
NEW DIRECTIONS IN SEMI-SUPERVISED LEARNING

by

Andrew Brian Goldberg

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2010

c© Copyright by Andrew Brian Goldberg 2010

All Rights Reserved

i

For my parents, who always taught me to strive for the highest achievements possible.

ii

ABSTRACT

In many real-world learning scenarios, acquiring a large amount of labeled training data is

expensive and time-consuming. Semi-supervised learning (SSL) is the machine learning paradigm

concerned with utilizing unlabeled data to try to build better classifiers and regressors. Unlabeled

data is a powerful resource, yet SSL can be difficult to apply in practice. The objective of this

dissertation is to move the field toward more practical and robust SSL. This is accomplished by

several key contributions.

First, we introduce the online (and active) semi-supervised learning setting, which considers

large amounts of mostly unlabeled data arriving constantly over time. An online SSL classifier

must be able to make efficient predictions at any moment and update itself in response to labeled

and unlabeled data. Previously, almost all SSL assumed a fixed dataset was available before train-

ing began, and receiving new data meant retraining a potentially slow model. We present two

families of online semi-supervised learners that reformulate the popular manifold and cluster as-

sumptions into theoretically motivated and efficient online learning algorithms.

We also invent several novel model assumptions and corresponding algorithms for the more

common batch SSL setting. Principled in nature, these assumptions are geared toward making SSL

easier to apply to a wider variety of situations in the real world. Many SSL algorithms construct

a graph over the data, to approximate an assumed (single) underlying low-dimensional manifold.

In contrast, our novel multi-manifold assumption handles data lying on multiple manifolds that

may differ in dimensionality, orientation, and density. The work also introduces a novel low-

rank assumption, based on recent developments in matrix completion, which enables multi-label

transduction with many unobserved features. Other contributions utilize several new forms of weak

side information, such as dissimilarity relationships or order preferences over predictions. Finally,

iii

SSL is applied to sentiment or opinion analysis, exploring domain-specific assumptions and graphs

to extend SSL to this challenging area of natural language processing.

The dissertation provides extensive experimental results demonstrating that these novel SSL

learning settings and modeling assumptions lead to algorithms with significant performance bene-

fits in computer vision, text classification, bioinformatics, and other prediction tasks.

iv

ACKNOWLEDGMENTS

First off, none of this would have been possible without the constant support and encourage-

ment of my advisor Jerry. I was quite fortunate to begin my graduate career at exactly the same

time that Jerry started his own next chapter as a professor here in Madison. It was his artificial in-

telligence course in Fall 2005 and especially the elective in advanced natural language processing

and machine learning in Spring 2006 that solidified my interest in pursuing this line of research. He

almost immediately took me under his wing, getting me excited about semi-supervised learning, as

well as the entire research process. Jerry has always been instrumental in helping formulate ideas

and master tough mathematical concepts. On numerous occasions, he has pushed me to step out

of my comfort zone, and I am especially thankful for this. It was a pleasure to have been invited

to be a co-author on our introductory textbook on semi-supervised learning; this experience and

exposure to the larger research community is largely responsible for my upcoming job! Jerry’s

sustained confidence in me over the past 5 years has left a lasting mark, and I will look back on

this period of my life with a great sense of accomplishment.

I must also thank my other committee members and professors who have contributed to my in-

terest in machine learning and desire to do research. Professor Steve Wright was the first professor

I ever made contact with at Wisconsin, when he personally notified me of my acceptance into the

Ph.D. program. This friendly, welcoming, and unpretentious tone has permeated my entire time

here. Whether in the classroom, doing research together, or figuring out how the Perl scripts on

optimization-online.org work, I have appreciated getting to work closely with Steve.

Professor Jude Shavlik was also one of the first people I met upon moving to Madison. During

the summer before officially enrolling, Jude encouraged me to read Tom Mitchell’s classicMachine

Learningtext, which whetted my appetite for what lay ahead. Jude was also responsible for setting

v

me up to do an independent study with Professor Michael Ferris, in which I learned to use Matlab

and code my first support vector machine. It is hard to believe how much has happened since these

early experiences.

Professor Mark Craven has also been a lasting influence on my graduate career. He and Profes-

sor David Page’s sequence of bioinformatics courses really got me excited about the potential ap-

plications of machine learning. I have since tried to ensure my research remains practical-minded,

though without sacrificing mathematical sophistication or justification. Working with Mark in

courses, TREC Genomics, and other projects has always been a pleasure. I am also especially

grateful for his frequent presence and helpful feedback at various practice talks and presentations.

I am thankful for the experience of working closely with ECE Professor Rob Nowak over the

last three or four years. Applying ideas from network tomography to the seemingly unrelated task

of reassembling texts deconstructed into bags of words provided my first opportunity for interde-

partmental collaboration and helped broaden my research perspective. I have enjoyed getting to

known Rob and his students who bring a different set of skills and technical background to the

table (or should I say whiteboard?). Rob has been directly involved in several of the projects rep-

resented in this thesis, and has often been like a second advisor to me, inviting me to participate in

his reading groups and private group workshops.

Grace Wahba served on my preliminary exam committee and has also been an inspiration. Her

course in Reproducing Kernel Hilbert Spaces forced me to push my limits, and as a result, I have

come to appreciate the long history of research in Statistics that forms the foundation for most of

modern machine learning.

Several mentors from outside the university have played an important role in preparing me for

completing this dissertation. My summer internships with Peng Xu at Google Research, and with

Ariel Fuxman and Anitha Kannan at Microsoft Research Silicon Valley, provided great hands-on

exposure trying to tackle real-world problems. I enjoyed open access to vast resources, including

large stores of unlabeled data and computing power. Peng, Ariel, and Anitha taught me a lot about

how research gets done in the ”real world,” which has stayed with me as I finished my dissertation

research and planned for the future.

vi

In addition to those named above, I could not have made it this far without the help of many co-

authors on the work presented here, as well as other projects along the way. In alphabetical order

(with current affiliations in parentheses): Rakesh Agrawal (MSR), David Andrzejewski (UW),

Charles R. Dyer (UW), Mohamed Eldawy (Google), Nathanael Fillmore (UW), Alex Furger (UW),

Arthur Glenberg (Arizona State), Bryan Gibson (UW), Lijie Heng (UW), Tushar Khot (UW),

Ming Li (Nanjing), Michael Rabbat (McGill), Ben Recht (UW), Burr Settles (CMU), John Shafer

(MSR), Aarti Singh (CMU), Bradley Strock (UW), Panayiotis Tsaparas (MSR), Jurgen Van Gael

(Cambridge), Junming Xu (UW), and Zhiting Xu (UW).

Throughout this process, I have benefited from the support and friendship of many other fellow

classmates and colleagues in Computer Sciences and beyond. There are too many specific people to

name individually, but I want to thank the members of the AI Reading Group, HAMLET (Human

and Machine Learning Experiments and Theory), Graduates Anonymous, the ECE Comm-DSP

reading group, and the Wednesday Night Drinking Club.

I could not have done this without the love and support of my family: my dad Steve, brother

Jonathan, sister-in-law Jen, and grandparents Hilda, Evelyn, and Selig. I must also thank my

aunt Martha Siegel (U. of Rochester, Ph.D. Mathematics ’69) for being an inspiration throughout

graduate school. Finally, my late mother Susan would have been so proud to see her little boy get

his Ph.D. She is part of what keeps me going through the challenges and frustrations of research.

Last but not least, I owe much thanks to my best friend and soon-to-be wife Amy Becker (UW-

Madison, Ph.D. Mass Communications ’10). She has been a great sounding board for ideas over

the last couple years, and I always enjoy our nerdy discussions about statistics and other shared

research interests. Amy has helped me retain my sanity through the final stages of this endeavor,

encouraging me to get things done so we can move on to the next chapter in our life together. It

has been very comforting to navigate the job market and finish our dissertations together as a team;

I would probably still be working on mine if it were not for her constant encouragement.

DISCARD THIS PAGE

vii

TABLE OF CONTENTS

Page

ABSTRACT . ii

LIST OF TABLES .xi

LIST OF FIGURES .xiii

PREFACE .xv

I Background Material 1

1 Introduction to Semi-Supervised Learning . 2

1.1 Review of Statistical Machine Learning .2
1.2 Learning with Labeled and Unlabeled Data .6
1.3 The Practical Value of Semi-Supervised Learning7
1.4 How is Semi-Supervised Learning Possible? .9
1.5 Inductive vs. Transductive Semi-Supervised Learning10
1.6 Caveats .11

2 Popular Semi-Supervised Learning Methods. 13

2.1 Self-Training .13
2.2 Probabilistic Generative Models .15
2.3 Cluster-then-Label Methods .18
2.4 Co-Training and Multiview Learning .19

2.4.1 Co-Training .19
2.4.2 Multiview Learning .21

2.5 Graph-Based Methods .24
2.6 Semi-Supervised Support Vector Machines .35

viii

Page

2.7 Other Models .40

II Online SSL: New Learning Settings 42

3 Online Manifold Regularization .43

3.1 Online Learning with Unlabeled Data .45
3.2 From Batch to Online Semi-Supervised Learning45
3.3 Sparse Approximations .49

3.3.1 Buffering .49
3.3.2 Random Projection Tree .50

3.4 Experiments .53
3.4.1 Datasets and Protocol .54
3.4.2 Online MR Scales Better than Batch MR55
3.4.3 Online MR Achieves Comparable Risks55
3.4.4 Generalization Error of Online MR .56
3.4.5 Online MR Handles Concept Drift .58

3.5 Conclusions and Future Work .59

4 OASIS: Online Active SemI-Supervised Learning 62

4.1 OASIS: Online Active SemI-Supervised Learning63
4.1.1 Bayesian Model for the Gap Assumption63
4.1.2 Online SSL via Particle Filtering .66
4.1.3 Guaranteeing Bounded Time and Space Complexity Per Time Step69
4.1.4 Incorporating Active Learning .69

4.2 Empirical Evaluation .70
4.2.1 Synthetic Data .72
4.2.2 Real-World Data .73

4.3 Conclusions and Future Work .75

III Batch SSL: New Assumptions 78

5 Multi-Manifold Semi-Supervised Learning . 79

5.1 Theoretic Perspectives on Multi-Manifold Semi-Supervised Learning80
5.1.1 Single Manifold Case .83
5.1.2 Multi-Manifold Case .84

ix

Page

5.2 A Multi-Manifold Learning Algorithm .85
5.2.1 Hellinger Distance Graph .87
5.2.2 Size-Constrained Spectral Clustering .90

5.3 Experiments .93
5.3.1 Datasets .93
5.3.2 Methodology & Implementation Details94
5.3.3 Results of LargeM .95
5.3.4 Effect of Too Small anM . 97
5.3.5 Manifold Regularization using the Hellinger Graph98

5.4 Conclusions .98

6 Transduction with Matrix Completion: A Low-Rank Assumption for SSL 100

6.1 Problem Formulation .100
6.1.1 Model Assumptions .101
6.1.2 Matrix Completion for Heterogeneous Matrix Entries102

6.2 Optimization Techniques .104
6.2.1 Fixed Point Continuation for MC-b .104
6.2.2 Fixed Point Continuation for MC-1 .105

6.3 Experiments .106
6.3.1 Synthetic Data Experiments .108
6.3.2 Music Emotions Data Experiments .111
6.3.3 Yeast Microarray Data Experiments .112

6.4 Discussions and Future Work .113

7 Dissimilarity in Semi-Supervised Learning .115

7.1 Dissimilarity in Binary Classification .116
7.2 Dissimilarity in Multiclass Classification .118
7.3 Experiments .122

7.3.1 Standard Binary Datasets .122
7.3.2 Multiclass Handwritten Digit Recognition Dataset125
7.3.3 Predicting Political Affiliation Using Heuristic Dissimilarity Edges126

7.4 Conclusions .129

8 Regularization with Order Preferences .130

8.1 Regression with Order Preferences .131
8.2 A Linear Program Formulation .133
8.3 Experiments .134

x

Page

8.3.1 A Toy Example .135
8.3.2 Benchmark Datasets .136
8.3.3 Sentiment Analysis in Movie Reviews .140
8.3.4 Predicting Housing Prices Using Heuristic Order Preferences141

8.4 Conclusions .142

9 Graph-Based Semi-Supervised Learning for Sentiment Categorization. 143

9.1 A Graph for Sentiment Categorization .145
9.2 Applying the Harmonic Function .146
9.3 Experiments .148

9.3.1 Regression .149
9.3.2 Metric labeling .149
9.3.3 Semi-Supervised Learning .152
9.3.4 Alternate Similarity Measures .152
9.3.5 Results .153

9.4 Conclusions .155

IV Conclusion 156

10 Summary and Future Work .157

10.1 Key Contributions .157
10.2 Future Challenges for SSL .159

10.2.1 “Safe” Semi-Supervised Learning .159
10.2.2 Unifying Multiple Types of Relations in Graph-Based SSL160
10.2.3 Non-topical Text Classification with Limited Supervision161
10.2.4 Domain Adaptation Using Only Unlabeled Target-Domain Data161

10.3 Final Summary .162

Bibliography .163

DISCARD THIS PAGE

xi

LIST OF TABLES

Table Page

5.1 Conjectured finite sample performance of SSL and SL for regression of a Hölder-α,
α > 1, smooth function (with respect to geodesic distance in the manifold cases). . . .82

5.2 Multi-manifold SSL results for handwritten digit recognition97

6.1 Transductive label error of six algorithms on the 24 synthetic datasets.109

6.2 Relative feature imputation error on the synthetic datasets.110

6.3 More tasks help matrix completion (ω = 10%, n = 400, r = 2, d = 20, σ2
ε = 0.01). . . 111

6.4 Performance on the music emotions data. .112

6.5 Performance on the yeast data. .113

7.1 Mean error rate with varying numbers of dissimilarity edges in the USPS dataset using
the multiclass SVM formulation. .126

7.2 Mean error rates with and without dissimilarity edges on the politics dataset.128

8.1 Benchmark data. All improvements are statistically significant.138

8.2 Movie review sentiment analysis mean-absolute-error for each author. Statistically
significant improvements by SSL are highlighted in bold.141

8.3 Using “real-world” order preferences generated from domain knowledge. The im-
provement is statistically significant. .142

9.1 Accuracy using shared (c = 0.2, α = 1.5) versus author-specific parameters, with
|L| = 0.9n. .151

9.2 Sentiment analysis results across different labeled set sizes and methods.154

10.1 Summary of online semi-supervised learning contributions.158

xii

Table Page

10.2 Summary of new assumptions allowing unlabeled data to improve learning in various
classification and regression settings. .159

DISCARD THIS PAGE

xiii

LIST OF FIGURES

Figure Page

1.1 A simple example to demonstrate how semi-supervised learning is possible.10

2.1 A graph constructed from labeled instancesx1,x2 and unlabeled instances.26

2.2 Multiple interpretations of the harmonic function. .29

2.3 Comparison of SVM and S3VM decision boundaries.35

2.4 The hinge loss versus the semi-supervised hat loss.37

3.1 A random projection tree on the Swiss roll data. .51

3.2 Runtime comparison for batch and online manifold regularization.55

3.3 Online MR’s average instantaneous riskJair(T) approaches batch MR’s riskJ(f ∗) as
T increases. .56

3.4 Generalization error of batch MR’sf ∗ and online MR’sf̄ asT increases.57

3.5 Online MR (buffer) has much better generalization error than batch MR when faced
with concept drift in the rotating spirals dataset. .59

4.1 “Null category” likelihood function to encourage low-density separation and an ex-
ample dataset where tracking the full posterior is beneficial over S3VM’s point estimate.65

4.2 Sliced-cube-d synthetic data results forT = 1000, l = 2. 73

4.3 Diced-cube-d synthetic data results forT = 1000, l = 2. 74

4.4 Results on real-world OCR data. .77

5.1 Hellinger distance. .89

5.2 The graph on the dollar sign dataset. .90

xiv

Figure Page

5.3 The Minimum Cost Flow problem equivalent to the step of constrainedk-means clus-
tering in which data points are reassigned to clusters (with cluster centersc fixed). . . 93

5.4 Regression MSE (a-c) and classification error (d-e) for synthetic datasets.96

5.5 Effect of varyingM on multi-manifold SSL performance for the surface-helix dataset.98

5.6 Empirical comparison of single-manifold and multi-manifold assumption.99

7.1 Varying the number of dissimilarity edges in the g50c and mac-windows datasets. . . .124

7.2 Changing the weight of dissimilarity edges. .125

8.1 A toy example comparing SVR and SSL, showing the benefit of order preferences. . .136

8.2 The effect of various parameters on SSL on the Benchmark data.y-axis is test-set
mean-absolute-error. .139

9.1 The graph for semi-supervised rating inference. .146

9.2 Positive Sentence Percentage (PSP) for reviews expressing each fine-grain rating. . . .150

xv

PREFACE

This preface outlines the overall structure of the dissertation. I have organized the chapters into

several parts described below.

Part I, Background Material

Chapter 1 begins with a quick introduction to machine learning and relevant concepts, such as

regularization, that will appear throughout the dissertation. This is followed by a beginner’s intro-

duction to semi-supervised learning, providing intuitive examples to help convey the fundamental

ideas behind how unlabeled data may be able to improve the learning process.

In Chapter 2, the most popular SSL modeling assumptions and corresponding families of clas-

sification algorithms are reviewed. Two of the families of algorithms discussed—graph-based

methods, which make the so-calledmanifold assumption, and semi-supervised support vector ma-

chines (S3VMs), which assume the classes are separated by a low-density gap (also known as the

cluster assumption)—play a key role in many of the remaining chapters.

Part II, Online SSL: New Learning Settings

Chapters 3 and 4 introduce two closely related novel SSL problem settings with great practical

value: (1) online semi-supervised learning and (2) onlineactivesemi-supervised learning. Most

SSL algorithms are inherently batch operations requiring all the data to be available when learning

begins. My work introduces online or incremental SSL as a natural setting for many tasks. Data

arrives in a streaming fashion, and most of it is unlabeled. In the active variant, the learner may

xvi

actively request the labels on some incoming data to expedite the learning process. The goal in both

cases is to be able to process and learn from labeled and unlabeled items as soon as they become

available; the classifier must be able to make accurate predictions at any time, while achieving

bounded time and space complexity per time step to allow for life-long or infinite learning. These

chapters present two radically different algorithms to achieve these goals. Both are demonstrated

to work effectively on synthetic and real-world datasets.

Chapter 3 develops an online SSL framework capable of transforming any batch SSL algo-

rithm with a convex loss function into an online SSL algorithm. This is achieved by applying

online convex programming (e.g., gradient descent) to semi-supervised regularized risk minimiza-

tion objective functions. After setting up this general framework, the chapter focuses on the special

case of adapting manifold-based methods to work in this online setting. Naı̈ve implementation of

this idea requires storing a graph of increasing size as more data arrives. Efficient sparse approx-

imations are introduced to remedy this problem and thus permit learning on an infinite stream of

both labeled and unlabeled data.

While Chapter 3 looks at online graph or manifold-based algorithms, Chapter 4 addresses the

gap or cluster assumption. Existing formulations based on this assumption involve solving a non-

convex optimization problem to identify a decision boundary in a low-density region. In contrast,

the fully Bayesian approach presented here introduces a new likelihood function that is sensitive to

unlabeled data, and maintains an evolving estimate of the posterior distribution over the hypothesis

space. Doing so allows the method to keep track of all local minima and avoid the pitfalls of

existing methods that locate only a single point estimate. Bounded space complexity is achieved

through particle filtering with a special Metropolis-Hastings resample-move step. Maintaining the

posterior also enables the use of a principled active learning selection criterion, resulting in Online

Active SemI-Supervised learning (or OASIS for short).

Part III, Batch SSL: New Model Assumptions

The five chapters in this part examine previously unexplored ways to use unlabeled data in

the batch SSL setting, where a set of labeled and unlabeled data is available all at once, and the

xvii

goal is to either predict labels for the unlabeled examples (transductive learning) or leverage the

unlabeled data to learn a classifier that can make more well-informed predictions on new test data

(inductive learning). The aim is that the new assumptions introduced allow SSL to be applied

more readily and reliably in practice, as some of the existing assumptions and formulations may

be overly restrictive.

Chapter 5 relaxes the manifold assumption that is prevalent in graph-based SSL—data is typi-

cally assumed to lie on a single or multiple well-separated low-dimensional manifolds. An empir-

ically constructed graph over items (nodes) is then used to approximate this underlying structure

and define a regularizer that encourages similar predictions at nodes that are close to each other

in the graph. In our work on multi-manifold SSL, we refine this assumption to allow for data ly-

ing on multiple intersecting or overlapping manifolds that may differ in dimensionality, density,

and orientation. This is the case for many real-world computer vision datasets (e.g., multiple ob-

jects or people moving through space trace out arbitrary low-dimensional manifolds). The chapter

introduces a novel graph-construction method that avoids placing edges between different mani-

folds. Backed by statistical learning theory, a simple cluster-then-label algorithm is built on top

of this new Hellinger-distance-based graph. Empirical results demonstrate this new approach to

graph-based SSL is both accurate and robust.

Chapter 6 introduces of a newlow-rankassumption for SSL. We pose transductive classifica-

tion as a matrix completion problem and leverage recent advances in nuclear norm minimization

to develop efficient optimization techniques. By assuming that the underlying matrices of data

items and labels are low rank, our formulation is able to handle three problems simultaneously:

(i) multi-label learning, where each item has more than one label, (ii) transduction, where most of

these labels are unspecified, and (iii) missing data, where a large number of features are missing.

The low-rank assumption effectively couples multiple related learning tasks, leading to improved

performance over baselines that treat the tasks separately. In addition, the matrix completion for-

mulation provides an elegant one-step solution to data imputation and label prediction.

Many SSL assumptions rely on some notion of similarity to help connect unlabeled data to

labeled data. For example, in a text categorization task, two documents containing many of the

xviii

same words may be assumed to discuss the same topic and belong to the same category. As

a result, unlabeled documents may be assigned a putative category label on account of words

shared with other labeled documents; several unlabeled documents may be strung together and

treated as stepping stones to propagate labels even to documents with no words in common with

the labeled documents. However, in many applications similarity in input features (e.g., words)

does not align well with the task at hand—in opinion classification, documents may share many

of the same words but describe very different opinions. This dissertation therefore develops new

assumptions and semi-supervised regularizers that go beyond similarity. The next few chapters

consider dissimilarity, directional ordering relations, and other task-specific relationships between

items to incorporate unlabeled data.

Chapter 7 modifies existing graph-based approaches to include dissimilarity between unlabeled

items to improve binary and multiclass classification. For example, in an application about pre-

dicting Internet users’ political views, we find that it is relatively easy to automatically find users

who likely disagree with each other. However, we still do not know which view each user holds.

This chapter introduces a novel regularizer that elegantly combines readily available dissimilarity

information, optional similarity information, and small amounts of labeled data to significantly

boost classification accuracy.

Chapter 8 shows how to introduce SSL into kernel regression problems through a new regular-

izer based on known or predicted ordering relations between unlabeled items. For example, in a

real-estate application, we may be able to assert that house A is expected to have ahigherselling

price than house B because it contains more bedrooms. In many applications, such weak forms of

knowledge involving large amounts of unlabeled items can be easily built with simple heuristics

and limited manual effort. Combined with small numbers of labeled examples (e.g., houses with

known selling prices), this side information can lead to significant reductions in regression error.

Finally, Chapter 9 considers the application of SSL to sentiment categorization. In particular,

we show how to transform graph-based SSL, originally designed for binary classification or re-

gression, to the rating inference problem where the goal is to predict the number of stars (e.g., 1

to 4) assigned to a movie review by examining its text alone. A novel graph is constructed that

xix

encodes several domain-specific assumptions and allows the resulting graph-based SSL method to

outperform supervised baselines. This chapter provides a clear demonstration of how SSL can be

customized for a specific real-world application.

Part IV, Conclusion

Chapter 10 summarizes the key contributions made throughout the dissertation and discusses

several key remaining open questions for the future of SSL research.

Please note that much of the background material in Chapters 1–2 are drawn from a book I

co-authored with Professor Xiaojin (Jerry) Zhu (Zhu and Goldberg, 2009), and Chapters 3–9 are

based on published papers or manuscripts under review at the time of this publication. References

within each chapter give credit to co-authors where possible.

Part I

Background Material

1

2

Chapter 1

Introduction to Semi-Supervised Learning

1.1 Review of Statistical Machine Learning

We begin by providing a brief review of basic concepts in statistical machine learning, before

presenting a comprehensive overview of the subfield of semi-supervised learning. After explaining

the many motivations for wanting to learn with small amounts of labeled data, we discuss some of

the most common methods. We try to offer intuitive explanations and key insights into how and

why these methods work, while also including enough mathematical sophistication to support the

material in the remaining chapters.

Basic Terminology and Notation

An instancex signifies a specific object and is typically represented by aD-dimensional feature

vectorx = (x1, . . . , xD) ∈ RD. Note that boldfacex is used to denote the whole instance, andxd

to denote thed-th feature ofx. (Note: In some chapters, we use slight variations on this notation;

the differences and their meaning should be clear from context.)

A collection of instances{xi}ni=1 = {x1, . . . ,xn} is a training sample and serves as the input

to the learning process. We will usexid to denote thei-th instance’sd-th feature. In most settings,

we assume these instances are independently and identically distributed (i.i.d.) according to an

underlying (but unknown to us) distributionP (x). Formally, we write this as:{xi}ni=1
i.i.d.∼ P (x).

As the name suggests, semi-supervised learning falls somewhere on the learning spectrum

between unsupervised and supervised learning. On the one hand, unsupervised learning algorithms

work on a training sample withn instances{xi}ni=1. There is no teacher providing supervision as to

3

how individual instances should be handled—this is the defining property of unsupervised learning.

Common unsupervised learning tasks include:

• clustering: separating then instances into groups;

• novelty detection: identifying the few instances that are very different from the rest;

• dimensionality reduction: finding a lower dimensional feature vector to represent each in-

stance, while maintaining key characteristics of the overall training sample.

In contrast, supervised learning operates on a training sample consisting of pairs{(xi, yi)}ni=1,

whereyi is the label onxi provided by nature or some teacher (hence the namesupervisedlearn-

ing). Such (instance, label) pairs are called labeled data, while instances alone without labels (as

in unsupervised learning) are called unlabeled data.

Let the domain of instances beX , and the domain of labels beY. Let P (x, y) be an (un-

known) joint probability distribution on instances and labelsX × Y. Given a training sample

{(xi, yi)}ni=1
i.i.d.∼ P (x, y), supervised learning tries to find a functionf : X 7→ Y in some func-

tion familyF , such thatf(x) predicts the true labely on future datax, where(x, y)
i.i.d.∼ P (x, y),

too.

The two most common types of supervised learning problems are classification and regression.

The difference lies in the domainY. Classification is the supervised learning problem to find a

classifierf that can predict one of a set of discrete classesY. Regression is the problem of learning

to predict a continuous value inY using a learned regression functionf . Most of this work will be

described in terms of classification, though the methods largely apply to both problem settings.

Given these classes of problems, we can begin to describe methods for finding and comparing

differentf functions. By definition, the bestf is the one that minimizes the following quantity

f ∗ = argmin
f∈F

E(x,y)∼P [c(x, y, f(x))] , (1.1)

where the expectation is over random test data drawn fromP . c(·) is a loss function that determines

the cost or impact of making a predictionf(x) that is different from the true labely. Some typical

loss functions will be described later in this section.

4

Recall that the underlying distributionP (x, y) is unknown to us, so it is not possible to compute

the above expectation and findf ∗ directly. This highlights the key task (and difficulty) in statistical

machine learning: induction—generalizing predictions from a finite training sample to future un-

seen test data. A natural first strategy to overcome this difficulty is to measuref ’s performance on

the training data (i.e., replace the unknown expectation by the average over the training sample).

This may lead to overfitting, however; thef that minimizes training error is likely to fit itself to the

statistical noise in the particular training sample instead of the true relationship betweenX andY.

As a result, the learnedf will have small training sample error, but is likely to perform less well

on future test data than some other predictorf̂ ∈ F .

Research in computational learning theory studies the issue of overfitting and establishes rig-

orous connections between the training sample error and the true error, using a formal notion of

complexity such as the Vapnik-Chervonenkis dimension or Rademacher complexity. Informed by

computational learning theory, one reasonable training strategy is to seek anf that “almost” min-

imizes the training sample error, while “regularizing”f so that it is not too complex in a certain

sense. Regularization will play a key role in this work, as unlabeled data often enters a semi-

supervised learning method through the regularizer.

Before exploring regularization in more detail, let us introduce one final basic concept: the

test sample, a separate sample of labeled instances{(xj, yj)}n+m
j=n+1

i.i.d.∼ P (x, y) that can be used

to estimatef ’s future performance. A test sample is held aside and not used during training, and

therefore provides an unbiased estimate of future performance.

Regularization

Recall that, in general, we can define a loss function to specify the cost of mistakes in pre-

diction. Formally, a loss functionc(x, y, f(x)) ∈ [0,∞) measures the amount of loss, or cost,

of the predictionf(x) for instancex with true labely. For example, in regression we can de-

fine the squared lossc(x, y, f(x)) = (y − f(x))2. In classification we can define the 0/1 loss as

c(x, y, f(x)) = 1 if y 6= f(x), and 0 otherwise. Alternatively, we may train a classifier based

5

on hinge loss:c(x, y, f(x)) = max(1 − yf(x), 0) (assuming each labely ∈ {−1, 1}). See Fig-

ure 2.4(a) for an illustration. In some applications (e.g., medical), the loss can depend on the

specific type of misclassification or the specific instancex.

The empirical risk off is the average loss incurred byf on a labeled training sample:̂R(f) =

1
l

∑l
i=1 c(xi, yi, f(xi)). As mentioned above, it may seem natural to find thef that minimizes the

empirical risk (i.e., the principle of empirical risk minimization (ERM)):

fERM = argmin
f∈F

R̂(f), (1.2)

whereF is the set of all hypotheses we consider. For classification with 0/1 loss, ERM is equivalent

to minimizing the training sample error. However,fERM can overfit the particular training sample.

As a consequence,fERM is not necessarily the classifier inF with the smallest true risk on future

data.

One remedy for overfitting is to regularize the empirical risk by a regularizerΩ(f). The reg-

ularizerΩ(f) is a non-negative functional, i.e., it takes a functionf as input and outputs a non-

negative real value. Iff is “simple” or “smooth” in some sense,Ω(f) will be close to zero; iff is

too “wiggly” (i.e., it overfits and attempts to pass through all labeled training instances),Ω(f) will

be large.

The regularized risk is the weighted sum of the empirical risk and the regularizer, with weight

λ ≥ 0: R̂(f)+λΩ(f). The principle of regularized risk minimization is to find thef that minimizes

the regularized risk:

f ∗ = argmin
f∈F

R̂(f) + λΩ(f). (1.3)

The success of regularized risk minimization depends on the regularizerΩ(f). Different regu-

larizers imply different assumptions of the task. For example, a commonly used regularizer for

f(x) = w>x is Ω(f) = 1
2
‖w‖2. This particular regularizer penalizes the squared norm of the

parametersw. It is helpful to viewf as a point whose coordinates are determined byw in the

parameter space. An equivalent form for the optimization problem in (1.3) is

min
f∈F

R̂(f) (1.4)

subject to Ω(f) ≤ s,

6

wheres is determined byλ. Note the regularization term in (1.3) has been converted to an inequal-

ity constraint in (1.4). This formulation makes it easier to see that the squared norm regularizer

constrains the radius of a ball in the parameter space (i.e., the constraint is simply1
2
‖w‖2 ≤ s).

Within the ball, the functionf (parameterized byw) that best fits the training data is chosen. This

controls the complexity off and limits overfitting.

This concludes the brief overview of standard terminology and notation for statistical machine

learning, including unsupervised and supervised learning. We are now ready to introduce semi-

supervised learning in more detail.

1.2 Learning with Labeled and Unlabeled Data

Semi-supervised learning falls somewhere between unsupervised and supervised learning. In

fact, most semi-supervised learning strategies are based on extending either unsupervised or su-

pervised learning to include additional information typical of the other learning paradigm. Specif-

ically, semi-supervised learning encompasses several different settings, including:

• Semi-supervised classification and regression.Also known as classification or regression

with labeled and unlabeled data (or partially labeled data), these are extensions to the su-

pervised problems of the same name. The training data consists of bothl labeled instances

{(xi, yi)}li=1 andu unlabeled instances{xj}l+u
j=l+1. In classification, the labels are discrete,

while regression operates on real-valued labels. One typically assumes that there is much

more unlabeled data than labeled data, i.e.,u � l. The goal of semi-supervised classifi-

cation (regression) is to train a classifier (regressor)f from both the labeled and unlabeled

data, such that it is better than a supervised learner trained on the labeled data alone.

• Constrained clustering. This is an extension to unsupervised clustering. The training data

consists of unlabeled instances{xi}nj=1, as well as some “supervised information” about

the clusters. For example, such information can be so-calledmust-linkconstraints, which

specify that two instancesxi,xj must be in the same cluster, andcannot-linkconstraints,

which indicatexi,xj cannot be in the same cluster. One can also constrain the size of the

7

clusters based on limited supervision. The goal of constrained clustering is to obtain a better

clustering than the clustering from unlabeled data alone.

There are other semi-supervised learning settings, too, including dimensionality reduction (la-

beled instances’ reduced feature representation is given), learning from positive and unlabeled data

(no negative labeled instances), and so on. This work will focus on semi-supervised classification

and regression. For clarity, though, this overview section will concentrate on classification. Con-

strained clustering is discussed in detail in the book by Basu et al. (2008) and will be described

briefly in Chapter 7.

Historically, the study of semi-supervised learning has been motivated largely by its practi-

cal value in building better classifiers and regressors than supervised learning and/or at a reduced

labeling cost. Recently, researchers have also begun to consider semi-supervised learning’s theo-

retical value in understanding learning in both machines and humans. Notice the striking parallel:

children learn concepts from a combination of parental feedback (labeled data) and unsupervised

observations of the world around them (unlabeled data). We focus on the former motivation in this

work; see Chapter 7 of Zhu and Goldberg (2009) for a review of recent work in bridging human

and machine learning.

1.3 The Practical Value of Semi-Supervised Learning

Semi-supervised learning has tremendous practical value. In many tasks, there is a dearth of

labeled data. The labelsy may be difficult to obtain because they require human annotators, special

devices, or expensive and slow experiments. For example,

• In query intent classification (Fuxman et al., 2009), an instancex is a Web search query

(a few words of text), and the labely is an indication of the search user’s intent (e.g., buy

a product, find a map, etc). Since queries tend to be short and ambiguous, accurate label-

ing often requires examining search results and the user’s clicking behavior. Large search

companies are interested in millions of queries, so this can be a tedious and time-consuming

process.

8

• In speech recognition, an instancex is a speech utterance, and the labely is the correspond-

ing transcript. Accurate transcription by human expert annotators can be extremely time

consuming: it took as long as 400 hours to transcribe 1 hour of speech at the phonetic level

for the Switchboard telephone conversational speech data (Godfrey et al., 1992) (recordings

of randomly paired participants discussing various topics such as social, economic, political,

and environmental issues).

• In natural language parsing, an instancex is a sentence, and the labely is the corresponding

parse tree. The training data, consisting of (sentence, parse tree) pairs, is known as a tree-

bank. Treebanks are time consuming to construct, and require the expertise of linguists. For

a mere 4000 sentences in the Penn Chinese Treebank, experts took two years to manually

create the corresponding parse trees (Xue and Palmer, 2005).

• In spam filtering, an instancex is an email, and the labely is the user’s judgment (spam or

ham). In this situation, the bottleneck is an average user’s patience to label a large number

of emails.

• In video surveillance, an instancex is a video frame, and the labely is the identity of the

object in the video. Manually labeling the objects in a large number of surveillance video

frames is tedious and time consuming.

• In protein-structure prediction, an instancex is a DNA sequence, and the labely is the

3D folded protein structure. It can take months of expensive laboratory work by expert

crystallographers to identify the 3D structure of a single protein.

While labeled data(x, y) is difficult to obtain in these domains, unlabeled datax is available in

large quantity and easy to collect: text queries can be scraped from search engine logs; speech

utterances can be recorded from radio broadcasts; text sentences can be crawled from the World

Wide Web; emails are sitting on the mail server; surveillance cameras run 24 hours a day; and DNA

protein sequences are readily available from databases. However, traditional supervised learning

methods cannot use unlabeled data in training classifiers.

9

Semi-supervised learning is attractive because it can potentially utilize both labeled and unla-

beled data to achieve better performance than supervised learning. From a different perspective,

semi-supervised learning may achieve the same level of performance as supervised learning, but

with fewer labeled instances. This reduces the annotation effort, which leads to reduced cost.

1.4 How is Semi-Supervised Learning Possible?

At first glance, it might seem paradoxical that one can learn anything about a predictorf : X 7→

Y from unlabeled data. After all,f is about the mapping from instancex to labely, yet unlabeled

data does not provide any examples of such a mapping. The answer lies in the assumptions one

makes about the link between the distribution of unlabeled dataP (x) and the target label.

Figure 1.1 shows a simple example of semi-supervised learning. Let each instance be repre-

sented by a one-dimensional featurex ∈ R. There are two classes: positive and negative. Consider

the following two scenarios:

1. In supervised learning, we are given only two labeled training instances(x1, y1) = (−1,−)

and(x2, y2) = (1, +), shown as the red (x) and blue (o) symbols in the figure, respectively.

The best estimate of the decision boundary is obviouslyx = 0: all instances withx < 0

should be classified asy = −, while those withx ≥ 0 asy = +.

2. In addition, we are also given a large number of unlabeled instances, shown as green dots

in the figure. The correct class labels for these unlabeled instances are unknown. However,

we observe that they form two groups.Under the assumptionthat instances in each class

form a coherent group (e.g.,p(x|y) is a Gaussian distribution, such that the instances from

each class cluster around a central mean), this unlabeled data gives us more information.

Specifically, it seems that the two labeled instances are not the most prototypical examples

for the classes. Oursemi-supervisedestimate of the decision boundary should be between

the two groups instead, atx ≈ 0.4.

If our assumption is true, then using both labeled and unlabeled data gives us a more reliable es-

timate of the decision boundary. Intuitively, the distribution of unlabeled data helps to identify

10

−1.5 −1 −0.5 0 0.5 1 1.5 2
x

Supervised decision boundary Semi−supervised decision boundary

Positive labeled data
Negative labeled data
Unlabeled data

Figure 1.1: A simple example to demonstrate how semi-supervised learning is possible.

regions with the same label, and the few labeled instances then provide the actual labels. In Chap-

ter 2, we review several other commonly used semi-supervised learning assumptions and example

algorithms implementing these assumptions.

1.5 Inductive vs. Transductive Semi-Supervised Learning

There are actually two slightly different semi-supervised learning settings: inductive and trans-

ductive semi-supervised learning. In supervised classification with a fully labeled training sample,

one is always interested in the performance on future test data. In semi-supervised classification,

however, the training sample contains some unlabeled data, and two distinct goals are possible.

• (Inductive)Predict the labels on future test data: Given a training sample{(xi, yi)}li=1,

{xj}l+u
j=l+1, inductive semi-supervised learning learns a functionf : X 7→ Y so thatf

is expected to be a good predictor on future data beyond{xj}l+u
j=l+1. Like in supervised

learning, one can estimate the performance on future data by using a separate test sample

{(xk, yk)}mk=1, which is not available during training.

11

• (Transductive)Predict the labels on the unlabeled instances in the training sample:1 Given a

training sample{(xi, yi)}li=1, {xj}l+u
j=l+1, transductive learning trains a functionf : X l+u 7→

Y l+u so thatf is expected to be a good predictor on the unlabeled data{xj}l+u
j=l+1. Notef is

defined only on the given training sample, and is not required to make predictions outside.

It is therefore a simpler function.

There is an interesting analogy: inductive semi-supervised learning is like an in-class exam,

where the questions are not known in advance, and a student needs to prepare for all possible

questions; in contrast, transductive learning is like a take-home exam, where the student knows the

exam questions and needs not prepare beyond those.

1.6 Caveats

By now it should be clear why (in some cases) semi-supervised learning can use additional

unlabeled data to learn a better predictorf . The key lies in the semi-supervised modelassumptions

about the link between the marginal distributionP (x) and the conditional distributionP (y|x).

There are many different semi-supervised learning methods, and each makes slightly different

assumptions about this link. These methods include self-training, probabilistic generative models,

co-training, graph-based models, semi-supervised support vector machines, and so on. In the

next chapter, we will introduce these methods and discuss their assumptions. Empirically, these

semi-supervised learning methods do produce better classifiers than supervised learning on some

datasets.

However, it is worth pointing out that blindly selecting a semi-supervised learning method

for a specific task will not necessarily improve performance over supervised learning. In fact,

unlabeled data can lead toworseperformance with the wrong link assumptions. Recently, we

observed evidence of this sensitivity to model assumptions in our empirical study (Goldberg and

Zhu, 2009). Also, multiple researchers have informally noted that semi-supervised learning does

1Some authors may describe this setting equivalently as performing supervised learning with early access to the test
sample (without the labels, of course). In both cases, labeled and unlabeled instances influence the learning process,
and the end goal is simply to predict the labels of these specific unlabeled instances.

12

not alwayshelp. Little is written about it, though, except a few papers (Cozman et al., 2003;

Elworthy, 1994). This is presumably due to “publication bias” against publishing negative results.

Several examples throughout this dissertation, as well as Zhu and Goldberg (2009), test the limits

of common model assumptions to highlight this sensitivity.

In short, model assumptions play a key role in semi-supervised learning. They make up for

the lack of labeled data and can determine the quality of the predictor. However, making the

right assumptions (or detecting wrong assumptions) remains an open question in semi-supervised

learning. One aim of this work is to develop “safe” SSL methods that can mitigate the risks

involved in using unlabeled data. This may be achieved through new, weaker assumptions, such as

the multi-manifold learning assumption introduced in Chapter 5.

13

Chapter 2

Popular Semi-Supervised Learning Methods

We now summarize several popular families of semi-supervised learning methods. This is

meant to highlight the variety in model assumptions, as well as set the stage for our new work

described in the remaining chapters.

2.1 Self-Training

Perhaps the simplest and easiest-to-apply semi-supervised learning technique, self-training is

characterized by the fact that the learning process uses its own predictions to teach itself. For

this reason, it is also called self-teaching or bootstrapping (not to be confused with the statistical

procedure with the same name). Self-training (Algorithm 1) can be either inductive or transductive,

depending on the nature of the predictorf .

The main idea is to first trainf on labeled data. The functionf is then used to predict the

labels for the unlabeled data. A subsetS of the unlabeled data, together with their predicted

labels, is then selected to augment the labeled data. Typically,S consists of the few unlabeled

instances with the most confidentf predictions. The functionf is re-trained on the now larger set

of labeled data, and the procedure repeats for some number of iterations or until some termination

criterion is met. It is also possible forS to be the whole unlabeled dataset. In this caseL andU

remain the whole training sample, but the assigned labels on unlabeled instances might vary from

iteration to iteration. One of the first successful applications of self-training was in word-sense

disambiguation (Yarowsky, 1995). There have also been recent successes in natural language

parsing (McClosky et al., 2006).

14

Input: labeled data{(xi, yi)}li=1, unlabeled data{xj}l+u
j=l+1.

1. Initially, let L = {(xi, yi)}li=1 andU = {xj}l+u
j=l+1.

2. Repeat:

3. Trainf from L using supervised learning.

4. Apply f to the unlabeled instances inU .

5. Remove a subsetS from U ; add{(x, f(x)) | x ∈ S} to L.

Algorithm 1 : Generic self-training algorithm.

Self-Training Assumption: The model’s own predictions, at least the high confidence ones,

tend to be correct. This is likely to be the case when the classes form well-separated clusters.

The major advantages of self-training are its simplicity and the fact that it is awrappermethod.

This means that the choice of learner forf in step 3 is left completely open. For example, the

learner can be a simplekNN algorithm (see Mitchell (1997, Chapter 8)), or a very complicated

classifier. The self-training procedure “wraps” around the learner without changing its inner work-

ings. This is important for many real-world tasks like natural language processing, where the

learners can be complicated black boxes not amenable to changes.

On the other hand, it is conceivable that an early mistake made byf (which is not perfect to

start with, due to a small initialL) can reinforce itself by generating incorrectly labeled data. Re-

training with this data will lead to an even worsef in the next iteration. Various heuristics have

been proposed to alleviate this problem. Example applications of self-training, with specific details

elaborated, can be found elsewhere (Maeireizo et al., 2004; Riloff et al., 2003; Rosenberg et al.,

2005).

While theoretical analyses of self-training do exist for specific learning algorithms (Culp and

Michailidis, 2007; Haffari and Sarkar, 2007), self-training is difficult to analyze in the more general

case with an arbitrary inner classifier.

15

2.2 Probabilistic Generative Models

Another natural formulation of semi-supervised learning uses probabilistic generative models.

Unlabeled data tells us how the instances fromall the classes, mixed together, are distributed. If

we know how the instances fromeachclass are distributed, we may decompose the mixture into

individual classes. This is the idea behindmixture modelsfor semi-supervised learning.

Suppose we know that (or assume) the data comes from two Gaussian distributions, but we do

not know their parameters (the mean, variance, and prior probabilities). We can use the data (la-

beled and unlabeled) to estimate these parameters for both distributions. As we saw in Figure 1.1,

the labeled data can actually be misleading: the labeled instances are away from the means of the

true distributions. The unlabeled data, however, helps us to identify the means of the two Gaussian

distributions. Computationally, we select parameters to maximize the probability of generating

such training data from the proposed model. If we only have labeled data, finding this set of pa-

rameters is straightforward, and the maximum likelihood estimate (MLE) can often be computed

in closed form.

In semi-supervised learning, however, the datasetD consists of both labeled and unlabeled data.

The likelihood depends on both the labeled and unlabeled data—this is how unlabeled data might

help semi-supervised learning in mixture models. It is no longer possible to solve for the MLE

analytically. Given the labeled and unlabeled dataD = {(x1, y1), . . . , (xl, yl),xl+1, . . . ,xl+u}, the

log likelihood function (what we are trying to maximize) is defined as

log p(D | θ) = log

(
l∏

i=1

p(xi, yi | θ)
l+u∏

i=l+1

p(xi | θ)

)
(2.1)

=
l∑

i=1

log p(yi | θ)p(xi | yi, θ) +
l+u∑

i=l+1

log p(xi | θ), (2.2)

whereθ is a set of model parameters (e.g., Gaussian means, variances). The second term, for

unlabeled instances, is the only thing that differentiates this semi-supervised log likelihood from

the standard supervised log likelihood. Intuitively, a semi-supervised MLEθ̂ will need to fit both

the labeled and unlabeled instances.

16

Note that the marginal probabilityp(x | θ), the probability of generatingx from any class, is

defined as

p(x | θ) =
C∑

y=1

p(x, y | θ) =
C∑

y=1

p(y | θ)p(x | y, θ). (2.3)

The marginal probabilities therefore account for the fact that we know which unlabeled instances

are present, but not which classes they belong to. Semi-supervised learning in mixture models

amounts to optimizing or finding the MLE of (2.2).

Solving the MLE optimization problem is non-trivial. The added complexity comes from the

fact that we must treat the unobserved labelsyl+1, . . . , yl+u as hidden variables, which make the

log likelihood (2.2) non-concave and hard to optimize. Fortunately, the Expectation Maximization

(EM) algorithm (Dempster et al., 1977) can be used to find a (local) MLE when unlabeled data is

present.1 The EM algorithm consists of an initialization step, where model parameters are assigned

initial values, and two alternating steps:

• E step: model’s expected sufficient statistics are computed under the current model parame-

ters (i.e., given some current assignment of the unlabeled instances to classes)

• M step: model parameters are updated to maximize the likelihood of observing data with

these sufficient statistics (i.e., update the mean and variance of the two class distributions)

In the case of semi-supervised mixture models, the EM algorithm can be thought of as assigning

“soft labels” to the unlabeled data according to the current modelθ(t). Because (2.2) is non-

concave, EM can converge only to a local optimum, and the specific one depends on the initial

parameterθ(0). A common choice ofθ(0) is the MLE on the small labeled training set.

It is instructive to note the similarity between EM and self-training. EM can be viewed as

a special form of self-training where the current classifierθ assigns both labels to the unlabeled

instances, but with fractional weightsp(H | D, θ), whereH is a hidden variable indicating a class

label. Unlike self-training, which usually labels only the few most confident unlabeled instances,

1Direct optimization methods are possible, too, for example quasi-Newton methods like L-BFGS (Liu and Nocedal,
1989).

17

the mixture-model approach updates the classifier based on all of the unlabeled data (fractionally

assigned to both classes).

Mixture Model Assumption: The data actually comes from the mixture model, where the

number of components, priorp(y), and conditionalp(x | y) are all correct.

Unfortunately, it can be difficult to assess the model correctness since we do not have much

labeled data. Many times one would choose a generative model based on domain knowledge

and/or mathematical convenience. However, if the model is wrong, semi-supervised learning could

actually hurt performance (see, for example, Cozman et al., 2003). One way to alleviate this danger

is to use domain knowledge to create a task-specific model (e.g., multiple components per class).

Another way is to de-emphasize the unlabeled data: scale the contribution from unlabeled data in

the semi-supervised log likelihood (2.2) by a small positive weightλ < 1:

l∑
i=1

log p(yi | θ)p(xi | yi, θ) + λ
l+u∑

i=l+1

log p(xi | θ).

As λ → 0, the influence of unlabeled data vanishes and one recovers the supervised learning

objective.

Mixture models provide a framework for semi-supervised learning in which the role of unla-

beled data is clear. The theoretical value of labeled and unlabeled data in the context of parametric

mixture models has been previously analyzed (Castelli and Cover, 1995; Ratsaby and Venkatesh,

1995). In practice, this form of semi-supervised learning can be highly effective if the generative

model is (nearly) correct. In a seminal empirical paper, Nigam et al. (2000) applied a mixture

of multinomial distributions for semi-supervised learning to the task of text document categoriza-

tion. Similar algorithms have been successfully applied to other tasks, too (Baluja, 1998; Fujino

et al., 2005, 2008). Some variations that use more than one mixture component per class, or down-

weight unlabeled data relative to labeled data, can be found in the literature (Callison-Burch et al.,

2004; Corduneanu and Jaakkola, 2001; Miller and Uyar, 1997; Nigam et al., 2000; Shahshahani

and Landgrebe, 1994).

18

Input: labeled data(x1, y1), . . . , (xl, yl), unlabeled dataxl+1, . . . ,xl+u,

a clustering algorithmA, and a supervised learning algorithmL

1. Clusterx1, . . . ,xl+u usingA.

2. For each resulting cluster, letS be the labeled instances in this cluster:

3. If S is non-empty, learn a supervised predictor fromS: fS = L(S).

Apply fS to all unlabeled instances in this cluster.

4. If S is empty, use the predictorf trained from all labeled data to label

the unlabeled instances in this cluster.

Output: labels on unlabeled datayl+1, . . . , yl+u.

Algorithm 2 : General purpose Cluster-then-Label algorithm.

2.3 Cluster-then-Label Methods

In the preceding section, we introduced probabilistic generative models that identify mix-

ing components from unlabeled data. Similarly, another straightforward way to perform semi-

supervised learning is to first identify clusters using unlabeled data and some unsupervised clus-

tering algorithm, then label or learn within each cluster. This high-level idea is often referred to as

a Cluster-then-Label procedure for semi-supervised classification (Algorithm 2).

In step 1, the clustering algorithmA is unsupervised. In step 2, we learn one supervised pre-

dictor using the labeled instances that fall into each cluster, and use the predictor to label the

unlabeled instances in that cluster. One can use any clustering algorithmA and supervised learner

L. In Chapter 5, we discuss a specific Cluster-then-Label algorithm that involves identifying clus-

ters that correspond to different low-dimensional manifolds (Goldberg et al., 2009). Under certain

conditions (El-Yaniv and Gerzon, 2005; Singh et al., 2008), theoretic analysis also justifies the

Cluster-then-Label procedure (Demiriz et al., 1999; Dara et al., 2002; Goldberg et al., 2009).

Cluster-then-Label Assumption: The instances can be clustered into two or more coherent

groups, such that each cluster contains only instances belonging to a single class.

19

2.4 Co-Training and Multiview Learning

Another broad class of semi-supervised learning methods rely on using multiple views (sets of

features) or multiple classifiers. We discuss one concrete example Co-Training next, followed by

a more general multiview learning framework that makes fewer assumptions.

2.4.1 Co-Training

Co-training is similar to self-training with a critical difference. In self-training, one classifier

is used to make predictions on the unlabeled data, and then this data is fed back into the algorithm

with predicted labels. In co-training,two classifiers are used, each (potentially) operating on a

different view of the same instance. As an example of multiple views, consider Web page classi-

fication intoStudent or Faculty Web pages. In this task, the first viewx(1) can be the words on

the Web page in question. The second viewx(2) can be the words in all the hyperlinks that point to

the Web page. The main idea is that a classifier trained on the first view assigns predicted labels,

which are given to the classifier operating on the second view, and vice versa. One can formalize

this process into aCo-Trainingalgorithm (Algorithm 3), similar to that which was first proposed

by Blum and Mitchell (1998) and Mitchell (1999).

Notef (1) is a view-1 classifier: although we give it the complete featurex, it only pays attention

to the first viewx(1) and ignores the second viewx(2). f (2) is the other way around. They each

provide their most confident unlabeled-data predictions as the training data for the other view. In

this process, the unlabeled data is eventually exhausted.

Like self-training, co-training is a wrapper method that can work with any two classifiersf (1)

andf (2) that can assign a confidence score to their predictions (to decide which putatively-labeled

instances to add as training data). Co-training is widely applicable to many tasks, especially where

it is possible to obtain two views of each instance. For examples, see Collins and Singer (1999),

and Jones (2005) on named-entity classification in text processing.

20

Input: labeled data{(xi, yi)}li=1, unlabeled data{xj}l+u
j=l+1, a learning speedk.

Each instance has two viewsxi = [x
(1)
i ,x

(2)
i].

1. Initially let the training sample beL1 = L2 = {(x1, y1), . . . , (xl, yl)}.

2. Repeat until unlabeled data is used up:

3. Train a view-1 classifierf (1) from L1, and a view-2 classifierf (2) from L2.

4. Classify the remaining unlabeled data withf (1) andf (2) separately.

5. Addf (1)’s topk most-confident predictions(x, f (1)(x)) to L2.

Add f (2)’s topk most-confident predictions(x, f (2)(x)) to L1.

Remove these from the unlabeled data.

Algorithm 3 : Co-Training algorithm.

Many co-training-style algorithms exist. While the original Co-Training algorithm picks the

top k most confident unlabeled instances in each view during each iteration, the so-called Co-

EM algorithm (Nigam and Ghani, 2000) is less categorical and assigns fractionally-weighted class

labels to all unlabeled instances (potentially different weights for each view). The step in which

view 1 (2) addsall augmented unlabeled instances toL2 (L1) is equivalent to the E-step in the EM

algorithm. The M-step involves updating the two views’ parameters using expectations from the

other view. For certain tasks, Co-EM empirically performs better than co-training. Other variations

include single-view co-training (Goldman and Zhou, 2000; Chawla and Karakoulas, 2005), single-

view multiple-learner Democratic Co-learning (Zhou and Goldman, 2004), Tri-Training (Zhou and

Li, 2005b), and Canonical Correlation Analysis (Zhou et al., 2007).

Co-training makes several assumptions. The most obvious one is the existence of two separate

viewsx = [x(1),x(2)]. For a general task, the features may not naturally split into two views. To ap-

ply co-training in this case, one can randomly split the features into two artificial views. Assuming

there are two views, the success of co-training depends on the following two assumptions.

21

Co-Training Assumptions:

1. Each view alone is sufficient to make good classifications, given enough labeled data.

2. The two views are conditionally independent given the class label.

The first assumption is easy to understand: we need twousefulviews. The second assumption

is subtle but strong:P (x(1) | y,x(2)) = P (x(1) | y) andP (x(2) | y,x(1)) = P (x(2) | y). In other

words, if we know the true labely, then knowing one view (e.g.,x(2)) does not affect what we

will observe for the other view (it will simply beP (x(1) | y)). Thus, the instances added to one

view from the other will be representative (i.e., appear to be distributed at random like a newi.i.d.

labeled training sample). If the assumption does not hold, the newly added instances could all be

highly similar and thus be less informative for the view-1 classifier.

It can be shown that if the two assumptions hold, co-training can learn successfully from la-

beled and unlabeled data. When the conditional independence assumption is violated, co-training

may not perform well. The assumptions have been empirically examined for some natural lan-

guage processing tasks (Nigam and Ghani, 2000), and some work has investigated relaxing the

conditional independence assumption (Johnson and Zhang, 2007b), since it is actually difficult to

find tasks in practice in which it is satisfied.

While there is some theoretical analysis of co-training (Balcan et al., 2005b; Balcan and Blum,

2006; Dasgupta et al., 2001), it is merely a means to an end: making the two classifiersf (1) and

f (2) agree (i.e., predict the same label) on the unlabeled data. Such agreement is justified by

learning theory, and the intuition is simple: there are not many candidate predictors that can agree

on unlabeled data in two views, so the hypothesis space is small. If a candidate predictor in this

small hypothesis space also fits the labeled data well, it is less likely to be overfitting, and can be

expected to be a good predictor.

2.4.2 Multiview Learning

We now discuss so-called multiview learning algorithms that explicitly enforce hypothesis

agreement, without requiring explicit feature splits or the iterative mutual-teaching procedure.

22

These methods build on the regularized risk minimization framework introduced in Section 1.1.

Recall that this approach tries to minimizes the weighted combination of an empirical training er-

ror with a regularization term. For semi-supervised learning, one can often define the regularizer

Ω(f) using the unlabeled data. For example,

Ω(f) = ΩSL(f) + λ′ΩSSL(f), (2.4)

whereΩSL(f) is a supervised regularizer, andΩSSL(f) is a semi-supervised regularizer that de-

pends on some available unlabeled data.2 WhenΩSSL(f) indeed fits the task (makes the correct

assumption about what “simple” means), such regularization can produce a betterf ∗ than that pro-

duced byΩSL(f) alone. As we will see in this section and in later ones, specific forms ofΩSSL

result in different semi-supervised learning algorithms.

In particular for multiview learning,ΩSSL(f) can be defined to encourage agreement among

multiple hypotheses. We assume the algorithm has access tok separate learners. This is the

generalization of co-training tok views, hence the name multiview. However, this is a bit of a

misnomer, as each learner need not use a different view. The learners might be of different types

(e.g., decision tree, neural network, etc.) but take the same features ofx as input. This is similar

to an ensemble method (Opitz and Maclin, 1999). In either case, the goal is for thek learners to

produce hypothesesf ∗1 , . . . , f ∗k to minimize the following regularized risk:

(f ∗1 , . . . , f ∗k) = argminf1,...,fk

k∑
v=1

(
l∑

i=1

c(xi, yi, fv(xi)) + λ1ΩSL(fv)

)

+λ2

k∑
t=1

k∑
v=1

l+u∑
i=l+1

c(xi, ft(xi), fv(xi)). (2.5)

The intuition is for each hypothesis to not only minimize its own empirical risk, but also to agree

with all the other hypotheses.

2Note thatλ′ is a weight on the SSL component in (2.4), whileλ was used previously in (1.3) to refer to the weight
on the entire regularizer in the regularized risk minimization objective.

23

The first part of the multiview regularized risk is simply the sum of individual (supervised)

regularized risks. The second part defines a semi-supervised regularizer, which measures the dis-

agreement of thosek hypotheses on unlabeled instances:

ΩSSL(f1, . . . , fk) =
k∑

t=1

k∑
v=1

l+u∑
i=l+1

c(xi, ft(xi), fv(xi)). (2.6)

Notice pairwise disagreement is defined as the loss on an unlabeled instancexi when pretending

ft(xi) is the label andfv(xi) is the prediction. Such disagreement is to be minimized. The final

prediction for inputx is the label least objected to by all the hypotheses:

y(x) = argmin
y∈Y

k∑
v=1

c(x, y, f∗v (x)).

Different c andΩSL lead to different instantiations of multiview learning.

In a regularized risk framework, the semi-supervised learning assumption is encoded in the

regularizerΩSSL (2.6) to be minimized. In this case, we assume multiple hypothesesf1, . . . , fk

should agree with each other. However, to ensure that multiview learning is better than single-view

learning, the set of agreeing hypotheses also needs to be asmallsubset of the hypothesis spaceF .

Consider a counter-example where allk views contain the same exact features; this will lead tok

identical hypotheses that, by definition, all agree, but do not narrow down the hypothesis space.

Thek identical hypotheses can still be anywhere inF . This leads to the following.

Multiview Learning Assumption: Multiview learning is effective when a set of hypotheses

f1, . . . , fk agree with each other. Furthermore, there are not many such agreeing sets, and the

agreeing set happens to have a small empirical risk.

Multiview learning was proposed as early as 1993 (de Sa, 1993). It has been applied to semi-

supervised regression (Brefeld et al., 2006; Sindhwani et al., 2005b), and the more challenging

problem of classification with structured outputs (Brefeld et al., 2005; Brefeld and Scheffer, 2006).

Some theoretical analysis on the value of agreement among multiple learners can be found in the

literature (Farquhar et al., 2006; Leskes, 2005; Sindhwani and Rosenberg, 2008; Yu et al., 2008).

24

2.5 Graph-Based Methods

Graph-based semi-supervised learning plays a large role in this work. Much of the work pre-

sented in the rest of this dissertation falls into this class of algorithms. In most cases, graph-based

semi-supervised learning starts by constructing a graph from the training data. Given training data

{(xi, yi)}li=1, {xj}l+u
j=l+1, the vertices are the labeled and unlabeled instances{(xi)}li=1∪{xj}l+u

j=l+1.

Clearly, this is a large graph ifu, the unlabeled data size, is big.

Once the graph is built, learning will involve assigningy values to the vertices in the graph.

This is made possible by edges that connect labeled vertices to unlabeled vertices. The graph edges

are usually undirected. An edge between two verticesxi,xj traditionally represents the similarity

of the two instances; some of our work extends this to include other types of relationships. Letwij

be the edge weight. The idea is that ifwij is large, then the two labelsyi, yj are expected to be the

same.

Before diving into specific algorithms, one can imagine a process that spreads or propagates

labels from the labeled vertices to the unlabeled vertices across the graph edges, with the amount of

propagation depending on the edge weights. Note that intermediate unlabeled vertices can be used

as stepping stones, allowing a label to spread to unlabeled instances that are not directly connected

to any labeled vertices. Therefore, the graph edge weights are of great importance. People often

specify the edge weights with one of the following heuristics:

• Fully connected graph, where every pair of verticesxi,xj is connected by an edge. The edge

weight decreases as the Euclidean distance‖xi − xj‖, or some other problem-dependent

distance, increases. One popular weight function is

wij = exp

(
−‖xi − xj‖2

2σ2

)
, (2.7)

whereσ is known as the bandwidth parameter and controls how quickly the weight de-

creases. This weight has the same form as an unnormalized Gaussian probability density

function, and it is also called a Gaussian kernel or a Radial Basis Function (RBF) kernel.

Note the weight is 1 whenxi = xj, and 0 when‖xi − xj‖ approaches infinity.

25

• kNN graph. Each vertex defines itsk nearest neighbor (kNN) vertices in some distance

metric. Note ifxi is amongxj ’s kNN, the reverse is not necessarily true:xj may not be

amongxi’s kNN. Typically, a symmetrized kNN graph is used:xi andxj are connected if

one of them is among the other’s kNN. This means that a vertex may have more thank edges.

One may use an unweighted kNN graph: ifxi,xj are connected, the edge weightwij is the

constant 1. The weight can also be a function of the distance as in (2.7). Ifxi,xj are not

connected,wij = 0. kNN graphs automatically adapt to the density of instances in feature

space: in a dense region, the kNN neighborhood radius will be small; in a sparse region, the

radius will be large. Empirically, kNN graphs with smallk tend to perform well.

• b-matching graph. A graph constructed using theb-matching method ensures that the weights

are symmetric (without the ad hoc symmetrization post-processing step used in building

kNN graphs). The method solves an optimization problem to select a subset of possible

edges with maximum weight (or minimum distance), subject to constraints that each vertex

is connected to exactlyb other vertices. Once a sparse set of edges is chosen, they may be

weighted using (2.7) or set to weight 1, with all other weights equal to 0. It has recently

been shown that this problem can be solved quickly using loopy belief propagation (Huang

and Jebara, 2007). Also, empirical evidence (Jebara et al., 2009) suggests using balanced

b-matching graphs like this can lead to significantly improved semi-supervised learning per-

formance on some datasets.

• εNN graph. We connectxi,xj if ‖xi − xj‖ ≤ ε. The edges can either be unweighted or

weighted. Ifxi,xj are not connected,wij = 0. εNN graphs are easier to construct than kNN

graphs, but are less adaptive to changes in density.

These are very generic methods. Of course, better graphs can be constructed if one has knowledge

of the problem domain and can define better distance functions, connectivity, and edge weights.

For example, in Chapter 9, we consider edge weights based on a opinion-centric similarity function

to handle the sentiment analysis task of assigning opinion ratings to movie reviews.

26

x2

x3

x1

Figure 2.1:A graph constructed from labeled instancesx1,x2 and unlabeled instances. The label
of unlabeled instancex3 will be affected more by the label ofx1, which is closer in the
graph, than by the label ofx2, which is farther in the graph, even thoughx2 is closer
in Euclidean distance.

Figure 2.1 shows an example graph, where the edges are sparse. Letx1,x2 be the two labeled

instances (vertices). Recall that the edges represent the “same label” assumption. For an unlabeled

instancex3, its labely3 is assumed to be similar to its neighbors in the graph, which in turn are

similar to the neighbor’s neighbors. Through this sequence of unlabeled data stepping stones,y3 is

assumed to be more similar toy1 than toy2. This is significant becausex3 is in fact closer tox2 in

Euclidean distance; without the graph, one would assumey3 is more similar toy2.

Formally, this intuition corresponds to estimating a label functionf on the graph so that it

satisfies two things: 1) the predictionf(x) is close to the given labely on labeled vertices; 2)

f should be smooth on the whole graph. This can be expressed in a regularization framework,

where the former is encoded by the loss function, and the latter is encoded by a special graph-

based regularizer. In the following sections, we introduce several different graph-based semi-

supervised learning algorithms. They differ in the choice of the loss function and the regularizer.

For simplicity, we will assume binary labelsy ∈ {−1, 1}.

The idea of encouraging the target function to be smooth on a graph (i.e., using a graph as

the basis for a regularizer) is very natural. Therefore, there are many related methods that exploit

this idea, including mincut (Blum and Chawla, 2001) and randomized mincut (Blum et al., 2004),

Boltzmann machines (Getz et al., 2005; Zhu and Ghahramani, 2002), graph random walk (Azran,

27

2007; Szummer and Jaakkola, 2001), harmonic function (Zhu et al., 2003), local and global con-

sistency (Zhou et al., 2003), manifold regularization (Belkin et al., 2006; Sindhwani et al., 2005a,

2009), kernels from the graph Laplacian (Chapelle et al., 2002; Dai and Yeung, 2007; Kapoor

et al., 2005; Kondor and Lafferty, 2002; Smola and Kondor, 2003; Zhu et al., 2004b), spectral

graph transducer (Joachims, 2003), local averaging (Wang and Zhang, 2006; Wu and Schölkopf,

2007), density-based regularization (Bousquet et al., 2004; Chapelle and Zien, 2005), alternating

minimization (Wang et al., 2008), boosting (Chen and Wang, 2008; Loeff et al., 2008), and the tree-

based Bayes model (Kemp et al., 2003). In this section, we will discuss three of these methods:

mincut, harmonic function, and manifold regularization.

Mincut Formulation

Graph-based semi-supervised learning can be formulated as a graph-cut problem (Blum and

Chawla, 2001; Blum et al., 2004). Here, the positive labeled instances are treated as “source”

vertices, as if some fluid is flowing out of them and through the edges. Similarly, the negative

labeled instances are “sink” vertices, where the fluid would disappear. The objective is to find a

minimum set of edges whose removal blocks all flow from the sources to the sinks. This defines a

“cut,” or a partition of the graph into two sets of vertices. The “cut size” is measured by the sum

of the weights on the edges defining the cut. Once the graph is split, the vertices connecting to the

sources are labeled positive, and those to the sinks are labeled negative.

Mathematically, we want to find a functionf(x) ∈ {−1, 1} on the vertices, such thatf(xi) =

yi for labeled instances, and the cut size is minimized:∑
i,j:f(xi) 6=f(xj)

wij. (2.8)

The above quantity is the cut size: if an edgewij is removed, it must be true thatf(xi) 6= f(xj).

We can also cast mincut as a regularized risk minimization problem, with an appropriate loss

function and regularizer:

min
f :f(x)∈{−1,1}

∞
l∑

i=1

(yi − f(xi))
2 +

l+u∑
i,j=1

wij(f(xi)− f(xj))
2. (2.9)

28

The first term is a loss function that enforces the constraint on labeled instances:f(xi) = yi.

Note that we define∞ · 0 = 0. To minimize the regularized risk,f(xi) will be forced to equal

yi on labeled vertices. The second term is a regularizer corresponding to the cut size (scaled by

a constant factor of 4). Recall we requiref(x) ∈ {−1, 1} for all unlabeled verticesx, so cut

edges contribute4wij to the regularizer’s value. Ifxi andxj are not connected, thenwij = 0 by

definition, and if the edge exists and is not cut, thenf(xi)− f(xj) = 0.

The mincut regularized risk problem is an integer programming problem becausef is con-

strained to produce discrete values -1 or 1. However, efficient polynomial-time algorithms exist

to solve it. It is clear that mincut is a transductive learning algorithm, because the solutionf is

defined only on the vertices, not on the ambient feature space (e.g.,RD).

Harmonic Function

The second graph-based semi-supervised learning algorithm we introduce is the harmonic

function (Zhu et al., 2003). In our context, a harmonic function is a function that has the same

values as given labels on the labeled data, and satisfies the weighted average property on the unla-

beled data:

f(xi) = yi, i = 1 . . . l

f(xj) =

∑l+u
k=1 wjkf(xk)∑l+u

k=1 wjk

, j = l + 1 . . . l + u. (2.10)

In other words, the value assigned to each unlabeled vertex is the weighted average of its neighbors’

values. The harmonic function is the solution to the same problem in (2.9), except that we relaxf

to produce real values:

min
f :f(x)∈R

∞
l∑

i=1

(yi − f(xi))
2 +

l+u∑
i,j=1

wij(f(xi)− f(xj))
2 (2.11)

The relaxation has a profound effect: now there is a closed-form solution forf (presented at the

end of this section). The solution is unique (under mild conditions) and globally optimal. The

drawback of the relaxation is that in the solution,f(x) is now a real value in[−1, 1] that does

not directly correspond to a label. This can however be addressed by thresholdingf(x) at zero

29

+1 volt

wij
R =ij

1

1

0

1

0

i

(a) The electric network interpretation. (b) The random walk interpretation.

Figure 2.2:The harmonic function can be interpreted as the voltages of an electric network, or the
probability of reaching a positive vertex in an absorbing random walk on the graph.

to produce discrete label predictions (i.e., iff(x) >= 0, predicty = 1, and if f(x) < 0, predict

y = −1).

The harmonic functionf has many interesting interpretations. For example, one can view the

graph as an electric network (see Figure 2.2(a)). Each edge is a resistor with resistance1/wij, or

equivalently conductancewij. Suppose we connect the positive labeled vertices to the positive side

of a 1-volt battery, and connect the negative vertices to the ground. Then the voltage established at

each node is the harmonic function value.3

The harmonic functionf can also be interpreted by a random walk on the graph (see Fig-

ure 2.2(b)). Imagine a particle at vertexi. In the next time step, the particle will randomly move to

another vertexj with probability proportional towij: P (j|i) =
wijP
k wik

. The random walk continues

in this fashion until the particle reaches one of the labeled vertices. This is known as an absorbing

random walk, where the labeled vertices are absorbing states. Under this interpretation, the value

of the harmonic function at vertexi—f(xi)—is the probability that a particle starting at vertexi

eventually reaches a positive labeled vertex.

While a closed-form solution exists and will be presented next, there is also an iterative pro-

cedure to compute the harmonic function in (2.11). This approach may be useful for very large

datasets. Initially, setf(xi) = yi for the labeled verticesi = 1 . . . l, and some arbitrary value

3This, and the random walk interpretation below, is true when the labelsy ∈ {0, 1}. When the labelsy ∈ {−1, 1},
the voltages correspond to a shifted and scaled harmonic function.

30

for the unlabeled vertices. Iteratively update each unlabeled vertex’sf value with the weighted

average of its neighbors:

f(xi)←
∑l+u

j=1 wijf(xj)∑l+u
j=1 wij

. (2.12)

This iterative procedure is guaranteed to converge to the harmonic function, regardless of the ini-

tial values on the unlabeled vertices. This procedure is sometimes called label propagation, as it

“propagates” labels from the labeled vertices (which are fixed) gradually through the edges to all

the unlabeled vertices.

Finally, let us discuss the closed-form solution for the harmonic function. The solution is easier

to present using some matrix notation.

• Let W be an(l + u)× (l + u) weight matrix, whosei, j-th element is the non-negative edge

weightwij. The graph is undirected, soW is a symmetric matrix.

• Let D be the(l + u) × (l + u) diagonal matrix withDii =
∑l+u

j=1 wij for i = 1 . . . l + u.

Note each diagonal entryDii is the weighted degree of vertexi (i.e., the sum of edge weights

connected toi).

• The unnormalized graph Laplacian matrixL is defined asL = D−W , an(l + u)× (l + u)

matrix.

• Let f = (f(x1), . . . , f(xl+u))
> be the vector off values on all vertices.

Now the regularizer in (2.11) can be written as

1

2

l+u∑
i,j=1

wij(f(xi)− f(xj))
2 = f>Lf . (2.13)

Assuming the vertices are ordered so that the labeled ones are listed first, we can partition the

Laplacian matrix into four sub-matrices

L =

 Lll Llu

Lul Luu

 . (2.14)

31

We also partitionf into (fl, fu) and letyl = (y1, . . . , yl)
>. Then solving the constrained optimiza-

tion problem using Lagrange multipliers with matrix algebra leads to the harmonic solution

fl = yl

fu = −Luu
−1Lulyl. (2.15)

Manifold Regularization

Both mincut and the harmonic function are transductive learning algorithms. They each learn

a functionf that is restricted to the labeled and unlabeled vertices in the graph. There is no direct

way to predict the label on an unseen test instancex∗, unless one repeats the computation after

inserting a new vertex forx∗ into the graph. This is clearly undesirable if we want predictions

on a large number of test instances; we need an inductive semi-supervised learning algorithm.

Another drawback of the two previous approaches is that they fixf(x) = y for labeled instances.

It is not uncommon for real datasets to have some noisy labels, so we would likef to be able to

occasionally disagree with the given labels.

Manifold regularization (Belkin et al., 2006; Sindhwani et al., 2005a) addresses these two is-

sues. It is an inductive learning algorithm by definingf in the whole feature space:f : X 7→ R.

Formally, manifold regularization assumes that the marginal distributionP (x) is supported on a

Riemannian manifold (see Lebanon (2005, Chapter 2)). That is, even though the data is observed

in a D-dimensional ambient feature space, the data really lies on a lower-dimensional manifold

governed by only a few degrees of freedom. For example, handwritten digits may be represented

using16 × 16 = 256 pixel intensities, while intrinsically instances of the same digit class only

vary according to a few underlying dimensions like rotation, size, etc. The labeled and unlabeled

vertices, and hence the graph, are a random realization of the underlying manifold.

The method works as follows:f is regularized to be smooth with respect to the graph, through

the use of the graph Laplacian as in (2.13). However, this regularizer alone only controlsf , the

value off on thel + u training instances. To preventf from being too wiggly (and thus having

inferior generalization performance) outside the training samples, it is necessary to include a sec-

ond regularization term, such as‖f‖2 =
∫

x∈X f(x)2dx. Putting them together, the regularizer for

32

manifold regularization becomes

Ω(f) = λ1‖f‖2 + λ2f
>Lf , (2.16)

whereλ1, λ2 ≥ 0 control the relative strength of the two terms. To allowf to disagree with the

given labels, we can simply use the squared loss functionc(x, y, f(x)) = (y− f(x))2, which does

not greatly penalize small deviations. Other loss functions, such as hinge loss, are also possible.

The complete manifold regularization problem is

min
f :X 7→R

l∑
i=1

(yi − f(xi))
2 + λ1‖f‖2 + λ2f

>Lf . (2.17)

The so-called representer theorem (Kimeldorf and Wahba, 1971) guarantees that the optimalf

admits a finite (l + u, to be exact) dimensional representation. There exist efficient algorithms

(e.g., quadratic programming solvers) to find the optimalf .

Beyond the unnormalized graph Laplacian matrixL, the normalized graph Laplacian matrixL

is often used too:

L = D−1/2LD−1/2 = I −D−1/2WD−1/2. (2.18)

This results in a slightly different regularization term

f>Lf =
1

2

l+u∑
i,j=1

wij

(
f(xi)√

Dii

− f(xj)√
Djj

)2

. (2.19)

Other variations likeLp orLp, wherep > 0, are possible too. They replace the matrixL in (2.17).

These all encode the same overall label-smoothness assumption on the graph, but with varying

subtleties. We discuss several properties ofL below.

Graph-Based Semi-Supervised Learning Assumption:The labels are “smooth” with respect

to the graph, such that they vary slowly on the graph. That is, if two instances are connected by a

strong edge, their labels tend to be the same.

The notion of smoothness can be made precise by spectral graph theory (Chung, 1997), which

is concerned with the eigenvectors and eigenvalues of a graph, represented by its Laplacian matrix

L orL.4 We will analyze the unnormalized LaplacianL, which has the following properties:

4A vectorφ is an eigenvector of a square matrixA, if Aφ = λφ, whereλ is the associated eigenvalue. We will
focus on eigenvectors of unit length‖φ‖ = 1.

33

• L hasl+u eigenvalues (some may be the same) and corresponding eigenvectors{(λi, φi)}l+u
i=1.

These pairs are called the graph spectrum. The eigenvectors are orthogonal:φi
>φj = 0 for

i 6= j.

• The Laplacian matrix can be decomposed into a weighted sum of outer products:

L =
l+u∑
i=1

λiφiφi
>. (2.20)

• The eigenvalues are non-negative real numbers, and can be sorted as

0 = λ1 ≤ λ2 ≤ . . . ≤ λl+u. (2.21)

In particular, the graph hask connected components if and only ifλ1 = . . . = λk = 0.

The corresponding eigenvectors are constant on individual connected components, and zero

elsewhere.

Because the eigenvectors are orthogonal and have unit length, they form a basis inRl+u. This

means anyf on the graph can be decomposed into

f =
l+u∑
i=1

aiφi, (2.22)

whereai, i = 1 . . . l + u are real-valued coefficients. After some matrix algebra, we see that the

graph regularizer (2.13) can be written as

f>Lf =
l+u∑
i=1

a2
i λi. (2.23)

The regularizer is small if, for eachi, eitherai or λi is close to zero. Intuitively, penalizing with

f>Lf will lead to f solutions that assign large magnitude|ai| only to “smooth” (low frequency)

basis vectors (those with smallλi). In particular,f>Lf is minimized and equals zero, iff is in the

subspace spanned byφ1, . . . , φk for a graph withk connected components:

f =
k∑

i=1

aiφi, ai = 0 for i > k. (2.24)

34

For a connected graph, onlyλ1 = 0, andφ1 = (1/
√

l + u, . . . , 1/
√

l + u). Any constant vectorf

thus has coefficientsa1 6= 0, ai = 0 for i > 1, and is a minimizer off>Lf . Being a constant, it is

certainly the most smooth function on the graph.

Therefore, we see the connection between graph-based semi-supervised learning methods and

the graph spectrum. This exposes a major weakness of this family of methods: the performance is

sensitive to the graph structure and edge weights. As a result, the graph-construction problem has

received considerable attention in recent years (Balcan et al., 2005a; Hein and Maier, 2006; Hein

et al., 2007; Carreira-Perpinan and Zemel, 2005; Szlam et al., 2008; Zhang and Lee, 2006; Jebara

et al., 2009).

Graph-based semi-supervised learning can be applied to many real-world problems, including

opinion classification in text (Goldberg and Zhu, 2006; Pang and Lee, 2004)—discussed in detail

in Chapter 9, word-sense disambiguation (Niu et al., 2005; Pham et al., 2005), and others (Grady

and Funka-Lea, 2004; Levin et al., 2004; Krishnapuram et al., 2005). Some theoretical analyses

of graph-based learning exist (Johnson and Zhang, 2007a; von Luxburg et al., 2004; Zhang and

Ando, 2006).

Note that many of the graph-based semi-supervised learning algorithms have moderate to high

computational complexity, oftenO(u2) or more. Fast computation to handle large amounts of

unlabeled data is important and has been the subject of a great deal of recent research (Argyriou,

2004; Delalleau et al., 2005; Garcke and Griebel, 2005; Herbster et al., 2009; Mahdaviani et al.,

2005; Sindhwani et al., 2005c; Tsang and Kwok, 2006; Yu et al., 2005; Zhu and Lafferty, 2005).

Alternatively, one can perform online semi-supervised learning (Goldberg et al., 2008) where the

labeled and unlabeled instances arrive sequentially. They are processed and discarded soon after to

keep the computation and storage requirement low. This topic is discussed in detail in Chapters 3

and 4.

There are several extensions to the simple undirected graph that encodes similarity between

vertices. In certain applications like the Web, the edges naturally are directed (Burges and Platt,

2005; Lu and Getoor, 2003; Zhou et al., 2005). Edges can also be defined on more than two

vertices to form hypergraphs (Zhou et al., 2006). Some graph edges might encode dissimilarities

35

−

+
+

−
+

−

−

+
+

−
+

−

(a) SVM decision boundary (b) S3VM decision boundary

Figure 2.3: (a) With only labeled data, the linear decision boundary that maximizes the distance to
any labeled instance is shown in solid line. Its associated margin is shown in dashed
lines. (b) With additional unlabeled data, under the assumption that the classes are
well-separated, the decision boundary seeks a gap in unlabeled data.

instead (Goldberg et al., 2007; Tong and Jin, 2007). The dataset can consist of multiple mani-

folds, requiring more advanced graph-construction methods (Goldberg et al., 2009; Wang et al.,

2007; Zhou and Burges, 2007). Multiple manifolds and dissimilarity will be discussed in detail in

Chapters 5 and 7, respectively.

2.6 Semi-Supervised Support Vector Machines

Finally, we discuss a natural semi-supervised learning extension to Support Vector Machines

(SVMs). The intuition behind Semi-Supervised Support Vector Machines (S3VMs) is very simple.

Figure 2.3(a) shows a completely labeled dataset. If asked to draw a straight line to separate the

two classes, one reasonable place is right in the middle. This is the linear decision boundary found

by SVMs and is shown in Figure 2.3(a). It maximizes the geometric margin—the distance to the

nearest positive or negative instance—which is illustrated using dashed lines.

What if we have many additional unlabeled instances, distributed as in Figure 2.3(b)? The

SVM decision boundary would cut through dense unlabeled data regions. If we assume that the

two classes are well-separated, this seems undesirable. Instead, the best decision boundary now

seems to be the one in Figure 2.3(b), which falls in the gap between the unlabeled data. This new

decision boundary still separates the two classes in the labeled data, though its margin is smaller

36

than the SVM decision boundary. The new decision boundary is the one found by S3VMs, and is

defined by both labeled and unlabeled data.

To formalize this intuition, we briefly review supervised SVMs and then describe S3VMs pre-

cisely. For simplicity, we will assume that there are two classes:y ∈ {−1, 1}. We will also

assume that the decision boundary is linear inRD, i.e., a decision boundary is defined by the set

{x|f(x) = w>x + b = 0}, wherew ∈ RD is the parameter vector that specifies the orientation

and scale of the decision boundary, andb ∈ R is an offset parameter. The decision boundary is

thus defined byf(x) = 0, and the label ofx is predicted bysign(f(x)).

The primal SVM optimization problem can be written as an unconstrained, regularized risk

minimization problem

min
w,b

l∑
i=1

max(1− yi(w
>xi + b), 0) + λ‖w‖2, (2.25)

where the first term corresponds to the hinge loss function

c(x, y, f(x)) = max(1− y(w>x + b), 0), (2.26)

and the second term corresponds to the regularizerΩ(f) = ‖w‖2. The weightλ balances the two

objectives. It turns out the margin can be measured as1/‖w‖, so minimizing‖w‖2 is equivalent

into the maximizing the margin. See Bishop (2006) for an easy-to-follow derivation of (2.25).

This formulation thus attempts to find the maximum margin separation, but allows some training

instances to be on the wrong side of the decision boundary.

We plot the hinge loss as a function ofyf(x) = y(w>x+b) in Figure 2.4(a). For well-separated

training instances, we haveyf(x) ≥ 1. Therefore, the hinge loss penalizes instances which are

on the correct side of the decision boundary, but within the margin (0 ≤ yf(x) < 1); it penalizes

instances even more if they are on the wrong side of the decision boundary (yf(x) < 0).

We can now introduce S3VMs, which were originally called Transductive Support Vector Ma-

chines (TSVMs) when proposed by Vapnik (1998), because their theory was developed to give

performance bounds (theoretical guarantees) on the given unlabeled sample. However, since the

learned functionf naturally applies to unseen test instances, it is more appropriate to call them

S3VMs.

37

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

1

2

3

4

5

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

1

2

3

4

5

yf(x) f(x)
(a) hinge loss (b) hat loss

Figure 2.4: (a) The hinge lossc(x, y, f(x)) = max(1 − y(w>x + b), 0) as a function ofyf(x).
(b) The hat lossc(x, ŷ, f(x)) = max(1− |w>x + b|, 0) as a function off(x).

Recall that in Figure 2.3(b), the intuition of S3VM is to placeboth labeled and unlabeled

instances outside the margin. We have seen how this can be encouraged for the labeled instances

using the hinge loss in Figure 2.4(a). But what about unlabeled instances? Without a label, we

do not know whether an unlabeled instancex is on the correct or the wrong side of the decision

boundary.

One way to incorporate the unlabeled instancex into learning is to treat the label prediction on

x, i.e.,ŷ = sign(f(x)), as the putative label ofx (reminiscent of self-training). Then we can apply

the hinge loss function onx:

c(x, ŷ, f(x)) = max(1− ŷ(w>x + b), 0)

= max(1− sign(w>x + b)(w>x + b), 0)

= max(1− |w>x + b|, 0), (2.27)

where the last step follows fromsign(z)z = |z|. The new loss function, called the hat loss due to

its shape, is plotted in Figure 2.4(b). Note thex-axis is nowf(x) instead ofyf(x). Conveniently,

this loss does not need the real labely; it is completely determined byf(x).

The hat loss has a few key properties that make it desirable for semi-supervised learning.

Specifically, it prefersf(x) ≥ 1 or f(x) ≤ −1 (where there is 0 loss on the “rim” of the hat).

38

These are instances outside the margin, far away from the decision boundary. On the other hand,

it assigns a large loss value to unlabeled instances with−1 < f(x) < 1, especially the ones with

f(x) ≈ 0. These are unlabeled instances within the margin—the ones thatf is uncertain about.

We now incorporate the hat loss on the unlabeled data{xj}l+u
j=l+1 into the SVM objective (2.25)

to form the S3VM objective:5

min
w,b

l∑
i=1

max(1− yi(w
>xi + b), 0) + λ1‖w‖2 + λ2

l+u∑
j=l+1

max(1− |w>xj + b|, 0). (2.28)

Clearly, the S3VM objective prefers unlabeled instances to be outside the margin. Equivalently,

we want to find a decision boundary in a low density gap in the dataset, such that few unlabeled

instances are close to it. Although we used the name “hat loss,” it is more natural to view (2.28)

as regularized risk minimization with hinge loss on labeled instances, and a regularizer involving

these hat-shaped functions:

Ω(f) = λ1‖w‖2 + λ2

l+u∑
j=l+1

max(1− |w>xj + b|, 0). (2.29)

Note that a class balance constraint is usually applied on top of (2.28). For poorly understood

reasons, the majority (or even all) of the unlabeled instances are sometimes predicted in only

one of the classes. To correct for this imbalance, one heuristic is to constrain the predicted class

proportion (or sum of continuous predictions) on the unlabeled data, so that it is the same as the

class proportion on the labeled data:1
u

∑l+u
j=l+1 f(xj) = 1

l

∑l
i=1 yi.

Finally, it is important to point out a computational difficulty of S3VMs: the objective func-

tion (2.28) is non-convex. For comparison, note that the SVM objective (2.25) is a convex function

of the parametersw, b (i.e., due to the convexity of the hinge loss, the squared norm, and the fact

that the sum of convex functions is convex). Minimizing a convex function is relatively easy, as

such a function has a well-defined “bottom.” On the other hand, the hat loss function is non-convex.

With the sum of a large number of hat functions, the S3VM objective (2.28) is non-convex with

multiple local minima. A learning algorithm can get trapped in a sub-optimal local minimum and

never find the global minimum solution.
5Just as for SVMs, it is straightforward to form the dual problem and apply the kernel trick to S3VMs to learn

non-linear classifiers.

39

Due to their non-convex nature, early S3VM implementations were limited by the problem

size they could solve (Bennett and Demiriz, 1999; Demirez and Bennett, 2000; Fung and Man-

gasarian, 1999). The first widely used implementation was by Joachims (1999b), which handles

the non-convexity by first assigning putative labels to the unlabeled instances and then iteratively

swapping positive and negative putative labels until the objective stops decreasing. Since then,

the research in S3VMs has focused on how to efficiently find a near-optimum solution (Chapelle

et al., 2008). Among the many optimization techniques used are semi-definite programming (De

Bie and Cristianini, 2004, 2006; Xu and Schuurmans, 2005; Xu et al., 2008), gradient search

with smooth approximation to the hat function (Chapelle and Zien, 2005), deterministic anneal-

ing (Sindhwani et al., 2006), a continuation method (Chapelle et al., 2006a), the concave-convex

procedure (CCCP) (Collobert et al., 2006), difference of convex (DC) programming (Wang and

Shen, 2007), a fast algorithm for linear S3VMs (Sindhwani and Keerthi, 2006), Branch and Bound

(Chapelle et al., 2006b), and stochastic gradient descent (combined with the manifold assump-

tion) (Karlen et al., 2008).

S3VM Assumption: The classes are well-separated, such that the decision boundary falls

into a low density region in the feature space, and does not cut through dense unlabeled data. If

this assumption does not hold, this algorithm may be led astray. Some recent work relaxes the

assumption on unlabeled data (Yang et al., 2009).

Several other methods also exploit the idea that unlabeled data should not be very close to

the decision boundary. This intuition can be implemented in Gaussian Processes with the null

category noise model (Lawrence and Jordan, 2005; Chu and Ghahramani, 2004), as information

regularization (Szummer and Jaakkola, 2002; Corduneanu and Jaakkola, 2003, 2005), maximum

entropy discrimination approach (Jaakkola et al., 1999), or entropy minimization (Grandvalet and

Bengio, 2005; Lee et al., 2006; Mahdaviani and Choudhury, 2008). We explore another idea based

on this assumption in Chapter 4.

40

2.7 Other Models

Many other semi-supervised learning methods and problem formulations exist in the literature,

including:

• learning based on constrained clustering (Li et al., 2008);

• semi-supervised regression (Brefeld et al., 2006; Cortes and Mohri, 2006; Sindhwani et al.,

2005b; Zhou and Li, 2005a);

• learning in structured output spaces, where the labelsy are more complex than scalar values,

e.g., sequences, graphs, etc. (Altun et al., 2005; Ando and Zhang, 2005; Brefeld and Scheffer,

2006; Lafferty et al., 2004; Taskar et al., 2003; Tsochantaridis et al., 2005; Zien et al., 2007);

• expectation regularization (Mann and McCallum, 2007), which may have deep connections

with class proportion constraints (Chapelle and Zien, 2005; Chapelle et al., 2006b; Joachims,

1999b; Zhu et al., 2003);

• learning from positive and unlabeled data, when there is no negative labeled data (Denis

et al., 2002; Liu et al., 2002; Lee and Liu, 2003; Elkan and Noto, 2008);

• self-taught learning (Raina et al., 2007) and the universum (Weston et al., 2006), where the

unlabeled data may not come from the positive or negative classes, but rather from another

third class of instances in the same general domain;

• model selection with unlabeled data (Kaariainen, 2005; Madani et al., 2005; Schuurmans

and Southey, 2001), and feature selection (Li and Guan, 2008);

• inferring label sampling mechanisms (Rosset et al., 2005), multi-instance learning (Zhou and

Xu, 2007), multi-task learning (Liu et al., 2008), and deep learning (Ranzato and Szummer,

2008; Weston et al., 2008);

41

• advances in learning theory for semi-supervised learning (Amini et al., 2009; Balcan and

Blum, 2005; Cortes et al., 2008; El-Yaniv et al., 2008; Rigollet, 2007; Singh et al., 2008;

Sinha and Belkin, 2008; Sokolovska et al., 2008).

Further readings on these and other semi-supervised learning topics can be found in a book col-

lection (Chapelle et al., 2006c), a survey article (Zhu, 2005), a book written for computational

linguists (Abney, 2007), and a technical report (Seeger, 2001).

Part II

Online SSL: New Learning Settings

42

43

Chapter 3

Online Manifold Regularization

We now begin describing our novel contributions to the field of semi-supervised learning. The

next two chapters introduce the extremely practical setting of online semi-supervised learning,

along with algorithms that operate within this regime. We consider the scenario where (mostly un-

labeled) data arrives sequentially in large volume, and it is impractical to store it all before learning.

When we first proposed this setting, we focused on implementing the manifold assumption in an

online learning algorithm (Goldberg et al., 2008), to be discussed in the current chapter. More

recently, in conjunction with the cluster or gap assumption, we consider the addition of active

learning, whereby the classifier may request some specific labels. Online active semi-supervised

learning (OASIS) is discussed in Chapter 4.

Consider a robot with a video camera. The robot continuously takes high frame-rate video of

its surroundings, and its goal is to learn the names of various objects in the video. However, the

robot receives names from humans only very rarely. The robot is thus in a semi-supervised learning

situation: true labels are provided for only a small number of objects, and the rest are unlabeled.

There are several challenges that distinguish this situation from standard semi-supervised learn-

ing. The robot cannot afford to store the massive amount of mostly unlabeled video before learning;

it requires an “anytime classifier” that is ready to use at all times, yet is continuously improving;

training must be cheap; and since the world is changing, it should adapt to non-stationarity in

classification.

These challenges are well-studied in online learning. However, our situation is also different

from standard online learning. Online learning (classification) traditionally assumes that every

input point is fully labeled; it cannot take advantage of unlabeled data. But in the robot case, the

44

vast majority of the input will be unlabeled. It seems wasteful to throw away the unlabeled input,

as it may contain useful information.

We propose an online manifold regularization algorithm that differs from standard online learn-

ing in that it learns even when the input point is unlabeled. The contributions of this chapter

include:

• We introduce an algorithm based on convex programming in kernel space with stochastic

gradient descent, which inherits the theoretical guarantees of standard online algorithms.

This combination of semi-supervised and online learning is novel. Although kernel-based

online convex programming is well-understood (Zinkevich, 2003; Kivinen et al., 2004), we

are not aware of prior application in the semi-supervised learning setting. To the best of

our knowledge, the closest prior work is the multiview hidden Markov perceptron (Brefeld

et al., 2005, Section 4), which heuristically combines multiview learning with the online

perceptron. However, that work did not enjoy the theoretical guarantees afforded by the

online learning literature, nor did it directly apply to other semi-supervised learning methods.

In contrast, our method can lift any batch semi-supervised learning method with a convex

regularized risk to the online setting. As a special case, we will discuss online manifold

regularization in detail.

• Since a näıve implementation of our algorithm does not scale well, we focus on efficient,

practical approximations. Specifically, we discuss two sparse approximations using buffer-

ing and online random projection trees.

• Experiments show our algorithm achieves risk and generalization accuracy comparable to

standard batch manifold regularization, while each step runs quickly.

Our online semi-supervised learning setting is an interesting direction for further theoretical de-

velopment, paving the way for semi-supervised learning to work on real-world life-long learning

tasks.

45

3.1 Online Learning with Unlabeled Data

Consider an input sequencex1 . . . xT , wherext ∈ Rd is the feature vector of thet-th data point.

Most (possibly even the vast majority) of the points are unlabeled. Only occasionally is a pointxt

accompanied by its labelyt ∈ Y. This setting differs dramatically from traditional online learning

where all points are labeled. LetK be a kernel overx andHK the corresponding reproducing

kernel Hilbert space (RKHS) (Schölkopf and Smola, 2002). Our goal is to learn a good predictor

f ∈ HK from the sequence. Importantly, learning proceeds in an iterative fashion:

1. At time t an adversary picksxt andyt, not necessarily from any distributionP (x, y) (al-

though we will later assume i.i.d. for predicting future data). The adversary presentsxt to

the learner.

2. The learner makes predictionft(xt) using its current predictorft.

3. With a small probabilitypl, the adversary reveals the labelyt. Otherwise, the adversary

abstains, andxt remains unlabeled.

4. The learner updates its predictor toft+1 based onxt and the adversary’s feedbackyt, if any.

We hope the functionsf1 . . . fT “do well” on the sequence, and on future input if the data is

indeed i.i.d. The exact performance criteria is defined below.

3.2 From Batch to Online Semi-Supervised Learning

Before introducing our online learning algorithm, we first reviewbatchsemi-supervised learn-

ing, where the learner has access to the labeled and unlabeled data all at once. Recall that a

unifying framework for batch semi-supervised learning is risk minimization with specialized semi-

supervised regularizers. That is, one seeks the solutionf ∗ = argminf∈HK
J(f), where thebatch

semi-supervised regularized riskis

J(f) =
1

l

T∑
t=1

δ(yt)c(f(xt), yt) +
λ1

2
‖f‖2K + λ2ΩSSL(f),

46

wherel is the number of labeled points,δ(yt) is an indicator function equal to 1 ifyt is present

(labeled) and 0 otherwise,c is a convex loss function,λ1, λ2 are regularizer weights,‖f‖K is the

RKHS norm off , andΩSSL is the semi-supervised regularizer which depends onf andx1 . . . xT .

Specific choices ofΩSSL lead to familiar semi-supervised learning methods, such as manifold

regularization (Belkin et al., 2006; Sindhwani et al., 2005a; Zhu et al., 2003). For this work, we

consider manifold regularization’sΩSSL to be

ΩSSL =
1

2T

T∑
s,t=1

wst(f(xs)− f(xt))
2.

Recall thatwst is a graph edge weight encoding the similarity between instancesxs andxt.

A key observation is that for certain semi-supervised learning methods, the batch riskJ(f)

is the sum ofconvex functionsin f . These methods include manifold regularization and multi-

view learning, but not S3VMs whose hat loss is non-convex (see Chapter 4 for an online learning

method based on the same low-density gap or cluster assumption that S3VMs encodes using the hat

loss). For convex semi-supervised learning methods, one can derive a corresponding online semi-

supervised learning algorithm using online convex programming. The remainder of this chapter

focuses on manifold regularization, with the understanding that online versions of multiview learn-

ing and other convex semi-supervised learning methods can be derived similarly.

We follow a general approach to online convex programming (Zinkevich, 2003; Kivinen et al.,

2004). The batch risk for our version of manifold regularization is

J(f) =
1

l

T∑
t=1

δ(yt)c(f(xt), yt) +
λ1

2
‖f‖2K +

λ2

2T

T∑
s,t=1

wst(f(xs)− f(xt))
2, (3.1)

andf ∗ is the batch solution that minimizesJ(f). In online learning, the learner only has access to

the input sequence up to the current time. We thus define theinstantaneous regularized riskJt(f)

at timet to be

Jt(f) =
T

l
δ(yt)c(f(xt), yt) +

λ1

2
‖f‖2K + λ2

t−1∑
i=1

wit(f(xi)− f(xt))
2. (3.2)

The last term inJt(f) involves the graph edges fromxt to all previous points up to timet. The

astute reader might notice that this poses a computational challenge—we will return to this issue

47

in Section 3.3. WhileT appears in (3.2),Jt(f) depends only on theratio T/l. This is the empirical

estimate of the inverse label probability1/pl, which we assume is given and easily determined

based on the rate at which humans can label the data at hand.

All the Jt’s are convex. They are intimately connected to the batch riskJ :

Proposition 1 J(f) = 1
T

∑T
t=1 Jt(f).

Our online algorithm constructs a sequence of functionsf1 . . . fT . Let f1 = 0. The online algo-

rithm simply performs a gradient descent step that aims to reduce the instantaneous risk in each

iteration:

ft+1 = ft − ηt
∂Jt(f)

∂f

∣∣∣∣
ft

. (3.3)

The step sizeηt needs to decay at a certain rate, e.g.,ηt = 1/
√

t. Under mild conditions, this

seemingly näıve online algorithm has a remarkable guarantee that on any input sequence, there

is asymptotically “no regret” compared to the batch solutionf ∗. Specifically, let theaverage in-

stantaneous riskincurred by the online algorithm beJair(T) ≡ 1
T

∑T
t=1 Jt(ft). NoteJair involves

a varying sequence of functionsf1 . . . fT . As a standard quality measure in online learning, we

compareJair to the risk of the bestfixedfunction in hindsight:

Jair(T)−min
f

1

T

T∑
t=1

Jt(f) = Jair(T)−min
f

J(f) = Jair(T)− J(f ∗),

where we used Proposition 1. This difference is known as the average regret. Applying Theorem 1

of Zinkevich (2003) results in the no-regret guaranteelim supT→∞ Jair(T) − J(f ∗) ≤ 0. It is in

this sense that the online algorithm performs as well as the batch algorithm on the sequence.

To compute (3.3) for manifold regularization, we first express the functionsf1 . . . fT using a

common set of representersx1 . . . xT (Kimeldorf and Wahba, 1971). At any timet, however, only

t− 1 may have non-zero coefficients:

ft =
t−1∑
i=1

α
(t)
i K(xi, ·). (3.4)

The problem of findingft+1 becomes computing the coefficientsα
(t+1)
1 , . . . , α

(t+1)
t . Again, this

will be a computational issue whenT is large, and will be addressed in Section 3.3. We extend the

48

Parameters:edge weight functionw, kernelK, weightsλ1, λ2, loss functionc,

label ratioT/l, step sizesηt

Initialize t = 1, f1 = 0

loop

receivext, predictft(xt) using (3.4)

(occasionally) receiveyt

updateft to ft+1 using (3.6)

storext, let t = t + 1

end loop
Algorithm 4 : Online Manifold Regularization

kernel online supervised learning approach of Kivinen et al. (2004) to semi-supervised learning by

writing the gradient∂Jt(f)/∂f in (3.3) as

T

l
δ(yt)c

′(f(xt), yt)K(xt, ·) + λ1f + 2λ2

t−1∑
i=1

wit(f(xi)− f(xt))(K(xi, ·)−K(xt, ·)), (3.5)

where we used the reproducing property of RKHS in computing the derivative:∂f(x)/∂f =

∂〈f, K(x, ·)〉/∂f = K(x, ·). c′ is the (sub)gradient of the loss functionc. For example, when

c(f(x), y) is the hinge lossmax(1− f(x)y, 0), we may definec′(f(x), y) = −y if f(x)y ≤ 1, and

0 otherwise. Putting (3.5) back in (3.3), and replacingft with its kernel expansion (3.4), it can be

shown thatft+1 has the following coefficients:

α
(t+1)
i = (1− ηtλ1)α

(t)
i − 2ηtλ2wit(ft(xi)− ft(xt)), i = 1 . . . t− 1

α
(t+1)
t = 2ηtλ2

t−1∑
i=1

wit(ft(xi)− ft(xt))− ηt
T

l
δ(yt)c

′(f(xt), yt). (3.6)

We now have a basic online manifold regularization algorithm; see Algorithm 4.

When the data is i.i.d., the generalization risk of the average functionf̄ = 1/T
∑T

t=1 ft ap-

proaches that off ∗ (Cesa-Bianchi et al., 2004). The average functionf̄ involves all representers

x1, . . . , xT . For basic online manifold regularization, it is possible to incrementally maintain the

exact f̄ as time increases. However, for the sparse approximations introduced below, the basis

49

changes over time (i.e., it is no longer simplyK(x1, ·), . . . , K(xT , ·)). Therefore, in those cases

f̄ can be maintained (approximately) using matching pursuit (Vincent and Bengio, 2002). In our

experiments, we compare the classification accuracy off̄ vs.f ∗ on a separate test set, which is of

practical interest.

3.3 Sparse Approximations

Unfortunately, Algorithm 4 will not work in practice because it needs to store every input point

and soon runs out of memory; it also has time complexityO(T 2). In particular, the instantaneous

risk (3.2) and the kernel representation (3.4) both involve the sequence up to the current time. To

be useful, it is imperative to sparsify both terms. In this section, we present two distinct approaches

for this purpose: i) using a small buffer of points, and ii) constructing a random projection tree that

represents the manifold structure and can be used to cluster the data.

3.3.1 Buffering

A buffering strategy is often used in online learning as a way to restrict the total number of

points stored over time (Dekel et al., 2005). Let the buffer size beτ . The simplest buffering

strategy replaces the oldest pointxt−τ in the buffer with the incoming pointxt. With buffering, the

approximate instantaneous risk is

Jt(f) =
T

l
δ(yt)c(f(xt), yt) +

λ1

2
‖f‖2K + λ2

t

τ

t−1∑
i=t−τ

(f(xi)− f(xt))
2wit, (3.7)

where the scaling factort/τ keeps the magnitude of the graph regularizer comparable to the un-

buffered version. In terms of manifold regularization, buffering corresponds to a dynamic graph

on the points in the buffer. Similarly, the kernel expansion now hasτ terms:

ft =
t−1∑

i=t−τ

α
(t)
i K(xi, ·).

With buffering, the function update involves two steps. In the first step, we updateft to an inter-

mediate functionf ′ represented by a basis ofτ + 1 elements, consisting of the old buffer and the

50

new pointxt:

f ′ =
t−1∑

i=t−τ

α′iK(xi, ·) + α′tK(xt, ·)

α′i = (1− ηtλ1)α
(t)
i − 2ηtλ2(ft(xi)− ft(xt))wit, i = t− τ . . . t− 1

α′t = 2ηtλ2
t

τ

t−1∑
i=t−τ

(ft(xi)− ft(xt))wit − ηt
T

l
δ(yt)c

′(f(xt), yt). (3.8)

Second, we evictxt−τ from the buffer, addxt to the buffer, and approximatef ′ (which usesτ + 1

basis functions) withft+1 (which usesτ basis functions):

min
α(t+1)

‖f ′ − ft+1‖2 s.t.ft+1 =
t∑

i=t−τ+1

α
(t+1)
i K(xi, ·). (3.9)

Intuitively, we “spread”α′t−τK(xt−τ , ·) to the remaining points in the buffer, in an attempt to mini-

mize the change caused by truncation. We use kernel matching pursuit (Vincent and Bengio, 2002)

to efficiently find the approximate coefficientsα(t+1) in (3.9). Matching pursuit is a greedy func-

tion approximation scheme. It iteratively selects a basis function on which to spread the residual

in α′t−τK(xt−τ , ·). The number of steps (i.e., basis functions selected) can be controlled to trade-

off approximation error and speed. We run matching pursuit until the norm of the residue vector

has been sufficiently reduced. We call the above buffering strategy “buffer .” The overall time

complexity for buffering isO(T).

An alternative buffering strategy, “buffer-U ,” evicts the oldestunlabeledpoints in the buffer

while keeping as many labeled points as possible. This is motivated by the fact that the labeled

points tend to have largerα coefficients and exert more influence on our learned function. The

oldest labeled point is evicted from the buffer only when it is filled with labeled points. Note this

is distinct from batch learning: the labeled points only form a better basis, but learning is still done

via gradient descent.

3.3.2 Random Projection Tree

Another way to improve Algorithm 4 is to construct a sparse representation of the manifold.

While many embedding techniques exist, we require one that is fast and can be incrementally mod-

ified. Recently random projection has been proposed as an efficient means to preserve the manifold

51

structure (Hegde et al., 2007; Freund et al., 2007). We build our algorithm upon the online version

of the Random Projection Tree (Dasgupta and Freund, 2007, Appendix I). A Random Projection

Tree (RPtree) is a tree data structure with desirable theoretical properties that asymptotically traces

the manifold. The basic idea is simple: as points arrive sequentially, they are spatially sorted into

the RPtree leaves. When enough points fall into a leaf, the RPtree grows by splitting the leaf along

a hyperplane with random orientation. An RPtree can be regarded as an efficient online clustering

algorithm whose clusters grow over time and cover the manifold, as shown in Figure 3.1. We

refer the reader to Dasgupta and Freund (2007) for details, while presenting our extensions for

semi-supervised learning below.

Figure 3.1:A random projection tree on the Swiss roll data. Small dots represent data points,
line segments represent the random splits in the internal nodes of the RPtree, polygons
represent the regions governed by the leaves, and ellipses represent the Gaussian distri-
butions on the data points within each leaf. We exploit the fact that these distributions
follow the manifold structure of the data.

52

Let {Li}si=1, s � t denote the leaves in the RPtree at timet. To model the data points that

have fallen into each leaf, we maintain a Gaussian distributionN (µi, Σi) at each leafLi, whereµi

andΣi are estimatedincrementallyas the data points arrive. We also keep track ofni, the number

of points in leafLi. With an RPtree, we approximate the kernel representation offt (3.4) by the

means of the Gaussian distributions associated with the tree leaves:

ft =
s∑

i=1

β
(t)
i K(µi, ·). (3.10)

We approximate the instantaneous risk (3.2) by

Jt(f) =
T

l
δ(yt)c(f(xt), yt) +

λ1

2
‖f‖2K + λ2

s∑
i=1

ni(f(µi)− f(xt))
2wµit. (3.11)

From a graph regularization point of view, this can be understood as having a coarser graph over

the RPtree leaves, and connecting the incoming pointxt to each leaf. We define the edge weight

wµit between incoming pointxt and each leafLi to be

wµit = Ex∼N (µi,Σi)

[
exp

(
−||x− xt||2

2σ2

)]
(3.12)

= (2π)−
d
2 |Σi|−

1
2 |Σ0|−

1
2 |Σ̃i|

1
2

exp

(
−1

2

(
µ>i Σ−1

i µi + x>t Σ−1
0 xt − µ̃>i Σ̃iµ̃i

))
,

whereΣ0 = σ2I, Σ̃i = (Σ−1
i + Σ−1

0)−1, µ̃i = Σ−1
i µi + Σ−1

0 xt, andσ is the bandwidth of the

(original point to point) weight. We call this weight scheme “RPtree PPK” for its similarity to the

probability product kernel (Jebara et al., 2004). An even simpler approximation is to ignore the

covariance structure by defining

wµit = exp

(
−||µi − xt||2

2σ2

)
.

It has computational advantages at the price of precision. We call this weight scheme “RPtree.”

With an RPtree, the function update occurs in three steps. In the first step, upon receivingxt,

we updateft to an intermediate functionf ′ using a basis ofs + 1 elements:µ1, . . . , µs andxt.

This is similar to (3.8) in the buffering case. In the second step, the RPtree itself is adjusted to

account for the addition ofxt. The adjustments include updating the Gaussian parameters for the

53

leaf thatxt falls into, and potentially splitting the leaf. In the latter case, the number of leavess

will increase tos′, and each new leaf’s mean and covariance statistics are established. In the third

step, we approximatef ′ by ft+1 using thes′ new basis elementsµ1, . . . , µs′ (s′ = s if no split

happened), similar to (3.9). The pointxt is then discarded.

3.4 Experiments

We present a series of experimental results as empirical evidence that online manifold regu-

larization (MR) is a viable option for performing fast MR on large datasets. We summarize our

findings as follows:

1. Online MR scales better than batch MR in time and space. Although recent advances in

manifold regularization greatly improve the feasible problem size (Tsang and Kwok, 2006),

we believe that it takes online learning to handle unlimited input sequences and achieve

life-long learning.

2. Online MR achieves comparable performance to batch MR. This is measured by two criteria:

(a) Jair(T) approachesJ(f ∗), both for the basic online MR algorithm, as well as for the

buffering and RPtree approximations.

(b) Generalization error of̄f approaches that off ∗ on test sets.

3. Online MR can handle concept drift (changes inP (x) andP (y | x)). The online method

(using a limited size buffer) can track a non-stationary distribution and maintain good gen-

eralization accuracy, while the batch method trained on all previous data fails to do so.

Our focus is on comparing online MR to batch MR, not semi-supervised learning to supervised

learning. It is known that semi-supervised learning does not necessarily outperform supervised

learning, depending on the correctness of model assumptions. Thus, our experiments use tasks

where batch MR has proven beneficial in prior work, and we demonstrate that online MR provides

a useful alternative to batch MR on these tasks.

54

3.4.1 Datasets and Protocol

We report results on three datasets. The first is a toy two-spirals dataset. The training sequences

and test sets (of size 2000) are generated i.i.d. . The second is the MNIST digit classification

dataset (LeCun et al., 1998), and we focus on two binary tasks: 0 vs. 1 and 1 vs. 2. We scaled

down the images to 16 x 16 pixels (256 features). The training sequences are randomly shuffled

subsets of the official training sets, and we use the official test sets (of size 2115 for 0 vs. 1,

and 2167 for 1 vs. 2). The third is the 361-dimensional Extended MIT face vs. non-face image

classification dataset (“Face”) (Tsang et al., 2005). We sampled a balanced subset of the data, and

split this into a training set and a test set. The same test set of size 2000 is used in all experiments,

while different training runs use different randomly shuffled subsets of the training set. The labeled

ratepl is 0.02 in all experiments, with points assigned to each class with equal probability.

Our experimental protocol is the following:

1. Generate randomly ordered training sequences and test sets (for MNIST and Face, the test

sets are already given).

2. For batch MR, train separate versions on increasing subsequences (i.e.,T = 500, 1000,

2000, . . .).

3. For online MR, train once on the entire sequence.

4. For eachT , compare the corresponding batch MR solutionf ∗ with the online classifier

trained up toT .

All results are the average of five such trials. The error bars are±1 standard deviation.

All experiments use hinge lossc and RBF kernelK. The kernel bandwidth parameterσK , λ1,

λ2, and the edge weight parameterσ were all tuned for batch MR usingT = 500. When using a

limited size buffer, we setτ = 300, and only require that matching pursuit reduce the residue norm

by 50%. We use a step size ofηt = γ/
√

t, whereγ = 0.03 for the RPtree approximation, and0.1

for all other methods. We implemented all methods using MATLAB and CPLEX.

55

0 2000 4000 6000
0

100

200

300

400

500

T

T
im

e
(s

ec
on

ds
)

Spirals

0 5000 10000
0

100

200

300

400

500

T

MNIST 0 vs. 1

Batch MR
Online MR
Online MR (buffer)
Online RPtree

Figure 3.2:Runtime growth curves. Batch MR and basic online MR scale quadratically, while the
sparse approximations of buffering and RPtree scale only linearly. Batch MR runs out
of memory afterT = 5000, and we stop basic online MR atT = 4000 because the
runtime becomes excessive. Though not shown, online RPtree PPK has a curve nearly
identical to online MR (buffered).

3.4.2 Online MR Scales Better than Batch MR

We illustrate this point by comparing runtime growth curves on the spirals and MNIST 0 vs. 1

datasets. Figure 3.2(left) shows that, for the spirals dataset, the growth rates of batch MR and

basic online MR are quadratic as expected (in fact, online MR has more overhead in our MATLAB

implementation). Batch MR runs out of memory afterT = 5000, and we stop basic online MR at

T = 4000 because the runtime becomes excessive. On the other hand, online MR (buffered) and

online RPtree are linear. Though not included in the plot, online RPtree PPK has a curve nearly

identical to online MR (buffered). Figure 3.2(right) demonstrates similar trends for the higher

dimensional MNIST 0 vs. 1 dataset.

3.4.3 Online MR Achieves Comparable Risks

We compare online MR’s average instantaneous riskJair(T) vs. batch MR’s riskJ(f ∗) on

the training sequence. Our experiments support the theory thatJair(T) converges toJ(f ∗) as

56

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

T

R
is

k

J(f*) Batch MR
J

air
(T) Online MR

J
air

(T) Online MR (buffer)

J
air

(T) Online RPtree

Figure 3.3:Online MR’s average instantaneous riskJair(T) approaches batch MR’s riskJ(f ∗) as
T increases.

T increases.1 Figure 3.3 compares these measures for basic online MR and batch MR on the

spirals dataset. The two curves approach each other.Jair(T) continues to decrease beyondT =

4000 (not pictured). Figure 3.3 also shows that online MR (buffer) and online RPtree are good

approximations to basic online MR in terms ofJair.

3.4.4 Generalization Error of Online MR

The experiments in this section compare the averaged functionf̄ of online MR and the batch

solution f ∗ in terms of generalization error on test sets. Figure 3.4 presents results for all the

1While the average regret approaches zero asymptotically, the step size ofηt = 1/
√

t decays rapidly, potentially
leading to slow convergence. Thus, it is possible that long sequences (i.e., largeT values) would be required for the
online algorithm to compete with the best batch algorithm. Nevertheless, our experiments show this is not actually a
problem in practice.

57

0 1000 2000 3000 4000 5000 6000 7000
0

0.05

0.1

0.15

0.2

0.25

0.3

T

G
en

er
al

iz
at

io
n

er
ro

r
ra

te

Batch MR
Online MR
Online MR (buffer)
Online MR (buffer−U)
Online RPtree
Online RPtree (PPK)

0 2000 4000 6000 8000 10000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

T

G
en

er
al

iz
at

io
n

er
ro

r
ra

te

Batch MR
Online MR
Online MR (buffer)
Online MR (buffer−U)
Online RPtree

(a) Spirals (b) Face

0 2000 4000 6000 8000 10000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

T

G
en

er
al

iz
at

io
n

er
ro

r
ra

te

Batch MR
Online MR
Online MR (buffer)
Online MR (buffer−U)
Online RPtree

0 2000 4000 6000 8000 10000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

T

G
en

er
al

iz
at

io
n

er
ro

r
ra

te

Batch MR
Online MR
Online MR (buffer)
Online MR (buffer−U)
Online RPtree

(c) MNIST 0 vs. 1 (d) MNIST 1 vs. 2

Figure 3.4:Generalization error of batch MR’sf ∗ and online MR’sf̄ asT increases. All the
online methods perform nearly as well as batch MR. Online MR buffer-U consistently
achieves test accuracy comparable to batch MR. Buffering and RPtree perform as well
as basic online MR, showing little sign of approximation error. Panels (b), (c), and (d)
reveal that buffer-U can be much better than buffer by preserving the larger weights
on labeled points, which approximate the function better.

datasets. We observe that online MR buffer-U is the best and consistently achieves test accuracy

that is comparable to batch MR.

From Figure 3.4(a), we observe that, for the spirals dataset, all the online methods perform

nearly as well as batch MR. As is to be expected, batch MR makes the most efficient use of the

58

data and reaches 0 test error first, while the online methods require only a little additional data

to reach this level (after all, standard incremental learning usually needs multiple passes over the

training set). Buffering and RPtree perform as well as basic online MR, showing little sign of

approximation error. Panels (b), (c), and (d) in Figure 3.4 show that buffer-U can be much better

than buffer. This is understandable, since matching pursuit may provide a poor approximation

to the contributions of the discarded data point. In high dimensional space, there may be few

similar data points remaining in the small buffer, so much of the weight assigned to discarded

points is lost. Under the buffer-U strategy, we alleviate this issue by preserving the larger weights

on labeled points, which approximate the function better. RPtree PPK on these high dimensional

datasets involves expensive inversion of (often singular) covariance matrices and is not included in

the comparison. The performance of RPtree is no better than buffer-U.

3.4.5 Online MR Handles Concept Drift

Lastly, we demonstrate that online MR can handle concept drift. When the underlying distri-

butions, bothP (x) andP (y|x), change during the course of learning, using buffered online MR is

extremely advantageous. For this experiment, we “spin” the two spirals dataset so that the spirals

smoothly rotate360◦ in every 4000 points (Figure 3.5). All points in the space will thus change

their true labels during the sequence. We still provide only 2% of the labels to the algorithms. The

test set for a givenT consists of 2000 points drawn from the current underlying distribution.

For this experiment, we show the generalization error of batch MR’sf ∗ vs. online MR (buffer)’s

fT , since the latest function is expected to track the changes in the data. Figure 3.5 illustrates that

online MR (buffer) is able to adapt to the changing sequence and maintain a small error rate. In

contrast, batch MR uses all data points, which now tend to conflict heavily (i.e., newer data from

one class overlaps with older data from the other class). As expected, the single batch classifierf ∗

is inadequate for predicting such changing data.

59

0 1000 2000 3000 4000 5000 6000 7000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T

G
en

er
al

iz
at

io
n

er
ro

r
ra

te

Batch MR
Online MR (buffer)

Figure 3.5:Online MR (buffer) has much better generalization error than batch MR when faced
with concept drift in the rotating spirals dataset. Note that all points in the space
change their true labels during the sequence, yetfT is able to track the changes in the
data. The single batch classifierf ∗ is unable to cope with this situation.

3.5 Conclusions and Future Work

We presented an online semi-supervised learning algorithm that parallels manifold regulariza-

tion. Our algorithm is based on online convex programming in RKHS. We proposed two sparse

approximations using buffering and online random projection trees to make online MR practi-

cal. The original batch manifold regularization algorithm has time complexity at leastO(T 2); so

does the online version without sparse approximation. In contrast, the RPtree approximation has

complexityO(T log T), where each iteration requiresO(log T) leaf lookups (the tree’s height is

60

O(log T) because each leaf contains a constant maximum number of points). Buffering has com-

plexity O(T). Experiments show that our online MR algorithm has risk and generalization error

comparable to batch MR, but scales much better. In particular, online MR (buffer-U) tends to have

the best performance.

While Chapter 4 presents an alternative approach to online semi-supervised learning, many

interesting questions remain for the online SSL framework introduced in this chapter. On the

practical side, one avenue for future work is to explore new strategies for maintaining a fixed-size

memory budget while still adequately representing the marginal data distribution. For instance,

we can explore many other sequential or incremental clustering algorithms in place of random

projection trees. One concrete idea is to use a non-parametric Bayesian approach (e.g., Dirichlet

Process Mixture Models (DPMM) (Neal, 2000)) to model the arriving data as a growing number of

clusters. Though not an online method, incremental versions have been developed (Gomes et al.,

2008; Zhang et al., 2004). The hope is that improvements in the clustering approximation will

translate to improved predictions.

On the theoretical side, we can investigate different regret notions that might be appropriate for

the online semi-supervised setting, performance guarantees with concept drift, and models that do

not require all previous points. We may be able to leverage recent analysis of so-called “budget

perceptrons,” which cannot maintain all support vectors in memory (Sutskever, 2009). Two such

(supervised) algorithms have formal performance guarantees: the Forgetron (Dekel et al., 2005),

which replaces the oldest vector in a fixed-length buffer with a new vector on which the current

classifier makes an error, and the Randomized Budget Perceptron (Cavallanti et al., 2007), which

discards a random vector instead of the oldest.

The unified analysis of Sutskever (2009) views these algorithms as performing stochastic gra-

dient descent with noisy and incorrect gradients. We can view our buffer-based online manifold

regularization algorithm, which operates on a fixed-size dynamic graph, as using a noisy gradient

of the manifold regularization risk. That is, at each step we compute∇t = ∂Jt(f)
∂f

, whereJt(f)

is defined in (3.2), while really we wish to move along the gradient of the batch risk in (3.1):

∇ = ∂J(f)
∂f

. Our goal is to prove that the gradient with respect to the dynamic graph equals the

61

true gradient in expectation (over random data):E[∇t] = ∇. If we can bound the error in the

gradient when the graph is constructed in a particular way (which may be different than the current

scheme), then we can apply an approach similar to that of Sutskever (2009) to establish a formal

guarantee for the framework presented in this chapter.

62

Chapter 4

OASIS: Online Active SemI-Supervised Learning

In this chapter,1 we continue to examine online or incremental SSL as an alternative to the batch

approach; labeled and unlabeled data are processed one at a time, predictions can be made at any

time, and only a bounded amount of storage is needed to handle an unlimited stream of data. Fur-

thermore, it is natural to incorporate active learning (Settles, 2009) in this setting; upon receiving

an unlabeled data point, the learner may request the label from an oracle. Many real-world learning

tasks fit nicely into this framework, such as classifying images collected by a surveillance camera,

or categorizing blog posts and tweets in real-time as they emerge on the social Web. We present a

novel, fully Bayesian algorithm capable ofonline active semi-supervised learning (OASIS).

We consider the online SSL setting introduced in Chapter 3, and extend it to include an (op-

tional) active learning component:

1. At time t, the world picksxt ∈ Rd andyt ∈ {−1, 1} and presentsxt to the learner.

2. The learner makes a prediction̂yt using its current model.

3. With a small probabilitypl, the world reveals the labelyt.

4. If yt is not revealed, the learner may choose to ask for it. Otherwise,xt remains unlabeled.

5. The learner updates its model based onxt and, if available, the labelyt.

This setting differs dramatically from traditional online learning where all data points are labeled.

It also differs from the batch SSL setting where methods must wait to collect all the labeled and

1Based on joint work with Xiaojin Zhu, Alex Furger, and Junming Xu.

63

unlabeled data before beginning to learn and make semi-supervised predictions. The goal is for the

model’s predictionŝyt to be accurate; performance will be measured by the cumulative number of

mistakes made by the learner.

Semi-supervised learning is often possible through some assumption about the interaction be-

tween the marginal data distributionP (x) and the conditional label distributionP (y | x). We have

already discussed online SSL based on the manifold or graph-based assumption (Chapter 3). In the

current chapter, we focus on the so-calledclusteror low-density gap assumption, which states that

the decision boundary induced byP (y | x) ought to lie in a region of low data density (Chapelle

and Zien, 2005). As discussed in Chapter 2, this assumption is at the heart of transductive or semi-

supervised support vector machines (TSVMs or S3VMs) (Chapelle et al., 2008), as well as the

Bayesian analog of null category noise model Gaussian Processes (Lawrence and Jordan, 2005).

Locating a low-density gap is typically formulated as a non-convex optimization problem, which

may miss other gaps in the data. Furthermore, even though some S3VMs are scalable (see Chapelle

et al. (2008) for a review), they are batch algorithms and not suitable for life-long online learning

with potentially unlimited amounts of data.

Our main contribution is a fully Bayesian approach to the low-density gap assumption in an

online setting. We employ sequential Monte Carlo to efficiently track the posterior over the hy-

pothesis space. By restricting the amount of data stored over time, we achieve constant time and

space complexity per time step. Furthermore, maintaining the posterior leads to a principled active

learning scoring method.

4.1 OASIS: Online Active SemI-Supervised Learning

4.1.1 Bayesian Model for the Gap Assumption

Recall that we observe a partially labeled sequence of feature vectorsx1,x2, . . ., where each

xt ∈ Rd. Let Dt = {(x1, y1), . . . , (xt, yt)} be all the data observed through timet, where we use

yt = 0 for unlabeled data. Our goal is to learn a classifier to predict the class label of each incoming

unlabeled data point, and then update the classifier based on the information we obtain (xt alone or

64

xt,yt).2 Let us assume the classifier is parameterized by a weight vectorw ∈ Rd, which interacts

with the data through a linear functionf(x) = w>x.3 Throughout, we use the terms classifier

and weight vector interchangeably. To define our Bayesian model, we begin by introducing a

likelihood function that is sensitive to unlabeled data. Inspired by the null category noise model of

Lawrence and Jordan (2005), in addition to the positive and negative classes, we model a third “null

category” which is never actually observed, but occupies some region of probability mass in the

likelihood function, acting as a Bayesian analog to an SVM’s margin.4 Our likelihood (visualized

in Figure 4.1(a)) is defined as follows

p(y | x,w) =

 min(1− γ, max(γα, c exp(−yc′w>x))) if y = +1 or y = −1

1− [p(y = +1 | x,w) + p(y = −1 | x,w)] if y = ∅ (null category)
,

(4.1)

whereγ = 0.2, α = 0.5, c =
√

(1− γ)γα, c′ = log(γα
c

), though other function forms leading to

the same general shape would serve our purpose, too.

This likelihood has several interesting properties, which implement the gap assumption. It is

flat beyond a margin value (w>x) of 1 or -1 to ensure that weight vectors placing data outside the

margin are treated equally. Furthermore, due to the convex curvature of the positive and negative

class likelihoods within[−1, 1], there is a concave null category probability between -1 and 1. We

never receive data from the null category; rather, unlabeled data will be considered being in either

the positive or the negative class:p(y unlabeled | x,w) = p(y ∈ {−1, 1} | x,w) = p(y = +1 |

x,w) + p(y = −1 | x,w). Therefore, a weight vectorw that places unlabeled datax in the “null

category region”w>x ∈ [−1, 1] has a low likelihood, which can always be increased by changing

w to movew>x toward -1 or 1. As a result, this likelihood favors decision boundaries that fall in

a low-density region of the input space.

2For now, we assume a linear classifier, but the approach can be kernelized using the randomization trick of Rahimi
and Recht (2007), as discussed in Section 4.3.

3In practice, we can handle a bias term by adding a dummy feature to all feature vectors.
4Despite the similar appearance of the likelihood functions, the current work is actually quite different from

Lawrence and Jordan (2005); we are concerned with the strictly online setting, and we maintain the posterior over
weight vectors through particle filtering, rather than making a Gaussian approximation which loses the critical ability
to track multiple modes in the posterior. Such posterior is typical of semi-supervised learning.

65

X space W space

−3 −2 −1 0 1 2 3
0

1

w
⊤
x

p
(y

|
x
,
w

)

positivenegative

null category

1−γ

γα

(a) Likelihood (b) Dataset with 2 gaps (c) Multimodal posterior

Figure 4.1: (a) “Null category” likelihood function to encourage low-density separation. (b) Ex-
ample dataset where tracking the full posterior is beneficial over S3VM’s point esti-
mate. (c) The posterior distribution over weight vectors for the data in (b)—the green
shaded cones contain all weight vectors that classify the labeled data correctly while
placing the unlabeled data outside the null category region.

To complete the model, we must specify a prior on the parameterw, such as a Gaussian prior

p(w) = N (w; 0, Σ), or independent Cauchy priors on each dimension

p(w) =
d∏

i=1

Cauchy(wi; 0, ν).

As discussed in the experiments, we follow Gelman et al. (2008) and use this Cauchy prior com-

bined with standardized data.

With the likelihood and prior defined, we can apply Bayes rule to derive the posterior over

weight vectors (after observing past dataDt−1), and the predictive distribution:

p(w | Dt−1) =

∏t−1
i=1 p(yi | xi,w)p(w)∫ ∏t−1

i=1 p(yi | xi,w′)p(w′)dw′
(4.2)

p(y | xt, Dt−1) =

∫
p(y | xt,w

′)p(w′ | Dt−1)dw
′. (4.3)

Since we never actually predict the null category, we are interested in the following conditional

probability wheny ∈ {−1, 1} but is unobserved:

p(y | xt, Dt−1, y ∈ {−1, 1}) =
p(y | xt, Dt−1)

p(y = −1 | xt, Dt−1) + p(y = 1 | xt, Dt−1)
. (4.4)

66

In general, it is not possible to compute this probability in closed form. The next section describes

how we transform this into a tractable solution for online SSL.

To appreciate why maintaining the posterior is desirable, consider the example dataset in Fig-

ure 4.1(b) containing two gaps within the unit circle. With only two labeled data in opposite

wedges, a decision boundary in either gap is feasible, and thus the posterior (green shaded region

in Figure 4.1(c)) is multimodal. All vectors outside the circle and in the cone regions will have

maximum likelihood given all possible data. The green shaded cones contain all weight vectors

that classify the labeled data correctly while placing the unlabeled data outside the null category

region. Inside the circle, the vectors have magnitude too small to place all data outside the margin

(since‖x‖ ≤ 1). A batch S3VM (or an online version using gradient methods) will find only a

point estimate in one of the modes of the posterior. The key to OASIS is to maintain and update

an estimate of this posterior (green shaded region) as labeled and unlabeled data arrives.

4.1.2 Online SSL via Particle Filtering

Given the Bayesian model defined in the preceding section, our goal is to track the posterior.

In theory, this is done by repeatedly applying Bayes rule. The integrals involved in using the full

posterior are intractable, though, so we must resort to approximate methods. In particular, we use

particle filtering with resample-move to reduce particle degeneracy (Gilks and Berzuini, 2001).

The complete OASIS algorithm is summarized in Algorithm 5 and explained below.

Particle filtering is a sequential Monte Carlo technique designed for tracking and approximating

distributions that are not amenable to analytical representation (Doucet et al., 2001). It relies on

maintaining a sample of so-called particles to approximate the true distribution in question. We

approximate the posterior distributionp(w | Dt−1) by m weighted particles:

p(w | Dt−1) ≈
m∑

i=1

wiδ(w −w(i)),

67

Input : Number of particlesm, Prior distributionp(w), ESS thresholdESS0,

Proposal distributionq(ŵ | w), Active learning score thresholds0

Samplem initial particlesw(i)
0 (classifiers) from the priorp(w).

Assign weights to particleswi = 1
m

, i = 1, . . . ,m.

for t = 1, . . . do
Receivext and possiblyyt.

Active: If unlabeled, query foryt if score(xt) < s0 (see (4.6)).

if yt is availablethen update particle weightswi = wip(y = yt | xt,w
(i)
t−1).

else update particle weightswi = wip(y ∈ {−1, 1} | xt,w
(i)
t−1).

if (
∑

wi)
2/
∑

w2
i < ESS0 then

Resample-Move:

{ŵ(i)}mi=1 ← Systematic resampling

{w(i)
t }mi=1 ← Metropolis-Hastings for eacĥw(i) (using proposal distributionq).

Reset particle weightswi = 1
m

, i = 1, . . . ,m.

else

Keep existing (reweighted) particles:w
(i)
t = w

(i)
t−1, i = 1, . . . ,m.

Renormalize particle weights to sum to 1.

end

end
Algorithm 5 : The OASIS algorithm for online, active semi-supervised learning.

whereδ(w − w(i)) = 1 if w = w(i) and 0 otherwise. Each particlew(i), i = 1 . . . m is a sample

from this posterior and has an associated importance weightwi. At time t, the predictive distribu-

tion can be approximated by particles as

P (y | xt, Dt−1) ≈
m∑

i=1

wip(y | xt,w
(i)).

Recall, however, that the conditional probability

p(y | xt, Dt−1, y ∈ {−1, 1}) ≈
m∑

i=1

wi
p(y | xt,w

(i))

p(y = −1 | xt,w(i)) + p(y = 1 | xt,w(i))

68

is used to make predictions for incoming data.

For online learning, at the beginning, we samplem particles from the prior and assign uniform

initial weights 1
m

. Then, we repeatedly update the posterior based on the likelihood and the previ-

ous estimate of the posterior (which now acts as the prior). The new posterior distribution after ob-

servingxt, yt is proportional to
∑m

i=1 wip(yt | xt,w
(i))δ(w−w(i)). When a data point is observed,

we update the posterior by reweighting the particles. From the above equation, we see that the new

weight forw(i) is obtained as the current weight multiplied by the likelihoodp(yt | xt,w
(i)). If yt

is not observed, the weight is multiplied byp(yt ∈ {−1, 1} | xt,w
(i)) = 1− p(yt = ∅ | xt,w

(i)).

So far we have a basic method for incrementally updating an approximate posterior after ob-

serving new data. Classic particle methods, such as sampling importance resampling (SIR) (Doucet

and Johansen, 2009), use the particle weights for resampling (with replacement), which results in

a new generation of particles with weights reset to1
m

. While theoretically justified, repeating this

process many times is known to cause particle degeneracy—the number of distinct particles is

non-increasing, so eventually few will remain. To minimize particle degeneracy, we apply the

resample-move algorithm (Gilks and Berzuini, 2001), which provides a principled way to “jitter”

particles and introduce diversity into the pool.

Resample-move consists of two steps. First, particles are resampled according to their weights—

we apply the popular and effective “systematic resampling” (Doucet and Johansen, 2009). Then,

each of the new particles is potentially moved to a nearby location. To ensure that the moved

particles represent samples from the same posterior distribution as the old particles, we implement

the move step using one step of the Metropolis-Hastings sampling algorithm (Metropolis et al.,

1953; Hastings, 1970). We use a proposal distributionq(ŵ | w) of the same form as the prior

distribution, except centered on the starting particle location and with a smaller variance or scale.

Using a symmetric proposal distribution allows us to compute the acceptance probability for each

move using only the unnormalized posteriorf(w | Dt):

α(ŵ(i),w(i)) = min
(
1,

f(ŵ(i) | Dt)

f(w(i) | Dt)

)
, (4.5)

69

whereŵ(i) is a proposed move, andf(w | Dt) = p(w)
∏t

k=1 p(yk | xk,w), whereyk is understood

to be{−1, 1} for unlabeled data.

4.1.3 Guaranteeing Bounded Time and Space Complexity Per Time Step

The astute reader will notice that computing (4.5) in the move step requires access to the entire

history of dataDt, which is infeasible for learning on an unlimited stream of data. This is clearly

undesirable for online learning and will quickly lead to a computational burden. Thus, we propose

using an approximate Metropolis-Hastings step in which the acceptance probability is computed

using only a fixed-length buffer of sizeτ . That is, we replacef(w | Dt) with

f(w | Dt, τ) = p(w)
t∏

k=t−τ+1

p(yk | xk,w).

While this approximation may result in periodically accepting moves that fall outside the true

posterior, the method now satisfies our time and space goals and will be shown to be effective

in practice. In addition, though not explored in the current work, using aτ -buffer can allow the

method to handle concept drift by only relying on the most recent sample of data.

Even with aτ -buffer, computing the Metropolis-Hastings acceptance probability for each par-

ticle can be computationally intensive (though the runtime is constant per time step in the number

of particlesm). Therefore, as is customary in the literature (Doucet and Johansen, 2009; Ridge-

way and Madigan, 2003), we only perform resample-move when the particles appear to show high

redundancy, as measured by the so-called Effective Sample Size (ESS), which can be estimated by

(
∑

wi)
2/
∑

w2
i . If the ESS drops below a thresholdESS0—typically m/2 (Doucet and Johansen,

2009), then we perform resample-move to improve diversity. Otherwise, we simply proceed to the

next time step using the same set of particles, but reweighted.

4.1.4 Incorporating Active Learning

It is quite natural to incorporate active learning into the algorithm described thus far. The pos-

terior can be viewed as a soft version space—the space of hypotheses consistent with the training

data (Mitchell, 1997)—and like many active learning algorithms, we try to select queries that will

70

maximally pare down the version space. In our case, this translates to locating query points that

will lead to downweighting and effectively killing off many particles.

To determine whether an incoming unlabeled item should be actively labeled, we first assign it

a score based on the weighted average predictions made by the particles:

score(x) =

∣∣∣∣∣
m∑

i=1

wi argmax
y∈{−1,1}

p(y | x,w(i))

∣∣∣∣∣ . (4.6)

This is the same disagreement-based score of Nowak (2009), which will be close to zero if roughly

half of the particles predict positive and half negative, and the weights are close to uniform. Thus,

querying the label of an item receiving a near-zero score will be very informative, as roughly half

of the particles (the ones whose predictions disagree with the oracle label) will get downweighted.

If the score is very large, then a clear majority vote exists, and we opt not to query.

While many schemes are possible to balance the trade-off between the cost of acquiring a label

and the benefit of refining the model, we use a simple thresholding approach in the current work.

Actively querying points that minimize the score criterion in (4.6) is theoretically justified in a

pool-based active learning setting (Nowak, 2009). The same theory can be applied to the online

active setting as well to justify a constant threshold. However, this analysis assumes unqueried

points are ignored. Adapting the theory to account for the fact that we make updates based on

unlabeled data between active queries remains an open issue for future work (see Section 4.3).

4.2 Empirical Evaluation

We conducted a series of experiments to compare OASIS to passive online semi-supervised and

passive online supervised learning algorithms. We carefully tease apart OASIS’s different elements

and show that active online querying leads to better performance than random online labeling, in

the context of online semi-supervised learning. Furthermore, the use of semi-supervised learning

in the online setting (even without active querying) often outperforms the identical learner that

ignores unlabeled data, as well as a state-of-the-art (supervised) online learner.

For all experiments, to avoid difficult parameter tuning under online semi-supervised condi-

tions, we use the same prior and proposal distributions with a fixed set of default hyperparameters.

71

Following Gelman et al. (2008), which investigated default priors for Bayesian logistic regression

models, we standardize the data such that each feature has mean0 and standard deviation0.5, and

then place independent Cauchy(0, 2.5) priors on each dimension. For the proposal distribution, we

use a more peaked version of this distribution: Cauchy(0, 0.025). Other parameters were fixed as

follows: number of particlesm = 1000, ESS thresholdESS0 = 500, buffer sizeτ = 100.

The experiments consider five algorithms:

• [OASIS]: Online, active, and semi-supervised (Algorithm 5).

• [OSIS]: Online and semi-supervised; no active learning, but otherwise same as OASIS.

• [OS]: Online and supervised; no active learning and ignores unlabeled data.

• [AROW (C = 1)]: State-of-the-art supervised “Adaptive Regularization of Weight Vectors”

online learner (Crammer et al., 2009), run using code provided by the original authors with

a default regularization parameterC = 1. This is a passive-aggressive, confidence-weighted

classifier that maintains a diagonal-covariance Gaussian distribution over weight vectors.

• [AROW (C∗)]: We also report results for AROW using the per-trial optimalC in terms

of total number of mistakes (“test-set tuned”) to approximate supervised learning’s mistake

lower bound.

We use the following experimental procedure to compare active and passive algorithms, with

and without the help of unlabeled data. Each experiment is based on 20 random trials of ran-

domized sequences ofT points. Each trial begins withl = 2 labeled examples (one per class, in

random order), as we assume this is practical. While OASIS is the only algorithm under consid-

eration that is able to actively query labels, we take care to ensure that each algorithm receives

exactly the same number of total labels. Leta be the number of active queries OASIS makes on a

given trial (a is some function ofs0 and the dataset). For each trial, we do the following: (i) Run

OASIS with l = 2 initial labels and recorda (number of queries); (ii) Run each other algorithm

with l = 2 + a labeled examples (first two, plusa randomly selected others). Note the same exact

sequence of{xt} vectors is used across the same trial for different algorithms. In this way, all

72

algorithms always see the same data and the same total number of labels; the algorithms differ in

exactly which labels and how they deal with unlabeled data.

4.2.1 Synthetic Data

We begin by considering two synthetic datasets.

• sliced-cube-d: Uniformly distributed unit cube in[−0.5, 0.5]d, with anε-width slab removed

from the first dimension to create two hyper-rectangles separated by a gap around the true

decision boundaryx1 = 0 (Figure 4.2(a)).

• diced-cube-d: Same as sliced-cube-d (with true decision boundaryx1 = 0), exceptε-width

slabs are removed fromall dimensions to create2d hypercubes separated by potentially

misleading low-density gaps (Figure 4.3(a)).

For both datasets,ε = (T/10)−1/d, such that the gaps should be large enough (relative to the

average spacing between points) to be detectable afterT/10 points (Singh et al., 2008).

Figure 4.2(b,c) and Figure 4.3(b,c) plot the 20-trial average cumulative number of mistakes

made by each algorithm when predicting the label of each incoming data point (regardless of

whether the label ends up being revealed naturally or actively queried). The captions indicate the

mean and standard deviation ofa, the number of additional labels used in learning (via active

selection for OASIS and random selection for the baselines). We observe that OASIS is able to

very quickly learn the true decision boundary and stop making new mistakes across both datasets

for all dimensionalities considered (d ∈ {2, 4, 8, 16, 32}, though onlyd = 2 and d = 32 are

reported here). As expected, active querying allows OASIS to resolve ambiguities between the

multiple gaps in the diced-cube-d datasets, though learning the decision boundary in this more

confusing case takes longer on average. Comparing OSIS to OS and both versions of AROW,

we see that SSL provides a large advantage, even when the few labeled data points are randomly

selected. This example provides a proof of concept for the particle filtering approach to tracking

the posterior, both in cases where the data distribution satisfies the gap assumption and when it

contains misleading gaps.

73

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

sliced−cube−2, ε=0.1

(a) sliced-cube-2 data

0 200 400 600 800 1000
0

50

100

150

t

20
−

tr
ia

l m
ea

n
cu

m
ul

at
iv

e
#m

is
ta

ke
s

AROW (C=1)

AROW (C*)
OS
OSIS
OASIS (s

0
=0.01)

0 200 400 600 800 1000
0

100

200

300

400

t

20
−

tr
ia

l m
ea

n
cu

m
ul

at
iv

e
#m

is
ta

ke
s

AROW (C=1)

AROW (C*)
OS
OSIS
OASIS (s

0
=0.01)

(b) sliced-cube-2 (a=0.25 (0.44)) (c) sliced-cube-32 (a=4.6 (0.75))

Figure 4.2: Sliced-cube-d synthetic data results forT = 1000, l = 2.

4.2.2 Real-World Data

We next demonstrate that OASIS and its passive counterpart OSIS significantly outperform

supervised baselines on real-world optical character recognition (OCR) tasks through their use of

active sampling and online updates based on unlabeled data. We used two small scale datasets

from the University of California, Irvine (UCI) machine learning repository, letter and pendigits,

74

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

diced−cube−2, ε=0.1

(a) diced-cube-2 data

0 200 400 600 800 1000
0

50

100

150

t

20
−

tr
ia

l m
ea

n
cu

m
ul

at
iv

e
#m

is
ta

ke
s

AROW (C=1)

AROW (C*)
OS
OSIS
OASIS (s

0
=0.01)

0 200 400 600 800 1000
0

100

200

300

400

t

20
−

tr
ia

l m
ea

n
cu

m
ul

at
iv

e
#m

is
ta

ke
s

AROW (C=1)

AROW (C*)
OS
OSIS
OASIS (s

0
=0.01)

(b) diced-cube-2 (a = 0.4(0.50)) (c) diced-cube-32 (a = 4.85(0.75))

Figure 4.3: Diced-cube-d synthetic data results forT = 1000, l = 2.

in addition to the larger MNIST database. The details of the binary tasks we considered, and the

results, are listed in Figure 4.45.

5For the MNIST data, we reduced the dimensionality down to 10 via “online PCA.” To roughly simulate the online
setting, principal components were found based onx1, . . . ,x1000, andx1001, . . . ,x10000 were simply projected into
the resulting space.

75

On all three datasets, we see a clear ordering of performance: active SSL is better than passive

SSL is better than passive supervised learning. We can measure statistically significant perfor-

mance differences by applying two-samplet-tests to the total numbers of mistakes made by pairs

of algorithms across the 20 trials6. On letter, OASIS significantly outperforms all the supervised

algorithms (p < 0.05), and makes fewer mistakes than the passive semi-supervised OSIS. OSIS

fails to achieve statistical significance at the 0.05 level over the supervised baselines, indicating that

for this task, OASIS’s active learning (rather than the use of unlabeled data) gives it the advantage.

This suggests that perhaps the letter dataset’s classes are not separated by a low density region. On

pendigits and MNIST, though, both OASIS and OSIS make significantly fewer mistakes overall

than each of the three supervised learners. Furthermore, on MNIST, OASIS significantly beats

OSIS, demonstrating that actively queried labels can be more useful than randomly sampled labels

in the context of online semi-supervised learning.

4.3 Conclusions and Future Work

We have presented a novel online learning algorithm, OASIS, which combines active learn-

ing and semi-supervised learning. OASIS exploits unlabeled data through the low-density gap

assumption and is able to avoid the non-convex optimization typically associated with similar SSL

algorithms by maintaining an approximation of the posterior over weight vectors via particle filter-

ing. Outside of some special-purpose classifiers for computer vision tracking applications (Grab-

ner et al., 2008; Tang et al., 2007), few authors have examined the task of online semi-supervised

learning. We also include online active learning and show significant improvements over passive

supervised baselines on both synthetic and real-world data.

This chapter focuses on linear classifiers. It is possible, however, to incorporate kernels through

the use of random features (Rahimi and Recht, 2007) and maintain the desirable effects of learn-

ing linear classifiers. This involves simply preprocessing the data by applying a set of random

projections and then learning within the new “random feature” space.

6The specific labeled examples differ between OASIS and the passive algorithms, so the samples are not paired.

76

Our experiments focused on relatively low-dimensional datasets. It is well-known that particle

filtering and sequential Monte Carlo techniques can be less efficient in high dimensions. One way

to adapt OASIS to better handle much higher dimensional datasets, including those resulting from

random-feature-based kernelization, is to improve the proposal distribution in the MCMC step of

resample-move. The current approach uses a symmetric, peaky proposal distribution of the same

family as the prior. This somewhat limits the ability of particles to jump between modes in the

posterior. It is possible that we can achieve better mixing performance by convolving our current

proposal distribution with a smoothed kernel density estimate based on the previous set of particles,

thus allowing particles to jump to distant regions recently occupied by many particles.

Future work will also examine alternative active learning strategies, especially ones that strictly

limit the frequency at which the learner can query, limit the total number of active queries, or con-

sider costs associated with certain labels. The current fixed threshold strategy may not be suitable

under all real-world constraints. While we could simply impose a hard limit on the number of

queries, more sophisticated approaches may be possible which delicately balance the trade-off be-

tween receiving another label versus another unlabeled data point. In either case, we learn some-

thing, and it may be advantageous to delay querying until a more valuable point comes along. Many

adaptive thresholding and selection criteria are possible for online active learning (see Beygelzimer

et al. (2009) and the references therein), and careful modification to account for the role and impact

of unlabeled data could lead to improved learning rates.

This concludes the discussion of novel online semi-supervised learning methods. The remain-

der of the dissertation focuses on expanding the reach of the more common batch setting to handle

more complex datasets using novel assumptions based on unlabeled data.

77

500 1000 1500

20

40

60

80

100

120

140

t

20
−

tr
ia

l m
ea

n
cu

m
ul

at
iv

e
#m

is
ta

ke
s

AROW (C=1)

AROW (C*)
OS
OSIS
OASIS (s

0
=0.01)

(a) letter A vs B (d = 16), T = 1555, l = 2, a = 5.10(1.92)

500 1000 1500 2000

20

40

60

80

100

120

t

20
−

tr
ia

l m
ea

n
cu

m
ul

at
iv

e
#m

is
ta

ke
s

AROW (C=1)

AROW (C*)
OS
OSIS
OASIS (s

0
=0.01)

(b) pendigits 0 vs 1 (d = 16), T = 2286, l = 2, a = 2.60(1.14)

2000 4000 6000 8000 10000

50

100

150

200

250

300

t

20
−

tr
ia

l m
ea

n
cu

m
ul

at
iv

e
#m

is
ta

ke
s

AROW (C=1)

AROW (C*)
OS
OSIS
OASIS (s

0
=0.10)

(c) MNIST 0 vs 1 (d = 10), T = 10000, l = 2, a = 10.30(5.01)

Figure 4.4: Results on real-world OCR data.

Part III

Batch SSL: New Assumptions

78

79

Chapter 5

Multi-Manifold Semi-Supervised Learning

We now begin the first of several chapters introducing new assumptions for batch SSL. As

discussed in Section 2.5, the graph used for graph-based semi-supervised learning plays a very

important role. Having the wrong graph or poorly set weights can greatly impact performance.

When the data lies on a mixture of manifolds, the standard graph types discussed in Section 2.5 may

lead to diffusion of labels in undesirable ways. We try to remedy this problem in our work on multi-

manifold semi-supervised learning (Goldberg et al., 2009). While expanding the reach of graph-

based methods, this work is also a step in the direction of “safe SSL,” as the theoretical analysis

presented here suggests that our cluster-then-label procedure will be no worse than supervised

learning under certain conditions.

The promising empirical success of semi-supervised learning algorithms in favorable situations

has triggered several recent attempts (Balcan and Blum, 2005; Ben-David et al., 2008; Kaariainen,

2005; Lafferty and Wasserman, 2007; Niyogi, 2008; Rigollet, 2007) at developing a theoretical

understanding of semi-supervised learning. For example, in a recent paper (Singh et al., 2008), it

was established using a finite sample analysis that, if the complexity of the distributions under con-

sideration is too high to be learnt usingn labeled data points, but is small enough to be learnt using

m � n unlabeled data points, then semi-supervised learning (SSL) can improve the performance

of a supervised learning (SL) task.

As discussed earlier, there have also been many successful practical SSL algorithms. How-

ever, the theoretical analyses and practical algorithms often assume that the data forms clusters

or resides on a single manifold. Both a theory and an algorithm are lacking when the data is

supported on a mixture of manifolds. Such data occurs naturally in practice. For instance, in

80

handwritten digit recognition, each digit forms its own manifold in the feature space; in computer

vision motion segmentation, moving objects trace different trajectories which are low dimensional

manifolds (Tron and Vidal, 2007). These manifolds may intersect or partially overlap, while hav-

ing different dimensionality, orientation, and density. (See Figure 5.4 in the experiments section

for some toy examples.) Existing SSL approaches cannot be directly applied to multi-manifold

data. For instance, traditional graph-based SSL algorithms may create a graph that connects points

on different manifolds near a manifold intersection, thus diffusing information across the wrong

manifolds.

The main contributions of this work are:

• We generalize the theoretical analysis of Singh et al. (2008) to the case where the data is sup-

ported on a mixture of manifolds. We give a finite sample analysis to quantify the potential

gain of using unlabeled data in this multi-manifold setting.

• Guided by the theory, we propose an SSL algorithm that handles multiple manifolds as well

as clusters. It works by separating different manifolds into decision sets and performing

supervised learning within each set.

• The algorithm builds upon novel Hellinger-distance-based graphs and size-constrained man-

ifold clustering.

• Experiments show that our algorithm can perform SSL on multiple intersecting, overlapping,

and noisy manifolds.

5.1 Theoretic Perspectives on Multi-Manifold Semi-Supervised Learning

In this section, we briefly review the conclusions of Singh et al. (2008), which are based on the

cluster assumption, and then describe our new analysis for the single manifold and multi-manifold

case (Goldberg et al., 2009).

The cluster assumption, as formulated by Singh et al. (2008), states that the target regression

function or class label is locally smooth over certain subsets of theD-dimensional feature space

81

that are delineated by changes in the marginal density—throughout this work, we assume the

marginal density is bounded above and below (away from zero). We refer to these delineated

subsets asdecision sets; i.e., all non-empty sets formed by intersections between the cluster support

sets and their complements. If these decision sets, denoted byC, can be learnt using unlabeled data,

the learning task on each decision set is simplified.

Previous results (Singh et al., 2008) suggest that if the decision sets can be resolved using

unlabeled data, but not using labeled data, then semi-supervised learning can help. Singh et al.

(2008) used finite sample bounds to characterize both the SSL gains and the relative value of

unlabeled data.

To derive the finite sample bounds, the first step is to understand when the decision sets are

resolvable using data. This depends on the interplay between the complexity of the class of distri-

butions under consideration and the number of unlabeled pointsm and labeled pointsn. For the

cluster case, the complexity of the distributions is determined by the marginγ, defined as the min-

imum separation between clusters or the minimum width of a decision set (Singh et al., 2008). If

the marginγ is larger than the typical distance between the data points (m−1/D if using unlabeled

data, orn−1/D if using only labeled data), then with high probability the decision sets can be learnt

up to a high accuracy (which depends onm or n, respectively) (Singh et al., 2008). This implies

that if γ > m−1/D (margin exists with respect to density ofunlabeled data), then the finite sam-

ple performance (the expected excess errorErr) of a semi-supervised learner̂fm,n relative to the

performance of a clairvoyant supervised learnerf̂C,n, which has perfect knowledge of the decision

setsC, can be characterized as follows:

sup
PXY (γ)

Err(f̂m,n) ≤ sup
PXY (γ)

Err(f̂C,n) + δ(m, n). (5.1)

HerePXY (γ) denotes the cluster-based class of distributions with complexityγ, andδ(m, n) is the

error incurred due to inaccuracies in learning the decision sets using unlabeled data. Comparing

this upper bound on the semi-supervised learning performance to a finite sample minimax lower

bound on the performance of any supervised learner provides a sense of the relative performance

82

Complexity SSL upper SL lower SSL
range bound bound helps

Cluster Assumption

γ ≥ n−
1
D n−

2α
2α+D n−

2α
2α+D No

n−
1
D > γ ≥ m− 1

D n−
2α

2α+D n−
1
D Yes

m− 1
D > γ ≥ −m− 1

D n−
1
D n−

1
D No

−m− 1
D > γ n−

2α
2α+D n−

1
D Yes

Single ManifoldκSM := min(r0, s0)

κSM ≥ n−
1
D n−

2α
2α+d n−

2α
2α+d No

n−
1
D > κSM ≥ m− 1

D n−
2α

2α+d Ω(1) Yes
m− 1

D > κSM ≥ 0 O(1) Ω(1) No
Multi-Manifold κMM := sgn(γ) ·min(|γ|, r0, s0)

κMM ≥ n−
1
D n−

2α
2α+d n−

2α
2α+d No

n−
1
D > κMM ≥ m− 1

D n−
2α

2α+d Ω(1) Yes
m− 1

D > κMM ≥ −m− 1
D O(1) Ω(1) No

−m− 1
D > κMM n−

2α
2α+d Ω(1) Yes

Table 5.1:Conjectured finite sample performance of SSL and SL for regression of a Hölder-α,
α > 1, smooth function (with respect to geodesic distance in the manifold cases).
These bounds hold forD ≥ 2, d < D, m� n, and suppress constants and log factors.

of supervised learning (SL) vs. SSL. Thus, SSL helps if complexity of the class of distributions

γ > m−1/D andbothof the following conditions hold:

1. Knowledge of decision sets simplifies the supervised learning task, that is, the error of the

clairvoyant learnersupPXY (γ) Err(f̂C,n) < inffn supPXY (γ) Err(fn), the smallest error that

can be achieved by any supervised learner based onn labeled data. The difference quantifies

the SSL performance gain.

2. m is large enough so that the error incurred due to using a finite amount of unlabeled data to

learn the decision sets is negligible:δ(m, n) = O
(
supPXY (γ) Err(f̂C,n)

)
. This quantifies

the relative value of labeled and unlabeled data.

83

The finite sample performance bounds on SSL and SL performance as derived in Singh et al.

(2008) for the cluster assumption are summarized in Table 5.1 for the regression setting, where the

target function is a Ḧolder-α smooth function on each decision set andα > 1. We can see that SSL

provides improved performance, by capitalizing on the local smoothness of the function on each

decision set, when the separation between the clusters is large compared to the typical distance

between unlabeled datam−1/D but less than the typical distance between labeled datan−1/D.

Negativeγ refers to the case where the clusters are not separated, but can overlap and give rise

to decision sets that are adjacent (see Singh et al. (2008)). In this case, SSL always outperforms

SL provided the width of the resulting decision sets is detectable using unlabeled data. Thus,

the interplay between the margin and the number of labeled and unlabeled data characterizes the

relative performance of SL vs. SSL under the cluster assumption. Similar results can be derived

in the classification setting where an exponential improvement (fromn−1/D to e−n) is possible

provided the number of unlabeled datam grows exponentially withn (Singh et al., 2008).

5.1.1 Single Manifold Case

In the single manifold case, the assumption is that the target function lies on a lowerd-

dimensional manifold, whered < D, and is Ḧolder-α smooth (α > 1) with respect to the geodesic

distance on the manifold. Hence knowledge of the manifold, or equivalently the geodesic distances

between all pairs of data points, can be gleaned using unlabeled data and reduces the dimensional-

ity of the learning task.

In the case of distributions supported on a single manifold, the ability to learn the geodesic

distances well, and hence the complexityκSM of the distributions, depends on two geometric prop-

erties of the manifold—its minimum radius of curvaturer0 and proximity to self-intersections0

(also known as branch separation) (Bernstein et al., 2000). IfκSM := min(r0, s0) is larger than the

typical distance between the data points (m−1/D with unlabeled data, orn−1/D with only labeled

data), then with high probability the manifold structure is resolvable and geodesic distances can

be learnt up to a high accuracy (which depends onm or n, respectively). This can be achieved

by using shortest distance paths on anε- or k-nearest neighbor graph to approximate the geodesic

84

distances (Bernstein et al., 2000). The use of approximate geodesic distances to learn the target

function gives rise to an error-in-variable problem. Though the overall learning problem is now re-

duced to a lower-dimensional problem, we are now faced with two types of errors—the label noise

and the error in the estimated distances. However, the error incurred in the final estimation due

to errors in geodesic distances depends onm which is assumed to be much greater thann. Thus,

the effect of the geodesic distance errors is negligible, compared to the error due to label noise, for

m sufficiently large. This suggests that for the manifold case, ifκSM > m−1/D, then finite sample

performance of semi-supervised learning can again be related to the performance of a clairvoyant

supervised learner̂fC,n as in (5.1) above, sinceδ(m, n) is negligible form sufficiently large.

Comparing this SSL performance bound to a finite sample minimax lower bound on the perfor-

mance of any supervised learner indicates SSL’s gain in the single manifold case and is summarized

in Table 5.1. These are conjectured bounds based on the arguments above and similar arguments

in Niyogi (2008). The SSL upper bound can be achieved using a learning procedure adaptive to

bothα andd, such as the method proposed in Bickel and Li (2007)1. The SL lower bounds fol-

low from the results in Tsybakov (2004) and Niyogi (2008). SSL provides improved performance

by capitalizing on the lower-dimensional structure of the manifold when the minimum radius of

curvature and branch separation are large compared to the typical distance between unlabeled data

m−1/D, but small compared to the typical distance between labeled datan−1/D.

5.1.2 Multi-Manifold Case

The multi-manifold case addresses the generic setting where the clusters are low-dimensional

manifolds that possibly intersect or overlap. In this case, the target function is supported on multi-

ple manifolds and can be piecewise smooth on each manifold. Thus, it is of interest to resolve the

manifolds, as well as the subsets of each manifold where the decision label varies smoothly (that

are characterized by changes in the marginal density). The analysis for this case is a combination of

the cluster and single manifold case. The complexity of the multi-manifold class of distributions,

1Note, however, that the analysis in Bickel and Li (2007) considers the asymptotic performance of SL, whereas
here we are studying the finite-sample performance of SSL.

85

denotedκMM , is governed by the minimum of the manifold curvatures, branch separations, and the

separations and overlaps between distinct manifolds. For the regression setting, the conjectured

finite sample minimax analysis is presented in Table 5.1.

These results indicate that when there is enough unlabeled data, but not enough labeled data,

to handle the complexity of the class, then semi-supervised learning can help by adapting to both

the intrinsic dimensionality and smoothness of the target function. Extensions of these results to

the classification setting are straightforward, as discussed under the cluster assumption.

Notice that in all the above cases, the semi-supervised learning performance is never worse

than the performance of any supervised learner. This is true under the assumption that the number

of decision sets is finite. To guard against breaking up the problem into too many subproblems, we

can restrict the number of decision sets tolog n. This implies that if the true number of decision

sets is less thanlog n, the above results are still valid except for an additional log factor, and if the

true number of decision sets is more thanlog n, then a performance gain is not achieved, however

the performance is no worse than that of a supervised learner.

5.2 A Multi-Manifold Learning Algorithm

Guided by the theoretical analysis in the previous section, we propose a “cluster-then-label”

type of SSL algorithm (see Algorithm 6). It consists of three main steps:

1. It uses the unlabeled data to form a small number ofdecision sets, on which the target

function is assumed to be smooth. The decision sets are defined in the ambient space, not

just on the labeled and unlabeled points.

2. The target function within a particular decision set is estimated using only labeled data that

fall in that decision set, and using a supervised learner specified by the user.

3. A new test point is predicted by the target function in the decision set it falls into.

There have been several cluster-then-label approaches in the SSL literature. For example,

the early work of Demiriz et al. (1999) modifies the objective of standardk-means clustering

86

algorithms to include a class impurity term. El-Yaniv and Gerzon (2005) enumerate all spectral

clusterings of the unlabeled data with varying number of clusters, which together with labeled data

induce a hypothesis space. They then select the best hypothesis based on an Occam’s razor-type

transductive bound. Some work in constrained clustering is also closely related to cluster-then-

label from an SSL perspective (Basu et al., 2008). Compared to these approaches, our algorithm

has two advantages:

1. It is supported by our SSL minimax theory;

2. It handles both overlapping clusters and intersecting manifolds by detecting changes in sup-

port, density, dimensionality or orientation.

Our algorithm is also different from the family of graph-regularized SSL approaches, such

as manifold regularization (Belkin et al., 2006) and earlier variants (Joachims, 2003; Zhou et al.,

2003; Zhu et al., 2003). They also depend on the manifold assumption that the target function

varies smoothly on the manifold. In contrast,

1. Our algorithm is awrappermethod, which uses any user-specified supervised learnerSL as

a subroutine. This allows us to directly take advantage of advances in supervised learning

without the need to derive new algorithms.

2. Our theory ensures that, even when the manifold assumption is wrong, our SSL performance

bound is the same as that of the supervised learner (up to alog factor).

Finally, step 1 of our algorithm is an instance of manifold clustering. Recent advances on this

topic include generalized principal component analysis (Vidal et al., 2008) and lossy coding (Ma

et al., 2007) for mixtures of linear subspaces, multiscale manifold identification with algebraic

multigrid (Kushnir et al., 2006), locally linear embedding plus spectral clustering (Polito and Per-

ona, 2002), tensor voting (Mordohai and Medioni, 2005), spectral curvature clustering (Chen and

Lerman, 2008), and the translated Poisson mixture model (Haro et al., 2008) for mixtures of non-

linear manifolds. Our algorithm is unique in two ways. First, its use of Hellinger distance offers a

new approach to detecting overlapping clusters and intersecting manifolds. Second, our decision

sets have minimum size constraints, which we enforce by constrainedk-means.

87

Given: n labeled examples andM unlabeled examples, and a supervised learnerSL,

1. Use the unlabeled data to inferk ∼ O(log(n)) decision setŝCi:

(a) Select a subset ofm < M unlabeled points

(b) Form a graph on then + m labeled and unlabeled points, where the edge

weights are computed from the Hellinger distance between local sample co-

variance matrices

(c) Perform size-constrained spectral clustering to cut the graph intok parts,

while keeping enough labeled and unlabeled points in each part

2. Use the labeled data in̂Ci and the supervised learnerSL to train f̂i

3. For test pointx∗ ∈ Ĉi, predictf̂i(x
∗).

Algorithm 6 : The Multi-Manifold Semi-Supervised Learning Algorithm.

5.2.1 Hellinger Distance Graph

Let the labeled data be{(xi, yi)}ni=1, and the unlabeled data be{xj}Mj=1, whereM � n. The

building block of our algorithm is alocal sample covariance matrix. For a pointx, defineN(x)

to be a small neighborhood aroundx in Euclidean space. LetΣx be the local sample covariance

matrix atx:

Σx =
∑

x′∈N(x)

(x′ − µx)(x
′ − µx)

>/(|N(x)| − 1), (5.2)

whereµx =
∑

x′∈N(x) x′/|N(x)| is the neighborhood mean. In our experiments, we let|N(x)| ∼

O(log(M)) so that the neighborhood size grows with unlabeled data sizeM . The covarianceΣx

captures the local geometry aroundx.

Our intuition is that pointsxi, xj on different manifolds or in regions with different density

will have different local geometries. This intuition is captured by the Hellinger distance between

their local sample covariance matricesΣi, Σj. The squared Hellinger distance is defined between

two pdf’s p, q: H2(p, q) = 1
2

∫ (√
p(x)−

√
q(x)

)2

dx. By settingp(x) = N (x; 0, Σi), i.e., a

Gaussian with zero mean and covarianceΣi, and similarlyq(x) = N (x; 0, Σj), we extend the

88

definition of Hellinger distance to covariance matrices:

H(Σi, Σj) ≡ H (N (x; 0, Σi),N (x; 0, Σi)) =
√

1− 2D/2|Σi|1/4|Σj|1/4/|Σi + Σj|1/2, (5.3)

whereD is the dimensionality of the ambient feature space. We will also callH(Σi, Σj) the

Hellinger distance between the two pointsxi, xj. WhenΣi + Σj is rank deficient,H is computed

in the subspace occupied byΣi + Σj. The Hellinger distanceH is symmetric and in[0, 1]. H is

small when the local geometry is similar, and large when there is significant difference in density,

manifold dimensionality or orientation. Example 3D covariance matrices and theirH values are

shown in Figure 5.1.

It would seem natural to compute all pairwise Hellinger distances between our dataset ofn+M

points to form a graph, and apply a graph-cut algorithm to separate multiple manifolds or clusters.

However, ifxi andxj are very close to each other, their local neighborhoodsN(xi), N(xj) will

strongly overlap. Then, even if the two points are on different manifolds the Hellinger distance will

be small, because their covariance matricesΣi, Σj will be similar. Therefore, we select a subset

of m ∼ O (M/ log(M)) unlabeled points so that they are farther apart while still covering the

whole dataset. This is done using a greedy procedure that begins by taking alln labeled points

and then selects a subset ofm unlabeled points to approximately cover the dataset. Each of these

n + m points has its local covarianceΣ computed from the original full dataset. We then discard

theM−m unselected unlabeled points. Notice, however, that the numberm of effective unlabeled

data points is polynomially of the same order as the total numberM of available unlabeled data

points.

We can now define a sparse graph on then+m points. Each pointx is connected by a weighted,

undirected edge toO(log(n + m)) of its nearest Mahalanobis neighbors chosen from the the set of

n+m points too. The choice ofO(log(n+m)) allows neighborhood size to grow with dataset size.

Since we know the local geometry aroundx (captured byΣx), we “follow the manifold” by using

the Mahalanobis distance as the local distance metric atx: d2
M(x, x′) = (x − x′)>Σ−1

x (x − x′).

For example, a somewhat flatΣx will preferentially connect to neighbors in or near the same

flat subspace. The graph edges are weighted using the standard RBF scheme, but with Hellinger

distance:wij = exp (−H2(Σi, Σj)/(2σ
2)). Figure 5.2(a) shows a small part of a synthetic “dollar

89

Covariance matrices Comment H(Σ1, Σ2)

similar 0.02

differ in
density

0.28

differ in
dimensionality

1

differ in
orientation

1

Figure 5.1:Hellinger distance. Note thatH(Σ1, Σ2) is close to zero when the covariance matri-
ces are similar.H(Σ1, Σ2) is closer to (or exactly equal to) one, however, when the
distributions in question differ in terms of density, dimensionality, or orientation.

sign” dataset, consisting of two intersecting manifolds: “S” and “|”. The green dots are the original

unlabeled points, and the ellipsoids are the contours of covariance matrices around a subset of

90

(a) (b)

Figure 5.2:The graph on the dollar sign dataset. (a) Subset of 3D covariance matrices centered
on unlabeled points. (b) Complete graph with edge weights based on comparisons
between nearby local covariance matrices. Darker red edges have large weights, while
lighter yellow edges have small weights. Note that the darker edges tend to be within
the same manifold.

selected unlabeled points within a small region. Figure 5.2(b) shows the graph on the complete

dollar sign dataset, where red edges have large weights and yellow edges have small weights. Thus

the graph combines locality and geometry: an edge has large weight when the two nodes are close

in Mahalanobis distance, and have similar covariance structure.

5.2.2 Size-Constrained Spectral Clustering

We perform spectral clustering on this graph ofn + m nodes. We hope each resulting cluster

represents a separate manifold, from which we will define a decision set. Of the many spectral

clustering algorithms, we chose ratio cut for its simplicity, though others can be similarly adapted

for use here. The standard ratio cut algorithm fork clusters has four steps (von Luxburg, 2007):

1. Compute the unnormalized graph LaplacianL = Deg −W , whereW = [wij] is the weight

matrix, andDegii =
∑

j wij form the diagonal degree matrix.

91

2. Compute thek eigenvectorsv1 . . . vk of L with the smallest eigenvalues.

3. Form matrixV with v1 . . . vk as columns. Use theith row ofV as the new representation of

xi.

4. Cluster allx under the new representation intok clusters usingk-means.

Our ultimate goal of semi-supervised learning poses new challenges; we want our SSL algo-

rithm to degrade gracefully, even when the manifold assumption does not hold. The SSL algorithm

should not break the problem into too many subproblems and increase the complexity of the su-

pervised learning task. This is achieved by requiring that the algorithm does not generate too

many clusters and that each cluster contains “enough” labeled points. Because we will simply do

supervised learning within each decision set, as long as the number of sets does not grow polyno-

mially with n, the performance of our algorithm is guaranteed to be polynomially no worse than

the performance of the supervised learner when the manifold assumption fails. Thus, we auto-

matically revert to the supervised learning performance. One way to achieve this is to have three

requirements:

1. The number of clusters grows ask ∼ O(log(n)).

2. Each cluster must have at leasta ∼ O(n/ log2(n)) labeled points.

3. Each spectral cluster must have at leastb ∼ O(m/ log2(n)) unlabeled points.

The first requirement sets the number of clustersk, allowing more clusters and thus handling more

complex problems as labeled data size grows, while suffering only a logarithmic performance loss

compared to a supervised learner if the manifold assumption fails. The second requirement ensures

that each decision set hasO(n) labeled points up to log factor2. The third is similar, and makes

spectral clustering more robust.

Spectral clustering with minimum size constraintsa, b on each cluster is an open problem.

Directly enforcing these constraints in graph partitioning leads to difficult integer programs (Ji,

2The square allows the size ratio between two clusters to be arbitrarily skewed asn grows. We do not want to fix
the relative sizes of the decision setsa priori.

92

2004). Instead, we enforce the constraints ink-means (step 4) of spectral clustering. Our approach

is a straightforward extension to the constrainedk-means algorithm of Bradley et al. (2000). For

point xi, let Ti1 . . . Tik ∈ R be its cluster indicators: ideally,Tih = 1 if xi is in clusterh, and

0 otherwise. Letc1 . . . ck ∈ Rd denote the cluster centers. Constrainedk-means is the iterative

minimization overT andc of the following problem:

min
T,c

∑n+m
i=1

∑k
h=1 Tih‖xi − ch‖2

s.t.
∑k

h=1 Tih = 1, T ≥ 0∑n
i=1 Tih ≥ a,

∑n+m
i=n+1 Tih ≥ b, h = 1 . . . k, (5.4)

where we assume the points are ordered so that the firstn points are labeled. FixingT , optimizing

overc is trivial, and amounts to moving the centers to the cluster means.

Bradley et al. (2000) showed that fixingc and optimizingT can be converted into a Minimum

Cost Flow problem, which can be exactly solved. In a Minimum Cost Flow problem, there is a

directed graph where each node is either a “supply node” with a numberr > 0, or a “demand

node” withr < 0. The arcs fromi→ j is associated with costsij, and flowtij. The goal is to find

the flowt such that supply meets demand at all nodes, while the cost is minimized:

min
t

∑
i→j

sijtij s.t.
∑

j

tij −
∑

j

tji = ri, ∀i. (5.5)

For our problem (5.4), the corresponding Minimum Cost Flow problem is shown in Figure 5.3.

The supply nodes arex1 . . . xn+m with r = 1. There are two sets of cluster center nodes. One

setc`
1 . . . c`

k, each with demandr = −a, is due to the labeled data size constraint. The other set

cu
1 . . . cu

k, each with demandr = −b, is due to the unlabeled data size constraint. Finally, a sink

demand node withr = −(n + m − ak − bk) catches all the remaining flow. The cost fromxi to

ch is sih = ‖xi − ch‖2, and fromch to the sink is 0. It is then clear that the Minimum Cost Flow

problem (5.5) is equivalent to (5.4) withTih = tih andc fixed. Interestingly, (5.5) is proven to have

integer solutions which correspond exactly to the desired cluster indicators.

Once size-constrained spectral clustering is completed, then + m points will each have a

cluster index in1 . . . k. We definek decision sets{Ĉi}ki=1 by the Voronoi cells around these points:

93

Figure 5.3:The Minimum Cost Flow problem equivalent to the step of constrainedk-means clus-
tering in which data points are reassigned to clusters (with cluster centersc fixed).

Ĉi = {x ∈ RD | x’s Euclidean nearest neighbor among then + m points has cluster indexi}. We

train a separate predictor̂fi for each decision set using the labeled points in that decision set, and a

user-specified supervised learner. During test time, an unseen pointx∗ ∈ Ĉi is predicted aŝfi(x
∗).

Therefore, the unlabeled data in our algorithm is used merely to determine the decision sets.

5.3 Experiments

We present experimental results showing that our algorithm consistently improves over SL in

several different scenarios. In addition, we demonstrate that using our novel Hellinger-distance-

based graph in the existing manifold regularization algorithm outperforms the same algorithm

using a standardkNN graph.

5.3.1 Datasets

We experimented with five synthetic (Figure 5.4) and one real datasets. Datasets 1–3 are for

regression, and 4–6 are for classification:

94

1. Dollar sign contains two intersecting manifolds. The “S” manifold has targety varying

from 0 to 3π. The “|” manifold has target functiony = x·3 + 13, wherex·3 is the vertical

dimension. White noiseε ∼ N (0, 0.012) is added toy.

2. Surface-sphereslices a 2D surface through a solid ball. The ball has target functiony =

||x||, and the surface hasy = x·2 − 5.

3. Density changecontains two overlapping rectangles. One rectangle is wide and sparse with

y = x·1, the other is narrow and five times as dense withy = 10 − 5x·1. Together they

produce three decision sets.

4. Surface-helix has a 1D toroidal helix intersecting a surface. Each manifold is a separate

class.

5. Martini is a composition of five manifolds (classes) to form the shape of a martini glass with

an olive on a toothpick, as shown in Figure 5.4(e).

6. MNIST digits. We scaled down the images to 16 x 16 pixels and used the official train/test

split, with different numbers of labeled and unlabeled examples sampled from the training

set.

5.3.2 Methodology & Implementation Details

In all experiments, we report results that are the average of 10 trials over random draws ofM

unlabeled andn labeled points. We compare three learners:

• [Global] : supervised learner trained on all of the labeled data, ignoring unlabeled data.

• [Clairvoyant] : with the knowledge of the true decision sets, trains one supervised learner

per decision set.

• [SSL]: our semi-supervised learner that discovers the decision sets using unlabeled data,

then trains one supervised learner per decision set.

95

After training, each classifier is evaluated on a massive test set, also sampled from the underlying

distribution, to estimate generalization error. We implemented the algorithms in MATLAB, with

Minimum Cost Flow solved by the network simplex method in CPLEX. We used the same set

of parameters for all experiments and all datasets: We chose the number of decision sets to be

k = d0.5 log(n)e. To obtain the subset ofm unlabeled points, we let the neighborhood size

|N(x)| = b3 log(M)c. When creating the graphW , we usedb1.5 log(m+n)c nearest Mahalanobis

neighbors, and an RBF bandwidthσ = 0.2 to convert Hellinger distances to edge weights. The

size constraints werea = b1.25n/log2(n)c, b = b1.25m/log2(n)c. Finally, to avoid poor local

optima in spectral clustering, we ran 10 random restarts for constrainedk-means, and chose the

result with the lowest objective. For the regression tasks, we used kernel regression with an RBF

kernel, and tuned the bandwidth parameter with 5-fold cross validation using only labeled data in

each decision set (or globally for “Global”). For classification, we used a support vector machine

(LIBSVM) with an RBF kernel, and tuned its bandwidth and regularization parameter with 5-fold

cross validation. Note that LIBSVM solves multi-class problems using the 1-against-1 strategy.

We used Euclidean distance in each decision region for the supervised learner, but we expect

performance with geodesic distance would be even better.

5.3.3 Results of LargeM

Figure 5.4 reports the results for the five synthetic datasets. In all cases, we usedM = 20000,

n ∈ {20, 40, 80, 160, 320, 640}, and the resulting regressors/classifiers are evaluated in terms of

MSE or error rate using a test set of 20000 points. These results show that our SSL algorithm can

discover multiple manifolds and changes in density well enough to consistently outperform SL

in both regression and classification settings of varying complexity. We also observed that even

under- or over-partitioning into fewer or more decision sets than manifolds can still improve SSL

performance3.

3We compared Global and SSL’s 10 trials at eachn using two-tailed, pairedt-tests. SSL was statistically signif-
icantly better (α = 0.05) in the following cases: dollar sign atn = 20–80, density atn = 40–640, surface-helix at
n = 20–320, and martini atn = 40–320. The two methods were statistically indistinguishable in other cases.

96

0 200 400 600
0

5

10

15

20

25

n

M
S

E

Global
SSL
Clairvoyant

0 200 400 600
0

2

4

6

8

10

n

M
S

E

Global
SSL
Clairvoyant

0 200 400 600
0

5

10

n

M
S

E

Global
SSL
Clairvoyant

(a) Dollar sign (b) Surface-sphere (c) Density change

0 200 400 600
0

0.1

0.2

0.3

0.4

0.5

n

E
rr

or
 r

at
e

Global
SSL

0 200 400 600
0

0.1

0.2

0.3

n

E
rr

or
 r

at
e

Global
SSL

(d) Surface-helix (e) Martini

Figure 5.4:Regression MSE (a-c) and classification error (d-e) for synthetic datasets. All curves
are based onM = 20000, 10-trial averages, and error bars plot±1 standard deviation.
Clairvoyant classification error is 0.

We performed three experiments with the digit recognition data: binary classification of the

digits2 vs3, and three-way classification of1, 2, 3 and7, 8, 9. Here, we fixedn = 20, M = 5000,

10 random training trials, each tested on the official test set. Table 5.2 contains results averaged

97

Method 2 vs3 1, 2, 3 7, 8, 9
Global 0.17± 0.12 0.20± 0.10 0.33± 0.20
SSL 0.05± 0.01 0.10± 0.04 0.20± 0.10

Table 5.2:10-trial average test set error rates± one standard deviation for handwritten digit recog-
nition with fixed n = 20 andM = 5000. All differences are statistically significant
(α = 0.05).

over these trials. SSL outperforms Global in all three digit tasks, and all differences are statistically

significant (α = 0.05). Note that we used the same parameters as the synthetic data experiments,

which results ink = 2 decision sets forn = 20; again, the algorithm performs well even when

there are fewer decision sets than classes. Close inspection revealed that our clustering step creates

relatively pure decision sets. For the binary task, this leads to two trivial classification problems,

and errors are due only to incorrect assignments of test points to decision sets. For the 3-way tasks,

the algorithm creates1+2 and 3 clusters, and 7+9 and 8 clusters. We conclude that the performance

gains in the multi-class tasks are realized largely by decreasing errors on the3 and8 digits placed

in their own decision set, while simplifying to two classes within the other decision set is also

beneficial.

5.3.4 Effect of Too Small anM

Finally, we examine our SSL algorithm’s performance with less unlabeled data. For the surface-

helix dataset, we now fixn = 80 (which leads tok = 3 decision sets) and reduceM . Figure 5.5

depicts example partitionings for threeM values, along with 10-trial average error rates (± one

standard deviation) in each setting. Note these are top-down views of the data in Figure 5.4(d).

WhenM is small, the resulting subset ofm unlabeled points is too small, and the partition bound-

aries cannot be reliably estimated. Segments of the helix shown in red and areas of the surface

in blue or green correspond to such partitioning errors. Nevertheless, even whenM is as small

as 1000, SSL’s performance is no worse than Global supervised learning, which achieves an error

rate of0.20± 0.05 whenn = 80 (see Figure 5.4(d)).

98

M = 1000 M = 3162 M = 10000

0.19± 0.04 0.12± 0.02 0.04± 0.008

Figure 5.5:Effect of varyingM for the surface-helix dataset (n = 80, which leads tok = 3
decision sets). Numbers listed are SSL’s 10-trial average error rate± one standard
deviation. The images show top-down views of one trial’s partitions of the data in
Figure 5.4(d).

5.3.5 Manifold Regularization using the Hellinger Graph

The graph construction method presented here can be plugged into existing graph-based SSL

algorithms. As seen in Figure 5.6, we found that manifold regularization (MR) (Belkin et al.,

2006), using EuclideankNN graphs with RBF weights and all parameters tuned using cross valida-

tion, performs worse than Global on these datasets due to the strong connections across manifolds.

In contrast, replacing thekNN/RBF graph with the our Hellinger graph in the same regularization

scheme (Hellinger-MR) leads to improved results.

5.4 Conclusions

We have extended SSL theory and practice to multi-manifolds. While we have quantified the

theoretical performance of SSL vs SL in the single and multi-manifold case, a characterization of

the relative value of unlabeled data requires a detailed analysis of how the inaccuracy in learning

geodesic distances effects the learning error. A large scale empirical study on real datasets is also

needed to demonstrate the robustness to the manifold assumption. These are subjects of future

research.

99

(a) Dollar sign (b) Surface-helix

Figure 5.6:Comparison of Global/supervised learning, manifold regularization using akNN/RBF
graph (MR), and manifold regularization using our novel Hellinger graph (Hellinger-
MR).

100

Chapter 6

Transduction with Matrix Completion:
A Low-Rank Assumption for SSL

As discussed in several earlier chapters, semi-supervised learning methods make assumptions

about how unlabeled data can help in the learning process, such as the manifold assumption (data

lies on a low-dimensional manifold) and the cluster assumption (classes are separated by low den-

sity regions). In this chapter,1 we present two transductive learning methods for handling classifica-

tion problems with multiple labels per instance, based on the novel assumption that the feature-by-

item and label-by-item matrices arejointly low-rank. This assumption effectively couples different

label prediction tasks, allowing us to implicitly use observed labels in one task to recover unob-

served labels in others. The same is true for imputing missing features. In fact, our methods learn

in the difficult regime ofmulti-label transductive learning with missing datathat one sometimes

encounters in practice. That is, each item is associated with many class labels, many of the items’

labels may be unobserved (some items may be completely unlabeled across all labels), and many

features may also be unobserved. Our methods build upon recent advances in matrix completion,

with efficient algorithms to handle matrices with mixed real-valued features and discrete labels.

We obtain promising experimental results on a range of synthetic and real-world data.

6.1 Problem Formulation

Let x1 . . .xn ∈ Rd be feature vectors associated withn items. LetX = [x1 . . .xn] be the

d × n feature matrix whose columns are the items. Let there bet binary classification tasks,

1Based on joint work with Xiaojin Zhu, Benjamin Recht, Junming Xu, and Robert Nowak.

101

y1 . . .yn ∈ {−1, 1}t be the label vectors, andY = [y1 . . .yn] be thet × n label matrix. Entries

in X or Y can be missing at random. LetΩX be the index set of observed features inX, such that

(i, j) ∈ ΩX if and only if xij is observed. Similarly, letΩY be the index set of observed labels in

Y. Our main goal is to predict the missing labelsyij for (i, j) /∈ ΩY. Of course, this reduces to

standard transductive learning whent = 1, |ΩX| = nd (no missing features), and1 < |ΩY| < n

(some missing labels). In our more general setting, as a side product we are also interested in

imputing the missing features, and de-noising the observed features, inX.

6.1.1 Model Assumptions

The above problem is in general ill-posed. We now describe our assumptions to make it a well-

defined problem. In a nutshell, we assume thatX andY are jointly produced by an underlying low-

rank matrix. We then take advantage of the sparsity to fill in the missing labels and features using

a modified method of matrix completion. Specifically, we assume the following generative story.

It starts from ad× n low-rank “pre”-feature matrixX0, with rank(X0)� min(d, n). The actual

feature matrixX is obtained by adding i.i.d. Gaussian noise to the entries ofX0: X = X0 + ε,

whereεij ∼ N(0, σ2
ε). Meanwhile, thet “soft” labels

(
y0

1j . . . y0
tj

)> ≡ y0
j ∈ Rt of item j are

produced byy0
j = Wx0

j + b, whereW is a t × d weight matrix, andb ∈ Rt is a bias vector.

Let Y0 = [y0
1 . . .y0

n] be the soft label matrix. Note the combined(t + d) × n matrix [Y0;X0]

is low-rank, too:rank([Y0;X0]) ≤ rank(X0) + 1. The actual labelyij ∈ {−1, 1} is generated

randomly via a sigmoid function:P (yij|y0
ij) = 1/

(
1 + exp(−yijy

0
ij)
)
. Finally, two random masks

ΩX, ΩY are applied to expose only some of the entries inX andY, and we useω to denote the

percentage of observed entries. This generative story may seem restrictive, but our approaches

based on it perform well on synthetic and real datasets, outperforming several baselines with linear

classifiers.

102

6.1.2 Matrix Completion for Heterogeneous Matrix Entries

With the above data generation model, our task can be defined as follows. Given the partially

observed features and labels as specified byX,Y, ΩX, ΩY, we would like to recover the interme-

diate low-rank matrix[Y0;X0]. Then,X0 will contain the denoised and completed features, and

sign(Y0) will contain the completed and correct labels.

The key assumption is that the(t+d)×n stacked matrix[Y0;X0] is of low rank. We will start

from a “hard” formulation that is illustrative but impractical, then relax it.

argmin
Z∈R(t+d)×n

rank(Z) (6.1)

s.t. sign(zij) = yij, ∀(i, j) ∈ ΩY; z(i+t)j = xij, ∀(i, j) ∈ ΩX

Here,Z is meant to recover[Y0;X0] by directly minimizing the rank while obeying the observed

features and labels. Note the indices(i, j) ∈ ΩX are with respect toX, such thati ∈ {1, . . . , d}. To

index the corresponding element in the larger stacked matrixZ, we need to shift the row index by

t to skip the part forY0, and hence the constraintsz(i+t)j = xij. The above formulation assumes

that there is no noise in the generation processesX0 → X andY0 → Y. Of course, there are

several issues with formulation (6.1), and we handle them as follows:

• rank() is a non-convex function and difficult to optimize. Following recent work in matrix

completion (Cand̀es and Tao, 2010; Candès and Recht, 2009), we relaxrank() with the

convex nuclear norm‖Z‖∗ =
∑min(t+d,n)

k=1 σk(Z), whereσk’s are the singular values ofZ.

The relationship betweenrank(Z) and‖Z‖∗ is analogous to that of̀0-norm and̀ 1-norm for

vectors.

• There is feature noise fromX0 toX. Instead of the equality constraints in (6.1), we minimize

a loss functioncx(z(i+t)j, xij). We choose the squared losscx(u, v) = 1
2
(u−v)2 in this work,

but other convex loss functions are possible too.

• Similarly, there is label noise fromY0 to Y. The observed labels are of a different type than

the observed features. We therefore introduce another loss functioncy(zij, yij) to account for

the heterogeneous data. In this work, we use the logistic losscy(u, v) = log(1+exp(−uv)).

103

In addition to these changes, we will model the biasb either explicitly or implicitly, leading to two

alternative matrix completion formulations below.

Formulation 1 (MC-b). In this formulation, we explicitly optimize the biasb ∈ Rt in addition

to Z ∈ R(t+d)×n, hence the name. Here,Z corresponds to the stacked matrix[WX0;X0] instead

of [Y0;X0], making it potentially lower rank. The optimization problem is

argmin
Z,b

µ‖Z‖∗ +
λ

|ΩY|
∑

(i,j)∈ΩY

cy(zij + bi, yij) +
1

|ΩX|
∑

(i,j)∈ΩX

cx(z(i+t)j, xij), (6.2)

whereµ, λ are positive trade-off weights. Notice the biasb is not regularized. This is a convex

problem, whose optimization procedure will be discussed in section 6.2. Once the optimalZ,b

are found, we recover the task-i label of itemj by sign(zij + bi), and featurek of item j by z(k+t)j.

Formulation 2 (MC-1). In this formulation, the bias is modeled implicitly withinZ. Similar to

how bias is commonly handled in linear classifiers, we append an additional feature with constant

value one to each item. The corresponding pre-feature matrix is augmented into
[
X0;1>

]
, where1

is the all-1 vector. Under the same label assumptiony0
j = Wx0

j +b, the rows of the soft label ma-

trix Y0 are linear combinations of rows in
[
X0;1>

]
, i.e.,rank(

[
Y0;X0;1>

]
) = rank(

[
X0;1>

]
).

We then letZ correspond to the(t + d + 1) × n stacked matrix
[
Y0;X0;1>

]
, by forcing its last

row to be1> (hence the name):

argmin
Z∈R(t+d+1)×n

µ‖Z‖∗ +
λ

|ΩY|
∑

(i,j)∈ΩY

cy(zij, yij) +
1

|ΩX|
∑

(i,j)∈ΩX

cx(z(i+t)j, xij) (6.3)

s.t. z(t+d+1)· = 1>.

This is a constrained convex optimization problem. Once the optimalZ is found, we recover the

task-i label of itemj by sign(zij), and featurek of item j by z(k+t)j.

MC-b and MC-1 differ mainly in what is inZ, which leads to different behaviors of the nuclear

norm. Despite the generative story, we do not explicitly recover the weight matrixW in these

formulations. Other formulations are certainly possible. One way is to letZ correspond to[Y0;X0]

directly, without introducing biasb or the all-1 row, and hope nuclear norm minimization will

prevail. This is inferior in our preliminary experiments, and we do not explore it further in this

work.

104

6.2 Optimization Techniques

We solve MC-b and MC-1 using modifications of the Fixed Point Continuation (FPC) method

of Ma et al. (2009).2 While nuclear norm minimization can be converted into a semidefinite pro-

gramming (SDP) problem (Candès and Recht, 2009), current SDP solvers are severely limited in

the size of problems they can solve. Instead, the basic fixed point approach is a computationally

efficient alternative, which provably converges to the globally optimal solution and has been shown

to outperform SDP solvers in terms of matrix recoverability.

6.2.1 Fixed Point Continuation for MC-b

We first describe our modified FPC method for MC-b. It differs from the original FPC (Ma

et al., 2009) in the extra bias variables and multiple loss functions. Our fixed point iterative algo-

rithm to solve the unconstrained problem of (6.2) consists of two alternating steps for each iteration

k:

1. (gradient step)bk+1 = bk − τbg(bk), Ak = Zk − τZg(Zk)

2. (shrinkage step)Zk+1 = SτZµ(Ak).

In the gradient step,τb andτZ are step sizes whose choice will be discussed next. Overloading

notation a bit,g(bk) is the vector gradient, andg(Zk) is the matrix gradient, respectively, of the

two loss terms in (6.2) (i.e., excluding the nuclear norm term):

g(bi) =
λ

|ΩY|
∑

j:(i,j)∈ΩY

−yij

1 + exp(yij(zij + bi))
(6.4)

g(zij) =


λ

|ΩY|
−yij

1+exp(yij(zij+bi))
, i ≤ t and(i, j) ∈ ΩY

1
|ΩX|

(zij − x(i−t)j), i > t and(i− t, j) ∈ ΩX

0, otherwise

(6.5)

Note for g(zij), i > t, we need to shift down (un-stack) the row index byt in order to map the

element inZ back to the itemx(i−t)j.

2While the primary method of Ma et al. (2009) is Fixed Point Continuation with Approximate Singular Value
Decomposition (FPCA), where the approximate SVD is used to speed up the algorithm, we opt to use an exact SVD
for simplicity and will refer to the method simply as FPC.

105

In the shrinkage step,SτZµ(·) is a matrix shrinkage operator. LetAk = UΛV> be the SVD of

Ak. ThenSτZµ(Ak) = Umax(Λ− τZµ, 0)V>, wheremax is elementwise. That is, the shrinkage

operator shifts the singular values down, and truncates any negative values to zero. This step

reduces the nuclear norm.

Even though the problem is convex, convergence can be slow. We follow Ma et al. (2009) and

use a continuation or homotopy method to improve the speed. This involves beginning with a large

valueµ1 > µ and solving a sequence of subproblems, each with a decreasing value and using the

previous solution as its initial point. The sequence of values is determined by a decay parameter

ηµ: µk+1 = max{µkηµ, µ}, k = 1, . . . , L − 1, whereµ is the final value to use, andL is the

number of rounds of continuation. The complete FPC algorithm for MC-b is listed in Algorithm 7.

A minor modification of the argument in Ma et al. (2009) reveals that as long as we choose non-

negative step sizes satisfyingτb < 4|ΩY|/(λn) andτZ < min {4|ΩY|/λ, |ΩX|}, the algorithms

MC-b will be guaranteed to converge to a global optimum. Indeed, to guarantee convergence, we

only need that the gradient step isnon-expansivein the sense that

‖b1− τbg(b1)−b2 + τbg(b2)‖2 +‖Z1− τZg(Z1)−Z2 + τZg(Z2)‖2F ≤ ‖b1−b2‖2 +‖Z1−Z2‖2F

for all b1, b2, Z1, andZ2. Our choice ofτb andτZ guarantee such non-expansiveness. Once this

non-expansiveness is satisfied, the remainder of the convergence analysis is the same as in Ma et al.

(2009).

6.2.2 Fixed Point Continuation for MC-1

Our modified FPC method for MC-1 is similar except for two differences. First, there is no

bias variableb. Second, the shrinkage step will in general not satisfy the all-1-row constraints

in (6.3). Thus, we add a third projection step at the end of each iteration to projectZk+1 back to the

feasible region, by simply setting its last row to all 1’s. The complete algorithm for MC-1 is given

in Algorithm 8. We were unable to prove convergence for this gradient + shrinkage + projection

algorithm. Nonetheless, in our empirical experiments, Algorithm 8 always converges and tends to

outperform MC-b. The two algorithms have about the same convergence speed.

106

Input : Initial matrix Z0, biasb0,
parametersµ, λ, Step sizesτb, τZ

Determineµ1 > µ2 > · · · > µL = µ > 0.
SetZ = Z0,b = b0.
foreachµ = µ1, µ2, . . . , µL do

while Not convergeddo
Computeb = b− τbg(b),
A = Z− τZg(Z)
Compute SVD ofA = UΛV>

Compute
Z = Umax(Λ− τZµ, 0)V>

end
end
Output : Recovered matrixZ, biasb

Algorithm 7 : FPC algorithm for MC-b.

Input : Initial matrix Z0,
parametersµ, λ, Step sizeτZ

Determineµ1 > µ2 > · · · > µL = µ > 0.
SetZ = Z0.
foreachµ = µ1, µ2, . . . , µL do

while Not convergeddo
ComputeA = Z− τZg(Z)
Compute SVD ofA = UΛV>

Compute
Z = Umax(Λ− τZµ, 0)V>

ProjectZ to feasible region
z(t+d+1)· = 1>

end
end
Output : Recovered matrixZ

Algorithm 8 : FPC algorithm for MC-1.

6.3 Experiments

We now empirically study the ability of matrix completion to perform multi-label transductive

classification when there is missing data. We first present a family of 24 experiments on a synthetic

task by systematically varying different aspects of the task, including the rank of the problem, noise

level, number of items, and observed label and feature percentage. We then present experiments on

two real-world datasets: music emotions and yeast microarray. In each experiments, we compare

MC-b and MC-1 against four other baseline algorithms. Our results show that MC-1 consistently

outperforms other methods, and MC-b follows closely.

Parameter Tuning and Other Settings for MC-b and MC-1: To tune the parametersµ and

λ, we use 5-fold cross validation (CV) separately for each experiment. Specifically, we randomly

divide ΩX andΩY into five disjoint subsets each. We then run our matrix completion algorithms

using 4
5

of the observed entries, measure its performance on the remaining1
5
, and average over

the five folds. Since our main goal is to predict unobserved labels, we use label error as the CV

performance criterion to select parameters. Note that tuningµ is quite efficient since all values

under consideration can be evaluated in one run of the continuation method. We setηµ = 0.25

107

and, as in Ma et al. (2009), considerµ values starting atσ1ηµ, whereσ1 is the largest singular value

of the matrix of observed entries in[Y;X] (with the unobserved entries set to 0), and decreaseµ

until 10−5. The range ofλ values considered was{10−3, 10−2, 10−1, 1}. We initializedb0 to be

all zero andZ0 to be the rank-1 approximation of the matrix of observed entries in[Y;X] (with

unobserved entries set to 0) obtained by performing an SVD and reconstructing the matrix using

only the largest singular value and corresponding left and right singular vectors. The step sizes

were set as follows:τZ = min(3.8|ΩY|
λ

, |ΩX|), τb = 3.8|ΩY|
λn

. Convergence was defined as relative

change in objective functions (6.2)(6.3) smaller than10−5.

Baselines:We compare to the following baselines, each consisting of some missing feature

imputation step onX first, then using a standard SVM to predict the labels:

• [FPC+SVM] Matrix completion onX alone using FPC (Ma et al., 2009).

• [EM(k)+SVM] Expectation Maximization algorithm to impute missingX entries using a

mixture of k Gaussian components. Missing features, mixing component parameters, and

the assignments of items to components are treated as hidden variables, which are estimated

in an iterative manner to maximize the likelihood of the data (Little and Rubin, 2002).

• [Mean+SVM] Impute each missing feature by the mean of the observed entries for that

feature.

• [Zero+SVM] Impute missing features by filling in zeros.

After imputation, an SVM is trained using the available (noisy) labels inΩY for that task, and

predictions are made for the rest of the labels. All SVMs are linear, trained using SVMlin3, and the

regularization parameter is tuned using 5-fold cross validation separately for each task. The range

of parameter values considered was{10−8, 10−7, . . . , 107, 108}.

Evaluation Method: To evaluate performance, we consider two measures:transductive label

error, i.e., the percentage of unobserved labels predicted incorrectly; andrelative feature imputa-

tion error
(∑

ij /∈ΩX
(xij − x̂ij)

2
)

/
∑

ij /∈ΩX
x2

ij, wherex̂ is the predicted feature value. In the tables

3http://vikas.sindhwani.org/svmlin.html

108

below, for each parameter setting, we report the mean performance (and standard deviation in

parenthesis) of different algorithms over 10 random trials. The best algorithm within each param-

eter setting, as well as any statistically indistinguishable algorithms via a two-tailed pairedt-test at

significance levelα = 0.05, are marked in bold.

6.3.1 Synthetic Data Experiments

Synthetic Data Generation: We generate a family of synthetic datasets to systematically

explore the performance of the algorithms. We first create a rank-r matrix X0 = LR>, where

L ∈ Rd×r andR ∈ Rn×r with entries drawn i.i.d. fromN (0, 1). We then normalizeX0 such that

its entries have variance 1. Next, we create a weight matrixW ∈ Rt×d and bias vectorb ∈ Rt,

with all entries drawn i.i.d. fromN (0, 10). We then produceX,Y0,Y according to section 6.1.1.

Finally, we produce the randomΩX, ΩY masks withω percent observed entries.

Using the above procedure, we varyω = 10%, 20%, 40%, n = 100, 400, r = 2, 4, andσ2
ε =

0.01, 0.1, while fixing t = 10, d = 20, to produce 24 different parameter settings. For each setting,

we generate 10 trials, where the randomness is in the data and mask.

Synthetic experiment results: Table 6.1 shows the transductive label errors, and Table 6.2

shows the relative feature imputation errors, on the synthetic datasets. We make several observa-

tions.

Observation 1: MC-b and MC-1 are the best for feature imputation, as Table 6.2 shows. How-

ever, the imputations are not perfect, because in these particular parameter settings the ratio be-

tween the number of observed entries over the degrees of freedom needed to describe the feature

matrix (i.e.,r(d + n− r)) is below the necessary condition for perfect matrix completion (Candès

and Recht, 2009), and because there is some feature noise. Furthermore, our CV tuning procedure

selects parametersµ, λ to optimize label error, which often leads to suboptimal imputation per-

formance. In a separate experiment (not reported here) when we made the ratio sufficiently large

and without noise, and specifically tuned for imputation error, both MC-b and MC-1 did achieve

perfect feature imputation. Also, FPC+SVM is slightly worse in feature imputation. This may

109

σ2
ε r n ω MC-b MC-1 FPC+SVM EM1+SVM Mean+SVM Zero+SVM

0.01 2 100 10% 37.8(4.0) 31.8(4.3) 34.8(7.0) 34.6(3.9) 40.5(5.7) 40.5(5.1)
20% 23.5(2.9) 17.0(2.2) 17.6(2.1) 19.7(2.4) 28.7(4.1) 27.4(4.4)
40% 15.1(3.1) 10.8(1.8) 9.6(1.5) 10.4(1.0) 16.5(2.5) 15.4(2.3)

400 10% 26.5(2.0) 19.9(1.7) 23.7(1.7) 24.2(1.9) 32.4(2.9) 31.5(2.7)
20% 15.9(2.5) 11.7(1.9) 12.6(2.2) 12.0(1.9) 20.0(1.9) 19.7(1.7)
40% 11.7(2.0) 8.0(1.6) 7.2(1.8) 7.3(1.4) 12.2(1.8) 12.1(2.0)

4 100 10% 42.5(4.0) 40.8(4.4) 41.5(2.6) 43.2(2.2)43.5(2.9) 42.9(2.9)
20% 33.2(2.3) 26.2(2.8) 26.7(1.7) 30.8(2.7) 35.5(1.4) 33.9(1.5)
40% 19.6(3.1) 14.3(2.7) 13.6(2.6) 14.1(2.4)22.5(2.0) 21.7(2.3)

400 10% 35.3(3.1) 32.1(1.6) 33.4(1.6) 34.2(1.8) 37.7(1.2) 38.2(1.4)
20% 24.4(2.3) 19.1(1.3) 20.5(1.4) 19.8(1.1) 26.9(1.5) 26.9(1.3)
40% 14.6(1.8) 9.5(0.5) 9.2(0.9) 8.6(1.1) 16.4(1.2) 16.5(1.3)

0.1 2 100 10% 39.6(5.5) 34.6(3.5) 37.3(6.4) 40.2(5.3) 41.5(6.0) 41.0(5.7)
20% 25.2(2.6) 20.1(1.7) 21.6(2.6) 26.8(3.7) 31.8(4.7) 29.9(4.0)
40% 15.7(3.1) 12.6(1.4) 13.2(2.0) 15.1(2.4) 18.5(2.7) 17.2(2.4)

400 10% 27.6(2.1) 22.6(1.9) 27.6(2.4) 28.8(2.6) 34.5(3.3) 33.6(2.8)
20% 18.0(2.2) 15.2(1.7) 16.8(2.3) 18.4(2.5) 22.6(2.4) 21.8(2.5)
40% 12.0(2.1) 10.1(1.3) 10.4(2.1) 11.1(1.9) 14.1(2.0) 14.0(2.4)

4 100 10% 42.5(4.3) 41.5(2.5) 42.3(2.0)45.6(1.9) 44.6(2.9) 43.6(2.3)
20% 33.3(1.9) 29.0(2.2) 30.9(3.1) 34.9(3.0) 36.2(2.3) 35.4(1.6)
40% 21.4(2.7) 18.4(3.1) 18.7(2.4) 21.6(2.4) 23.9(2.0) 23.3(2.5)

400 10% 36.3(2.7) 34.0(1.7) 35.1(1.2) 36.3(1.4) 38.7(1.3) 39.1(1.2)
20% 25.5(2.0) 21.8(1.0) 23.8(1.5) 25.1(1.4) 28.4(1.7) 28.4(1.8)
40% 16.0(1.8) 12.8(0.8) 13.9(1.2) 14.7(1.3) 18.3(1.2) 18.2(1.2)

meta-average 25.6 21.4 22.6 24.1 28.6 28.0

Table 6.1:Transductive label error of six algorithms on the 24 synthetic datasets. The varying
parameters are feature noiseσ2

ε , rank(X0) = r, number of itemsn, and observed label
and feature percentageω. Each row is for a unique parameter combination. Each cell
shows the mean(standard deviation) of transductive label error (in percentage) over 10
random trials. The “meta-average” row is the simple average over all parameter settings
and all trials. The best algorithm within each parameter setting (row), as well as any
statistically indistinguishable algorithms via a two-tailed, pairedt-test at significance
levelα = 0.05, are marked in bold.

seem curious as FPC focuses exclusively on imputingX. We believe the fact that MC-b and MC-1

can use information inY to enhance feature imputation inX made them better than FPC+SVM.

110

σ2
ε r n ω MC-b MC-1 FPC+SVM EM1+SVM Mean+SVM

0.01 2 100 10% 0.84(0.04) 0.87(0.06) 0.88(0.06)1.01(0.12) 1.06(0.02)
20% 0.54(0.08) 0.57(0.06) 0.57(0.07)0.67(0.13) 1.03(0.02)
40% 0.29(0.06) 0.27(0.06) 0.27(0.06)0.34(0.03) 1.01(0.01)

400 10% 0.73(0.03) 0.72(0.04) 0.76(0.03) 0.79(0.07) 1.02(0.01)
20% 0.43(0.04) 0.46(0.05) 0.50(0.04) 0.45(0.04) 1.01(0.00)
40% 0.30(0.10) 0.22(0.04) 0.24(0.05) 0.21(0.04) 1.00(0.00)

4 100 10% 0.99(0.04) 0.96(0.03) 0.96(0.03)1.22(0.11) 1.05(0.01)
20% 0.77(0.05) 0.78(0.05) 0.77(0.04)0.92(0.07) 1.02(0.01)
40% 0.42(0.07) 0.40(0.03) 0.42(0.04) 0.49(0.04) 1.01(0.01)

400 10% 0.87(0.04) 0.88(0.03) 0.89(0.01) 1.00(0.08) 1.01(0.00)
20% 0.69(0.07) 0.67(0.04) 0.69(0.03) 0.66(0.03) 1.01(0.00)
40% 0.34(0.05) 0.34(0.03) 0.38(0.03)0.29(0.02) 1.00(0.00)

0.1 2 100 10% 0.92(0.05) 0.93(0.04) 0.93(0.05)1.18(0.10) 1.06(0.02)
20% 0.69(0.07) 0.72(0.06) 0.74(0.06) 0.94(0.07) 1.03(0.02)
40% 0.51(0.05) 0.52(0.05) 0.53(0.05) 0.67(0.08) 1.02(0.01)

400 10% 0.79(0.03) 0.80(0.03) 0.84(0.03) 0.96(0.07) 1.02(0.01)
20% 0.64(0.06) 0.64(0.06) 0.67(0.04) 0.73(0.07) 1.01(0.00)
40% 0.48(0.04) 0.45(0.05) 0.49(0.05) 0.57(0.07) 1.00(0.00)

4 100 10% 1.01(0.04) 0.97(0.03) 0.97(0.03)1.25(0.05) 1.05(0.02)
20% 0.84(0.03) 0.85(0.03) 0.85(0.03)1.07(0.06) 1.02(0.01)
40% 0.59(0.03) 0.61(0.04) 0.63(0.04) 0.80(0.09) 1.01(0.01)

400 10% 0.90(0.02) 0.92(0.02) 0.92(0.01) 1.08(0.07) 1.01(0.01)
20% 0.75(0.04) 0.77(0.02) 0.79(0.03) 0.86(0.05) 1.01(0.00)
40% 0.56(0.03) 0.55(0.04) 0.59(0.04) 0.66(0.06) 1.00(0.00)

meta-average 0.66 0.66 0.68 0.78 1.02

Table 6.2:Relative feature imputation error on the synthetic datasets. The algorithm Zero+SVM
is not shown because it by definition has relative feature imputation error 1.

Observation 2: MC-1 is the best for multi-label transductive classification, as suggested by Ta-

ble 6.1. Surprisingly, the feature imputation advantage of MC-b did not translate into classification,

and FPC+SVM took second place.

Observation 3: The same factors that affect standard matrix completion also affect classification

performance of MC-b and MC-1. As the tables show, everything else being equal, less feature noise

(smallerσ2
ε), lower rankr, more items, or more observed features and labels, reduce label error.

Beneficial combination of these factors (the6th row) produces the lowest label errors.

111

t MC-b MC-1 FPC+SVM MC-b MC-1 FPC+SVM

2 30.1(2.8) 22.9(2.2) 20.5(2.5)0.78(0.07) 0.78(0.04) 0.76(0.03)
10 26.5(2.0) 19.9(1.7) 23.7(1.7) 0.73(0.03) 0.72(0.04) 0.76(0.03)

transductive label error relative feature imputation error

Table 6.3: More tasks help matrix completion (ω = 10%, n = 400, r = 2, d = 20, σ2
ε = 0.01).

Matrix completion benefits from more tasks. We performed one additional synthetic data

experiment examining the effect oft (the number of tasks) on MC-b and MC-1, with the remaining

data parameters fixed atω = 10%, n = 400, r = 2, d = 20, andσ2
ε = 0.01. Table 6.3 reveals

that both MC methods achieve statistically significantly better label prediction and imputation

performance witht = 10 than with onlyt = 2 (as determined by two-samplet-tests at significance

level 0.05).

6.3.2 Music Emotions Data Experiments

In this task introduced by Trohidis et al. (2008), the goal is to predict which of several types

of emotion are present in a piece of music. The data4 consists ofn = 593 songs of a variety of

musical genres, each labeled with one or more oft = 6 emotions (i.e., amazed-surprised, happy-

pleased, relaxing-calm, quiet-still, sad-lonely, and angry-fearful). Each song is represented by

d = 72 features (8 rhythmic, 64 timbre-based) automatically extracted from a 30-second sound

clip.

We vary the percentage of observed entriesω = 40%, 60%, 80%. For eachω, we run 10 random

trials with different masksΩX, ΩY. For this dataset, we tuned onlyµ with CV, and setλ = 1.

The results are in Table 6.4. Most importantly, these results show that MC-1 is useful for this

real-world multi-label classification problem, leading to the best (or statistically indistinguishable

from the best) transductive error performance with 60% and 80% of the data available, and close

to the best with only 40%.

4Available at http://mulan.sourceforge.net/datasets.html

112

ω =40% 60% 80% Algorithm ω =40% 60% 80%
28.0(1.2) 25.2(1.0) 22.2(1.6) MC-b 0.69(0.05) 0.54(0.10) 0.41(0.02)
27.4(0.8) 23.7(1.6) 19.8(2.4) MC-1 0.60(0.05) 0.46(0.12) 0.25(0.03)
26.9(0.7) 25.2(1.6) 24.4(2.0) FPC+SVM 0.64(0.01) 0.46(0.02) 0.31(0.03)
26.0(1.1) 23.6(1.1) 21.2(2.3) EM1+SVM 0.46(0.09) 0.23(0.04) 0.13(0.01)
26.2(0.9) 23.1(1.2) 21.6(1.6) EM4+SVM 0.49(0.10) 0.27(0.04) 0.15(0.02)
26.3(0.8) 24.2(1.0) 22.6(1.3) Mean+SVM 0.18(0.00) 0.19(0.00) 0.20(0.01)
30.3(0.6) 28.9(1.1) 25.7(1.4) Zero+SVM 1.00(0.00) 1.00(0.00) 1.00(0.00)

transductive label error relative feature imputation error

Table 6.4: Performance on the music emotions data.

We also compared these algorithms against an “oracle baseline” (not shown in the table). In

this baseline, we give 100% features (i.e., no indices are missing fromΩX) and the training la-

bels inΩY to a standard SVM, and let it predict the unspecified labels. On the same random

trials, for observed percentageω = 40%, 60%, 80%, the oracle baseline achieved label error rate

22.1(0.8), 21.3(0.8), 20.5(1.8) respectively. Interestingly, MC-1 withω = 80% (19.8) is statisti-

cally indistinguishable from the oracle baseline.

6.3.3 Yeast Microarray Data Experiments

This dataset comes from a biological domain and involves the problem of Yeast gene functional

classification with data originally from Eisen et al. (1998). This dataset was previously studied in

the context of multi-label prediction by Elisseeff and Weston (2001).5 The dataset containsn =

2417 examples (Yeast genes) withd = 103 input features (results from microarray experiments).

Each gene belongs to one or more of 190 functional classes that form a tree-structured hierarchy.

As in Elisseeff and Weston (2001), we focus on predicting each gene’s membership in thet =

14 functional classes in the first level of the hierarchy. For this larger dataset, we omitted the

computationally expensive EM4+SVM methods, and tuned onlyµ for matrix completion while

fixing λ = 1.

Table 6.5 reveals that MC-b leads to statistically significantly lower transductive label error for

this biological dataset. Although not highlighted in the table, MC-1 is also statistically better than

5Available at http://mulan.sourceforge.net/datasets.html

113

ω =40% 60% 80% Algorithm ω =40% 60% 80%
16.1(0.3) 12.2(0.3) 8.7(0.4) MC-b 0.83(0.02) 0.76(0.00) 0.73(0.02)
16.7(0.3) 13.0(0.2) 8.5(0.4) MC-1 0.86(0.00) 0.92(0.00) 0.74(0.00)
21.5(0.3) 20.8(0.3) 20.3(0.3) FPC+SVM 0.81(0.00) 0.76(0.00) 0.72(0.00)
22.0(0.2) 21.2(0.2) 20.4(0.2) EM1+SVM 1.15(0.02) 1.04(0.02) 0.77(0.01)
21.7(0.2) 21.1(0.2) 20.5(0.4) Mean+SVM 1.00(0.00) 1.00(0.00) 1.00(0.00)
21.6(0.2) 21.1(0.2) 20.5(0.4) Zero+SVM 1.00(0.00) 1.00(0.00) 1.00(0.00)

transductive label error relative feature imputation error

Table 6.5: Performance on the yeast data.

the SVM methods in label error. In terms of feature imputation performance, the MC methods

are weaker than FPC+SVM. However, it seems simultaneously predicting the missing labels and

features appears to provide a large advantage to the MC methods. It should be pointed out that

all algorithms except Zero+SVM in fact have small but non-zero standard deviation on imputation

error, despite what the fixed-point formatting in the table suggests. For instance, withω = 40%,

the standard deviation is 0.0009 for MC-1, 0.0011 for FPC+SVM, and 0.0001 for Mean+SVM.

Again, we compared these algorithms to an oracle SVM baseline with 100% observed entries

in ΩX. The oracle SVM approach achieves label error of 20.9(0.1), 20.4(0.2), and 20.1(0.3) for

ω =40%, 60%, and 80% observed labels, respectively. Both MC-b and MC-1 significantly out-

perform this oracle under pairedt-tests at significance level 0.05. We attribute this advantage to

a combination of multi-label learning and transduction that is intrinsic to our matrix completion

methods.

6.4 Discussions and Future Work

We have introduced two matrix completion methods for multi-label transductive learning with

missing features, which outperformed several baselines. In terms of problem formulation, our

methods differ considerably from sparse multi-task learning (Obozinski et al., 2010; Argyriou

et al., 2010; Srebro and Shraibman, 2005) in that we regularize the feature and label matrix directly,

without ever learning explicit weight vectors. Our methods also differ from multi-label prediction

via reduction to binary classification or ranking (Tsoumakas et al., 2010), and via compressed

114

sensing (Hsu et al., 2009), which assumes sparsity in that each item has a small number of positive

labels, rather than the low-rank nature of feature matrices. These methods do not naturally allow

for missing features. Yet other multi-label methods identify a subspace of highly predictive features

across tasks in a first stage, and learn in this subspace in a second stage (Ji et al., 2008; Rai and

Daume, 2009). Our methods do not require separate stages. Learning in the presence of missing

data typically involves imputation followed by learning with completed data (Little and Rubin,

2002). Our methods perform imputation plus learning in one step, similar to EM on missing

labels and features (Ghahramani and Jordan, 1994), but the underlying model assumption is quite

different.

A drawback of our methods is their restriction to linear classifiers only. One future extension

is to explicitly map the columns of the partial feature matrix to a higher dimensional space via

a polynomial (or other) kernel, and apply our methods there (using a new feature matrix with

additional rows). Though such mapping proliferates the missing entries, we hope that the low-rank

structure in the kernelized matrix will allow us to recover labels that are nonlinear functions of the

original features.

115

Chapter 7

Dissimilarity in Semi-Supervised Learning

A common theme in this work is the development of new semi-supervised regularizersΩSSL

that can be plugged into a general risk minimization framework (see Section 1.1). As discussed

earlier, such a regularizer encodes assumptions related to unlabeled data. While some well known

regularizers like that of S3VMs are domain independent,ΩSSL can also encode domain knowledge

or other forms of weak supervision.

In this chapter, we introduce a semi-supervised classification algorithm that learns from both

dissimilarity and similarity information on labeled and unlabeled data (Goldberg et al., 2007).

That is, we focus on encoding a particular form of domain knowledge inΩSSL: label dissimilarity

between examples, which specifies that two examples probably have different class labels. We

assume we are given a set of dissimilarity pairsD = {(i, j)}. For (i, j) ∈ D, the two points

xi,xj may be both unlabeled, or one labeled and the other unlabeled. In either case we know they

probably do not belong to the same class. The dissimilarity knowledge can be noisy, however. Our

approach uses a novel graph-based encoding of dissimilarity that results in a convex problem, and

can handle both binary and multiclass classification.

As an example, consider the problem of predicting a person’s political view (left, right) from

his/her postings to online blogs. The fact that person B quotes person A and uses expletives near

the quote is a strong indication that B disagrees with A (Mullen and Malouf, 2006). Simple text

processing thus allows us to create a dissimilarity pair (A,B) to reflect our knowledge that A and B

probably have different political views.

Such dissimilarity knowledge has been extensively studied in semi-supervised clustering, intro-

duced in Section 1.2 (Basu et al., 2006; Grira et al., 2004; Van Gael and Zhu, 2007; Wagstaff et al.,

116

2001; Xing et al., 2002). Recall that in this setting, pairs are known as “cannot-links” meaning

they cannot be in the same cluster. These methods either directly modify the clustering algorithm,

or change the underlying distance metric. Our method is different in that it specifically applies to

classification, and works on discriminant functions. Dissimilarity as negative correlation on dis-

criminant functions has been discussed in relational learning with Gaussian processes (Chu et al.,

2006), but their formulation is non-convex and applies only to binary classification.

Our contribution is a convex method that incorporates both similarity and dissimilarity in semi-

supervised learning. Existing graph-based semi-supervised learning methods encodelabel simi-

larity knowledge, but they cannot handle dissimilarity easily, as we describe in Section 7.1. We

define a mixed graph to accommodate both, and define the analog of the graph Laplacian. We then

adapt manifold regularization (Belkin et al., 2006; Sindhwani et al., 2005a) to the mixed graph.

We extend our method to multiclass classification in Section 7.2, and present experimental results

in Section 7.3.

7.1 Dissimilarity in Binary Classification

In this work, we use the familiar setting where there aren items, of whichl are labeled:

{(x1, y1), · · · , (xl, yl),xl+1, · · · ,xn}. Existing graph-based methods cannot easily handle dissim-

ilarity, which is the requirement that two items have different labels. A small or zero weightwij

doesnot represent dissimilarity betweenxi andxj; in fact, a zero edge weight means no prefer-

ence at all. A negative weightwij < 0 does encourage a large difference betweenf(xi), f(xj),

but this creates a number of problems. Firstf needs to be bounded or{−∞,∞} will be a trivial

minimizer. Second, any negative weight inW will make the graph energy (2.13), and ultimately

the whole semi-supervised problem, non-convex. One has to resort to approximations (Ravikumar

and Lafferty, 2006; Wainwright et al., 2005; Weiss and Freeman, 2001). It is highly desirable to

keep the optimization problem convex.

Let us assumey ∈ {−1, 1} for binary classification. Our key idea is to encode dissimilarity

betweeni, j aswij(f(xi) + f(xj))
2. Note the summation. This term is zero iff(xi), f(xj) have

the same absolute value but opposite signs, thus encouraging different labels. The trivial case

117

f(xi) = f(xj) = 0 is avoided by competing terms in a risk minimization framework (see below).

The weightwij remains positive and represents the strength of our belief in this dissimilarity edge.

A mixed graph overn nodes has similarity and dissimilarity edges, and is represented by two

n × n matricesS andW . S specifies the edge type:sij = 1 if there is a similarity edge between

i, j; sij = −1 if there is a dissimilarity edge. Non-negative weightswij ≥ 0 represent the strength

of the edge, regardless of its type.

The graphs in existing graph-based semi-supervised learning methods can be viewed as having

an all-oneS and the sameW . Extending (2.13) to the mixed graph, we would like to minimize a

new penalty term
1

2

n∑
i,j=1

wij(f(xi)− sijf(xj))
2. (7.1)

It handles both similarity and dissimilarity, and is clearly convex inf . Furthermore, we can re-

write (7.1) in a quadratic form.

LetM = L + (1 − S) •W , whereL is the combinatorial graph Laplacian,1 is the all-one

matrix, and• is the Hadamard (elementwise) product. ThenM is positive semi-definite, and

f>Mf =
1

2

∑
i,j

wij(f(xi)− sijf(xj))
2.

Therefore, the matrixM is the mixed-graph analog of the (unnormalized) graph LaplacianL. Note

that if the graph has no dissimilarity edges, thenM = L.

We now show how to use this mixed graph to incorporate dissimilarity in the context of man-

ifold regularization (Belkin et al., 2006). Recall that manifold regularization generalizes graph-

based semi-supervised learning with a regularized risk minimization framework. LetH be the

Reproducing Kernel Hilbert Space (RKHS) of a kernelK. Manifold regularization obtains the

discriminant function by solving

min
f∈H

l∑
i=1

c(yi, f(xi)) + λ1‖f‖2H + λ2f
>Lf , (7.2)

wherec() is an arbitrary loss function. As before,f is the vector of discriminant function values

on then points. The first two terms in (7.2) are the same as in supervised learning, while the third

118

term is the additional regularization term for graph-based semi-supervised learning. Becausef is

defined inH now, it naturally extends to new test points. Noisy labels are tolerated by the loss

function.

The mixed-graph analog of (7.2) is

min
f∈H

l∑
i=1

c(yi, f(xi)) + λ1‖f‖2H + λ2f
>Mf . (7.3)

One can solve the optimization problem (7.3) directly. Alternatively one can view the second and

third terms together as regularization by a warped kernel, as proposed by Sindhwani et al. (2005a).

In this view, one defines a second RKHSH′, which has the same functions asH but a different

inner product:〈f, g〉H′ = 〈f, g〉H + f>Mg, whereM is some positive semi-definite matrix on the

n points. It follows that‖f‖2H′ = ‖f‖2H + f>M f . Thesupervisedproblem

min
f∈H′

l∑
i=1

c(yi, f(xi)) + λ1‖f‖2H′

is then equivalent to our semi-supervised learning problem (7.3), if we letM = λ2

λ1
M. Importantly,

it is shown in Sindhwani et al. (2005a) that the kernelK ′ for the warped RKHSH′ is related to the

originalK as follows:

k′(x, z) = k(x, z)− kx
>(I + MK)−1Mkz, (7.4)

wherekx = (k(x1,x), · · · , k(xn,x))>. This allows one to compute the warped kernelK ′ from

some original kernel (e.g., RBF)K and the mixed-graphM. Therefore, to solve (7.3), we can use

K ′ in conjunction with standard supervised kernel machine software.

7.2 Dissimilarity in Multiclass Classification

It is non-trivial to incorporate dissimilarity into multiclass classification.

1. One-vs-rest does not work with dissimilarity and semi-supervised learning. Suppose, for

example, that there are three classes, and thatxi,xj are two unlabeled points whose actual

labels are 2 and 3, respectively. Let(i, j) be specified as a dissimilarity edge. In the binary

119

sub-task of class 1 vs. all other classes, however, this dissimilarity edge should become a

similarity edge, sincexi,xj are both in the “rest” meta-class.

2. One-vs-one does not work either. For any particular one-vs-one sub-task (say class 1 vs.

2), it is not clear whether any unlabeled point (sayxj which actually has class 3) should

participate in the one-vs-one semi-supervised learning. If an unlabeled point does not have

one of the two labels, its inclusion will likely confuse learning.

3. Using the warped kernel (7.4) in a standard multiclass kernel machine (e.g., multiclass SVM)

does not work. Multiclass methods usek discriminant functionsf1, · · · , fk, one for each

class. The warped kernel incorrectly encourages all discriminant functions to honorf·(xi)+

f·(xj) = 0, which is unnecessary and potentially harmful.

We found all the above approaches indeed hurt accuracy in experiments not reported here.

We therefore need to redesign the multiclass objective in order to incorporate dissimilarity. For

simplicity we focus on multiclass SVMs, but our method works for other loss functions, too. There

are several formulations of multiclass SVMs (Crammer and Singer, 2002; Lee et al., 2004; Weston

and Watkins, 1998). For our purpose it is important to anchor the discriminant functions around

zero. For this reason we start with the formulation of Lee et al. (2004). Ak-class SVM is defined

as the optimization problem of finding functionsf(x) = (f1(x), · · · , fk(x)) that solve:

min 1
l

∑l
i=1 Li·(f(xi)− fi)+ + λ

∑k
j=1 ‖hj‖2H

s.t.
∑k

j=1 fj(xi) = 0, i = 1 · · · l, (7.5)

wherefj(x) = hj(x) + bj for j = 1 · · · k; hj ∈ H, which is the RKHS of some kernelK;

andbj ∈ R. There arel labeled training points.L is an l × k matrix, with thei-th row Li· =

(1, · · · , 1, 0, 1, · · · , 1) being an all-one vector except theyi-th element which is zero.yi is the given

label forxi. The vectorfi = (−1/(k− 1), · · · , 1,−1/(k− 1), · · ·)> is an encoding of the labelyi,

where the number 1 occurs in theyi-th position. The plus function is(z)+ = max(0, z). Intuitively,

(7.5) means thatf(xi) should have elements less than−1/(k − 1) for all “wrong classes.” It is

important to note that the elements offi andf(xi) sum to zero.

120

We exploit this sum-to-zero label encoding to represent dissimilarity in a convex multiclass

SVM objective. To simplify the notation, we will restrict ourselves to dissimilarity edges with

weight 1. Similarity edges can be added to the formulation easily by using terms like(f(xi) −

f(xj))
2 as in previous work (Sindhwani et al., 2005a; Zhu et al., 2003). Given a dissimilarity

edge(s, t) ∈ D, the key idea behind our multiclass dissimilarity formula comes from compar-

ing f(xs), f(xt) for the “good” and “bad” cases. The “good” case is whenf takes the nomi-

nal encodingf(xs) = fs and f(xt) = ft, and fs 6= ft. By definition fs and ft have the form

(−1/(k − 1), · · · , 1,−1/(k − 1), · · ·)>, where the elements with value 1 must be at different po-

sitions. Hencefs + ft is a vector with two kinds of elements:(k − 2)/(k − 1) and−2/(k − 1).

The “bad” case is whenfs = ft, so the elements with value 1 coincide. In this case the sumfs + ft

has two kinds of elements:2 and−2/(k − 1). Comparing “good” and “bad,” we do not want any

element inf(xs) + f(xt) to be larger than(k − 2)/(k − 1). We are therefore led to the following

dissimilarity objective: ∑
(s,t)∈D

k∑
j=1

(
fj(xs) + fj(xt)−

k − 2

k − 1

)p

+

, (7.6)

which is a sum of plus functions raised to thep-th power. The advantages of this definition are

that it is convex and simple, and it reduces to our binary SVM dissimilarity formulation when

p = 2, k = 2.

Following standard practices, one can combine (7.5) and (7.6) into a quadratic program:

min 1
l

∑l
i=1 Li·(f(xi)− fi)+ + λ1

∑k
j=1 ‖hj‖2H

+ λ2

|D|
∑

(s,t)∈D
∑k

j=1

(
fj(xs) + fj(xt)− k−2

k−1

)2
+

s.t.
∑k

j=1 fj(xi) = 0, i = 1 · · ·n, (7.7)

wheren is the sum of the number of unlabeled points that are involved in any dissimilarity edge,

plus the number of labeled pointsl. The representer theorem in Lee et al. (2004) needs to be

extended to include these unlabeled points (Zhu and Goldberg, 2006). In particular, the minimizing

functions for (7.7) have the form

fj(x) =
n∑

i=1

cijK(xi,x) + bj for j = 1, · · · , k (7.8)

121

The essential difference to supervised learning is that we now haven rather thanl representers

in (7.8).

We now rewrite the quadratic program in standard form. Note‖hj‖2H = c>·jKc·j, whereKst =

K(xs,xt) is then × n Gram matrix. We letp = 1 in the dissimilarity objective (7.6). This leads

to the primal form

min 1
l

∑l
i=1 Li·(f(xi)− fi)+ + λ1

∑k
j=1 c>·jKc·j

+ λ2

|D|
∑

(s,t)∈D
∑k

j=1

(
fj(xs) + fj(xt)− k−2

k−1

)
+

s.t.
∑k

j=1 fj(xi) = 0, i = 1 · · ·n. (7.9)

We define anl × k matrixY whosei-th row isf>i . Substituting (7.8) into (7.9), we obtain

min 1
l

∑j=1···k
i=1···l Lij(Ki·c·j + bj − Yij)+

+λ1

∑k
j=1 c>·jKc·j

+ λ2

|D|
∑j=1···k

(s,t)∈D
(
(Ks· + Kt·)c·j + 2bj − k−2

k−1

)
+

s.t.
∑

j=1···k(Ki·c·j + bj) = 0, i = 1 · · ·n. (7.10)

Finally we introduce anl× k matrixξ and a|D|× k matrixτ as auxiliary variables. With standard

reformulation techniques, we rewrite (7.10) as

min 1
l

∑j=1···k
i=1···l Lijξij + λ1

∑k
j=1 c>·jKc·j

+ λ2

|D|
∑j=1···k

(s,t)∈D τstj

s.t. Ki·c·j + bj − Yij ≤ ξij, i = 1 · · · l, j = 1 · · · k

ξij ≥ 0, i = 1 · · · l, j = 1 · · · k

(Ks· + Kt·)c·j + 2bj − k−2
k−1
≤ τstj,

τstj ≥ 0, (s, t) ∈ D, j = 1 · · · k∑
j=1···k(Ki·c·j + bj) = 0, i = 1 · · ·n, (7.11)

where the minimization is overc, b, ξ, τ . The quadratic program hasO(nk) variables and con-

straints.

122

7.3 Experiments

In the following sections, we empirically demonstrate the benefits of incorporating dissimilarity

in several classification tasks.

7.3.1 Standard Binary Datasets

We first experimented using the standard binary datasets g50c and mac-windows (Sindhwani

et al., 2005a).1 The dataset g50c contains 550 examples containing 50 dimensions, and we use

l = 50 labeled samples. Mac-windows has 1946 examples with 7511 dimensions, also withl = 50.

Ideally, we would like to use dissimilarity information based on domain knowledge. However,

without such expertise available to us, we performed “oracle experiments” in which we intro-

duce dissimilarity edges between randomly sampled data points with different labels. Because the

edges represent ground-truth dissimilarity, we disallow edges to touch labeled points, to prevent

the true labels propagating throughout the unlabeled data. Note that the actual label values are

not revealed—just the fact that the points should receivedifferent label classifications. Simulat-

ing domain knowledge in this manner is common for cannot-link clustering and related work. In

Section 7.3.3, we present results involving “real” dissimilarity based on domain-specific heuristics.

In this subsection, we introduce dissimilarity in the manifold regularization framework, dis-

cussed in Section 7.1. Following Sindhwani et al. (2005a), we start with a Gaussian base kernel

K and encode similarity usingk-nearest-neighbor graphs with Gaussian weights. Specifically, the

weight betweenkNN pointsxi andxj is e
||xi−xj ||

2

2σ2 , while all other weights are zero. We then re-

place some initial similarity edges with dissimilarity edges, as described above, and assign them

a relatively large weight (see below) to form the mixed-graph matrixM. Our experiments used

the resulting warped kernelK ′ in both SVM and RLS classifiers. The methods were implemented

using LIBSVM and a modified version of the code from Sindhwani et al. (2005a). We used the

same parameter values as these authors. These had been tuned in the earlier work with 5-fold cross

1Available athttp://vikas.sindhwani.org/manifoldregularization.html

123

validation using similarity only; our dissimilarity results could become even better with additional

parameter tuning.

To compare error rate on unlabeled data used during semi-supervised training, and on new

unseen test data, we divided each dataset into four disjoint folds. We then performed 4-fold cross

validation, using each fold as a test set once. The test set remains unseen throughout the learning

process. The remaining three folds comprised the training set (labeled and unlabeled data). For

each train/test split, we trained 10 different classifiers, each time using a different random choice of

labeled examples and dissimilarity edges between unlabeled examples. The same random choices

are made in all experimental runs, so we can compare results using paired statistical tests. We

report classification error rate on the unlabeled training set (in-sampleperformance) and unseen

test data (out-of-sampleperformance). Each number is averaged over 4 folds with 10 random trials

each. We address two questions in these standard binary dataset experiments:

How does the number of dissimilarity edges influence mean error rate?We experimented

first with varying the number of dissimilarity edges in the graph. Since we have high confidence in

the oracle edges, we assign each edge a weight equal to the maximal similarity edge weight (close

to 1 for our datasets). The baselines here use only similarity edges and are equivalent to LapSVM

and LapRLS (Sindhwani et al., 2005a).

Figure 7.1 shows the effect of changing the number of dissimilarity edges in the g50c and

mac-windows datasets. Figures 7.1(a,b,e,f) present mean SVM in-sample and out-of-sample error

rates using 50–12800 dissimilarity edges, as compared to the baseline with 0 dissimilarity edges.

Figures 7.1(c,d,g,h) display comparable results using an RLS classifier. In all plots, we show one

standard deviation above and below the error rate curve.

Figure 7.1 shows the positive impact of dissimilarity edges. The effect is greater for in-sample

performance; the in-sample points were directly involved in the kernel deformation, so this benefit

is to be expected. Our model also generalizes to out-of-sample test data. To measure statistical

significance, we performed two-tailed, pairedt-tests, comparing the results using each number of

dissimilarity edges to the baseline in each of the subplots. The circled settings are statistically

significant at the 0.05 level.

124
g5

0c

10
2

10
3

10
40

0.02

0.04

0.06

0.08

No dissim.
Dissim.

10
2

10
3

10
40

0.02

0.04

0.06

0.08

No dissim.
Dissim.

10
2

10
3

10
40

0.02

0.04

0.06

0.08

No dissim.
Dissim.

10
2

10
3

10
40

0.02

0.04

0.06

0.08

No dissim.
Dissim.

(a) SVM in-sample (b) SVM out-of-sample (c) RLS in-sample (d) RLS out-of-sample

m
ac

-w
in

do
w

s

10
2

10
3

10
40

0.05

0.10

No dissim.
Dissim.

10
2

10
3

10
40

0.05

0.10

No dissim.
Dissim.

10
2

10
3

10
40

0.05

0.10

No dissim.
Dissim.

10
2

10
3

10
40

0.05

0.10

No dissim.
Dissim.

(e) SVM in-sample (f) SVM out-of-sample (g) RLS in-sample (h) RLS out-of-sample

Figure 7.1:Varying the number of dissimilarity edges (x-axis) in the g50c dataset (a-d) and the
mac-windows dataset (e-h).y-axis is mean error rate across 4 folds with 10 random
trials each. Circled settings are statistically significantly better than the baseline.

While out-of-sample performance steadily improves in the mac-windows dataset (Figures 7.1(f,h)),

the g50c out-of-sample error benefits less with 6400 or 12800 dissimilarity edges (Figures 7.1(b,d)).

The increase in error rate corresponds with near-zero in-sample error rates, suggesting that the

learning algorithm is overfitting the dissimilarity edges. For this small dataset, nearly all of the un-

labeled points are touched by one or more of the 6400–12800 dissimilarity edges. (Mac-windows

is roughly four times as large, so this is not the case.) It seems the kernel becomes so warped

that it fits the g50c unlabeled points perfectly, but becomes less effective in classifying unseen

test points. Though we require onlyf(xi)f(xj) < 0 for xi andxj to be labeled differently, the

dissimilarity terms encouragef(xi) = −f(xj) for (i, j) ∈ D. We believe that this unnecessarily

stringent requirement is at the root of the observed overfitting when too many dissimilarity terms

are included. While the mechanics are still unclear, the inappropriate demand appears to become

overwhelming, and generalization error starts to increase.

What is the effect of the weight assigned to dissimilarity edges?In the preceding experi-

ments, we varied the number of dissimilarity edges, but fixed their weights to roughly 1. We next

125
g5

0c

10
0

10
1

10
20

0.05

0.10

No dissim.
Dissim.

10
0

10
1

10
20

0.05

0.10

No dissim.
Dissim.

10
0

10
1

10
20

0.05

0.10

No dissim.
Dissim.

10
0

10
1

10
20

0.05

0.10

No dissim.
Dissim.

(a) SVM in-sample (b) SVM out-of-sample (c) RLS in-sample (d) RLS out-of-sample

m
ac

-w
in

do
w

s

10
0

10
1

10
20

0.05

0.10

0.15

0.20

No dissim.
Dissim.

10
0

10
1

10
20

0.05

0.10

0.15

0.20

No dissim.
Dissim.

10
0

10
1

10
20

0.05

0.10

0.15

0.20

No dissim.
Dissim.

10
0

10
1

10
20

0.05

0.10

0.15

0.20

No dissim.
Dissim.

(e) SVM in-sample (f) SVM out-of-sample (g) RLS in-sample (h) RLS out-of-sample

Figure 7.2:Changing the weight of dissimilarity edges (x-axis) in the g50c dataset (a-d) and the
mac-windows dataset (e-h).y-axis is mean error rate across 4 folds with 10 random
trials each. Circled settings are statistically significantly better than the baseline.

fixed the number of edges at 200, and experimented with varying this weight by a range of multi-

plicative factors (Figure 7.2). This effectively places more or less confidence in the dissimilarity

edges, compared to the similarity edges. As before, the baseline does not use any dissimilarity.

We observe that in-sample performance tends to benefit from stronger weights on dissimilarity

edges (Figures 7.2(a,c,e,g)). The maximal decrease in mean error rate appears at a weight of

approximately 64, above which the error rate rises slightly. In both datasets, above a weight of

approximately 100, the out-of-sample error rate (Figures 7.2(b,d,f,h)) dramatically rises above the

baseline. This appears to be another case of overfitting—the kernel deformation relies too heavily

on the dissimilarity edges, and much useful similarity is being ignored. This results in good in-

sample performance, at the expense of being able to correctly classify new examples.

7.3.2 Multiclass Handwritten Digit Recognition Dataset

We next experimented with dissimilarity in multiclass classification as described in Section 7.2.

We used the standard multiclass datasetUSPS test, which contains 2007 examples with 256 dimen-

sions, each belonging to one of 10 classes. We used labeled set sizel = 50. This dataset was also

126

Dissim. Overall In-sample Out-of-sample

baseline 0 24.48 24.48 24.48
10 24.41 20.47 24.40
20 24.32 23.53 24.33
40 24.27 24.17 24.27
80 23.96 23.57 23.99

160 23.63 24.49 23.48
320 23.30 23.57 23.20

Table 7.1:Mean error rate with varying numbers of dissimilarity edges in the USPS dataset using
the multiclass SVM formulation.

used by Sindhwani et al. (2005a) and is available at the URL cited above. We solve the quadratic

program in (7.11) using the CPLEX QP solver. We experimented using varying numbers of oracle

dissimilarity edges. As before, our dissimilarity edges do not touch labeled points. We consider

those examples involved in dissimilarity to be the unlabeled set, and the remaining examples (ig-

nored during training) the unseen test set. We report mean error rates over 10 repeated trials using

different random labeled sets and different random unlabeled-unlabeled dissimilarity edges. The

λ1 parameter in (7.11) was optimized using mean test set performance without any dissimilarity.

Thus, we are making the baseline as strong as possible. We arbitrarily setλ2 = 1. Careful tuning

of this parameter could potentially lead to even better results.

Table 7.1 presents the overall, in-sample, and out-of-sample mean error rates using the 2-norm

SVM formulation (7.11) with a varying number of dissimilarity edges. Statistically significant

reductions in error rate, compared to the baseline, are indicated in bold face. The 2-norm multiclass

SVM formulation uses the dissimilarity edges effectively to lower overall and out-of-sample mean

error rate for all amounts of dissimilarity edges that we tested.

7.3.3 Predicting Political Affiliation Using Heuristic Dissimilarity Edges

Finally, we experiment with creating real (instead of oracle) dissimilarity edges based on

domain knowledge. We experimented with thepolitics.com discussion board text data from

127

Mullen and Malouf (2006). The task here is to predict the political affiliation of the users post-

ing messages on a political discussion board. We restrict ourselves to the 184 users withleft (96)

andright (88) political tendencies. The dataset contains the text of several thousand posts. Quot-

ing behavior is annotated in the dataset, so we know who quoted whom. Since we are interested

in classifying each user (as opposed to each post), we concatenated together all posts (excluding

quoted text) written by a user. We removed punctuation and common English words, and applied

stemming. We then formedterm frequency-inverse document frequency (TF-IDF)vectors (Man-

ning and Scḧutze, 1999) for each user using word types occurring 10 or more times, which resulted

in 8656 unique terms.

We created dissimilarity edges by the quoting behavior between users. In political discussion

boards, users tend to quote posts by users with differing political views (Mullen and Malouf, 2006).

For example, users often debate a controversial issue, quoting and disputing each others’ previous

claims. We declare disagreement between A and B if B quotes A, and the text adjacent to the quoted

text contains two or more question marks or exclamation marks, or two or more consecutive words

in all capital letters (i.e., Internet shouting2). Consider the following illustrative example taken

from the current dataset, where the userDixie has quoted and responded to the userdeshrubinator:

deshrubinator: “You were the one who thought it should be investigated last week.”

Dixie: No I didn’t, and I made it clear. You are insane! YOU are the one with NO

****ING RESPECT FOR DEMOCRACY!

We create a dissimilarity edge (A,B) if they have exhibited such seemingly hostile behavior

toward each other in more than 2 posts. This thresholding ensures that we have seen multiple

pieces of evidence for dissimilarity.

It is worth noting that our dissimilarity edges can be created using only simple text processing,

and they can be easily defined over unlabeled data (users with unknown political view). For this

experiment we do not include similarity edges, since standard text similarity measures will be more

sensitive to topics than opinions. Also, unlike the previous “oracle” experiments, here we include

2We also require these words to be more than three characters long to avoid false positives from common Internet
abbreviations like LOL (laugh out loud).

128

Classifier Base error rate SSL error rate ∆
SVM 45.67± 3.28 40.15± 4.95 5.5%
RLS 45.60± 3.94 37.99± 1.88 7.6%

Table 7.2:Mean error rates for SVM and RLS with and without dissimilarity edges on the politics
dataset. Dissimilarity is incorporated through warped kernels. Both differences are
statistically significant.

all discovered dissimilarity edges involving labeled and unlabeled data; the only edges discarded

are those between two labeled examples. Our scheme is realistic with noisy, “real” edges.

We used a graph of these dissimilarity edges to warp a linear kernel used in SVM and RLS

classification. We set the labeled set sizel = 50 (out of 184) and ran 10 repeated trials with

randomly selected labeled examples. On average, 40.7 examples are involved in the dissimilarity

edges. Table 7.2 reports the mean error rate on all unlabeled examples for SVM and Regularized

Least Squares (RLS) classifiers with (“SSL”) and without (“Base”) dissimilarity edges. The base-

line results use unwarped linear kernels. In both classifiers, we observe a statistically significant

reduction in error rate (p < 0.05 using a two-tailed, pairedt-test); it appears that the “real-world”

dissimilarity edges aid classification. Upon closer inspection, however, we also notice the im-

provement comes mostly from in-sample error reduction, and it does not generalize as well to

out-of-sample data like in previous experiments. We suspect this could be due to the high initial

error rate.

Finally, as a post-experiment study, we investigated how many of our heuristically derived

dissimilarity edges were actually consistent with the true labels. It turns out that 85 out of the 103

edges (83%) are in fact “true” dissimilarity edges. Thus, we have shown that, even if 17% of the

dissimilarity edges represent false domain knowledge, we can achieve a significant improvement

in overall error rate.

129

7.4 Conclusions

We presented a convex algorithm to encode dissimilarity in semi-supervised learning. We

demonstrated that when such dissimilarity domain knowledge is available, our algorithm can take

advantage of it and improve classification. The major advantage of our dissimilarity-encoding

formulations for binary and multiclass classification is convexity. However, they probably specify

the relation between the discriminant functionf at dissimilarity samplesxi andxj more than

necessary. For example, in the binary case we preferf(xi) = −f(xj), while ideally it is sufficient

to requiref(xi), f(xj) having opposite signs. Finding computationally efficient encodings for this

sufficient condition is a direction for future research.

130

Chapter 8

Regularization with Order Preferences

As in the preceding chapter, we now explore a new semi-supervised learning algorithm using

a novel regularizerΩSSL. In particular, we introduce a new regularizer for semi-supervised kernel

regression that encodes “order preferences”—beliefs about the relative order of the target values

for a pair of unlabeled instances (Zhu and Goldberg, 2007).

As a motivating example, consider the task of predicting real estate prices. The price of a

house varies significantly depending on its location and many other factors. However, a domain

expert may determine that, everything else being “roughly equal,” the featurenumber of bedrooms

determines the order of house prices. For instance, a 4-bedroom house is more expensive than a

3-bedroom one.

At first glance, it may appear that such knowledge can be enforced by a positive correlation

between the feature and the target. However, modeling such knowledge as positive correlation can

be difficult in non-linearkernel regression, because of the non-linear feature mapping. Besides,

in general a correlation may only hold for part of the range of the feature value, and it would be

inappropriate to force the correlation across the range. We would like a more general approach to

capture such knowledge.

Our method encodes such domain knowledge withorder preferenceson unlabeled examples.

That is, for all pairs of unlabeled examplesxi, xj satisfying the “roughly equal” condition, we

encode domain knowledge specifying theorder between their target valuesf(xi) andf(xj), even

though their actual target values are unknown. Respecting the domain knowledge amounts to

incorporating the order preferences into a kernel regression framework. When labeled data is

scarce, these order preferences should improve our regression model.

131

Another practical application of our approach is in predicting Internet file transfer rates based

on network properties like round trip time, available bandwidth, queuing delay, package loss rate,

and so on (Mizra et al., 2007). The features have intuitive impact on transfer rate, but the exact

relation is highly non-linear and unknown. We can, however, easily create (noisy) order prefer-

ences on unlabeled data using domain knowledge. In general, order preferences can encode certain

complex domain knowledge.

In the next few sections, we formulate the problem of learning with order preferences as a linear

program that can be solved efficiently. Experiments on benchmark datasets, sentiment analysis,

and housing price problems show that the proposed algorithm outperforms standard regression,

even when the order preferences are noisy.

8.1 Regression with Order Preferences

Let us formally define our regression problem. In addition to a labeled training set{(xi, yi)}li=1,

we assume that we are givenp order preferences between pairs of unlabeled examples. An order

preference is defined by a tuple(i, j, d, w), with the interpretation that we would likef(xi) −

f(xj) ≥ d. As discussed below, we encode it as a soft preference rather than a hard constraint.

The scalarw ≥ 0 is the weight (confidence) for the preference.

Obviously knowing the order preferences is much weaker than knowing the labels of the unla-

beled examples. In this sense the preferences are a form of weakly labeled data or side information.

We would like to use them to improve regression.

It is possible to represent order preferences as directed edges in a graph (Dekel et al., 2003),

where the edges represent asymmetric order information. However, it is worth noting that order

preferences can also encode similarity. For example, the two preferences(i, j, 0, w), (j, i, 0, w)

encodef(xi) = f(xj). More generally, the two preferences(i, j,−ε, w), (j, i,−ε, w) encode

closeness:|f(xi) − f(xj)| ≤ ε. It is also easy to encodea ≤ f(xi) − f(xj) ≤ b. As special

cases of order preferences, one can also encode unary preferencesf(xi) ≤ g(xi), f(xi) = g(xi),

or f(xi) ≥ g(xi), whereg is some given function. The unary preferences are closely related to the

work of Mangasarian et al. (2004), which adds them to kernel machines.

132

Our approach to add order preferences to kernel regression is to treat them as an additional

form of regularization. The standard risk minimization framework for kernel regression is

min
f∈H

∑l
i=1 c(xi, yi, f(xi)) + λΩ(‖f‖H), (8.1)

whereH is the Reproducing Kernel Hilbert Space (RKHS) induced by some kernel,c() is a loss

function for regression,λ is a weight parameter on the regularizer, andΩ() is a monotonic increas-

ing function.

We now define an additional regularization termr(x, f) based on the order preferences, which

plays the role ofΩSSL discussed earlier. Intuitively if the functionf satisfies all order preferences,r

should be zero; iff violates some,r increases. A natural choice is to use a shifted hinge function:

for order preference(i, j, d, w), the regularization term for this single preference isw max(d −

(f(xi) − f(xj)), 0). That is, it is zero if the preference is satisfied; otherwise it is the amount the

preference is violated, weighted byw. As a side note, we point out that if we have two preferences

(i, j,−ε, w), (j, i,−ε, w), this would form theε-insensitive loss (Smola and Schölkopf, 2004).

We define the regularization termr(x, f) as the sum of shifted hinge functions on all order

preferences:

r(x, f) =

p∑
q=1

wq max(dq − (f(xiq)− f(xjq)), 0). (8.2)

We note that order preferences have been used in ranking problems (Herbrich et al., 2000; Burges

et al., 2005; Yu et al., 2006; Chu and Ghahramani, 2005); in particular Joachims (2002) employed a

similar shifted hinge function for ranking. However, they have not been used in regression before.

In the end, our high-level optimization problem is

min
f∈H

∑l
i=1 c(xi, yi, f(xi)) + λ1Ω(‖f‖H) + λ2r(x, f). (8.3)

133

8.2 A Linear Program Formulation

To fully specify the above problem, we choose to use theε-insensitive lossc(x, y, f) = |y−f |ε
in support vector regression:

|y − f |ε =

 0 if |y − f | ≤ ε

|y − f | − ε otherwise.
(8.4)

We further chooseΩ(‖f‖H) to be a linear function, in this case the 1-norm of the dual pa-

rameters discussed below, resulting in 1-norm support vector machines (Bradley and Mangasarian,

1998; Bi et al., 2003; Zhu et al., 2004a). The formulation originates from generalized support

vector machines (Mangasarian, 2000). Such 1-norm support vector machines are comparable in

performance to the standard 2-norm support vector machines, but with the advantage that they can

be solved aslinear programs, which tends to be more efficient.

The solution can be characterized by a representer theorem (Kimeldorf and Wahba, 1971;

Scḧolkopf et al., 2001): The minimizerf∗ ∈ H admits the formf ∗(x) =
∑l+2p

i=1 αiK(xi, x), where

xi ranges from the labeled examples to the unlabeled examples involved in thep order preferences.

The proof uses the standard orthogonality argument, and is omitted for space consideration.

Let K(x,x1:l) denote the row vector of kernel values between a pointx and the labeled data

x1:l. We represent our functionf in dual form by

f(x) = K(x,xl:l)α + α0 (8.5)

whereα is a column vector of dual parameters, one for each labeled point;α0 is a bias scalar. This

amounts to approximating the representer theorem by setting dual parameters not on the labeled

data to zero for a sparse representation. Our linear-program regression problem is

min
α,α0

1
l

∑l
i=1 |yi − f(xi)|ε + λ1‖α‖1 +

λ2
1
p

∑p
q=1 wq max(dq − (f(xiq)− f(xjq)), 0), (8.6)

where‖α‖1 =
∑l

i=1 |αi| is the 1-norm ofα. The biasα0 is not regularized.

We transform (8.6) into a standard linear program by introducing auxiliary variables for the

three terms respectively. Let1 be the all-one vector,ξ anl-vector of slack variables,η anl-vector,

134

ν a p-vector,d the difference vector,w the weight vector,K(xi
1:p,x1:l) the p × l kernel matrix

between the first points in the order constraints and the labeled data, andK(xj
1:p,x1:l) the same

sized kernel matrix between the second points in the order constraints and the labeled data. Vector

inequalities are element-wise. With standard transform techniques, our linear program for kernel

regression with order preferences can be written as:

minα,α0,ξ,η,ν
1
l
1>ξ + λ11

>η + λ2

p
w>ν

s.t.− ξ − ε1 ≤ f1:l −K(x1:l,x1:l)α− α01 ≤ ξ + ε1

ξ ≥ 0

− η ≤ α ≤ η

(K(xi
1:p,x1:l)−K(xj

1:p,x1:l))α ≥ d− ν

ν ≥ 0.

(8.7)

This is a linear program with3l + p + 1 variables and5l + 2p constraints. The global optimal

solution can be found efficiently.

As noted above, our order preferences comprise another unlabeled-data-dependent regularizer

ΩSSL, like that of manifold regularization or S3VMs. These methods and our order preferences all

encode some domain knowledge other than labels. One might establish many order preferences

automatically generated by applying heuristics to the unlabeled data. For example, the fact that

higher bandwidth, shorter delay and less package loss tend to promote higher file transfer rates,

could be used to supply a large number of terms in the regularizer. Our order preferences may

contain slightly stronger information than labels, and we view them as filling in the continuum be-

tween supervised learning and semi-supervised learning. Note that it is possible to combine order

preferences with existing semi-supervised learning methods by adding the respective regularizer

terms together (with appropriate weights) to form a new regularizer.

8.3 Experiments

We demonstrate the benefit of order preferences with four groups of experiments. We imple-

mented our linear program (8.7) using CPLEX. All experiments ran quickly. Solving the LP for

each trial takes 0.2 to 0.5 seconds depending on the number of order preferences and unlabeled

135

data size. In all experiments,ε in theε-insensitive loss (8.4) was set to 0, and preference weights

w were set to 1. We use the acronym SSL for (8.7), and SVR for the corresponding standard 1-

norm support vector regression (i.e.,λ2 = 0). We also experimented with standard 2-norm support

vector regression using SVMlight (Joachims, 1999a), and the results were comparable to SVR and

not reported here. Since our focus is on the effect of order preference in improving SVR, we will

use SVR as our baseline in the experiments.

8.3.1 A Toy Example

First we use a toy example to illustrate order preferences. We constructed a polynomial function

of degree 3 as our target (the dotted line in Figure 8.1(a)). We randomly sampled three points (the

open circles) from the target function as training data and gave them to SVR. For this experiment

we used a linear kernel and setλ1 = 0. Since there were not enough training data points, SVR

produced a fit (the dashed line) through the training points but very different from the target.

We then randomly selected a pair of unlabeled points−0.15, 0.30. Note they did not coin-

cide with the training points. Without revealing the actual target values at these points, we con-

structed an order preference using their true order:(0.30,−0.15, 0, 1), or equivalentlyf(0.30) −

f(−0.15) ≥ 0. Note we setd = 0 so that the order preference specified their order but not the

true difference; hence it was weaker. We setw = 1. In Figure 8.1(a) the order preference is shown

at the lower left as a line linking the two unlabeled points (black dots). The point with the larger

value has a larger dot. SVR happened to violate the order preference. With the three training points

and this order preference, SSL produced a better fit (the solid line).

In Figure 8.1(b) we added more order preferences, generated similarly from random unlabeled

point pairs and their true order. Note some preferences were already satisfied by SVR. The SSL

function was further improved. We consistently observed such behavior in repeated random trials.

136

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

−4

−3

−2

−1

0

1

2

3

4

truth
SVR
SSL

(a) one order preference

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

−4

−3

−2

−1

0

1

2

3

4

truth
SVR
SSL

(b) ten order preferences

Figure 8.1: A toy example comparing SVR and SSL, showing the benefit of order preferences.

8.3.2 Benchmark Datasets

We experimented with five regression benchmark datasets (Boston, Abalone, Computer, Cal-

ifornia, Census),1 and report results on all of them. One difficulty in working with such standard

datasets is creating sensible order preferences on unlabeled data. Ideally the order preferences

would be prepared by experts with domain knowledge on the tasks. Lacking such experts, we had

1Available athttp://www.niaad.liacc.up.pt/∼ltorgo/Regression/DataSets.html.

137

to create simulated order preferences from the relation of true values on unlabeled points (more

details later; Note, however, we never give out the true values themselves). Therefore our results

on benchmark datasets should be viewed as “oracle experiments.” Nonetheless they are useful

indications of how well our regression would perform given such domain knowledge.

For each benchmark dataset, we normalized its input features to zero mean, unit variance.

For categorical features withk distinct values, we mapped them into indicator vectors of length

k. We used Radial Basis Function (RBF) kernelsk(x, x′) = exp(−σ‖x − x′‖2) for all datasets.

We used 5-fold cross validation to find the optimal RBF bandwidthσ, and SVR 1-norm weight

λ1. The parameters were tuned for SVR on a9 × 9 logarithmic grid in10−4 ≤ σ ≤ 104 and

10−4 ≤ λ1 ≤ 104. We simply fixedλ2 at 1. This is partly justified by the fact that in (8.6), the

‘shifted hinge function’ is on a similar scale to theε-insensitive loss; both incur a linear penalty

when violated. Tuningλ2 might produce better results than reported here, but with limited labeled

data (which has been used to tuneλ1 andσ for SVR already) it is hard to do.

All experiments were repeated for 20 random trials. Different algorithms shared the same

random trials so we could perform paired statistical tests. In each trial we split the data into three

parts: l labeled points,u unlabeled points that were used to generate order preferences, and test

points that were the rest of the dataset (see Table 8.1 Partition). Test points were unseen by either

algorithm during training. All results we report are test-set mean-absolute-error over the 20 trials.

Let t be the test set size. Test-set mean-absolute-error is defined as
∑

i∈test|yi − f(xi)|/t. We

address the following questions:

Can order preferences improve regression?We randomly sampled with replacementp =

1000 pairs (xi, xj) from theu unlabeled points. For each sampled pair, we generated an order

preference from the true target valuesyi, yj. Without loss of generality letyi ≥ yj. Our simulated

order preference was

f(xi)− f(xj) ≥ 0.5(yi − yj). (8.8)

Let us explain our order preferences. We could have created the ‘perfect’ order preferences with

the pair:f(xi)−f(xj) ≥ yi−yj andf(xi)−f(xj) ≤ yi−yj. They together encodef(xi)−f(xj) =

yi− yj. But in real tasks it might be difficult to know the exact differenceyi− yj, so we did not do

138

Dataset Partition Mean absolute error Improvement
dim l/u/test SVR SSL

Boston 13 20/200/286 4.780± 1.351 3.511± 0.376 27%
Abalone 8 30/1000/3147 1.856± 0.180 1.685± 0.102 9%
Computer 21 30/1000/7162 7.373± 3.445 5.364± 0.998 27%
California 8 60/1000/19580 58268± 4435 52120± 1843 11%
Census 16 60/1000/21724 24992± 1377 23241± 901 7%

Table 8.1:Benchmark data. ‘dim’ is the dimension of input features;l/u/test are labeled, unla-
beled and test set sizes respectively. SVR is 1-norm support vector regression. SSL is
semi-supervised regression with 1000 random order preferences sampled fromu. The
results are test-set mean-absolute-error and standard deviation over 20 random splits.
All differences between SVR and SSL are significant with a pairedt-test at the 0.01
level.

that. On the other hand, with inequality preferences we could have setf(xi)−f(xj) ≥ 0. It would

only encode order, without any information on the actual difference. But in real tasks one might

have some rough estimate of the difference, and (8.8) was meant to simulate this estimate. Table 8.1

compares the test-set mean-absolute-error of SVR and SSL. The differences on all datasets are

significant with a pairedt-test at the 0.01 level. We conclude that, with the order preferences (8.8),

SSL significantly improves regression performance over SVR.

What if we change the number of order preferencesp? One expects a larger gain with more

order preferencesp. We systematically variedp from 10 to 5000, keeping everything else the same

as in Table 8.1. Figure 8.2(a) shows that it was indeed the case. A very smallp sometimes hurts

SSL, making it worse than SVR. But asp grows larger SSL rapidly improves, and levels off at

aroundp = 100. This indicates that one needs only a moderate amount of order preferences to

enjoy the benefit.

What if we change the labeled data sizel? The benefit of order preferences is expected

to diminish with more labeled data. We fixed the number of order preferencesp = 1000, and

systematically variedl. As expected, Figure 8.2(b) shows that SSL is most useful whenl is small,

and the benefit reduces asl grows.

139

Boston Abalone Computer California Census

10
2

10
43

4

5

SVR
SSL

10
2

10
41.6

1.8

2

SVR
SSL

10
2

10
4

6

8

10

SVR
SSL

10
2

10
45

6

7x 10
4

SVR
SSL

10
2

10
42

2.5

3x 10
4

SVR
SSL

(a) The effect of the number of order preferencesp (x-axis).

10
1

10
2

10
32

4

6

8

SVR
SSL

10
1

10
2

10
31.5

2

2.5

SVR
SSL

10
1

10
2

10
30

5

10

15

SVR
SSL

10
1

10
2

10
34

6

8

10x 10
4

SVR
SSL

10
1

10
2

10
32

3

4

5x 10
4

SVR
SSL

(b) The effect of labeled data sizel (x-axis).

0 1 2
2

4

6

8

SVR
SSL

0 1 2
1.5

2

2.5

SVR
SSL

0 1 2
5

10

15

SVR
SSL

0 1 2
4

6

8

10x 10
4

SVR
SSL

0 1 2
2.2

2.4

2.6

2.8x 10
4

SVR
SSL

(c) The effect of the difference scaling factorβ (x-axis).

Figure 8.2:The effect of various parameters on SSL on the Benchmark data.y-axis is test-set
mean-absolute-error.

How precise do the order preferences need to be?Extending (8.8), one can define order

preferences asf(xi) − f(xj) ≥ β(yi − yj) whereβ controls how precise they are. As mentioned

earlier, β = 0 only supplies order information, and a largerβ estimates the differences. We

variedβ from 0 to 2 (over-estimate) for the experiments in Table 8.1. Figure 8.2(c) shows that

with only the order (β = 0) SSL already outperformed SVR. With a conservative estimate of the

differences (0 < β < 1) SSL was even better. However largerβ seems to be inferior. This might

be advantageous in practice, since one does not need to know the precise differences, and can err

on the safe side.

140

8.3.3 Sentiment Analysis in Movie Reviews

We next experimented with the real-world problem of sentiment analysis in movie reviews.

Given a movie review text documentx, we would like to predictf(x), the rating (e.g., ‘4 stars’)

given to the movie by the reviewer. We assume that by looking at the wording of unlabeled reviews,

one can determine that some movies will likely be rated higher than others (even though we do not

know their actual ratings). These are incorporated as order preferences. We worked on the “scale

dataset v1.0” with continuous ratings,2 which was prepared and first used by Pang and Lee (2005).

It contains four authors with 1770, 902, 1307, 1027 reviews respectively. For each author, we

variedl ∈ {30, 60, 120}, and letu = 500, p = 500. The remaining reviews were test examples.

Each experiment was repeated for 20 random trials. All reported results are test-set mean-absolute-

error. Each review document was represented as a word-presence vector, normalized to sum to 1.

We used a linear kernel, setλ1 = 10−7 andλ2 = 1.

As a proxy for expert knowledge, we used a completely separate “snippet dataset” also located

at the above URL. The snippet dataset is very different from the scale dataset: it contains single

punch line sentences (snippets) instead of full reviews; the snippets have binary positive/negative

labels instead of continuous ratings; it comes from different authors on different movies. We

trained a standard binary, linear-kernel SVM classifierg on thesnippetdata using SVMlight. We

then appliedg on random pairs of unlabeled movie reviewsxi, xj in thescaledataset. The order of

the continuous margin outputg(xi), g(xj) serves as our proxy for expert knowledge.3 Since this is

a very crude and noisy estimate, we created an order preference(i, j, 0, 1) only if g(xi)− g(xj) >

0.25, where 0.25 is an arbitrary threshold. Note we setd = 0 since we do not know the difference

in rating. Table 8.2 presents the results of our sentiment analysis experiments. As expected, SSL is

most useful whenl is small, and the gain over SVR gradually diminishes with largerl. SSL leads

to improvements in all cases, and the differences are significant (bold) with pairedt-tests at the

2Available athttp://www.cs.cornell.edu/people/pabo/movie-review-data/.
3Our use ofg simulates a layman (not an expert) reading two reviews and saying “the author liked this one more

than that one.” This layman does not have enough experience to predict the actual star ratings, but is able to tell that
one sounds more positive than the other.

141

Dataset l/u/test SVR SSL Improvement

Author (a)
30/500/1240 0.1383± 0.0072 0.1362± 0.0028 1.5%
60/500/1210 0.1323± 0.0042 0.1311± 0.0025 0.9%
120/500/1150 0.1224± 0.0042 0.1219± 0.0024 0.4%

Author (b)
30/500/372 0.1645± 0.0146 0.1540± 0.0046 6.4%
60/500/342 0.1514± 0.0063 0.1496± 0.0046 1.2%
120/500/282 0.1431± 0.0063 0.1416± 0.0062 1.0%

Author (c)
30/500/777 0.1405± 0.0163 0.1357± 0.0070 3.4%
60/500/747 0.1268± 0.0072 0.1258± 0.0038 0.8%
120/500/687 0.1150± 0.0048 0.1138± 0.0047 1.0%

Author (d)
30/500/497 0.1433± 0.0151 0.1350± 0.0052 5.8%
60/500/467 0.1366± 0.0104 0.1293± 0.0037 5.3%
120/500/407 0.1256± 0.0092 0.1226± 0.0038 2.4%

Table 8.2:Movie review sentiment analysis mean-absolute-error for each author. Statistically sig-
nificant improvements by SSL are highlighted in bold.

0.05 level in about half of the cases.4 We expect better order preferences from advanced natural

language processing (e.g., parsing) to bring larger improvements.

8.3.4 Predicting Housing Prices Using Heuristic Order Preferences

As a final real-world experiment, we played the role of real estate experts to carry out the sce-

nario introduced in the beginning of the chapter. We used the same California dataset in Table 8.1,

but this time with order preferences derived from domain knowledge instead of oracles.

The task is to predict the median house value for 20640 groups of houses throughout the state.

With other factors being roughly equal, we believe the value is largely determined by the number

of bedrooms. We decided that two groups are “roughly equal” if they are located within 25 miles

of each other (i.e., they are in the same community), their median house ages differ by at most 10

years, and they are inhabited by residents whose median income level differs by at most $1000.

We repeated the experimental setup in the benchmark section, and for each random trial, we

created approximately 1200 order preferences. Specifically, for all pairs of housing groups in the

4As a sanity check, we also experimented withwrong order preferences by intentionally flipping all preferences
(i, j, 0, 1) into (j, i, 0, 1). As expected, SSL with wrong order preferences becameworsethan SVR by 1% – 13% for
different authors atl = 120.

142

Dataset Partition Mean absolute error Improvement
dim l/u/test SVR SSL

California 8 60/1000/19580 58268± 4435 54664± 2521 6%

Table 8.3:Using “real-world” order preferences generated from domain knowledge. The improve-
ment is statistically significant.

labeled and unlabeled data that satisfy the “roughly equal” criteria, we created a preference that the

group with more bedrooms has a higher target value. We omitted preferences between two labeled

groups, since they are either redundant or incorrect. We setw = 1 andd = 0, and used the same

λ parameters as in the benchmark section. Note that the order preferences are created without any

knowledge of the actual target values, and that the relations we constructed are highly non-linear.

As seen in Table 8.3, the heuristic preferences led to a 6% reduction in test-set mean-absolute-

error in SSL (54664± 2521) compared to SVR (58268± 4435). The difference is statistically

significant with a pairedt-test at the 0.01 level.

This experiment demonstrates that order preferences with some noise can still be beneficial.

In fact, a post-experimental analysis of the created order preferences revealed that only 70% were

actually accurate (i.e., 30% of “roughly equal” housing group pairs donot have the predicted

relation based on bedrooms). We expect our method to extend well to new tasks (e.g., predicting

Internet file transfer rates) where large numbers of reasonably accurate order preferences can be

generated automatically.

8.4 Conclusions

We presented a novel semi-supervised kernel regression algorithm with order preferences, for-

mulated as a linear program. We showed that even with noisy, heuristic order preferences, the

regression performance is improved. Our algorithm can be easily extended beyond regression.

For example, one future direction is to apply order preferences to ordinal classification (Chu and

Keerthi, 2005).

143

Chapter 9

Graph-Based Semi-Supervised Learning for
Sentiment Categorization

Finally, we conclude Part III by considering the application of graph-based semi-supervised

learning to a problem in the natural language processing area of sentiment analysis (Goldberg and

Zhu, 2006). Sentiment analysis of text documents has received considerable attention recently;

see the recent survey by Pang and Lee (2008). Unlike traditional text categorization based on

topics, sentiment analysis attempts to identify the subjective sentiment expressed (or implied) in

documents, such as consumer product reviews, movie reviews, or even online discussion about

politics. This line of research is becoming increasing popular due to its high potential impact on

consumers, product manufacturers, the entertainment industry, and government.

In this work, we specifically address the sentiment analysis task of rating inference proposed

by Pang and Lee (2005). Given a set of documents (e.g., movie reviews) and accompanying ratings

(e.g., “4 stars”), the task calls for inferring numerical “star” ratings for unlabeled documents based

on the perceived sentiment expressed by their text. In particular, we are interested in the transduc-

tive setting where labeled data is scarce, but we already have access to the unlabeled reviews for

which we care to make predictions. Labeled data may come from a structured review site where

review authors are required to assign a star rating. However, the Web is filled with blog posts

offering opinions on movies or products. Such posts rarely contain a numerical rating, but it may

be useful in practice to be able to assign such a number for analysis of public opinion as a whole.

In this work, we demonstrate that unlabeled reviews can significantly improve rating-inference

performance. This chapter contains three contributions:

144

• We apply graph-based semi-supervised learning to the novel domain of sentiment analysis;

• We design a special graph that encodes our assumptions for rating-inference problems, in-

cluding:

1. Similar reviews tend to have similar ratings;

2. The ratings of labeled reviews should be respected;

3. If another learning algorithm exists for the task, that algorithm’s rating predictions

should be considered, too;

4. We have different confidence levels in labeled and unlabeled data.

The graph is discussed in Section 9.1, and the associated optimization problem in Sec-

tion 9.2;

• We show the benefit of semi-supervised learning for rating inference with extensive experi-

mental results in Section 9.3.

The semi-supervised rating-inference problem is formalized as follows. There aren review

documentsx1 . . . xn, each represented by some standard feature representation (e.g., word-presence

vectors). Without loss of generality, let the firstl ≤ n documents be labeled with ratingsy1 . . . yl ∈

C. The remaining documents are unlabeled (transductive setting). The set of numerical ratings

areC = {c1, . . . , cC}, with c1 < . . . < cC ∈ R. For example, a one-star to four-star movie

rating system hasC = {0, 1, 2, 3}. We seek a functionf : x 7→ R that gives a continuous rating

f(x) to a documentx. Classification is done by mappingf(x) to the nearest discrete rating inC.

Note this is ordinal classification, which differs from standard multi-class classification in thatC

is endowed with an order. In the following we use “review” and “document,” “rating” and “label”

interchangeably.

We make two assumptions:

1. We are given asimilarity measurewij ≥ 0 between documentsxi andxj. wij should be

computable from features, so that we can measure similarities between any documents, in-

cluding unlabeled ones. A largewij implies that the two documents tend to express the

145

same sentiment (i.e., rating). We experiment withpositive-sentence percentage(PSP) based

similarity (Pang and Lee, 2005) and mutual-information modulated word-vector cosine sim-

ilarity. Details can be found in Section 9.3.

2. Optionally, we are given numerical rating predictionsŷl+1, . . . , ŷn on the unlabeled docu-

ments from a separate learner, for instanceε-insensitive support vector regression (Joachims,

1999a; Smola and Schölkopf, 2004), as used by Pang and Lee (2005). This acts as an extra

knowledge source for our semi-supervised learning framework to improve upon. We note

our framework is general and works without the separate learner, too.

9.1 A Graph for Sentiment Categorization

We now describe our graph for the semi-supervised rating-inference problem. We do this piece

by piece with reference to Figure 9.1. Our undirected graphG = (V, E) has2n nodesV , and

weighted edgesE among some of the nodes.

• Each document is a node in the graph (open circles, e.g.,xi andxj). The true ratings of these

nodesf(x) are unobserved. This is true even for the labeled documents because we allow

for noisy labels. Our goal is to inferf(x) for the unlabeled documents.

• Each labeled document (e.g.,xj) is connected to an observed node (dark circle) whose value

is the given ratingyj. The observed node is a “dongle” since it only connects toxj. As

we point out later, this serves to pullf(xj) towardsyj. The edge weight between a labeled

document and its dongle is a large numberM . M represents the influence ofyj: if M →∞

thenf(xj) = yj becomes a hard constraint.

• Similarly each unlabeled document (e.g.,xi) is also connected to an observed dongle node

ŷi, whose value is the prediction of the separate learner. Therefore we also require thatf(xi)

is close toŷi. This is a way to incorporate multiple learners in general. We set the weight

between an unlabeled node and its dongle arbitrarily to 1 (the weights are scale-invariant

146

yi
^ xi

xj

yj

labeled
reviews

unlabeled
reviews

1

a wij

b w

k’ neighbors

k neighbors

ij

M

Figure 9.1: The graph for semi-supervised rating inference.

otherwise). As noted earlier, the separate learner is optional: we can remove it and still carry

out graph-based semi-supervised learning.

• Each unlabeled documentxi is connected tokNNL(i), its k nearestlabeled documents.

Distance is measured by the given similarity measurew. We wantf(xi) to be consistent

with its similar labeled documents. The weight betweenxi andxj ∈ kNNL(i) is a · wij.

• Each unlabeled document is also connected tok′NNU(i), itsk′ nearestunlabeled documents

(excluding itself). The weight betweenxi andxj ∈ k′NNU(i) is b ·wij. We also wantf(xi)

to be consistent with its similar unlabeled neighbors. We allow potentially different numbers

of neighbors (k andk′) and different weight coefficients (a andb) for unlabeled-labeled and

unlabeled-unlabeled edges. These parameters are set by cross validation in experiments.

The last two kinds of edges are the key to semi-supervised learning: They connect unobserved

nodes and force ratings to be smooth throughout the graph, as we discuss in the next section.

9.2 Applying the Harmonic Function

With the graph defined, we can apply any of the algorithms discussed in Section 2.5 to carry

out semi-supervised learning. The basic idea is that our rating functionf(x) should besmooth

147

with respect to the graph. LetL = 1 . . . l andU = l + 1 . . . n be labeled and unlabeled review

indices, respectively. With the graph in Figure 9.1, the objective to minimize can be written as∑
i∈L

M(f(xi)− yi)
2 +

∑
i∈U

(f(xi)− ŷi)
2

+
∑
i∈U

∑
j∈kNNL(i)

awij(f(xi)− f(xj))
2 +

∑
i∈U

∑
j∈k′NNU (i)

bwij(f(xi)− f(xj))
2. (9.1)

To understand the role of the parameters, we defineα = ak + bk′ andβ = b
a

so that (9.1) can be

written as∑
i∈L

M(f(xi)− yi)
2 +

∑
i∈U

[
(f(xi)− ŷi)

2

+
α

k + βk′

(∑
j∈kNNL(i)

wij(f(xi)− f(xj))
2 +

∑
j∈k′NNU (i)

βwij(f(xi)− f(xj))
2
)]

. (9.2)

Thus β controls the relative weight between labeled neighbors and unlabeled neighbors;α is

roughly the relative weight given to semi-supervised (non-dongle) edges.

We now can minimize the objective using techniques based on the harmonic function closed-

form solution (2.15). Defining ann× n matrix Ŵ ,

Ŵij =


0, i ∈ L

wij, j ∈ kNNL(i)

βwij, j ∈ k′NNU(i).

(9.3)

Let

W = max(Ŵ , Ŵ>) (9.4)

be the symmetrized matrix andD the corresponding diagonal degree. The graph Laplacian matrix

is then∆ = D −W . Let C be a diagonal dongle weight matrix with

Cii =

 M, i ∈ L

1, i ∈ U
. (9.5)

Let

f = (f(x1), . . . , f(xn))> (9.6)

y = (y1, . . . , yl, ŷl+1, . . . , ŷn)> . (9.7)

148

We can rewrite (9.1) as

(f − y)>C(f − y) +
α

k + βk′
f>∆f . (9.8)

This is a quadratic function inf . Setting the gradient to zero, we find the minimum loss is obtained

using

f =

(
C +

α

k + βk′
∆

)−1

Cy. (9.9)

BecauseC has strictly positive eigenvalues, the inverse is well defined.

Before moving on to experiments, we note an interesting connection to Pang and Lee’smetric

labelingmethod (2005). Consider a special case of our loss function (9.1) whenb = 0 andM →

∞. It is easy to show for labeled nodesj ∈ L, the optimal value is the given label:f(xj) = yj.

Then the optimization problem decouples into a set of one-dimensional problems, one for each

unlabeled nodei ∈ U : Lb=0,M→∞(f(xi)) =

(f(xi)− ŷi)
2 +

∑
j∈kNNL(i)

awij(f(xi)− yj)
2. (9.10)

The above problem is easy to solve. It corresponds exactly to the metric labeling method, except we

use squared difference while Pang and Lee (2005) used absolute difference. Indeed in experiments

comparing the two (not reported here), their differences are not statistically significant. From this

perspective, our semi-supervised learning method is an extension with interacting terms among

unlabeled data.

9.3 Experiments

We performed experiments using the movie review documents and accompanying 4-class (C =

{0, 1, 2, 3}) labels found in the “scale dataset v1.0”1 developed and first used by Pang and Lee

(2005). We chose 4-class instead of 3-class labeling because it is harder. The dataset is divided

into four author-specific corpora, containing 1770, 902, 1307, and 1027 documents. We ran ex-

periments individually for each author. Each document is represented as a{0, 1} word presence

indicator vector, normalized to sum to 1.
1Available athttp://www.cs.cornell.edu/people/pabo/movie-review-data/.

149

We systematically vary labeled set size|L| ∈ {0.9n, 800, 400, 200, 100, 50, 25, 12, 6} to ob-

serve the effect of semi-supervised learning.|L| = 0.9n is included to match 10-fold cross valida-

tion (Pang and Lee, 2005). For each|L| we run 20 trials where we randomly split the corpus into

labeled and test (unlabeled) sets. The same random splits are used for all methods, allowing paired

t-tests for statistical significance. All results we report are average test set accuracy.

We compare our graph-based semi-supervised method with two previously studied methods:

regression and metric labeling (Pang and Lee, 2005).

9.3.1 Regression

We ran linearε-insensitive support vector regression using SVMlight (Joachims, 1999a) with all

default parameters. The continuous prediction on a test document is discretized for classification.

Regression results are reported under the heading “reg.” Note this method does not use unlabeled

data for training.

9.3.2 Metric labeling

We ran Pang and Lee’s metric labeling method (2005), using SVM regression as the initial

label preference function. The method requires an item-similarity function, which is equivalent to

our similarity measurewij. Among others, we experimented with PSP-based similarity. Metric

labeling results with this measure are reported under “reg+PSP.” Note this method does not use

unlabeled data for training either.

PSPi is defined as the percentage of positive sentences in reviewxi (Pang and Lee, 2005). The

similarity between reviewsxi, xj is the cosine of the angle between the vectors(PSPi, 1−PSPi) and

(PSPj, 1 − PSPj). Positive sentences are identified using a binary classifier trained on a separate

“snippet dataset” located at the same URL as above. The snippet dataset contains 10662 short

quotations taken from movie reviews appearing on therottentomatoes.com Web site. Each

snippet is labeled positive or negative based on the rating of the originating review. Pang and Lee

(2005) trained a Näıve Bayes classifier. They show that PSP is a (noisy) measure for comparing

reviews—reviews with low ratings tend to receive low PSP scores, and those with higher ratings

150

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

fine−grain rating

m
ea

n
an

d
st

an
da

rd
 d

ev
ia

tio
n

of
 P

S
P

Positive−sentence percentage (PSP) statistics

Author (a)
Author (b)
Author (c)
Author (d)

Figure 9.2:Positive Sentence Percentage (PSP) for reviews expressing each fine-grain rating. We
identified positive sentences using SVM instead of Naı̈ve Bayes, but the trend is qual-
itatively the same as in previous work (Pang and Lee, 2005).

tend to get high PSP scores. Thus, two reviews with a high PSP-based similarity are expected

to have similar ratings. For our experiments we derived PSP measurements in a similar manner,

but using a linear SVM classifier. We observed the same relationship between PSP and ratings

(Figure 9.2).

The metric labeling method has parameters (the equivalent ofk, α in our model). Pang and

Lee (2005) tuned them on a per-author basis using cross validation but did not report the optimal

parameters. We were interested in finding a single set of parameters for use with all authors. In

addition, since we varied labeled set size, it is convenient to tunec = k/|L|, the fraction of labeled

reviews used as neighbors, instead ofk. We then used the samec, α for all authors at all labeled

set sizes in experiments involving PSP. In an attempt to reproduce the findings of Pang and Lee

151

reg+PSP reg+PSP
Author reg (shared) (specific)

(a) 0.592 0.592 0.592(c = 0.05, α = 0.01)
(b) 0.501 0.498 0.496(c = 0.05, α = 3.50)
(c) 0.592 0.589 0.593(c = 0.15, α = 1.50)
(d) 0.496 0.498 0.500(c = 0.05, α = 3.00)

Table 9.1:Accuracy using shared (c = 0.2, α = 1.5) versus author-specific parameters, with
|L| = 0.9n.

(2005), we tunedc, α with cross validation. Tuning ranges arec ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3}

andα ∈ {0.01, 0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0}. The optimal parameters we found are

c = 0.2 andα = 1.5. (In section 9.3.4, we discuss an alternative similarity measure, for which we

retuned these parameters.)

Note that we tuned a single set of shared parameters for all authors, whereas Pang and Lee

(2005) tunedk andα on a per-author basis. To demonstrate that our implementation of metric

labeling produces comparable results, we also determined the optimal author-specific parameters.

Table 9.1 shows the accuracy obtained over 20 trials with|L| = 0.9n for each author, using

SVM regression, reg+PSP using sharedc, α parameters, and reg+PSP using author-specificc, α

parameters (listed in parentheses). The best result in each row of the table is highlighted in bold.

We also show in bold any results that cannot be distinguished from the best result using a paired

t-test at the 0.05 level.

Pang and Lee (2005) found that their metric labeling method, when applied to the 4-class data

we are using, was not statistically better than regression, though they observed some improvement

for authors (c) and (d). Using author-specific parameters, we obtained the same qualitative result,

but the improvement for (c) and (d) appears even less significant in our results. Possible explana-

tions for this difference are the fact that we derived our PSP measurements using an SVM classifier

instead of an NB classifier, and that we did not use the same range of parameters for tuning. The

optimal shared parameters produced almost the same results as the optimal author-specific param-

eters, and were used in subsequent experiments.

152

9.3.3 Semi-Supervised Learning

We used the same PSP-based similarity measure and the same shared parametersc = 0.2, α =

1.5 from our metric labeling experiments to perform graph-based semi-supervised learning. The

results are reported as “SSL+PSP.” SSL has three additional parametersk′, β, andM . Again we

tunedk′, β with cross validation. We considered the following tuning ranges:k′ ∈ {2, 3, 5, 10, 20}

andβ ∈ {0.001, 0.01, 0.1, 1.0, 10.0}. The optimal parameters arek′ = 5 andβ = 1.0. These were

used for all authors and for all labeled set sizes. Note that unlikek = c|L|, which decreases as the

labeled set size decreases, we letk′ remain fixed for all|L|. We setM arbitrarily to a large number

108 to ensure that the ratings of labeled reviews are respected.

9.3.4 Alternate Similarity Measures

In addition to using PSP as a similarity measure between reviews, we investigated several

alternative similarity measures based on the cosine of word vectors. Among these options were

the cosine between the word vectors used to train the SVM regressor, and the cosine between word

vectors containing only words with high (top 1000 or top 5000) mutual information values. The

mutual information is computed with respect to the positive and negative classes in the 10662-

document snippet dataset. Finally, we experimented with using as a similarity measure the cosine

between word vectors containing all words, each weighted by its mutual information. We found

this measure to be the best among the options tested in pilot trial runs using the metric labeling

algorithm. Specifically, we scaled the mutual information values such that the maximum value

was one. Then, we used these values as weights for the corresponding words in the word vectors.

For words in the movie review dataset that did not appear in the snippet dataset, we used a default

weight of zero (i.e., we excluded them. We experimented with setting the default weight to one,

but found this led to inferior performance.)

We repeated the experiments described in sections 9.3.2 and 9.3.3 with the only difference be-

ing that we used the mutual-information weighted word vector similarity instead of PSP whenever

a similarity measure was required. We repeated the tuning procedures described in the previous

153

sections. Using this new similarity measure led to the optimal parametersc = 0.1, α = 1.5, k′ = 5,

andβ = 10.0. The results are reported under “reg+WV” and “SSL+WV,” respectively.

9.3.5 Results

We tested the five algorithms for all four authors using each of the nine labeled set sizes. The

results are presented in table 9.2. Each entry in the table represents the average accuracy across 20

trials for an author, a labeled set size, and an algorithm. The best result in each row is highlighted

in bold. Any results in the same row that cannot be distinguished from the best result using a paired

t-test at the 0.05 level are also bold.

The results indicate that the graph-based semi-supervised learning algorithm based on PSP

similarity (SSL+PSP) achieved better performance than all other methods in all four author corpora

when only 200, 100, 50 or 25 labeled documents were available. In 15 out of these 16 learning

scenarios, the unlabeled set accuracy by the SSL+PSP algorithm was significantly higher than all

other methods. While accuracy generally degraded as we trained on less labeled data, the decrease

for the SSL approach was less severe through the mid-range labeled set sizes. SSL+PSP remains

among the best methods with only 12 or 6 labeled examples.

Note that, as discussed previously, an SSL algorithm like this one may be sensitive to graph

weights (i.e., the similarity measure used to form the graph). In the experiments where we used

mutual-information weighted word vector similarity (reg+WV and SSL+WV), we notice that

reg+WV remained on par with reg+PSP at high labeled set sizes, whereas SSL+WV appears sig-

nificantly worse in most of these cases. It is clear that PSP is the more reliable similarity measure.

SSL exploits similarity more than metric labeling (i.e., SSL’s graph is denser), so it is not surprising

that SSL’s accuracy would suffer more with an inferior similarity measure.

Interestingly, our SSL approach fared less well with large labeled set sizes. We believe this is

due to two factors: a) the baseline SVM regressor trained on a large labeled set can achieve fairly

high accuracy for this difficult task without considering pairwise relationships between examples;

b) PSP similarity is not accurate enough. Gain in variance reduction achieved by the SSL graph is

offset by its bias when labeled data is abundant.

154

PSP word vector
|L| regression reg+PSP SSL+PSP reg+WV SSL+WV

A
ut

ho
r

(a
)

1593 0.592 0.592 0.546 0.592 0.544
800 0.553 0.554 0.534 0.553 0.517
400 0.522 0.525 0.526 0.522 0.497
200 0.494 0.498 0.521 0.494 0.472
100 0.463 0.477 0.511 0.462 0.450
50 0.439 0.458 0.499 0.438 0.429
25 0.408 0.421 0.465 0.400 0.404
12 0.411 0.445 0.451 0.341 0.410
6 0.391 0.360 0.404 0.336 0.390

A
ut

ho
r

(b
)

811 0.501 0.498 0.481 0.503 0.473
800 0.501 0.497 0.478 0.503 0.474
400 0.471 0.471 0.465 0.471 0.450
200 0.447 0.449 0.452 0.447 0.429
100 0.415 0.423 0.443 0.415 0.397
50 0.388 0.396 0.434 0.387 0.376
25 0.373 0.380 0.418 0.364 0.367
12 0.352 0.388 0.396 0.318 0.351
6 0.353 0.364 0.363 0.308 0.353

A
ut

ho
r

(c
)

1176 0.592 0.589 0.566 0.594 0.514
800 0.579 0.585 0.559 0.579 0.509
400 0.550 0.556 0.544 0.551 0.491
200 0.513 0.519 0.532 0.513 0.479
100 0.484 0.495 0.521 0.484 0.466
50 0.462 0.476 0.504 0.461 0.456
25 0.459 0.472 0.484 0.439 0.454
12 0.434 0.456 0.472 0.351 0.433
6 0.412 0.423 0.443 0.358 0.413

A
ut

ho
r

(d
)

924 0.496 0.498 0.495 0.499 0.490
800 0.500 0.501 0.495 0.504 0.483
400 0.474 0.478 0.486 0.477 0.463
200 0.459 0.459 0.468 0.459 0.445
100 0.444 0.445 0.460 0.444 0.437
50 0.429 0.431 0.445 0.429 0.428
25 0.411 0.411 0.425 0.400 0.409
12 0.388 0.405 0.404 0.330 0.388
6 0.375 0.366 0.389 0.329 0.370

Table 9.2:20-trial average unlabeled set accuracy for each author across different labeled set sizes
and methods. In each row, we list in bold the best result and any results that cannot be
distinguished from it with a pairedt-test at the 0.05 level.

155

9.4 Conclusions

Companies, politicians, and organizations can benefit from being able to automatically assign

accurate ratings to reviews of products and other items discussed online. Reducing the cost and

manual labeling effort required to reach acceptable accuracy is therefore of great practical value.

We demonstrated the benefit of using unlabeled data for the sentiment analysis task of rating in-

ference. There are several directions to improve the work, though, including better text processing

and similarity measures. From the perspective of semi-supervised learning, there are two main

lines of future research: 1. Our method is transductive: new reviews must be added to the graph

before they can be classified. An extension to the inductive learning setting is possible using the

approach of, e.g., Sindhwani et al. (2005a). 2. Develop models for semi-supervised cross-domain

sentiment analysis (e.g., train on movie reviews, but test on product reviews). In this setting, la-

beled data is only available in a source domain, and the goal is to use unlabeled (source and) target

data to improve domain transfer.

Part IV

Conclusion

156

157

Chapter 10

Summary and Future Work

10.1 Key Contributions

This dissertation begins to solve several open problems in SSL, where the goal is to augment

a little labeled data with large amounts of unlabeled data to improve classification or regression

performance. Labeled data can be time-consuming and costly to obtain, often requiring annotators

with particular expertise. Unlabeled data is all around us, though, in the form of Web pages,

news articles, query logs, sound recordings, large digital photo collections, and so on. The key

question in semi-supervised learning research is how to extract knowledge and practical value out

of unlabeled resources in a wide range of learning environments.

We propose solutions to several of the large challenges in this area by introducing the setting

of online SSL and efficient algorithms that can learn effectively within this regime. Table 10.1

summarizes the contributions in online SSL from Part II. Both Online Manifold Regularization

(Chapter 3) and OASIS (Chapter 4) are able to achieve constant time and space complexity per time

step through sparse approximations without significant degradations in learner accuracy. The two

methods make very different assumptions about the underlying data, however. The first assumes

a low-dimensional manifold or graph structure upon which nearby examples possess the same

labels, and the second assumes the classes are separated by a low-density gap. The two online

approaches also differ in their basic mode of learning. Whereas Online Manifold Regularization

moves between point estimates of a kernel-based classifier via stochastic gradient descent, OASIS

applies online Bayesian updates to iteratively refine an approximation of the posterior distribution

158

Ch. Name SSL Assumption Classifier Type Active?

3 Online Manifold Regularization
Manifold / Frequentist /

No
Graph Kernel

4 OASIS
Low-Density Gap / Bayesian /

Yes
Cluster Linear

Table 10.1: Summary of online semi-supervised learning contributions.

over the space of weight vectors parameterizing a linear classifier. Lastly, OASIS is able to use this

posterior distribution to perform a principled form of active learning.

In Part III, the dissertation introduces several novel assumptions that extend the reach of SSL

by incorporating new forms of weak side information and prior knowledge. These contributions

are summarized in Table 10.2, where the third and fourth columns describe the key underlying

assumption allowing unlabeled data to be of value in the learning process. Multi-manifold SSL

(Chapter 5) relaxes the assumption underlying graph-based SSL methods and assumes that exam-

ples lying on the same underlying low-dimensional manifold have the same label. The low-rank

assumption proposed in Chapter 6 essentially assumes that examples sharing the same small num-

ber of latent factors possess the same labels (for one or more tasks). As discussed in the chapter,

though, our method technically assumes that the label-by-item and feature-by-item matrices are

jointly low-rank. As a result, our method enables multi-label prediction, transduction, and missing

data imputation to be addressed simultaneously. The work on dissimilarity-based SSL and ker-

nel regression using order preferences in Chapters 7–8 introduces additional forms of regulariza-

tion based on new kinds of side information. As demonstrated in these chapters, domain-specific

heuristics can be applied to generate many dissimilarity relationships and order preferences. De-

spite potential noise in this side information, the resulting SSL techniques greatly improve perfor-

mance over supervised learning. Finally, Chapter 9 focuses on the application of graph-based SSL

to the sentiment analysis task of rating inference. The work shows that using a novel “sentiment

graph,” which encodes several assumptions specifically designed for this task, leads to effective

performance with only a very small number of labels.

159

Ch. Novel Assumption Assumes ifx theny

5
Multi-manifold

similar & on same manifold same label
(classification)

6
Low-Rank

same latent factor loadings same labels
(multi-label, missing data)

7
Dissimilarity

dissimilar different label
(classification)

8
Order Preferences

arbitrary pairwise relation specific target value ordering
(regression)

9
Sentiment Graph

similar positive-sentence % similar label
(ordinal classification)

Table 10.2:Summary of new assumptions allowing unlabeled data to improve learning in various
classification and regression settings.

10.2 Future Challenges for SSL

Despite the advances put forth in this body of work, some key issues still remain. We now

briefly summarize a few of these future challenges:

• “safe” semi-supervised learning that is resilient to incorrect model assumptions,

• unifying multiple types of relations between labeled and unlabeled examples,

• non-topical text classification using limited supervision,

• domain adaptation using only unlabeled target-domain data.

10.2.1 “Safe” Semi-Supervised Learning

SSL methods are able to learn using unlabeled data through one of several critical model as-

sumptions (cluster, manifold, and others), as discussed throughout this dissertation. As it is difficult

to test which assumptions hold in practice, and performance may suffer if the wrong algorithm is

chosen, “safe” semi-supervised learning algorithms that are guaranteed to perform at least as well

as supervised learning have great potential. A practitioner should be able to exploit unlabeled data

160

without being an SSL expert. Our recent empirical study of SSL algorithms applied to many nat-

ural language processing tasks (Goldberg and Zhu, 2009) shows that, contrary to popular wisdom,

k-fold cross validation with as few as 10 labeled examples can be used to achieve one form of safe

SSL by simply choosing among different supervised and semi-supervised algorithms. It is still

desirable to find a more elegant and theoretically justified form of safe SSL. Bayesian modeling

may be able to provide a solution by maintaining a posterior distribution over classifiers of mul-

tiple types. The key challenge is to define an intelligent prior over assumptions and classifiers, as

well as Bayesian formulations of the different types of SSL learners so that we can define a proper

likelihood function.

SSL can also be made safer by developing robust graph-based methods and less restrictive

assumptions that are more likely to hold in richer, complex datasets. For example, Chapter 5 dis-

cussed how to exploit local geometry to detect changes in dimensionality, orientation, and density

in order to learn with data supported on multiple intersecting manifolds, which occurs in appli-

cations such as object tracking and handwritten character recognition. Another desired future

outcome is the development of a technique that can perform automatic graph selection for graph-

based SSL and tolerate the absence of any true underlying manifold structure. Posing this as an

optimization problem, where some variables select among graphs or graph components, may be

one way to solve this problem.

10.2.2 Unifying Multiple Types of Relations in Graph-Based SSL

This dissertation has presented several novel algorithms that exploit relations between labeled

and unlabeled examples in various types of learning settings and real-world applications. Many

other types of relations remain unexplored, which can be utilized in graph-based transductive learn-

ing (also known as collective classification). For example, imagine trying to predict category la-

bels (e.g., market sector) or numeric values (e.g., income level) for people in a social network,

where people may be associated with one another directly through friendship, or indirectly by

common interests, geographic locality, or having clicked on the same advertisements, to name just

161

a few types of relations. Each link may indicate similarity, dissimilarity, or other assumed rela-

tionships between the target values. Deciding how to integrate these sources of information in a

semi-supervised setting is of large practical value. Chapters 7 and 8 have considered the use of

dissimilarity relationships and order preferences, respectively, while other work in graph-based

SSL largely relies on basic similarity. A long term goal is to incorporate (and trade-off between)

disparate types of relations in a unified framework capable of solving real data mining and social

networking tasks.

10.2.3 Non-topical Text Classification with Limited Supervision

Semi-supervised learning is particularly applicable to problems in sentiment analysis and blog

analytics, as opinion-bearing blog posts and other forms of community-generated online content

rarely come with explicit annotations. Likewise, little accurately labeled data exists for query-

intent classification: predicting the desired intent of short Web search queries. These problems

of great relevance in both the public and private sectors often deal with subtle non-topical class

definitions requiring customized SSL algorithms and the use external resources, such as massive

logs of unlabeled data, to achieve sufficient performance. While this dissertation describes one

such application: predicting opinions in movie reviews on a 1–4 star rating scale (Chapter 9), and

other previous research explores the use of unlabeled resources for wish recognition (Goldberg

and Zhu, 2009) and query-intent classification (Fuxman et al., 2009), one overarching future goal

is to develop data-efficient methods to tackle other non-topical classification problems, such as

predicting the quality, difficulty, or reading level of arbitrary natural language text.

10.2.4 Domain Adaptation Using Only Unlabeled Target-Domain Data

Finally, much work in semi-supervised learning, perhaps with minor modifications, can be

applied to the challenging yet extremely important problem of domain adaptation (also known

as transfer learning). In this situation, we have some labeled data in a particular source domain

(e.g., movie reviews), but it is too difficult or costly to annotate data in a desired target domain

(e.g., product reviews). The goal is to learn relationships between the domains in order to transfer

162

knowledge gleaned from the source labeled data to the target unlabeled data. Though transfer

learning poses new challenges, such as mapping between different feature spaces, ideas from SSL

and learning structure from unlabeled data are certainly relevant. One idea, inspired by space-

time physics, for tackling this problem involves using a diffusion model or random walk process.

The key insight is to simultaneously identify clusters of words or features within and between

domain (multiple “universes”). Within each domain, the process could behave much like a classical

Markov Chain random walk (e.g., PageRank), yet can also allow probability mass to spread from

the source to the target universe through “wormholes” (akin to “pivot features” or auxiliary tasks in

related work). Given this basic formulation and careful selection of transition probabilities within

and between universes, we can learn translation probabilities between domains to apply a classifier

learned in the source domain to examples from the target domain. Once all examples (labeled and

unlabeled) are normalized to a standard vocabulary, existing semi-supervised learning techniques

may be used to transductively classify the unlabeled target data or train an inductive classifier for

future use.

10.3 Final Summary

The research in this dissertation advances the state-of-the-art in SSL by contributing to many

active areas of research, including problem formulation, learning theory, algorithm development,

and the application of these ideas to real-world problems in natural language processing, computer

vision, bioinformatics, and other challenging domains. Given the cost and difficulty in obtaining

large amounts of labeled data, it is becoming increasingly important to continue developing new

SSL algorithms (as well as algorithms for related areas like transfer learning or active learning) that

can handle real-world learning settings while mitigating the risks involved in making restrictive

assumptions regarding the use of unlabeled data. The work in this dissertation constitutes a major

step in this direction, and the future work proposed here may help to one day realize the full power

of unlabeled data.

163

Bibliography

S. Abney.Semisupervised Learning for Computational Linguistics. Chapman & Hall/CRC, 2007.

Y. Altun, D. McAllester, and M. Belkin. Maximum margin semi-supervised learning for struc-
tured variables. InAdvances in Neural Information Processing Systems (NIPS). MIT Press,
Cambridge, MA, 2005.

M. Amini, F. Laviolette, and N. Usunier. A transductive bound for the voted classifier with an
application to semi-supervised learning. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou,
editors,Advances in Neural Information Processing Systems (NIPS). MIT Press, Cambridge,
MA, 2009.

R. Ando and T. Zhang. A framework for learning predictive structures from multiple tasks and
unlabeled data.Journal of Machine Learning Research, 6:1817–1853, 2005.

A. Argyriou. Efficient approximation methods for harmonic semi-supervised learning. Master’s
thesis, University College London, 2004.

A. Argyriou, C. A. Micchelli, and M. Pontil. On spectral learning.Journal of Machine Learning
Research, 11:935–953, 2010.

A. Azran. The rendezvous algorithm: Multiclass semi-supervised learning with Markov ran-
dom walks. InProceedings of the 24th Annual International Conference on Machine Learning
(ICML), 2007.

M.-F. Balcan and A. Blum. An augmented pac model for semi-supervised learning. In O. Chapelle,
B. Scḧolkopf, and A. Zien, editors,Semi-Supervised Learning. MIT Press, 2006.

M.-F. Balcan and A. Blum. A PAC-style model for learning from labeled and unlabeled data. In
Proceedings of the Conference on Learning Theory (COLT), 2005.

M.-F. Balcan, A. Blum, P. P. Choi, J. Lafferty, B. Pantano, M. R. Rwebangira, and X. Zhu. Person
identification in webcam images: An application of semi-supervised learning. InICML 2005
Workshop on Learning with Partially Classified Training Data, 2005a.

M.-F. Balcan, A. Blum, and K. Yang. Co-training and expansion: Towards bridging theory and
practice. In L. K. Saul, Y. Weiss, and L. Bottou, editors,Advances in Neural Information Pro-
cessing Systems (NIPS). MIT Press, Cambridge, MA, 2005b.

164

S. Baluja. Probabilistic modeling for face orientation discrimination: Learning from labeled and
unlabeled data. In M. J. Kearns, S. A. Solla, and D. A. Cohn, editors,Advances in Neural
Information Processing Systems (NIPS). MIT Press, Cambridge, MA, 1998.

S. Basu, M. Bilenko, A. Banerjee, and R. J. Mooney. Probabilistic semi-supervised clustering
with constraints. In O. Chapelle, B. Schölkopf, and A. Zien, editors,Semi-Supervised Learning,
pages 71–98. MIT Press, 2006.

S. Basu, I. Davidson, and K. Wagstaff, editors.Constrained Clustering: Advances in Algorithms,
Theory, and Applications. Chapman & Hall/CRC Press, 2008.

M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geometric framework for
learning from labeled and unlabeled examples.Journal of Machine Learning Research, 7:2399–
2434, November 2006.

S. Ben-David, T. Lu, and D. Pal. Does unlabeled data provably help? worst-case analysis of the
sample complexity of semi-supervised learning. InProceedings of the Conference on Learning
Theory (COLT), 2008.

K. Bennett and A. Demiriz. Semi-supervised support vector machines. InAdvances in Neural
Information Processing Systems (NIPS). MIT Press, Cambridge, MA, 1999.

M. Bernstein, V. de Silva, J. Langford, and J. Tenenbaum. Graph approximations to geodesics on
embedded manifolds. Technical report, Stanford, 2000.

A. Beygelzimer, S. Dasgupta, and J. Langford. Importance weighted active learning. InProceed-
ings of the 26th Annual International Conference on Machine Learning (ICML), 2009.

J. Bi, K. Bennett, M. Embrechts, C. Breneman, and M. Song. Dimensionality reduction via sparse
support vector machines.Journal of Machine Learning Research, 3:1229–1243, 2003.

P. J. Bickel and B. Li. Local polynomial regression on unknown manifolds. InIMS Lecture
Notes Monograph Series, Complex Datasets and Inverse Problems: Tomography, Networks and
Beyond, volume 54, pages 177–186, 2007.

C. M. Bishop.Pattern Recognition and Machine Learning. Springer, 2006.

A. Blum, J. Lafferty, M. Rwebangira, and R. Reddy. Semi-supervised learning using randomized
mincuts. InProceedings of the 21st Annual International Conference on Machine Learning
(ICML), 2004.

A. Blum and S. Chawla. Learning from labeled and unlabeled data using graph mincuts. In
Proceedings of the 18th Annual International Conference on Machine Learning (ICML), 2001.

A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training. InProceedings
of the Workshop on Computational Learning Theory (COLT), 1998.

165

O. Bousquet, O. Chapelle, and M. Hein. Measure based regularization. InAdvances in Neural
Information Processing Systems (NIPS). MIT Press, Cambridge, MA, 2004.

P. Bradley and O. Mangasarian. Feature selection via concave minimization and support vector
machines. InProceedings of the 15th Annual International Conference on Machine Learning
(ICML), California, 1998.

P. Bradley, K. Bennett, and A. Demiriz. Constrained k-means clustering. Technical Report MSR-
TR-2000-65, Microsoft Research, 2000.

U. Brefeld and T. Scheffer. Semi-supervised learning for structured output variables. InProceed-
ings of the 23rd Annual International Conference on Machine Learning (ICML), Pittsburgh,
USA, 2006.

U. Brefeld, C. B̈uscher, and T. Scheffer. Multiview discriminative sequential learning. InEuropean
Conference on Machine Learning (ECML), 2005.

U. Brefeld, T. Gaertner, T. Scheffer, and S. Wrobel. Efficient co-regularized least squares regres-
sion. InProceedings of the 23rd Annual International Conference on Machine Learning (ICML),
Pittsburgh, USA, 2006.

C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hullender. Learning
to rank using gradient descent. InProceedings of the 22nd Annual International Conference on
Machine Learning (ICML), 2005.

C. J. Burges and J. C. Platt. Semi-supervised learning with conditional harmonic mixing. In
O. Chapelle, B. Scḧolkopf, and A. Zien, editors,Semi-Supervised Learning. MIT Press, Cam-
bridge, MA, 2005.

C. Callison-Burch, D. Talbot, and M. Osborne. Statistical machine translation with word- and
sentence-aligned parallel corpora. InProceedings of the ACL, 2004.

E. J. Cand̀es and B. Recht. Exact matrix completion via convex optimization.Foundations of
Computational Mathematics, 9:717–772, 2009.

E. J. Cand̀es and T. Tao. The power of convex relaxation: Near-optimal matrix completion.IEEE
Transactions on Information Theory, 56:2053–2080, 2010.

M. A. Carreira-Perpinan and R. S. Zemel. Proximity graphs for clustering and manifold learning.
In L. K. Saul, Y. Weiss, and L. Bottou, editors,Advances in Neural Information Processing
Systems (NIPS). MIT Press, Cambridge, MA, 2005.

V. Castelli and T. Cover. The exponential value of labeled samples.Pattern Recognition Letters,
16(1):105–111, 1995.

G. Cavallanti, N. Cesa-Bianchi, and C. Gentile. Tracking the best hyperplane with a simple budget
perceptron.Machine Learning, 69(2-3):143–167, 2007.

166

N. Cesa-Bianchi, A. Conconi, and C. Gentile. On the generalization ability of on-line learning
algorithms.IEEE Transactions on Information Theory, 50(9):2050–2057, 2004.

O. Chapelle and A. Zien. Semi-supervised classification by low density separation. InProceedings
of the Tenth International Workshop on Artificial Intelligence and Statistics (AISTAT 2005),
2005.

O. Chapelle, J. Weston, and B. Schölkopf. Cluster kernels for semi-supervised learning. InAd-
vances in Neural Information Processing Systems (NIPS). MIT Press, Cambridge, MA, 2002.

O. Chapelle, M. Chi, and A. Zien. A continuation method for semi-supervised SVMs. InProceed-
ings of the 23rd Annual International Conference on Machine Learning (ICML), Pittsburgh,
USA, 2006a.

O. Chapelle, V. Sindhwani, and S. S. Keerthi. Branch and bound for semi-supervised support
vector machines. InAdvances in Neural Information Processing Systems (NIPS). MIT Press,
Cambridge, MA, 2006b.

O. Chapelle, A. Zien, and B. Schölkopf, editors.Semi-supervised learning. MIT Press, 2006c.

O. Chapelle, V. Sindhwani, and S. S. Keerthi. Optimization techniques for semi-supervised support
vector machines.Journal of Machine Learning Research, 9(Feb):203–233, 2008.

N. V. Chawla and G. Karakoulas. Learning from labeled and unlabeled data: An empirical study
across techniques and domains.Journal of Artificial Intelligence Research, 23:331–366, 2005.

G. Chen and G. Lerman. Spectral curvature clustering. InInternational Journal of Computer
Vision, 2008.

K. Chen and S. Wang. Regularized boost for semi-supervised learning. In J. Platt, D. Koller,
Y. Singer, and S. Roweis, editors,Advances in Neural Information Processing Systems (NIPS).
MIT Press, Cambridge, MA, 2008.

W. Chu and Z. Ghahramani. Gaussian processes for ordinal regression. Technical report, Univer-
sity College London, 2004.

W. Chu, V. Sindhwani, Z. Ghahramani, and S. S. Keerthi. Relational learning with Gaussian pro-
cesses. InAdvances in Neural Information Processing Systems (NIPS). MIT Press, Cambridge,
MA, 2006.

W. Chu and Z. Ghahramani. Gaussian processes for ordinal regression.Journal of Machine Learn-
ing Research, 6(July):1019–1041, 2005.

W. Chu and S. S. Keerthi. New approaches to support vector ordinal regression. InProceedings of
the 22nd Annual International Conference on Machine Learning (ICML), pages 145–152, Bonn,
Germany, 2005.

167

F. R. K. Chung.Spectral graph theory, Regional Conference Series in Mathematics, No. 92. Amer-
ican Mathematical Society, 1997.

M. Collins and Y. Singer. Unsupervised models for named entity classification. InEMNLP/VLC-
99, 1999.

R. Collobert, J. Weston, and L. Bottou. Trading convexity for scalability. InProceedings of the
23rd Annual International Conference on Machine Learning (ICML), Pittsburgh, USA, 2006.

A. Corduneanu and T. Jaakkola. On information regularization. InNineteenth Conference on
Uncertainty in Artificial Intelligence (UAI03), 2003.

A. Corduneanu and T. Jaakkola. Stable mixing of complete and incomplete information. Technical
Report AIM-2001-030, MIT AI Memo, 2001.

A. Corduneanu and T. S. Jaakkola. Distributed information regularization on graphs. In L. K. Saul,
Y. Weiss, and L. Bottou, editors,Advances in Neural Information Processing Systems (NIPS).
MIT Press, Cambridge, MA, 2005.

C. Cortes, M. Mohri, D. Pechyony, and A. Rastogi. Stability of transductive regression algo-
rithms. In Proceedings of the 25th Annual International Conference on Machine Learning
(ICML), 2008.

C. Cortes and M. Mohri. On transductive regression. InAdvances in Neural Information Process-
ing Systems (NIPS). MIT Press, Cambridge, MA, 2006.

F. Cozman, I. Cohen, and M. Cirelo. Semi-supervised learning of mixture models. InProceedings
of the 20th Annual International Conference on Machine Learning (ICML), 2003.

K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based vector
machines.Journal of Machine Learning Research, 2:265–292, 2002.

K. Crammer, A. Kulesza, and M. Dredze. Adaptive regularization of weight vectors. In Y. Bengio,
D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors,Advances in Neural
Information Processing Systems (NIPS), pages 414–422. MIT Press, Cambridge, MA, 2009.

M. Culp and G. Michailidis. An iterative algorithm for extending learners to a semisupervised
setting. InThe 2007 Joint Statistical Meetings (JSM), 2007.

G. Dai and D. Yeung. Kernel selection for semi-supervised kernel machines. InProceedings of
the 24th Annual International Conference on Machine Learning (ICML), 2007.

R. Dara, S. Kremer, and D. Stacey. Clsutering unlabeled data with SOMs improves classification
of labeled real-world data. InProceedings of the World Congress on Computational Intelligence
(WCCI), 2002.

168

S. Dasgupta and Y. Freund. Random projection trees and low dimensional manifolds. Technical
Report CS2007-0890, University of California, San Diego, 2007.

S. Dasgupta, M. L. Littman, and D. McAllester. PAC generalization bounds for co-training. In
Advances in Neural Information Processing Systems (NIPS). MIT Press, Cambridge, MA, 2001.

T. De Bie and N. Cristianini. Semi-supervised learning using semi-definite programming. In
O. Chapelle, B. Schöelkopf, and A. Zien, editors,Semi-supervised learning. MIT Press,
Cambridge-Massachussets, 2006.

T. De Bie and N. Cristianini. Convex methods for transduction. In S. Thrun, L. Saul, and
B. Scḧolkopf, editors,Advances in Neural Information Processing Systems (NIPS). MIT Press,
Cambridge, MA, 2004.

V. R. de Sa. Learning classification with unlabeled data. InAdvances in Neural Information
Processing Systems (NIPS). Morgan Kaufmann, 1993.

O. Dekel, C. Manning, and Y. Singer. Loglinear models for label-ranking. InAdvances in Neural
Information Processing Systems (NIPS). MIT Press, Cambridge, MA, 2003.

O. Dekel, S. Shalev-Shwartz, and Y. Singer. The forgetron: A kernel-based perceptron on a fixed
budget. InAdvances in Neural Information Processing Systems (NIPS). MIT Press, Cambridge,
MA, 2005.

O. Delalleau, Y. Bengio, and N. L. Roux. Efficient non-parametric function induction in semi-
supervised learning. InProceedings of the Tenth International Workshop on Artificial Intelli-
gence and Statistics (AISTAT 2005), 2005.

A. Demirez and K. Bennett. Optimization approaches to semisupervised learning. In M. Ferris,
O. Mangasarian, and J. Pang, editors,Applications and Algorithms of Complementarity. Kluwer
Academic Publishers, Boston, 2000.

A. Demiriz, K. Bennett, and M. Embrechts. Semi-supervised clustering using genetic algorithms.
Proceedings of Artificial Neural Networks in Engineering, November 1999.

A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data via the EM
algorithm.Journal of the Royal Statistical Society, Series B, 1977.

F. Denis, R. Gilleron, and M. Tommasi. Text classification from positive and unlabeled examples.
In The 9th International Conference on Information Processing and Management of Uncertainty
in Knowledge-Based Systems(IPMU), 2002.

A. Doucet and A. M. Johansen. A tutorial on particle filtering and smoothing: Fifteen years later.
In D. Crisan and B. Rozovsky, editors,Handbook of Nonlinear Filtering. Oxford University
Press, 2009.

169

A. Doucet, N. De Freitas, and N. Gordon, editors.Sequential Monte Carlo methods in practice.
Springer, 2001.

M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein. Cluster analysis and display of genome-
wide expression patterns.Proceedings of the National Academy of Sciences of the United States
of America, 95(25):14863–14868, December 1998.

R. El-Yaniv and L. Gerzon. Effective transductive learning via objective model selection.Pattern
Recognition Letters, 26(13):2104–2115, 2005.

R. El-Yaniv, D. Pechyony, and V. Vapnik. Large margin vs. large volume in transductive learning.
Machine Learning, 72(3):173–188, 2008.

A. Elisseeff and J. Weston. A kernel method for multi-labelled classification. In T. G. Dietterich,
S. Becker, and Z. Ghahramani, editors,Advances in Neural Information Processing Systems
(NIPS), pages 681–687. MIT Press, Cambridge, MA, 2001.

C. Elkan and K. Noto. Learning classifiers from only positive and unlabeled data. InProceedings
of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 213–220, 2008.

D. Elworthy. Does Baum-Welch re-estimation help taggers? InProceedings of the 4th Conference
on Applied Natural Language Processing, 1994.

J. D. Farquhar, D. R. Hardoon, H. Meng, J. Shawe-Taylor, and S. Szedmak. Two view learning:
SVM-2K, theory and practice. InAdvances in Neural Information Processing Systems (NIPS).
MIT Press, Cambridge, MA, 2006.

Y. Freund, S. Dasgupta, M. Kabra, and N. Verma. Learning the structure of manifolds using
random projections. InAdvances in Neural Information Processing System (NIPS). MIT Press,
Cambridge, MA, 2007.

A. Fujino, N. Ueda, and K. Saito. A hybrid generative/discriminative approach to semi-supervised
classifier design. InAAAI-05, The Twentieth National Conference on Artificial Intelligence,
2005.

A. Fujino, N. Ueda, and K. Saito. Semisupervised learning for a hybrid generative/discriminative
classifier based on the maximum entropy principle.IEEE Transaction on Pattern Analysis and
Machine Intelligence, 30(3):424–437, 2008.

G. Fung and O. Mangasarian. Semi-supervised support vector machines for unlabeled data clas-
sification. Technical Report 99-05, Data Mining Institute, University of Wisconsin Madison,
October 1999.

A. Fuxman, A. Kannan, A. B. Goldberg, R. Agrawal, P. Tsaparas, and J. Shafer. Improving classi-
fication accuracy using automatically extracted training data. In15th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining (KDD), June 2009.

170

J. Garcke and M. Griebel. Semi-supervised learning with sparse grids. InProc. of the 22nd ICML
Workshop on Learning with Partially Classified Training Data, Bonn, Germany, August 2005.

A. Gelman, A. Jakulin, M. G. Pittau, and Y.-S. Su. A weakly informative default prior distribution
for logistic and other regression models.Annals of Applied Statistics, 2(4):1360–1383., 2008.

G. Getz, N. Shental, and E. Domany. Semi-supervised learning – a statistical physics approach. In
Proc. of the 22nd ICML Workshop on Learning with Partially Classified Training Data, Bonn,
Germany, August 2005.

Z. Ghahramani and M. I. Jordan. Supervised learning from incomplete data via an EM approach.
In Advances in Neural Information Processing Systems (NIPS), pages 120–127. Morgan Kauf-
mann, 1994.

W. R. Gilks and C. Berzuini. Following a moving target—Monte Carlo inference for dynamic
Bayesian models.Journal Of The Royal Statistical Society Series B, 63(1):127–146, 2001.

J. Godfrey, E. Holliman, and J. McDaniel. Switchboard: Telephone speech corpus for research
and development. InProceedings of the IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), March 1992.

A. B. Goldberg and X. Zhu. Keepin’ it real: Semi-supervised learning with realistic tuning. In
NAACL HLT 2009 Workshop on Semi-supervised Learning for Natural Language Processing,
2009.

A. B. Goldberg and X. Zhu. Seeing stars when there aren’t many stars: Graph-based semi-
supervised learning for sentiment categorization. InHLT-NAACL 2006 Workshop on Textgraphs:
Graph-based Algorithms for Natural Language Processing, New York, NY, 2006.

A. B. Goldberg, X. Zhu, and S. Wright. Dissimilarity in graph-based semi-supervised classifica-
tion. In Eleventh International Conference on Artificial Intelligence and Statistics (AISTATS),
2007.

A. B. Goldberg, M. Li, and X. Zhu. Online manifold regularization: A new learning setting and
empirical study. InThe European Conference on Machine Learning and Principles and Practice
of Knowledge Discovery in Databases (ECML PKDD), 2008.

A. B. Goldberg, X. Zhu, A. Singh, Z. Xu, and R. Nowak. Multi-manifold semi-supervised learning.
In Twelfth International Conference on Artificial Intelligence and Statistics (AISTATS), 2009.

S. Goldman and Y. Zhou. Enhancing supervised learning with unlabeled data. InProceedings
of the 17th Annual International Conference on Machine Learning (ICML), pages 327–334.
Morgan Kaufmann, San Francisco, CA, 2000.

R. Gomes, M. Welling, and P. Perona. Incremental learning of nonparametric bayesian mixture
models. InProceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE Computer Society, 2008.

171

H. Grabner, C. Leistner, and H. Bischof. Semi-supervised on-line boosting for robust tracking.
In Proceedings of the 10th European Conference on Computer Vision (ECCV), pages 234–247,
Berlin, Heidelberg, 2008. Springer-Verlag.

L. Grady and G. Funka-Lea. Multi-label image segmentation for medical applications based on
graph-theoretic electrical potentials. InEuropean Conference on Computer Vision (ECCV) 2004
workshop, 2004.

Y. Grandvalet and Y. Bengio. Semi-supervised learning by entropy minimization. In L. K. Saul,
Y. Weiss, and L. Bottou, editors,Advances in Neural Information Processing Systems (NIPS).
MIT Press, Cambridge, MA, 2005.

N. Grira, M. Crucianu, and N. Boujemaa. Unsupervised and semi-supervised clustering: A brief
survey. In ‘A Review of Machine Learning Techniques for Processing Multimedia Content’,
Report of the MUSCLE European Network of Excellence (FP6), 2004.

G. Haffari and A. Sarkar. Analysis of semi-supervised learning with the Yarowsky algorithm. In
23rd Conference on Uncertainty in Artificial Intelligence (UAI), 2007.

G. Haro, G. Randall, and G. Sapiro. Translated poisson mixture model for stratification learning.
International Journal of Computer Vision, 80:358–374, 2008.

W. Hastings. Monte Carlo sampling methods using Markov chains and their applications.
Biometrika, 57:97–109, 1970.

C. Hegde, M. Wakin, and R. Baraniuk. Random projections for manifold learning. InAdvances in
Neural Information Processing Systems (NIPS). MIT Press, Cambridge, MA, 2007.

M. Hein and M. Maier. Manifold denoising. InAdvances in Neural Information Processing
Systems (NIPS). MIT Press, Cambridge, MA, 2006.

M. Hein, J.-Y. Audibert, and U. von Luxburg. Graph Laplacians and their convergence on random
neighborhood graphs.Journal of Machine Learning Research, 8(Jun):1325–1368, 2007.

R. Herbrich, K. Obermayer, and T. Graepel. Large margin rank boundaries for ordinal regression.
In A. J. Smola, P. Bartlett, B. Schölkopf, and D. Schuurmans, editors,Advances in Large Margin
Classifiers, pages 115–132. MIT Press, 2000.

M. Herbster, M. Pontil, and S. R. Galeano. Fast prediction on a tree. In D. Koller, D. Schuurmans,
Y. Bengio, and L. Bottou, editors,Advances in Neural Information Processing Systems (NIPS).
MIT Press, Cambridge, MA, 2009.

D. Hsu, S. Kakade, J. Langford, and T. Zhang. Multi-label prediction via compressed sensing. In
Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors,Advances in
Neural Information Processing Systems (NIPS). MIT Press, Cambridge, MA, 2009.

172

B. Huang and T. Jebara. Loopy belief propagation for bipartite maximum weight b-matching.
In M. Meila and X. Shen, editors,Proceedings of the Eleventh International Conference on
Artificial Intelligence and Statistics March 21-24, 2007, San Juan, Puerto Rico, volume Volume
2 of JMLR: W&CP, March 2007.

T. Jaakkola, M. Meila, and T. Jebara. Maximum entropy discrimination.Neural Information
Processing Systems, 12, 12, 1999.

T. Jebara, R. Kondor, and A. Howard. Probability product kernels.Journal of Machine Learning
Research, Special Topic on Learning Theory, 5:819–844, 2004.

T. Jebara, J. Wang, and S. Chang. Graph construction and b-matching for semi-supervised learn-
ing. In Proceedings of the 26th Annual International Conference on Machine Learning (ICML),
2009.

S. Ji, L. Tang, S. Yu, and J. Ye. Extracting shared subspace for multi-label classification. InKDD
’08: Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 381–389, New York, NY, USA, 2008. ACM.

X. Ji. Graph partition problems with minimum size constraints. PhD thesis, Rensselaer Polytechnic
Institute, Dept. of Mathematics, 2004.

T. Joachims. Optimizing search engines using clickthrough data. InProceedings of KDD ’02, the
ACM SIGKDD international conference on Knowledge discovery and data mining. ACM Press,
2002.

T. Joachims. Transductive learning via spectral graph partitioning. InProceedings of the 20th
Annual International Conference on Machine Learning (ICML), 2003.

T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf, C. Burges, and
A. Smola, editors,Advances in Kernel Methods - Support Vector Learning. MIT Press, 1999a.

T. Joachims. Transductive inference for text classification using support vector machines. In
Proceedings of the 16th Annual International Conference on Machine Learning (ICML), pages
200–209. Morgan Kaufmann, San Francisco, CA, 1999b.

R. Johnson and T. Zhang. On the effectiveness of laplacian normalization for graph semi-
supervised learning.Journal of Machine Learning Research, 8(Jul):1489–1517, 2007a.

R. Johnson and T. Zhang. Two-view feature generation model for semi-supervised learning. In
Proceedings of the 24th Annual International Conference on Machine Learning (ICML), 2007b.

R. Jones. Learning to extract entities from labeled and unlabeled text. Technical Report CMU-
LTI-05-191, Carnegie Mellon University, 2005. Doctoral Dissertation.

M. Kaariainen. Generalization error bounds using unlabeled data. InProceedings of the Confer-
ence on Learning Theory (COLT), 2005.

173

A. Kapoor, Y. Qi, H. Ahn, and R. Picard. Hyperparameter and kernel learning for graph based
semi-supervised classification. InAdvances in Neural Information Processing Systems (NIPS).
MIT Press, Cambridge, MA, 2005.

M. Karlen, J. Weston, A. Erkan, and R. Collobert. Large scale manifold transduction. InProceed-
ings of the 25th Annual International Conference on Machine Learning (ICML), 2008.

C. Kemp, T. Griffiths, S. Stromsten, and J. Tenenbaum. Semi-supervised learning with trees. In
Advances in Neural Information Processing System (NIPS). MIT Press, Cambridge, MA, 2003.

G. Kimeldorf and G. Wahba. Some results on Tchebychean spline functions.Journal of Mathe-
matics Analysis and Applications, 33:82–95, 1971.

J. Kivinen, A. J. Smola, and R. C. Williamson. Online learning with kernels.IEEE Transactions
on Signal Processing, 52(8):2165–2176, 2004.

R. I. Kondor and J. Lafferty. Diffusion kernels on graphs and other discrete input spaces. In
Proceedings of the 19th Annual International Conference on Machine Learning (ICML), 2002.

B. Krishnapuram, D. Williams, Y. Xue, A. Hartemink, L. Carin, and M. Figueiredo. On semi-
supervised classification. In L. K. Saul, Y. Weiss, and L. Bottou, editors,Advances in Neural
Information Processing Systems (NIPS). MIT Press, Cambridge, MA, 2005.

D. Kushnir, M. Galun, and A. Brandt. Fast multiscale clustering and manifold identification.
Pattern Recognition, 39:1876–1891, 2006.

J. Lafferty and L. Wasserman. Statistical analysis of semi-supervised regression. InAdvances in
Neural Information Processing Systems (NIPS). MIT Press, Cambridge, MA, 2007.

J. Lafferty, X. Zhu, and Y. Liu. Kernel conditional random fields: Representation and clique
selection. InProceedings of the 21st Annual International Conference on Machine Learning
(ICML), 2004.

N. D. Lawrence and M. I. Jordan. Semi-supervised learning via Gaussian processes. In L. K. Saul,
Y. Weiss, and L. Bottou, editors,Advances in Neural Information Processing Systems (NIPS).
MIT Press, Cambridge, MA, 2005.

G. Lebanon. Riemannian Geometry and Statistical Machine Learning. PhD thesis, Carnegie
Mellon University, 2005. CMU-LTI-05-189.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition.Proceedings of the IEEE, 86(11):2278–2324, November 1998.

C.-H. Lee, S. Wang, F. Jiao, D. Schuurmans, and R. Greiner. Learning to model spatial depen-
dency: Semi-supervised discriminative random fields. InAdvances in Neural Information Pro-
cessing Systems (NIPS). MIT Press, Cambridge, MA, 2006.

174

W. S. Lee and B. Liu. Learning with positive and unlabeled examples using weighted logistic
regression. InProceedings of the 20th International Conference on Machine Learning (ICML),
2003.

Y. Lee, Y. Lin, and G. Wahba. Multicategory support vector machines, theory, and application
to the classification of microarray data and satellite radiance data.Journal of the American
Statistical Association, 99:67–81, 2004.

B. Leskes. The value of agreement, a new boosting algorithm. InProceedings of the Conference
on Learning Theory (COLT), 2005.

A. Levin, D. Lischinski, and Y. Weiss. Colorization using optimization. InACM Transactions on
Graphics, 2004.

Y. Li and C. Guan. Joint feature re-extraction and classification using an iterative semi-supervised
support vector machine algorithm.Machine Learning, 71(1):33–53, 2008.

Z. Li, J. Liu, and X. Tang. Pairwise constraint propagation by semidefinite programming for
semi-supervised classification. In A. McCallum and S. Roweis, editors,Proceedings of the 25th
Annual International Conference on Machine Learning (ICML). Omnipress, 2008.

R. J. A. Little and D. B. Rubin.Statistical Analysis with Missing Data. Wiley-Interscience, 2nd
edition, September 2002.

B. Liu, W. S. Lee, P. S. Yu, and X. Li. Partially supervised classification of text documents. In
Proceedings of the 19th Annual International Conference on Machine Learning (ICML), 2002.

D. C. Liu and J. Nocedal. On the limited memory BFGS method for large scale optimization.
Mathematical Programming, 45:503–528, 1989.

Q. Liu, X. Liao, and L. Carin. Semi-supervised multitask learning. In J. Platt, D. Koller, Y. Singer,
and S. Roweis, editors,Advances in Neural Information Processing Systems (NIPS). MIT Press,
Cambridge, MA, 2008.

N. Loeff, D. Forsyth, and D. Ramachandran. Manifoldboost: stagewise function approximation
for fully-, semi- and un-supervised learning. InProceedings of the 25th Annual International
Conference on Machine Learning (ICML), 2008.

Q. Lu and L. Getoor. Link-based classification using labeled and unlabeled data. InICML 2003
workshop on The Continuum from Labeled to Unlabeled Data in Machine Learning and Data
Mining, 2003.

S. Ma, D. Goldfarb, and L. Chen. Fixed point and Bregman iterative methods for matrix rank min-
imization. Mathematical Programming Series A, page to appear (published online September
23), 2009.

175

Y. Ma, H. Derksen, W. Hong, and J. Wright. Segmentation of multivariate mixed data via lossy
coding and compression.PAMI, 29(9):1546–1562, 2007.

O. Madani, D. M. Pennock, and G. W. Flake. Co-validation: Using model disagreement to validate
classification algorithms. In L. K. Saul, Y. Weiss, and L. Bottou, editors,Advances in Neural
Information Processing Systems (NIPS). MIT Press, Cambridge, MA, 2005.

B. Maeireizo, D. Litman, and R. Hwa. Co-training for predicting emotions with spoken dialogue
data. InThe Companion Proceedings of the 42nd Annual Meeting of the Association for Com-
putational Linguistics (ACL), 2004.

M. Mahdaviani and T. Choudhury. Fast and scalable training of semi-supervised CRFs with appli-
cation to activity recognition. In J. Platt, D. Koller, Y. Singer, and S. Roweis, editors,Advances
in Neural Information Processing Systems (NIPS). MIT Press, Cambridge, MA, 2008.

M. Mahdaviani, N. de Freitas, B. Fraser, and F. Hamze. Fast computational methods for visually
guided robots. InThe 2005 International Conference on Robotics and Automation (ICRA), 2005.

O. L. Mangasarian, J. W. Shavlik, and E. W. Wild. Knowledge-based kernel approximation.Jour-
nal of Machine Learning Research, 5:1127–1141, 2004.

O. Mangasarian. Generalized support vector machines. In A. J. Smola, P. Bartlett, B. Schölkopf,
and D. Schuurmans, editors,Advances in Large Margin Classifiers, pages 135–146. MIT Press,
2000.

G. S. Mann and A. McCallum. Simple, robust, scalable semi-supervised learning via expecta-
tion regularization. InProceedings of the 24th Annual International Conference on Machine
Learning (ICML), 2007.

C. D. Manning and H. Scḧutze.Foundations of Statistical Natural Language Processing. The MIT
Press, Cambridge, Massachusetts, 1999.

D. McClosky, E. Charniak, and M. Johnson. Effective self-training for parsing. InHuman Lan-
guage Technologies: The Annual Conference of the North American Chapter of the Association
for Computational Linguistics (NAACL-HLT), pages 152–159, 2006.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equation of state
calculations by fast computing machines.Journal of Chemical Physics, 21:1087–1092, 1953.

D. Miller and H. Uyar. A mixture of experts classifier with learning based on both labelled and
unlabelled data. InAdvances in Neural Information Processing Systems (NIPS). MIT Press,
Cambridge, MA, 1997.

T. Mitchell. The role of unlabeled data in supervised learning. InProceedings of the Sixth Inter-
national Colloquium on Cognitive Science, San Sebastian, Spain, 1999.

176

T. M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.

M. Mizra, J. Sommers, P. Barford, and X. Zhu. A machine learning approach to TCP throughput
prediction. InACM SIGMETRICS, 2007.

P. Mordohai and G. Medioni. Unsupervised dimensionality estimation and manifold learning in
high-dimensional spaces by tensor voting. InIJCAI, 2005.

T. Mullen and R. Malouf. A preliminary investigation into sentiment analysis for informal political
discourse. InProceedings of the AAAI Workshop on Analysis of Weblogs, 2006.

R. M. Neal. Markov chain sampling methods for dirichlet process mixture models.Journal of
Computational and Graphical Statistics, 9(2):249–265, 2000.

K. Nigam and R. Ghani. Analyzing the effectiveness and applicability of co-training. InNinth
International Conference on Information and Knowledge Management, pages 86–93, 2000.

K. Nigam, A. K. McCallum, S. Thrun, and T. Mitchell. Text classification from labeled and
unlabeled documents using EM.Machine Learning, 39(2/3):103–134, 2000.

Z.-Y. Niu, D.-H. Ji, and C.-L. Tan. Word sense disambiguation using label propagation based
semi-supervised learning. InProceedings of the ACL, 2005.

P. Niyogi. Manifold regularization and semi-supervised learning: Some theoretical analyses. Tech-
nical Report TR-2008-01, CS Dept, U. of Chicago, 2008.

R. Nowak. Noisy generalized binary search. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I.
Williams, and A. Culotta, editors,Advances in Neural Information Processing Systems (NIPS),
pages 1366–1374. MIT Press, Cambridge, MA, 2009.

G. Obozinski, B. Taskar, and M. I. Jordan. Joint covariate selection and joint subspace selection
for multiple classification problems.Statistics and Computing, 20(2):231–252, 2010.

D. Opitz and R. Maclin. Popular ensemble methods: An empirical study.Journal of Artificial
Intelligence Research, 11:169–198, 1999.

B. Pang and L. Lee.Opinion Mining and Sentiment Analysis. Now Publishers Inc, July 2008.

B. Pang and L. Lee. A sentimental education: Sentiment analysis using subjectivity summarization
based on minimum cuts. InProceedings of the Association for Computational Linguistics, pages
271–278, 2004.

B. Pang and L. Lee. Seeing stars: exploiting class relationships for sentiment categorization with
respect to rating scales. InProceedings of the Association for Computational Linguistics, 2005.

T. P. Pham, H. T. Ng, and W. S. Lee. Word sense disambiguation with semi-supervised learning.
In AAAI-05, The Twentieth National Conference on Artificial Intelligence, 2005.

177

M. Polito and P. Perona. Grouping and dimensionality reduction by locally linear embedding. In
Advances in Neural Information Processing Systems (NIPS). MIT Press, Cambridge, MA, 2002.

A. Rahimi and B. Recht. Random features for large-scale kernel machines. In J. Platt, D. Koller,
Y. Singer, and S. Roweis, editors,Advances in Neural Information Processing Systems (NIPS).
MIT Press, Cambridge, MA, 2007.

P. Rai and H. Daume. Multi-label prediction via sparse infinite CCA. In Y. Bengio, D. Schuur-
mans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors,Advances in Neural Information
Processing Systems (NIPS), pages 1518–1526. MIT Press, Cambridge, MA, 2009.

R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng. Self-taught learning: Transfer learning
from unlabeled data. InProceedings of the 24th Annual International Conference on Machine
Learning (ICML), 2007.

M. Ranzato and M. Szummer. Semi-supervised learning of compact document representations
with deep networks. InProceedings of the 25th Annual International Conference on Machine
Learning (ICML), 2008.

J. Ratsaby and S. Venkatesh. Learning from a mixture of labeled and unlabeled examples with
parametric side information.Proceedings of the Eighth Annual Conference on Computational
Learning Theory, pages 412–417, 1995.

P. Ravikumar and J. Lafferty. Quadratic programming relaxations for metric labeling and markov
random field MAP estimation. InProceedings of the 23rd Annual International Conference on
Machine Learning (ICML), Pittsburgh, USA, 2006.

G. Ridgeway and D. Madigan. A sequential Monte Carlo method for Bayesian analysis of massive
datasets.Journal of Data Mining and Knowledge Discovery, 7(3):301–319, 2003.

P. Rigollet. Generalization error bounds in semi-supervised classification under the cluster as-
sumption.Journal of Machine Learning Research, 8(Jul):1369–1392, 2007.

E. Riloff, J. Wiebe, and T. Wilson. Learning subjective nouns using extraction pattern bootstrap-
ping. InProceedings of the Seventh Conference on Natural Language Learning (CoNLL-2003),
2003.

C. Rosenberg, M. Hebert, and H. Schneiderman. Semi-supervised self-training of object detection
models. InSeventh IEEE Workshop on Applications of Computer Vision, January 2005.

S. Rosset, J. Zhu, H. Zou, and T. Hastie. A method for inferring label sampling mechanisms in
semi-supervised learning. In L. K. Saul, Y. Weiss, and L. Bottou, editors,Advances in Neural
Information Processing Systems (NIPS). MIT Press, Cambridge, MA, 2005.

B. Scḧolkopf and A. J. Smola.Learning with Kernels. MIT Press, 2002.

178

B. Scḧolkopf, R. Herbrich, and A. J. Smola. A generalized representer theorem. InProceedings
of the Fourteenth Annual Conference on Computational Learning Theory, 2001.

D. Schuurmans and F. Southey. Metric-based methods for adaptive model selection and regu-
larization. Machine Learning, Special Issue on New Methods for Model Selection and Model
Combination, 48:51–84, 2001.

M. Seeger. Learning with labeled and unlabeled data. Technical report, University of Edinburgh,
2001.

B. Settles. Active learning literature survey. Computer Sciences Technical Report 1648, University
of Wisconsin–Madison, 2009.

B. Shahshahani and D. Landgrebe. The effect of unlabeled samples in reducing the small sample
size problem and mitigating the Hughes phenomenon.IEEE Trans. On Geoscience and Remote
Sensing, 32(5):1087–1095, September 1994.

V. Sindhwani and D. Rosenberg. An rkhs for multi-view learning and manifold co-regularization.
In Proceedings of the 25th Annual International Conference on Machine Learning (ICML),
2008.

V. Sindhwani and S. S. Keerthi. Large scale semisupervised linear SVMs. InSIGIR 2006, 2006.

V. Sindhwani, P. Niyogi, and M. Belkin. Beyond the point cloud: from transductive to semi-
supervised learning. InProceedings of the 22nd Annual International Conference on Machine
Learning (ICML), 2005a.

V. Sindhwani, P. Niyogi, and M. Belkin. A co-regularized approach to semi-supervised learning
with multiple views. InProc. of the 22nd ICML Workshop on Learning with Multiple Views,
August 2005b.

V. Sindhwani, P. Niyogi, M. Belkin, and S. Keerthi. Linear manifold regularization for large scale
semi-supervised learning. InProc. of the 22nd ICML Workshop on Learning with Partially
Classified Training Data, August 2005c.

V. Sindhwani, S. Keerthi, and O. Chapelle. Deterministic annealing for semi-supervised kernel
machines. InProceedings of the 23rd Annual International Conference on Machine Learning
(ICML), Pittsburgh, USA, 2006.

V. Sindhwani, J. Hu, and A. Mojsilovic. Regularized co-clustering with dual supervision. In
D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors,Advances in Neural Information
Processing Systems (NIPS). MIT Press, Cambridge, MA, 2009.

A. Singh, R. Nowak, and X. Zhu. Unlabeled data: Now it helps, now it doesn’t. In D. Koller,
D. Schuurmans, Y. Bengio, and L. Bottou, editors,Advances in Neural Information Processing
Systems (NIPS), pages 1513–1520. MIT Press, Cambridge, MA, 2008.

179

K. Sinha and M. Belkin. The value of labeled and unlabeled examples when the model is imper-
fect. In J. Platt, D. Koller, Y. Singer, and S. Roweis, editors,Advances in Neural Information
Processing Systems (NIPS). MIT Press, Cambridge, MA, 2008.

A. Smola and R. Kondor. Kernels and regularization on graphs. InProceedings of the Conference
on Learning Theory (COLT), 2003.

A. Smola and B. Scḧolkopf. A tutorial on support vector regression.Statistics and Computing, 14:
199–222, 2004.

N. Sokolovska, O. Cappé, and F. Yvon. The asymptotics of semi-supervised learning in discrim-
inative probabilistic models. InProceedings of the 25th Annual International Conference on
Machine Learning (ICML), 2008.

N. Srebro and A. Shraibman. Rank, trace-norm and max-norm. InProceedings of the 18th Annual
Conference on Learning Theory, pages 545–560. Springer-Verlag, 2005.

I. Sutskever. A simpler unified analysis of budget perceptrons. InProceedings of the 26th Annual
International Conference on Machine Learning (ICML), 2009.

A. D. Szlam, M. Maggioni, and R. R. Coifman. Regularization on graphs with function-adapted
diffusion processes.Journal of Machine Learning Research, 9(Aug):1711–1739, 2008.

M. Szummer and T. Jaakkola. Partially labeled classification with Markov random walks. In
Advances in Neural Information Processing Systems (NIPS), volume 14, Cambridge, MA, 2001.
MIT Press.

M. Szummer and T. Jaakkola. Information regularization with partially labeled data. InAdvances
in Neural Information Processing Systems (NIPS), volume 15. MIT Press, Cambridge, MA,
2002.

F. Tang, S. Brennan, Q. Zhao, and H. Tao. Co-tracking using semi-supervised support vector
machines. InIEEE 11th International Conference on Computer Vision (ICCV), pages 1–8,
2007.

B. Taskar, C. Guestrin, and D. Koller. Max-margin Markov networks. InAdvances in Neural
Information Processing Systems (NIPS). MIT Press, Cambridge, MA, 2003.

W. Tong and R. Jin. Semi-supervised learning by mixed label propagation. InProceedings of the
Twenty-Second AAAI Conference on Artificial Intelligence (AAAI), 2007.

K. Trohidis, G. Tsoumakas, G. Kalliris, and I. Vlahavas. Multilabel classification of music into
emotions. InProc. 9th International Conference on Music Information Retrieval (ISMIR 2008),
Philadelphia, PA, USA, 2008, 2008.

180

R. Tron and R. Vidal. A benchmark for the comparison of 3-d motion segmentation algorithms.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2007.

I. Tsang and J. Kwok. Large-scale sparsified manifold regularization. InAdvances in Neural
Information Processing Systems (NIPS). MIT Press, Cambridge, MA, 2006.

I. W. Tsang, J. T. Kwok, and P.-M. Cheung. Core vector machines: Fast svm training on very large
data sets.Journal of Machine Learning Research, 6:363–392, 2005.

I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for structured and
interdependent output variables.Journal of Machine Learning Research, 6:1453–1484, 2005.

G. Tsoumakas, I. Katakis, and I. Vlahavas. Mining multi-label data. InData Mining and Knowl-
edge Discovery Handbook. Springer, 2nd edition, 2010.

A. B. Tsybakov.Introduction a l’estimation non-parametrique. Springer, Berlin Heidelberg, 2004.

J. Van Gael and X. Zhu. Correlation clustering for crosslingual link detection. InInternational
Joint Conference on Artificial Intelligence (IJCAI), 2007.

V. Vapnik. Statistical Learning Theory. Wiley-Interscience, 1998.

R. Vidal, Y. Ma, and S. Sastry.Generalized Principal Component Analysis (GPCA). Springer
Verlag, 2008.

P. Vincent and Y. Bengio. Kernel matching pursuit.Machine Learning, 48(1-3):165–187, 2002.

U. von Luxburg, M. Belkin, and O. Bousquet. Consistency of spectral clustering. Technical Report
TR-134, Max Planck Institute for Biological Cybernetics, 2004.

U. von Luxburg. A tutorial on spectral clustering.Statistics and Computing, 17(4):395–416, 2007.

K. Wagstaff, C. Cardie, S. Rogers, and S. Schrödl. Constrained k-means clustering with back-
ground knowledge. InProceedings of the 18th Annual International Conference on Machine
Learning (ICML), page 577, 2001.

M. Wainwright, T. Jaakkola, and A. Willsky. MAP estimation via agreement on (hyper)trees: Mes-
sage passing and linear-programming approaches.IEEE Transactions on Information Theory,
51:3697–3717, 2005.

F. Wang and C. Zhang. Label propagation through linear neighborhoods. InProceedings of the
23rd Annual International Conference on Machine Learning (ICML), Pittsburgh, USA, 2006.

H. Wang, S. Yan, T. Huang, J. Liu, and X. Tang. Transductive regression piloted by inter-manifold
relations. InProceedings of the 24th Annual International Conference on Machine Learning
(ICML), 2007.

181

J. Wang, T. Jebara, and S. Chang. Graph transduction via alternating minimization. InProceedings
of the 25th Annual International Conference on Machine Learning (ICML), 2008.

J. Wang and X. Shen. Large margin semi-supervised learning.Journal of Machine Learning
Reserach, 8:1867–1891, 2007.

Y. Weiss and W. Freeman. On the optimality of solutions of the max-product belief-propagation
algorithm in arbitrary graphs.IEEE Transactions on Information Theory, 47, 2001.

J. Weston and C. Watkins. Multi-class support vector machines. Technical Report CSD-TR-98-04,
Department of Computer Science, Royal Holloway, University of London, 1998.

J. Weston, F. Ratle, and R. Collobert. Deep learning via semi-supervised embedding. InProceed-
ings of the 25th Annual International Conference on Machine Learning (ICML), 2008.

J. Weston, R. Collobert, F. Sinz, L. Bottou, and V. Vapnik. Inference with the universum. InPro-
ceedings of the 23rd Annual International Conference on Machine Learning (ICML), Pittsburgh,
USA, 2006.

M. Wu and B. Scḧolkopf. Transductive classification via local learning regularization. InEleventh
International Conference on Artificial Intelligence and Statistics (AISTATS), 2007.

E. Xing, A. Ng, M. Jordan, and S. Russell. Distance metric learning with application to clustering
with side-information. InAdvances in Neural Information Processing Systems (NIPS). MIT
Press, Cambridge, MA, 2002.

L. Xu and D. Schuurmans. Unsupervised and semi-supervised multi-class support vector ma-
chines. InAAAI-05, The Twentieth National Conference on Artificial Intelligence, 2005.

Z. Xu, R. Jin, J. Zhu, I. King, and M. Lyu. Efficient convex relaxation for transductive support
vector machine. In J. Platt, D. Koller, Y. Singer, and S. Roweis, editors,Advances in Neural
Information Processing Systems (NIPS). MIT Press, Cambridge, MA, 2008.

F. Xue and M. Palmer. The Penn Chinese Treebank: phrase structure annotation of a large corpus.
Natural Language Engineering, 11(02):207–238, 2005.

L. Yang, R. Jin, and R. Sukthankar. Semi-supervised learning with weakly-related unlabeled data
: Towards better text categorization. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou,
editors,Advances in Neural Information Processing Systems (NIPS). MIT Press, Cambridge,
MA, 2009.

D. Yarowsky. Unsupervised word sense disambiguation rivaling supervised methods. InPro-
ceedings of the 33rd Annual Meeting of the Association for Computational Linguistics, pages
189–196, 1995.

182

K. Yu, S. Yu, and V. Tresp. Blockwise supervised inference on large graphs. InProc. of the 22nd
ICML Workshop on Learning with Partially Classified Training Data, Bonn, Germany, August
2005.

S. Yu, K. Yu, V. Tresp, and H.-P. Kriegel. Collaborative ordinal regression. InProceedings of the
23rd Annual International Conference on Machine Learning (ICML), 2006.

S. Yu, B. Krishnapuram, R. Rosales, H. Steck, and R. B. Rao. Bayesian co-training. In J. Platt,
D. Koller, Y. Singer, and S. Roweis, editors,Advances in Neural Information Processing Systems
(NIPS). MIT Press, Cambridge, MA, 2008.

J. Zhang, Z. Ghahramani, and Y. Yang. A probabilistic model for online document clustering with
application to novelty detection. InAdvances in Neural Information Processing Systems (NIPS).
MIT Press, Cambridge, MA, 2004.

T. Zhang and R. Ando. Analysis of spectral kernel design based semi-supervised learning. In
Y. Weiss, B. Scḧolkopf, and J. Platt, editors,Advances in Neural Information Processing Systems
(NIPS). MIT Press, Cambridge, MA, 2006.

X. Zhang and W. S. Lee. Hyperparameter learning for graph based semi-supervised learning algo-
rithms. InAdvances in Neural Information Processing Systems (NIPS). MIT Press, Cambridge,
MA, 2006.

D. Zhou and C. Burges. Spectral clustering with multiple views. InProceedings of the 24th Annual
International Conference on Machine Learning (ICML), 2007.

D. Zhou, O. Bousquet, T. Lal, J. Weston, and B. Schölkopf. Learning with local and global consis-
tency. InAdvances in Neural Information Processing Systems (NIPS). MIT Press, Cambridge,
MA, 2003.

D. Zhou, J. Huang, and B. Schölkopf. Learning from labeled and unlabeled data on a directed
graph. InProceedings of the 22nd Annual International Conference on Machine Learning
(ICML), Bonn, Germany, 2005.

D. Zhou, J. Huang, and B. Schölkopf. Learning with hypergraphs: Clustering, classification,
and embedding. InAdvances in Neural Information Processing Systems (NIPS). MIT Press,
Cambridge, MA, 2006.

Y. Zhou and S. Goldman. Democratic co-learing. InProceedings of the 16th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI 2004), 2004.

Z.-H. Zhou, D.-C. Zhan, and Q. Yang. Semi-supervised learning with very few labeled training
examples. InTwenty-Second AAAI Conference on Artificial Intelligence (AAAI-07), 2007.

Z.-H. Zhou and M. Li. Semi-supervised regression with co-training. InInternational Joint Con-
ference on Artificial Intelligence (IJCAI), 2005a.

183

Z.-H. Zhou and M. Li. Tri-training: exploiting unlabeled data using three classifiers.IEEE Trans-
actions on Knowledge and Data Engineering, 17(11):1529–1541, 2005b.

Z.-H. Zhou and J.-M. Xu. On the relation between multi-instance learning and semi-supervised
learning. InProceedings of the 24th Annual International Conference on Machine Learning
(ICML), 2007.

J. Zhu, S. Rosset, T. Hastie, and R. Tibshirani. 1-norm support vector machines. InNeural
Information Processing Systems 16, 2004a.

X. Zhu. Semi-supervised learning literature survey. Technical Report 1530, Department of Com-
puter Sciences, University of Wisconsin, Madison, 2005.

X. Zhu and Z. Ghahramani. Towards semi-supervised classification with Markov random fields.
Technical Report CMU-CALD-02-106, Carnegie Mellon University, 2002.

X. Zhu and A. B. Goldberg. Kernel regression with order preferences. InTwenty-Second AAAI
Conference on Artificial Intelligence (AAAI-07), 2007.

X. Zhu and A. B. Goldberg.Introduction to Semi-Supervised Learning. Morgan & Claypool, 2009.

X. Zhu and A. B. Goldberg. Semi-supervised regression with order preferences. Technical Report
1578, Department of Computer Sciences, University of Wisconsin-Madison, 2006.

X. Zhu and J. Lafferty. Harmonic mixtures: combining mixture models and graph-based meth-
ods for inductive and scalable semi-supervised learning. InProceedings of the 22nd Annual
International Conference on Machine Learning (ICML). ACM Press, 2005.

X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using Gaussian fields and
harmonic functions. InProceedings of the 20th Annual International Conference on Machine
Learning (ICML), 2003.

X. Zhu, J. Kandola, Z. Ghahramani, and J. Lafferty. Nonparametric transforms of graph kernels for
semi-supervised learning. In L. K. Saul, Y. Weiss, and L. Bottou, editors,Advances in Neural
Information Processing Systems (NIPS). MIT Press, Cambridge, MA, 2004b.

A. Zien, U. Brefeld, and T. Scheffer. Transductive support vector machines for structured variables.
In Proceedings of the 24th Annual International Conference on Machine Learning (ICML),
2007.

M. Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
Proceedings of the 20th Annual International Conference on Machine Learning (ICML), 2003.

