Some Mathematical Models to Turn Social Media into Knowledge

Xiaojin Zhu

University of Wisconsin-Madison, USA

NLP&CC 2013

Collaborators

Amy Bellmore

Aniruddha Bhargava

Kwang-Sung Jun

Robert Nowak

Jun-Ming Xu

Outline

Spatio-Temporal Signal Recovery (Poisson Generative Model)

Pinding Chatty Users (Multi-Armed Bandit)

Outline

Spatio-Temporal Signal Recovery (Poisson Generative Model)

2 Finding Chatty Users (Multi-Armed Bandit)

Spatio-temporal Signal: When, Where, How Much

Public Health

"100 dead robins found in New York last Friday"

Transportation Safety

"16 deer got run over by cars in Wisconsin last month"

Direct instrumental sensing is difficult and expensive

Social Media Users as Sensors

- Not "hot trend" discovery: We know what event we want to monitor
- We are given a reliable text classifier for "hit"
- ullet Our task: precisely estimating a spatiotemporal intensity function f_{st} of a pre-defined target phenomenon.

Challenges of Using Humans as Sensors

- Keyword doesn't always mean event
 - I was just told I look like dead crow.
 - Don't blame me if one day I treat you like a dead crow.
- Human sensors aren't under our control
- Location stamps may be erroneous or missing, e.g., in Twitter
 - ▶ 3% have GPS coordinates: (-98.24, 23.22)
 - ▶ 47% have valid user profile location: "Bristol, UK, New York"
 - 50% don't have valid location information "Hogwarts, In the traffic..blah, Sitting On A Taco"

Problem Definition

- Input: A list of time and location stamps of the target posts.
- Output: f_{st} Intensity of target phenomenon at location s (e.g., New York) and time t (e.g., 0-1am)

Time	Location
2012-09-26 17:35:23	New York US
2012-09-27 12:17:52	N/A
2012-09-27 08:28:12	(-98.24, 23.22)

		Time (<i>t</i>)		
		0-1am	1-2am	2-3am
Location (s)	California	f(1,1)	f(1,2)	f(1,3)
	New York	f(2,1)	f(2,2)	f(2,3)
	Washington	f(3,1)	f(3,2)	f(3,3)

Why Simple Estimation is Bad

- $f_{st} = x_{st}$, the count of target posts in bin (s,t)
- Justification: MLE of the model $x \sim \text{Poisson}(f)$

$$P(x) = \frac{f^x e^{-f}}{x!}$$

- However,
 - Population Bias: Assume $f_{st}=f_{s't'}$, if more users in (s,t), then $x_{st}>x_{s't'}$
 - Imprecise location: Posts without location stamp, noisy user profile location
 - Zero/Low counts: If we don't see tweets from Antarctica, no penguins there?

Correcting Population Bias

ullet Social media user activity intensity g_{st}

$$x \sim \text{Poisson}(\eta(f,g))$$

- ullet Link function (target post intensity) $\eta(f,g)=f\cdot g$
- Count of all posts $z \sim \operatorname{Poisson}(g)$
- ullet g_{st} can be accurately recovered

Handling Imprecise Location

Positron Emission Tomography (PET)

[Reproduced from Vardi et al(1985), A statistical model for positron emission tomography]

Handling Imprecise Location: Transition

Detector Bin: Where the location stamps indicate (California /GPS, Sept 1st) Source Bin: Where the GPS: (36.80, -119.36) posts were created (New York/GPS, Sept 1st) (Washington/GPS, Sept 1st) (California, Sept 1st) USER: California (California/user, Sept 1st) USER: New York (New York/user, Sept 1st) **USER: Washington** (Washington/user, Sept 1st) N/A (N/A, Sept 1st)

Handling Imprecise Location: Transition

Handling Zero / Low Counts

The Graphical Model

Optimization and Parameter Tuning

$$\min_{\theta \in \mathbb{R}^n} - \sum_{i=1}^m (x_i \log h_i - h_i) + \lambda \Omega(\theta)$$
$$\theta_j = \log f_j$$
$$h_i = \sum_{j=1}^n P_{ij} \eta(\theta_j, \psi_j)$$

- Quasi-Newton method (BFGS)
- Cross-Validation: Data-based and objective approach to regularization; Sub-sample events from the total observations

Theoretical Consideration

- How many posts do we need to obtain reliable recovery?
- If $x \sim \operatorname{Poisson}(h)$, then $\mathbb{E}[(\frac{x-h}{h})^2] = h^{-1} \approx x^{-1}$: more counts, less error
- Theorem: Let f be a Hölder α -smooth d-dimensional intensity function and suppose we observe N events from the distribution Poisson(f). Then there exists a constant $C_{\alpha}>0$ such that

$$\inf_{\widehat{f}} \sup_{f} \frac{\mathbb{E}[\|\widehat{f} - f\|_1^2]}{\|f\|_1^2} \ge C_{\alpha} N^{\frac{-2\alpha}{2\alpha + d}}$$

ullet Best achievable recovery error is inversely proportional to N with exponent depending on the underlying smoothness

Roadkill Spatio-Temporal Intensity

- The intensity of roadkill events within the continental US
- Spatio-Temporal resolution: State: 48 continental US states, hour-of-day: 24 hours
- Data source: Twitter
- Text classifier: Trained with 1450 labeled tweets. CV accuracy 90

Text preprocessing

- Twitter streaming API: animal name + "ran over"
- Remove false positives by text classification
 "I almost ran over an armadillo on my longboard, luckily my cat-like reflexes saved me."
- Feature representation
 - Case folding, no stemming, keep stopwords
 - lacktriangle @john ightarrow @USERNAME, http://wisc.edu ightarrow HTTPLINK, keep #hashtags, keep emoticons
 - ▶ Unigrams + bigrams
- Linear SVM
 - Trained on 1450 labeled tweets outside study period
 - Cross validation accuracy 90%

Chipmunk Roadkill Results

Roadkill Results on Other Species

Outline

Spatio-Temporal Signal Recovery (Poisson Generative Model)

Finding Chatty Users (Multi-Armed Bandit)

Finding Chatty Users

- Find top k social media users on a topic
 - ► For example, via the bullying classifier [Xu,Jun,Zhu,Bellmore NAACL 2012]
- Trivial if we can monitor all users all the time
- ullet But API only allows monitoring a small number (e.g. 5000) of users at a time
- Monitor each user "long enough?"

How Long is Long Enough for a Single User?

- Define a time slot (e.g., 1 hour)
- Define Boolean event
 - ▶ 1= the user posted anything on-topic in the time slot
 - ▶ 0= no post
- Define p = Pr(event=1)
- Observe k time slots $X_1, \ldots, X_k \in \{0, 1\}$

$$\hat{p} = \frac{\sum_{i=1}^{k} X_i}{k}$$

• How reliable is \hat{p} ?

Hoeffding's Inequality

Let X_1,\dots,X_k be independent with $P(X_i\in[a,b])=1$ and the same mean p. Then for all $\epsilon>0$,

$$P\left(\left|\frac{1}{k}\sum_{i=1}^k X_i - p\right| > \epsilon\right) \leq 2e^{-\frac{2k\epsilon^2}{(b-a)^2}}.$$

- We have $P\left(|\hat{p}-p|>\epsilon\right)\leq 2e^{-2k\epsilon^2}$
- Define $\delta=2e^{-2k\epsilon^2}$, then $\epsilon=\sqrt{\frac{\log\frac{2}{\delta}}{2k}}$ or $k=\frac{\log\frac{2}{\delta}}{2\epsilon^2}$.
- For any $\delta>0$, with probability at least $1-\delta$, $|\hat{p}-p|\leq\sqrt{\frac{\log\frac{2}{\delta}}{2k}}$.
- With $\frac{\log \frac{2}{\delta}}{2\epsilon^2}$ samples, with probability at least $1-\delta$, $|\hat{p}-p| \leq \epsilon$.
- Confidence interval or Probably-Approximately-Correct (PAC) analysis

Uniform Monitoring is Wasteful

To find an ϵ -best arm $(p>p_1-\epsilon)$ out of n arms, uniform monitoring needs a total of $O\left(\frac{n}{\epsilon^2}\log\frac{n}{\delta}\right)$ samples [Even-Dar et al. 2006]

Median Elimination (a Multi-Armed Bandit algorithm) needs $O\left(\frac{n}{\epsilon^2}\log\frac{1}{\delta}\right)$ samples

One-Armed Bandit

Expected reward $p \in [0,1]$

Stochastic Multi-Armed Bandit Problem

- Known parameters: number of arms n.
- Unknown parameters: n expected rewards $p_1 \ge ... \ge p_n \in [0,1]$.
- For each round $t = 1, 2, \dots$
 - **1** the learner chooses an arm $a_t \in \{1, \ldots, n\}$ to pull
 - 2 the world draws the reward $X_t \sim \operatorname{Bernoulli}(p_{a_t})$ independent of history
- The learner does not see the reward of non-chosen arms in each round.
- ullet Pure exploration problem: find arms with the largest p's as quickly as possible.

Chatty Users as Multi-Armed Bandit

- User = arm, n = number of users (e.g. millions)
- p_i = user i's probability to post
- Monitoring user for a time slot = pulling that arm
- Reward $X_t = \text{did the user post anything?}$
- Pure exploration: with the least monitoring, find top-m users who post the most $(m \ll n)$
 - exactly the top-m users $p_1 \geq \ldots \geq p_m$, or
 - approximately the top-m users?

Approximate Top-m Arms: Strong vs. Weak Guarantee

- Let $S \subseteq \{1, \dots, n\}$ and let S(j) denote the arm whose expected reward is j-th largest in S.
- S is strong (ϵ, m) -optimal if $p_{S(i)} \geq p_i \epsilon, \forall i = 1, ..., m$.
- S is weak (ϵ, m) -optimal if $p_{S(i)} \geq p_m \epsilon, \forall i = 1, ..., m$.

arms

strong $(\epsilon, 3)$ -optimal

weak $(\epsilon,3)$ -optimal

Multi-Armed Bandit Algorithms for Finding Top-m Arms

Guarantee	Algorithm	Sample Complexity (Worst Case)
Exact	SAR	$O(\frac{n}{\epsilon^2} (\log n) (\log \frac{n}{\delta}))$
Strong (ϵ, m) -optimal	EH	$O(\frac{n}{\epsilon^2}\log\left(\frac{m}{\delta}\right))$
Weak (ϵ, m) -optimal	Halving	$O(\frac{n}{\epsilon^2}\log\left(\frac{m}{\delta}\right))$
Weak (ϵ, m) -optimal	LUCB	$O(\frac{n}{\epsilon^2}\log(\frac{n}{\delta}))$

The Enhanced Halving (EH) Algorithm

- 1: **Input**: $n, m, \epsilon > 0, \delta > 0$
- 2: **Output**: m arms satisfying strong (ϵ, m) -optimality
- 3: $l \leftarrow 1, S_1 \leftarrow \{1, ..., n\}, n_1 \leftarrow n, \epsilon_1 \leftarrow \epsilon/4, \delta_1 \leftarrow \delta/2$
- 4: while $n_l > m$ do
- 5: $n_{l+1} \leftarrow \left\{ \begin{array}{cc} \lceil n_l/2 \rceil & \text{if } |S_l| > 5m \\ m & \text{otherwise} \end{array} \right.$
- 6: Pull every arm in $S_l \left[\frac{1}{(\epsilon_l/2)^2} \log \left(\frac{5m}{\delta_l} \right) \right]$ times
- 7: Compute $\widehat{p}_a^{(l)}, a \in S_l$, the empirical means from the sample drawn at iteration l
 - $S_{l+1} \leftarrow \{n_{l+1} \text{ arms with largest empirical means from } S_l\}$
- 9: $\epsilon_{l+1} \leftarrow \frac{3}{4}\epsilon_l, \delta_{l+1} \leftarrow \frac{1}{2}\delta_l, l \leftarrow l+1$
- 10: end while
- 11: Output $S := S_l$

Further improvement in constant: the Quantiling algorithm.

4 D > 4 A > 4 B > 4 B > B 9 Q Q

Application to Twitter Bullying

- n = 522,062 users, top m = 100
- 1 month total monitoring time (January 2013)
- $T = 31 \times 24 = 744$ time slots (pulls)
- Batch pulling 5000 arms at a time (user streaming API)
- Reward $X_{it}=1$ if user i posts bullying-related tweets (judged by a text classifier) in time slot t.
- log log plot of expected reward follows the power law:

Experiments

Strong error of a set of m arms S:

$$\max_{i=1...m} \{p_i - p_{S(i)}\}$$

the smallest ϵ with which S is strong (ϵ, m) -optimal.

Methods	Strong Error
EH	0.1040 (± 0.004)
Quantiling	0.0478 (± 0.002)
Halving	0.0999 (± 0.004)
LUCB	0.1474 (± 0.004)
LUCB/Batch	0.0826 (± 0.004)
SAR	0.0678 (± 0.003)
Uniform	0.0870 (± 0.003)

Summary

- We present two social media mining tasks:
 - estimating intensity from counts
 - identifying the most chatty users
- Naive heuristic methods do not take full advantage of the data
- Mathematical models with provable properties extract knowledge from social media better.
- Acknowledgments
 - ► Collaborators: Amy Bellmore, Aniruddha Bhargava, Kwang-Sung Jun, Robert Nowak, Jun-Ming Xu
 - ▶ National Science Foundation IIS-1216758 and IIS-1148012, Global Health Institute at the University of Wisconsin-Madison.