 2003), local and global con-
sistency (Zhou et al., 2003), manifold regularization (Belkin et al., 2006; Sindhwani et al., 2005a,
2009), kernels from the graph Laplacian (Chapelle et al., 2002; Dai and Yeung, 2007; Kapoor
et al., 2005; Kondor and Lafferty, 2002; Smola and Kondor, 2003; Zhu et al., 2004b), spectral
graph transducer (Joachims, 2003), local averaging (Wang and Zhang, 2006; Wu aha&ch
2007), density-based regularization (Bousquet et al., 2004; Chapelle and Zien, 2005), alternating
minimization (Wang et al., 2008), boosting (Chen and Wang, 2008; Loeff et al., 2008), and the tree-
based Bayes model (Kemp et al., 2003). In this section, we will discuss three of these methods:

mincut, harmonic function, and manifold regularization.

Mincut Formulation

Graph-based semi-supervised learning can be formulated as a graph-cut problem (Blum and
Chawla, 2001; Blum et al., 2004). Here, the positive labeled instances are treated as “source”
vertices, as if some fluid is flowing out of them and through the edges. Similarly, the negative
labeled instances are “sink” vertices, where the fluid would disappear. The objective is to find a
minimum set of edges whose removal blocks all flow from the sources to the sinks. This defines a
“cut,” or a partition of the graph into two sets of vertices. The “cut size” is measured by the sum
of the weights on the edges defining the cut. Once the graph is split, the vertices connecting to the
sources are labeled positive, and those to the sinks are labeled negative.

Mathematically, we want to find a functiofix) € {—1, 1} on the vertices, such thgtx;) =

y; for labeled instances, and the cut size is minimized:

Z W (2.8)

i,5:f (i) #f (x5)
The above quantity is the cut size: if an edge is removed, it must be true th#tx;) # f(x;).
We can also cast mincut as a regularized risk minimization problem, with an appropriate loss
function and regularizer:
l+u
min o0 Z () + Y wig(f(x:) = F(x5))%. (2.9)

f(x)e{-1,1} Py
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The first term is a loss function that enforces the constraint on labeled instafices: = ;.
Note that we defineo - 0 = 0. To minimize the regularized riskf,(x;) will be forced to equal
y; on labeled vertices. The second term is a regularizer corresponding to the cut size (scaled by
a constant factor of 4). Recall we requif¢x) € {—1,1} for all unlabeled verticex, so cut
edges contributdw;; to the regularizer’s value. i; andx; are not connected, then; = 0 by
definition, and if the edge exists and is not cut, thf¢x;) — f(x,) = 0.

The mincut regularized risk problem is an integer programming problem begaisseon-
strained to produce discrete values -1 or 1. However, efficient polynomial-time algorithms exist
to solve it. It is clear that mincut is a transductive learning algorithm, because the sofugson

defined only on the vertices, not on the ambient feature spaceRk&).,

Harmonic Function

The second graph-based semi-supervised learning algorithm we introduce is the harmonic
function (Zhu et al., 2003). In our context, a harmonic function is a function that has the same
values as given labels on the labeled data, and satisfies the weighted average property on the unla-

beled data:

I4+u ]
flx)) = Zk:llfjj’“f(x’“), j=1+1...0+u (2.10)

k=1 Wik

In other words, the value assigned to each unlabeled vertex is the weighted average of its neighbors’
values. The harmonic function is the solution to the same problem in (2.9), except that w¢ relax
to produce real values:

I I+u

min 00 Y (y; — f(x:)* + Y wi(f(x:) — f(x))? (2.12)

Fifeer 4 ig—1

The relaxation has a profound effect: now there is a closed-form solutiofi foresented at the
end of this section). The solution is unique (under mild conditions) and globally optimal. The
drawback of the relaxation is that in the solutigf{x) is now a real value in—1, 1] that does

not directly correspond to a label. This can however be addressed by threshf(gingt zero
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(a) The electric network interpretation. (b) The random walk interpretation.

Figure 2.2: The harmonic function can be interpreted as the voltages of an electric network, or the
probability of reaching a positive vertex in an absorbing random walk on the graph.

to produce discrete label predictions (i.e.f{) >= 0, predicty = 1, and if f(x) < 0, predict
y = —1).

The harmonic functiorf has many interesting interpretations. For example, one can view the
graph as an electric network (see Figure 2.2(a)). Each edge is a resistor with resigtapcer
equivalently conductance;;. Suppose we connect the positive labeled vertices to the positive side
of a 1-volt battery, and connect the negative vertices to the ground. Then the voltage established at
each node is the harmonic function vafue.

The harmonic functionf can also be interpreted by a random walk on the graph (see Fig-
ure 2.2(b)). Imagine a particle at vertexn the next time step, the particle will randomly move to
another vertexy with probability proportional tav;;: P(j|i) = % The random walk continues
in this fashion until the particle reaches one of the labeled vertices. This is known as an absorbing
random walk, where the labeled vertices are absorbing states. Under this interpretation, the value
of the harmonic function at vertex—f(x;)—is the probability that a particle starting at vertex
eventually reaches a positive labeled vertex.

While a closed-form solution exists and will be presented next, there is also an iterative pro-
cedure to compute the harmonic function in (2.11). This approach may be useful for very large

datasets. Initially, sef(x;) = y; for the labeled vertices = 1...[, and some arbitrary value

3This, and the random walk interpretation below, is true when the label$0, 1}. When the labelg € {—1,1},
the voltages correspond to a shifted and scaled harmonic function.
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for the unlabeled vertices. Iteratively update each unlabeled verfexedue with the weighted

average of its neighbors:
l+u
Zj; wi; f (%)
l+u :
§:j:11”m

This iterative procedure is guaranteed to converge to the harmonic function, regardless of the ini-

f(x;) < (2.12)

tial values on the unlabeled vertices. This procedure is sometimes called label propagation, as it
“propagates” labels from the labeled vertices (which are fixed) gradually through the edges to all
the unlabeled vertices.

Finally, let us discuss the closed-form solution for the harmonic function. The solution is easier

to present using some matrix notation.

e LetW be an(l + u) x (I + u) weight matrix, whose, j-th element is the non-negative edge

weightw;;. The graph is undirected, $& is a symmetric matrix.

e Let D be the(l 4+ u) x (I + u) diagonal matrix withD;; = Zé.*:’i wyfori=1...14+u.

Note each diagonal ent®;; is the weighted degree of vertéx.e., the sum of edge weights

connected ta).

e The unnormalized graph Laplacian matfixs defined ad = D — W, an(l +u) x (I 4+ u)

matrix.
o Letf = (f(x1),...,f(x1.))" be the vector off values on all vertices.

Now the regularizer in (2.11) can be written as

I+u

5 w6k — fxi))? = €L (2.13)

ij=1
Assuming the vertices are ordered so that the labeled ones are listed first, we can partition the

Laplacian matrix into four sub-matrices
Ly L

L= . (2.14)
Lul Luu
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We also partitiorf into (f;, f,) and lety; = (y1,...,u)". Then solving the constrained optimiza-

tion problem using Lagrange multipliers with matrix algebra leads to the harmonic solution

fi = v
fu = _Luu_lLulyl- (215)

Manifold Regularization

Both mincut and the harmonic function are transductive learning algorithms. They each learn
a functionf that is restricted to the labeled and unlabeled vertices in the graph. There is no direct
way to predict the label on an unseen test instatigaunless one repeats the computation after
inserting a new vertex fox* into the graph. This is clearly undesirable if we want predictions
on a large number of test instances; we need an inductive semi-supervised learning algorithm.
Another drawback of the two previous approaches is that thef(ftx = y for labeled instances.

It is not uncommon for real datasets to have some noisy labels, so we woulfitiikbe able to
occasionally disagree with the given labels.

Manifold regularization (Belkin et al., 2006; Sindhwani et al., 2005a) addresses these two is-
sues. Itis an inductive learning algorithm by definifgn the whole feature spac¢g:: X — R.
Formally, manifold regularization assumes that the marginal distributio is supported on a
Riemannian manifold (see Lebanon (2005, Chapter 2)). That is, even though the data is observed
in a D-dimensional ambient feature space, the data really lies on a lower-dimensional manifold
governed by only a few degrees of freedom. For example, handwritten digits may be represented
using16 x 16 = 256 pixel intensities, while intrinsically instances of the same digit class only
vary according to a few underlying dimensions like rotation, size, etc. The labeled and unlabeled
vertices, and hence the graph, are a random realization of the underlying manifold.

The method works as follows: is regularized to be smooth with respect to the graph, through
the use of the graph Laplacian as in (2.13). However, this regularizer alone only cdntitods
value of f on thel + u training instances. To prevetitfrom being too wiggly (and thus having
inferior generalization performance) outside the training samples, it is necessary to include a sec-

ond regularization term, such &¢||*> = [ _, f(z)*dz. Putting them together, the regularizer for
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manifold regularization becomes
Q(f) = M fII? + Aof T LE, (2.16)

where\;, A > 0 control the relative strength of the two terms. To allgvto disagree with the
given labels, we can simply use the squared loss funetiory, f(x)) = (y — f(x))?, which does
not greatly penalize small deviations. Other loss functions, such as hinge loss, are also possible.

The complete manifold regularization problem is

l
ity D0 = SG)* 4 WIS+ D L. (2.17)
The so-called representer theorem (Kimeldorf and Wahba, 1971) guarantees that the fptimal
admits a finite { + u, to be exact) dimensional representation. There exist efficient algorithms
(e.g., quadratic programming solvers) to find the optirhal
Beyond the unnormalized graph Laplacian mafrjxhe normalized graph Laplacian matgx
is often used too:

L=DY?LDY? =] - D V2WD~Y? (2.18)

This results in a slightly different regularization term

T 1 . f(Xi) f(X') ;
S . _ J
f'Cf 5 ”E 1wZJ (\/_“ \/7 . (2.19)

Other variations like'? or £?, wherep > 0, are possible too. They replace the mattix (2.17).
These all encode the same overall label-smoothness assumption on the graph, but with varying
subtleties. We discuss several properties dielow.

Graph-Based Semi-Supervised Learning AssumptionThe labels are “smooth” with respect
to the graph, such that they vary slowly on the graph. That is, if two instances are connected by a
strong edge, their labels tend to be the same.

The notion of smoothness can be made precise by spectral graph theory (Chung, 1997), which
is concerned with the eigenvectors and eigenvalues of a graph, represented by its Laplacian matrix

L or £.* We will analyze the unnormalized Laplaciéanwhich has the following properties:

4A vector ¢ is an eigenvector of a square matdx if A¢p = \¢, where) is the associated eigenvalue. We will
focus on eigenvectors of unit lengft|| = 1.
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e [ hasl+u eigenvalues (some may be the same) and corresponding eigenjéators) } ..

These pairs are called the graph spectrum. The eigenvectors are orthaﬁgBmglzz 0 for
i 7.
e The Laplacian matrix can be decomposed into a weighted sum of outer products:

l4+u

L= Z Niditi (2.20)

e The eigenvalues are non-negative real numbers, and can be sorted as
0=XM < <...< )i (2.21)

In particular, the graph has connected components if and onlyNf = ... = X\, = 0.
The corresponding eigenvectors are constant on individual connected components, and zero

elsewhere.

Because the eigenvectors are orthogonal and have unit length, they form a (Risis ifhis
means any on the graph can be decomposed into

I+u

£=3 o (2.22)

i=1
wherea;,i = 1...1 + u are real-valued coefficients. After some matrix algebra, we see that the
graph regularizer (2.13) can be written as

l4+u
£TLF =) af). (2.23)

=1
The regularizer is small if, for each eithera; or \; is close to zero. Intuitively, penalizing with
£ Lf will lead to f solutions that assign large magnituldg| only to “smooth” (low frequency)
basis vectors (those with smalj). In particular,f " Lf is minimized and equals zero fifis in the

subspace spanned by, . . . , ¢, for a graph witht connected components:

k
f=) ai, a;=0fori>k (2.24)

i=1
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For a connected graph, only = 0, and¢, = (1/v1+u,...,1/+/1+u). Any constant vectof
thus has coefficients, # 0, a; = 0 for i > 1, and is a minimizer of " Lf. Being a constant, it is
certainly the most smooth function on the graph.

Therefore, we see the connection between graph-based semi-supervised learning methods and
the graph spectrum. This exposes a major weakness of this family of methods: the performance is
sensitive to the graph structure and edge weights. As a result, the graph-construction problem has
received considerable attention in recent years (Balcan et al., 2005a; Hein and Maier, 2006; Hein
et al., 2007; Carreira-Perpinan and Zemel, 2005; Szlam et al., 2008; Zhang and Lee, 2006; Jebara
etal., 2009).

Graph-based semi-supervised learning can be applied to many real-world problems, including
opinion classification in text (Goldberg and Zhu, 2006; Pang and Lee, 2004)—discussed in detalil
in Chapter 9, word-sense disambiguation (Niu et al., 2005; Pham et al., 2005), and others (Grady
and Funka-Lea, 2004; Levin et al., 2004; Krishnapuram et al., 2005). Some theoretical analyses
of graph-based learning exist (Johnson and Zhang, 2007a; von Luxburg et al., 2004; Zhang and
Ando, 2006).

Note that many of the graph-based semi-supervised learning algorithms have moderate to high
computational complexity, ofte(u?) or more. Fast computation to handle large amounts of
unlabeled data is important and has been the subject of a great deal of recent research (Argyriou,
2004, Delalleau et al., 2005; Garcke and Griebel, 2005; Herbster et al., 2009; Mahdaviani et al.,
2005; Sindhwani et al., 2005c; Tsang and Kwok, 2006; Yu et al., 2005; Zhu and Lafferty, 2005).
Alternatively, one can perform online semi-supervised learning (Goldberg et al., 2008) where the
labeled and unlabeled instances arrive sequentially. They are processed and discarded soon after to
keep the computation and storage requirement low. This topic is discussed in detail in Chapters 3
and 4.

There are several extensions to the simple undirected graph that encodes similarity between
vertices. In certain applications like the Web, the edges naturally are directed (Burges and Platt,
2005; Lu and Getoor, 2003; Zhou et al., 2005). Edges can also be defined on more than two

vertices to form hypergraphs (Zhou et al., 2006). Some graph edges might encode dissimilarities
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Figure 2.3:(a) With only labeled data, the linear decision boundary that maximizes the distance to
any labeled instance is shown in solid line. Its associated margin is shown in dashed
lines. (b) With additional unlabeled data, under the assumption that the classes are
well-separated, the decision boundary seeks a gap in unlabeled data.

instead (Goldberg et al., 2007; Tong and Jin, 2007). The dataset can consist of multiple mani-
folds, requiring more advanced graph-construction methods (Goldberg et al., 2009; Wang et al.,
2007; Zhou and Burges, 2007). Multiple manifolds and dissimilarity will be discussed in detail in
Chapters 5 and 7, respectively.

2.6 Semi-Supervised Support Vector Machines

Finally, we discuss a natural semi-supervised learning extension to Support Vector Machines
(SVMSs). The intuition behind Semi-Supervised Support Vector Machines (S3VMs) is very simple.
Figure 2.3(a) shows a completely labeled dataset. If asked to draw a straight line to separate the
two classes, one reasonable place is right in the middle. This is the linear decision boundary found
by SVMs and is shown in Figure 2.3(a). It maximizes the geometric margin—the distance to the
nearest positive or negative instance—which is illustrated using dashed lines.

What if we have many additional unlabeled instances, distributed as in Figure 2.3(b)? The
SVM decision boundary would cut through dense unlabeled data regions. If we assume that the
two classes are well-separated, this seems undesirable. Instead, the best decision boundary now
seems to be the one in Figure 2.3(b), which falls in the gap between the unlabeled data. This new

decision boundary still separates the two classes in the labeled data, though its margin is smaller
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than the SVM decision boundary. The new decision boundary is the one found by S3VMs, and is
defined by both labeled and unlabeled data.

To formalize this intuition, we briefly review supervised SVMs and then describe S3VMs pre-
cisely. For simplicity, we will assume that there are two classes {—1,1}. We will also
assume that the decision boundary is lineaRih i.e., a decision boundary is defined by the set
{x|f(x) = w'x+b =0}, wherew € R is the parameter vector that specifies the orientation
and scale of the decision boundary, dnd R is an offset parameter. The decision boundary is
thus defined byf(x) = 0, and the label ok is predicted byign(f(x)).

The primal SVM optimization problem can be written as an unconstrained, regularized risk

minimization problem

I
min Y max(1 — y;(w'x; +b),0) + \|w|?, (2.25)

W7b .
i=1

where the first term corresponds to the hinge loss function
c(x,y, f(x)) = max(l — y(w'x +b),0), (2.26)

and the second term corresponds to the regulafizéy = ||w||?>. The weight\ balances the two

objectives. It turns out the margin can be measuret/ds||, so minimizing||w||* is equivalent

into the maximizing the margin. See Bishop (2006) for an easy-to-follow derivation of (2.25).
This formulation thus attempts to find the maximum margin separation, but allows some training
instances to be on the wrong side of the decision boundary.

We plot the hinge loss as a functiomgf(x) = y(w x-+b) in Figure 2.4(a). For well-separated
training instances, we havgf(x) > 1. Therefore, the hinge loss penalizes instances which are
on the correct side of the decision boundary, but within the mafgia (/f(x) < 1); it penalizes
instances even more if they are on the wrong side of the decision boundésy) (< 0).

We can now introduce S3VMs, which were originally called Transductive Support Vector Ma-
chines (TSVMs) when proposed by Vapnik (1998), because their theory was developed to give
performance bounds (theoretical guarantees) on the given unlabeled sample. However, since the
learned functionf naturally applies to unseen test instances, it is more appropriate to call them
S3VMs.
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Figure 2.4:(a) The hinge loss(x, y, f(x)) = max(1 — y(w'x + b),0) as a function ofy f(x).
(b) The hat losg(x, ¢, f(x)) = max(1 — |w x + b|,0) as a function off (x).

Recall that in Figure 2.3(b), the intuition of S3VM is to plabeth labeled and unlabeled
instances outside the margin. We have seen how this can be encouraged for the labeled instances
using the hinge loss in Figure 2.4(a). But what about unlabeled instances? Without a label, we
do not know whether an unlabeled instances on the correct or the wrong side of the decision
boundary.

One way to incorporate the unlabeled instardeto learning is to treat the label prediction on
x, i.e.,y = sign(f(x)), as the putative label of (reminiscent of self-training). Then we can apply

the hinge loss function ox:

c(x,9, f(x)) = max(1—g(w'x+0),0)
= max(1 — sign(w ' x4+ b)(w'x +b),0)
= max(1 — |w'x+b[,0), (2.27)

where the last step follows frorign(z)z = |z|. The new loss function, called the hat loss due to
its shape, is plotted in Figure 2.4(b). Note thexis is nowf(x) instead ofy f(x). Conveniently,
this loss does not need the real lapgit is completely determined by(x).
The hat loss has a few key properties that make it desirable for semi-supervised learning.

Specifically, it prefersf(x) > 1 or f(x) < —1 (where there is 0 loss on the “rim” of the hat).
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These are instances outside the margin, far away from the decision boundary. On the other hand,
it assigns a large loss value to unlabeled instanceswithkc f(x) < 1, especially the ones with
f(x) = 0. These are unlabeled instances within the margin—the oneg thaincertain about.
We now incorporate the hat loss on the unlabeled {iaf 2:;“ into the SVM objective (2.25)
to form the S3VM objective:

l +u
min » max(1 — y;(w'x; +0),0) + At [w[” + A2 Y max(l—|w'x; +0,0). (2.28)

w,b 4

Clearly, the S3VM objective prefers unlabeled instances to be outside the margin. Equivalently,
we want to find a decision boundary in a low density gap in the dataset, such that few unlabeled
instances are close to it. Although we used the name “hat loss,” it is more natural to view (2.28)
as regularized risk minimization with hinge loss on labeled instances, and a regularizer involving

these hat-shaped functions:

I+u
Q(f) = MlIwl® + X2 Y max(1 — |w'x; +b],0). (2.29)

j=i+1

Note that a class balance constraint is usually applied on top of (2.28). For poorly understood
reasons, the majority (or even all) of the unlabeled instances are sometimes predicted in only
one of the classes. To correct for this imbalance, one heuristic is to constrain the predicted class
proportion (or sum of continuous predictions) on the unlabeled data, so that it is the same as the
class proportion on the labeled dafad"""% | f(x;) = 1 31, ui.

Finally, it is important to point out a computational difficulty of S3VMs: the objective func-
tion (2.28) is non-convex. For comparison, note that the SVM objective (2.25) is a convex function
of the parameters/, b (i.e., due to the convexity of the hinge loss, the squared norm, and the fact
that the sum of convex functions is convex). Minimizing a convex function is relatively easy, as
such a function has a well-defined “bottom.” On the other hand, the hat loss function is non-convex.
With the sum of a large number of hat functions, the S3VM objective (2.28) is hon-convex with
multiple local minima. A learning algorithm can get trapped in a sub-optimal local minimum and

never find the global minimum solution.

5Just as for SVMs, it is straightforward to form the dual problem and apply the kernel trick to S3VMs to learn
non-linear classifiers.
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Due to their non-convex nature, early S3VM implementations were limited by the problem
size they could solve (Bennett and Demiriz, 1999; Demirez and Bennett, 2000; Fung and Man-
gasarian, 1999). The first widely used implementation was by Joachims (1999b), which handles
the non-convexity by first assigning putative labels to the unlabeled instances and then iteratively
swapping positive and negative putative labels until the objective stops decreasing. Since then,
the research in S3VMs has focused on how to efficiently find a near-optimum solution (Chapelle
et al., 2008). Among the many optimization techniques used are semi-definite programming (De
Bie and Cristianini, 2004, 2006; Xu and Schuurmans, 2005; Xu et al., 2008), gradient search
with smooth approximation to the hat function (Chapelle and Zien, 2005), deterministic anneal-
ing (Sindhwani et al., 2006), a continuation method (Chapelle et al., 2006a), the concave-convex
procedure (CCCP) (Collobert et al., 2006), difference of convex (DC) programming (Wang and
Shen, 2007), a fast algorithm for linear S3VMs (Sindhwani and Keerthi, 2006), Branch and Bound
(Chapelle et al., 2006b), and stochastic gradient descent (combined with the manifold assump-
tion) (Karlen et al., 2008).

S3VM Assumption: The classes are well-separated, such that the decision boundary falls
into a low density region in the feature space, and does not cut through dense unlabeled data. If
this assumption does not hold, this algorithm may be led astray. Some recent work relaxes the
assumption on unlabeled data (Yang et al., 2009).

Several other methods also exploit the idea that unlabeled data should not be very close to
the decision boundary. This intuition can be implemented in Gaussian Processes with the null
category noise model (Lawrence and Jordan, 2005; Chu and Ghahramani, 2004), as information
regularization (Szummer and Jaakkola, 2002; Corduneanu and Jaakkola, 2003, 2005), maximum
entropy discrimination approach (Jaakkola et al., 1999), or entropy minimization (Grandvalet and
Bengio, 2005; Lee et al., 2006; Mahdaviani and Choudhury, 2008). We explore another idea based

on this assumption in Chapter 4.
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2.7 Other Models

Many other semi-supervised learning methods and problem formulations exist in the literature,

including:
e learning based on constrained clustering (Li et al., 2008);

e semi-supervised regression (Brefeld et al., 2006; Cortes and Mohri, 2006; Sindhwani et al.,

2005b; Zhou and Li, 2005a);

e |earning in structured output spaces, where the lapale more complex than scalar values,
e.g., sequences, graphs, etc. (Altun et al., 2005; Ando and Zhang, 2005; Brefeld and Scheffer,
2006; Lafferty et al., 2004; Taskar et al., 2003; Tsochantaridis et al., 2005; Zien et al., 2007);

e expectation regularization (Mann and McCallum, 2007), which may have deep connections
with class proportion constraints (Chapelle and Zien, 2005; Chapelle et al., 2006b; Joachims,

1999b; Zhu et al., 2003);

e learning from positive and unlabeled data, when there is no negative labeled data (Denis
et al., 2002; Liu et al., 2002; Lee and Liu, 2003; Elkan and Noto, 2008);

e self-taught learning (Raina et al., 2007) and the universum (Weston et al., 2006), where the
unlabeled data may not come from the positive or negative classes, but rather from another

third class of instances in the same general domain;

e model selection with unlabeled data (Kaariainen, 2005; Madani et al., 2005; Schuurmans

and Southey, 2001), and feature selection (Li and Guan, 2008);

¢ inferring label sampling mechanisms (Rosset et al., 2005), multi-instance learning (Zhou and
Xu, 2007), multi-task learning (Liu et al., 2008), and deep learning (Ranzato and Szummer,

2008; Weston et al., 2008);
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e advances in learning theory for semi-supervised learning (Amini et al., 2009; Balcan and
Blum, 2005; Cortes et al., 2008; El-Yaniv et al., 2008; Rigollet, 2007; Singh et al., 2008;
Sinha and Belkin, 2008; Sokolovska et al., 2008).

Further readings on these and other semi-supervised learning topics can be found in a book col-
lection (Chapelle et al., 2006c), a survey article (Zhu, 2005), a book written for computational

linguists (Abney, 2007), and a technical report (Seeger, 2001).
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Chapter 3

Online Manifold Regularization

We now begin describing our novel contributions to the field of semi-supervised learning. The
next two chapters introduce the extremely practical setting of online semi-supervised learning,
along with algorithms that operate within this regime. We consider the scenario where (mostly un-
labeled) data arrives sequentially in large volume, and it is impractical to store it all before learning.
When we first proposed this setting, we focused on implementing the manifold assumption in an
online learning algorithm (Goldberg et al., 2008), to be discussed in the current chapter. More
recently, in conjunction with the cluster or gap assumption, we consider the addition of active
learning, whereby the classifier may request some specific labels. Online active semi-supervised
learning (OASIS) is discussed in Chapter 4.

Consider a robot with a video camera. The robot continuously takes high frame-rate video of
its surroundings, and its goal is to learn the names of various objects in the video. However, the
robot receives names from humans only very rarely. The robot is thus in a semi-supervised learning
situation: true labels are provided for only a small number of objects, and the rest are unlabeled.

There are several challenges that distinguish this situation from standard semi-supervised learn-
ing. The robot cannot afford to store the massive amount of mostly unlabeled video before learning;
it requires an “anytime classifier” that is ready to use at all times, yet is continuously improving;
training must be cheap; and since the world is changing, it should adapt to non-stationarity in
classification.

These challenges are well-studied in online learning. However, our situation is also different
from standard online learning. Online learning (classification) traditionally assumes that every

input point is fully labeled; it cannot take advantage of unlabeled data. But in the robot case, the
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vast majority of the input will be unlabeled. It seems wasteful to throw away the unlabeled input,
as it may contain useful information.

We propose an online manifold regularization algorithm that differs from standard online learn-
ing in that it learns even when the input point is unlabeled. The contributions of this chapter

include:

e We introduce an algorithm based on convex programming in kernel space with stochastic
gradient descent, which inherits the theoretical guarantees of standard online algorithms.
This combination of semi-supervised and online learning is novel. Although kernel-based
online convex programming is well-understood (Zinkevich, 2003; Kivinen et al., 2004), we
are not aware of prior application in the semi-supervised learning setting. To the best of
our knowledge, the closest prior work is the multiview hidden Markov perceptron (Brefeld
et al., 2005, Section 4), which heuristically combines multiview learning with the online
perceptron. However, that work did not enjoy the theoretical guarantees afforded by the
online learning literature, nor did it directly apply to other semi-supervised learning methods.
In contrast, our method can lift any batch semi-supervised learning method with a convex
regularized risk to the online setting. As a special case, we will discuss online manifold

regularization in detail.

e Since a nive implementation of our algorithm does not scale well, we focus on efficient,
practical approximations. Specifically, we discuss two sparse approximations using buffer-

ing and online random projection trees.

e Experiments show our algorithm achieves risk and generalization accuracy comparable to

standard batch manifold regularization, while each step runs quickly.

Our online semi-supervised learning setting is an interesting direction for further theoretical de-
velopment, paving the way for semi-supervised learning to work on real-world life-long learning

tasks.
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3.1 Online Learning with Unlabeled Data

Consider an input sequenge. . . z7, wherez, € R? is the feature vector of theth data point.
Most (possibly even the vast majority) of the points are unlabéledy occasionally is a point,
accompanied by its labg} € ). This setting differs dramatically from traditional online learning
where all points are labeled. L&f be a kernel over and’Hx the corresponding reproducing
kernel Hilbert space (RKHS) (Sotkopf and Smola, 2002). Our goal is to learn a good predictor

f € Hg from the sequence. Importantly, learning proceeds in an iterative fashion:

1. At time ¢ an adversary picks, andy;, not necessarily from any distributiaR(z, y) (al-
though we will later assume i.i.d. for predicting future data). The adversary preseots

the learner.
2. The learner makes predictigi(x;) using its current predictof;.

3. With a small probabilityp;, the adversary reveals the lahgl Otherwise, the adversary

abstains, and;, remains unlabeled.
4. The learner updates its predictor g, based on; and the adversary’s feedbagk if any.

We hope the functiong; ... fr “do well” on the sequence, and on future input if the data is

indeed i.i.d. The exact performance criteria is defined below.

3.2 From Batch to Online Semi-Supervised Learning

Before introducing our online learning algorithm, we first reviestchsemi-supervised learn-
ing, where the learner has access to the labeled and unlabeled data all at once. Recall that a
unifying framework for batch semi-supervised learning is risk minimization with specialized semi-
supervised regularizers. That is, one seeks the solytion argmin ., J(f), where thebatch

semi-supervised regularized rigk

=1

T
A
S el (o)) + I+ Aessi (),
t=1
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wherel is the number of labeled point§(y,) is an indicator function equal to 1 if; is present
(labeled) and O otherwise,is a convex loss functiony;, A, are regularizer weightd,f|| x is the
RKHS norm off, andQsg;, is the semi-supervised regularizer which dependg eandz; . .. zr.
Specific choices oflss;, lead to familiar semi-supervised learning methods, such as manifold
regularization (Belkin et al., 2006; Sindhwani et al., 2005a; Zhu et al., 2003). For this work, we

consider manifold regularization{3ss;, to be

Qsst = 57 Z wet(f(ws) = f(20))

st 1

Recall thatw,; is a graph edge weight encoding the similarity between instancasdz;.

A key observation is that for certain semi-supervised learning methods, the batch fisk
is the sum ofconvex functionen f. These methods include manifold regularization and multi-
view learning, but not S3VMs whose hat loss is non-convex (see Chapter 4 for an online learning
method based on the same low-density gap or cluster assumption that S3VMs encodes using the hat
loss). For convex semi-supervised learning methods, one can derive a corresponding online semi-
supervised learning algorithm using online convex programming. The remainder of this chapter
focuses on manifold regularization, with the understanding that online versions of multiview learn-
ing and other convex semi-supervised learning methods can be derived similarly.

We follow a general approach to online convex programming (Zinkevich, 2003; Kivinen et al.,

2004). The batch risk for our version of manifold regularization is

= el w0 + S+ 2 S el - @ @)

st 1
and f* is the batch solution that minimizeK f). In online learning, the learner only has access to
the input sequence up to the current time. We thus definm#ft@ntaneous regularized risk( f)

at timet to be
T) = T8 ), ) + SIS+ 2 Y walfle) — f@)P (32)

The last term inJ;(f) involves the graph edges from to all previous points up to timé The

astute reader might notice that this poses a computational challenge—we will return to this issue
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in Section 3.3. Whild" appears in (3.2)/;(f) depends only on theatio 7'/1. This is the empirical
estimate of the inverse label probabilityp,, which we assume is given and easily determined
based on the rate at which humans can label the data at hand.

All the J;’s are convex. They are intimately connected to the batchiisk
Proposition 1 J(f) = & >°7 J.(f).

Our online algorithm constructs a sequence of functifins. fr. Let f; = 0. The online algo-
rithm simply performs a gradient descent step that aims to reduce the instantaneous risk in each

iteration:

dJy
Jrri=fi—m Jajff)

(3.3)
ft

The step size), needs to decay at a certain rate, erg.= 1/v/t. Under mild conditions, this
seemingly n&ve online algorithm has a remarkable guarantee that on any input sequence, there

is asymptotically “no regret” compared to the batch solution Specifically, let theaverage in-

-1 T

stantaneous riskncurred by the online algorithm b, (T) = 7 >,

Ji(f+). Note J,;, involves
a varying sequence of functiorfs. .. fr. As a standard quality measure in online learning, we

compare/,;, to the risk of the bedixedfunction in hindsight:

Tae(T) = min = 3" () = T (T) = min () = e (1) = J (),

where we used Proposition 1. This difference is known as the average regret. Applying Theorem 1
of Zinkevich (2003) results in the no-regret guaranieesup,_, . Jo;r (1) — J(f*) < 0. ltisin
this sense that the online algorithm performs as well as the batch algorithm on the sequence.

To compute (3.3) for manifold regularization, we first express the functfpns. fr using a
common set of representers. . . x1 (Kimeldorf and Wahba, 1971). At any timtiehowever, only

t — 1 may have non-zero coefficients:

t—1

fi=Y ol K(z:,-). (3.4)

i=1

The problem of findingf,,; becomes computing the coefficientd ™, ..., a!"™". Again, this

will be a computational issue whéhnis large, and will be addressed in Section 3.3. We extend the
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Parameters: edge weight functiom, kernel K, weights\, s, loss functior,
label ratioT’/1, step sizes,
Initialize t =1, f1, =0
loop
receivex,, predictf;(x;) using (3.4)
(occasionally) receive,
updatef; to f; 1 using (3.6)
storex,, lett =t + 1

end loop
Algorithm 4 : Online Manifold Regularization

kernel online supervised learning approach of Kivinen et al. (2004) to semi-supervised learning by
writing the gradientJ,(f)/0f in (3.3) as

t—1

%&yt)cl(f(l’t)’ Y ) K (e, ) + Auf 42X Z wit(f (i) = f (@) (K (2i,-) — K(x,+)),  (3.5)

=1
where we used the reproducing property of RKHS in computing the derivatiyér)/0f =
of,K(z,-))/0f = K(z,-). ¢ is the (sub)gradient of the loss functien For example, when
c(f(x),y) is the hinge lossax(1 — f(x)y,0), we may define’(f(z),y) = —y if f(z)y <1, and
0 otherwise. Putting (3.5) back in (3.3), and replacfpwith its kernel expansion (3.4), it can be

shown thatf; . ; has the following coefficients:

ozgtﬂ) = (1- ﬁt)\l)%(t) = 2 dowir(folzi) — fi(wr)), i=1...1—1
t—1

agtﬂ) = 2m Z wir (fe(w:) — fe(we)) — 77t§5(yt)cl(f($t)7 Ye)- (3.6)
i=1

We now have a basic online manifold regularization algorithm; see Algorithm 4.

When the data is i.i.d., the generalization risk of the average fungtien1/T Zthl f: ap-
proaches that of* (Cesa-Bianchi et al., 2004). The average functfonvolves all representers
x1,...,xp. For basic online manifold regularization, it is possible to incrementally maintain the

exact f as time increases. However, for the sparse approximations introduced below, the basis
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changes over time (i.e., it is no longer sim@ty(z1,-), ..., K(zr,-)). Therefore, in those cases
f can be maintained (approximately) using matching pursuit (Vincent and Bengio, 2002). In our
experiments, we compare the classification accuragy\s. f* on a separate test set, which is of

practical interest.

3.3 Sparse Approximations

Unfortunately, Algorithm 4 will not work in practice because it needs to store every input point
and soon runs out of memory; it also has time compleit§™). In particular, the instantaneous
risk (3.2) and the kernel representation (3.4) both involve the sequence up to the current time. To
be useful, itis imperative to sparsify both terms. In this section, we present two distinct approaches
for this purpose: i) using a small buffer of points, and ii) constructing a random projection tree that

represents the manifold structure and can be used to cluster the data.

3.3.1 Buffering

A buffering strategy is often used in online learning as a way to restrict the total number of
points stored over time (Dekel et al., 2005). Let the buffer size-b&he simplest buffering
strategy replaces the oldest paint , in the buffer with the incoming point;. With buffering, the
approximate instantaneous risk is

t—1

() = f@) wa,  (3.7)

t=t—T

T A t
Ji(f) = 76<yt)c(f($t)a Ye) + 51”]6”%( + )\2;
where the scaling factay/T keeps the magnitude of the graph regularizer comparable to the un-
buffered version. In terms of manifold regularization, buffering corresponds to a dynamic graph
on the points in the buffer. Similarly, the kernel expansion nowhi@sms:

t—1

fi=Y oK (a0

i=t—T7
With buffering, the function update involves two steps. In the first step, we ugdébean inter-

mediate functionf’ represented by a basis of+ 1 elements, consisting of the old buffer and the
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new pointz;:
t—1
= oK (i, ) + o K (w4, )
1=t—T
af = (1- nt)\l)agt) = 2m Ao (fi(zy) — fe(m))wyy, i=t—71...t—1
t—1
, t T
ap = 277t)\2; Z (fe(zi) — folae))wir — 7]t75(yt)0/(f($t)ayt)- (3.8)

i=t—T

Second, we evict,_, from the buffer, add:;, to the buffer, and approximatg (which uses + 1
basis functions) witly; . ; (which uses basis functions):

t
min |f = fial® St fon= Y ot VK (@) (3.9)

(t+1)
@ i=t—741

Intuitively, we “spread’a;, K (x;_.,-) to the remaining points in the buffer, in an attempt to mini-
mize the change caused by truncation. We use kernel matching pursuit (Vincent and Bengio, 2002)
to efficiently find the approximate coefficieni§ ! in (3.9). Matching pursuit is a greedy func-
tion approximation scheme. It iteratively selects a basis function on which to spread the residual
in o, _K(x;_,,-). The number of steps (i.e., basis functions selected) can be controlled to trade-
off approximation error and speed. We run matching pursuit until the norm of the residue vector
has been sufficiently reduced. We call the above buffering strategiyer.” The overall time
complexity for buffering isO(T).

An alternative buffering strategyptiffer-U,” evicts the oldestinlabeledpoints in the buffer
while keeping as many labeled points as possible. This is motivated by the fact that the labeled
points tend to have larger coefficients and exert more influence on our learned function. The
oldest labeled point is evicted from the buffer only when it is filled with labeled points. Note this
is distinct from batch learning: the labeled points only form a better basis, but learning is still done

via gradient descent.

3.3.2 Random Projection Tree

Another way to improve Algorithm 4 is to construct a sparse representation of the manifold.
While many embedding techniques exist, we require one that is fast and can be incrementally mod-

ified. Recently random projection has been proposed as an efficient means to preserve the manifold
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structure (Hegde et al., 2007; Freund et al., 2007). We build our algorithm upon the online version
of the Random Projection Tree (Dasgupta and Freund, 2007, Appendix I). A Random Projection
Tree (RPtree) is a tree data structure with desirable theoretical properties that asymptotically traces
the manifold. The basic idea is simple: as points arrive sequentially, they are spatially sorted into
the RPtree leaves. When enough points fall into a leaf, the RPtree grows by splitting the leaf along
a hyperplane with random orientation. An RPtree can be regarded as an efficient online clustering
algorithm whose clusters grow over time and cover the manifold, as shown in Figure 3.1. We
refer the reader to Dasgupta and Freund (2007) for details, while presenting our extensions for

semi-supervised learning below.

Figure 3.1: A random projection tree on the Swiss roll data. Small dots represent data points,
line segments represent the random splits in the internal nodes of the RPtree, polygons
represent the regions governed by the leaves, and ellipses represent the Gaussian distri-
butions on the data points within each leaf. We exploit the fact that these distributions
follow the manifold structure of the data.
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Let{L;};_,,s < t denote the leaves in the RPtree at titnélfo model the data points that
have fallen into each leaf, we maintain a Gaussian distributign,, >;) at each leaf.;, wherey,
andX; are estimatethcrementallyas the data points arrive. We also keep track,pthe number
of points in leafL;. With an RPtree, we approximate the kernel representatigi (&.4) by the

means of the Gaussian distributions associated with the tree leaves:
fo=>"B"K (i, ). (3.10)
=1

We approximate the instantaneous risk (3.2) by

Ls

Jt(f) = I

(e (@) )+ S+ %0 Y (o) = S0P (320

From a graph regularization point of view, this can be understood as having a coarser graph over
the RPtree leaves, and connecting the incoming pgitd each leaf. We define the edge weight

w,,; between incoming point, and each leaf; to be

x — 2|2
Wyt = EINN(MuEi) [exp <_%):| (3-12)

= (21) || 3|2 [

1 B _ T -
exp (—5 (M;—ZZ 1,ui + IQ—ZO 1xt - #:ZWU”)) ’

whereX, = 021, % = (7P + 2097, i = X7t + Y5tay, ando is the bandwidth of the
(original point to point) weight. We call this weight schen®Ptree PPK’ for its similarity to the
probability product kernel (Jebara et al., 2004). An even simpler approximation is to ignore the

covariance structure by defining

_ |1 — @[
Wyt = €Xp —T .

It has computational advantages at the price of precision. We call this weight scRétreé”

With an RPtree, the function update occurs in three steps. In the first step, upon reggiving
we updatef; to an intermediate functiorf’ using a basis of + 1 elements:yu,, ..., us andx;.
This is similar to (3.8) in the buffering case. In the second step, the RPtree itself is adjusted to

account for the addition of;. The adjustments include updating the Gaussian parameters for the
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leaf thatx; falls into, and potentially splitting the leaf. In the latter case, the number of leaves
will increase tos’, and each new leaf’s mean and covariance statistics are established. In the third
step, we approximatg¢’ by f;,; using thes’ new basis elements,, ..., uy (s = s if no split

happened), similar to (3.9). The pointis then discarded.

3.4 Experiments

We present a series of experimental results as empirical evidence that online manifold regu-
larization (MR) is a viable option for performing fast MR on large datasets. We summarize our

findings as follows:

1. Online MR scales better than batch MR in time and space. Although recent advances in
manifold regularization greatly improve the feasible problem size (Tsang and Kwok, 2006),
we believe that it takes online learning to handle unlimited input sequences and achieve

life-long learning.
2. Online MR achieves comparable performance to batch MR. This is measured by two criteria:

(@) J.i-(T) approached(f*), both for the basic online MR algorithm, as well as for the

buffering and RPtree approximations.

(b) Generalization error of approaches that gf* on test sets.

3. Online MR can handle concept drift (changesHfx) and P(y | =)). The online method
(using a limited size buffer) can track a non-stationary distribution and maintain good gen-

eralization accuracy, while the batch method trained on all previous data fails to do so.

Our focus is on comparing online MR to batch MR, not semi-supervised learning to supervised
learning. It is known that semi-supervised learning does not necessarily outperform supervised
learning, depending on the correctness of model assumptions. Thus, our experiments use tasks
where batch MR has proven beneficial in prior work, and we demonstrate that online MR provides

a useful alternative to batch MR on these tasks.
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3.4.1 Datasets and Protocol

We report results on three datasets. The first is a toy two-spirals dataset. The training sequences
and test sets (of size 2000) are generated i.i.d. . The second is the MNIST digit classification
dataset (LeCun et al., 1998), and we focus on two binary tasks: 0 vs. 1 and 1 vs. 2. We scaled
down the images to 16 x 16 pixels (256 features). The training sequences are randomly shuffled
subsets of the official training sets, and we use the official test sets (of size 2115 for 0 vs. 1,
and 2167 for 1 vs. 2). The third is the 361-dimensional Extended MIT face vs. non-face image
classification dataset (“Face”) (Tsang et al., 2005). We sampled a balanced subset of the data, and
split this into a training set and a test set. The same test set of size 2000 is used in all experiments,
while different training runs use different randomly shuffled subsets of the training set. The labeled
ratep,; is 0.02 in all experiments, with points assigned to each class with equal probability.

Our experimental protocol is the following:

1. Generate randomly ordered training sequences and test sets (for MNIST and Face, the test

sets are already given).

2. For batch MR, train separate versions on increasing subsequence§’ (ke.500, 1000,
2000, .. .).

3. For online MR, train once on the entire sequence.

4. For eachT’, compare the corresponding batch MR solutionwith the online classifier

trained up tadr'.

All results are the average of five such trials. The error bars-drstandard deviation.

All experiments use hinge logsand RBF kerneK. The kernel bandwidth parameteg, A,
A2, and the edge weight parametewere all tuned for batch MR usirngj = 500. When using a
limited size buffer, we set = 300, and only require that matching pursuit reduce the residue norm
by 50%. We use a step sizegf= ~/+/t, wherey = 0.03 for the RPtree approximation, andl
for all other methods. We implemented all methods using MATLAB and CPLEX.
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Figure 3.2: Runtime growth curves. Batch MR and basic online MR scale quadratically, while the
sparse approximations of buffering and RPtree scale only linearly. Batch MR runs out
of memory afterl’ = 5000, and we stop basic online MR &t = 4000 because the
runtime becomes excessive. Though not shown, online RPtree PPK has a curve nearly
identical to online MR (buffered).

3.4.2 Online MR Scales Better than Batch MR

We illustrate this point by comparing runtime growth curves on the spirals and MNIST O vs. 1
datasets. Figure 3.2(left) shows that, for the spirals dataset, the growth rates of batch MR and
basic online MR are quadratic as expected (in fact, online MR has more overhead in our MATLAB
implementation). Batch MR runs out of memory afiér= 5000, and we stop basic online MR at
T = 4000 because the runtime becomes excessive. On the other hand, online MR (buffered) and
online RPtree are linear. Though not included in the plot, online RPtree PPK has a curve nearly
identical to online MR (buffered). Figure 3.2(right) demonstrates similar trends for the higher

dimensional MNIST 0 vs. 1 dataset.

3.4.3 Online MR Achieves Comparable Risks

We compare online MR’s average instantaneous J#isk7T') vs. batch MR’s riskJ(f*) on

the training sequence. Our experiments support the theory/thaf") converges to/(f*) as
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Figure 3.3: Online MR’s average instantaneous rigk.(7") approaches batch MR’s risk( f*) as
T increases.

T increases. Figure 3.3 compares these measures for basic online MR and batch MR on the
spirals dataset. The two curves approach each othe(T") continues to decrease beyohd=
4000 (not pictured). Figure 3.3 also shows that online MR (buffer) and online RPtree are good

approximations to basic online MR in terms.Gf,.

3.4.4 Generalization Error of Online MR

The experiments in this section compare the averaged funétafronline MR and the batch

solution f* in terms of generalization error on test sets. Figure 3.4 presents results for all the

!While the average regret approaches zero asymptotically, the step size-of /v/t decays rapidly, potentially
leading to slow convergence. Thus, it is possible that long sequences (i.e T laedaes) would be required for the
online algorithm to compete with the best batch algorithm. Nevertheless, our experiments show this is not actually a
problem in practice.
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Figure 3.4: Generalization error of batch MR’$* and online MR'sf asT increases. All the
online methods perform nearly as well as batch MR. Online MR buffer-U consistently
achieves test accuracy comparable to batch MR. Buffering and RPtree perform as well
as basic online MR, showing little sign of approximation error. Panels (b), (c), and (d)
reveal that buffer-U can be much better than buffer by preserving the larger weights
on labeled points, which approximate the function better.

datasets. We observe that online MR buffer-U is the best and consistently achieves test accuracy
that is comparable to batch MR.
From Figure 3.4(a), we observe that, for the spirals dataset, all the online methods perform

nearly as well as batch MR. As is to be expected, batch MR makes the most efficient use of the
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data and reaches 0 test error first, while the online methods require only a little additional data
to reach this level (after all, standard incremental learning usually needs multiple passes over the
training set). Buffering and RPtree perform as well as basic online MR, showing little sign of
approximation error. Panels (b), (c), and (d) in Figure 3.4 show that buffer-U can be much better
than buffer. This is understandable, since matching pursuit may provide a poor approximation
to the contributions of the discarded data point. In high dimensional space, there may be few
similar data points remaining in the small buffer, so much of the weight assigned to discarded
points is lost. Under the buffer-U strategy, we alleviate this issue by preserving the larger weights
on labeled points, which approximate the function better. RPtree PPK on these high dimensional
datasets involves expensive inversion of (often singular) covariance matrices and is not included in

the comparison. The performance of RPtree is no better than buffer-U.

3.4.5 Online MR Handles Concept Drift

Lastly, we demonstrate that online MR can handle concept drift. When the underlying distri-
butions, bothP(z) and P(y|x), change during the course of learning, using buffered online MR is
extremely advantageous. For this experiment, we “spin” the two spirals dataset so that the spirals
smoothly rotate360° in every 4000 points (Figure 3.5). All points in the space will thus change
their true labels during the sequence. We still provide only 2% of the labels to the algorithms. The
test set for a givefl’ consists of 2000 points drawn from the current underlying distribution.

For this experiment, we show the generalization error of batch MRs. online MR (buffer)’s
fr, since the latest function is expected to track the changes in the data. Figure 3.5 illustrates that
online MR (buffer) is able to adapt to the changing sequence and maintain a small error rate. In
contrast, batch MR uses all data points, which now tend to conflict heavily (i.e., newer data from
one class overlaps with older data from the other class). As expected, the single batch cfdssifier

is inadequate for predicting such changing data.
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Figure 3.5:Online MR (buffer) has much better generalization error than batch MR when faced
with concept drift in the rotating spirals dataset. Note that all points in the space
change their true labels during the sequencefyas$ able to track the changes in the
data. The single batch classifigris unable to cope with this situation.

3.5 Conclusions and Future Work

We presented an online semi-supervised learning algorithm that parallels manifold regulariza-
tion. Our algorithm is based on online convex programming in RKHS. We proposed two sparse
approximations using buffering and online random projection trees to make online MR practi-
cal. The original batch manifold regularization algorithm has time complexity at {@@&t); so
does the online version without sparse approximation. In contrast, the RPtree approximation has

complexityO(T log T'), where each iteration requiréXlog 7") leaf lookups (the tree’s height is
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O(log T') because each leaf contains a constant maximum number of points). Buffering has com-
plexity O(T"). Experiments show that our online MR algorithm has risk and generalization error
comparable to batch MR, but scales much better. In particular, online MR (buffer-U) tends to have
the best performance.

While Chapter 4 presents an alternative approach to online semi-supervised learning, many
interesting questions remain for the online SSL framework introduced in this chapter. On the
practical side, one avenue for future work is to explore new strategies for maintaining a fixed-size
memory budget while still adequately representing the marginal data distribution. For instance,
we can explore many other sequential or incremental clustering algorithms in place of random
projection trees. One concrete idea is to use a non-parametric Bayesian approach (e.g., Dirichlet
Process Mixture Models (DPMM) (Neal, 2000)) to model the arriving data as a growing number of
clusters. Though not an online method, incremental versions have been developed (Gomes et al.,
2008; Zhang et al., 2004). The hope is that improvements in the clustering approximation will
translate to improved predictions.

On the theoretical side, we can investigate different regret notions that might be appropriate for
the online semi-supervised setting, performance guarantees with concept drift, and models that do
not require all previous points. We may be able to leverage recent analysis of so-called “budget
perceptrons,” which cannot maintain all support vectors in memory (Sutskever, 2009). Two such
(supervised) algorithms have formal performance guarantees: the Forgetron (Dekel et al., 2005),
which replaces the oldest vector in a fixed-length buffer with a new vector on which the current
classifier makes an error, and the Randomized Budget Perceptron (Cavallanti et al., 2007), which
discards a random vector instead of the oldest.

The unified analysis of Sutskever (2009) views these algorithms as performing stochastic gra-
dient descent with noisy and incorrect gradients. We can view our buffer-based online manifold
regularization algorithm, which operates on a fixed-size dynamic graph, as using a noisy gradient
of the manifold regularization risk. That is, at each step we compute- 8‘]5—]@, where J;(f)
is defined in (3.2), while really we wish to move along the gradient of the batch risk in (3.1):

V = a‘é—(f). Our goal is to prove that the gradient with respect to the dynamic graph equals the
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true gradient in expectation (over random dat&)V,| = V. If we can bound the error in the
gradient when the graph is constructed in a particular way (which may be different than the current
scheme), then we can apply an approach similar to that of Sutskever (2009) to establish a formal

guarantee for the framework presented in this chapter.
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Chapter 4

OASIS: Online Active Seml-Supervised Learning

In this chaptet,we continue to examine online or incremental SSL as an alternative to the batch
approach; labeled and unlabeled data are processed one at a time, predictions can be made at any
time, and only a bounded amount of storage is needed to handle an unlimited stream of data. Fur-
thermore, it is natural to incorporate active learning (Settles, 2009) in this setting; upon receiving
an unlabeled data point, the learner may request the label from an oracle. Many real-world learning
tasks fit nicely into this framework, such as classifying images collected by a surveillance camera,
or categorizing blog posts and tweets in real-time as they emerge on the social Web. We present a
novel, fully Bayesian algorithm capable ofiline active semi-supervised learning (OASIS)

We consider the online SSL setting introduced in Chapter 3, and extend it to include an (op-

tional) active learning component:

[ —

. Attime ¢, the world picksx; € R? andy; € {—1, 1} and presents; to the learner.
2. The learner makes a predictighusing its current model.

3. With a small probabilityp;, the world reveals the labg).

I

. If y; is not revealed, the learner may choose to ask for it. Otherwjsemains unlabeled.
5. The learner updates its model basedkg@and, if available, the labe),.

This setting differs dramatically from traditional online learning where all data points are labeled.

It also differs from the batch SSL setting where methods must wait to collect all the labeled and

IBased on joint work with Xiaojin Zhu, Alex Furger, and Junming Xu.
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unlabeled data before beginning to learn and make semi-supervised predictions. The goal is for the
model’s predictiong; to be accurate; performance will be measured by the cumulative number of
mistakes made by the learner.

Semi-supervised learning is often possible through some assumption about the interaction be-
tween the marginal data distributidt{x) and the conditional label distributiad(y | x). We have
already discussed online SSL based on the manifold or graph-based assumption (Chapter 3). In the
current chapter, we focus on the so-calbhasteror low-density gap assumptipwhich states that
the decision boundary induced B(y | x) ought to lie in a region of low data density (Chapelle
and Zien, 2005). As discussed in Chapter 2, this assumption is at the heart of transductive or semi-
supervised support vector machines (TSVMs or S3VMs) (Chapelle et al., 2008), as well as the
Bayesian analog of null category noise model Gaussian Processes (Lawrence and Jordan, 2005).
Locating a low-density gap is typically formulated as a non-convex optimization problem, which
may miss other gaps in the data. Furthermore, even though some S3VMs are scalable (see Chapelle
et al. (2008) for a review), they are batch algorithms and not suitable for life-long online learning
with potentially unlimited amounts of data.

Our main contribution is a fully Bayesian approach to the low-density gap assumption in an
online setting. We employ sequential Monte Carlo to efficiently track the posterior over the hy-
pothesis space. By restricting the amount of data stored over time, we achieve constant time and
space complexity per time step. Furthermore, maintaining the posterior leads to a principled active

learning scoring method.
4.1 OASIS: Online Active Seml-Supervised Learning

4.1.1 Bayesian Model for the Gap Assumption

Recall that we observe a partially labeled sequence of feature vegtots, . . ., where each
x; € RY Let D; = {(x1,41),---,(xs,y:)} be all the data observed through timevhere we use
y, = 0 for unlabeled data. Our goal is to learn a classifier to predict the class label of each incoming

unlabeled data point, and then update the classifier based on the information wexoldéoné or
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x,,:).2 Let us assume the classifier is parameterized by a weight vectoiR¢, which interacts
with the data through a linear functiof{(z) = w'x.3 Throughout, we use the terms classifier
and weight vector interchangeably. To define our Bayesian model, we begin by introducing a
likelihood function that is sensitive to unlabeled data. Inspired by the null category noise model of
Lawrence and Jordan (2005), in addition to the positive and negative classes, we model a third “null
category” which is never actually observed, but occupies some region of probability mass in the
likelihood function, acting as a Bayesian analog to an SVM’s margdur likelihood (visualized
in Figure 4.1(a)) is defined as follows

min(1 — v, max(ya, cexp(—ydw'x))) ify=+1lory=—1

Py | x,w) = _ ,
1—[ply=+1|x,w)+ply=—1]x,w)] if y=0(null category)

(4.1)
wherey = 0.2, a = 0.5, ¢ = /(1 — 7)ya, ¢ = log(%*), though other function forms leading to
the same general shape would serve our purpose, too.

This likelihood has several interesting properties, which implement the gap assumption. Itis
flat beyond a margin valuay(' x) of 1 or -1 to ensure that weight vectors placing data outside the
margin are treated equally. Furthermore, due to the convex curvature of the positive and negative
class likelihoods within—1, 1], there is a concave null category probability between -1 and 1. We
never receive data from the null category; rather, unlabeled data will be considered being in either
the positive or the negative claggy unlabeled | x,w) = p(y € {-1,1} | x,w) = p(y = +1 |
x,w)+p(y = —1 | x,w). Therefore, a weight vectar that places unlabeled datan the “null
category region 'x € [—1, 1] has a low likelihood, which can always be increased by changing
w to movew ' x toward -1 or 1. As a result, this likelihood favors decision boundaries that fall in

a low-density region of the input space.

2For now, we assume a linear classifier, but the approach can be kernelized using the randomization trick of Rahimi
and Recht (2007), as discussed in Section 4.3.

3In practice, we can handle a bias term by adding a dummy feature to all feature vectors.

“Despite the similar appearance of the likelihood functions, the current work is actually quite different from
Lawrence and Jordan (2005); we are concerned with the strictly online setting, and we maintain the posterior over
weight vectors through particle filtering, rather than making a Gaussian approximation which loses the critical ability
to track multiple modes in the posterior. Such posterior is typical of semi-supervised learning.
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Figure 4.1:(a) “Null category” likelihood function to encourage low-density separation. (b) Ex-
ample dataset where tracking the full posterior is beneficial over S3VM’s point esti-
mate. (c) The posterior distribution over weight vectors for the data in (b)—the green
shaded cones contain all weight vectors that classify the labeled data correctly while
placing the unlabeled data outside the null category region.

To complete the model, we must specify a prior on the parametsuch as a Gaussian prior

p(w) = N(w;0,X), orindependent Cauchy priors on each dimension

d
= H Cauchyw;;0,v).

i=1
As discussed in the experiments, we follow Gelman et al. (2008) and use this Cauchy prior com-
bined with standardized data.
With the likelihood and prior defined, we can apply Bayes rule to derive the posterior over

weight vectors (after observing past déta ), and the predictive distribution:

w Hl (s | xi, w)p(w)
p(w | Di-a) [TLZ plyi | i, Ww/)p(w!)dw’ *:2)
by 1% D) = [ ply | w)p(w’ | Decs)aw (4.3)

Since we never actually predict the null category, we are interested in the following conditional

probability wheny € {—1,1} but is unobserved:

P(y ’ Xt;Dt—1>
ply=—1|%x¢,Di1) +p(y =1]|%x¢, D)’

p(y ’ anDt*l’y S {_17 1}) = (44)
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In general, it is not possible to compute this probability in closed form. The next section describes
how we transform this into a tractable solution for online SSL.

To appreciate why maintaining the posterior is desirable, consider the example dataset in Fig-
ure 4.1(b) containing two gaps within the unit circle. With only two labeled data in opposite
wedges, a decision boundary in either gap is feasible, and thus the posterior (green shaded region
in Figure 4.1(c)) is multimodal. All vectors outside the circle and in the cone regions will have
maximum likelihood given all possible data. The green shaded cones contain all weight vectors
that classify the labeled data correctly while placing the unlabeled data outside the null category
region. Inside the circle, the vectors have magnitude too small to place all data outside the margin
(since||z|| < 1). A batch S3VM (or an online version using gradient methods) will find only a
point estimate in one of the modes of the posterior. The key to OASIS is to maintain and update

an estimate of this posterior (green shaded region) as labeled and unlabeled data arrives.

4.1.2 Online SSL via Particle Filtering

Given the Bayesian model defined in the preceding section, our goal is to track the posterior.
In theory, this is done by repeatedly applying Bayes rule. The integrals involved in using the full
posterior are intractable, though, so we must resort to approximate methods. In particular, we use
particle filtering with resample-move to reduce particle degeneracy (Gilks and Berzuini, 2001).
The complete OASIS algorithm is summarized in Algorithm 5 and explained below.

Particle filtering is a sequential Monte Carlo technique designed for tracking and approximating
distributions that are not amenable to analytical representation (Doucet et al., 2001). It relies on
maintaining a sample of so-called particles to approximate the true distribution in question. We

approximate the posterior distributigw | D;_;) by m weighted particles:

p(w | Di_q) Zwéw w



67

Input: Number of particlesn, Prior distributionp(w), ESS threshold S S,

Proposal distributiog(w | w), Active learning score threshold

Samplem initial particle5wéi) (classifiers) from the prigs(w).
Assign weights to particles; = =i =1,...,m.

fort=1,...do
Receivex,; and possiblyy,.

Active: If unlabeled, query foy, if scorgx;) < s, (see (4.6)).

if 3, is availablethen update particle weights; = w;p(y = v; | x4, wﬁ’_) ).
else update particle weights; = w;p(y € {—1,1} | x,, w'’,).

if O-w;)?/ > w? < ESSythen

Resample-Move:

{w®}m  « Systematic resampling

{w,ﬁi) m « Metropolis-Hastings for eac*) (using proposal distribution).

Reset particle weights; = L i =1,...,m.
else
Keep existing (reweighted) particlew.g“ = wﬁ)l,z’ =1,...,m.

Renormalize particle weights to sum to 1.
end

end
Algorithm 5: The OASIS algorithm for online, active semi-supervised learning.

wherej(w — w) = 1if w = w(® and 0 otherwise. Each particke”,i = 1...m is a sample
from this posterior and has an associated importance weighit time ¢, the predictive distribu-

tion can be approximated by particles as
m
P(y | x¢, Dy1) = ZWP(Z/ | x;, w).
=1

Recall, however, that the conditional probability

ply | x, w?)
=—1]x;,w®)+ply=1]|x%;,wh)

p(y | x4, Dyy,y € {—1,1}) = Zwi
—~  ply
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is used to make predictions for incoming data.

For online learning, at the beginning, we samplg@articles from the prior and assign uniform
initial Weights%. Then, we repeatedly update the posterior based on the likelihood and the previ-
ous estimate of the posterior (which now acts as the prior). The new posterior distribution after ob-
servingx;,, y; is proportional to> ", w;p(y: | x,, w)§(w —w@). When a data point is observed,
we update the posterior by reweighting the particles. From the above equation, we see that the new
weight forw( is obtained as the current weight multiplied by the likelihgog, | x,, w®). If y,
is not observed, the weight is multiplied pyy; € {—1,1} | x;, w®) =1 — p(y; = 0 | x;, w?).

So far we have a basic method for incrementally updating an approximate posterior after ob-
serving new data. Classic particle methods, such as sampling importance resampling (SIR) (Doucet
and Johansen, 2009), use the particle weights for resampling (with replacement), which results in
a new generation of particles with weights rese{j;toWhile theoretically justified, repeating this
process many times is known to cause particle degeneracy—the number of distinct particles is
non-increasing, so eventually few will remain. To minimize particle degeneracy, we apply the
resample-move algorithm (Gilks and Berzuini, 2001), which provides a principled way to “jitter”
particles and introduce diversity into the pool.

Resample-move consists of two steps. First, particles are resampled according to their weights—
we apply the popular and effective “systematic resampling” (Doucet and Johansen, 2009). Then,
each of the new particles is potentially moved to a nearby location. To ensure that the moved
particles represent samples from the same posterior distribution as the old particles, we implement
the move step using one step of the Metropolis-Hastings sampling algorithm (Metropolis et al.,
1953; Hastings, 1970). We use a proposal distribugion | w) of the same form as the prior
distribution, except centered on the starting particle location and with a smaller variance or scale.
Using a symmetric proposal distribution allows us to compute the acceptance probability for each

move using only the unnormalized posterfdww | D, ):

(4.5)
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wherew () is a proposed move, anfdw | D;) = p(w) [T}_, (v« | &, W), Wherey, is understood
to be{—1, 1} for unlabeled data.

4.1.3 Guaranteeing Bounded Time and Space Complexity Per Time Step

The astute reader will notice that computing (4.5) in the move step requires access to the entire
history of dataD,, which is infeasible for learning on an unlimited stream of data. This is clearly
undesirable for online learning and will quickly lead to a computational burden. Thus, we propose
using an approximate Metropolis-Hastings step in which the acceptance probability is computed
using only a fixed-length buffer of size That is, we replacg(w | D;) with

t

fw D7) =pw) ] ple|xew).

k=t—7+1

While this approximation may result in periodically accepting moves that fall outside the true
posterior, the method now satisfies our time and space goals and will be shown to be effective
in practice. In addition, though not explored in the current work, usingpaffer can allow the
method to handle concept drift by only relying on the most recent sample of data.

Even with ar-buffer, computing the Metropolis-Hastings acceptance probability for each par-
ticle can be computationally intensive (though the runtime is constant per time step in the number
of particlesm). Therefore, as is customary in the literature (Doucet and Johansen, 2009; Ridge-
way and Madigan, 2003), we only perform resample-move when the particles appear to show high
redundancy, as measured by the so-called Effective Sample Size (ESS), which can be estimated by
(>~ w;)?/ > w?. If the ESS drops below a threshaits S—typically m /2 (Doucet and Johansen,
2009), then we perform resample-move to improve diversity. Otherwise, we simply proceed to the

next time step using the same set of particles, but reweighted.

4.1.4 Incorporating Active Learning

It is quite natural to incorporate active learning into the algorithm described thus far. The pos-
terior can be viewed as a soft version space—the space of hypotheses consistent with the training

data (Mitchell, 1997)—and like many active learning algorithms, we try to select queries that will
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maximally pare down the version space. In our case, this translates to locating query points that
will lead to downweighting and effectively killing off many particles.

To determine whether an incoming unlabeled item should be actively labeled, we first assign it
a score based on the weighted average predictions made by the particles:

scoréx) = iwi argmax p(y | x, w?)]. (4.6)
i—1 ye{-1,1}
This is the same disagreement-based score of Nowak (2009), which will be close to zero if roughly
half of the particles predict positive and half negative, and the weights are close to uniform. Thus,
guerying the label of an item receiving a near-zero score will be very informative, as roughly half
of the particles (the ones whose predictions disagree with the oracle label) will get downweighted.
If the score is very large, then a clear majority vote exists, and we opt not to query.

While many schemes are possible to balance the trade-off between the cost of acquiring a label
and the benefit of refining the model, we use a simple thresholding approach in the current work.
Actively querying points that minimize the score criterion in (4.6) is theoretically justified in a
pool-based active learning setting (Nowak, 2009). The same theory can be applied to the online
active setting as well to justify a constant threshold. However, this analysis assumes unqueried
points are ignored. Adapting the theory to account for the fact that we make updates based on

unlabeled data between active queries remains an open issue for future work (see Section 4.3).

4.2 Empirical Evaluation

We conducted a series of experiments to compare OASIS to passive online semi-supervised and
passive online supervised learning algorithms. We carefully tease apart OASIS’s different elements
and show that active online querying leads to better performance than random online labeling, in
the context of online semi-supervised learning. Furthermore, the use of semi-supervised learning
in the online setting (even without active querying) often outperforms the identical learner that
ignores unlabeled data, as well as a state-of-the-art (supervised) online learner.

For all experiments, to avoid difficult parameter tuning under online semi-supervised condi-

tions, we use the same prior and proposal distributions with a fixed set of default hyperparameters.
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Following Gelman et al. (2008), which investigated default priors for Bayesian logistic regression
models, we standardize the data such that each feature ha$raedrstandard deviatiah5, and

then place independent Cau¢hy?2.5) priors on each dimension. For the proposal distribution, we
use a more peaked version of this distribution: Cagehy.025). Other parameters were fixed as
follows: number of particles: = 1000, ESS threshold’S .S, = 500, buffer sizer = 100.

The experiments consider five algorithms:

e [OASIS]: Online, active, and semi-supervised (Algorithm 5).

e [OSIS]: Online and semi-supervised; no active learning, but otherwise same as OASIS.
e [OS]: Online and supervised; no active learning and ignores unlabeled data.

e [AROW (C' = 1)]: State-of-the-art supervised “Adaptive Regularization of Weight Vectors”
online learner (Crammer et al., 2009), run using code provided by the original authors with
a default regularization parametér= 1. This is a passive-aggressive, confidence-weighted

classifier that maintains a diagonal-covariance Gaussian distribution over weight vectors.

e [AROW (C*)]: We also report results for AROW using the per-trial optimain terms
of total number of mistakes (“test-set tuned”) to approximate supervised learning’s mistake

lower bound.

We use the following experimental procedure to compare active and passive algorithms, with
and without the help of unlabeled data. Each experiment is based on 20 random trials of ran-
domized sequences @f points. Each trial begins with= 2 labeled examples (one per class, in
random order), as we assume this is practical. While OASIS is the only algorithm under consid-
eration that is able to actively query labels, we take care to ensure that each algorithm receives
exactly the same number of total labels. kdie the number of active queries OASIS makes on a
given trial (@ is some function og, and the dataset). For each trial, we do the following: (i) Run
OASIS withl = 2 initial labels and record (number of queries); (ii) Run each other algorithm
with [ = 2 + a labeled examples (first two, plusrandomly selected others). Note the same exact

sequence ofx;} vectors is used across the same trial for different algorithms. In this way, all
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algorithms always see the same data and the same total number of labels; the algorithms differ in

exactly which labels and how they deal with unlabeled data.

4.2.1 Synthetic Data

We begin by considering two synthetic datasets.

e sliced-cubed: Uniformly distributed unit cube if—0.5, 0.5]¢, with ane-width slab removed
from the first dimension to create two hyper-rectangles separated by a gap around the true

decision boundary; = 0 (Figure 4.2(a)).

e diced-cubed: Same as sliced-cubé&fwith true decision boundary, = 0), excepte-width
slabs are removed frorall dimensions to creatg? hypercubes separated by potentially

misleading low-density gaps (Figure 4.3(a)).

For both datasets; = (7/10)~'/¢, such that the gaps should be large enough (relative to the
average spacing between points) to be detectableBftér points (Singh et al., 2008).

Figure 4.2(b,c) and Figure 4.3(b,c) plot the 20-trial average cumulative number of mistakes
made by each algorithm when predicting the label of each incoming data point (regardless of
whether the label ends up being revealed naturally or actively queried). The captions indicate the
mean and standard deviation @f the number of additional labels used in learning (via active
selection for OASIS and random selection for the baselines). We observe that OASIS is able to
very quickly learn the true decision boundary and stop making new mistakes across both datasets
for all dimensionalities considered (¢ {2,4, 8,16, 32}, though onlyd = 2 andd = 32 are
reported here). As expected, active querying allows OASIS to resolve ambiguities between the
multiple gaps in the diced-cubédatasets, though learning the decision boundary in this more
confusing case takes longer on average. Comparing OSIS to OS and both versions of AROW,
we see that SSL provides a large advantage, even when the few labeled data points are randomly
selected. This example provides a proof of concept for the particle filtering approach to tracking
the posterior, both in cases where the data distribution satisfies the gap assumption and when it

contains misleading gaps.
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Figure 4.2: Sliced-cubéd-synthetic data results far = 1000, [ = 2.

4.2.2 Real-World Data

We next demonstrate that OASIS and its passive counterpart OSIS significantly outperform
supervised baselines on real-world optical character recognition (OCR) tasks through their use of
active sampling and online updates based on unlabeled data. We used two small scale datasets

from the University of California, Irvine (UCI) machine learning repository, letter and pendigits,
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Figure 4.3: Diced-cubéd-synthetic data results far = 1000, [ = 2.

in addition to the larger MNIST database. The details of the binary tasks we considered, and the

results, are listed in Figure 4.4

5For the MNIST data, we reduced the dimensionality down to 10 via “online PCA.” To roughly simulate the online
setting, principal components were found basedon . ., x1009, andxigo1, - - - , X10000 WeEre simply projected into
the resulting space.
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On all three datasets, we see a clear ordering of performance: active SSL is better than passive
SSL is better than passive supervised learning. We can measure statistically significant perfor-
mance differences by applying two-samplieests to the total numbers of mistakes made by pairs
of algorithms across the 20 triélsOn letter, OASIS significantly outperforms all the supervised
algorithms f < 0.05), and makes fewer mistakes than the passive semi-supervised OSIS. OSIS
fails to achieve statistical significance at the 0.05 level over the supervised baselines, indicating that
for this task, OASIS’s active learning (rather than the use of unlabeled data) gives it the advantage.
This suggests that perhaps the letter dataset's classes are not separated by a low density region. On
pendigits and MNIST, though, both OASIS and OSIS make significantly fewer mistakes overall
than each of the three supervised learners. Furthermore, on MNIST, OASIS significantly beats
OSIS, demonstrating that actively queried labels can be more useful than randomly sampled labels

in the context of online semi-supervised learning.

4.3 Conclusions and Future Work

We have presented a novel online learning algorithm, OASIS, which combines active learn-
ing and semi-supervised learning. OASIS exploits unlabeled data through the low-density gap
assumption and is able to avoid the non-convex optimization typically associated with similar SSL
algorithms by maintaining an approximation of the posterior over weight vectors via particle filter-
ing. Outside of some special-purpose classifiers for computer vision tracking applications (Grab-
ner et al., 2008; Tang et al., 2007), few authors have examined the task of online semi-supervised
learning. We also include online active learning and show significant improvements over passive
supervised baselines on both synthetic and real-world data.

This chapter focuses on linear classifiers. Itis possible, however, to incorporate kernels through
the use of random features (Rahimi and Recht, 2007) and maintain the desirable effects of learn-
ing linear classifiers. This involves simply preprocessing the data by applying a set of random

projections and then learning within the new “random feature” space.

5The specific labeled examples differ between OASIS and the passive algorithms, so the samples are not paired.
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Our experiments focused on relatively low-dimensional datasets. It is well-known that particle
filtering and sequential Monte Carlo techniques can be less efficient in high dimensions. One way
to adapt OASIS to better handle much higher dimensional datasets, including those resulting from
random-feature-based kernelization, is to improve the proposal distribution in the MCMC step of
resample-move. The current approach uses a symmetric, peaky proposal distribution of the same
family as the prior. This somewhat limits the ability of particles to jump between modes in the
posterior. It is possible that we can achieve better mixing performance by convolving our current
proposal distribution with a smoothed kernel density estimate based on the previous set of particles,
thus allowing particles to jump to distant regions recently occupied by many particles.

Future work will also examine alternative active learning strategies, especially ones that strictly
limit the frequency at which the learner can query, limit the total number of active queries, or con-
sider costs associated with certain labels. The current fixed threshold strategy may not be suitable
under all real-world constraints. While we could simply impose a hard limit on the number of
gueries, more sophisticated approaches may be possible which delicately balance the trade-off be-
tween receiving another label versus another unlabeled data point. In either case, we learn some-
thing, and it may be advantageous to delay querying until a more valuable point comes along. Many
adaptive thresholding and selection criteria are possible for online active learning (see Beygelzimer
et al. (2009) and the references therein), and careful modification to account for the role and impact
of unlabeled data could lead to improved learning rates.

This concludes the discussion of novel online semi-supervised learning methods. The remain-
der of the dissertation focuses on expanding the reach of the more common batch setting to handle

more complex datasets using novel assumptions based on unlabeled data.
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Chapter 5

Multi-Manifold Semi-Supervised Learning

We now begin the first of several chapters introducing new assumptions for batch SSL. As
discussed in Section 2.5, the graph used for graph-based semi-supervised learning plays a very
important role. Having the wrong graph or poorly set weights can greatly impact performance.
When the data lies on a mixture of manifolds, the standard graph types discussed in Section 2.5 may
lead to diffusion of labels in undesirable ways. We try to remedy this problem in our work on multi-
manifold semi-supervised learning (Goldberg et al., 2009). While expanding the reach of graph-
based methods, this work is also a step in the direction of “safe SSL,” as the theoretical analysis
presented here suggests that our cluster-then-label procedure will be no worse than supervised
learning under certain conditions.

The promising empirical success of semi-supervised learning algorithms in favorable situations
has triggered several recent attempts (Balcan and Blum, 2005; Ben-David et al., 2008; Kaariainen,
2005; Lafferty and Wasserman, 2007; Niyogi, 2008; Rigollet, 2007) at developing a theoretical
understanding of semi-supervised learning. For example, in a recent paper (Singh et al., 2008), it
was established using a finite sample analysis that, if the complexity of the distributions under con-
sideration is too high to be learnt usindabeled data points, but is small enough to be learnt using
m > n unlabeled data points, then semi-supervised learning (SSL) can improve the performance
of a supervised learning (SL) task.

As discussed earlier, there have also been many successful practical SSL algorithms. How-
ever, the theoretical analyses and practical algorithms often assume that the data forms clusters
or resides on a single manifold. Both a theory and an algorithm are lacking when the data is

supported on a mixture of manifolds. Such data occurs naturally in practice. For instance, in
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handwritten digit recognition, each digit forms its own manifold in the feature space; in computer
vision motion segmentation, moving objects trace different trajectories which are low dimensional
manifolds (Tron and Vidal, 2007). These manifolds may intersect or partially overlap, while hav-
ing different dimensionality, orientation, and density. (See Figure 5.4 in the experiments section
for some toy examples.) Existing SSL approaches cannot be directly applied to multi-manifold
data. For instance, traditional graph-based SSL algorithms may create a graph that connects points
on different manifolds near a manifold intersection, thus diffusing information across the wrong
manifolds.

The main contributions of this work are:

e We generalize the theoretical analysis of Singh et al. (2008) to the case where the data is sup-
ported on a mixture of manifolds. We give a finite sample analysis to quantify the potential

gain of using unlabeled data in this multi-manifold setting.

e Guided by the theory, we propose an SSL algorithm that handles multiple manifolds as well
as clusters. It works by separating different manifolds into decision sets and performing

supervised learning within each set.

e The algorithm builds upon novel Hellinger-distance-based graphs and size-constrained man-

ifold clustering.

e Experiments show that our algorithm can perform SSL on multiple intersecting, overlapping,

and noisy manifolds.

5.1 Theoretic Perspectives on Multi-Manifold Semi-Supervised Learning

In this section, we briefly review the conclusions of Singh et al. (2008), which are based on the
cluster assumption, and then describe our new analysis for the single manifold and multi-manifold
case (Goldberg et al., 2009).

The cluster assumption, as formulated by Singh et al. (2008), states that the target regression

function or class label is locally smooth over certain subsets of HtBémensional feature space
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that are delineated by changes in the marginal density—throughout this work, we assume the
marginal density is bounded above and below (away from zero). We refer to these delineated
subsets adecision setd.e., all non-empty sets formed by intersections between the cluster support
sets and their complements. If these decision sets, denotéddan be learnt using unlabeled data,

the learning task on each decision set is simplified.

Previous results (Singh et al., 2008) suggest that if the decision sets can be resolved using
unlabeled data, but not using labeled data, then semi-supervised learning can help. Singh et al.
(2008) used finite sample bounds to characterize both the SSL gains and the relative value of
unlabeled data.

To derive the finite sample bounds, the first step is to understand when the decision sets are
resolvable using data. This depends on the interplay between the complexity of the class of distri-
butions under consideration and the number of unlabeled poirgad labeled points. For the
cluster case, the complexity of the distributions is determined by the mardefined as the min-
imum separation between clusters or the minimum width of a decision set (Singh et al., 2008). If
the marginy is larger than the typical distance between the data paint3/¢ if using unlabeled
data, om /P if using only labeled data), then with high probability the decision sets can be learnt
up to a high accuracy (which dependsqaror n, respectively) (Singh et al., 2008). This implies
that if v > m~'/" (margin exists with respect to density wfilabeled daty then the finite sam-
ple performance (the expected excess efrof) of a semi-supervised Iearné;w relative to the
performance of a clairvoyant supervised Iearﬁ@,t;, which has perfect knowledge of the decision
setsC', can be characterized as follows:

sup Err(fmn) < sup Err(fon) +d(m,n). (5.1)
Pxy (7) Pxy (7)

HerePxy () denotes the cluster-based class of distributions with complexapndd(m, n) is the
error incurred due to inaccuracies in learning the decision sets using unlabeled data. Comparing
this upper bound on the semi-supervised learning performance to a finite sample minimax lower

bound on the performance of any supervised learner provides a sense of the relative performance
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Complexity SSL upper SL lower SSL
range bound bound helps
Cluster Assumption
v > n—% n- 2a2iD n- 255:D No
no > v > m-b N~ miD n-o Yes
m-B > v > —m~D n~b n~b No
—m™ D > 7y = n-o Yes

Single Manifoldkgy, := min(rg, so)

2 2a

Ky = n"o n~ 2a+d n~ 2a+d No

"D > ke > m D n”Zata Q(1) Yes

M D > Key > 0 O(1) Q(1) No
Multi-Manifold kyy := sgn(y) - min(|7y|, ro, So)

Kym = no n_2§id n_%%id No

N"D > Ky > M D n"Zata Q1) Yes

M D > kg > —m b O(1) Q1) No

—M"D > Ky n"za%a Q(1) Yes

Table 5.1: Conjectured finite sample performance of SSL and SL for regression @fderty,
« > 1, smooth function (with respect to geodesic distance in the manifold cases).
These bounds hold fap > 2, d < D, m > n, and suppress constants and log factors.

of supervised learning (SL) vs. SSL. Thus, SSL helps if complexity of the class of distributions

v > m~P andbothof the following conditions hold:

1. Knowledge of decision sets simplifies the supervised learning task, that is, the error of the

clairvoyant learnesupp_ .. () Srr(fc,n) < infy, supp,, (,) Er7(fn), the smallest error that

can be achieved by any supervised learner basedaimeled data. The difference quantifies

the SSL performance gain.

2. m s large enough so that the error incurred due to using a finite amount of unlabeled data to
learn the decision sets is negligibl&(m,n) = O (suppxy(,y) Srr(fan)) . This quantifies

the relative value of labeled and unlabeled data.
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The finite sample performance bounds on SSL and SL performance as derived in Singh et al.
(2008) for the cluster assumption are summarized in Table 5.1 for the regression setting, where the
target function is a Blder« smooth function on each decision set and 1. We can see that SSL
provides improved performance, by capitalizing on the local smoothness of the function on each
decision set, when the separation between the clusters is large compared to the typical distance
between unlabeled data~'/” but less than the typical distance between labeled data”.
Negativey refers to the case where the clusters are not separated, but can overlap and give rise
to decision sets that are adjacent (see Singh et al. (2008)). In this case, SSL always outperforms
SL provided the width of the resulting decision sets is detectable using unlabeled data. Thus,
the interplay between the margin and the number of labeled and unlabeled data characterizes the
relative performance of SL vs. SSL under the cluster assumption. Similar results can be derived
in the classification setting where an exponential improvement (fsoh” to e~") is possible

provided the number of unlabeled datagrows exponentially witm (Singh et al., 2008).

5.1.1 Single Manifold Case

In the single manifold case, the assumption is that the target function lies on a dewer
dimensional manifold, wheré < D, and is Hblder« smooth { > 1) with respect to the geodesic
distance on the manifold. Hence knowledge of the manifold, or equivalently the geodesic distances
between all pairs of data points, can be gleaned using unlabeled data and reduces the dimensional-
ity of the learning task.

In the case of distributions supported on a single manifold, the ability to learn the geodesic
distances well, and hence the complexity of the distributions, depends on two geometric prop-
erties of the manifold—its minimum radius of curvatutgand proximity to self-intersectiog,

(also known as branch separation) (Bernstein et al., 200@),, li= min(ro, so) is larger than the
typical distance between the data points{/” with unlabeled data, at~'/” with only labeled

data), then with high probability the manifold structure is resolvable and geodesic distances can
be learnt up to a high accuracy (which dependsroor n, respectively). This can be achieved

by using shortest distance paths orcaor k-nearest neighbor graph to approximate the geodesic
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distances (Bernstein et al., 2000). The use of approximate geodesic distances to learn the target
function gives rise to an error-in-variable problem. Though the overall learning problem is now re-
duced to a lower-dimensional problem, we are now faced with two types of errors—the label noise
and the error in the estimated distances. However, the error incurred in the final estimation due
to errors in geodesic distances dependsnowhich is assumed to be much greater tharThus,

the effect of the geodesic distance errors is negligible, compared to the error due to label noise, for
m sufficiently large. This suggests that for the manifold casesif> m~'/?, then finite sample
performance of semi-supervised learning can again be related to the performance of a clairvoyant
supervised Iearnq?f\cyn as in (5.1) above, sincEm, n) is negligible form sufficiently large.

Comparing this SSL performance bound to a finite sample minimax lower bound on the perfor-
mance of any supervised learner indicates SSL’s gain in the single manifold case and is summarized
in Table 5.1. These are conjectured bounds based on the arguments above and similar arguments
in Niyogi (2008). The SSL upper bound can be achieved using a learning procedure adaptive to
botha andd, such as the method proposed in Bickel and Li (260The SL lower bounds fol-
low from the results in Tsybakov (2004) and Niyogi (2008). SSL provides improved performance
by capitalizing on the lower-dimensional structure of the manifold when the minimum radius of
curvature and branch separation are large compared to the typical distance between unlabeled data

m~YP, put small compared to the typical distance between labeleddats.

5.1.2 Multi-Manifold Case

The multi-manifold case addresses the generic setting where the clusters are low-dimensional
manifolds that possibly intersect or overlap. In this case, the target function is supported on multi-
ple manifolds and can be piecewise smooth on each manifold. Thus, it is of interest to resolve the
manifolds, as well as the subsets of each manifold where the decision label varies smoothly (that
are characterized by changes in the marginal density). The analysis for this case is a combination of

the cluster and single manifold case. The complexity of the multi-manifold class of distributions,

'Note, however, that the analysis in Bickel and Li (2007) considers the asymptotic performance of SL, whereas
here we are studying the finite-sample performance of SSL.
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denotedk,,,, is governed by the minimum of the manifold curvatures, branch separations, and the
separations and overlaps between distinct manifolds. For the regression setting, the conjectured
finite sample minimax analysis is presented in Table 5.1.

These results indicate that when there is enough unlabeled data, but not enough labeled data,
to handle the complexity of the class, then semi-supervised learning can help by adapting to both
the intrinsic dimensionality and smoothness of the target function. Extensions of these results to
the classification setting are straightforward, as discussed under the cluster assumption.

Notice that in all the above cases, the semi-supervised learning performance is never worse
than the performance of any supervised learner. This is true under the assumption that the number
of decision sets is finite. To guard against breaking up the problem into too many subproblems, we
can restrict the number of decision setddgn. This implies that if the true number of decision
sets is less thalog n, the above results are still valid except for an additional log factor, and if the
true number of decision sets is more thagn, then a performance gain is not achieved, however

the performance is no worse than that of a supervised learner.

5.2 A Multi-Manifold Learning Algorithm

Guided by the theoretical analysis in the previous section, we propose a “cluster-then-label”

type of SSL algorithm (see Algorithm 6). It consists of three main steps:

1. It uses the unlabeled data to form a small humbede&dision setson which the target
function is assumed to be smooth. The decision sets are defined in the ambient space, not

just on the labeled and unlabeled points.

2. The target function within a particular decision set is estimated using only labeled data that

fall in that decision set, and using a supervised learner specified by the user.
3. A new test point is predicted by the target function in the decision set it falls into.

There have been several cluster-then-label approaches in the SSL literature. For example,

the early work of Demiriz et al. (1999) modifies the objective of standandeans clustering
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algorithms to include a class impurity term. El-Yaniv and Gerzon (2005) enumerate all spectral
clusterings of the unlabeled data with varying number of clusters, which together with labeled data
induce a hypothesis space. They then select the best hypothesis based on an Occam’s razor-type
transductive bound. Some work in constrained clustering is also closely related to cluster-then-
label from an SSL perspective (Basu et al., 2008). Compared to these approaches, our algorithm

has two advantages:

1. Itis supported by our SSL minimax theory;

2. It handles both overlapping clusters and intersecting manifolds by detecting changes in sup-

port, density, dimensionality or orientation.

Our algorithm is also different from the family of graph-regularized SSL approaches, such
as manifold regularization (Belkin et al., 2006) and earlier variants (Joachims, 2003; Zhou et al.,
2003; Zhu et al., 2003). They also depend on the manifold assumption that the target function

varies smoothly on the manifold. In contrast,

1. Our algorithm is avrappermethod, which uses any user-specified supervised ledheas
a subroutine. This allows us to directly take advantage of advances in supervised learning

without the need to derive new algorithms.

2. Our theory ensures that, even when the manifold assumption is wrong, our SSL performance

bound is the same as that of the supervised learner (uptpfactor).

Finally, step 1 of our algorithm is an instance of manifold clustering. Recent advances on this
topic include generalized principal component analysis (Vidal et al., 2008) and lossy coding (Ma
et al., 2007) for mixtures of linear subspaces, multiscale manifold identification with algebraic
multigrid (Kushnir et al., 2006), locally linear embedding plus spectral clustering (Polito and Per-
ona, 2002), tensor voting (Mordohai and Medioni, 2005), spectral curvature clustering (Chen and
Lerman, 2008), and the translated Poisson mixture model (Haro et al., 2008) for mixtures of non-
linear manifolds. Our algorithm is unique in two ways. First, its use of Hellinger distance offers a
new approach to detecting overlapping clusters and intersecting manifolds. Second, our decision

sets have minimum size constraints, which we enforce by constraimneshns.
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Given: n labeled examples and unlabeled examples, and a supervised leastier

1. Use the unlabeled data to infer~ O(log(n)) decision sets;:
(a) Select a subset of. < M unlabeled points

(b) Form a graph on the + m labeled and unlabeled points, where the edge
weights are computed from the Hellinger distance between local sample co-

variance matrices

(c) Perform size-constrained spectral clustering to cut the graphkirgarts,

while keeping enough labeled and unlabeled points in each part
2. Use the labeled data ifi; and the supervised learngr. to trainﬁ»
3. For test pointt* € Ci, predictﬁ-(x*).

Algorithm 6 : The Multi-Manifold Semi-Supervised Learning Algorithm.

5.2.1 Hellinger Distance Graph

Let the labeled data bf(z;,:)};-,, and the unlabeled data Ke;}}”,, whereM > n. The
building block of our algorithm is docal sample covariance matri¥-or a pointz, defineN (x)
to be a small neighborhood aroumdn Euclidean space. Léf, be the local sample covariance

matrix atz:

5= 3 (@ — u) @ — )T /(N - 1), (52)

@/ EN(z)
wherep, = >y @' /|IN(z)| is the neighborhood mean. In our experiments, weNgt:)| ~
O(log(M)) so that the neighborhood size grows with unlabeled data/diz& he covariance,
captures the local geometry around

Our intuition is that pointsc;, z; on different manifolds or in regions with different density
will have different local geometries. This intuition is captured by the Hellinger distance between
their local sample covariance matricés ;. The squared Hellinger distance is defined between
two pdf'sp,q: H%(p,q) = 3 [ (M— M)de. By settingp(z) = N (2;0,%,), i.e., a
Gaussian with zero mean and covariaite and similarlyg(z) = N(z;0,%;), we extend the
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definition of Hellinger distance to covariance matrices:

H(E“ Z]) =H (N(.Z‘, 0, 21),./\/(33, 0, El)) = \/1 — 2D/2’ZZ|1/4’EJ|1/4/|21 + Ej|1/27 (53)

where D is the dimensionality of the ambient feature space. We will also B4lL;,¥;) the
Hellinger distance between the two pointsz;. WhenX; + X, is rank deficient/{ is computed

in the subspace occupied By + ;. The Hellinger distancé! is symmetric and in0, 1]. H is

small when the local geometry is similar, and large when there is significant difference in density,
manifold dimensionality or orientation. Example 3D covariance matrices andAhealues are
shown in Figure 5.1.

It would seem natural to compute all pairwise Hellinger distances between our datasetbf
points to form a graph, and apply a graph-cut algorithm to separate multiple manifolds or clusters.
However, ifz; andx; are very close to each other, their local neighborha¥ds;), N (z;) will
strongly overlap. Then, even if the two points are on different manifolds the Hellinger distance will
be small, because their covariance matriggs:; will be similar. Therefore, we select a subset
of m ~ O (M/log(M)) unlabeled points so that they are farther apart while still covering the
whole dataset. This is done using a greedy procedure that begins by takintab#led points
and then selects a subsetrofunlabeled points to approximately cover the dataset. Each of these
n 4+ m points has its local covarianée computed from the original full dataset. We then discard
the M —m unselected unlabeled points. Notice, however, that the numlodeffective unlabeled
data points is polynomially of the same order as the total numbef available unlabeled data
points.

We can now define a sparse graph onthen points. Each point is connected by a weighted,
undirected edge t0(log(n + m)) of its nearest Mahalanobis neighbors chosen from the the set of
n-+m points too. The choice @ (log(n+m)) allows neighborhood size to grow with dataset size.
Since we know the local geometry aroungcaptured by:,), we “follow the manifold” by using
the Mahalanobis distance as the local distance metric @, (z,2') = (v — 2/) 'S (z — o).

For example, a somewhat flat, will preferentially connect to neighbors in or near the same
flat subspace. The graph edges are weighted using the standard RBF scheme, but with Hellinger

distancew;; = exp (—H?*(%;,%;)/(20%)). Figure 5.2(a) shows a small part of a synthetic “dollar
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Covariance matrices Comment H(3q,%)

similar 0.02
differ in

density 0.28
differ in 1

dimensionality

differ in
orientation

Figure 5.1: Hellinger distance. Note thdi (X, ¥,) is close to zero when the covariance matri-
ces are similar.H (X, Y,) is closer to (or exactly equal to) one, however, when the
distributions in question differ in terms of density, dimensionality, or orientation.

sign” dataset, consisting of two intersecting manifolds: “S” afidThe green dots are the original

unlabeled points, and the ellipsoids are the contours of covariance matrices around a subset of
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(@ (b)

Figure 5.2: The graph on the dollar sign dataset. (a) Subset of 3D covariance matrices centered
on unlabeled points. (b) Complete graph with edge weights based on comparisons
between nearby local covariance matrices. Darker red edges have large weights, while
lighter yellow edges have small weights. Note that the darker edges tend to be within
the same manifold.

selected unlabeled points within a small region. Figure 5.2(b) shows the graph on the complete
dollar sign dataset, where red edges have large weights and yellow edges have small weights. Thus
the graph combines locality and geometry: an edge has large weight when the two nodes are close

in Mahalanobis distance, and have similar covariance structure.

5.2.2 Size-Constrained Spectral Clustering

We perform spectral clustering on this graphzof m nodes. We hope each resulting cluster
represents a separate manifold, from which we will define a decision set. Of the many spectral
clustering algorithms, we chose ratio cut for its simplicity, though others can be similarly adapted

for use here. The standard ratio cut algorithmialusters has four steps (von Luxburg, 2007):

1. Compute the unnormalized graph Laplaclan- Deg — W, wherel' = [w;;] is the weight

matrix, andDeg;; = Zj w;,; form the diagonal degree matrix.
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2. Compute thé: eigenvectors; . .. v, of L with the smallest eigenvalues.

3. Form matrixV with v ... v, as columns. Use thih row of V' as the new representation of

ZTi.
4. Cluster allz under the new representation irit@lusters using-means.

Our ultimate goal of semi-supervised learning poses new challenges; we want our SSL algo-
rithm to degrade gracefully, even when the manifold assumption does not hold. The SSL algorithm
should not break the problem into too many subproblems and increase the complexity of the su-
pervised learning task. This is achieved by requiring that the algorithm does not generate too
many clusters and that each cluster contains “enough” labeled points. Because we will simply do
supervised learning within each decision set, as long as the number of sets does not grow polyno-
mially with », the performance of our algorithm is guaranteed to be polynomially no worse than
the performance of the supervised learner when the manifold assumption fails. Thus, we auto-
matically revert to the supervised learning performance. One way to achieve this is to have three

requirements:
1. The number of clusters grows as- O(log(n)).
2. Each cluster must have at least- O(n/log®(n)) labeled points.
3. Each spectral cluster must have at ldast O(m/ log*(n)) unlabeled points.

The first requirement sets the number of clusterallowing more clusters and thus handling more
complex problems as labeled data size grows, while suffering only a logarithmic performance loss
compared to a supervised learner if the manifold assumption fails. The second requirement ensures
that each decision set héXn) labeled points up to log factér The third is similar, and makes
spectral clustering more robust.

Spectral clustering with minimum size constraiat$ on each cluster is an open problem.

Directly enforcing these constraints in graph partitioning leads to difficult integer programs (Ji,

2The square allows the size ratio between two clusters to be arbitrarily skewegras's. We do not want to fix
the relative sizes of the decision satpriori.
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2004). Instead, we enforce the constraints-imeans (step 4) of spectral clustering. Our approach
is a straightforward extension to the constrainesheans algorithm of Bradley et al. (2000). For
point z;, let T;; ... T;, € R be its cluster indicators: ideally;, = 1 if z; is in clusterh, and

0 otherwise. Let;...c, € R denote the cluster centers. Constraiegheans is the iterative

minimization over!" andc of the following problem:

min S Tl — el ?
St S Tn=1,T>0
S T =a, XU Tin 2 b, h=1..k, 5.4)

where we assume the points are ordered so that the fosints are labeled. Fixing', optimizing
overc is trivial, and amounts to moving the centers to the cluster means.

Bradley et al. (2000) showed that fixirgand optimizingl’ can be converted into a Minimum
Cost Flow problem, which can be exactly solved. In a Minimum Cost Flow problem, there is a
directed graph where each node is either a “supply node” with a numbei0, or a “demand
node” withr < 0. The arcs from — j is associated with cost;, and flowt;;. The goalis to find
the flowt such that supply meets demand at all nodes, while the cost is minimized:

mtinz Sijtij S.t.Ztij — Ztﬂ =r;, Vi (5.5)
=7 J J
For our problem (5.4), the corresponding Minimum Cost Flow problem is shown in Figure 5.3.

The supply nodes are, ...z, ., with » = 1. There are two sets of cluster center nodes. One

setc! ... ¢, each with demand = —aq, is due to the labeled data size constraint. The other set
ct...ct, each with demand = —b, is due to the unlabeled data size constraint. Finally, a sink
demand node with = —(n + m — ak — bk) catches all the remaining flow. The cost framto

cn 1S s = ||z — ci)|?, and fromey, to the sink is 0. It is then clear that the Minimum Cost Flow
problem (5.5) is equivalent to (5.4) with, = ¢;, andc fixed. Interestingly, (5.5) is proven to have
integer solutions which correspond exactly to the desired cluster indicators.

Once size-constrained spectral clustering is completedn them points will each have a

cluster indexirl ... k. We definet decision set$@}§:1 by the Voronoi cells around these points:
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labeled
examples

unlabeled |
examples

Figure 5.3: The Minimum Cost Flow problem equivalent to the step of constraineteans clus-
tering in which data points are reassigned to clusters (with cluster cerfteesl).

C; = {x € RP | 2’s Euclidean nearest neighbor among the m points has cluster indeX. We
train a separate predictéﬁrfor each decision set using the labeled points in that decision set, and a
user-specified supervised learner. During test time, an unseenpant’; is predicted agA}(x*).

Therefore, the unlabeled data in our algorithm is used merely to determine the decision sets.

5.3 Experiments

We present experimental results showing that our algorithm consistently improves over SL in
several different scenarios. In addition, we demonstrate that using our novel Hellinger-distance-
based graph in the existing manifold regularization algorithm outperforms the same algorithm

using a standaréNN graph.

5.3.1 Datasets

We experimented with five synthetic (Figure 5.4) and one real datasets. Datasets 1-3 are for

regression, and 4—6 are for classification:
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1. Dollar sign contains two intersecting manifolds. The “S” manifold has targearying

from 0 to 3x. The “

" manifold has target functiop = =3 + 13, wherexz 3 is the vertical
dimension. White noise ~ N (0,0.01?) is added tay.

2. Surface-sphereslices a 2D surface through a solid ball. The ball has target fungtien

||z||, and the surface has= ., — 5.

3. Density changecontains two overlapping rectangles. One rectangle is wide and sparse with
y = x.1, the other is narrow and five times as dense with- 10 — 5z.;. Together they

produce three decision sets.

4. Surface-helixhas a 1D toroidal helix intersecting a surface. Each manifold is a separate

class.

5. Martini is a composition of five manifolds (classes) to form the shape of a martini glass with

an olive on a toothpick, as shown in Figure 5.4(e).

6. MNIST digits. We scaled down the images to 16 x 16 pixels and used the official train/test
split, with different numbers of labeled and unlabeled examples sampled from the training

set.

5.3.2 Methodology & Implementation Details

In all experiments, we report results that are the average of 10 trials over random draivs of

unlabeled ana. labeled points. We compare three learners:
e [Global]: supervised learner trained on all of the labeled data, ignoring unlabeled data.

e [Clairvoyant] : with the knowledge of the true decision sets, trains one supervised learner

per decision set.

e [SSL]: our semi-supervised learner that discovers the decision sets using unlabeled data,

then trains one supervised learner per decision set.
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After training, each classifier is evaluated on a massive test set, also sampled from the underlying
distribution, to estimate generalization error. We implemented the algorithms in MATLAB, with
Minimum Cost Flow solved by the network simplex method in CPLEX. We used the same set
of parameters for all experiments and all datasets: We chose the number of decision sets to be
k = [0.5 log(n)]. To obtain the subset of: unlabeled points, we let the neighborhood size
|IN(z)| = |3log(M)|. When creating the gragh’, we used 1.5 log(m+n) | nearest Mahalanobis
neighbors, and an RBF bandwidth= 0.2 to convert Hellinger distances to edge weights. The
size constraints were = |1.25n/log*(n)|,b = [1.25m/log*(n)|. Finally, to avoid poor local
optima in spectral clustering, we ran 10 random restarts for constrahmeelans, and chose the
result with the lowest objective. For the regression tasks, we used kernel regression with an RBF
kernel, and tuned the bandwidth parameter with 5-fold cross validation using only labeled data in
each decision set (or globally for “Global”). For classification, we used a support vector machine
(LIBSVM) with an RBF kernel, and tuned its bandwidth and regularization parameter with 5-fold
cross validation. Note that LIBSVM solves multi-class problems using the 1-against-1 strategy.
We used Euclidean distance in each decision region for the supervised learner, but we expect

performance with geodesic distance would be even better.

5.3.3 Results of LargeM

Figure 5.4 reports the results for the five synthetic datasets. In all cases, w&/use2)000,
n € {20,40,80, 160, 320,640}, and the resulting regressors/classifiers are evaluated in terms of
MSE or error rate using a test set of 20000 points. These results show that our SSL algorithm can
discover multiple manifolds and changes in density well enough to consistently outperform SL
in both regression and classification settings of varying complexity. We also observed that even
under- or over-partitioning into fewer or more decision sets than manifolds can still improve SSL

performancé

3We compared Global and SSL’s 10 trials at eachsing two-tailed, paired-tests. SSL was statistically signif-
icantly better & = 0.05) in the following cases: dollar sign at = 20-80, density atn = 40—640, surface-helix at
n = 20-320, and martini at» = 40-320. The two methods were statistically indistinguishable in other cases.
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Figure 5.4: Regression MSE (a-c) and classification error (d-e) for synthetic datasets. All curves
are based o/ = 20000, 10-trial averages, and error bars plot standard deviation.
Clairvoyant classification error is O.

We performed three experiments with the digit recognition data: binary classification of the
digits 2 vs 3, and three-way classification ®f2, 3 and7, 8, 9. Here, we fixech = 20, M = 5000,

10 random training trials, each tested on the official test set. Table 5.2 contains results averaged
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Method 2vs3 1,2,3 7,89
Global | 0.17+0.12 | 0.20 +0.10 | 0.33 +0.20
SSL | 0.05+0.01 | 0.10+0.04 | 0.20 & 0.10

Table 5.2: 10-trial average test set error rate®ne standard deviation for handwritten digit recog-
nition with fixedn = 20 and M = 5000. All differences are statistically significant
(o = 0.05).

over these trials. SSL outperforms Global in all three digit tasks, and all differences are statistically
significant (¢ = 0.05). Note that we used the same parameters as the synthetic data experiments,
which results ink = 2 decision sets fon = 20; again, the algorithm performs well even when

there are fewer decision sets than classes. Close inspection revealed that our clustering step creates
relatively pure decision sets. For the binary task, this leads to two trivial classification problems,
and errors are due only to incorrect assignments of test points to decision sets. For the 3-way tasks,
the algorithm createst+2 and 3 clusters, and 7+9 and 8 clusters. We conclude that the performance
gains in the multi-class tasks are realized largely by decreasing errors d@atiukS digits placed

in their own decision set, while simplifying to two classes within the other decision set is also

beneficial.

5.3.4 Effect of Too Small anM

Finally, we examine our SSL algorithm’s performance with less unlabeled data. For the surface-

helix dataset, we now fix = 80 (which leads tdk = 3 decision sets) and redudé. Figure 5.5

depicts example partitionings for thréé values, along with 10-trial average error ratésdne
standard deviation) in each setting. Note these are top-down views of the data in Figure 5.4(d).
WhenM is small, the resulting subset of unlabeled points is too small, and the partition bound-
aries cannot be reliably estimated. Segments of the helix shown in red and areas of the surface
in blue or green correspond to such partitioning errors. Nevertheless, evenheas small

as 1000, SSL’s performance is no worse than Global supervised learning, which achieves an error

rate of0.20 £+ 0.05 whenn = 80 (see Figure 5.4(d)).
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Figure 5.5: Effect of varying M for the surface-helix dataset (= 80, which leads tok = 3
decision sets). Numbers listed are SSL's 10-trial average errortatee standard
deviation. The images show top-down views of one trial’s partitions of the data in
Figure 5.4(d).

5.3.5 Manifold Regularization using the Hellinger Graph

The graph construction method presented here can be plugged into existing graph-based SSL
algorithms. As seen in Figure 5.6, we found that manifold regularization (MR) (Belkin et al.,
2006), using EuclideakNN graphs with RBF weights and all parameters tuned using cross valida-
tion, performs worse than Global on these datasets due to the strong connections across manifolds.
In contrast, replacing theNN/RBF graph with the our Hellinger graph in the same regularization

scheme (Hellinger-MR) leads to improved results.

5.4 Conclusions

We have extended SSL theory and practice to multi-manifolds. While we have quantified the
theoretical performance of SSL vs SL in the single and multi-manifold case, a characterization of
the relative value of unlabeled data requires a detailed analysis of how the inaccuracy in learning
geodesic distances effects the learning error. A large scale empirical study on real datasets is also
needed to demonstrate the robustness to the manifold assumption. These are subjects of future

research.
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Figure 5.6: Comparison of Global/supervised learning, manifold regularization usit\dRBF
graph (MR), and manifold regularization using our novel Hellinger graph (Hellinger-
MR).
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Chapter 6

Transduction with Matrix Completion:
A Low-Rank Assumption for SSL

As discussed in several earlier chapters, semi-supervised learning methods make assumptions
about how unlabeled data can help in the learning process, such as the manifold assumption (data
lies on a low-dimensional manifold) and the cluster assumption (classes are separated by low den-
sity regions). In this chapténve present two transductive learning methods for handling classifica-
tion problems with multiple labels per instance, based on the novel assumption that the feature-by-
item and label-by-item matrices gam@ntly low-rank This assumption effectively couples different
label prediction tasks, allowing us to implicitly use observed labels in one task to recover unob-
served labels in others. The same is true for imputing missing features. In fact, our methods learn
in the difficult regime ofmulti-label transductive learning with missing datsat one sometimes
encounters in practice. That is, each item is associated with many class labels, many of the items’
labels may be unobserved (some items may be completely unlabeled across all labels), and many
features may also be unobserved. Our methods build upon recent advances in matrix completion,
with efficient algorithms to handle matrices with mixed real-valued features and discrete labels.

We obtain promising experimental results on a range of synthetic and real-world data.

6.1 Problem Formulation

Letx;...x, € R? be feature vectors associated withitems. LetX = [x;...x,] be the

d x n feature matrix whose columns are the items. Let there bmary classification tasks,

'Based on joint work with Xiaojin Zhu, Benjamin Recht, Junming Xu, and Robert Nowak.
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yi...yn € {—1,1} be the label vectors, and = [y; ...y,] be thet x n label matrix. Entries

in X or'Y can be missing at random. L@k be the index set of observed featureXinsuch that

(i,7) € Qx if and only if z;; is observed. Similarly, leRy be the index set of observed labels in

Y. Our main goal is to predict the missing labg]s for (i, j) ¢ Qy. Of course, this reduces to
standard transductive learning whee- 1, |2x| = nd (no missing features), and< |Qy| < n

(some missing labels). In our more general setting, as a side product we are also interested in

imputing the missing features, and de-noising the observed featu€s, in

6.1.1 Model Assumptions

The above problem is in general ill-posed. We now describe our assumptions to make it a well-
defined problem. In a nutshell, we assume RandY are jointly produced by an underlying low-
rank matrix. We then take advantage of the sparsity to fill in the missing labels and features using
a modified method of matrix completion. Specifically, we assume the following generative story.
It starts from ad x n low-rank “pre”-feature matrixX°, with rank(X®) < min(d, n). The actual
feature matrixX is obtained by adding i.i.d. Gaussian noise to the entriegX®bfX = X° + ¢,
wheree;; ~ N(0,02). Meanwhile, thef “soft” labels (9, .. .ygj)T = yj € R’ of item j are
produced byy? = Wx9 + b, whereW is at x d weight matrix, andb € R’ is a bias vector.
Let YO = [y?...y?] be the soft label matrix. Note the combingd+ d) x n matrix [Y?; X°]
is low-rank, too:rank([Y?; X°]) < rank(X°) + 1. The actual label;; € {—1,1} is generated
randomly via a sigmoid function? (y;;|yy;) = 1/ (1+ exp(—yl-jy?j)). Finally, two random masks
Qx, )y are applied to expose only some of the entrieXimandY, and we usev to denote the
percentage of observed entries. This generative story may seem restrictive, but our approaches
based on it perform well on synthetic and real datasets, outperforming several baselines with linear

classifiers.



102

6.1.2 Matrix Completion for Heterogeneous Matrix Entries

With the above data generation model, our task can be defined as follows. Given the partially
observed features and labels as specifie&bYy', Qx, 2y, we would like to recover the interme-
diate low-rank matri¥Y?; X°]. Then,X° will contain the denoised and completed features, and
sign(Y?) will contain the completed and correct labels.

The key assumption is that tfie+ d) x n stacked matriXY?; X°] is of low rank. We will start

from a “hard” formulation that is illustrative but impractical, then relax it.

argmin rank(Z) (6.1)

ZeR((t+d)xn
s.t. sign(ziy) = vij, V(i,7) € Qv; Z(ivt); = Tij, V(i,7) € Qx
Here,Z is meant to recoveiY?; X°] by directly minimizing the rank while obeying the observed
features and labels. Note the indi¢esi) € 2x are with respect t&X, suchthat € {1,...,d}. To
index the corresponding element in the larger stacked mAnxe need to shift the row index by
¢ to skip the part forY®, and hence the constrainis, ), = x;;. The above formulation assumes
that there is no noise in the generation proce36es— X andY® — Y. Of course, there are

several issues with formulation (6.1), and we handle them as follows:

e rank() is a non-convex function and difficult to optimize. Following recent work in matrix
completion (Canéds and Tao, 2010; Caad and Recht, 2009), we relaxnk() with the
convex nuclear noriZz||, = Y74 5, (Z), whereo,’s are the singular values &
The relationship betweannk(Z) and||Z||. is analogous to that @f-norm and/*-norm for

vectors.

e There is feature noise froi° to X. Instead of the equality constraints in (6.1), we minimize

a loss function:, (z(;++);, zi;). We choose the squared las$u, v) = (u—wv)? in this work,

but other convex loss functions are possible too.

e Similarly, there is label noise fro° to Y. The observed labels are of a different type than
the observed features. We therefore introduce another loss furgtion v;;) to account for

the heterogeneous data. In this work, we use the logistic|@ssv) = log(1 + exp(—uv)).
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In addition to these changes, we will model the Byasther explicitly or implicitly, leading to two
alternative matrix completion formulations below.

Formulation 1 (MC-b). In this formulation, we explicitly optimize the bidsc R’ in addition
to Z € Rt*+9xn hence the name. Her&,corresponds to the stacked matiw X°; X°] instead
of [Y?; X°], making it potentially lower rank. The optimization problem is

. A 1
argmin ullZ| + W(Z cy(2i + bi, yij) + 0 Z Ca(2(i+)j: i), (6.2)
i:J) €y (i.7)€92x
whereyu, A are positive trade-off weights. Notice the biass not regularized. This is a convex
problem, whose optimization procedure will be discussed in section 6.2. Once the dptimal
are found, we recover the taskabel of item; by sign(z;; + b;), and feature: of item j by z(;¢);.

Formulation 2 (MC-1). In this formulation, the bias is modeled implicitly withifx Similar to
how bias is commonly handled in linear classifiers, we append an additional feature with constant
value one to each item. The corresponding pre-feature matrix is augment@KPr;th] , Wherel
is the all-1 vector. Under the same label assummi?)ﬁ: Wx? + b, the rows of the soft label ma-
trix Y? are linear combinations of rows {X°% 1", i.e.,rank([Y?; X% 17]) = rank([X% 17]).
We then letZ correspond to thét + d + 1) x n stacked matrix{YO; XO; 1T}, by forcing its last
row to be1l ' (hence the name):

. A 1
remin ullZ||. + Oyl > eylzyui) + x| . j)%:ﬁx Ca(Z(i4n)j, Ti5) (6.3

S.t. Z(t+d+1)- == ]_T.

This is a constrained convex optimization problem. Once the opt&nslfound, we recover the
task4 label of itemj by sign(z;;), and featurd: of item j by z(;14);.

MC-b and MC-1 differ mainly in what is iiZ, which leads to different behaviors of the nuclear
norm. Despite the generative story, we do not explicitly recover the weight m@&frix these
formulations. Other formulations are certainly possible. One way is #bderrespond tgY?; X°]
directly, without introducing bia® or the all-1 row, and hope nuclear norm minimization will
prevail. This is inferior in our preliminary experiments, and we do not explore it further in this

work.
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6.2 Optimization Techniques

We solve MC-b and MC-1 using modifications of the Fixed Point Continuation (FPC) method
of Ma et al. (2009¥. While nuclear norm minimization can be converted into a semidefinite pro-
gramming (SDP) problem (Caad and Recht, 2009), current SDP solvers are severely limited in
the size of problems they can solve. Instead, the basic fixed point approach is a computationally
efficient alternative, which provably converges to the globally optimal solution and has been shown

to outperform SDP solvers in terms of matrix recoverability.

6.2.1 Fixed Point Continuation for MC-b

We first describe our modified FPC method for MC-b. It differs from the original FPC (Ma
et al., 2009) in the extra bias variables and multiple loss functions. Our fixed point iterative algo-
rithm to solve the unconstrained problem of (6.2) consists of two alternating steps for each iteration
k:

1. (gradient stepp**! = b* — 7,g(b*), AF = ZF — 729(Z%)

2. (shrinkage stepf*+! = S, ,(A").

In the gradient steprs, and are step sizes whose choice will be discussed next. Overloading
notation a bit,g(b*) is the vector gradient, ang{Z*) is the matrix gradient, respectively, of the

two loss terms in (6.2) (i.e., excluding the nuclear norm term):

A —Yij
g(bi) = — Z (6.4)
(vl J:(1,4)€Qy 1+ exp(yij(zij + b))
A —Yij . o
Oyl Tromtn Gy L = tand(i,j) € Qy
9(z;) = @(sz — X(p;), 1>tand(i—t,j) € Qx (6.5)
0, otherwise

Note for g(z;;),7 > t, we need to shift down (un-stack) the row index#in order to map the

element inZ back to the item(;_,);.

2While the primary method of Ma et al. (2009) is Fixed Point Continuation with Approximate Singular Value
Decomposition (FPCA), where the approximate SVD is used to speed up the algorithm, we opt to use an exact SVD
for simplicity and will refer to the method simply as FPC.
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In the shrinkage stef.,,(-) is a matrix shrinkage operator. LAt = UAV" be the SVD of
A*. ThenS,,,(A*) = Umax(A — 7zu,0)VT, wheremax is elementwise. That is, the shrinkage
operator shifts the singular values down, and truncates any negative values to zero. This step
reduces the nuclear norm.

Even though the problem is convex, convergence can be slow. We follow Ma et al. (2009) and
use a continuation or homotopy method to improve the speed. This involves beginning with a large
valueyu; > p and solving a sequence of subproblems, each with a decreasing value and using the
previous solution as its initial point. The sequence of values is determined by a decay parameter
Nt P = max{uen,, 1}, k =1,...,L — 1, wherey is the final value to use, antl is the
number of rounds of continuation. The complete FPC algorithm for MC-b is listed in Algorithm 7.

A minor modification of the argument in Ma et al. (2009) reveals that as long as we choose non-
negative step sizes satisfying < 4|Qvy|/(An) andz < min {4|Qy|/A, |2x]|}, the algorithms
MC-b will be guaranteed to converge to a global optimum. Indeed, to guarantee convergence, we

only need that the gradient stepisn-expansivén the sense that
b1 = 719(b1) = bs +10,g(bo) |* + 121 — 729(Z1) = Zs +729(Zs) |7 < [[br —bal* + | Z1 — Zs %

for all by, by, Z,, andZ,. Our choice ofr, andrz guarantee such non-expansiveness. Once this
non-expansiveness is satisfied, the remainder of the convergence analysis is the same as in Ma et al.
(2009).

6.2.2 Fixed Point Continuation for MC-1

Our modified FPC method for MC-1 is similar except for two differences. First, there is no
bias variableb. Second, the shrinkage step will in general not satisfy the all-1-row constraints
in (6.3). Thus, we add a third projection step at the end of each iteration to pZdjechack to the
feasible region, by simply setting its last row to all 1's. The complete algorithm for MC-1 is given
in Algorithm 8. We were unable to prove convergence for this gradient + shrinkage + projection
algorithm. Nonetheless, in our empirical experiments, Algorithm 8 always converges and tends to

outperform MC-b. The two algorithms have about the same convergence speed.
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Input : Initial matrix Zo,

parameterg, A, Step size,
Determineu; > o > «-- > pup = pu > 0.
SetZ = Z,.
foreach . = pq, pg, . .., g, do

Input: Initial matrix Z,, biasby,
parameterg, A, Step sizesy,, 7z

Determineu; > o > +-- > up, = p > 0.

SetZ = Zy,b = by.

foreach = pq, po, . .., g, do

while Not convergedio while Not convergedio
Computeb = b — 7,g(b) ComputeA = Z — 729(Z)
A =7 129(Z) PR Compute SVD ofA = UAVT

=4 — 17Tz
Compute SVD ofA = UAV' (Z:OInEUte R o
Compute 2 = rélax(f —_Lzlu, 0) \
rojectZ to feasible region

Z=U A — \a

end mext 2440) Ztrary). = 17

end

end

Output: Recovered matri¥, biasb end

Output: Recovered matriZ

Algorithm 7 FPC algorithm for MC-b. Algorithm 8 : FPC algorithm for MC-1.

6.3 Experiments

We now empirically study the ability of matrix completion to perform multi-label transductive
classification when there is missing data. We first present a family of 24 experiments on a synthetic
task by systematically varying different aspects of the task, including the rank of the problem, noise
level, number of items, and observed label and feature percentage. We then present experiments on
two real-world datasets: music emotions and yeast microarray. In each experiments, we compare
MC-b and MC-1 against four other baseline algorithms. Our results show that MC-1 consistently
outperforms other methods, and MC-b follows closely.

Parameter Tuning and Other Settings for MC-b and MC-1: To tune the parametersand
A, we use 5-fold cross validation (CV) separately for each experiment. Specifically, we randomly
divide Qx andQy into five disjoint subsets each. We then run our matrix completion algorithms
using‘gl of the observed entries, measure its performance on the rem%in'mgﬂ average over
the five folds. Since our main goal is to predict unobserved labels, we use label error as the CV
performance criterion to select parameters. Note that tunirggquite efficient since all values

under consideration can be evaluated in one run of the continuation method. Yye-sel.25
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and, as in Ma et al. (2009), considevalues starting at;7,, whereo, is the largest singular value
of the matrix of observed entries jiY’; X] (with the unobserved entries set to 0), and decrease
until 1075. The range of\ values considered wgd0—3,1072,10~*,1}. We initializedb, to be
all zero andZ, to be the rank-1 approximation of the matrix of observed entrie¥irX] (with
unobserved entries set to 0) obtained by performing an SVD and reconstructing the matrix using
only the largest singular value and corresponding left and right singular vectors. The step sizes
were set as followsrz = min(%, 1Qx]), ™ = % Convergence was defined as relative
change in objective functions (6.2)(6.3) smaller than®.

Baselines: We compare to the following baselines, each consisting of some missing feature

imputation step oiX first, then using a standard SVM to predict the labels:
e [FPC+SVM] Matrix completion onX alone using FPC (Ma et al., 2009).

e [EM(k)+SVM] Expectation Maximization algorithm to impute missixgentries using a
mixture of £ Gaussian components. Missing features, mixing component parameters, and
the assignments of items to components are treated as hidden variables, which are estimated

in an iterative manner to maximize the likelihood of the data (Little and Rubin, 2002).

e [Mean+SVM] Impute each missing feature by the mean of the observed entries for that

feature.
e [Zero+SVM] Impute missing features by filling in zeros.

After imputation, an SVM is trained using the available (noisy) labelgynfor that task, and
predictions are made for the rest of the labels. All SVMs are linear, trained using SV itid the
regularization parameter is tuned using 5-fold cross validation separately for each task. The range
of parameter values considered Was—%,10=7,...,107, 10%}.

Evaluation Method: To evaluate performance, we consider two measurassductive label
error, i.e., the percentage of unobserved labels predicted incorrectlyetaitve feature imputa-

tion error <Zij§mx(xij — :?:,»j)2> /> 5405 Tij Wheret is the predicted feature value. In the tables

3http://vikas.sindhwani.org/svmlin.html
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below, for each parameter setting, we report the mean performance (and standard deviation in
parenthesis) of different algorithms over 10 random trials. The best algorithm within each param-
eter setting, as well as any statistically indistinguishable algorithms via a two-tailed paésicht

significance levelr = 0.05, are marked in bold.

6.3.1 Synthetic Data Experiments

Synthetic Data Generation: We generate a family of synthetic datasets to systematically
explore the performance of the algorithms. We first create a ramlatrix X° = LRT, where
L € R¥>" andR € R™*" with entries drawn i.i.d. froraV'(0, 1). We then normaliz&® such that
its entries have variance 1. Next, we create a weight matfix R**¢ and bias vectob € R¢,
with all entries drawn i.i.d. frorV'(0, 10). We then produc&, Y°,Y according to section 6.1.1.
Finally, we produce the randofx, 2y masks withw percent observed entries.

Using the above procedure, we vary= 10%, 20%, 40%, n = 100,400, r = 2,4, ando? =
0.01,0.1, while fixingt = 10, d = 20, to produce 24 different parameter settings. For each setting,
we generate 10 trials, where the randomness is in the data and mask.

Synthetic experiment results: Table 6.1 shows the transductive label errors, and Table 6.2
shows the relative feature imputation errors, on the synthetic datasets. We make several observa-
tions.

Observation 1: MC-b and MC-1 are the best for feature imputation, as Table 6.2 shows. How-
ever, the imputations are not perfect, because in these particular parameter settings the ratio be-
tween the number of observed entries over the degrees of freedom needed to describe the feature
matrix (i.e.,r(d + n — r)) is below the necessary condition for perfect matrix completion (Eand
and Recht, 2009), and because there is some feature noise. Furthermore, our CV tuning procedure
selects parameteys \ to optimize label error, which often leads to suboptimal imputation per-
formance. In a separate experiment (not reported here) when we made the ratio sufficiently large
and without noise, and specifically tuned for imputation error, both MC-b and MC-1 did achieve

perfect feature imputation. Also, FPC+SVM is slightly worse in feature imputation. This may
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2

€

[ n | w | wes

MC-1 FPC+SVM EM1+SVM Mean+SVM Zero+SVM

0012

100

10%
20%
40%

37.8(4.0)
23.5(2.9)
15.1(3.1)

31.8(4.3) 34.8(7.0) 34.6(3.9) 40.5(5.7) 40.5(5.1)
17.0(2.2) 17.6(2.1) 19.7(2.4) 28.7(4.1) 27.4(4.4)
10.8(1.8) 9.6(1.5) 10.4(1.0) 16.5(2.5) 15.4(2.3)

400

10%
20%
40%

26.5(2.0)
15.9(2.5)
11.7(2.0)

19.9(1.7) 23.7(1.7) 24.2(1.9) 32.4(2.9) 31.5(2.7)
11.7(1.9) 12.6(2.2) 12.0(1.9) 20.0(1.9) 19.7(1.7)
8.0(1.6) 7.2(1.8) 7.3(1.4) 12.2(1.8) 12.1(2.0)

100

10%
20%
40%

42.5(4.0)
33.2(2.3)
19.6(3.1)

40.8(4.4) 41.5(2.6) 43.2(2.2)43.5(2.9) 42.9(2.9)
26.2(2.8) 26.7(1.7) 30.8(2.7) 35.5(1.4) 33.9(1.5)
14.3(2.7) 13.6(2.6) 14.1(2.4)22.5(2.0) 21.7(2.3)

400

10%
20%
40%

35.3(3.1)
24.4(2.3)
14.6(1.8)

32.1(1.6) 33.4(1.6) 34.2(1.8) 37.7(1.2) 38.2(L.4)
19.1(1.3) 20.5(1.4) 19.8(1.1) 26.9(1.5) 26.9(1.3)
9.5(0.5) 9.2(0.9) 8.6(1.1) 16.4(1.2) 16.5(1.3)

012

100

10%
20%
40%

39.6(5.5)
25.2(2.6)
15.7(3.1)

34.6(3.5) 37.3(6.4) 40.2(5.3) 41.5(6.0) 41.0(5.7)
20.1(1.7) 21.6(2.6) 26.8(3.7) 31.8(4.7) 29.9(4.0)
12.6(1.4) 13.2(2.0) 15.1(2.4) 18.5(2.7) 17.2(2.4)

400

10%
20%
40%

27.6(2.1)
18.0(2.2)
12.0(2.1)

22.6(1.9) 27.6(2.4) 28.8(2.6) 34.5(3.3) 33.6(2.8)
15.2(1.7) 16.8(2.3) 18.4(2.5) 22.6(2.4) 21.8(2.5)
10.1(1.3) 10.4(2.1) 11.1(1.9) 14.1(2.0) 14.0(2.4)

100

10%
20%
40%

42.5(4.3)
33.3(1.9)
21.4(2.7)

415(2.5) 42.3(2.0)45.6(1.9) 44.6(2.9) 43.6(2.3)
20.0(2.2) 30.9(3.1) 34.9(3.0) 36.2(2.3) 35.4(1.6)
18.4(3.1) 18.7(2.4) 21.6(2.4) 23.9(2.0) 23.3(2.5)

400

10%
20%
40%

36.3(2.7)
25.5(2.0)
16.0(1.8)

34.0(1.7) 35.1(1.2) 36.3(1.4) 38.7(1.3) 39.1(1.2)
21.8(1.0) 23.8(1.5) 25.1(1.4) 28.4(1.7) 28.4(1.8)
12.8(0.8) 13.9(1.2) 14.7(1.3) 18.3(1.2) 18.2(1.2)

meta-average

» 25.6

21.4 22.6 24.1 28.6 28.0

Table 6.1: Transductive label error of six algorithms on the 24 synthetic datasets. The varying
parameters are feature noisg rank(X°%) = r, number of items:, and observed label
and feature percentage Each row is for a unique parameter combination. Each cell
shows the mean(standard deviation) of transductive label error (in percentage) over 10
random trials. The “meta-average” row is the simple average over all parameter settings
and all trials. The best algorithm within each parameter setting (row), as well as any
statistically indistinguishable algorithms via a two-tailed, paitadst at significance
level« = 0.05, are marked in bold.

seem curious as FPC focuses exclusively on impuXingVe believe the fact that MC-b and MC-1

can use information ifY to enhance feature imputation¥ymade them better than FPC+SVM.
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0'2 ‘T‘ n ‘ w ‘ MC-b MC-1 FPC+SVM EM1+SVM Mean+SVM

€

0.01{ 2| 100 | 10% | 0.84(0.04) 0.87(0.06) 0.88(0.06)1.01(0.12) 1.06(0.02)

20% | 0.54(0.08) 0.57(0.06) 0.57(0.070.67(0.13) 1.03(0.02)

40% | 0.29(0.06) 0.27(0.06) 0.27(0.06)0.34(0.03) 1.01(0.01)

400 | 10% | 0.73(0.03) 0.72(0.04)0.76(0.03) 0.79(0.07) 1.02(0.01)
20% | 0.43(0.04) 0.46(0.05) 0.50(0.04)0.45(0.04) 1.01(0.00)

40% | 0.30(0.10) 0.22(0.04) 0.24(0.05) 0.21(0.04) 1.00(0.00)

41 100| 10% | 0.99(0.04) 0.96(0.03) 0.96(0.03)1.22(0.11) 1.05(0.01)

20% | 0.77(0.05) 0.78(0.05) 0.77(0.04)0.92(0.07) 1.02(0.01)

40% | 0.42(0.07) 0.40(0.03) 0.42(0.04) 0.49(0.04) 1.01(0.01)
400 | 10% | 0.87(0.04) 0.88(0.03)0.89(0.01) 1.00(0.08) 1.01(0.00)
20% | 0.69(0.07) 0.67(0.04) 0.69(0.03) 0.66(0.03) 1.01(0.00)

40% | 0.34(0.05) 0.34(0.03) 0.38(0.03)0.29(0.02) 1.00(0.00)

0.1 |2|100]| 10% | 0.92(0.05) 0.93(0.04) 0.93(0.05)1.18(0.10) 1.06(0.02)

20% | 0.69(0.07) 0.72(0.06) 0.74(0.06) 0.94(0.07) 1.03(0.02)
40% | 0.51(0.05) 0.52(0.05)0.53(0.05) 0.67(0.08) 1.02(0.01)
400 | 10% | 0.79(0.03) 0.80(0.03) 0.84(0.03) 0.96(0.07) 1.02(0.01)
20% | 0.64(0.06) 0.64(0.06) 0.67(0.04) 0.73(0.07) 1.01(0.00)
40% | 0.48(0.04) 0.45(0.05) 0.49(0.05) 0.57(0.07) 1.00(0.00)
41100| 10% | 1.01(0.04) 0.97(0.03) 0.97(0.03)1.25(0.05) 1.05(0.02)

20% | 0.84(0.03) 0.85(0.03) 0.85(0.03)1.07(0.06) 1.02(0.01)

40% | 0.59(0.03) 0.61(0.04) 0.63(0.04) 0.80(0.09) 1.01(0.01)
400 | 10% | 0.90(0.02) 0.92(0.02)0.92(0.01) 1.08(0.07) 1.01(0.01)
20% | 0.75(0.04) 0.77(0.02)0.79(0.03) 0.86(0.05) 1.01(0.00)
40% | 0.56(0.03) 0.55(0.04) 0.59(0.04) 0.66(0.06) 1.00(0.00)
meta-average 0.66 0.66 0.68 0.78 1.02

Table 6.2: Relative feature imputation error on the synthetic datasets. The algorithm Zero+SVM
Is not shown because it by definition has relative feature imputation error 1.

Observation 2: MC-1 is the best for multi-label transductive classification, as suggested by Ta-
ble 6.1. Surprisingly, the feature imputation advantage of MC-b did not translate into classification,
and FPC+SVM took second place.

Observation 3: The same factors that affect standard matrix completion also affect classification
performance of MC-b and MC-1. As the tables show, everything else being equal, less feature noise
(smallero?), lower rankr, more items, or more observed features and labels, reduce label error.

Beneficial combination of these factors (& row) produces the lowest label errors.
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t ‘ MC-b MC-1 FPC+SVM ‘ MC-b MC-1 FPC+SVM

2 | 30.1(2.8) 22.9(2.2) 20.5(2.5)0.78(0.07) 0.78(0.04) 0.76(0.03)

10| 26.5(2.0) 19.9(1.7) 23.7(1.7)| 0.73(0.03) 0.72(0.04) 0.76(0.03)
transductive label error relative feature imputation error

Table 6.3: More tasks help matrix completien+£ 10%, n = 400, r = 2, d = 20, ¢ = 0.01).

Matrix completion benefits from more tasks. We performed one additional synthetic data
experiment examining the effect bfthe number of tasks) on MC-b and MC-1, with the remaining
data parameters fixed at= 10%, n = 400, r = 2, d = 20, ando? = 0.01. Table 6.3 reveals
that both MC methods achieve statistically significantly better label prediction and imputation
performance witht = 10 than with onlyt = 2 (as determined by two-samplgests at significance
level 0.05).

6.3.2 Music Emotions Data Experiments

In this task introduced by Trohidis et al. (2008), the goal is to predict which of several types
of emotion are present in a piece of music. The Hatmsists ofn = 593 songs of a variety of
musical genres, each labeled with one or more ef 6 emotions (i.e., amazed-surprised, happy-
pleased, relaxing-calm, quiet-still, sad-lonely, and angry-fearful). Each song is represented by
d = 72 features (8 rhythmic, 64 timbre-based) automatically extracted from a 30-second sound
clip.

We vary the percentage of observed entties 40%, 60%, 80%. For eachuv, we run 10 random
trials with different mask$)x, Q2y. For this dataset, we tuned onlywith CV, and set\ = 1.

The results are in Table 6.4. Most importantly, these results show that MC-1 is useful for this
real-world multi-label classification problem, leading to the best (or statistically indistinguishable
from the best) transductive error performance with 60% and 80% of the data available, and close

to the best with only 40%.

4Available at http://mulan.sourceforge.net/datasets.html
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w =40% 60% 80%] Algorithm w =40% 60% 80%
28.0(1.2)| 25.2(1.0)| 22.2(1.6) MC-b 0.69(0.05)| 0.54(0.10)| 0.41(0.02)
27.4(0.8)| 23.7(1.6)| 19.8(2.4) MC-1 0.60(0.05)| 0.46(0.12)| 0.25(0.03)
26.9(0.7)| 25.2(1.6)| 24.4(2.0)) FPC+SVM | 0.64(0.01)| 0.46(0.02)| 0.31(0.03)
26.0(1.1)| 23.6(1.1)| 21.2(2.3)] EM1+SVM | 0.46(0.09)| 0.23(0.04)| 0.13(0.01)
26.2(0.9)| 23.1(1.2)| 21.6(1.6)] EM4+SVM | 0.49(0.10)| 0.27(0.04)| 0.15(0.02)
26.3(0.8)| 24.2(1.0)| 22.6(1.3)] Mean+SVM | 0.18(0.00)| 0.19(0.00)| 0.20(0.01)
30.3(0.6)| 28.9(1.1)| 25.7(1.4)| Zero+SVM | 1.00(0.00)| 1.00(0.00)| 1.00(0.00)

transductive label error relative feature imputation error

Table 6.4: Performance on the music emotions data.

We also compared these algorithms against an “oracle baseline” (not shown in the table). In
this baseline, we give 100% features (i.e., no indices are missing gjrand the training la-
bels inQ)y to a standard SVM, and let it predict the unspecified labels. On the same random
trials, for observed percentage= 40%, 60%, 80%, the oracle baseline achieved label error rate
22.1(0.8),21.3(0.8),20.5(1.8) respectively. Interestingly, MC-1 witlax = 80% (19.8) is statisti-

cally indistinguishable from the oracle baseline.

6.3.3 Yeast Microarray Data Experiments

This dataset comes from a biological domain and involves the problem of Yeast gene functional
classification with data originally from Eisen et al. (1998). This dataset was previously studied in
the context of multi-label prediction by Elisseeff and Weston (260The dataset contains =
2417 examples (Yeast genes) with= 103 input features (results from microarray experiments).
Each gene belongs to one or more of 190 functional classes that form a tree-structured hierarchy.
As in Elisseeff and Weston (2001), we focus on predicting each gene’s membershiptir=the
14 functional classes in the first level of the hierarchy. For this larger dataset, we omitted the
computationally expensive EM4+SVM methods, and tuned gnfgr matrix completion while
fixing A = 1.

Table 6.5 reveals that MC-b leads to statistically significantly lower transductive label error for

this biological dataset. Although not highlighted in the table, MC-1 is also statistically better than

®Available at http://mulan.sourceforge.net/datasets.html



113

w =40% 60% 80% | Algorithm w =40% 60% 80%
16.1(0.3)| 12.2(0.3)| 8.7(0.4) MC-b 0.83(0.02)| 0.76(0.00)| 0.73(0.02)
16.7(0.3)| 13.0(0.2)| 8.5(0.4) MC-1 0.86(0.00)| 0.92(0.00)| 0.74(0.00)
21.5(0.3)| 20.8(0.3)| 20.3(0.3)] FPC+SVM | 0.81(0.00)| 0.76(0.00)| 0.72(0.00)
22.0(0.2)| 21.2(0.2)| 20.4(0.2)] EM1+SVM | 1.15(0.02)| 1.04(0.02)| 0.77(0.01)
21.7(0.2)| 21.1(0.2)| 20.5(0.4)] Mean+SVM | 1.00(0.00)| 1.00(0.00)| 1.00(0.00)
21.6(0.2)| 21.1(0.2)| 20.5(0.4)| Zero+SVM | 1.00(0.00)| 1.00(0.00)| 1.00(0.00)

transductive label error relative feature imputation error

Table 6.5: Performance on the yeast data.

the SVM methods in label error. In terms of feature imputation performance, the MC methods
are weaker than FPC+SVM. However, it seems simultaneously predicting the missing labels and
features appears to provide a large advantage to the MC methods. It should be pointed out that
all algorithms except Zero+SVM in fact have small but non-zero standard deviation on imputation
error, despite what the fixed-point formatting in the table suggests. For instancey with0%,
the standard deviation is 0.0009 for MC-1, 0.0011 for FPC+SVM, and 0.0001 for Mean+SVM.
Again, we compared these algorithms to an oracle SVM baseline with 100% observed entries
in Qx. The oracle SVM approach achieves label error of 20.9(0.1), 20.4(0.2), and 20.1(0.3) for
w =40%, 60%, and 80% observed labels, respectively. Both MC-b and MC-1 significantly out-
perform this oracle under pairgetests at significance level 0.05. We attribute this advantage to
a combination of multi-label learning and transduction that is intrinsic to our matrix completion

methods.

6.4 Discussions and Future Work

We have introduced two matrix completion methods for multi-label transductive learning with
missing features, which outperformed several baselines. In terms of problem formulation, our
methods differ considerably from sparse multi-task learning (Obozinski et al., 2010; Argyriou
etal., 2010; Srebro and Shraibman, 2005) in that we regularize the feature and label matrix directly,
without ever learning explicit weight vectors. Our methods also differ from multi-label prediction

via reduction to binary classification or ranking (Tsoumakas et al., 2010), and via compressed
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sensing (Hsu et al., 2009), which assumes sparsity in that each item has a small number of positive
labels, rather than the low-rank nature of feature matrices. These methods do not naturally allow
for missing features. Yet other multi-label methods identify a subspace of highly predictive features
across tasks in a first stage, and learn in this subspace in a second stage (Ji et al., 2008; Rai and
Daume, 2009). Our methods do not require separate stages. Learning in the presence of missing
data typically involves imputation followed by learning with completed data (Little and Rubin,
2002). Our methods perform imputation plus learning in one step, similar to EM on missing
labels and features (Ghahramani and Jordan, 1994), but the underlying model assumption is quite
different.

A drawback of our methods is their restriction to linear classifiers only. One future extension
is to explicitly map the columns of the partial feature matrix to a higher dimensional space via
a polynomial (or other) kernel, and apply our methods there (using a new feature matrix with
additional rows). Though such mapping proliferates the missing entries, we hope that the low-rank
structure in the kernelized matrix will allow us to recover labels that are nonlinear functions of the

original features.
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Chapter 7

Dissimilarity in Semi-Supervised Learning

A common theme in this work is the development of new semi-supervised reguldrizers
that can be plugged into a general risk minimization framework (see Section 1.1). As discussed
earlier, such a regularizer encodes assumptions related to unlabeled data. While some well known
regularizers like that of S3VMs are domain independ@gt;;, can also encode domain knowledge
or other forms of weak supervision.

In this chapter, we introduce a semi-supervised classification algorithm that learns from both
dissimilarity and similarity information on labeled and unlabeled data (Goldberg et al., 2007).
That is, we focus on encoding a particular form of domain knowleddgsin : label dissimilarity
between examples, which specifies that two examples probably have different class labels. We
assume we are given a set of dissimilarity pdrs= {(i,j)}. For (i,j) € D, the two points
x;,x; may be both unlabeled, or one labeled and the other unlabeled. In either case we know they
probably do not belong to the same class. The dissimilarity knowledge can be noisy, however. Our
approach uses a novel graph-based encoding of dissimilarity that results in a convex problem, and
can handle both binary and multiclass classification.

As an example, consider the problem of predicting a person’s political view (left, right) from
his/her postings to online blogs. The fact that person B quotes person A and uses expletives near
the quote is a strong indication that B disagrees with A (Mullen and Malouf, 2006). Simple text
processing thus allows us to create a dissimilarity pair (A,B) to reflect our knowledge that A and B
probably have different political views.

Such dissimilarity knowledge has been extensively studied in semi-supervised clustering, intro-

duced in Section 1.2 (Basu et al., 2006; Grira et al., 2004; Van Gael and Zhu, 2007; Wagstaff et al.,
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2001; Xing et al., 2002). Recall that in this setting, pairs are known as “cannot-links” meaning
they cannot be in the same cluster. These methods either directly modify the clustering algorithm,
or change the underlying distance metric. Our method is different in that it specifically applies to
classification, and works on discriminant functions. Dissimilarity as negative correlation on dis-
criminant functions has been discussed in relational learning with Gaussian processes (Chu et al.,
2006), but their formulation is non-convex and applies only to binary classification.

Our contribution is a convex method that incorporates both similarity and dissimilarity in semi-
supervised learning. Existing graph-based semi-supervised learning methods labhebdeni-
larity knowledge, but they cannot handle dissimilarity easily, as we describe in Section 7.1. We
define a mixed graph to accommodate both, and define the analog of the graph Laplacian. We then
adapt manifold regularization (Belkin et al., 2006; Sindhwani et al., 2005a) to the mixed graph.
We extend our method to multiclass classification in Section 7.2, and present experimental results

in Section 7.3.

7.1 Dissimilarity in Binary Classification

In this work, we use the familiar setting where there arégems, of which/ are labeled:
{(x1,91), -, (X5, ), X141, - - , Xy, }- EXisting graph-based methods cannot easily handle dissim-
ilarity, which is the requirement that two items have different labels. A small or zero weight
doesnot represent dissimilarity between andx;; in fact, a zero edge weight means no prefer-
ence at all. A negative weight;; < 0 does encourage a large difference betwgex), f(x;),
but this creates a number of problems. Fjfsteeds to be bounded ¢ oo, oo} will be a trivial
minimizer. Second, any negative weightlin will make the graph energy (2.13), and ultimately
the whole semi-supervised problem, non-convex. One has to resort to approximations (Ravikumar
and Lafferty, 2006; Wainwright et al., 2005; Weiss and Freeman, 2001). It is highly desirable to
keep the optimization problem convex.

Let us assume € {—1,1} for binary classification. Our key idea is to encode dissimilarity
between, j asw;;(f(x;) + f(x;))?. Note the summation. This term is zerofifx;), f(x,) have

the same absolute value but opposite signs, thus encouraging different labels. The trivial case



117

f(x;) = f(x;) = 0 is avoided by competing terms in a risk minimization framework (see below).
The weightw;; remains positive and represents the strength of our belief in this dissimilarity edge.

A mixed graph over nodes has similarity and dissimilarity edges, and is represented by two
n x n matricesS andW. S specifies the edge typs;; = 1 if there is a similarity edge between
i,7; s;; = —1ifthere is a dissimilarity edge. Non-negative weights > 0 represent the strength
of the edge, regardless of its type.

The graphs in existing graph-based semi-supervised learning methods can be viewed as having
an all-oneS and the samél’. Extending (2.13) to the mixed graph, we would like to minimize a

new penalty term

5w — 55/ () (7.1)

i,j=1
It handles both similarity and dissimilarity, and is clearly convex inFurthermore, we can re-
write (7.1) in a quadratic form.
Let M = L+ (1 — S) ¢ W, whereL is the combinatorial graph Laplaciah,is the all-one

matrix, ande is the Hadamard (elementwise) product. Thehis positive semi-definite, and
1
fTMf = 5 Zwij<f(xi> - Sijf(xj))Q‘
irj

Therefore, the matrid is the mixed-graph analog of the (unnormalized) graph Lapla€idsote
that if the graph has no dissimilarity edges, theh= L.

We now show how to use this mixed graph to incorporate dissimilarity in the context of man-
ifold regularization (Belkin et al., 2006). Recall that manifold regularization generalizes graph-
based semi-supervised learning with a regularized risk minimization frameworkH Lt the
Reproducing Kernel Hilbert Space (RKHS) of a ker&l Manifold regularization obtains the
discriminant function by solving

l
min Y (i, f(x)) + M| fII5 + Af T LE, (7.2)

€H
f i=1

wherec() is an arbitrary loss function. As beforgjs the vector of discriminant function values

on then points. The first two terms in (7.2) are the same as in supervised learning, while the third
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term is the additional regularization term for graph-based semi-supervised learning. Bgtause
defined inH now, it naturally extends to new test points. Noisy labels are tolerated by the loss
function.
The mixed-graph analog of (7.2) is
l
min Y c(yi, £(x:)) + M| fI5, + Xof T ME. (7.3)

€H
! =1

One can solve the optimization problem (7.3) directly. Alternatively one can view the second and
third terms together as regularization by a warped kernel, as proposed by Sindhwani et al. (2005a).
In this view, one defines a second RKHS, which has the same functions &sbut a different
inner product(f, g)» = (f, g)» + f' Mg, whereM is some positive semi-definite matrix on the
n points. It follows that| f||2, = || f||2, + £ " Mf. Thesupervisegroblem

l

. 4 ' 2
min 2 c(yi, f(x3)) + M| fll7¢

is then equivalent to our semi-supervised learning problem (7.3), if we let i—f/\/l Importantly,
itis shown in Sindhwani et al. (2005a) that the kerfiéffor the warped RKH3' is related to the

original K as follows:
K (x,2) =k(z,2) =k, (I + MK) ' Mk, (7.4)

wherek, = (k(xi,x), -, k(x,,x))". This allows one to compute the warped kerhAglfrom
some original kernel (e.g., RBH and the mixed-grapM. Therefore, to solve (7.3), we can use

K in conjunction with standard supervised kernel machine software.

7.2 Dissimilarity in Multiclass Classification

It is non-trivial to incorporate dissimilarity into multiclass classification.

1. One-vs-rest does not work with dissimilarity and semi-supervised learning. Suppose, for
example, that there are three classes, andxhat; are two unlabeled points whose actual

labels are 2 and 3, respectively. L(gtj) be specified as a dissimilarity edge. In the binary
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sub-task of class 1 vs. all other classes, however, this dissimilarity edge should become a

similarity edge, since;, x; are both in the “rest” meta-class.

2. One-vs-one does not work either. For any particular one-vs-one sub-task (say class 1 vs.
2), it is not clear whether any unlabeled point (sgywhich actually has class 3) should
participate in the one-vs-one semi-supervised learning. If an unlabeled point does not have

one of the two labels, its inclusion will likely confuse learning.

3. Using the warped kernel (7.4) in a standard multiclass kernel machine (e.g., multiclass SVM)
does not work. Multiclass methods usaliscriminant functionsfy, - - - , fx, one for each
class. The warped kernel incorrectly encourages all discriminant functions to h@xQr-

f.(x;) = 0, which is unnecessary and potentially harmful.

We found all the above approaches indeed hurt accuracy in experiments not reported here.

We therefore need to redesign the multiclass objective in order to incorporate dissimilarity. For
simplicity we focus on multiclass SVMs, but our method works for other loss functions, too. There
are several formulations of multiclass SVMs (Crammer and Singer, 2002; Lee et al., 2004; Weston
and Watkins, 1998). For our purpose it is important to anchor the discriminant functions around
zero. For this reason we start with the formulation of Lee et al. (2004).chass SVM is defined

as the optimization problem of finding functiofix) = (f;(x),-- - , fx(x)) that solve:

min 3371 Li(F(x) — £)4 + A S0 (A1
s.t. S fi(x) =0, i=1-1, (7.5)

where f;(x) = h;(x) + b; for j = 1---k; h; € H, which is the RKHS of some kernét’;
andb; € R. There ard labeled training points.L is ani x k matrix, with thei-th row L;. =
(1,---,1,0,1,--- ,1) being an all-one vector except theth element which is zera; is the given
label forx;. The vectoff; = (—1/(k—1),---,1,—-1/(k—1),---)" is an encoding of the labgl,
where the number 1 occurs in theth position. The plus function i&) . = max(0, z). Intuitively,
(7.5) means thaf(x;) should have elements less than/(k — 1) for all “wrong classes.” It is

important to note that the elementsfpandf (x;) sum to zero.
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We exploit this sum-to-zero label encoding to represent dissimilarity in a convex multiclass
SVM objective. To simplify the notation, we will restrict ourselves to dissimilarity edges with
weight 1. Similarity edges can be added to the formulation easily by using termd (kg —
f(x;))? as in previous work (Sindhwani et al., 2005a; Zhu et al., 2003). Given a dissimilarity
edge(s,t) € D, the key idea behind our multiclass dissimilarity formula comes from compar-
ing f(x;),f(x;) for the “good” and “bad” cases. The “good” case is wifetakes the nomi-
nal encodingf(x,) = f, andf(x;) = f;, andf, # f,. By definitionf, andf; have the form
(—=1/(k—1),---,1,-1/(k —1),---)T, where the elements with value 1 must be at different po-
sitions. Hencd + f; is a vector with two kinds of element$k — 2)/(k — 1) and—2/(k — 1).

The “bad” case is whefy = f;, so the elements with value 1 coincide. In this case thefunt,
has two kinds of element&:and—2/(k — 1). Comparing “good” and “bad,” we do not want any
element inf (x;,) + f(x;) to be larger tharik — 2)/(k — 1). We are therefore led to the following
dissimilarity objective:

k p
> D, (fj(xs) + filxe) — %) : (7.6)

(s,t)ED j=1

which is a sum of plus functions raised to th¢h power. The advantages of this definition are
that it is convex and simple, and it reduces to our binary SVM dissimilarity formulation when
p=2k=2.
Following standard practices, one can combine (7.5) and (7.6) into a quadratic program:
min 330 La(F(a) = £)4 o+ M 5 (113,
18 Y en Dt (Fi0x0) + fi(xe) = 12)°
s.t. S fixi) =0, i=1--n, (7.7)

wheren is the sum of the number of unlabeled points that are involved in any dissimilarity edge,
plus the number of labeled points The representer theorem in Lee et al. (2004) needs to be
extended to include these unlabeled points (Zhu and Goldberg, 2006). In particular, the minimizing

functions for (7.7) have the form

i=1
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The essential difference to supervised learning is that we now haweéher than representers
in (7.8).

We now rewrite the quadratic program in standard form. Niatg(?, = ¢} Kc.;, whereK,, =
K(x4,x;) is then x n Gram matrix. We lep = 1 in the dissimilarity objective (7.6). This leads

to the primal form

min  +300 Li(f(x) — £) + M X5 el Key
1B D enen gt (Fi(%6) + fi(xe) = 13)
s.t. S fixi) =0, i=1--n. (7.9)

We define ari x k& matrix Y whosei-th row isf,". Substituting (7.8) into (7.9), we obtain

min IS (K + b — Vi) 4
+A Z L cjKc,

B Clonen (Ko + Ki)ej +20; — %)

s.t. Zj;l...k(Ki-cj + bj> =0, i=1---n. (710)

Finally we introduce ah x k£ matrix¢ and aD| x k£ matrix T as auxiliary variables. With standard

reformulation techniques, we rewrite (7.10) as

min %23 - lkwazg‘f‘)qZJ ey
sttlE%TSt]
st. Kic;+b;— ijggij, i=1--1,j=1--k
£&; >0, i=1---,j=1---k
(Ko + Ki)eg +2b, — 222 < 7y,
Ta; 20, (s,8) €D, j=1--k

Zj:l...k(Ki~c-j —I— b]) = O, Z = 1 e, (711)

where the minimization is over, b, £, 7. The quadratic program ha&s(nk) variables and con-

straints.
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7.3 Experiments

In the following sections, we empirically demonstrate the benefits of incorporating dissimilarity

in several classification tasks.

7.3.1 Standard Binary Datasets

We first experimented using the standard binary datasets g50c and mac-windows (Sindhwani
et al., 2005a}. The dataset g50c contains 550 examples containing 50 dimensions, and we use
[ = 50 labeled samples. Mac-windows has 1946 examples with 7511 dimensions, alée-with

Ideally, we would like to use dissimilarity information based on domain knowledge. However,
without such expertise available to us, we performed “oracle experiments” in which we intro-
duce dissimilarity edges between randomly sampled data points with different labels. Because the
edges represent ground-truth dissimilarity, we disallow edges to touch labeled points, to prevent
the true labels propagating throughout the unlabeled data. Note that the actual label values are
not revealed—just the fact that the points should recdifferentlabel classifications. Simulat-
ing domain knowledge in this manner is common for cannot-link clustering and related work. In
Section 7.3.3, we present results involving “real” dissimilarity based on domain-specific heuristics.

In this subsection, we introduce dissimilarity in the manifold regularization framework, dis-
cussed in Section 7.1. Following Sindhwani et al. (2005a), we start with a Gaussian base kernel
K and encode similarity using-nearest-neighbor graphs with Gaussian weights. Specifically, the
weight betweerkNN pointsz; andz; is e%, while all other weights are zero. We then re-
place some initial similarity edges with dissimilarity edges, as described above, and assign them
a relatively large weight (see below) to form the mixed-graph matrix Our experiments used
the resulting warped kernél’ in both SVM and RLS classifiers. The methods were implemented
using LIBSVM and a modified version of the code from Sindhwani et al. (2005a). We used the

same parameter values as these authors. These had been tuned in the earlier work with 5-fold cross

! Available athttp://vikas.sindhwani.org/manifoldregularization.html
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validation using similarity only; our dissimilarity results could become even better with additional
parameter tuning.

To compare error rate on unlabeled data used during semi-supervised training, and on new
unseen test data, we divided each dataset into four disjoint folds. We then performed 4-fold cross
validation, using each fold as a test set once. The test set remains unseen throughout the learning
process. The remaining three folds comprised the training set (labeled and unlabeled data). For
each train/test split, we trained 10 different classifiers, each time using a different random choice of
labeled examples and dissimilarity edges between unlabeled examples. The same random choices
are made in all experimental runs, so we can compare results using paired statistical tests. We
report classification error rate on the unlabeled training isetgmpleperformance) and unseen
test dataqut-of-samplgerformance). Each number is averaged over 4 folds with 10 random trials
each. We address two questions in these standard binary dataset experiments:

How does the number of dissimilarity edges influence mean error rate'¥e experimented
first with varying the number of dissimilarity edges in the graph. Since we have high confidence in
the oracle edges, we assign each edge a weight equal to the maximal similarity edge weight (close
to 1 for our datasets). The baselines here use only similarity edges and are equivalent to LapSVM
and LapRLS (Sindhwani et al., 2005a).

Figure 7.1 shows the effect of changing the number of dissimilarity edges in the g50c and
mac-windows datasets. Figures 7.1(a,b,e,f) present mean SVM in-sample and out-of-sample error
rates using 50—12800 dissimilarity edges, as compared to the baseline with O dissimilarity edges.
Figures 7.1(c,d,g,h) display comparable results using an RLS classifier. In all plots, we show one
standard deviation above and below the error rate curve.

Figure 7.1 shows the positive impact of dissimilarity edges. The effect is greater for in-sample
performance; the in-sample points were directly involved in the kernel deformation, so this benefit
is to be expected. Our model also generalizes to out-of-sample test data. To measure statistical
significance, we performed two-tailed, pairetests, comparing the results using each number of
dissimilarity edges to the baseline in each of the subplots. The circled settings are statistically

significant at the 0.05 level.
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Figure 7.1: Varying the number of dissimilarity edges-éxis) in the g50c dataset (a-d) and the
mac-windows dataset (e-hy-axis is mean error rate across 4 folds with 10 random
trials each. Circled settings are statistically significantly better than the baseline.

While out-of-sample performance steadily improves in the mac-windows dataset (Figures 7.1(f,h)),
the g50c out-of-sample error benefits less with 6400 or 12800 dissimilarity edges (Figures 7.1(b,d)).
The increase in error rate corresponds with near-zero in-sample error rates, suggesting that the
learning algorithm is overfitting the dissimilarity edges. For this small dataset, nearly all of the un-
labeled points are touched by one or more of the 6400-12800 dissimilarity edges. (Mac-windows
is roughly four times as large, so this is not the case.) It seems the kernel becomes so warped
that it fits the g50c unlabeled points perfectly, but becomes less effective in classifying unseen
test points. Though we require onfi(x;) f(x;) < 0 for x; andx; to be labeled differently, the
dissimilarity terms encouragf(x;) = — f(x;) for (i, j) € D. We believe that this unnecessarily
stringent requirement is at the root of the observed overfitting when too many dissimilarity terms
are included. While the mechanics are still unclear, the inappropriate demand appears to become
overwhelming, and generalization error starts to increase.

What is the effect of the weight assigned to dissimilarity edgest the preceding experi-

ments, we varied the number of dissimilarity edges, but fixed their weights to roughly 1. We next
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Figure 7.2: Changing the weight of dissimilarity edges-#xis) in the g50c dataset (a-d) and the
mac-windows dataset (e-hy-axis is mean error rate across 4 folds with 10 random
trials each. Circled settings are statistically significantly better than the baseline.

fixed the number of edges at 200, and experimented with varying this weight by a range of multi-
plicative factors (Figure 7.2). This effectively places more or less confidence in the dissimilarity
edges, compared to the similarity edges. As before, the baseline does not use any dissimilarity.
We observe that in-sample performance tends to benefit from stronger weights on dissimilarity
edges (Figures 7.2(a,c,e,g)). The maximal decrease in mean error rate appears at a weight of
approximately 64, above which the error rate rises slightly. In both datasets, above a weight of
approximately 100, the out-of-sample error rate (Figures 7.2(b,d,f,h)) dramatically rises above the
baseline. This appears to be another case of overfitting—the kernel deformation relies too heavily
on the dissimilarity edges, and much useful similarity is being ignored. This results in good in-

sample performance, at the expense of being able to correctly classify new examples.

7.3.2 Multiclass Handwritten Digit Recognition Dataset

We next experimented with dissimilarity in multiclass classification as described in Section 7.2.
We used the standard multiclass datas®PS testwhich contains 2007 examples with 256 dimen-

sions, each belonging to one of 10 classes. We used labeled setside This dataset was also
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| Dissim. | Overall | In-sample| Out-of-sample]

baseline 0 24.48 24.48 24.48
10| 2441 20.47 24.40

20| 24.32 23.53 24.33

40| 24.27 24.17 24.27

80| 23.96 23.57 23.99

160| 23.63 24.49 23.48

320 23.30 23.57 23.20

Table 7.1: Mean error rate with varying numbers of dissimilarity edges in the USPS dataset using
the multiclass SVM formulation.

used by Sindhwani et al. (2005a) and is available at the URL cited above. We solve the quadratic
program in (7.11) using the CPLEX QP solver. We experimented using varying numbers of oracle
dissimilarity edges. As before, our dissimilarity edges do not touch labeled points. We consider
those examples involved in dissimilarity to be the unlabeled set, and the remaining examples (ig-
nored during training) the unseen test set. We report mean error rates over 10 repeated trials using
different random labeled sets and different random unlabeled-unlabeled dissimilarity edges. The
A1 parameter in (7.11) was optimized using mean test set performance without any dissimilarity.
Thus, we are making the baseline as strong as possible. We arbitrary set. Careful tuning

of this parameter could potentially lead to even better results.

Table 7.1 presents the overall, in-sample, and out-of-sample mean error rates using the 2-norm
SVM formulation (7.11) with a varying number of dissimilarity edges. Statistically significant
reductions in error rate, compared to the baseline, are indicated in bold face. The 2-norm multiclass
SVM formulation uses the dissimilarity edges effectively to lower overall and out-of-sample mean

error rate for all amounts of dissimilarity edges that we tested.

7.3.3 Predicting Political Affiliation Using Heuristic Dissimilarity Edges

Finally, we experiment with creating real (instead of oracle) dissimilarity edges based on

domain knowledge. We experimented with thelitics.com discussion board text data from
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Mullen and Malouf (2006). The task here is to predict the political affiliation of the users post-
ing messages on a political discussion board. We restrict ourselves to the 184 uséeft (86)

andright (88) political tendencies. The dataset contains the text of several thousand posts. Quot-
ing behavior is annotated in the dataset, so we know who quoted whom. Since we are interested
in classifying each user (as opposed to each post), we concatenated together all posts (excluding
guoted text) written by a user. We removed punctuation and common English words, and applied
stemming. We then formegrm frequency-inverse document frequency (TF-1&gtors (Man-

ning and Schtze, 1999) for each user using word types occurring 10 or more times, which resulted

in 8656 unique terms.

We created dissimilarity edges by the quoting behavior between users. In political discussion
boards, users tend to quote posts by users with differing political views (Mullen and Malouf, 2006).
For example, users often debate a controversial issue, quoting and disputing each others’ previous
claims. We declare disagreement between A and B if B quotes A, and the text adjacent to the quoted
text contains two or more question marks or exclamation marks, or two or more consecutive words
in all capital letters (i.e., Internet shoutf)g Consider the following illustrative example taken

from the current dataset, where the uBedie has quoted and responded to the usshrubinator

deshrubinator “You were the one who thought it should be investigated last week.”
Dixie: No | didn’t, and | made it clear. You are insane! YOU are the one with NO
**** NG RESPECT FOR DEMOCRACY!

We create a dissimilarity edge (A,B) if they have exhibited such seemingly hostile behavior
toward each other in more than 2 posts. This thresholding ensures that we have seen multiple
pieces of evidence for dissimilarity.

It is worth noting that our dissimilarity edges can be created using only simple text processing,
and they can be easily defined over unlabeled data (users with unknown political view). For this
experiment we do not include similarity edges, since standard text similarity measures will be more

sensitive to topics than opinions. Also, unlike the previous “oracle” experiments, here we include

2We also require these words to be more than three characters long to avoid false positives from common Internet
abbreviations like LOL (laugh out loud).
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Classifier| Base error rate SSL errorrate A
SVM 45.674+£3.28 | 40.15+4.95 | 5.5%
RLS 45.60 £+ 3.94 3799+ 1.88 | 7.6%

Table 7.2: Mean error rates for SVM and RLS with and without dissimilarity edges on the politics
dataset. Dissimilarity is incorporated through warped kernels. Both differences are
statistically significant.

all discovered dissimilarity edges involving labeled and unlabeled data; the only edges discarded
are those between two labeled examples. Our scheme is realistic with noisy, “real” edges.

We used a graph of these dissimilarity edges to warp a linear kernel used in SVM and RLS
classification. We set the labeled set size- 50 (out of 184) and ran 10 repeated trials with
randomly selected labeled examples. On average, 40.7 examples are involved in the dissimilarity
edges. Table 7.2 reports the mean error rate on all unlabeled examples for SVM and Regularized
Least Squares (RLS) classifiers with (“SSL”) and without (“Base”) dissimilarity edges. The base-
line results use unwarped linear kernels. In both classifiers, we observe a statistically significant
reduction in error ratep( < 0.05 using a two-tailed, pairetitest); it appears that the “real-world”
dissimilarity edges aid classification. Upon closer inspection, however, we also notice the im-
provement comes mostly from in-sample error reduction, and it does not generalize as well to
out-of-sample data like in previous experiments. We suspect this could be due to the high initial
error rate.

Finally, as a post-experiment study, we investigated how many of our heuristically derived
dissimilarity edges were actually consistent with the true labels. It turns out that 85 out of the 103
edges (83%) are in fact “true” dissimilarity edges. Thus, we have shown that, even if 17% of the
dissimilarity edges represent false domain knowledge, we can achieve a significant improvement

in overall error rate.
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7.4 Conclusions

We presented a convex algorithm to encode dissimilarity in semi-supervised learning. We
demonstrated that when such dissimilarity domain knowledge is available, our algorithm can take
advantage of it and improve classification. The major advantage of our dissimilarity-encoding
formulations for binary and multiclass classification is convexity. However, they probably specify
the relation between the discriminant functigrat dissimilarity samples; andx; more than
necessary. For example, in the binary case we pifer) = — f(x;), while ideally it is sufficient
to requiref(x;), f(x;) having opposite signs. Finding computationally efficient encodings for this

sufficient condition is a direction for future research.
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Chapter 8

Regularization with Order Preferences

As in the preceding chapter, we now explore a new semi-supervised learning algorithm using
a novel regularizefss;,. In particular, we introduce a new regularizer for semi-supervised kernel
regression that encodes “order preferences”—nbeliefs about the relative order of the target values
for a pair of unlabeled instances (Zhu and Goldberg, 2007).

As a motivating example, consider the task of predicting real estate prices. The price of a
house varies significantly depending on its location and many other factors. However, a domain
expert may determine that, everything else being “roughly equal,” the featumber of bedrooms
determines the order of house prices. For instance, a 4-bedroom house is more expensive than a
3-bedroom one.

At first glance, it may appear that such knowledge can be enforced by a positive correlation
between the feature and the target. However, modeling such knowledge as positive correlation can
be difficult in non-linearkernel regression, because of the non-linear feature mapping. Besides,
in general a correlation may only hold for part of the range of the feature value, and it would be
inappropriate to force the correlation across the range. We would like a more general approach to
capture such knowledge.

Our method encodes such domain knowledge witter preferencesn unlabeled examples.

That is, for all pairs of unlabeled examples z; satisfying the “roughly equal” condition, we
encode domain knowledge specifying tivéler between their target valuggz;) and f(z;), even

though their actual target values are unknown. Respecting the domain knowledge amounts to
incorporating the order preferences into a kernel regression framework. When labeled data is

scarce, these order preferences should improve our regression model.
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Another practical application of our approach is in predicting Internet file transfer rates based
on network properties like round trip time, available bandwidth, queuing delay, package loss rate,
and so on (Mizra et al., 2007). The features have intuitive impact on transfer rate, but the exact
relation is highly non-linear and unknown. We can, however, easily create (noisy) order prefer-
ences on unlabeled data using domain knowledge. In general, order preferences can encode certain
complex domain knowledge.

In the next few sections, we formulate the problem of learning with order preferences as a linear
program that can be solved efficiently. Experiments on benchmark datasets, sentiment analysis,
and housing price problems show that the proposed algorithm outperforms standard regression,

even when the order preferences are noisy.

8.1 Regression with Order Preferences

Let us formally define our regression problem. In addition to a labeled trainiqgset;) }._;,
we assume that we are giverorder preferences between pairs of unlabeled examples. An order
preference is defined by a tuplé j, d,w), with the interpretation that we would liké(x;) —
f(xz;) > d. As discussed below, we encode it as a soft preference rather than a hard constraint.
The scalarmw > 0 is the weight (confidence) for the preference.

Obviously knowing the order preferences is much weaker than knowing the labels of the unla-
beled examples. In this sense the preferences are a form of weakly labeled data or side information.
We would like to use them to improve regression.

It is possible to represent order preferences as directed edges in a graph (Dekel et al., 2003),
where the edges represent asymmetric order information. However, it is worth noting that order
preferences can also encode similarity. For example, the two preferéngds w), (j,,0,w)
encodef(z;) = f(x;). More generally, the two preferencés j, —e,w), (j,i, —¢, w) encode
closeness]f(z;) — f(x;)] < e. Itis also easy to encode < f(x;) — f(x;) < b. As special
cases of order preferences, one can also encode unary prefefénges g(z;), f(z;) = g(x;),
or f(x;) > g(x;), whereg is some given function. The unary preferences are closely related to the

work of Mangasarian et al. (2004), which adds them to kernel machines.
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Our approach to add order preferences to kernel regression is to treat them as an additional
form of regularization. The standard risk minimization framework for kernel regression is

min iy el yis f(@i) + A E]l), (8.1)

whereH is the Reproducing Kernel Hilbert Space (RKHS) induced by some kerf)dk a loss
function for regression) is a weight parameter on the regularizer, &1dis a monotonic increas-
ing function.

We now define an additional regularization terta, f) based on the order preferences, which
plays the role of)ss;, discussed earlier. Intuitively if the functidrsatisfies all order preferences,
should be zero; if violates somey; increases. A natural choice is to use a shifted hinge function:
for order preferencéi, j, d, w), the regularization term for this single preferencevisax(d —
(f(z;) — f(x;)),0). Thatis, it is zero if the preference is satisfied; otherwise it is the amount the
preference is violated, weighted by As a side note, we point out that if we have two preferences
(1,7, —€,w), (J, 1, —€,w), this would form thes-insensitive loss (Smola and Sikopf, 2004).

We define the regularization ternjz, ) as the sum of shifted hinge functions on all order

preferences:
r(z, f) = Z wgmax(dg — (f(2ig) — f(254)),0). (8.2)

We note that order preferences have been used in ranking problems (Herbrich et al., 2000; Burges
etal., 2005; Yu et al., 2006; Chu and Ghahramani, 2005); in particular Joachims (2002) employed a
similar shifted hinge function for ranking. However, they have not been used in regression before.
In the end, our high-level optimization problem is

min S0y o, v £50) + M) + or(z, £). 8.3)
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8.2 A Linear Program Formulation

To fully specify the above problem, we choose to use-thesensitive loss(z, y, f) = |y — f|.

in support vector regression:

0 if [y — f| <e
ly — f| — e otherwise.

We further choosé&(|| f||+) to be a linear function, in this case the 1-norm of the dual pa-
rameters discussed below, resulting in 1-norm support vector machines (Bradley and Mangasarian,
1998; Bi et al., 2003; Zhu et al., 2004a). The formulation originates from generalized support
vector machines (Mangasarian, 2000). Such 1-norm support vector machines are comparable in
performance to the standard 2-norm support vector machines, but with the advantage that they can
be solved asinear programs which tends to be more efficient.

The solution can be characterized by a representer theorem (Kimeldorf and Wahba, 1971;
Sctolkopf et al., 2001): The minimizef € H admits the formf*(z) = 3172 o, K (x;, ), where
x; ranges from the labeled examples to the unlabeled examples involvedviottier preferences.

The proof uses the standard orthogonality argument, and is omitted for space consideration.

Let K'(z,x;,) denote the row vector of kernel values between a poiabd the labeled data

x1.. We represent our functiohin dual form by
f(z) = K(z,x11)a + ag (8.5)

wherea is a column vector of dual parameters, one for each labeled pgijig;a bias scalar. This
amounts to approximating the representer theorem by setting dual parameters not on the labeled

data to zero for a sparse representation. Our linear-program regression problem is
{361}01 IS i = f)le + Mlledl +
Aok ST w, max(dy — (f(@iq) — f(24)),0), (8.6)
where||al|; = ', |a;| is the 1-norm ofv. The biasy, is not regularized.

We transform (8.6) into a standard linear program by introducing auxiliary variables for the

three terms respectively. Létbe the all-one vectog, anl-vector of slack variables; ani-vector,
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v a p-vector,d the difference vectorw the weight vectorK (x},,, x1,) thep x I kernel matrix
between the first points in the order constraints and the labeled datds (adqj,xlzl) the same

sized kernel matrix between the second points in the order constraints and the labeled data. Vector
inequalities are element-wise. With standard transform techniques, our linear program for kernel

regression with order preferences can be written as:

MiNg agene 710+ M1Tn+ %WTV
St—¢—el <f);,— K(xy,X1)o —apl <€+ €l
$20 (8.7)
—n<as<n
(K(x}.,, X11) — K(X{:p, X)) >d—v
v>0.
This is a linear program witBl + p + 1 variables and! + 2p constraints. The global optimal
solution can be found efficiently.

As noted above, our order preferences comprise another unlabeled-data-dependent regularizer
Qss1, like that of manifold regularization or S3VMs. These methods and our order preferences all
encode some domain knowledge other than labels. One might establish many order preferences
automatically generated by applying heuristics to the unlabeled data. For example, the fact that
higher bandwidth, shorter delay and less package loss tend to promote higher file transfer rates,
could be used to supply a large number of terms in the regularizer. Our order preferences may
contain slightly stronger information than labels, and we view them as filling in the continuum be-
tween supervised learning and semi-supervised learning. Note that it is possible to combine order
preferences with existing semi-supervised learning methods by adding the respective regularizer

terms together (with appropriate weights) to form a new regularizer.

8.3 Experiments

We demonstrate the benefit of order preferences with four groups of experiments. We imple-
mented our linear program (8.7) using CPLEX. All experiments ran quickly. Solving the LP for

each trial takes 0.2 to 0.5 seconds depending on the number of order preferences and unlabeled
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data size. In all experimentsjn the e-insensitive loss (8.4) was set to 0, and preference weights
w were set to 1. We use the acronym SSL for (8.7), and SVR for the corresponding standard 1-
norm support vector regression (i.8;,= 0). We also experimented with standard 2-norm support
vector regression using svight (Joachims, 1999a), and the results were comparable to SVR and
not reported here. Since our focus is on the effect of order preference in improving SVR, we will

use SVR as our baseline in the experiments.

8.3.1 A Toy Example

First we use atoy example to illustrate order preferences. We constructed a polynomial function
of degree 3 as our target (the dotted line in Figure 8.1(a)). We randomly sampled three points (the
open circles) from the target function as training data and gave them to SVR. For this experiment
we used a linear kernel and set = 0. Since there were not enough training data points, SVR
produced a fit (the dashed line) through the training points but very different from the target.

We then randomly selected a pair of unlabeled poinfisi5, 0.30. Note they did not coin-
cide with the training points. Without revealing the actual target values at these points, we con-
structed an order preference using their true ord@s0, —0.15,0, 1), or equivalentlyf(0.30) —
f(=0.15) > 0. Note we set/ = 0 so that the order preference specified their order but not the
true difference; hence it was weaker. Weset 1. In Figure 8.1(a) the order preference is shown
at the lower left as a line linking the two unlabeled points (black dots). The point with the larger
value has a larger dot. SVR happened to violate the order preference. With the three training points
and this order preference, SSL produced a better fit (the solid line).

In Figure 8.1(b) we added more order preferences, generated similarly from random unlabeled
point pairs and their true order. Note some preferences were already satisfied by SVR. The SSL

function was further improved. We consistently observed such behavior in repeated random trials.
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-0.2 (5 012 014 016 018 i 112
(a) one order preference

-0.2 6 012 014 016 018 i 112
(b) ten order preferences

Figure 8.1: A toy example comparing SVR and SSL, showing the benefit of order preferences.

8.3.2 Benchmark Datasets

We experimented with five regression benchmark datasets (Boston, Abalone, Computer, Cal-
ifornia, Census},and report results on all of them. One difficulty in working with such standard
datasets is creating sensible order preferences on unlabeled data. Ideally the order preferences

would be prepared by experts with domain knowledge on the tasks. Lacking such experts, we had

! Available athttp://www.niaad.liacc.up.pt/~1torgo/Regression/DataSets.html.
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to create simulated order preferences from the relation of true values on unlabeled points (more
details later; Note, however, we never give out the true values themselves). Therefore our results
on benchmark datasets should be viewed as “oracle experiments.” Nonetheless they are useful
indications of how well our regression would perform given such domain knowledge.

For each benchmark dataset, we normalized its input features to zero mean, unit variance.
For categorical features with distinct values, we mapped them into indicator vectors of length
k. We used Radial Basis Function (RBF) kernk{s, z') = exp(—o||z — 2’||*) for all datasets.

We used 5-fold cross validation to find the optimal RBF bandwidtland SVR 1-norm weight

A1. The parameters were tuned for SVR 08 a 9 logarithmic grid in10~* < ¢ < 10* and

107% < \; < 10%. We simply fixed\, at 1. This is partly justified by the fact that in (8.6), the
‘shifted hinge function’ is on a similar scale to thensensitive loss; both incur a linear penalty
when violated. Tuningd\, might produce better results than reported here, but with limited labeled
data (which has been used to tuneandos for SVR already) it is hard to do.

All experiments were repeated for 20 random trials. Different algorithms shared the same
random trials so we could perform paired statistical tests. In each trial we split the data into three
parts: [ labeled pointsy unlabeled points that were used to generate order preferences, and test
points that were the rest of the dataset (see Table 8.1 Partition). Test points were unseen by either
algorithm during training. All results we report are test-set mean-absolute-error over the 20 trials.
Let ¢ be the test set size. Test-set mean-absolute-error is defingd asst|v: — f(z:)|/t. We
address the following questions:

Can order preferences improve regressionWe randomly sampled with replacement=
1000 pairs (z;, z;) from theu unlabeled points. For each sampled pair, we generated an order
preference from the true target valugsy,. Without loss of generality leg; > y;. Our simulated

order preference was
fai) = fx;) = 0.5(y; — y;)- (8.8)
Let us explain our order preferences. We could have created the ‘perfect’ order preferences with

the pair: f(z;)— f(x;) > y;—y; andf(z;)— f(z;) < y;—y,. Theytogether encod&z;)— f(z;) =
y; — y;. Butin real tasks it might be difficult to know the exact differegge- y;, so we did not do
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Dataset Partition Mean absolute error Improvement
dim [/u/test SVR SSL

Boston 13  20/200/286 | 4.780+ 1.351 3.511+ 0.376 27%

Abalone 8 30/1000/3147| 1.856+ 0.180 1.685+ 0.102 9%

Computer| 21 30/1000/7162| 7.373+ 3.445 5.364+ 0.998 27%

California 8 60/1000/19580 58268+ 4435 52120+ 1843 11%

Census 16 60/1000/21724 24992+ 1377 23241+ 901 7%

Table 8.1: Benchmark data. ‘dim’ is the dimension of input featurk’s;/test are labeled, unla-
beled and test set sizes respectively. SVR is 1-norm support vector regression. SSL is
semi-supervised regression with 1000 random order preferences sampled fidma
results are test-set mean-absolute-error and standard deviation over 20 random splits.
All differences between SVR and SSL are significant with a pairebt at the 0.01
level.

that. On the other hand, with inequality preferences we could havésgt— f(x;) > 0. It would
only encode order, without any information on the actual difference. But in real tasks one might
have some rough estimate of the difference, and (8.8) was meant to simulate this estimate. Table 8.1
compares the test-set mean-absolute-error of SVR and SSL. The differences on all datasets are
significant with a paired-test at the 0.01 level. We conclude that, with the order preferences (8.8),
SSL significantly improves regression performance over SVR.

What if we change the number of order preference$? One expects a larger gain with more
order preferences We systematically variegfrom 10 to 5000, keeping everything else the same
as in Table 8.1. Figure 8.2(a) shows that it was indeed the case. A very;samatietimes hurts
SSL, making it worse than SVR. But asgrows larger SSL rapidly improves, and levels off at
aroundp = 100. This indicates that one needs only a moderate amount of order preferences to
enjoy the benefit.

What if we change the labeled data sizé? The benefit of order preferences is expected
to diminish with more labeled data. We fixed the number of order prefereneesl000, and
systematically varied As expected, Figure 8.2(b) shows that SSL is most useful wisesmall,

and the benefit reduces agrows.
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Figure 8.2: The effect of various parameters on SSL on the Benchmark datis is test-set
mean-absolute-error.

How precise do the order preferences need to beExtending (8.8), one can define order
preferences ag(z;) — f(x;) > B(y; — y;) whereg controls how precise they are. As mentioned
earlier, 3 = 0 only supplies order information, and a largerestimates the differences. We
varied $ from O to 2 (over-estimate) for the experiments in Table 8.1. Figure 8.2(c) shows that
with only the order ¢ = 0) SSL already outperformed SVR. With a conservative estimate of the
differences (| < § < 1) SSL was even better. However largeseems to be inferior. This might
be advantageous in practice, since one does not need to know the precise differences, and can err

on the safe side.
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8.3.3 Sentiment Analysis in Movie Reviews

We next experimented with the real-world problem of sentiment analysis in movie reviews.
Given a movie review text document we would like to predictf(x), the rating (e.g., ‘4 stars’)
given to the movie by the reviewer. We assume that by looking at the wording of unlabeled reviews,
one can determine that some movies will likely be rated higher than others (even though we do not
know their actual ratings). These are incorporated as order preferences. We worked on the “scale
dataset v1.0” with continuous ratingsyhich was prepared and first used by Pang and Lee (2005).

It contains four authors with 1770, 902, 1307, 1027 reviews respectively. For each author, we
varied! € {30, 60,120}, and letu = 500,p = 500. The remaining reviews were test examples.
Each experiment was repeated for 20 random trials. All reported results are test-set mean-absolute-
error. Each review document was represented as a word-presence vector, normalized to sum to 1.
We used a linear kernel, skt = 1077 and )\, = 1.

As a proxy for expert knowledge, we used a completely separate “snippet dataset” also located
at the above URL. The snippet dataset is very different from the scale dataset: it contains single
punch line sentences (snippets) instead of full reviews; the snippets have binary positive/negative
labels instead of continuous ratings; it comes from different authors on different movies. We
trained a standard binary, linear-kernel SVM classiji@en thesnippetdata using S9Nt we
then applied; on random pairs of unlabeled movie reviewsz; in thescaledataset. The order of
the continuous margin outpytz;), g(z;) serves as our proxy for expert knowledg8ince this is
a very crude and noisy estimate, we created an order prefeferice 1) only if g(x;) — g(z;) >
0.25, where 0.25 is an arbitrary threshold. Note wedet 0 since we do not know the difference
in rating. Table 8.2 presents the results of our sentiment analysis experiments. As expected, SSL is
most useful whei is small, and the gain over SVR gradually diminishes with laflg&SL leads

to improvements in all cases, and the differences are significant (bold) with patests at the

2Available athttp://www.cs.cornell.edu/people/pabo/movie-review-data/.

30ur use ofg simulates a layman (not an expert) reading two reviews and saying “the author liked this one more
than that one.” This layman does not have enough experience to predict the actual star ratings, but is able to tell that
one sounds more positive than the other.



Dataset l/u/test SVR SSL Improvement
30/500/1240| 0.1383+ 0.0072| 0.1362+ 0.0028 1.5%

Author (a) | 60/500/1210| 0.1323+ 0.0042| 0.1311+ 0.0025 0.9%
120/500/1150 0.1224+ 0.0042| 0.1219+ 0.0024 0.4%

30/500/372 | 0.16454+ 0.0146| 0.1540+ 0.0046 6.4%

Author (b) | 60/500/342 | 0.1514+ 0.0063| 0.14964+ 0.0046 1.2%
120/500/282 | 0.1431+ 0.0063| 0.1416+ 0.0062 1.0%

30/500/777 | 0.1405+ 0.0163| 0.13574+ 0.0070 3.4%

Author (c) | 60/500/747 | 0.1268+ 0.0072| 0.1258+ 0.0038 0.8%
120/500/687 | 0.1150+ 0.0048| 0.1138+ 0.0047 1.0%

30/500/497 | 0.1433+ 0.0151| 0.1350+ 0.0052 5.8%

Author (d) | 60/500/467 | 0.1366+ 0.0104| 0.1293+ 0.0037 5.3%
120/500/407 | 0.12564- 0.0092| 0.1226+ 0.0038 2.4%
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Table 8.2: Movie review sentiment analysis mean-absolute-error for each author. Statistically sig-
nificant improvements by SSL are highlighted in bold.

0.05 level in about half of the cas&s/Ne expect better order preferences from advanced natural

language processing (e.g., parsing) to bring larger improvements.

8.3.4 Predicting Housing Prices Using Heuristic Order Preferences

As a final real-world experiment, we played the role of real estate experts to carry out the sce-
nario introduced in the beginning of the chapter. We used the same California dataset in Table 8.1,
but this time with order preferences derived from domain knowledge instead of oracles.

The task is to predict the median house value for 20640 groups of houses throughout the state.
With other factors being roughly equal, we believe the value is largely determined by the number
of bedrooms. We decided that two groups are “roughly equal” if they are located within 25 miles
of each other (i.e., they are in the same community), their median house ages differ by at most 10
years, and they are inhabited by residents whose median income level differs by at most $1000.

We repeated the experimental setup in the benchmark section, and for each random trial, we

created approximately 1200 order preferences. Specifically, for all pairs of housing groups in the

4As a sanity check, we also experimented wittong order preferences by intentionally flipping all preferences
(,4,0,1) into (4,4,0,1). As expected, SSL with wrong order preferences becanrsethan SVR by 1% — 13% for
different authors at = 120.
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Dataset Partition Mean absolute error Improvement
dim [/u/test SVR SSL
California 8 60/1000/19580 58268+ 4435 54664+ 2521 6%

Table 8.3: Using “real-world” order preferences generated from domain knowledge. The improve-
ment is statistically significant.

labeled and unlabeled data that satisfy the “roughly equal” criteria, we created a preference that the
group with more bedrooms has a higher target value. We omitted preferences between two labeled
groups, since they are either redundant or incorrect. Weysetl andd = 0, and used the same
A parameters as in the benchmark section. Note that the order preferences are created without any
knowledge of the actual target values, and that the relations we constructed are highly non-linear.

As seen in Table 8.3, the heuristic preferences led to a 6% reduction in test-set mean-absolute-
error in SSL (54664+ 2521) compared to SVR (58268 4435). The difference is statistically
significant with a paired-test at the 0.01 level.

This experiment demonstrates that order preferences with some noise can still be beneficial.
In fact, a post-experimental analysis of the created order preferences revealed that only 70% were
actually accurate (i.e., 30% of “roughly equal” housing group pairsdibhave the predicted
relation based on bedrooms). We expect our method to extend well to new tasks (e.g., predicting
Internet file transfer rates) where large numbers of reasonably accurate order preferences can be

generated automatically.

8.4 Conclusions

We presented a novel semi-supervised kernel regression algorithm with order preferences, for-
mulated as a linear program. We showed that even with noisy, heuristic order preferences, the
regression performance is improved. Our algorithm can be easily extended beyond regression.
For example, one future direction is to apply order preferences to ordinal classification (Chu and
Keerthi, 2005).
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Chapter 9

Graph-Based Semi-Supervised Learning for
Sentiment Categorization

Finally, we conclude Part Il by considering the application of graph-based semi-supervised
learning to a problem in the natural language processing area of sentiment analysis (Goldberg and
Zhu, 2006). Sentiment analysis of text documents has received considerable attention recently;
see the recent survey by Pang and Lee (2008). Unlike traditional text categorization based on
topics, sentiment analysis attempts to identify the subjective sentiment expressed (or implied) in
documents, such as consumer product reviews, movie reviews, or even online discussion about
politics. This line of research is becoming increasing popular due to its high potential impact on
consumers, product manufacturers, the entertainment industry, and government.

In this work, we specifically address the sentiment analysis task of rating inference proposed
by Pang and Lee (2005). Given a set of documents (e.g., movie reviews) and accompanying ratings
(e.q., “4 stars”), the task calls for inferring numerical “star” ratings for unlabeled documents based
on the perceived sentiment expressed by their text. In particular, we are interested in the transduc-
tive setting where labeled data is scarce, but we already have access to the unlabeled reviews for
which we care to make predictions. Labeled data may come from a structured review site where
review authors are required to assign a star rating. However, the Web is filled with blog posts
offering opinions on movies or products. Such posts rarely contain a numerical rating, but it may
be useful in practice to be able to assign such a number for analysis of public opinion as a whole.

In this work, we demonstrate that unlabeled reviews can significantly improve rating-inference

performance. This chapter contains three contributions:
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o We apply graph-based semi-supervised learning to the novel domain of sentiment analysis;

e We design a special graph that encodes our assumptions for rating-inference problems, in-

cluding:

1. Similar reviews tend to have similar ratings;
2. The ratings of labeled reviews should be respected,;

3. If another learning algorithm exists for the task, that algorithm’s rating predictions

should be considered, too;

4. We have different confidence levels in labeled and unlabeled data.

The graph is discussed in Section 9.1, and the associated optimization problem in Sec-

tion 9.2;

¢ We show the benefit of semi-supervised learning for rating inference with extensive experi-

mental results in Section 9.3.

The semi-supervised rating-inference problem is formalized as follows. There raxgew
documents; ... z,, each represented by some standard feature representation (e.g., word-presence
vectors). Without loss of generality, let the fitst n documents be labeled with ratings. . . i, €
C. The remaining documents are unlabeled (transductive setting). The set of numerical ratings
areC = {c¢1,...,cc}, Withe; < ... < ¢c € R. For example, a one-star to four-star movie
rating system ha€’ = {0, 1,2,3}. We seek a functiorf :  — R that gives a continuous rating
f(z) to a document. Classification is done by mappingz) to the nearest discrete ratingdh
Note this is ordinal classification, which differs from standard multi-class classification id'that
is endowed with an order. In the following we use “review” and “document,” “rating” and “label”
interchangeably.

We make two assumptions:

1. We are given aimilarity measurew;; > 0 between documents; andz;. w;; should be
computable from features, so that we can measure similarities between any documents, in-

cluding unlabeled ones. A large;; implies that the two documents tend to express the
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same sentiment (i.e., rating). We experiment vpidisitive-sentence percentafi@SP) based
similarity (Pang and Lee, 2005) and mutual-information modulated word-vector cosine sim-

ilarity. Details can be found in Section 9.3.

2. Optionally, we are given numerical rating predictiops, . .., 9, on the unlabeled docu-
ments from a separate learner, for instasrggsensitive support vector regression (Joachims,
1999a; Smola and Sotkopf, 2004), as used by Pang and Lee (2005). This acts as an extra
knowledge source for our semi-supervised learning framework to improve upon. We note

our framework is general and works without the separate learner, too.

9.1 A Graph for Sentiment Categorization

We now describe our graph for the semi-supervised rating-inference problem. We do this piece
by piece with reference to Figure 9.1. Our undirected grépk (V, E) has2n nodesV, and

weighted edge& among some of the nodes.

e Each documentis a node in the graph (open circles,.gndz;). The true ratings of these
nodesf(z) are unobserved. This is true even for the labeled documents because we allow

for noisy labels. Our goal is to infefi(x) for the unlabeled documents.

e Each labeled document (e.g;) is connected to an observed node (dark circle) whose value
is the given ratingy;. The observed node is a “dongle” since it only connects;toAs
we point out later, this serves to pyl(x;) towardsy;. The edge weight between a labeled
document and its dongle is a large numbér M represents the influence gf: if M/ — oo

thenf(z,) = y; becomes a hard constraint.

e Similarly each unlabeled document (e.g;) is also connected to an observed dongle node
U;, whose value is the prediction of the separate learner. Therefore we also requjiecrthat
is close toy;. This is a way to incorporate multiple learners in general. We set the weight

between an unlabeled node and its dongle arbitrarily to 1 (the weights are scale-invariant
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Figure 9.1: The graph for semi-supervised rating inference.

otherwise). As noted earlier, the separate learner is optional: we can remove it and still carry

out graph-based semi-supervised learning.

e Each unlabeled document is connected tac N N (i), its k nearestlabeled documents
Distance is measured by the given similarity measuréWe want f(z;) to be consistent

with its similar labeled documents. The weight betweeandz; € kNN (i) is a - w;;.

e Each unlabeled document is also connectdd 3Ny, (i), its k' nearestinlabeled documents
(excluding itself). The weight between andx; € k' NNy (i) is b - w;;. We also wantf (z;)
to be consistent with its similar unlabeled neighbors. We allow potentially different numbers
of neighbors £ andk’) and different weight coefficients @ndb) for unlabeled-labeled and

unlabeled-unlabeled edges. These parameters are set by cross validation in experiments.

The last two kinds of edges are the key to semi-supervised learning: They connect unobserved

nodes and force ratings to be smooth throughout the graph, as we discuss in the next section.

9.2 Applying the Harmonic Function

With the graph defined, we can apply any of the algorithms discussed in Section 2.5 to carry

out semi-supervised learning. The basic idea is that our rating fung¢fionshould besmooth
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with respect to the graph. Lét = 1...landU = [ + 1...n be labeled and unlabeled review

indices, respectively. With the graph in Figure 9.1, the objective to minimize can be written as

Z M(f(x:) — wi)? + Z(f(l'z) — ;)

i€l iceU
YD aw(fla) = fla)? Y] Y bwy(f) — fx;)? (9.1)
i€U jekNNy(3) i€U jek/ NNy (i)

To understand the role of the parameters, we defire ak + bk’ and = g so that (9.1) can be

written as

>OM(F(@) =+ D (@) - )

€L €U
+ﬁ( S wlfle) — fE)P+ > Bug(f@) - f)7)] ©92)
+5 JEENNL(3) jEK' N Ny ()

Thus ¢ controls the relative weight between labeled neighbors and unlabeled neighbws;
roughly the relative weight given to semi-supervised (non-dongle) edges.
We now can minimize the objective using techniques based on the harmonic function closed-
form solution (2.15). Defining an x n matrix W,
0, 1€ L
Wy =14 wiy, je€kNNL() (9.3)
Bw;j, 7€ K NNy(i).
Let
W = max(W, W) (9.4)
be the symmetrized matrix arid the corresponding diagonal degree. The graph Laplacian matrix

isthenA = D — . LetC be a diagonal dongle weight matrix with

{ M, i€l
1, 1€eU
Let
f= (f(xl)v-.,uf(x'IL))T (96)

Y=y, 0n) (9.7)
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We can rewrite (9.1) as

«

k+ Bk

This is a quadratic function ifi Setting the gradient to zero, we find the minimum loss is obtained

f-y)'C(f-y)+ fTAf. (9.8)

using
«

-1
k—l—ﬂk’A) Cy. (9.9)

Because”' has strictly positive eigenvalues, the inverse is well defined.

t=(c+

Before moving on to experiments, we note an interesting connection to Pang andniegecs
labelingmethod (2005). Consider a special case of our loss function (9.1) whetvand M —
co. It is easy to show for labeled nodg¢s= L, the optimal value is the given labef(z;) = y;.
Then the optimization problem decouples into a set of one-dimensional problems, one for each
unlabeled nodeé € U: Liy—o pr—oo(f(2:)) =

(f(ws) = 9i)* + Z aw; (f(x:) = y;)° (9.10)
jEENNL (i)

The above problem is easy to solve. It corresponds exactly to the metric labeling method, except we
use squared difference while Pang and Lee (2005) used absolute difference. Indeed in experiments
comparing the two (not reported here), their differences are not statistically significant. From this
perspective, our semi-supervised learning method is an extension with interacting terms among

unlabeled data.

9.3 Experiments

We performed experiments using the movie review documents and accompanying 4-ctass (
{0,1,2,3}) labels found in the “scale dataset vI.@feveloped and first used by Pang and Lee
(2005). We chose 4-class instead of 3-class labeling because it is harder. The dataset is divided
into four author-specific corpora, containing 1770, 902, 1307, and 1027 documents. We ran ex-
periments individually for each author. Each document is represented(as aword presence

indicator vector, normalized to sumto 1.

! Available athttp://www.cs.cornell.edu/people/pabo/movie-review-data/.
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We systematically vary labeled set sigg < {0.9n, 800, 400, 200, 100, 50, 25, 12,6} to ob-
serve the effect of semi-supervised learnifig.= 0.9n is included to match 10-fold cross valida-
tion (Pang and Lee, 2005). For eadh we run 20 trials where we randomly split the corpus into
labeled and test (unlabeled) sets. The same random splits are used for all methods, allowing paired
t-tests for statistical significance. All results we report are average test set accuracy.

We compare our graph-based semi-supervised method with two previously studied methods:

regression and metric labeling (Pang and Lee, 2005).

9.3.1 Regression

We ran lineak-insensitive support vector regression using S¥¥(Joachims, 1999a) with all
default parameters. The continuous prediction on a test document is discretized for classification.
Regression results are reported under the heading “reg.” Note this method does not use unlabeled

data for training.

9.3.2 Metric labeling

We ran Pang and Lee’s metric labeling method (2005), using SVM regression as the initial
label preference function. The method requires an item-similarity function, which is equivalent to
our similarity measurev;;. Among others, we experimented with PSP-based similarity. Metric
labeling results with this measure are reported under “reg+PSP.” Note this method does not use
unlabeled data for training either.

PSR is defined as the percentage of positive sentences in rayi@ang and Lee, 2005). The
similarity between reviews;, x; is the cosine of the angle between the vect®'SR, 1 -PSR) and
(PSB,1 — PSRE). Positive sentences are identified using a binary classifier trained on a separate
“snippet dataset” located at the same URL as above. The snippet dataset contains 10662 short
quotations taken from movie reviews appearing onitbetentomatoes.com Web site. Each
snippet is labeled positive or negative based on the rating of the originating review. Pang and Lee
(2005) trained a Ni@e Bayes classifier. They show that PSP is a (noisy) measure for comparing

reviews—reviews with low ratings tend to receive low PSP scores, and those with higher ratings
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Figure 9.2: Positive Sentence Percentage (PSP) for reviews expressing each fine-grain rating. We
identified positive sentences using SVM instead oMdd@ayes, but the trend is qual-
itatively the same as in previous work (Pang and Lee, 2005).

tend to get high PSP scores. Thus, two reviews with a high PSP-based similarity are expected
to have similar ratings. For our experiments we derived PSP measurements in a similar manner,
but using a linear SVM classifier. We observed the same relationship between PSP and ratings
(Figure 9.2).

The metric labeling method has parameters (the equivalehi®fin our model). Pang and
Lee (2005) tuned them on a per-author basis using cross validation but did not report the optimal
parameters. We were interested in finding a single set of parameters for use with all authors. In
addition, since we varied labeled set size, it is convenient todunaé /| L|, the fraction of labeled
reviews used as neighbors, instead:olWe then used the samex for all authors at all labeled

set sizes in experiments involving PSP. In an attempt to reproduce the findings of Pang and Lee
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reg+PSP reg+PSP
Author | reg | (shared) (specific)
(@ | 0.592 0.592| 0.592(c = 0.05, a = 0.01)
(b) | 0.501 0.498| 0.496(c = 0.05, a = 3.50)
(c) 0.592 0.589| 0.593(c = 0.15, a = 1.50)
(d) |0.496 0.498| 0.500(c = 0.05, a = 3.00)

Table 9.1: Accuracy using shared: (= 0.2, « = 1.5) versus author-specific parameters, with
|L| = 0.9n.

(2005), we tuned, « with cross validation. Tuning ranges are {0.05,0.1,0.15,0.2,0.25,0.3}
anda € {0.01,0.1,0.5,1.0,1.5,2.0,2.5,3.0,3.5,4.0,5.0}. The optimal parameters we found are

¢ = 0.2 anda = 1.5. (In section 9.3.4, we discuss an alternative similarity measure, for which we
retuned these parameters.)

Note that we tuned a single set of shared parameters for all authors, whereas Pang and Lee
(2005) tunedk and« on a per-author basis. To demonstrate that our implementation of metric
labeling produces comparable results, we also determined the optimal author-specific parameters.
Table 9.1 shows the accuracy obtained over 20 trials With= 0.9n for each author, using
SVM regression, reg+PSP using shared parameters, and reg+PSP using author-specitic
parameters (listed in parentheses). The best result in each row of the table is highlighted in bold.
We also show in bold any results that cannot be distinguished from the best result using a paired
t-test at the 0.05 level.

Pang and Lee (2005) found that their metric labeling method, when applied to the 4-class data
we are using, was not statistically better than regression, though they observed some improvement
for authors (c) and (d). Using author-specific parameters, we obtained the same qualitative result,
but the improvement for (c) and (d) appears even less significant in our results. Possible explana-
tions for this difference are the fact that we derived our PSP measurements using an SVM classifier
instead of an NB classifier, and that we did not use the same range of parameters for tuning. The
optimal shared parameters produced almost the same results as the optimal author-specific param-

eters, and were used in subsequent experiments.
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9.3.3 Semi-Supervised Learning

We used the same PSP-based similarity measure and the same shared parameters =
1.5 from our metric labeling experiments to perform graph-based semi-supervised learning. The
results are reported as “SSL+PSP.” SSL has three additional paratieteérand /. Again we
tunedk’, 3 with cross validation. We considered the following tuning rangés {2, 3,5, 10,20}
andg € {0.001,0.01,0.1,1.0,10.0}. The optimal parameters aké= 5 and/ = 1.0. These were
used for all authors and for all labeled set sizes. Note that uhlike-| L|, which decreases as the
labeled set size decreases, wekleemain fixed for al| L|. We setM arbitrarily to a large number

108 to ensure that the ratings of labeled reviews are respected.

9.3.4 Alternate Similarity Measures

In addition to using PSP as a similarity measure between reviews, we investigated several
alternative similarity measures based on the cosine of word vectors. Among these options were
the cosine between the word vectors used to train the SVM regressor, and the cosine between word
vectors containing only words with high (top 1000 or top 5000) mutual information values. The
mutual information is computed with respect to the positive and negative classes in the 10662-
document snippet dataset. Finally, we experimented with using as a similarity measure the cosine
between word vectors containing all words, each weighted by its mutual information. We found
this measure to be the best among the options tested in pilot trial runs using the metric labeling
algorithm. Specifically, we scaled the mutual information values such that the maximum value
was one. Then, we used these values as weights for the corresponding words in the word vectors.
For words in the movie review dataset that did not appear in the snippet dataset, we used a default
weight of zero (i.e., we excluded them. We experimented with setting the default weight to one,
but found this led to inferior performance.)

We repeated the experiments described in sections 9.3.2 and 9.3.3 with the only difference be-
ing that we used the mutual-information weighted word vector similarity instead of PSP whenever

a similarity measure was required. We repeated the tuning procedures described in the previous
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sections. Using this new similarity measure led to the optimal parametefs1, « = 1.5, k' = 5,

and( = 10.0. The results are reported under “reg+WV” and “SSL+WV,” respectively.

9.3.5 Results

We tested the five algorithms for all four authors using each of the nine labeled set sizes. The
results are presented in table 9.2. Each entry in the table represents the average accuracy across 20
trials for an author, a labeled set size, and an algorithm. The best result in each row is highlighted
in bold. Any results in the same row that cannot be distinguished from the best result using a paired
t-test at the 0.05 level are also bold.

The results indicate that the graph-based semi-supervised learning algorithm based on PSP
similarity (SSL+PSP) achieved better performance than all other methods in all four author corpora
when only 200, 100, 50 or 25 labeled documents were available. In 15 out of these 16 learning
scenarios, the unlabeled set accuracy by the SSL+PSP algorithm was significantly higher than all
other methods. While accuracy generally degraded as we trained on less labeled data, the decrease
for the SSL approach was less severe through the mid-range labeled set sizes. SSL+PSP remains
among the best methods with only 12 or 6 labeled examples.

Note that, as discussed previously, an SSL algorithm like this one may be sensitive to graph
weights (i.e., the similarity measure used to form the graph). In the experiments where we used
mutual-information weighted word vector similarity (reg+WV and SSL+WV), we notice that
reg+WV remained on par with reg+PSP at high labeled set sizes, whereas SSL+WV appears sig-
nificantly worse in most of these cases. It is clear that PSP is the more reliable similarity measure.
SSL exploits similarity more than metric labeling (i.e., SSL's graph is denser), so it is not surprising
that SSL's accuracy would suffer more with an inferior similarity measure.

Interestingly, our SSL approach fared less well with large labeled set sizes. We believe this is
due to two factors: a) the baseline SVM regressor trained on a large labeled set can achieve fairly
high accuracy for this difficult task without considering pairwise relationships between examples;

b) PSP similarity is not accurate enough. Gain in variance reduction achieved by the SSL graph is

offset by its bias when labeled data is abundant.
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PSP word vector

|L| | regression| reg+PSP| SSL+PSP|| reg+WV | SSL+WV
1593 0.592 0.592 0.546 0.592 0.544
800 0.553 0.554 0.534 0.553 0.517
< | 400 0.522 0.525 0.526 0.522 0.497
~ | 200 0.494 0.498 0.521 0.494 0.472
2 | 100 0.463 0.477 0.511 0.462 0.450
2 50 0.439 0.458 0.499 0.438 0.429
25 0.408 0.421 0.465 0.400 0.404

12 0.411 0.445 0.451 0.341 0.410

6 0.391 0.360 0.404 0.336 0.390

811 0.501 0.498 0.481 0.503 0.473
800 0.501 0.497 0.478 0.503 0.474
= | 400 0.471 0.471 0.465 0.471 0.450
=~ | 200 0.447 0.449 0.452 0.447 0.429
2 100 0.415 0.423 0.443 0.415 0.397
§ 50 0.388 0.396 0.434 0.387 0.376
25 0.373 0.380 0.418 0.364 0.367

12 0.352 0.388 0.396 0.318 0.351

6 0.353 0.364 0.363 0.308 0.353
1176 0.592 0.589 0.566 0.594 0.514
800 0.579 0.585 0.559 0.579 0.509
= | 400 0.550 0.556 0.544 0.551 0.491
= | 200 0.513 0.519 0.532 0.513 0.479
2 | 100 0.484|  0.495 0.521| 0.484|  0.466
2 50 0.462 0.476 0.504 0.461 0.456
25 0.459 0.472 0.484 0.439 0.454

12 0.434 0.456 0.472 0.351 0.433

6 0.412 0.423 0.443 0.358 0.413

924 0.496 0.498 0.495 0.499 0.490
800 0.500 0.501 0.495 0.504 0.483
= | 400 0.474 0.478 0.486 0.477 0.463
=~ | 200 0.459 0.459 0.468 0.459 0.445
2 | 100 0.444 0.445 0.460 0.444 0.437
3 50 0.429|| 0.431 0.445||  0.429 0.428
25 0.411 0.411 0.425 0.400 0.409

12 0.388 0.405 0.404 0.330 0.388

6 0.375 0.366 0.389 0.329 0.370

Table 9.2: 20-trial average unlabeled set accuracy for each author across different labeled set sizes
and methods. In each row, we list in bold the best result and any results that cannot be
distinguished from it with a pairetitest at the 0.05 level.
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9.4 Conclusions

Companies, politicians, and organizations can benefit from being able to automatically assign
accurate ratings to reviews of products and other items discussed online. Reducing the cost and
manual labeling effort required to reach acceptable accuracy is therefore of great practical value.
We demonstrated the benefit of using unlabeled data for the sentiment analysis task of rating in-
ference. There are several directions to improve the work, though, including better text processing
and similarity measures. From the perspective of semi-supervised learning, there are two main
lines of future research: 1. Our method is transductive: new reviews must be added to the graph
before they can be classified. An extension to the inductive learning setting is possible using the
approach of, e.g., Sindhwani et al. (2005a). 2. Develop models for semi-supervised cross-domain
sentiment analysis (e.g., train on movie reviews, but test on product reviews). In this setting, la-
beled data is only available in a source domain, and the goal is to use unlabeled (source and) target

data to improve domain transfer.



Part IV

Conclusion

156



157

Chapter 10
Summary and Future Work

10.1 Key Contributions

This dissertation begins to solve several open problems in SSL, where the goal is to augment
a little labeled data with large amounts of unlabeled data to improve classification or regression
performance. Labeled data can be time-consuming and costly to obtain, often requiring annotators
with particular expertise. Unlabeled data is all around us, though, in the form of Web pages,
news articles, query logs, sound recordings, large digital photo collections, and so on. The key
guestion in semi-supervised learning research is how to extract knowledge and practical value out
of unlabeled resources in a wide range of learning environments.

We propose solutions to several of the large challenges in this area by introducing the setting
of online SSL and efficient algorithms that can learn effectively within this regime. Table 10.1
summarizes the contributions in online SSL from Part 1. Both Online Manifold Regularization
(Chapter 3) and OASIS (Chapter 4) are able to achieve constant time and space complexity per time
step through sparse approximations without significant degradations in learner accuracy. The two
methods make very different assumptions about the underlying data, however. The first assumes
a low-dimensional manifold or graph structure upon which nearby examples possess the same
labels, and the second assumes the classes are separated by a low-density gap. The two online
approaches also differ in their basic mode of learning. Whereas Online Manifold Regularization
moves between point estimates of a kernel-based classifier via stochastic gradient descent, OASIS

applies online Bayesian updates to iteratively refine an approximation of the posterior distribution
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Ch. Name SSL Assumption | Classifier Type| Active?
3 | Online Manifold Regularization Manifold / Frequentist/ No
Graph Kernel
4 OASIS Low-Density Gap / Ba;_/e5|an / Yes
Cluster Linear

Table 10.1: Summary of online semi-supervised learning contributions.

over the space of weight vectors parameterizing a linear classifier. Lastly, OASIS is able to use this
posterior distribution to perform a principled form of active learning.

In Part Ill, the dissertation introduces several novel assumptions that extend the reach of SSL
by incorporating new forms of weak side information and prior knowledge. These contributions
are summarized in Table 10.2, where the third and fourth columns describe the key underlying
assumption allowing unlabeled data to be of value in the learning process. Multi-manifold SSL
(Chapter 5) relaxes the assumption underlying graph-based SSL methods and assumes that exam-
ples lying on the same underlying low-dimensional manifold have the same label. The low-rank
assumption proposed in Chapter 6 essentially assumes that examples sharing the same small num-
ber of latent factors possess the same labels (for one or more tasks). As discussed in the chapter,
though, our method technically assumes that the label-by-item and feature-by-item matrices are
jointly low-rank. As a result, our method enables multi-label prediction, transduction, and missing
data imputation to be addressed simultaneously. The work on dissimilarity-based SSL and ker-
nel regression using order preferences in Chapters 7-8 introduces additional forms of regulariza-
tion based on new kinds of side information. As demonstrated in these chapters, domain-specific
heuristics can be applied to generate many dissimilarity relationships and order preferences. De-
spite potential noise in this side information, the resulting SSL techniques greatly improve perfor-
mance over supervised learning. Finally, Chapter 9 focuses on the application of graph-based SSL
to the sentiment analysis task of rating inference. The work shows that using a novel “sentiment
graph,” which encodes several assumptions specifically designed for this task, leads to effective

performance with only a very small number of labels.
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Ch. Novel Assumption Assumesifk theny
Multi-manifold _ .
5 e similar & on same manifold same label
(classification)
6 , Low-Ra_mk_ same latent factor loadings same labels
(multi-label, missing data
7 Dlssw_n_llar!ty dissimilar different label
(classification)
Order Preferences . o : . .
8 : arbitrary pairwise relation| specific target value ordering
(regression)
Sentiment Graph

similar positive-sentence % similar label

(ordinal classification)

Table 10.2: Summary of new assumptions allowing unlabeled data to improve learning in various
classification and regression settings.

10.2 Future Challenges for SSL

Despite the advances put forth in this body of work, some key issues still remain. We now

briefly summarize a few of these future challenges:
e “safe” semi-supervised learning that is resilient to incorrect model assumptions,
o unifying multiple types of relations between labeled and unlabeled examples,
e non-topical text classification using limited supervision,

e domain adaptation using only unlabeled target-domain data.

10.2.1 *“Safe” Semi-Supervised Learning

SSL methods are able to learn using unlabeled data through one of several critical model as-
sumptions (cluster, manifold, and others), as discussed throughout this dissertation. As itis difficult
to test which assumptions hold in practice, and performance may suffer if the wrong algorithm is
chosen, “safe” semi-supervised learning algorithms that are guaranteed to perform at least as well

as supervised learning have great potential. A practitioner should be able to exploit unlabeled data
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without being an SSL expert. Our recent empirical study of SSL algorithms applied to many nat-
ural language processing tasks (Goldberg and Zhu, 2009) shows that, contrary to popular wisdom,
k-fold cross validation with as few as 10 labeled examples can be used to achieve one form of safe
SSL by simply choosing among different supervised and semi-supervised algorithms. It is still
desirable to find a more elegant and theoretically justified form of safe SSL. Bayesian modeling
may be able to provide a solution by maintaining a posterior distribution over classifiers of mul-
tiple types. The key challenge is to define an intelligent prior over assumptions and classifiers, as
well as Bayesian formulations of the different types of SSL learners so that we can define a proper
likelihood function.

SSL can also be made safer by developing robust graph-based methods and less restrictive
assumptions that are more likely to hold in richer, complex datasets. For example, Chapter 5 dis-
cussed how to exploit local geometry to detect changes in dimensionality, orientation, and density
in order to learn with data supported on multiple intersecting manifolds, which occurs in appli-
cations such as object tracking and handwritten character recognition. Another desired future
outcome is the development of a technique that can perform automatic graph selection for graph-
based SSL and tolerate the absence of any true underlying manifold structure. Posing this as an
optimization problem, where some variables select among graphs or graph components, may be

one way to solve this problem.

10.2.2 Unifying Multiple Types of Relations in Graph-Based SSL

This dissertation has presented several novel algorithms that exploit relations between labeled
and unlabeled examples in various types of learning settings and real-world applications. Many
other types of relations remain unexplored, which can be utilized in graph-based transductive learn-
ing (also known as collective classification). For example, imagine trying to predict category la-
bels (e.g., market sector) or numeric values (e.g., income level) for people in a social network,
where people may be associated with one another directly through friendship, or indirectly by

common interests, geographic locality, or having clicked on the same advertisements, to name just



161

a few types of relations. Each link may indicate similarity, dissimilarity, or other assumed rela-
tionships between the target values. Deciding how to integrate these sources of information in a
semi-supervised setting is of large practical value. Chapters 7 and 8 have considered the use of
dissimilarity relationships and order preferences, respectively, while other work in graph-based
SSL largely relies on basic similarity. A long term goal is to incorporate (and trade-off between)
disparate types of relations in a unified framework capable of solving real data mining and social

networking tasks.

10.2.3 Non-topical Text Classification with Limited Supervision

Semi-supervised learning is particularly applicable to problems in sentiment analysis and blog
analytics, as opinion-bearing blog posts and other forms of community-generated online content
rarely come with explicit annotations. Likewise, little accurately labeled data exists for query-
intent classification: predicting the desired intent of short Web search queries. These problems
of great relevance in both the public and private sectors often deal with subtle non-topical class
definitions requiring customized SSL algorithms and the use external resources, such as massive
logs of unlabeled data, to achieve sufficient performance. While this dissertation describes one
such application: predicting opinions in movie reviews on a 1-4 star rating scale (Chapter 9), and
other previous research explores the use of unlabeled resources for wish recognition (Goldberg
and Zhu, 2009) and query-intent classification (Fuxman et al., 2009), one overarching future goal
is to develop data-efficient methods to tackle other non-topical classification problems, such as

predicting the quality, difficulty, or reading level of arbitrary natural language text.

10.2.4 Domain Adaptation Using Only Unlabeled Target-Domain Data

Finally, much work in semi-supervised learning, perhaps with minor modifications, can be
applied to the challenging yet extremely important problem of domain adaptation (also known
as transfer learning). In this situation, we have some labeled data in a particular source domain
(e.g., movie reviews), but it is too difficult or costly to annotate data in a desired target domain

(e.g., product reviews). The goal is to learn relationships between the domains in order to transfer
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knowledge gleaned from the source labeled data to the target unlabeled data. Though transfer
learning poses new challenges, such as mapping between different feature spaces, ideas from SSL
and learning structure from unlabeled data are certainly relevant. One idea, inspired by space-
time physics, for tackling this problem involves using a diffusion model or random walk process.
The key insight is to simultaneously identify clusters of words or features within and between
domain (multiple “universes”). Within each domain, the process could behave much like a classical
Markov Chain random walk (e.g., PageRank), yet can also allow probability mass to spread from
the source to the target universe through “wormholes” (akin to “pivot features” or auxiliary tasks in
related work). Given this basic formulation and careful selection of transition probabilities within
and between universes, we can learn translation probabilities between domains to apply a classifier
learned in the source domain to examples from the target domain. Once all examples (labeled and
unlabeled) are normalized to a standard vocabulary, existing semi-supervised learning techniques
may be used to transductively classify the unlabeled target data or train an inductive classifier for

future use.

10.3 Final Summary

The research in this dissertation advances the state-of-the-art in SSL by contributing to many
active areas of research, including problem formulation, learning theory, algorithm development,
and the application of these ideas to real-world problems in natural language processing, computer
vision, bioinformatics, and other challenging domains. Given the cost and difficulty in obtaining
large amounts of labeled data, it is becoming increasingly important to continue developing new
SSL algorithms (as well as algorithms for related areas like transfer learning or active learning) that
can handle real-world learning settings while mitigating the risks involved in making restrictive
assumptions regarding the use of unlabeled data. The work in this dissertation constitutes a major
step in this direction, and the future work proposed here may help to one day realize the full power

of unlabeled data.
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