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abstract

In both machine learning (ML) and cognitive psychology (CP), categorization
is considered a basic task commonly encountered by learning agents and
studied in both fields. While a great deal of work in CP has been applied
to understanding human learning in supervised categorization, little work
has been done previously to investigate the effects of both labeled and
unlabeled data as in the semi-supervised setting. I have had the opportunity
to contribute to a number of studies investigating just this situation: human
learners tasked with learning a categorization task from some combination
of labeled and unlabeled data. This work has involved the use of ML to both
(1) better understand how labeled and unlabeled data affect human learners
in categorization tasks as well as (2) attempt to influence the resulting
behavior using ideas and techniques derived from ML.

The results of this work have shown that (1) in addition to humans being
affected by the distribution of unlabeled data, they can also be affected by
ordering of the unlabeled items (2) that humans are not constrained in their
search of a parameter space when attempting to integrate new unlabeled
items with previously labeled experience (3) that humans can learn using
underlying manifold structure (4) that the speed of human learning on a
supervised task can be affected by prior unlabeled experience and (5) that,
using Co-Training constraints, human collaborators can be induced to learn
a boundary neither would have likely learned on their own.
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1 classification as model of human
categorization

Classification is one of the principal tasks investigated in the field of Machine
Learning (ML). The same can be said of the field of Cognitive Psychology
(CP), where the same task is known as categorization, the only difference
being that the learners under investigation are human beings instead of
computer programs. CP has long had an interest in understanding human
categorization (also known as human category learning): How we come to
conceive of objects in the world as belonging to different categories, and
how we use categories to draw inferences about the unobserved properties
of objects. To this end a suite of computational models have been devised
to model human behavior.

These cognitive models bear a striking resemblance to models designed
in the study of ML, even though the goals of the two fields are strikingly
different and evolved separately for the most part. In ML, the primary goal
is to develop models which generalize from a set of training data to data on
which they are tested. In human category learning, however, the primary
goal is to create models which produce behavior which matches that of
humans in the same task. The similarity of these models begs the question:
Can we use statistically-motivated ML models to better understand human
behavior?

For the most part, the experimental setting investigated in human
category learning has been a Supervised Learning (SL) setting, where the
learner is presented with a set of 〈item, label〉 pairs and is asked to learn
some mapping from item to label. This use of SL as an experimental
procedure has proven exceedingly fertile – countless experiments in this
setting have been conducted and a vast array of interesting regularities in
human behavior have been documented (Pothos and Wills, 2011).

Only relatively recently have experiments been performed on humans
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investigating the effect of labeled plus unlabeled data on human category
learning, known as Semi-Supervised Learning (SSL); i.e. the learner is
presented with some combination of 〈item, label〉 pairs (labeled data)
along with a set of items without labels (unlabeled data). The setting
is particularly interesting given that this is the natural combination of
experience in real life, a combination of labeled teaching moments and
unlabeled everyday experience.

My work has focused on investigating how humans are affected by these
combinations of labeled and unlabeled data while performing categorization
tasks. Through this work I have had the opportunity to be part of several
studies which produced significant findings, all of which fall under a general
thesis:

Human category learning, shown to be sensitive to both labeled
and unlabeled data, can be both better understood and influenced
using semi-supervised machine learning models.

Before exploring these experimental results, we will review and formalize
the categorization/classification task under investigation.

1.1 Review of Classification in Machine
Learning and Cognitive Psychology

As mentioned previously, the primary experimental focus in the investigation
of human category learning has been in the SL setting. The models developed
to investigate the observed behavior have been supervised as well, in that
they do not contain explicit methods for dealing with unlabeled data. Three
dominant models have been developed to describe human behavior in a
categorization tasks. These are: exemplar, prototype and Rational models.
Equivalences can be shown between these models and the following ML
models: Kernel Density Estimation, Gaussian Mixture Models and Dirichlet
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Process Mixture Models, respectively. Some of the important relationships
between the psychological and machine learning models have been discussed
in detail by other researchers (Fried and Holyoak, 1984; Nosofsky, 1991;
Ashby and Alfonso-Reese, 1995; Sanborn et al., 2006; Griffiths et al., 2007)
while the SSL models discussed here were developed in Zhu, Gibson, Jun,
Rogers, Harrison, and Kalish (2010).

Before proceeding, it will be useful to define the categorization task itself,
to indicate very generally how mathematical models in CP and ML have
been brought to bear on the task, and to introduce some notation.

The standard categorization task asks a learner to label a previously
unseen item xt after viewing a set of labeled examples {(xi,yi)}t−1

i=1 . In this
notation, xt indicates a multidimensional feature vector that describes a
single stimulus item (with t indexing the order in which items are seen
over time), and yt indicates the category label associated with each item.
In both CP and ML, the probabilistic way of modeling human category
decisions for xt at time t is to calculate P(yt = k | xt, {(xi,yi)}t−1

i=1), that
is, the probability that a person will choose label yt = k for each of k ∈ K
categories given the current item xt and the preceding labeled evidence
{(x,y)}t−1

i=1 i.e., the training examples viewed prior to the query item xt.
A common way to compute the probability P(yt = k | xt, {(xi,yi)}t−1

i=1)

is via the Bayes rule. Formally the Bayes rule states

P(yt = k | xt, {(xi,yi)}t−1
i=1) = (1.1)

P(xt | yt = k, {(xi,yi)t−1
i=1)P(yt = k | {(xi,yi)}t−1

i=1)∑
k ′ P(xt | yt = k

′, {(xi,yi)}t−1
i=1)P(yt = k

′ | {(xi,yi)}t−1
i=1)

.

The first term in the numerator, P(xt | yt = k, {(xi,yi)}t−1
i=1), is the likelihood,

which specifies the probability of observing item xt assuming it has the label
yt = k. The second term in the numerator, P(yt = k | {(xi,yi)}t−1

i=1), is
the prior, which specifies the probability, prior to observing xt, that xt will
have label yt = k. The left-hand side, P(yt = k | xt, {(xi,yi)}t−1

i=1), is the
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posterior, which indicates the probability that k is the correct label after
seeing xt. The denominator is a normalization factor so that the posterior
probability sums to 1. Once the posterior probability is computed, one can
classify xt by the most likely label:

ŷt = arg max
k∈K

P(yt = k | xt, {(xi,yi)}t−1
i=1) (1.2)

= arg max
k∈K

P(xt | yt = k, {(xi,yi)}t−1
i=1)P(yt = k | {(xi,yi)}t−1

i=1).

The above classification rule minimizes expected error. Alternatively, one
can sample the class label in a practice known as Gibbs classifier in ML:

ŷt ∼ P(yt = k | xt, {(xi,yi)}t−1
i=1) (1.3)

which corresponds to probability matching in psychology (Myers, 1976;
Vulkan, 2000).

In ML there exist a variety of models for computing the posterior via
Bayes rule. In all of these models, the prior is typically a multinomial
distribution over the values yt may take (i.e., the different category labels).
Thus the primary difference between probabilistic ML models is in how the
likelihood term is calculated. Interestingly, three common ML models of this
computation bear a striking resemblance to the exemplar, prototype, and
Rational models of human categorization. Indeed, certain parametrization
of the CP models are formally identical to the ML models. This identity is,
perhaps, surprising since the primary goal of the CP work has been to fit
observed human behavior in artificial category learning experiments. Many
early theorists, with the notable exceptions of Shepard (1991) and Anderson
(1991), did not explicitly consider whether the probabilities computed by a
given model were correct in any formal sense (see e.g. Medin and Schaffer,
1978; Hintzman, 1986; Rosch et al., 1976). The fact that the CP and
ML probabilistic models are formally equivalent thus suggests that human
categorization decisions are optimal in some respects – that is, the decisions
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people make are shaped by estimates of the true posterior probability
distribution, and so represent the best decisions that can be made given
prior beliefs and learning episodes (Anderson, 1991; Sanborn et al., 2006;
Tenenbaum et al., 2006; Griffiths et al., 2011).

The equivalence of CP and probabilistic ML models is also useful for
another reason: it allows us to leverage insights from machine learning to
develop explicit hypotheses about human SSL. A considerable amount of
work in machine learning has focused on how best to exploit both labeled
data, consisting of (x,y) pairs, and unlabeled data, consisting of only the x
observations without y labels. The modification of a supervised model to
make use of unlabeled data is sometimes called lifting the model. In machine
learning the primary motivation for lifting supervised models has been
that labeled data are often expensive – that is, data labeling can be time-
consuming and often requires an expert in the field. In contrast, unlabeled
data are usually plentiful and inexpensive to acquire in large quantities.
A key discovery has been that, under certain well-specified assumptions,
semi-supervised models can use the potentially inexpensive unlabeled data
to greatly improve classifier performance compared to supervised models
alone (Balcan and Blum, 2010).

1.2 Semi-Supervised Learning Assumptions

By definition, unlabeled data do not come with labels and so cannot be used
directly for supervised learning. Instead, these data provide information
about the marginal P(x), that is, the distribution of items in the feature
space. To use this information for category learning, assumptions must
be made about the nature of the unlabeled item distribution and the
relationship between P(x) and P(y | x). These assumptions then “steer” how
category learning proceeds. SSL is the learning paradigm that adopts such
assumptions to make use of both labeled and unlabeled data when learning
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to categorize.
There are many types of SSL assumptions that can be used to support

different kinds of learning models (Chapelle et al., 2006; Zhu and Goldberg,
2009). The assumption most germane to existing psychological models of
categorization is the mixture model assumption, which states that all items
are drawn independently from a probability distribution composed of a
mixture of underlying components. The observed distribution of unlabeled
examples can thus be used to infer the underlying mixture components,
while the comparatively infrequent labeled examples can be used to label
each component. We will use the mixture model assumption to create lifted
variants of the prototype and Rational models of human semi-supervised
learning. The exemplar model is a non-parametric model that requires a
slightly different assumption.

Another SSL assumption we will encounter is the manifold assumption,
also known as graph-based SSL. Here it is assumed that the labels vary slowly
along an underlying manifold i.e. the discrete graph formed by connecting
nearby items. In other words, if we form a graph among the data-points in
dataset D, we can propagate labels along these edges.

Finally, when we investigate the use of the Co-Training algorithm to
influence human behavior, we will make several assumptions very specific to
the task setting, the most important being that learners using two separate
views of the data can cooperate to learn a classification.

1.3 Translating Between ML and CP

While the tasks of classification and categorization are identical in ML
and CP respectively, the literature describing the two perspectives have
developed independently. This has led to a need to translate between the
terms used in ML classification and CP categorization. The models I describe
here will derive directly from this shared focus. In most cases, like in the
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case of classification and categorization, terms will be used interchangeably
and can be considered equivalent unless specified otherwise.

Though there are many equivalences, it is important to note the differ-
ences between the two fields. One constraint of human category learning to
consider that the average human can only attend to a single visual stimulus
at a time. The implication here is that, in general, humans are performing
online learning: the learner is constrained by the need to attend to and
process one stimuli at a time, resulting in a temporal ordering of the data.
In other words, the data points (x1,y1), (x2,y2), . . . , (xn,yn) must be con-
sidered in sequence and not all at once, as they would in a batch setting.
Experimentally, this ordering can either be explicitly enforced, where human
learners are exposed to stimuli one at a time, or it may occur implicitly,
such as when the learner is given a batch of data to process and can consider
each item in the order that they choose. In order to provide an accurate
analogue to human behavior, this restriction may need to be considered
during model design.

Another constraint to consider is the fact that humans are not tireless.
Unlike a computer, a human asked to do a repetitive task will over time
grow tired. In order to maintain human attention, the learner must also be
motivated. Very often this motivation is external to the task, such as class
credit for participating. It is an important thing to consider when designing
human experiments, especially when coming from the endlessly patient and
cooperative world of ML.

In the next chapter, I will continue to translate between ML and CP,
looking at the set of models with roots in both ML and CP. Following
that I will show the combination of labeled and unlabeled data can affect
the human learner, first motivated in an attempt to understand human
categorization behavior and then in an attempt to manipulate this learning.

With regard to understanding human behavior, we will first review
previous work proving that humans are sensitive to, and can learn from,
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the distribution of the unlabeled data. From there I will describe new
work which deals with two motivations: understanding human behavior and
influencing human behavior using SSL methods.

To better understand human behavior in a SSL setting, I discuss a study
investigating how ordering effects can affect human learning. This is followed
by an investigation how best to explain category shifts seen in human SSL
under a particular family of models. A third experiment is described applying
a fundamentally different SSL assumption: the network assumption where
underlying manifolds may be perceived. In this experiment we will also see
our first instance of attempting to influence human behavior, to attempt
and drive human learning to a particular solution.

I then shift two experiments describing explicit attempts to influence
human behavior. The first is an attempt to speed human learning using
prior unlabeled experience. The second makes use of yet another set of SSL
assumptions where Co-Training constraints are applied in an attempt to
see two human learners can learn a classification boundary unlikely to be
achieved by either learner alone.

This is followed by a final chapter providing a summary of the work, a
discussion of future work, and a few of the lessons learned working with
humans from the point of view of ML.
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2 semi-supervised models of human
categorization behavior

In this chapter we will describe translations between a set of CP models and
equivalent ML models, providing additional motivation for the application
of ML techniques to the study of human learning.

2.1 Exemplar Model as Kernel Density
Estimation

One common model of human categorization is the exemplar model, which
stores all previously-viewed examples and uses these to estimate the most
likely category label for novel query items. The Generalized Context Model
(GCM) proposed by Nosofsky (1986, 2011) is probably the best known of this
class in human category learning. To facilitate comparison with ML models
we consider a specific parametrization of the full GCM model, in which
two free parameters, memory strength and dimensional scaling weights (see
Nosofsky, 2011), are fixed to one. With this simplification, the GCM model
can be described as

P(yt = k | xt, {(xi,yi)}t−1
i=1) =

b(k)
(∑

j:yj=k
s(xt, xj)

)
∑
k ′:k ′∈K b

(k ′)
(∑

j ′:yj ′=k
′ s(xt, xj ′)

) (2.1)

where b(k) is the bias on category k and s(xi, xj) is a scaled similarity
measure between item xi and xj. The bias term b serves the same role as
the prior in the Bayes rule: it indicates the probability of encountering a
label with value k prior to observing the query item. Intuitively it is easy
to see that the probability of the query item xi sharing the same label as a
stored item xj grows with the similarity s between the queried and stored



10

items. Consequently the probability that the query item receives label k
depends on its similarity to all items in category k and its similarity to all
other items in the contrasting categories.

This formulation does not specify how the similarity between the queried
and stored examples is to be computed. In ML, a common choice for s is
the Gaussian kernel, which, in 1D is defined by

s(xi, xj) = exp
[
−

1
2σ2 (xi − xj)

2
]

(2.2)

where σ2 is the variance. In psychological models it is more common
to employ an exponential similarity gradient, following Shepard (1986).
Shepard’s 1986 arguments, however, were premised on the assumption
that the item distribution P(x) was uniform over discrete dimensions (see
Anderson, 1991); in the studies we consider below, the items are sampled from
a mixture of Gaussian distributions in a fully continuous space. Empirically,
at least one study has found that Gaussian similarity functions can provide a
better fit to human behavior for such stimuli (Nosofsky, 1985). Moreover, an
interesting property of this class of model is that, in the limit, the estimate
of P(yt = k | xt, {(xi,yi)}t−1

i=1) is not affected by the shape of the similarity
gradient (or the kernel in ML). For these reasons, a Gaussian similarity
function is used in what follows.

Kernel Density Estimation

A clear analog to exemplar models is Kernel Density Estimation (KDE).
Like exemplar models, each labeled example (xi,yi) is retained in KDE and
is used to compare against the current query item. One model that makes
use of the likelihood estimate provided by KDE is the Nadaraya-Watson
kernel estimator (Nadaraya, 1964; Wasserman, 2006; Shi et al., 2008), a
regression function that returns a real value. When this estimator is adapted
to categorization, the real value provides a direct estimate of the conditional
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probability P(yt = k | xt, {(xi,yi)}t−1
i=1). Given training data {(xi,yi)}t−1

i=1 ,
the categorization function is

P(yt = k | xt, {(xi,yi)}t−1
i=1) =

∑t−1
j=1 K

(xt−xj
h

)
δ(yj,k)∑t−1

j ′=1 K
(
xn−xj ′

h

) (2.3)

where the kernel function K determines the weight between the query item
xt and each of the 1, . . . , t − 1 exemplars xj, and where δ(u, v) = 1 when
u = v and 0 otherwise.

From this description, the equivalence between Equation (2.3) and Equa-
tion (2.1) may not be immediately obvious. Under certain parameter settings
however, the equivalence becomes clear. The kernel function K acts like
the similarity function s(xi, xj), returning a value that gives a sense of the
“similarity” between the query xn and each exemplar xj. The hyperparame-
ter h, the bandwidth parameter, controls how the effect of each exemplar
diminishes with distance. Using a Gaussian function for s (in the exemplar
model) and a 1-dimensional Gaussian kernel for K (in the ML model), and
setting the bandwidth h to one standard deviation of this Gaussian, the
functions become identical:

s(xi, xj) = exp
[

1
2h2 (xi − xj)

2
]
= exp

[
1
2

(
xi − xj
h

)2
]
= K

(
xi − xj
h

)
.

(2.4)

Setting b(k) = 1 for all k completes the equivalence. This parametrization of
the Nadaraya-Watson KDE is therefore formally identical to the parametriza-
tion of the GCM described in (2.1) with the additional constraint that all
categories are assumed to be equally likely a-priori.
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The Semi-Supervised Exemplar Model

To derive our semi-supervised exemplar model, we describe an SSL version
of KDE and make use of the equivalence between the Nadaraya-Watson
KDE and the GCM model. The standard model is lifted as follows: When
an item xi is queried for a label, the supervised model returns P(yi = k | xi)
for all k = 1, . . . ,K categories. Normally, in supervised learning, the true
label yi will then be received and the labeled (xi,yi) pair added to the
training set in preparation for the next query item xi+1. In the semi-
supervised setting, xi may remain unlabeled, so that no ground truth yi
label is received. Instead of tossing out this unlabeled xi, as would happen
in the supervised case, the real value P(yi = k | xi) is calculated for all
k = 1, . . . ,K and these values are considered soft labels on xi. The xi,
together with the soft labels, is then added to the training set as a pseudo-
labeled exemplar. Thus we now maintain (xi, yi) pairs where yi is a vector
with yik = P(yi = k | xi), k = 1, . . . ,K. If xi is labeled with yi = k∗, the
corresponding yik∗ = 1 while yik = 0 for all other values of k. Algorithm 1
describes the model in detail.

2.2 Prototype Model as Mixture of
Gaussians

Unlike the exemplar model, where learning is accomplished by storing all
individual training items, learning in the prototype model consists of sum-
marizing each category and discarding the training items themselves. The
summary is achieved by assuming that each category can be represented
with a parametric distribution P(x | y = k), so that only the distribution
parameters for each category need be retained. The parameters associated
with a given category constitute the category prototype. Prototypes do not
necessarily correspond to any particular labeled item, but are abstract repre-
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Algorithm 1: Semi-Supervised Exemplar Model
Given: kernel bandwidth h
for n = 1, 2, . . . do

Receive xt and predict its label using

arg max
k
P(yt = k | xt, {(xi, yi)}t−1

i=1) =

∑t−1
j=1 K

(xt−xj
h

)
yjk∑t−1

j ′=1 K
(

xt−x ′j
h

) . (2.5)

if xt is labeled with yt = k∗ then

Set ytk =

{
1, if k = k∗

0, o.w. , for k = 1, . . . ,K.

else
Set ytk = P(yt = k | xt, {(xi, yi)}t−1

i=1) for k = 1, . . . ,K.
end
Add (xt, yt) as an exemplar.

end

sentations of all labeled items in the category they represent. For example,
if we assume that each category P(x | y = k) has a Gaussian distribution,
then the corresponding prototype can be represented by the parameters µ(k)

(mean or “component center”) and σ2(k) (variance or “spread”). Typically
the number of categories K in the model is fixed in advance, before any
labeled examples are seen, so that the number of stored prototypes does not
grow with the number of examples. A new item is labeled by comparing it
to each stored prototype.

A variety of different prototype models have been proposed in the psy-
chological literature. To illustrate the link to ML, we consider the model
proposed by Minda and Smith (2011), in which the prototype is simply
the sample mean of labeled training examples in a given category. Query
items are labeled using the same method as in the exemplar model, by
comparison to a set of stored representations. The difference is that the



14

stored representations are category prototypes, and not the labeled training
items themselves. Thus it is not surprising that the formal description of
the model is very similar:

P(yt = k | xt, {(xi,yi)}t−1
i=1) =

b(k) s(xt, x̄(k))∑
k ′:k ′∈K b

(k ′) s(xt, x̄(k ′))
(2.6)

where x̄(k) is the prototype for category k and s(xi, x̄(k)) is a similarity
function as in Equation (2.1), except that now xi is compared to a single
summary representation x̄(k) of each category k. Just as in the exemplar
model, the bias term b(k) encodes the prior belief on label k.

Gaussian Mixture Models

An ML analog to prototype models is the mixture model, in which items
are assumed to be generated from some mixture of underlying components.
Each component is represented by a set of parameters that are learned from
the data, with the number of components fixed before learning. We use the
Gaussian Mixture Model (GMM), where each category is represented by
a single component corresponding to a Gaussian distribution. The GMM
is defined by parameters θ = {α,µ,Σ}, where α is the set of non-negative
mixing parameters {α(1), . . . ,α(K)},

∑
k=1:K α

(k) = 1, µ a vector of the
corresponding K means (µ(1), . . . ,µ(K)), and Σ a set of covariance matrices
(Σ(1), . . . ,Σ(K)). When x is one-dimensional, the covariance matrices are
replaced by variances σ2(1), . . . ,σ2(K). The model is defined by the joint
probability P(xi,yi | θ) = P(yi | θ)P(xi | yi, θ) where

P(yi = k | θ) = α(k), (2.7)

P(xi | yi = k, θ) = N(xi; µ(k),Σ(k)). (2.8)

Note that the n training examples seen prior to the query xn are not used
directly to label new items, but instead are used to estimate the parameters
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θ, typically via the maximum likelihood estimate (MLE). The parameter
estimates after seeing the n − 1 examples are denoted as θ̂(n−1). The
probability distribution over category labels for the query item xn is then
computed as the posterior

P(yt = k | xt, θ̂(t−1)) = (2.9)

P(xt | yt = k, θ̂(t−1))P(yt = k | θ̂(t−1))∑
k ′∈K P(xt | yt = k ′, θ̂(t−1))P(yt = k ′ | θ̂(t−1))

with the most likely label found by taking arg maxk P(yt = k | xt, θ̂(t−1)).
As was the case when comparing KDE and exemplar models, GMMs are

identical to prototype models under a certain parametrization. As in the
exemplar model, we define the similarity function s to be a Gaussian (2.2).
Unlike the exemplar model, where we compare the query xt to each labeled
example, here we only compare it to the set of K prototypes {x̄(k) : k ∈ K}
corresponding to the K categories. For each category, the point x̄(k) is equal
to the sample mean µ̂(k) for that category in the GMM formulation, while
the covariance σ̂2(k) enters s implicitly via the definition of multivariate
Gaussian probability density function. The set of α̂ corresponds to the set
of b(k). Thus under these settings the prototype model is equivalent to the
GMM.

The Semi-Supervised Prototype Model

Recall that, in the prototype and GMM frameworks, the number of proto-
types is fixed, usually equal to the number of categories, and each prototype
is encoded by parameters learned from the training set. In the supervised
setting these parameters can be computed in closed form by taking the
MLE. In the semi-supervised setting, the closed-form computation is no
longer possible because it is not clear to which category each unlabeled
item belongs, and consequently it is not clear to which parameter estimates
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the item should contribute. To make use of unlabeled data, the MLE is
instead computed using an approximation method, typically the expectation
maximization (EM) algorithm (Dempster et al., 1977).

In the case of a 2-category Gaussian mixture model with x ∈ R and
labels y ∈ {0, 1} the sufficient statistics vector is

φ̂(x,y) = (1 − y, (1 − y)x, (1 − y)x2,y,yx,yx2). (2.10)

Algorithm 2 formulates our procedure for using both labeled and unlabeled
data to find a prototype model solution.

2.3 Rational Model as Dirichlet Process
Mixture Model

The exemplar model is nonparametric in that the number of representational
elements grows directly with the number of training examples and no
assumptions are made about the number or distribution of categories. The
prototype model is parametric in that there are a fixed number of components
(category prototypes) which are defined by a fixed number of parameters.
While several psychological models have been proposed that exist between
these extremes (e.g., the Varying Abstraction model (Vanpaemel et al.,
2005)), perhaps the most influential is Anderson’s Rational model (Anderson,
1990, 1991). A version of the Rational algorithm, slightly modified from the
presentation in Anderson (1991), is presented in Algorithm 3.

The term P(zi = `
′ | xi) controls the probability that a given item will be

assigned to a new cluster, with the effect that the number of representational
elements in a trained model will vary with this term. This probability in
turn depends on a “coupling parameter” that specifies the prior probability
of any two items being drawn from the same cluster. When the coupling
parameter is low, P(zi = ` ′ | xi) is high, so each labeled item will likely be
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Algorithm 2: Semi-Supervised Prototype Model
Given: Prior encoded in φ
Initialize θ(0) from φ (see M-step below)
for t = 1, 2, . . . do

Receive xt and calculate q(yt) = P(yt | xt, θ(t−1))
Receive yt (may be unlabeled), update model

E-step:
if xt is unlabeled then
φ = φ+ Eq[φ̃(xt,yt)]

else
φ = φ+ φ̃(xt,yt)

end

M-step: Let φ = (n0, s0, ss0,n1, s1, ss1).
Compute θ(t) as follows:

α =
n1

n0 + n1
(2.11)

µ0 =
s0

n0
(2.12)

σ2
0 =

ss0

n0
−

(
s0

n0

)2

(2.13)

µ1 =
s1

n1
(2.14)

σ2
1 =

ss1

n1
−

(
s1

n1

)2

(2.15)

with n0, n1 the weighted sum of items assigned to category 0, 1.
end

placed in its own cluster, similar to the exemplar model. When the coupling
parameter is high, P(zi = ` ′ | xi) is low and relatively few clusters will be
learned, similar to the prototype model. In Anderson (1991), the coupling
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Algorithm 3: Rational Model of Categorization
Given: cluster assignments {zi}

t−1
i=1 assigning {xi}t−1

i=1 to clusters in L
for each cluster l ∈ L do

calculate P(zt = l | xt, {xi, zi}t−1
i=1), the probability that xt comes

from cluster l.
end
Also, let P(zn = l ′ | xt) be the probability that xt comes from a new
cluster l ′.

Assign xt to the cluster with maximum probability:

zt = arg max
l∈{L,l ′}

{
P(zt = l | xt, {xi, zi}t−1

i=1)
P(zt = l

′ | xt)
(2.16)

If the assigned cluster is the new l ′, add l ′ to L.

parameter is assumed to be fixed in advance of training.

Dirichlet Process Mixture Models

Dirichlet Process Mixture Models (DPMMs) are to KDEs and GMMs as
the Rational model is to exemplar and prototype models: DPMMs allow
the number of components of the mixture model to grow dynamically with
the number of data points observed. Anderson’s Rational model was in fact
shown to be equivalent to the DPMM (Neal, 1998; Sanborn et al., 2006;
Griffiths et al., 2011).

The model presented here is similar to the AClass model of (Mansinghka
et al., 2007), which was used for supervised learning. But unlike AClass where
each category has its own private DPMM, we stack (x,y) : x ∈ R, y ∈ {0, 1},
into an extended feature vector and use one global DPMM: G ∼ DP(G0,α2),
θ1 . . . θt ∼ G, (xi,yi) ∼ F(x,y|θi), where G0 is a base distribution which we
take to be the product of Normal-Gamma and Beta, conjugate priors for
Normal and binomial: G0 = NG(µ0, κ0,α0,β0)Beta(α1,β1). θ = (µ, λ,p)
is a parameter vector with the mean and precision of a Gaussian for the x
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component, and the “head” probability for the y component. Due to the
property of the Dirichlet process (Teh, 2010), many θ’s will be identical,
creating an implicit clustering of items. F is a product of Gaussian and
Bernoulli: F = Norm(x;µ, λ)py(1 − p)1−y. As is common with DPMM,
we introduce cluster membership indices z1 . . . zt, and integrate out θ and
G via particle filtering (Fearnhead, 2004). That is, at iteration t − 1 we
assume the distribution P({zi}t−1

i=1 | {xi}
t−1
i=1 , {yi}t−2

i=1) is well-approximated by
the empirical distribution on m particles z(1), . . . , z(m), each particle z a
vector of indices z1, . . . , zt−1:

P({zi}
t−1
i=1 | {xi}

t−1
i=1 , {yi}t−2

i=1) ≈
1
m

m∑
l=1

δ({zi}
t−1
i=1 , z(l)),

where δ(u, v) = 1 if u = v, and 0 otherwise. Then, at iteration t, after we
observe the input item xt but before seeing its label yt, the distribution
P({zi}

t
i=1 | {xi}

t
i=1, {yi}t−1

i=1) can be shown to be proportional to

m∑
l=1

δ
(
{zi}

t−1
i=1 , z(l)

)
P
(
yt−1 | z(l), {yi}t−2

i=1
)
P
(
zt | z(l)

)
P
(
xt | zt, z(l), {xi}t−1

i=1
)
.

(2.17)
One would further sample from (2.17) m new particles z(1), . . . z(m). The
empirical distribution on these new particles will approximate P({zi}ti=1 |

{xi}
t
i=1, {yi}t−1

i=1). This update is the key to particle filtering, which uses a
fixed number of particles to approximate an increasingly complex distribu-
tion.

In (2.17), one needs to compute three conditional probabilities. The
conditional probability of zt is computed from the Chinese Restaurant
Process prior. Let there be K unique index values 1 . . .K in {zi}

t−1
i=1 , then

P(zt = k | {zi}
t−1
i=1) =

{
tk/(α2 + t− 1), k 6 K

α2/(α2 + t− 1), k = K+ 1
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where tk is the number of indices with value k in {zi}
t−1
i=1 . The conditional

probability of xt is computed from a student-t distribution,

P(xt | {zi}
t
i=1, {xi}t−1

i=1) = t2α (xt | µ,β(κ+ 1)/(ακ)) ,

with

µ =
κ0µ0 +Nx̄

κ0 +N
(2.18)

κ = κ0 +N (2.19)

α = α0 +
N

2 (2.20)

β = β0 +
1
2

N∑
i=1

δ(zi, zt)(xi − x̄)2 +
κ0N(x̄− µ0)

2

2(κ0 +N)
(2.21)

N =

t∑
i=1

δ(zi, zt) (2.22)

x̄ =
1
N

t−1∑
i=1

δ(zi, zt)xi (2.23)

The Semi-Supervised Rational Model

Just as in the semi-supervised exemplar and prototype models, lifting the
DPMM requires modifications to accommodate both labeled (x,y) pairs
and unlabeled x items with no corresponding ground truth labels y. The
key point is that the probability distribution over partition assignments,
which is central to the Rational/DPMM approach, is influenced here by the
distribution of both labeled and unlabeled examples in the feature space,
as well as by the labels given to the labeled items. Unlabeled data thus
influence category learning by influencing which partitions of the feature
space are most probable.

Importantly, for our semi-supervised variant of DPMM, the conditional
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Algorithm 4: Semi-Supervised Rational Model of Categorization
Parameters: α2,µ0, κ0,α0,β0,α1,β1
Initialize m empty particles; y0 =unlabeled
for t = 1, 2, . . . do

Receive yt−1 (may be unlabeled) and xt
Re-sample m particles from (2.17)
Predict yt with new particles from (2.27)

end

probability of yt−1 is computed from a beta-binomial distribution

P(yt−1 | {zi}
t−1
i=1 , {yi}t−2

i=1) =
c1 + α1

c0 + c1 + α1 + β1
. (2.24)

Note some of the y’s might be unlabeled. If yt−1 is unlabeled, the probability
is simply 1 since it must take either one of the labels. If some y’s in {yi}

t−2
i=1

are unlabeled, one can show that those are marginalized over, resulting in
the following counts:

c1 =

t−2∑
i=1

δ(zi, zt−1)δ(yi, 1) (2.25)

c0 =

t−2∑
i=1

δ(zi, zt−1)δ(yi, 0) (2.26)

Here, we define δ(yi, 1) = δ(yi, 0) = 0 if yi is unlabeled. Once the particles
are updated with (2.17), predicting yt is straightforward:

p(yt | {xi}
t
i=1, {yi}t−1

i=1) ≈
1
m

m∑
l=1

p(yt | z(l), {yi}t−1
i=1) (2.27)

where p(yt | z(l), {yi}t−1
i=1) is computed with (2.24). The complete algorithm

is given in Algorithm 4.
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3 semi-supervised effects due to
distribution of unlabeled data: previous
evidence

While the models discussed in the previous chapter provide a theoretical
basis for considering models of human semi-supervised learning, this does not
show that humans actually are affected by unlabeled data in a categorization
task. The following experiment, conducted by members of my research group
prior to my joining, was among the first demonstration of the sensitivity of
human learners to unlabeled data in a categorization task.

3.1 Experiment 1: SSL Distribution Effects

The experiment was designed to assess whether human categorization deci-
sions are influenced by the distribution of unlabeled examples (Zhu et al.,
2007). 22 students at the University of Wisconsin completed a binary cate-
gorization task with complex novel shapes varying in a single continuous
parameter x ∈ [−2, 2] as seen in the examples in Figure 3.1. The two
categories were denoted by y = 0 or y = 1. Participants first received 2
labeled items: (x,y) = (−1, 0) and (1, 1), repeated 10 times each in random
order. These items were “labeled” in that feedback indicating the correct
response was provided after each trial. Participants next classified 795
unlabeled test examples in one of two experimental conditions, differing only
in how the majority of the unlabeled items were generated. In the L-shift
condition, 690 of the unlabeled test items were drawn from a mixture of
two Gaussians with a trough shifted to the left of the boundary implied by
the labeled training items (see Figure 3.2). The other condition, R-shift,
varied only in that the trough between the Gaussians was now shifted to the
right of the implied labeled boundary. In both conditions, the remaining
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−2 −1 0 1 2

Figure 3.1: Example stimuli used in Zhu et al. (2007), with corresponding x
values.

unlabeled test items were items drawn from a grid across the entire range
of x, ensuring that both unlabeled distributions spanned the same range.
The grid items appeared in random order at the beginning and end of the
unsupervised phase, allowing for the measurement of the category boundary
participants learned immediately following the supervised experience and
following exposure to the unlabeled bimodal distribution.

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

x

P
(x

)

Figure 3.2: Example of the dataset used in the L-shift condition of Zhu et al.
(2007). Labeled points are represented as negative ( ) and positive ( ). The
black curve is the bimodal distribution P(x) from which unlabeled items
were drawn. The dashed vertical line represents the boundary implied by
the labeled points alone. Note that the trough in the unlabeled distribution
is shifted to the left with respect to the supervised learning boundary.
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Figure 3.3: Results from shift in unlabeled distribution in Zhu et al. (2007).
The thick black line marks items on which the majority human categorization
differs in the two conditions.

Figure 3.3 shows a summary of the results by pooling human behavior
by condition and fitting logistic regression curves to show the conditional
probability P(y = 1 | x). Two subsets of the data are examined. The early
subset shows behavior on the first 50 unlabeled test items (drawn right after
the labeled training phase), while the late subset shows behavior on the final
50 unlabeled test items (drawn at the end of exposure to unlabeled data).

Comparing the early items, the two groups look essentially the same and
the curves overlap. On the late items the curves are substantially different.
The decision threshold, i.e., x producing the value P(y = 1 | x) = 0.5, shifted
in opposite directions in the two conditions, moving to the left in the L-shift
condition and to the right in the R-shift condition. In the late subset, the
majority of participants classified the items x ∈ [−0.07, 0.50] differently in
the two conditions. If participants were unaffected by unlabeled data, the late
test curves should be identical to the early curves and overlap. The fact that
they do not indicates that participants are affected by the unlabeled data
for this categorization task. To statistically test these observations, decision
boundaries for the early and late grid-test items were computed separately for
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each participant using logistic regression on the participant’s categorization
decisions. A repeated measures analysis of variance assessing the influence
of early vs. late and L-shift vs. R-shift on the location of the decision showed
a significant interaction between the two factors (F(1, 18) = 7.82,p < 0.02),
indicating that after exposure to the unlabeled data, the decision boundary
shifted in significantly different directions for the two groups. Thus exposure
to the unlabeled bimodal distribution appears to alter participant’s beliefs
about the location of the category boundary.

3.2 Experiment 2: Social Categories

The second study had a somewhat different goal – namely to investigate
whether semi-supervised learning might provide part of an explanation
as to why people are often prone to form incorrect beliefs about social
categories (Kalish et al., 2011). The experiment is useful for current purposes,
however, because it revealed similar effects to those reported by Zhu et al.
(2007) even though it used quite different stimuli and a different method for
measuring the effect of unlabeled items. In this experiment the unlabeled
distribution was held constant while the location of the original labeled
examples varied across experimental groups.

Forty-three undergraduates viewed schematic images of women varying
along the single dimension of width. The women were described as coming
from one of two islands. As in Experiment 1, each participant first completed
a supervised phase where a labeled example from each category (i.e. “Island”)
was presented five times in random order for a total of 10 labeled examples.
In the L-labeled condition participants viewed two relatively thin stimuli
(pixel-widths of 80 and 115) while those in the R-labeled condition viewed two
somewhat wider stimuli (pixel-widths of 135 and 165). All participants then
classified a set of unlabeled items without feedback. In the experimental
conditions, both L-labeled and R-labeled groups viewed the same set of
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unlabeled items, including 37 initial test items sampled from a uniform grid
along the full stimulus range, 300 items sampled from a mixture of two
Gaussian distributions, and a final set of 37 test items sampled from the
grid. The mixture of Gaussians was constructed so that the modes of the
distribution lay midway between the labeled points in the L-Labeled and
R-labeled conditions (see Figure 3.4). In a control condition, participants
received the same L-labeled or R-labeled experience, but only viewed items
lying on a grid between the two labeled items in the unsupervised phase.

Figure 3.4: Examples of the Island Women stimuli, the labeled points, and
the bimodal distribution from which unlabeled items are sampled.

In Zhu et al. (2007) the trough of the unlabeled distribution fell between
the labeled points. In contrast, in this study the two labeled points both
fell to one side of the trough in the unlabeled distribution, resulting in
an even stronger conflict between the boundaries suggested by supervised
and unsupervised experience. Given this mismatch, would learners still
be affected by the unlabeled distributions? To answer this question, the
authors considered three different measures. First, like Zhu et al. (2007), they
considered how participants categorized unlabeled items along the grid prior
to and following exposure to the bimodal unlabeled distribution. Second,
following the unsupervised phase of the experiment, they asked participants
to explicitly indicate where the boundary was located by adjusting a slider
that controlled the width of a pictured stimulus. Finally, using the same
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slider, they asked participants to indicate the “most typical” example of
each category.

All three measures showed beliefs about category structure to be strongly
shaped by the distribution of the unlabeled examples. In the control con-
dition, participant behavior strongly reflected their supervised learning
experience: the estimate of the implicit category boundary and the partici-
pants’ explicit reports of the boundary were closely aligned with and not
significantly different from the midpoint between the labeled examples, while
their judgments of the most typical example of each class aligned closely with
and did not differ significantly from the labeled examples they had received.
In comparison, implicit boundary estimates in the experimental groups
were significantly shifted toward the trough in the unlabeled distributions
– that is, toward the right in the L-labeled condition, and toward the left
in the R-labeled condition. This shift was reflected even more strongly in
the explicit boundary judgments. Moreover, choices about the most typical
examples of each category aligned closely with the modes of the unlabeled
distribution, shifting very dramatically away from the labeled items observed
in the beginning of the experiment. Perhaps most interestingly, the majority
of participants in each condition actually altered their beliefs about one of
the two labeled examples, coming to classify it with the opposite label than
that viewed during the supervised phase.

Given these substantial effects of unlabeled data, one might inquire
whether participants accurately remember the labeled examples and simply
change their beliefs about the accuracy of the earlier supervisory feedback,
or whether their memory for the labeled items itself changes. Kalish et al.
(2011) addressed this question in a follow up experiment where, following
exposure to the unlabeled items, participants used the slider in an attempt
to reproduce the two labeled items that had appeared at the beginning of
the study. Strikingly, their reproduction were also strongly influenced by
the unlabeled data, lining up closely with the two modes of the unlabeled
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distribution even though, in actuality, the two labeled points lay on either
side of one of the modes. Thus memory for the original labeled examples
appeared to be distorted by exposure to the unlabeled items.

One might further wonder whether the labeled experience has any impact
at all in these studies beyond providing basic information about which
“cluster” in the unlabeled distribution should get which label. Kalish et al.
(2011) were able to show that the labeled information does, in fact, have
a persisting influence even after extensive unlabeled experience: despite
being exposed to exactly the same unlabeled items, participants in the
L-labeled and R-labeled conditions of these studies did not end up with
exactly the same beliefs about the location of the boundary. Instead, the
L-labeled group’s final boundary was displaced significantly to the left of
the R-labeled group’s final boundary, indicating some lasting effect of the
original supervisory experience.

Finally, this study rules out an alternative explanation of the effects of
unlabeled data in these experiments. In the Zhu et al. (2007) study, because
participants in the different experimental groups viewed different sets of un-
labeled items, it was possible that the observed differences in categorization
boundaries might arise from perceptual contrast effects. For instance, a given
stimulus in that study might look “more pointy” or “less pointy” depending
upon how pointy the preceding stimulus was. It is conceivable that these
local perceptual contrast effects might lead to consistent differences in the
estimated category boundary depending upon the location of the trough in
the unlabeled distribution. In the study of Kalish et al. (2011), both experi-
mental groups viewed exactly the same set of unlabeled items, in the same
fixed order, but nevertheless showed systematic differences in their estimate
of the category boundary depending upon their supervised experience. Thus
the learning in this study appears to be truly semi-supervised, reflecting
contributions from both labeled and unlabeled experience.



29

4 semi-supervised effects due to order of
unlabeled data (zhu, gibson et al., 2010)

In this study we used ML models and techniques to investigate the behaviors
exhibited by humans in categorization tasks and how that behavior is affected
by a mixture of labeled and unlabeled data. We introduced the term Test-
Item Effect to denote the possibility that unlabeled test items can induce
changes to the classifier f in human category learning. Specifically, the
Test-Item Effect predicts that two otherwise identical people A, B receiving
exactly the same training data can be made to disagree on certain test
items x∗, i.e., fA(x∗) 6= fB(x∗), simply by manipulating what other test data
xAn+1 . . . and xBn+1 . . . they are asked to classify, respectively.

My contribution to this work was in performing the modeling analysis
showing that existing SSL models can be modified to reproduce the Test-Item
Effect observed in humans.

While some past research did show that classification behavior can be
influenced by the construction of the test set (Zaki and Nosofsky, 2007;
Palmeri and Flanery, 1999; Fried and Holyoak, 1984), the Test-Item Effect
was not well-understood. The goal of this project was (i) to report Test-
Item Effects observed in a human category-learning task, and (ii) to assess
whether the different SSL models described in Section 4.2 vary in how well
they match the reported human behavior. If some models fit the human
data better than others, this suggests that the Test-Item Effects might
importantly constrain computational accounts of human category learning.
The main contribution of this work was thus to CP and the understanding
of human category learning.
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4.1 Human Experiment

This experiment consisted of two identical conditions except for one aspect:
They shared the same set of test items, but differed in the order the test
items were presented to the subjects. As shown below, subjects in these two
conditions consistently disagreed on the label of certain test items.

Participants and Materials

40 undergraduate students participated for partial course credit. The stimuli
were the novel shapes seen before (Figure 3.1), varying according to a single
continuous parameter x ∈ [−2, 2]. There were two classes, denoted as y = 0
or y = 1.

Procedure

In trial n, a stimulus xn appeared on a computer screen, and stayed on
until the subject pressed one of two keys to label it. All subjects initially
had the same 10 labeled trials, where two items occurred alternatively:
(xn,yn) = (−2, 0), (2, 1), (−2, 0), (2, 1) . . . For these 10 trials, after the
subject pressed her key, a label feedback appeared on screen indicating
whether her classification was correct (same as yn). The computer screen
was then cleared, and the stimulus for the next trial appeared. After these
labeled trials, subjects were presented with a series of 81 unlabeled test items
evenly spaced in feature space: xn = −2,−1.95,−1.9, . . . , 2. The test items
appeared one at a time on the screen, and the subjects had to classify them
using the same procedure. However, there was no longer labeled feedback
after each classification. Importantly, the subjects were randomly divided
into two conditions of equal size. In the “L to R” condition, the order of
the test items was as above. In the “R to L” condition, the order was the
opposite (i.e., 2, 1.95, 1.9, . . . ,−2).
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Result

Figure 4.1(Left) shows a plot of P(y = 1|x), estimated by the fraction of
subjects in each condition who classified x with label y = 1. The difference
is striking.1 Subjects in the “L to R” condition tended to classify more test
items as y = 0, while those in the “R to L” condition tended to classify
more as y = 1. For instance, for the same test item x = −0.5, only 4 out of
20 subjects in the “L to R” condition classified it as y = 1, while 15 out of
20 subjects in the “R to L” condition did so. This is significantly different
using log odds ratio at p < 0.0004. It is clear evidence of the Test-Item
Effect, where the effect is produced by the order of test items. In fact, for
test items x ∈ [−1.2, 0.1] a majority-vote among subjects would classify
them in opposite ways in those two conditions.

We postulated that the subjects might perform self-reinforcement: that
once a person classifies a test item x as in class y, the predicted label y
(perhaps weighted by its uncertainty) becomes a training label for the person.
For example, for a subject in the “L to R” condition, the first few test items
are all near x = −2. The subject can easily classify them as y = 0 from
the training she just received. If self-reinforcement is in effect, these test
items will act as additional training data for the y = 0 class. This would
tend to favor classifying more test items as y = 0. The opposite can be
said for the “R to L” condition. Such self-reinforcement corresponds to the
self-training algorithm in semi-supervised learning (Zhu and Goldberg, 2009,
§2.5). Under certain probabilistic models, it can also be interpreted as an
Expectation-Maximization (EM) procedure.

1We point out that the two curves in Figure 4.1 are not symmetric about x = 0, as
one would expect. We speculate that this is due to the stimulus space in Figure 3.1 not
being perceptually uniform. Our feature x is a parameter used to generate the geometry
of the shapes, and does not necessarily match the human perceived similarity between
stimuli. Nonetheless, this does not affect the validity of the observed Test-Item Effect,
which only depends on the two curves separating from each other.
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Figure 4.1: The Test-Item Effect due to order. The thick black lines mark
items on which the majority human classification differs in the two conditions.

4.2 Model Comparison

In addition to the Text-Item Effect due to order, we can consider the behavior
seen in Zhu et al. (2007) as evidence of a different kind of Test-Item Effect,
in that case due to distribution (see Section 3.1). We used both experimental
datasets to examine how well our SSL models, described in Section 4.2, fit
human data.

Parameter tuning

Let (x
[s]
n ,y[s]n ), n = 1, 2, . . . be the sequence of training and test data that

the s-th subject saw during human experiments, where some y’s may be
unlabeled. Furthermore, let h[s]

n ∈ {0, 1} be the binary classification response
the s-th subject made at trial n. Each of our models predicts the label
probability P(yn|x1:n,y1:n−1, θ) at trial n, given parameter θ = h,n0, or
α2. We define training set log likelihood as

`tr(θ) ≡
∑
s∈tr

∑
n

log P(h[s]
n | x

[s]
1:n,y[s]1:n−1, θ).



33

0.6 0.8 1
−8000

−7000

−6000

−5000

h

l tr
exemplar

5 10 15 20
−8000

−7000

−6000

−5000

n
0

l tr

prototype

−2 0 2
−8000

−7000

−6000

−5000

log(α
2
)

l tr

RMC

Figure 4.2: Order training set log likelihood `tr(θ) for a set of θ

exemplar prototype RMC
θ̂ h = 0.6 n0 = 12 α2 = 0.3

`te(θ̂) −3727 −2460 −2169

Table 4.1: Order test set log likelihood `te(θ̂)

Because the order and distribution tasks used the same stimuli, we merge
their subjects and fit a single parameter for both tasks.2 Specifically, we take
32 subjects, eight each from the “order task L to R”, “order task R to L”,
“distribution task L shifted”, and “distribution task R shifted” conditions
to form the training set tr. The remaining 4, 2, 12, 12 subjects in those
conditions form the test set te, and define test set log likelihood `te(θ)
accordingly. These sets are shared by the three models. For each model,
we find the maximum likelihood estimate parameter θ̂ = arg maxθ `tr(θ) on
the training set using a coarse parameter grid as shown in Figure 4.2.

Observations

Table 4.1 shows the log likelihood `te(θ̂) on the test set, which was not
involved in parameter tuning. In addition, Figure 4.3 shows the behavior of

2This reduces data sparsity. We assume that because the stimulus space is the same,
and the learners have no prior knowledge that the tasks are different, they will use the
same parameter setting in both tasks.
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the three models over a wide range of parameters (including θ̂). We make a
few observations: (i) All three models predict test-items effects. All models
show different classification behavior following the same supervised training
depending upon the order and distribution of the test items. (ii) Some
models are more consistent with the empirical data than others. Specifically,
the semi-supervised RMC model showed a qualitatively similar pattern (and
the best log-likelihoods) to both datasets under a range of parameter values.
The prototype model fared well under some parameter choices but not
others; and the exemplar model failed to qualitatively match the empirical
data under any of the studied parametrization. The test-item effect thus
provides evidence useful for constraining theories of human categorization.
In this case, it suggests that the RMC provides a better approximation of
human category learning than either prototype or exemplar theories, though
to more firmly assess this hypothesis it will be necessary to consider other
parametrization of the later kinds of models.

Down-weight unlabeled exemplars

Our semi-supervised exemplar model has the lowest likelihood. On the
“order” task, the two curves are too wide apart; on the “distribution” task,
they overlap, cross, or even flip. A natural idea for improvement is to afford
a weight parameter w < 1 to unlabeled exemplars: perhaps a self-assigned
label is worth less than a true label. Specifically, one can adapt the Nadaraya-
Watson kernel estimator into r(x) =

∑n
i=1

wiK(
x−xi
h )∑n

j=1wiK(
x−xj
h )
yi, with wi = w if

xi is unlabeled, and wi = 1 otherwise. Figure 4.4(left) shows `tr(w,h = 0.6)
for the exemplar model with w ranging from 0 (supervised learning) to
2 (overweight). Clearly, semi-supervised learning (w > 0) is much better
than supervised learning at explaining the human data. Training likelihood
peaks at w = 0.2 and decreases thereafter. The test set log likelihood
with w = 0.2,h = 0.6 is −2934, still worse than the other two models
(which have only one parameter). The other two panels in Figure 4.4 show
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Figure 4.3: (Top) Semi-supervised exemplar model, (middle) Semi-supervised
prototype model, (bottom) Semi-supervised rational model of categorization.
Columns 1–3 show model predictions P(yn = 1|x1:n,y1:n−1) on the “order”
task (Section 4.1), and columns 4–6 the “distribution” task (Section 3.1).
The legend is the same as in Figure 4.1.

exemplar model predictions similar to the top row of Figure 4.3, but with
w = 0.2,h = 0.6. Overall, down-weight unlabeled exemplar helps, but not
overwhelmingly.
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Figure 4.4: Down-weight unlabeled exemplars
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While this an interesting adaptation to the model, the primary result of
the study not change, the presentation of a novel Test-Item Effect in human
categorization, induced by test item order. Together with the previously
known distribution-induced effect, to describe this effect called for new
online semi-supervised learning models, for which the models described in
Section 4.2 were developed. The simulations discussed here show that all
of our models exhibited the Test-Item Effect, with semi-supervised RMC
giving the best fit.
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5 what parameters are affected in
semi-supervised effects?(gibson, rogers, kalish, zhu)

In the experiment described in Section 3.1, Zhu et al. (2007) showed that
learners presented with unlabeled data drawn from a bimodal distribution
whose trough does not align with a previously learned categorization bound-
ary will shift the boundary towards this trough. Subsequent work has shown
that such category shifts – changes to beliefs about category structure arising
from unlabeled learning experiences – can be quite dramatic (Zhu et al.,
2010; Gibson et al., 2010; Kalish et al., 2011; Lake and McClelland, 2011;
Kalish et al., 2012, 2014).

In this experiment we considered the causes behind these observed
category-shifts. If we model human category learning using the prototype or
GMM model, we can view learning as a search through the parameter space
defining the model. Competing hypotheses suggest different constraints on
how this search is performed when unlabeled information is encountered.

My contribution to this work involved creating a set of formalized
models, finding an optimal training set and constructing and performing a
human experiment showing that humans are sensitive to all parameters and
do not constrain their search of the parameter space.

5.1 Competing Hypotheses

We considered two general hypotheses: Under the first, the shifts happen
because, during the initial supervised phase, participants notice and track
one or more parameters of the distribution from which the labeled items
are sampled, then seek to maintain a category structure that preserves
the noticed parameter. For instance, in Zhu et al.’s (2007) study, the
supervised phase involved learning about just two examples (one from
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each category), each presented 10 times with the order randomized. This
experience potentially provides the learner with important information about
the two classes that she may then seek to preserve when exposed to the
unlabeled distribution. For example, the learner may notice that members
of each category occur about equally frequently during the supervised
phase. In the unsupervised phase, she may then select a category boundary
that divides the unlabeled items approximately in half, preserving this
frequency information. Alternatively, the learner might notice that the
two categories both have approximately equal variance, and so might learn
category structures that preserve roughly equal variation between members
of the category.

Since the unlabeled distribution in the original study was bimodal,
symmetrical about the trough with peaks of equal width, either of these
strategies would lead the learner to shift the boundary to this trough. Indeed,
there are many elements of the unsupervised and supervised distributions
that differed in this study, any one of which might account for the observed
changes in categorization behavior.

The first hypothesis, then, was that learners are trying to preserve
specific parameters of the item and label distribution learned during the
initial supervised phase. We referred to this as the heuristic hypothesis, since
there is no principled reason for choosing to preserve a particular parameter
from the labeled distribution. Moreover, note that there are several possible
variants of the heuristic hypothesis: participants may try to preserve the
relative frequencies of the two categories, their variances, their distance from
the boundary, and so on.

The second hypothesis was that human beings are true semi-supervised
learners – that is, they learn the category structures most likely to have
generated all of the observations, labeled and unlabeled, subject to particular
implicit assumptions about the relation between labeled and unlabeled
examples. In the semi-supervised mixture model described by Zhu et al.
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(2007), the assumptions were that (i) items are sampled from a distribution
in the feature space that is a mixture of Gaussian components and (ii) items
sampled from the same component of the mixture receive the same category
label. With these assumptions, it is possible to estimate, from all labeled
and unlabeled items, the most likely components of the mixture (and their
parameters) and the most likely labels associated with each component. We
referred to this as the SSL hypothesis.

This experiment attempted to adjudicate which of these hypotheses best
explains category-shifts that occur following exposure to unlabeled examples,
as documented in prior work.

5.2 Constrained Expectation Maximization
Models

To address the question we first formulated a set of models and then
attempted to determine which model or models best fit human behavior on
a classification task.

Task Definition

The study was performed as a 1D binary classification task (feature values
x ∈ [0, 1] with labels y ∈ {0, 1}). We made the strong, yet common,
assumption that humans are making use of a Gaussian Mixture Model
(GMM). Formally, we defined the parameters of a two-component GMM
as θ = {w0,µ0,σ2

0,µ1,σ2
1}, and let Θ = {θ}, the set of all parametrization

of this model. The learner was presented first with a set of labeled items:
L = {(xi,yi)}, i = 1 . . .nL, drawn from a 2-component GMM defined by
θL, followed by a set of unlabeled items U = {(xj)}, j = nL + 1 . . .nL + nU
drawn from another GMM with different parameters θU.
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We assumed that, when training on L, humans find the maximum
likelihood estimate (MLE) denoted θ̂SL ∈ Θ. The learner was then presented
with a new set of unlabeled data U which may be drawn from a different
distribution than L. Learning from U amounts to performing a search in Θ
for a set of parameters that best fit the observed stimuli. Under the heuristic
hypotheses, humans search some subspace of Θ for the new optimum, while
under the SSL hypothesis, humans search in the whole of Θ.

We also assumed the learner uses some form of expectation-maximization
(EM) as the search procedure to find this optimum, the MLE on U, with θ̂SL
as the starting point for the search Dempster et al. (1977); Bishop (2007).
Note that, as an optimization procedure, EM can be applied even when
labeled and unlabeled items come from different distributions. Although
unusual in ML, EM used on non-iid data is plausible as a mechanism for
how humans adapt. Under this assumption, participants are not focused on
matching or maintaining particular aspects of the labeled distribution, but
are trying to find a parametric model that jointly “explains” the labeled
and unlabeled distributions.

For example, humans might be only willing to change the proportion
of one class to another (ŵ0) leaving the rest of the learned parameters
(µ̂0, µ̂1, σ̂2

0, σ̂2
1) fixed as they were in θ̂SL. Or, they may update both ŵ0 and

the peaks of the learned distribution (µ̂0, µ̂1), but remain insensitive to
changes in spread, or variance (σ̂2

0, σ̂2
1), of the data. This behavior might be

interpreted as the human learner “hanging on” to some beliefs learned on L.

Formalized Cognitive Models

With this task in mind we describe the cognitive models which were under
consideration as models of human behavior.

unconstrained SL (θ̂SL) : This model is a purely supervised learner de-
fined by the parameters θ̂SL. This model estimates the GMM parame-
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ters using the MLE over the labeled set L alone and holds them fixed
over the unlabeled test data, in effect ignoring the unlabeled data.
It is included as comparison, as we know humans are affected by U.
Updates are made using

µ̂0 =
1
n0

nL∑
i=1

1 {yi = 0} xi (5.1)

σ̂2
0 =

1
n0

nL∑
i=1

1 {yi = 0} (xi − µ̂0)
2 (5.2)

ŵ0 =
n0

nL
(5.3)

with n0 =
∑nL
i=1 1 {yi = 0} (µ̂1, σ̂1 are defined similarly).

unconstrained SSL (θ̂SSL) : We specify the SSL model, defined by the
parameters θ̂SSL, before the heuristic models as all other models are
derived from this unconstrained version. Consideration must be given
as to whether to perform EM on the full data set (L +U) or to use
θ̂SL, the MLE on L, as initialization and perform EM on U alone. We
choose the latter as it more closely approximates the situation faced
by human learners in the task: initially exposed to L but with no
additional feedback as they classify U. For each M-step of EM, the
MLE estimates become

µ̂0 =

∑n
i=nL+1 γixi∑n
i=nL+1 γi

(5.4)

σ̂0
2 =

∑n
i=nL+1 γi(xi − µ̂0)

2∑n
i=nL+1 γi

(5.5)

ŵ0 =
1
nU

n∑
i=nL+1

γi (5.6)
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n = nL + nU, responsibilities γi calculated at each E-step as

γi =
ŵ0N(xi; µ̂0, σ̂2

0)

ŵ0N(xi; µ̂0, σ̂2
0) + (1 − ŵ0)N(xi; µ̂1, σ̂2

1)
(5.7)

and µ̂1 and σ̂1 calculated similarly using (1 − γi).

All remaining models correspond to our heuristic models. They are all
similar to θ̂SSL, but assume that learning is being done by fixing one of the
GMM parameters to the values learned on L while allowing all others to
vary:

constrained means (θ̂µ) : Means µ̂0 and µ̂1 are fixed at the initialization
values learned on L using (5.1). It is as though two prototypes are
formed at the modes of the labeled distribution and retained when
exposed to U. At each EM iteration t, the values of µ̂ at t−1 are simply
copied forward. The variances σ̂0

2, σ̂1
2, weight ŵ0 and responsibilities

γi are updated using (5.5), (5.6) and (5.7) respectively.

fixed standard deviations (θ̂σ) : The standard deviations σ̂0 and σ̂1 are
fixed at the initialization values learned on L using (5.2). Here, it is
the spread of the labeled data that is considered important, and is
maintained. Again at each EM iteration the values of σ̂0 and σ̂1 are
simply copied forward. Updates for means, weight and responsibilities
are the same as in (5.4), (5.6) and (5.7).

fixed ratio of standard deviations (θ̂r) : At initialization, the ratio of
standard deviations learned on L using (5.2) is calculated as r = σ̂0/σ̂1.
Again, the spread is considered most important, but now the spread of
each class is allowed to vary only so long as the ratio between the two is
maintained. As the parameters σ̂0 and σ̂1 are now tied, the parameter
set becomes θ̂r = {w0,µ0,µ1,σ}. Reformulating the optimization
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function and solving for σ we find the new update equations

σ̂2 =
1
nU

 n∑
i=nL+1

(
γi(xi − µ0)

2 + r2(1 − γi)(xi − µ1)
2) (5.8)

γi =
w0N(xi; µ̂0, σ̂2)

w0N(xi; µ̂0, σ̂2) + (1 −w0)N(xi; µ̂1, (σ̂/r)2)
. (5.9)

Updates for means and weight are the same as in (5.4) and (5.6).

constrained weight (θ̂w) : The weight parameter ŵ0 is fixed at the ini-
tialization value learned on L. In this case it is the frequency of each
class which is considered most important to retain from the labeled
data. All other updates remain unchanged.

The above models each fix one property. We also consider cognitive mod-
els which constrain multiple parameters. For example, the model θ̂σ,w has
only two parameters which are free to vary: {µ̂0, µ̂1}, with ŵ0, σ̂2

0 and σ̂2
1 fixed.

This results in 5 additional models: {θ̂σ,w, θ̂r,w, θ̂µ,w/σ, θ̂µ,w/r, θ̂µ,σ, θ̂µ,r}.
The model θ̂µ,w/σ is constrained in means and weight while standard devia-
tions are allowed to vary. The model θ̂µ,w/r is constrained in means and
weight while ratio of standard deviations is allowed to vary.

The final cognitive model we examined (propL) is not probabilistic.
In this model, the learner simply calculates the proportion of negative to
positive items seen in L. When the learner is then presented with U, they
attempt to place a boundary in feature space such that this proportion
of negative to positive items is preserved. If the distribution generating
unlabeled items is different from that generating the labeled items, the
boundary learned on the labeled data will not necessarily be the same
one applied to the unlabeled data. This model, θ̂propL has only a single
parameter n0/nL, with the boundary b̂ induced from this ratio:

b̂ = x(j) :
j

nU
=
n0

nL
, j ∈ [1,nU] (5.10)
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where b ∈ [0, 1] and {x(1), x(2), ..., x(nU)} are the items in U, sorted by feature
value. Note that this model is related to the cognitive models which preserve
the GMM weight w0. However, since this is not a GMM and classification
is simply performed by a step function placed at the learned boundary b,
the resulting behavior may be different.

With these cognitive models in hand we now discuss how we compared
their performance to human behavioral data in order to assess which was
the best match.

5.3 Human Experiment and Choosing a
Diagnostic Dataset

We designed an experiment which attempted to discriminate which of our
proposed models was a best fit to human behavior in the 1D classification
task. An important aspect of this design was the construction of the dataset.

A dataset had to be found which would maximally discriminate predic-
tions made by our various models, so that it was as clear as possible which
model most strongly matched human behavior. This step was similar in
flavor to the machine teaching task proposed in Zhu (2013). In that setting,
a teacher attempts to design an optimal dataset to teach a (potentially
unknown) learner a target hypothesis. The difference here was that we
did not have a target we wished our learners to learn, but instead simply
wanted our proposed learners to differ as much as possible in their resulting
predictions. The similarity was in the search over potential datasets.

To find a good dataset, first a labeled set L of nL = 50 labeled pairs
were drawn from θL = {w0 = 0.75,µ0 = 0.4,σ0 = 0.12,µ1 = 0.8,σ1 = 0.06}.
A heuristic search was then made over a sparse grid of parameter settings
θU, varying in all parameters. At each setting a potential unlabeled set
Ũ of nU = 300 was drawn. All cognitive models were then trained on
L and predictions made on that Ũ. We heuristically selected the dataset
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Figure 5.1: Stimuli at x = 0, 0.25, 0.75 and 1 respectively.

L + Ũ with the aim to produce the largest combined pairwise difference
between predictions, and therefore largest discriminative power. Additionally,
parameters which produced more than one decision boundary in the target
range x ∈ [0, 1] were avoided.

In the end the parameters selected from which U was drawn were θU =

{w0 = 0.25,µ0 = 0.3,σ0 = 0.05,µ1 = 0.6,σ1 = 0.1}. Plots of the chosen
underlying distributions are shown in Figure 5.2. Importantly note that the
labeled and unlabeled distributions varied in all parameters. Figure 5.2 also
shows the estimated distributions and boundaries resulting from training
each of the cognitive models on the selected dataset.

Procedure

Using this chosen dataset, we performed a human experiment where 49
undergraduate students, participating for partial course credit, were asked
to learn a timed classification task. The 1D stimuli used were Gabor
patch images varying in only the frequency dimension, with fixed rotation
(Figure 5.1). Each participant was asked to classify the nL = 50 labeled
images, each classification followed by feedback indicating whether they were
correct or incorrect. The participant was then asked to classify the nU = 300
unlabeled stimuli, with no feedback given. All participants classified the
same set of stimuli, each a randomized ordering.
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Figure 5.2: Above, the ground truth labeled distributions (in blue and red)
and unlabeled distribution (in black). Below, the trained models and most
central prediction boundary indicated by a dotted line. The boundary for
propL falls at 0.65.

Evaluation Criteria

We call the measurement we used to evaluate our models “agreement”. This
refers to how well a cognitive model’s classification predictions agree with
observed human behavior. Each participant k ∈ {1, . . . ,K} was asked to
classify the set of labeled and unlabeled items in a randomized ordering
(L,U)(k). For each participant k we considered the first 50 + 200 items as
a training set (L,U)(k)train and the remaining 100 items as a test set U(k)

test.
Though there is certainly no reason to assume that humans will not continue
learning on the test set, we did make the assumption that after 200 unlabeled
examples, the learned boundary will have stabilized.

Each of our proposed modelsm was then trained on (L,U)(k)train producing
θ̂(m,k). For the GMM models we used the constrained versions of EM
described above while propL was calculated directly. We can then determine
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the predicted boundary b̂(m,k) for each trained model on each dataset. For
each of these model m and dataset k pairs we could then make predictions
ŷ(m,k) = 1

{
x
(k)
i 6 b̂(m,k)

}
, i = 201, . . . , 300 and calculate:

agreement(m,k) = 1
ntest

ntest∑
i=1

1

{
ŷ
(m,k)
i = y

(k)
i

}
(5.11)

and total mean-agreement for each model over all K participants:

mean-agreement(m) =
1
K

K∑
k=1

agreement (m,k) (5.12)

The mean agreement scores were then used to determine which model was
the best fit over all.

Results

Using the method described above, we found that the maximum mean-
agreement score is 0.7 for the completely unconstrained model θ̂SSL, simply
standard SSL (Figure 5.3, top). A repeated measures one-way ANOVA
showed significant difference between model agreements per subject, F(12, 624) =
26.68,p = 2× 10−16. Additionally, the unconstrained SSL model, θ̂SSL, was
a significantly better fit to human behavior than all other models (post-hoc
multiple comparison test with Holm correction, p 6 0.05), save one, SSL
constrained by ratio of standard deviations (θ̂r, p = 0.11).

If we look at which model had the best agreement per participant,
unconstrained SSL θ̂SSL was the clear winner, having the highest agreement
on 71% of participants (Figure 5.3, bottom).
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Figure 5.3: Top: mean agreement scores calculated for each model. Bottom:
number of participants for which each model is the best match (highest
agreement).

5.4 Discussion

The question we set out to answer was what causes the category shifts
seen in many semi-supervised learning studies? The two hypotheses were 1)
heuristic: that humans notice and track some properties or set of parameters
of the distribution from which labeled items are sampled, and then seek
to preserve these properties when integrating information derived from
unlabeled items and 2) SSL: that humans are true semi-supervised learners,
sensitive to all properties.

In this particular categorization task, our results supported the lat-
ter hypothesis: humans are sensitive to all parameters and do not
constrain their search of the parameter space. They are sensitive



49

to all changes in the unlabeled data distribution as they try to find the
category structure most likely to have generated all observations, labeled
and unlabeled.

This result should be of interest to both the CP and ML communities.
From the CP perspective we can compare these results to those regarding the
distinction between generative and discriminative learning Hsu and Griffiths
(2010). Recall that to perform categorization, a generative learner attempts
to model the full generating distribution p(x,y) while the discriminative
learner only attempts to learn a discriminating function p(y | x). Several
studies have shown that humans are capable of both types of learning Rips
(1989); Smith and Sloman (1994); Hsu and Griffiths (2010). In our task
where the underlying generating distribution is important due to its non-iid
nature, the generative learning model is preferred. Our results argue that
humans do in fact use a generative model for this particular task, as the
SSL model is a better fit than the propL model, a discriminative model.
It may be that in other tasks, where discrimination between hypothesized
models, or models not in the GMM family, is still possible, this result may
not be the case. Additional investigation is required to confirm that our
conclusion generalizes to other situations.

From the ML perspective this result matches the intuition that, for best
performance on transfer learning, the learner should not be constrained a
priori without specific knowledge of the relation between the source domain
and the target domain. The learner should be allowed to explore the full
parameters space when attempting to find the best fit approximation.

Finally, though the evidence points to the unconstrained hypothesis
dominating over all, no significant difference was found between it and the
model constrained by ratio of standard deviations. The difference here is
subtle and additional work is necessary to distinguish whether this model is
in fact a good approximation of human behavior or just an artifact of the
current study.
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6 semi-supervised effects due to network
structure of unlabeled data: manifold
learning (Gibson et al., 2010)

In the preceding studies we have seen that unlabeled data can affect human
learning, and that models making use of SSL assumptions can be used to
designed which reproduce the behavior Another SSL assumption that yet
been fully discussed is the manifold assumption: that data is generated from
a distribution which lies along a lower dimensional manifold in the higher
dimensional feature space. In this study we examined whether humans
are capable of perceiving such manifolds and making use of them in a
classification task. We found that, given enough labeled data as well as hints
regarding the manifold, humans are capable of propagating labels along a
manifold.

My contribution to this work involved creating a novel experimental
interface and stimuli set and performing the human experiment showing that
humans can learn using manifolds, given sufficient labeled data and hints
regarding the manifold structure.

6.1 Can Humans Learn Using Manifolds?

Consider a classification task where a learner is given a small set of labeled
training items {(xi,yi)}i∈L, L = 1, . . . ,nL with x ∈ R2, y ∈ {−1, 1} In addi-
tion, the learner is given some unlabeled items {xi}i∈U, U = {nL + 1, . . . ,n},
without corresponding labels. Importantly, the labeled and unlabeled
items are distributed in a peculiar way in the feature space: they lie on
smooth, lower dimension manifolds, such as those schematically shown in
Figure 6.1(a). The question is: given both the labeled and unlabeled data,
how will the learner classify the unlabeled data {xi}i∈U? Will the learner
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ignore the distribution information of the unlabeled data, and simply use the
labeled data to form a decision boundary as in Figure 6.1(b)? Or will the
learner propagate labels along the nonlinear manifolds as in Figure 6.1(c)?

(a) the data (b) supervised learning (c) manifold learning

Figure 6.1: On a dataset with manifold structure, supervised learning and
manifold learning make dramatically different predictions. Large symbols
represent labeled items, dots unlabeled items.

When the learner is a ML algorithm, this question has been addressed
by semi-supervised learning (Chapelle et al., 2006; Zhu and Goldberg, 2009).
The designer of the algorithm can choose to make the manifold assumption,
also known as graph-based semi-supervised learning, which states that the
labels vary slowly along the manifolds or the discrete graph formed by con-
necting nearby items. Consequently, the learning algorithm will predict Fig-
ure 6.1(c). The mathematics of manifold learning is well-understood (Belkin
et al., 2006; Sindhwani et al., 2005; Zhou et al., 2004; Zhu et al., 2003).
Alternatively, the designer can choose to ignore the unlabeled data and
perform supervised learning, which results in Figure 6.1(b).

When the learner is a human being, however, the answer is not so clear.
Consider that the human learner does not directly see how the items are
distributed in the feature space (such as Figure 6.1(a)), but only a set of
items (such as those in Figure 6.2(a)). The underlying manifold structure of
the data may not be immediately obvious. Thus there are many possibilities
for how the human learner will behave: 1) They may completely ignore the
manifold structure and perform supervised learning; 2) They may discover
the manifold under some learning conditions and not others; or 3) They



52

may always learn using the manifold.
For readers not familiar with manifold learning, the setting might seem

artificial. But in fact, many natural stimuli we encounter in everyday life
are distributed on manifolds. An important example is face recognition,
where different poses (viewing angles) of the same face produce different
2D images. These images can be quite different, as in the frontal and
profile views of a person. However, if we continuously change the viewing
angle, these 2D images will form a one-dimensional manifold in a very high
dimensional image space. This example illustrates the importance of a
manifold to facilitate learning: if we can form and maintain such a face
manifold, then with a single label (e.g., the name) on one of the face images,
we can recognize all other poses of that person by propagating the label
along the manifold. The same is true for visual object recognition in general.
Other more abstract stimuli form manifolds, or the discrete analogue, graphs.
For example, text documents in a corpus occupy a potentially nonlinear
manifold in the otherwise very high dimensional space used to represent
them, such as the “bag of words” representation.

There exists little empirical evidence addressing the question of whether
human beings can learn using manifolds when classifying objects, and the
few studies we are aware of come to opposing conclusions. For instance,
Wallis and Bülthoff (2001) created artificial image sequences where a frontal
face is morphed into the profile face of a different person. When participants
were shown such sequences during training, their ability to match frontal
and profile faces during testing was impaired. This might be evidence
that people depend on manifold structure stemming from temporal and
spatial proximity to perform face recognition. On the other hand, Vandist
et al. (2009) conducted a categorization experiment where the true decision
boundary is at 45 degrees in a 2D stimulus space (i.e., an information
integration task). They showed that when the two classes are elongated
Gaussian, which are parallel to, and on opposite sides of, the decision
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boundary, unlabeled data does not help learning. If we view these two
elongated Gaussian as linear manifolds, this result suggests that people do
not generally learn using manifolds.

This study sought to understand under what conditions, if any, people
are capable of manifold learning in a semi-supervised setting. The study
has important implications for CP: first, if people are capable of learning
manifolds, this suggests that manifold-learning models that have been
developed in ML can provide hypotheses about how people categorize
objects in natural domains like face recognition, where manifolds appear
to capture the true structure of the domain. Second, if there are reliable
methods for encouraging manifold learning in people, these methods can
be employed to aid learning in other domains that are structured along
manifolds. For ML, our study will help in the design of algorithms which
can decide when to invoke the manifold learning assumption.

6.2 Human Manifold Learning Experiments

We designed and conducted a set of experiments to study manifold learning
in humans, with the following design considerations. First, the task was a
“batch learning” paradigm in which participants viewed all labeled and unla-
beled items at once (in contrast to “online” or sequential learning paradigm
where items appear one at a time). Batch learning allows us to compare
human behavior against well-established ML models that typically operate
in batch mode. Second, we avoided using faces or familiar 3D objects as
stimuli, despite their natural manifold structures as discussed above, because
we wished to avoid any bias resulting from strong prior real-world knowledge.
Instead, we used unfamiliar stimuli, from which we could add or remove a
manifold structure easily. This design should allow our experiments to shed
light on people’s intrinsic ability to learn using a manifold.
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Participants and Materials

In the first set of experiments, 139 university undergraduates participated for
partial course credit. A computer interface was created to represent a table
with three bins, as shown in Figure 6.2(a). Unlabeled cards were initially
placed in a central white bin, with bins to either side colored red and blue
to indicate the two classes y ∈ {−1, 1}. Each stimulus is a card. Participants
sorted cards by clicking and dragging with a mouse. When a card was
clicked, other similar cards could be “highlighted” in gray (depending on
condition). Labeled cards were pinned down in their respective red or blue
bins and could not be moved, indicated by a “pin” in the corner of the card.
The layout of the cards was such that all cards remained visible at all times.
Unlabeled cards could be re-categorized at any time by dragging from any
bin to any other bin. Upon sorting all cards, participants would click a
button to indicating completion.

Two sets of stimuli were created. The first, used solely to acquaint the
participants with the interface, consisted of a set of 20 cards with animal line
drawings on a white background. The images were chosen to approximate a
linear continuum between fish and mammal, with shark, dolphin, and whale
at the center. The second set of stimuli used for the actual experiment
was composed of 82 “crosshair” cards, each with a pair of perpendicular,
axis-parallel lines, all of equal length, crossing on a white background. Four
examples are shown in Figure 6.2(b). Each card therefore can be encoded
as x ∈ [0, 1]2, whose two features representing the positions of the vertical
and horizontal lines, respectively.

Procedure

Each participant was given two tasks to complete:
Task 1 was a practice task to familiarize the participant with the



55

(0, 0.1) (1, 0.9) (0.39, 0.41) (0.61, 0.59)

Figure 6.2: Experimental interface (with highlighting shown), and example
crosshair stimuli.

interface. The participant was asked to sort the set of 20 animal cards into
two categories, with the two ends of the continuum (a clown fish and a
dachshund) labeled. Participants were told that when they clicked on a card,
highlighting of similar cards might occur. In reality, highlighting was always
shown for the two nearest-neighboring cards (on the defined continuum)
of a clicked card. Importantly, we designed the dataset so that, near the
middle of the continuum, cards from opposite biological classes would be
highlighted together. For example, when a dolphin was clicked, both a
shark and a whale would be highlighted. The intention was to indicate to
the participant that highlighting is not always a clear give-away for class
labels. At the end of task 1 their fish vs. mammal classification accuracy
was presented. No time limit was enforced.

Task 2 asked the participant to sort a set of 82 crosshair cards into
two categories. The set of cards, the number of labeled cards, and the
highlighting of cards depended on condition. The participant was again
told that some cards might be highlighted, whether the condition actually
provided for highlighting or not. The participant was also told that cards
that shared highlighting may not all have the same classification. Again,
no time limit was enforced. After they completed this task, a follow up
questionnaire was administered.
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Conditions

Each of the 139 participants was randomly assigned to one of 6 conditions,
shown in Figure 6.3, which varied according to three manipulations:

The number of labeled items l can be 2 or 4 (2l vs. 4l). For con-
ditions with two labeled items, the labeled items are always (x1,y1 =

−1), (x2,y2 = 1); with four labeled items, they are always (x1,y1 =

−1), (x2,y2 = 1), (x3,y3 = 1), (x4,y4 = −1). The features of x1 . . . x4

are those given in Figure 6.2(b). We chose these four labeled points by max-
imizing the prediction differences made by seven ML models, as discussed
in the next section.

Unlabeled items are distributed on a uniform grid or manifolds
(gridU vs. moonsU). The items x5 . . . x82 were either on a uniform grid in
the 2D feature space, or along two “half-moons”, which is a well-studied
dataset in the semi-supervised learning community. No linear boundary can
separate the two moons in feature space. x3 and x4, if unlabeled, are the
same as in Figure 6.2(b).

Highlighting similar items or not (the suffix h). For the moonsU

conditions, the neighboring cards of any clicked card may be highlighted.
The neighborhood is defined as within a radius of ε = 0.07 in the Euclidean
feature space. This value was chosen as it includes at least two neighbors
for each point in the moonsU dataset. To form the unweighted graph shown
in Figure 6.3, an edge is placed between all neighboring points.

The rationale for comparing these different conditions will become ap-
parent as we consider how different machine-learning models perform on
these datasets.

6.3 Model Predictions

We hypothesized that human participants consider a set of models ranging
from simple to sophisticated, and that they would perform model selection
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Figure 6.3: The six experimental conditions. Large symbols indicate labeled
items, dots unlabeled items. Highlighting is represented as graph edges.

based on the training data given to them. We started by considering seven
typical ML models to motivate our choice, and present the models we
actually used later on. The seven models are:

(graph) Graph-based semi-supervised learning (Belkin et al., 2006; Zhu et al.,
2003), which propagates labels along the graph. It reverts to supervised
learning when there is no graph (i.e., no highlighting).

(1NN,`2) 1-nearest-neighbor classifier with `2 (Euclidean) distance.

(1NN,`1) 1-nearest-neighbor classifier with `1 (Manhattan) distance. These two
models are similar to exemplar models in psychology (Nosofsky, 1986).

(multi-v) multiple vertical linear boundaries.
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(multi-h) multiple horizontal linear boundaries.

(single-v) a single vertical linear boundary.

(single-h) a single horizontal linear boundary.

Figure 6.4 shows the label predictions made by these 7 models on four of the
six conditions. Their predictions on 2lmoonsU are identical to 2lmoonsUh, and
on 4lmoonsU are identical to 4lmoonsUh, except that “(graph)” is not available.

For conceptual simplicity and elegance, instead of using these disparate
models we adopted a single model capable of making all these predictions.
In particular, we used a Gaussian Process (GP) with different kernels (i.e.,
covariance functions) k to simulate the seven models.1 In particular, we
found seven different kernels k to match GP classification to each of the
seven model predictions on all 6 conditions. This is somewhat unusual in
that our GPs were not learned from data, but by matching other model
predictions. Nonetheless, it is a valid procedure to create seven different
GPs which would later be compared against human data.

For models (1NN,`2), (multi-v), (multi-h), (single-v), and (single-h), we
used diagonal RBF kernels diag(σ2

1,σ2
2) and tuned σ1,σ2 on a coarse param-

eter grid to minimize classification disagreement w.r.t. the corresponding
model prediction on all 6 conditions. For model (1NN,`1) we used a Laplace
kernel and tune its bandwidth. For model (graph), we produced a graph
kernel k̃ following the Reproducing Kernel Hilbert Space trick in Sindhwani
et al. (2005). That is, we extended a base RBF kernel k with a graph
component:

k̃(x, z) = k(x, z) − k>x (I+ cLK)−1cLkz (6.1)

where x, z are two arbitrary items (not necessarily on the graph), kx =

(k(x, x1), . . . ,k(x, xl+u))> is the kernel vector between x and all l+u points
x1 . . . xl+u in the graph, K is the (l + u) × (l + u) Gram matrix with

1For details on GPs see standard textbooks such as Rasmussen and Williams (2006).
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Kij = k(xi, xj), L is the unnormalized graph Laplacian matrix derived from
unweighted edges on the εNN graph defined earlier for highlighting, and c
is the parameter that we tuned. We took the base RBF kernel k to be the
tuned kernel for model (1NN,`2). It can be shown that k̃ is a valid kernel
formed by warping the base kernel k along the graph, see Sindhwani et al.
(2005) for technical details. We used the GP classification implementation
with Expectation Propagation approximation (Rasmussen and Williams,
2007). In the end, our seven GPs were able to exactly match the predictions
made by the seven models in Figure 6.4.

(graph) (1NN,`2) (1NN,`1) (multi-v) (multi-h) (single-v) (single-h)

-

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

-

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

Figure 6.4: Predictions made by the seven models on 4 of the 6 conditions.
Rows correspond to 2lgridU, 2lmoonsUh, 4lgridU & 4lmoonsUh respectively

6.4 Behavioral Experiment Results

Using the models described in the previous section, we can compare hu-
man categorization behaviors to model predictions. We first consider the
aggregate behavior for all participants within each condition. One way to
characterize this aggregate behavior is the “majority vote” of the partici-
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pants on each item. That is, if more than half of the participants classified
an item as y = 1, the majority vote classification for that item is y = 1,
and so on. The first row in Figure 6.5 shows the majority vote for each
condition. In these and all further plots, blue circles indicate y = −1, red
pluses y = 1, and green stars ambiguous, meaning the classification into
positive or negative is half-half. We also compute how well the seven GPs
predict human majority votes. The accuracies of these GP models are shown
in Table 6.1.2
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Figure 6.5: Human categorization results. (First row) the majority vote
of participants within each condition. (Bottom three rows) a sample of
responses from 18 different participants.

Of course, a majority vote only reveals average behavior. We have
observed that there are wide participant variabilities. Participants appeared
to find the tasks difficult, as their self-reported confidence scores were fairly
low in all conditions. It was also noted that strategies for completing the
task varied widely, with some participant simply categorizing cards in the

2The condition 4lmoonsUhR will be explained later in Section 6.5.



61

(graph) (1NN,`2) (1NN,`1) (multi-v) (multi-h) (single-v) (single-h)
2lgridU 0.81 0.94 0.84 0.86 0.58 0.85 0.61
2lmoonsU 0.47 0.84 0.62 0.74 0.42 0.79 0.45
2lmoonsUh 0.50 0.78 0.56 0.76 0.36 0.76 0.39
4lgridU 0.54 0.61 0.64 0.64 0.50 0.60 0.51
4lmoonsU 0.64 0.62 0.60 0.69 0.47 0.38 0.45
4lmoonsUh 0.97 0.76 0.54 0.64 0.31 0.65 0.26
4lmoonsUhR 0.68 0.63 0.44 0.56 0.40 0.59 0.42

Table 6.1: GP model accuracy in predicting human majority vote for each
condition.

order they appeared on the screen, while others took a much longer, studied
approach. Most interestingly, different participants seem to use different
models, as the individual participant plots in the bottom three rows of
Figure 6.5 suggest. We would like to be able to make a claim about what
model, from our set of models, each participant used for classification. In
order to do this, we compute per participant accuracies of the seven models
on that participant’s classification. We then find the model M with the
highest accuracy for the participant, out of the seven models. If this highest
accuracy is above 0.75, we declare that the participant is potentially using
modelM; otherwise no model is deemed a good fit and we say the participant
is using some “other” model. We show the proportion of participants in each
condition attributed to each of our seven models, plus “other”, in Table 6.2.

(graph) (1NN,`2) (1NN,`1) (multi-v) (multi-h) (single-v) (single-h) other
2lgridU 0.12 0 0.12 0.25 0.25 0.12 0 0.12
2lmoonsU 0 0.12 0 0.25 0.25 0.25 0 0.12
2lmoonsUh 0.12 0 0 0.38 0.25 0 0 0.25
4lgridU 0 0.05 0.09 0 0 0.18 0.09 0.59
4lmoonsU 0.25 0.25 0.12 0.12 0 0.04 0.08 0.38
4lmoonsUh 0.39 0.09 0.09 0.04 0.04 0 0.13 0.22
4lmoonsUhR 0.13 0.03 0.07 0 0 0.07 0.03 0.67

Table 6.2: Percentage of participants potentially using each model

Based on Figure 6.5, Table 6.1, and Table 6.2, we make some observations:
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1. When there are only two labeled points, the unlabeled distribution
does not encourage humans to perform manifold learning (comparing 2lgridU

vs. 2lmoonsU). That is, they do not follow the possible implicit graph
structure (2lmoonsU). Instead, in both conditions they prefer a simple single
vertical or horizontal decision boundary, as Table 6.2 shows.3

2. With two labeled points, even if they are explicitly given the graph
structure in the form of highlighting, participants still do not perform
manifold learning (comparing 2lmoonsU vs. 2lmoonsUh). It seems they are
“blocked” by the simpler vertical or horizontal hypothesis, which perfectly
explains the labeled data.

3. When there are four labeled points but no highlighting, the distribu-
tion of unlabeled data still does not encourage people to perform manifold
learning (comparing 4lgridU vs. 4lmoonsU). This further suggests that people
can not easily extract manifold structure from unlabeled data in order to
learn, when there is no hint to do so. However, most participants have given
up the simple single vertical or horizontal decision boundary, because it
contradicts with the four labeled points.

4. Finally, when we provide the graph structure, there is a marked switch
to manifold learning (comparing 4lmoonsU vs. 4lmoonsUh). This suggests that
a combination of the elimination of preferred, simpler hypotheses, together
with a stronger graph hint, finally gives the originally less preferred manifold
learning model a chance of being used. It is under this condition that we
observed human manifold learning behavior.

3The two rows in Table 6.1 for these two conditions are therefore misleading, as it
averages classification made with vertical and horizontal decision boundaries. Also note
that in the 2lconditions (multi-v) and (multi-h) are effectively single linear boundary
models (see Figure 6.4) and differ from (single-v) and (single-h) only slightly due to the
training method used.
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6.5 Humans do not Blindly Follow
Suggestions

Do humans really learn using manifolds? Could they have adopted a “follow-
the-highlighting” procedure to label the manifolds 100% correctly: in the
beginning, click on a labeled card x to highlight its neighboring unlabeled
cards; pick one such neighbor x ′ and classify it with the label of x; now click
on (the now labeled) x ′ to find one of its unlabeled neighbors x ′′, and repeat?
Because our graph has disconnected components with consistently labeled
seeds, this procedure will succeed. The procedure is known as propagating-
1NN in semi-supervised learning (Algorithm 2.7, Zhu and Goldberg, 2009).
In this section we present three arguments that humans are not blindly
following the highlighting.

First, participants in 2lmoonsUh did not learn the manifold while those
in 4lmoonsUh did, even though the two conditions have the same εNN high-
lighting.

Second, a necessary condition for follow-the-highlighting is to always
classify an unlabeled x ′ according to a labeled highlighted neighbor x.
Conversely, if a participant classifies x ′ as class y ′, while all neighbors of x ′

are either still unlabeled or have labels other than y ′, she could not have
been using follow-the-highlighting on x ′. We say she has taken a leap-of-faith
on x ′. The 4lmoonsUh participants had an average of 17 leaps-of-faith among
about 78 classifications,4 while strict follow-the-highlighting procedure would
yield zero leaps-of-faith.

Third, the basic challenge of follow-the-highlighting is that the underlying
manifold structure of the stimuli may have been irrelevant. Would partici-
pants have shown the same behavior, following the highlighting, regardless
of the actual stimuli? We therefore designed the following experiment. Take

4The individual number of leaps-of-faith were 0, 1, 2, 4, 10, 13, 13, 14, 14, 15, 15, 16,
18, 19, 20, 21, 22, 24, 25, 27, 33, 36, and 36 respectively, for the 23 participants.
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the 4lmoonsUh graph which has 4 labeled nodes, 78 unlabeled nodes, and
an adjacency matrix (i.e., edges) defined by εNN, as shown in Figure 6.3.
Take a random permutation π = (π1, . . . ,π78). Map the feature vector
of the ith unlabeled point to xπi , while keeping the adjacency matrix the
same. This creates the random-looking graph in Figure 6.6(a) which we call
4lmoonsUhR condition (the suffix R stands for random), which is equivalent
to the 4lmoonsUh graph in structure. In particular, there are two connected
components with consistent labeled seeds. However, now the highlighted
neighbors may look very different than the clicked card.

If we assume humans blindly follow the highlighting (perhaps noisily),
then we predict that they are more likely to classify those unlabeled points
nearer (in shortest path length on the graph, not Euclidean distance) a
labeled point with the latter’s label; and that this correlation should be the
same under 4lmoonsUhR and 4lmoonsUh. This prediction turns out to be false.
30 additional undergraduates participated in the new 4lmoonsUhR condition.
Figure 6.6(b) shows the above behavioral evaluation, which does not exhibit
the predicted correlation, and is clearly different from the same evaluation
for 4lmoonsUh in Figure 6.6(c). Again, this is evidence that humans are not
just following the highlighting. In fact, human behavior in 4lmoonsUhR is
similar to 4lmoonsU. That is, having random highlighting is similar to having
no highlighting in how it affects human categorization. This can be seen
from the last rows of Tables 6.1 and 6.2, and Figure 6.6(d).5

6.6 Discussion

These results suggest that people can perform manifold learning, but only
when there is no alternative, simpler explanation of the data, and people
need strong hints about the graph structure.

5In addition, if we create a GP from the Laplacian of the random highlighting
graph, the GP accuracy in predicting 4lmoonsUhR human majority vote is 0.46, and the
percentage of participants in 4lmoonsUhR who can be attributed to this model is 0.
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Figure 6.6: The 4lmoonsUhR experiment with 30 participants. (a) The behav-
ioral evaluation for 4lmoonsUhR, where the x-axis is the shortest path length
of an unlabeled point to a labeled point, and the y-axis is the fraction of
participants who classified that unlabeled point consistent with the nearest
labeled point. (b) The same behavioral evaluation for 4lmoonsUh. (c) The
4lmoonsUhR condition itself. (d) The majority vote in 4lmoonsUhR.

We propose that Bayesian model selection is one possible way to explain
these human behaviors. Recall we defined seven Gaussian Processes, each
with a different kernel. For a given GP with kernel k, the evidence p(y1:l |

x1:l,k) is the marginal likelihood on labeled data, integrating out the hidden
discriminant function sampled from the GP. With multiple candidate GP
models, one may perform model selection by selecting the one with the largest
marginal likelihood. From the absence of manifold learning in conditions
without highlighting or with random highlighting, we speculate that the
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GP with the graph-based kernel k̃ (6.1) is special: it is accessible in a
participant’s repertoire only when strong hints (highlighting) exists and
agrees with the underlying unlabeled data manifold structure. Under this
assumption, we can then explain the contrast between the lack of manifold
learning in 2lmoonsUh, and the presence of manifold learning in 4lmoonsUh. On
one hand, for the 2lmoonsUh condition, the evidence for the seven GP models
on the two labeled points are: (graph) 0.249, (1NN,`2) 0.250, (1NN,`1)
0.250, (multi-v) 0.250, (multi-h) 0.250, (single-v) 0.249, (single-h) 0.249.
The graph-based GP has slightly lower evidence than several other GPs,
which may be due to our specific choice of kernel parameters in (6.1). In any
case, there is no reason to prefer the GP with a graph kernel, and we do not
expect humans to learn on manifold in 2lmoonsUh. On the other hand, for
4lmoonsUh, the evidence for the seven GP models on those four labeled points
are: (graph) 0.0626, (1NN,`2) 0.0591, (1NN,`1) 0.0625, (multi-v) 0.0625,
(multi-h) 0.0625, (single-v) 0.0341, (single-h) 0.0342. The graph-based GP
has a small lead over other GPs. In particular, it is better than the evidence
1/16 for kernels that treat the four labeled points essentially independently.
The graph-based GP obtains this lead by warping the space along the two
manifolds so that the two positive (resp. negative) labeled points tend to
co-vary. Thus, there is a reason to prefer the GP with a graph kernel, and
we do expect humans to learn on manifold in 4lmoonsUh.

We also explored the convex combination of the seven GPs as a richer
model for human behavior: k(λ) =

∑7
i=1 λiki, where λi > 0,

∑
i λi = 1.

This allows a weighted combination of kernels to be used, and is more power-
ful than selecting a single kernel. Again, we optimize the mixing weights λ by
maximizing the evidence p(y1:l | x1:l,k(λ)). This is a constrained optimiza-
tion problem, and can be easily solved up to local optimum (because evidence
is in general non-convex) with a projected gradient method, given the gradi-
ent of the log evidence. For the 2lmoonsUh condition, in 100 trials with random
starting λ values, the maximum evidence always converges to 1/4, while
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the optimum λ is not unique and occupies a subspace (0, λ2, λ3, λ4, λ5, 0, 0)
with λ2 + λ3 + λ4 + λ5 = 1 and mean (0, 0.27, 0.25, 0.22, 0.26, 0, 0). Note the
weight for the graph-based kernel λ1 is zero. In contrast, for the 4lmoonsUh

condition, in 100 trials λ overwhelmingly converges to (1, 0, 0, 0, 0, 0, 0) with
evidence 0.0626. i.e., it again suggests that people would perform manifold
learning in 4lmoonsUh.

Of course, this Bayesian model selection analysis is over-simplified. For
instance, we did not consider people’s prior p(λ) on GP models, i.e., which
model they would prefer before seeing the data. It is possible that humans
favor models which produce axis-parallel decision boundaries. Defining and
incorporating non-uniform p(λ) priors is a topic for future research.
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7 influencing human behavior: via prior
unlabeled data exposure (pending publication)

Imagine a child playing in a classroom. She is about to take a lesson on
categorizing things by “sink or float.” On the table are numerous objects
such as wood, metal, plastic bottles, rocks, heavy things, light things, and
so on. The teacher has not arrived yet; and there is no tub of water to
experiment with. She can explore the objects but nothing will tell her
whether each object sinks or floats. Can just playing with these objects,
experience prior to teaching, speed up her learning of the categorization on
sink or float once the lesson starts?

This work focused on such human categorization tasks. A learner, the
child in our example, must learn a mapping f : X 7→ Y from item to category
label. In our classroom story, the examples are the objects and the labels are
sink or float. Playing with the objects before the lesson can be considered
as exposure to unlabeled data in that they are presented without category
labels. The lesson itself will be labeled, where examples are presented along
with their corresponding labels according to the underlying concept. The
question becomes: what effect does the unlabeled data have on the speed
with which the supervised categorization task is learned?

My contribution to this work involved constructing and performing a
human experiment showing that the speed of human learning on a supervised
task can be affected by prior unlabeled experience.

Existing SSL literature in CP assumes that the learner is aware of an
upcoming category learning task, and that labeled data always come first
to define such a supervised learning task, while unlabeled data is either
inter-mixed with labeled data, or comes after labeled data as test items Zhu
et al. (2007); Vandist et al. (2009); Gibson et al. (2010); Rogers et al. (2010);
Zhu et al. (2010); Kalish et al. (2011); Zhu et al. (2011).

We felt that in many situations, it is far easier (and more natural) to
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expose a human student to unlabeled experience first rather than later. This
exposure can happen even before the student is aware of any future classifi-
cation task. In ML, it is known that several SSL models can take advantage
of prior exposure of unlabeled data sampled iid from the marginal p(x) to
facilitate future classification using p(y | x). For instance, the unlabeled
data can be used to determine the parameters of a Gaussian Mixture Model
(GMM), and future labeled data only needs to map each mixture component
to a label. However, it was not clear whether human learners benefit from
such prior exposure to unlabeled data too, as this “unlabeled data before
labeled data” setting is uncommon in the CP literature.

Taking this one step further, we felt that it was also unnecessary to restrict
ourselves to conventional SSL assumptions and only expose the student to
iid unlabeled data sampled from p(x). Taking cues from recent advances
in computational teaching models such as curriculum learning Bengio et al.
(2009); Khan et al. (2011), we considered whether we could design a special
unlabeled data sequence that is particularly good at guiding future supervised
learning? Note that the crucial difference with respect to curriculum learning
is that our sequence was unlabeled rather than labeled. This was uncharted
territory: not only was there no previous cognitive study of such a setting,
but also there were no ML SSL models specifically designed for this setting.

We called this setting Semi-Supervised Teaching (SST). In SST, the
world generates labeled training items and future test items as iid samples
from an unobserved joint distribution p(x,y). The learner’s goal is to learn
a good classifier f : X 7→ Y to perform well on future test items. This aspect
is identical to standard supervised learning. However, there is also a helpful
teacher who knows p(x,y), and who wants to help the learner learn faster by
exposing the learner to selected unlabeled items before (supervised) learning
starts. These unlabeled items need not follow the marginal distribution
p(x).

The closest work to SST is perhaps the Test-Item Effect from Zhu et al.
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(2010) discussed in Section 3.1. That study involved how predicting the
category of test items, without receiving corrective feedback, can drastically
change a human’s category decision boundary. In ML terms, merely applying
a classifier f to the test set (without knowing the true label of the test items)
changes f itself. The argument there was that Test-Item Effect can be
beneficial as a way to correct undesirable biases in previous human category
learning, if the teacher can design an appropriate test set. The main
difference between Test-Item Effect and SST is that SST presents unlabeled
data before supervised learning. This seemingly minor distinction has major
ramifications. In Test-Item Effect, the learner needs to apply her current
classifier to the test items x and predict a label f(x). This is equivalent to
doing homework on the test items without feedback. In contrast, in SST
the learner need not know about future categorization tasks; she does not
have a classifier f already, and she does not need to do the homework of
categorizing the unlabeled items x to f(x). Instead, she merely needs to
observe the unlabeled items x. This opens up some interesting possibilities.
For example, although not studied in this work, it might be possible to
present the unlabeled data passively, or subconsciously, to the learner in
order to achieve increased speed on subsequent supervised learning.

Having defined SST, the immediate questions were: Does SST have
any effect on humans in reality, be it positive or negative? If so, could we
explain it with a computational model? This work answered both questions
affirmatively. Our contributions were two-fold: 1) we performed a human
experiment which shows that unlabeled data does have an effect on subse-
quent categorization learning in humans, but that learning is significantly
affected only by the distribution of the unlabeled data but not the order
of the unlabeled. and 2) we showed that we can model this behavior using
standard SSL models.
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7.1 Human Experiment

To study if unlabeled prior experience has any effect on subsequent human
category learning, we conducted the following new behavioral experiment.

Participants and Procedure

−8 −6 −4 −2 0 2 4 6 8

Figure 7.1: Range of example stimuli with corresponding x values.

80 undergraduate university students participated in the study in ex-
change for partial course credit. They were each presented with a series
of 410 stimuli varying in shape according to a single parameter x ∈ [−8, 8]
(Figure 7.1). Each participant performed the following sequence of tasks:

1. Instructional one-back task (t = 1–10)

a) stimulus xt presented on screen

b) participant responds same / different compared to xt−1

c) correct one-back response displayed

2. unlabeled exposure (one-back task) (t = 11–310)

a) stimulus xt presented on screen

b) participant responds same / different compared to xt−1

3. supervised learning task (t = 311–410)

a) stimulus xt presented on screen

b) participant predicts binary class label ŷt
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c) correct / incorrect feedback by comparing ŷt to yt

In order for the unlabeled data to have an effect, we need to ensure
that the human learner is paying attention to the data (rather than, say,
clicking through stimuli without attending). To enforce this attention to
the stimuli, a meaningful response regarding the stimuli was asked from the
learner. However, being unlabeled, these items must be presented without
any information on the subsequent categorization task, so asking the learner
to provide a category label ŷ was not appropriate. Instead, participants
were asked to perform a “one-back” comparison. Participants needed to
determine if the current item xt was identical to the immediately previous
item xt−1, responding same or different. It is important to keep in mind
that these one-back responses are completely different from the subsequent
categorization labels1.

In task 1, the 10 unlabeled items shown to participants corresponded to
the extremes of the stimuli range (x = {−8, 8}), accompanied by instructions
on how to perform the one-back comparison.

In task 2, each participant was exposed to 300 unlabeled items, corre-
sponding to one of four conditions to be described shortly. Participants
performed the one-back comparison to ensure attention.

In task 3, participants categorized 100 items drawn iid uniformly from
the stimuli space x ∈ [−8, 8]. Each participant was presented with each
item xt and asked to predict a binary category label ŷt for that item. The
participant was then told whether their ŷt was correct or incorrect compared
to the true labeled yt, determined by a boundary fixed at x = −1.6. With

1For the one-back task, unlabeled data needed to be constructed such that identical
items appear in sequence with reasonable frequency. To accomplish this, for each dataset,
300 unlabeled items were first created according to condition. From this sequence 120
items (40%) were randomly selected to be identical one-back trials. These selected items
where then copied, overwriting the next item in the sequence, resulting in a dataset of 300
items with 40% identical one-back pairs. Note this procedure does not significantly change
the distribution or order of unlabeled items with respect to the subsequent supervised
task.
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this feedback, the participant was expected to gradually learn the true
decision boundary.

To summarize, unlabeled data exposure happens in tasks 1 and 2, and
supervised category learning happens in task 3.

Conditions

To determine whether this unlabeled exposure had an effect of subsequent
supervised learning, participants were randomly split into four conditions.
These conditions varied how items were generated for the unlabeled exposure
task, specifically in how the unlabeled items were distributed and ordered
(see Figure 7.2). In all conditions, the same stimuli were used for the final
supervised task.

The 4 conditions were as follows:

• The trough condition was motivated by earlier work on human SSL
showing that unlabeled data drawn from a mixture model p(x) could
reinforce a previously learned boundary, if the boundary coincides
with the trough in p(x) Zhu et al. (2007). In this condition unla-
beled examples were drawn iid from a 2-component GMM with the
same weights and variances {w = 0.5, σ2 = 0.64} but different means:
µtrough = {−4.8, 1.6}. Note that the decision boundary of the subse-
quent task 3 falls between the modes. The expectation was that this
condition would help supervised learning in task 3.

• The peak condition was similar except that the GMM was shifted
µpeak = {−1.6, 4.8}. The left peak, not the trough, coincided with task
3 decision boundary. We expected that this condition would harm
supervised learning in task 3.

• The uniform condition was included as a control. In this condition
unlabeled examples were drawn iid from uniform[−8, 8]. We expect
this condition to neither help nor harm learning in task 3.
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Figure 7.2: Plots describing the four conditions of the human experiment.
Each column corresponds to one condition. The top row shows the underlying
distributions p(x) from which unlabeled items are drawn in each condition.
The bottom row shows the order of unlabeled items as displayed to the
learner over time. The dashed line in all plots indicates the true decision
boundary in the subsequent categorization task. Note that unlabeled items
in the uniform and converge conditions are both drawn from a uniform
distribution over the stimuli space, but that the ordering of the data over
time is very different.

• The converge condition was inspired by curriculum learning, where
sequential ordering of labeled examples from hard to easy is important
in guiding a learner toward the decision boundary Bengio et al. (2009);
Khan et al. (2011). This condition differed from curriculum learning
in that no labels were provided with the examples. To the best of our
knowledge no study had looked at the effect of unlabeled data ordering
on subsequent category learning. Unlabeled data in this condition
was created by first sampling unlabeled items x ∼ uniform[−8, 8] just
as in the uniform condition. We then ordered the unlabeled items
such that they “converged” over time towards the subsequent decision
boundary. Standard SSL models that assume unlabeled data are
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exchangeable would perceive no difference between the uniform and
converge conditions. Since our “curriculum learning” was unlabeled,
it was not clear how human learners will perform in this condition.

Results

As we were interested in the effect of exposure to unlabeled data on the
speed of learning the categorization task, simple accuracy is not appropriate.
Instead we used a logistic mixed effects model. With this we could look
at both initial accuracy (intercept) and the speed of learning. Using this
test we found a significant differences in both initial accuracy and speed
of learning between the “trough” and “peak” conditions (p < 0.001). The
distribution of the unlabeled experience did have an effect on subsequent
learning. This followed our expectations from standard SSL models and
prior experiments.

While there were some indications that the ordering of the data in the
“converge” condition did influence the learner, we did not find a significant
difference between the “uniform” and “converge” conditions. The ordering of
the unlabeled data did not have a significant effect on the speed of learning.

7.2 Modeling

Having shown that humans are affected by prior unlabeled items, we con-
structed a computational model which reproduced a difference in behavior
between conditions similar to that seen in humans. We chose to model
human behavior using a DPMM for two reasons: 1) this was shown to be
the best fit to human behavior in Chapter 4 and 2) the learner, prior to
the labeled task, had no reason to assume any fixed number of components,
making a GMM inappropriate. Additionally, the DPMM is flexible enough
to allow each item to be its own component, making modeling using KDE
unnecessary.



76

Being a non-parametric model, the only tuning necessary for the DPMM
was to set the mixture hyperparameter which specifies how likely a new
cluster or partition will be created for each item observed. Training on the
310 unlabeled items plus the first 50 labeled items, we chose from a set of
potential values the mixture hyperparameter setting which provided the
largest agreement with human behavior on the last 100 labeled items in
each dataset. The best agreement was found at α = 5.

Using this hyperparameter setting, we trained four separate DPMM
models, one for each condition, producing predicted labels on all test sets.
We then compared model predictions between conditions using the same
methods used when evaluating human performance.

The results indicated behavior very similar to that seen in humans: 1) a
significant difference between trough and peak conditions (p < 0.00003) and
2) no statistically significant difference between uniform and converge. This
second finding is not surprising as the DPMM treats items as exchangable
such that ordering information is discarded. If there had been a difference
in human performance between uniform and converge, a standard DPMM
would no longer be a viable model.

7.3 Discussion

In this work we proposed the concept of Semi-Supervised Teaching: the
construction of an unlabeled dataset which could potentially speed learning
on a subsequent labeled task. We showed that SST is relevant to human
category learning, as the latter is influenced by distribution (and possibly
ordering) of prior unlabeled data exposure. We also showed that this
difference in behavior can be modelled using a SSL DPMM.
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8 influencing human behavior:
co-training constraints (zhu, gibson, rogers, 2011)

Though human learning abilities are remarkable in many respects, they are
also constrained in ways that may seem puzzling to machine learning. As one
example, people can have difficulty learning nonlinear decision boundaries
without extensive supervision (Love, 2002). As another example, psychol-
ogists often distinguish between feature dimensions that are “separable”
versus “integral”. For separable features (e.g. color and shape), people
can selectively attend to one dimension without processing the other. For
integral dimensions (e.g. color saturation and brightness) they cannot. In
learning problems that are identical from a machine-learning point of view,
humans can show quite different patterns of behavior depending on whether
the dimensions are integral or separable. For instance, people have diffi-
culty learning non-axis-parallel boundaries for separable but not for integral
feature dimensions (Nosofsky and Palmeri, 1996; Ashby and Maddox, 1990).

This work considered whether these characteristics of human learning
can be altered by leveraging insights from a machine learning algorithm,
namely Co-Training. Co-Training uses unlabeled data to improve learning
by encouraging agreement among multiple “base” machine learners, each
exposed to a different “view” of the data (see below). The classic Co-
Training algorithm (Blum and Mitchell, 1998) and its extensions such as
Co-EM (Nigam and Ghani, 2000), Tri-Training (Zhou and Li, 2005), and
multiview learning (Brefeld et al., 2006) have enjoyed considerable empirical
success and theoretical justification (Johnson and Zhang, 2007; Balcan and
Blum, 2010) in machine learning.

One often under-appreciated fact about Co-Training is that it has a
different inductive bias, and so can produce quite different classification
results from supervised learning. Figure 8.1(a) shows a “diamond” dataset
with four clusters, with just one labeled item from each class (blue and red
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Figure 8.1: On this “diamond” dataset, supervised learning and Co-Training,
both with 1NN classifiers, produce drastically different outcomes.

points). The task is to classify the unlabeled items (black dots). Supervised
learning with the 1-nearest-neighbor (1NN) algorithm1 learns a diagonal
decision boundary in Figure 8.1(b). In contrast, with the same 1NN as
base learners the Co-Training algorithm learns a very different solution
(Figure 8.1(c)), grouping the top and bottom clusters together in the red
class, and the left and right clusters in the blue class.

The linearly non-separable classification achieved by Co-Training is just
the kind of solution that human beings have difficulty learning without
extensive supervision (Love, 2002). In this work we considered whether the
Co-Training algorithm can be used to design a collaboration policy for human
participants that will promote learning of such “difficult” classifications
over the linearly separable outcomes that individuals are prone to acquire
on their own. Under this policy, each individual in the collaboration is
treated as a “base” learner; each is exposed to a different “view” of the
data; and the learning set-up is designed to promote agreement among
the collaborators. We empirically assessed behavior in such teams for
learning problems with both psychologically-separable and integral stimulus
dimensions, and compared performance to individual learners and to teams

11NN classifiers are closely related to the Generalized Context Model (Nosofsky, 1986)
in CP which we discussed in Chapter 2.
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collaborating under an alternative policy. In simple learning problems like
that shown in Figure 8.1 we will see that our Co-Training collaboration
policy leads participants to learn classifications typically thought to be
very difficult for humans, and also to show more homogeneous behavior
for stimuli defined along separable versus integral dimensions. Though we
do not extend the approach to a real-world learning problem here, we will
consider how the approach might be used to design collaboration policies
for such problems in cases where individuals have difficulty learning the
appropriate classifications.

My contribution to this work consisted of implementation of a novel
experimental interface, the design and norming of two stimuli datasets,
overseeing the experiment itself and finally performing the analysis show-
ing that, using a variation of the classic Co-Training constraints, we can
elicit behavior from human collaborators that is not observed without these
constraints.

8.1 Review of the Co-Training Algorithm

We first review the classic Co-Training algorithm of Blum and Mitchell (1998)
as it is closely related to our policy. Assume that each item is parametrized
by a feature vector x and has a corresponding class label y. The input
consists of labeled items {(xi,yi)}i∈L, L = {1, . . . ,nL} and unlabeled items
{xi}i∈U, U = {nL + 1 . . .n}. The goal is to learn a classifier f : x 7→ y using
both the labeled and unlabeled data.

Further assume that the feature vector can be split into two parts (called
“views”): x =

(
x(1)

x(2)

)
. The Co-Training algorithm trains two base learners

f(1) : x(1) 7→ y and f(2) : x(2) 7→ y, each working exclusively on one view.
In the beginning, these two base learners are trained on the labeled data.
More specifically, f(1) is trained with the first view of the labeled data
(x(1)

1 ,y1) . . . (x(1)
nL ,ynL). Subsequently, whenever f(1) encounters an item x
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Algorithm 5: The Co-Training algorithm
Input: labeled and unlabeled data where each item has two views;

learning speed s.
Initialize L1 = L2 =labeled data
repeat

Train f(1) from L1, f(2) from L2.
Classify unlabeled items with f(1), f(2) separately.
Add f(1)’s top s most confident predictions

(x, f(1)(x)) to L2, and vice versa.
Remove these items from the unlabeled data.

until unlabeled data is exhausted;

during training or prediction, it always works with the first view x(1) of
the item only and disregards the second view x(2). f(2) operates similarly,
working only with the second view. The ingenuity is in how the unlabeled
data is utilized in an iterative fashion: At each iteration, f(1) classifies a
few unlabeled items that it is most confident about and passes these and
their predicted labels as additional training data to f(2). Simultaneously,
f(2) reciprocates. Co-Training then updates both base learners with this
additional “pseudo-labeled” data. This repeats until the unlabeled data is
exhausted. A slightly simplified version of Blum and Mitchell’s Co-Training
algorithm is given in Algorithm 5. To classify a new test item x̃, one can
compare the predictions f(1)(x̃(1)) and f(2)(x̃(2)) and pick the one with higher
confidence.

Co-Training is a “wrapper” method in that the two base learners f(1) and
f(2) can be any learning systems. The only requirement is that each base
learner has a notion of confidence, which is used to select which unlabeled
items to turn into pseudo labeled data for the other view. Importantly for
this work, being a wrapper method enables Co-Training to treat two human
collaborators as the base learners.

It is important to understand the conditions under which Co-Training
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will succeed. We present the sufficient conditions in the original analy-
sis (Blum and Mitchell, 1998), but with new interpretations geared toward
our collaboration policy for human learning.

The conditions are:

1. The unlabeled data distribution and the target concept f are com-
patible under the two views. In particular, let p(x) be the marginal
distribution of items. We require that with probability one, x ∼ p(x)
satisfies f(1)(x(1)) = f(2)(x(2)). That is, no item shall have conflicting
labels between the two views.

2. Each base learner is able to learn the target concept under its view,
given enough labeled data. This refers to standard supervised learning,
where the amount of labeled data required may be much larger than
in Co-Training.

3. The two views are conditionally independent given the class label:
p(x(2) | x(1),y) = p(x(2) | y). If one knows the class y, then knowing
the features in one view x(1) does not help one guess the other view
x(2). This condition ensures that the most confident items from f(1)’s
perspective do not “pile up on top of each other” from f(2)’s perspective.
Rather, they spread out and provide representative (pseudo) training
data for the second view.

In subsequent sections, we will see how consideration of these conditions
shape our collaboration policy.

The reader might wonder why Co-Training keeps the two views separate.
Why not stack the two views back into x =

(
x(1)

x(2)

)
, and train a supervised

learner on x? One reason is their inductive biases leading to different
classifiers for the same data, as shown in Figure 8.1. To see why this
happens, consider how the base learners respond to the bottom and right
clusters. For the bottom cluster, the x-axis view will be highly confident
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that the items belong to the red class because from this view they are nearly
identical to the labeled red item. In contrast, the class of the right cluster
will be uncertain from this view, since these items are not particularly
similar to either labeled item. So, the x-view learner may choose to label
some bottom cluster items and pass these to the y-view learner. For the
y-view learner, the reverse pattern occurs: the right cluster items very likely
belong to the blue class, whereas the class of the bottom cluster items is
uncertain. Each view is confident about the items for which the opposing
view is uncertain. Thus the two views, working together, converge on the
solution shown in Figure 8.1(c). Such difference between supervised learning
and Co-Training is general and can be observed with other datasets and
choices of base learners. Another example is given in the last section.

8.2 Human Collaboration Policies

We now consider how these ideas from Co-Training can be used to shape a
policy for human collaboration. The task we consider is category learning:
Two human collaborators are given a number of labeled training items
{(xi,yi)}i∈L and together must label the unlabeled items {xi}i∈U. One
may view the labeled training items as teaching experiences given to the
collaborators, e.g., by a teacher or a senior worker. It is reasonable to assume
that in many cases the availability of teaching is limited. Therefore, the goal
is for the dyad to grasp the target concept using as little teaching experience
as possible. We assume that the collaborators can see all of the unlabeled
items upfront, which is known as transduction in machine learning.2

Our main interest is in exploring different collaboration policies between
the two learners and how these policies affect the learning outcomes. One
obvious policy is to allow the two collaborators full access to the data

2However, the dyad is also capable of making inductive inferences when faced with
new test items later on.
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Algorithm 6: The Co-Training collaboration policy
Input: labeled and unlabeled data, learning speed s.
Present the first-view data to Alice, second-view to Bob.
repeat

Let Alice label her s most confident unlabeled
items; same for Bob.

Show Bob’s labelings (xB1,yB1) . . . (xBs,yBs) to
Alice, and vice versa.

Remove {xA1 . . . xAs} ∪ {xB1 . . . xBs} from the
unlabeled data.

until unlabeled data is exhausted;

{(xi,yi)}i∈L, {xi}i∈U, and to allow them to fully interact with each other (in
terms of discussions, gesturing, etc.). We call this the “full-collaboration”
policy. Another policy might be to isolate the learners so that they each
have full independent access to the data but cannot communicate or interact.
We call this the “no-collaboration” policy.

We introduce a third policy, described in Algorithm 6 and explained
below, that is inspired by and closely follows the Co-Training machine
learning algorithm. This policy splits each item’s feature vector into two
views: x =

(
x(1)

x(2)

)
. The intention is to allow each collaborator only one of the

views. In contrast to machine learning, however, it is sometimes impossible
to create artificial stimuli with a single view. For instance, the often used
Gabor patches (Vandist et al., 2009) vary in frequency and orientation, and
it is impossible to depict an orientation without any information about
frequency or vice versa. In this case, our policy constructs artificial stimuli
that vary along the “viewed” dimension while holding a constant value on
the “hidden” dimension (specifically the mean µ of the values on the missing
view). So if Alice and Bob are the two collaborators, Alice might see the
stimuli as x(1) or

( x(1)

µ(2)

)
, while Bob sees them as x(2) or

(
µ(1)

x(2)

)
. Both Alice

and Bob also see the labels for the labeled data.
Alice and Bob cannot directly communicate. Instead, at each iteration
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the policy requires both Alice and Bob to label the s unlabeled items that
each is most confident about. After they have both finished, the policy
shows Bob’s chosen items and labelings (xB1,yB1) . . . (xBs,yBs) to Alice.
Note that, although Bob labeled these item from his view, Alice sees them
from her own view. Alice understands that the labels come from Bob, but –
in contrast to machine learning – it is up to her whether to believe Bob’s
labelings (i.e., whether to use them as pseudo labeled data). At the same
time, Alice’s labelings are shown to Bob. The policy then removes any
unlabeled item that has been labeled by either Alice or Bob, and proceeds
to the next iteration. This repeats until the unlabeled data is exhausted.
In the end, each unlabeled item has received a label from Alice or Bob. In
the rare cases when both Alice and Bob label the same item differently, the
policy breaks the tie arbitrarily.

The only communication that is allowed in the Co-Training policy is label
exchange.3 In this sense, Co-Training falls between the no-collaboration and
full-collaboration policies. Our main question is whether the Co-Training
policy leads learners toward different classification outcomes than the no-
collaboration and full-collaboration policies. We hypothesize that human
behavior in the Co-Training policy will be well-predicted by the behavior of
the Co-Training algorithm in machine learning, whereas participants will
primarily learn linear category boundaries in the other two collaboration
conditions. This is not a trivial hypothesis given the differences between
human and machine learning discussed above, and the general difficulty hu-
man beings have in learning nonlinear decision boundaries without extensive
supervision.

3In theory, Alice and Bob could agree on a coding scheme a priori and encode further
information with their choices of items and labelings. We do not consider that possibility
here.
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8.3 Human Experiments

We designed and conducted a series of experiments to compare human
category learning behaviors under the three collaboration policies introduced
in the previous section.

Participants and Materials

Across three separate experiments a total of 324 undergraduate students par-
ticipated for course credit under IRB approval. We programmed networked
software to run on a pair of computers so that two participants in separate
rooms could collaborate according to the Co-Training policy, preventing any
communication between them except that explicitly allowed by the software.
The software also runs on a single computer for the full-collaboration and
no-collaboration policies. The software was implemented in the ActionScript
programming language and runs in Flash Player.

The category learning task was implemented as a card sorting game, see
Figure 8.2. Each item x is represented as a card. The user interface contains
a central bin holding the unlabeled cards as well as a bin to the left and to
the right into which labeled cards are placed. In the beginning, only the
initially-labeled cards are shown in the left or right bins. The participants’
task is to sort all cards in the central bin into the left or right bins. Before
starting the experiments, participants were told whether or not they would
be working with a partner, and were instructed to begin with the card they
were most confident about.

We assessed learning behavior in all collaboration conditions with two
stimulus sets. Both included items defined over two continuous perceptual
features, but differed in the psychological separability of the dimensions.
The “separable” set contained Gabor patches varying in spatial frequency
and orientation of the grating (Vandist et al., 2009; Ashby and Maddox,
1990). These dimensions are considered separable because it is possible for
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Figure 8.2: Experimental interface
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separable stimuli

integral stimuli

Figure 8.3: Sample stimuli

people to attend to one dimension to the exclusion of the other (Shepard,
1964). The “integral” set contained colored squares of a fixed hue but
varying in saturation and brightness. These dimensions are considered to
be integral because it is difficult for people to attend to one dimension
without also processing the other (Lockhead, 1966). Extensive research has
shown that people respond differently to stimuli defined on separable versus
integral dimensions in supervised and unsupervised learning tasks (Ashby
and Maddox, 1990; Love, 2002; Nosofsky and Palmeri, 1996).

In both cases a stimulus is parametrized by x =
(
x1
x2

)
∈ [0, 1]2. The range

of values on each was determined in extensive pilot testing to ensure that
participants could discriminate important distances along all dimensions. For
Gabor patches, the frequencies were calculated using λ = (x1 ∗ 5/34) + 2/17,
and the orientations were calculated using θ = x2 ∗ 100, varying from 0 to
100 degrees clockwise from horizontal. For colored squares, the brightness
was calculated using b = x1 ∗ 0.5 + 0.25 and the saturation was calculated
using c = x2 ∗ 0.9 + 0.5. Figure 8.3 shows four stimuli corresponding to the
cluster centers in Figure 8.1(a), in both the separable and integral stimulus
spaces.
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The Diamond Dataset and Co-Training Conditions

Most of our experiments employ the diamond dataset shown in Figure 8.1(a).
It consists of n = 80 items evenly divided into 4 clusters. All clusters have
radius 0.1. Items within a cluster lie on a regular grid. The two views are
the x-axis and y-axis coordinates paired with the mean value of 0.5 on the
hidden dimension as previously discussed.

We constructed this dataset with the aim of satisfying the three technical
conditions for the Co-Training algorithm. Condition 1 is easy to verify: there
exists at least one target concept f, shown in Figure 8.1(c), that is consistent
with the marginal p(x). In other words, no item receives contradictory labels
across the two views (note this is not true for the concept in Figure 8.1(b)).
From the Figure we can also verify that Condition 3 is approximately true:4

For both classes, knowing an item’s x-axis position tells us little about its
y-axis position and vice versa.

Condition 2 cannot be verified by consideration of the stimulus set alone.
It stipulates that each base learner in Co-Training must, with full supervision
and sufficient labeled data, be capable of learning the target concept from
only one view. Because the base learners in our study are human beings,
we need to determine empirically whether this condition holds. Our first
experiment addresses this question.

[Experiment 1] 13 participants were divided into two groups: 7 in the
first-view group and 6 in the second-view group. Each worked alone as a base
learner, and viewed stimuli from the “integral” stimulus set. Participants
in the first-view condition saw items varying in the x dimension but fixed
at 0.5 on the y dimension, whereas those in the second-view condition saw
items varying along the y dimension and fixed at 0.5 in the x dimension,
effectively collapsing the dataset into one dimension as shown in Figure 8.4.
Participants viewed four labeled items corresponding to the four cluster
centers in Figure 8.1(a), and were asked to classify the remaining 76 items.

4It would be exactly true if the clusters were squares, not circles.
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Figure 8.4: In Experiment 1 each participant worked with only one view of
the dataset. There were four labeled items. Points dithered to show overlap.

Note that this labeled data is twice what is provided in Co-Training. The
purpose of the study is to verify that, when provided with this supervised
experience, human learners are capable of learning the target concept as it
is projected in one view.

Result: The average classification accuracy on the unlabeled items was
quite high: 98.9% in the first-view group and 94.7% in the second-view group.
These results suggest that people were able to learn the target concept f
using only one view in a supervised learning setting given four labeled
training items, thus verifying the final technical condition of Co-Training.
Another pilot study also showed that in Experiment 1, humans cannot
learn the concept in Figure 8.1(c) if they saw only the two labeled items in
Figure 8.1(a) instead of the four. However, as we show next, they will be
able to learn it from two labeled items if they perform Co-Training label
exchange.

8.4 Results under Different Policies

[Experiment 2] Our second experiment compares human learning on
the diamond dataset under the Co-Training, full-collaboration, and no-
collaboration policies, now using just two labeled items as in Figure 8.1(a).
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These three policies were implemented as follows:
Co-Training (C): Two partners sit in separate rooms working on a

shared categorization task. Each partner sees one of the views and no
communication is permitted except through the labeling of cards. Each
partner labels one card (s = 1) and is then asked to wait for the other partner.
The card labeled by the other partner is highlighted and automatically moves
from the unlabeled bin to the appropriate labeled bin. If the partners have
by chance labeled the same card, that card is automatically moved from
the labeled bin, across the unlabeled bin, into the other labeled bin. This
process of labeling followed by viewing is repeated until all cards are labeled.

Full-collaboration (F): Two partners sit side-by-side before a single
computer working on the same categorization task. They are able to view
both features on each card simultaneously. No restriction is made on their
communication.

No-collaboration (N): A single participant categorizes all cards while
viewing both features simultaneously.

Each collaboration policy was paired with the separable (S) or integral
(I) stimuli, resulting in 6 conditions. Participants were assigned randomly
to conditions as follows: 21 dyads for CS, 25 dyads for CI; 20 dyads for FS,
26 dyads for FI; 45 singles for NS, and 34 singles for NI.

To summarize the results of a given dyad or individual, we classified
each cluster in the diamond dataset as either “red” or “blue” based on a
simple majority vote (i.e. the cluster was designated red if more than 50%
of the items in it were classified as red, and blue otherwise). Thus there
were 24 = 16 different possible patterns for the four clusters. Table 8.1
shows the proportion of participants whose behavior matched each of these
patterns across the different conditions. For example, in the CS condition,
17/21 ≈ 0.8 fraction of dyads produced the “cross” pattern.

Several observations can be made from Table 8.1. First, the Co-Training
policy robustly produces the nonlinear “cross” pattern in about three quarters
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pattern
cross horz vert diag other

condition
CS 0.80 0.10 0 0.10 0
CI 0.68 0.04 0.04 0.20 0.04
FS 0.05 0.25 0.35 0.30 0.05
FI 0 0.08 0 0.92 0
NS 0.07 0.42 0.18 0.31 0.02
NI 0 0 0 1.00 0

Table 8.1: The fraction of patterns in cluster-level majority classification.
“Other” includes the remaining 16 − 4 = 12 possible patterns. Boldface
indicates the largest fraction within a condition.

of the dyads. This pattern was rarely observed in the full-collaboration
and the no-collaboration policies (χ2 test, p � 0.01), which both mainly
produce linear decision boundaries. This is the main finding of our work:
the Co-Training human collaboration policy leads to outcomes dramatically
different from no-collaboration and full-collaboration policies, and consistent
with that predicted by the machine learning algorithm.

Second, in the full-collaboration and no-collaboration policies, partic-
ipants showed quite different behaviors for stimuli defined over separable
versus integral dimensions, producing axis-parallel boundaries with separable
dimensions and “integrated” oblique boundaries with integral dimensions.
This pattern has been previously documented in a variety of work in cogni-
tion. In Co-Training, however, the separability of the stimulus dimensions
does not affect behavior (CS vs. CI, χ2 test, p = 0.5). This is not surprising
given that each person sees only one view, but it suggests an interesting
application of the policy: Co-Training can enforce consistent classification
regardless of the separability of the stimulus dimensions.

Additionally, there was no significant difference between full- and no-
collaboration (χ2 test, p = 0.7). Thus the differences observed under the
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Figure 8.5: Differences between humans and machines (aggregated over
CS and CI). (a) The first unlabeled items (black dots) chosen by the first-view
partners. (b) Same, but for the second-view. (c) Per-item average labels.

Co-Training policy were not simply the result of having two individuals
working together. Although the Co-Training human collaboration outcome
fits machine learning model predictions at the cluster level, we observed
some subtle differences suggesting that machine learning algorithms like
1NN may not be the ideal models for human base learners. One difference
concerns the unlabeled items that humans label first. Machine base learners
would label the items they are most confident about, which will likely be
an item that overlaps with a labeled item under that view. Participants in
our experiments did not always pick such overlapping items, but seemed to
settle for items loosely similar to labeled ones, see Figure 8.5(a) and (b).

Another difference is in how sure the humans are. For each unlabeled
item, we may average its classification across all dyads in the Co-Training
conditions where, if the average is close to −1 (blue) or 1 (red), all dyads
label it consistently; 0 if they are quite unsure. Figure 8.5(c) shows this
per-item average using a color coding. Items in the top and left clusters
(with labeled items) are very certain, while those in the bottom and right
clusters are relatively uncertain (though they do have the correct per-item
majority vote label). Typical machine Co-Training learners will have higher
certainty on these clusters.
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Figure 8.6: The counter-example

8.5 A Counter-Example

[t] Finally, we investigated human behavior under the Co-Training policy
in a learning problem that violates Co-Training’s technical conditions. The
new dataset was identical to the diamond dataset except that the unlabeled
items were distributed on a grid, see Figure 8.6(a). The dataset therefore
violates Condition 1: items near the four corners receive conflicting labels
between the two views.

[Experiment 3] 24 dyads worked on this counter-example under the
Co-Training policy with the separable stimuli. Apart from the distribution
of the unlabeled items, all aspects of the study were identical to Experiment
2. Figure 8.6(b) shows the per-item average labels in Experiment 3. Classi-
fication decisions in this study were clearly less certain than those observed
in Experiment 2 (see corresponding items in Figure 8.5(c)). To compare
with the CS row in Table 8.1, we also computed the majority vote pattern
for every dyad on each of the four rectangular “clusters” in Figure 8.6(a).
The proportion of dyads showing each pattern were: cross 0.00, horz 0.21,
vert 0.17, diag 0.33, other 0.29. No dyad produced the cross pattern on this
dataset. Thus human Co-Training outcomes depends critically upon the
distribution of the unlabeled items.
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8.6 Discussion

We showed that, when collaborating according to a novel policy inspired by
Co-Training, two human learners behave differently than individual learners
or learning pairs collaborating in an unconstrained manner. Specifically,
they jointly acquire a nonlinear labeling on the diamond dataset that is
highly consistent with the behavior of the machine learning algorithm, yet
unusual for human category learning generally. We have also shown that
the behaviors elicited by the policy depend upon the distribution of the
unlabeled data.

This work employed very simple stimuli constructed to highlight the
differences between Co-Training and other learning models. The question
thus arises, what relevance do these results have for real-world learning
tasks? We believe there are several potentially important implications.
First, under the Co-Training policy each participant need view only a subset
of an item’s features. For problems where the number of relevant features
are overwhelming, the policy may provide an efficient way of dividing the
problem up so as to make best use of costly human effort. Second, in Co-
Training each learner is satisfied with the final result (meaning there is little
conflict between the labels given by one partner and the other), even though
jointly the team arrives at a solution that would seem unlikely had they both
viewed the full features. Co-Training thus provides a means of promoting
agreement among team members for classification solutions that otherwise
might cause disagreement. Third, the only communication required is label-
exchange, which might be useful in situations where communication is costly.
Fourth, each learner is “blind” to some of the feature dimensions. The
policy might therefore prove useful in sensitive classification tasks where
data security is an issue.

Of course, all of these applications depend upon there being real-world
tasks of interest that meet the technical conditions that allow Co-Training
to work. In this vein, it is worth noting that Co-Training does apply to
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other datasets beyond the “diamond” set used here. For example, here is
a 2D dataset with 8 clusters, two of them initially labeled:

( • +
• •
• •

o •

)
. The

outcome
( + +
o o

+ +
o o

)
is predicted by the Co-Training machine algorithm, and

we have observed this behavior in preliminary human studies. To determine
whether Co-Training has application for a real dataset, the task organizer
must be able to assess whether the problem meets Co-Training’s technical
conditions, and must also be able to find views of the data that exploit
Co-Training’s properties. These constitute interesting problems for machine
learning in their own right, and are a focus for future research.
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9 discussion, future work and summary

Here I collect potential real world applications, a motivating goal that
remains to be addressed, some of the limitations of the work as it stands,
and a few of the lessons learned regarding humans as learners viewed from
a machine learning point of view. I then go on to discuss potential future
work and finally summarize my contributions as presented in the preceding
chapters.

Real World Applications

Over the course of these studies the “How might we apply this work to a real
world setting?” has come up repeatedly. This is a common question asked
of basic research. The research presented has had two motivations: 1) to
better understand human learning behavior and 2) to attempt to influence
this behavior. The work can be applied to real world settings in both ways
as well, with the clearest applications in education.

Chapter 4 indicates that one should take care when creating a test set
to evaluate a learner on a learned concept. The ordering of the test items
(as well as the distribution, as shown by Zhu et al. (2007)) can change the
learned concept, in an unintentional way. If, however, the evaluator wanted
to purposefully change the learned concept without introducing new labels,
the distribution and order could be manipulated intentionally. Though there
must certainly be non-malicious motivations for such an intervention, it
is useful to be able to recognize instances where evaluation data could be
manipulated intentionally to confuse the learner in a predefined way.

If there is a learning task which is dependent on discriminating classes of
objects, the results of Chapter 7 make it clear that care should be taken not
to expose the learner previously to items whose apparent distributions might
contradict useful assumptions in the supervised task. The results presented
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there assume that boundaries fall in low density regions, but it may be
that there are other properties of the data that humans will be sensitive to,
judging by the results in Chapter 5. Certainly distributions which disagree
in some way with the underlying concept (e.g. trough shifted away from
the boundary) should be avoided as these may interfere with the speed
of learning. Additionally, as was mentioned, exposure to unlabeled items
could be designed to deliberately speed later learning, a clear application in
education.

Chapter 6 suggests that if there was a learning task where following an
underlying manifold would be useful, such as tracking changes of an observed
object over time, it is important to stress this information to the learner,
and not assume that they will pick up on it on their own. This is certainly
true of novel or synthetic stimuli. Another application might be in a task
which contains a difficult to perceive manifold structure. Mapping this task
to one with a very apparent natural manifold may make the task easier and
the manifold more apparent, e.g. following the rotation of an object in 3
dimensions, This leads into future work and the question of feature selection
discussed in the next subsection.

The Co-Training constraints discussed in Chapter 8 are somewhat differ-
ent, and not as directly applicable to education. Here, the effects are 1) a
separation of features between learners and 2) a constrained message passing
scheme. Since each learner need only view a subset of the features, any task
where the features are overwhelming, such as air-traffic control for instance,
might be split between learners while still maintaining a complicated learned
concept. Another potential application would be in areas where there is
some sensitivity to the data such that no single learner should be allowed
to view the entire feature set for any data-point. Features could be split
between collaborators while, again, maintaining some learned concept.

This is by no means a complete list. It is the author’s hope that the
ideas given here are simply a springboard for educators and researchers to a
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larger set of potential uses.

The Two-Way Street

The motivation for this work has always been to better understand and
influence human behavior using Isl models. The work presented here is
done with respect to these goals. There was an additional motivation to
use observations of human behavior in SSL settings to suggest areas of
improvement which could be made to ML models.

This two-way street of improvement has not yet materialized, but there
is no reason to believe that it cannot be done in the future. As discussed
below, there are several limitations to the research that has been presented
here, allowing for much continued work in the area. It is still feasible with
continued investigation and, importantly, cooperation and collaboration
between the Cognitive Psychology and Machine Learning communities, we
will see insights from human learning which will inform SSL.

Limitations

While there are many results presented in the preceding chapters, there
are limitations that should be mentioned. An important one is that in the
majority of the studies mentioned, only a single synthetic stimulus type
was tested per study, with very low dimensionality (1 to 2 dimensions),
presented in a single modality (visual), to a very specific group of partici-
pants (undergraduates living in the Midwestern United States). While the
results may be significant under these particular settings, it is important to
investigate how they generalize to other settings, such as auditory stimuli,
high dimensional stimuli, real world stimuli, other demographic groups, etc.

Another large limitation is the task chosen to investigate, namely binary
classification. While this is a valid learning task, it is of such a basic nature
that it is difficult if not impossible to directly translate the results given here
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to more complex tasks e.g. learning to solve algebraic equations or learning
to play a musical instrument.

Investigating the same research questions under very different settings is
a potentially fruitful avenue left for future work.

Human Learning Considerations

Humans are interesting learners to work with and study. Machine Learning
agents are infinitely patient, do exactly as told and make no alterations or
interpretations of the input data or output labels unless instructed to do so.
The same is not necessarily true of humans.

We saw in Chapter 4 and Zhu et al. (2007) that humans do not necessarily
perceive distances in a perceptual space as they may be intended. Depending
on the stimuli used, the stimuli space may be warped such that equal
distances defined in two regions of space may not be perceived as being
equal. Some regions of space may be stretched while others are shrunk,
leading to surprising asymmetries like those seen in 4.1.

Humans may also induce features not intended by the researcher. As
an example, in the study of manifolds in Chapter 6, participants reported
seeing rotated letter “T”s and “L”s in the stimuli consisting of a single
vertical and single horizontal line. These representations were not intended
and could have a potential effect on the results of the study. It’s for this
reason that Gabor patches, like those seen in Chapter 5 are commonly used,
as they are believed to correspond to visual feature detectors in a fairly
straightforward way. Similarly, humans may infer changes in one feature
based on changes seen in another, as in the color swatch stimuli used in
Chapter 8. A tremendous amount care must be made when selecting stimuli
for human experiments to avoid any unintentional complications.

Another consideration with regard to stimuli is in feature selection. It is
often assumed that the learner is given a set of features, all of which are
important. This of course is not an assumption a human learner should feel
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safe making in the real world. It is still not entirely clear how humans do
feature selection; similarly how they perform feature integration, creating
new features through combinations of existing features. In fact, some of the
SSL assumptions discussed, such as the smoothness assumption made use of
in the manifold learning case, can simply be seen as an additional feature,
picked out from the many available. In this case the additional feature is
the identities of the neighbors of any particular item.

A large consideration when choosing candidates to model human perfor-
mance is that humans primarily appear to learn online, that is they consider
stimuli sequentially, rather than in batch, considering all items at once.
Even when presented with a batch of data, humans by necessity must attend
to and perceive a single stimuli at a time. Machine learners are capable of
considering items either online or batch. Models which only learn in batch
mode may not be likely candidates for human learning unless there is some
way of modifying them to do or approximate online learning.

Finally, machine learners are infinitely patient in that they will consider
any number of stimuli, so long as memory and computational constraints are
not exceeded. The machine learner will also perceive all available features
for each stimuli and perfectly remember them indefinitely unless asked to do
otherwise. Human learners will not necessarily cooperate quite so willingly
or exactly. A human learner has a limited attention span, usually require
some motivation to attend to a task (beyond being told they should), and
will, in the vast majority of individuals, not be able to either perceive or
remember all available features without extensive training. For instance,
when presenting the learner with prior unlabeled items in Chapter 7, a
separate task had to be designed to improve confidence that the human
learners were actually attending to, and encoding, the unlabeled examples.

While none of these issues are impossible to overcome, special considera-
tion needs to be made when designing human experiments to account for
them. Many of the issues, like the stretching of perceptual space or feature
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selection, could benefit from additional research and may be opportunities
for the influence of CP on ML.

9.1 Future Work

As has been mentioned before, there is a tremendous amount work left to be
done in the investigation of how humans make use of combinations of labeled
and unlabeled data when learning. Some of this work regards larger, overall
questions, such as how humans do feature selection, how human perceptual
space can be warped for different stimuli, and what the differences truly
are between human perception of separable vs. integral feature dimensions.
Other work involves addressing the limitations of our experiments discussed
above, in particular the “single dataset” issue, where it is necessary to see if
the effects seen generalize to other stimuli, other modalities, etc. Still other
future work is specific to each of the experiments described.

Chapter 4: Order Effects

In this study only the three models discussed in Chapter 2 were compared to
human behavior. It remains to be seen if other models making use of more
advanced SSL assumptions, such as manifolds or large margin separation
can be formulated to be susceptible to the same sort of effects and then
compared with human behavior.

Chapter 5: What Parameters are Learned?

It may be that in other tasks, where discrimination between hypothesized
models, or models not in the GMM family, is still possible, the result found
(that all parameters were learned from unlabeled data) may not be the
case. Additional investigation is required to confirm that our conclusion
generalizes to other situations.
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Chapter 6: Manifold Learning

This experiment suffered the most from the issues related to human per-
ception of stimuli. It would be particularly useful to confirm the results
seen with a more accepted set of stimuli, such as Gabor patches. Addition-
ally, in this experiment, as in others, there was no consideration given to
which model participants would prefer before seeing the data. It is possible
that humans favor models which produce axis-parallel decision boundaries.
Defining and incorporating non-uniform priors over the models is a topic for
future research.

Chapter 7: Prior Unlabeled Data

This experiment was one for which the real-world application was the most
apparent: exposing a learner to unlabeled data prior to the supervised task.
What is not clear is what sort of exposure would be adequate to influence
human learning. Would simply being exposed visually to unlabeled data (e.g.
representative items displayed on wallpaper in a room a student is playing)
be enough to illicit improved learning performance? Or would the learner
need more engaged interaction (e.g. playing with material representations of
the stimuli, like plastic toys) to see these effects? Additional studies looking
at how these ideas might actually be used in teaching students is an obvious
and enticing line of investigation.

Chapter 8: Co-Training Constraints

To determine whether Co-Training has application for a real task, the
supervisor of the task must be able to assess whether the problem meets
Co-Training’s technical conditions, and must also be able to find views of
the data that exploit Co-Training’s properties. These constitute interesting
problems for machine learning in their own right, and are a focus for future
research.
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9.2 Key Contributions

• Showed that existing SSL models can be modified to reproduce the
Test-Item Effect observed in humans, where the learned boundary can
be affected by the order of test items presented to the learner.

• Showed that humans, when performing a 1D 2-class categorization
task, are sensitive to all parameters of the underlying distributions
and do not constrain their search of the parameter space.

• Showed that humans can learn using manifolds, given sufficient labeled
data and hints regarding the manifold structure.

• Showed that the speed of human learning on a supervised task can be
affected by prior unlabeled experience.

• Showed that, using a variation of the classic Co-Training constraints,
we can elicit behavior from human collaborators that is not observed
without these constraints.

9.3 Conclusion

It is clear that human learners are sensitive to both labeled and unlabeled
data when performing a classification task. The work presented here was an
effort to both better understand this behavior and to attempt to influence
learning. The models described in Chapter 2 provide a strong theoretical link
between ML and CP. The results of the studies in the following chapters go
on to show empirically that ML models and their associated SSL assumptions
can be applied to human learners. While humans remain a black box, and
none of the studies described here prove definitively that the models applied
in fact match the mechanics of human learning, they do give a strong
indication of how humans learn in the semi-supervised classification setting.
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