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Learning

@ You see a training set (z1,y1), .., (Tn, Yn)
o You must learn a good function f: R? s {—1,1}

@ f must predict the label y on test item x, which may not be in the
training set

@ You need some assumptions
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The World
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Independent and Identically-Distributed
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DESSS———....
Example: Noiseless 1D Threshold Classifier

p(z) = uniform|0, 1]
0, <80
ply=1lz) = { 1 z>0
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Example: Noisy 1D Threshold Classifier

uniform|0, 1]
€, x <6
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Generalization Error

° R(f) = IE(:::,y)rvp(a:,y) (f(ﬂ?) 7& y)

@ Approximated by test set error

1 n+m

=3 () £ )

i=n+1

o
on test set (Ty11, Yn+1) - - - (Totms Yntm) ~ p(T,y)
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Zero Generalization Error is a Dream

@ Speed limit #1: Bayes error

1 1
R(Bayes) = Erepir (5 - ol = 110) - )

@ Bayes classifier

sign (p(y =1|z)- %)

@ All learners are no better than the Bayes classifier
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Hypothesis Space

feFc{g:R¥ {~1,1} measurable}
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Approximation Error

@ F may include the Bayes classifier
e.g. F={g(z)=sign(z >6):6 €[0,1]}
@ ...ornot
e.g. F = {g(z) =sign(sin(az)) : a > 0}
@ Speed limit #2: approximation error

inf — R(B
;ng(g) R(Bayes)
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Estimation Error

o Let f* =arginfycr R(g). Can we at least learn f*?
@ No. You see a training set (z1,91), ..., (Tn,Yn), not p(z,y)
@ You learn fn

@ Speed limit #3: Estimation error

R(fn) = R(f7)
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Estimation Error

@ But how quickly?

@ As training set size n increases, estimation error goes down
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Paradigm 1: Passive Learning

id
° (mlayl)a SRR) (J;nayn) ~ p($7y)
e 1D example: O(1)
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Paradigm 2: Active Learning

@ In iteration ¢t

@ the learner picks a query z;
@ the world (oracle) answers with a label y; ~ p(y | x+)

@ Pick x; to maximally reduce the hypothesis space
@ 1D example:

O(Q—n)
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Paradigm 3: Teaching

@ A teacher designs the training set
@ 1D example:
xry = 0—€/2, y1=-1
xo = 0+€/2, o

I
—_

n = 2 suffices to drive estimation error to € (teaching dimension
[Goldman & Kearns'95])
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DESSS———....
Teaching as an Optimization problem

rrgn loss(f;, 0) + effort(D)
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Teaching Bayesian Learners

min  —logp(6* | z1,...,2,) + cn
T
if we choose
° loss(f;,ﬁ*) = KL (3¢ |lp(0 | D))
e effort(D) = cn
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Example 1: Teaching a 1D threshold classifier
0 0

0
—O0——0—lo—e— — 00— e
(S -~
O(1/n) 0(1/2')
passive learning "waits" active learning "explores" teaching "guides"
e po(f) =1

e ply=1]=z,0)=1if x >0 and 0 otherwise
o cffort(D) = ¢|D|
e For any D = {(:Elvyl)’ SUR) (xnvyn)}'
p(0 | D) = uniform [max;.y,——1(z;), ming.,,—1(z;)]

@ The optimal teaching problem becomes

. 1
min —log - + cn.
TG 1YL 5 er s Yn ming.y,—1 (2;) — max;.y,——1(z;)

@ One solution: D = {(0* —¢/2,—1),(6* +€¢/2,1)} as € — 0 with
TI =log(e) + 2¢ — —©
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Example 2: Learner with poor perception

@ Same as Example 1 but the learner cannot distinguish similar items
@ Encode this in effort()

C

ming; ;. ep |z — ]

effort(D) =
o With D = {(0* —¢/2,-1), (0" +€/2,1)}, TI = log(e) + ¢/e with

minimum at € = c.
o D= {(9* - 0/25 _1)7 (9* + 0/27 1)}
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Example 3: Teaching to pick a model out of two

© ©={0a=N(—7.5).05=N(5.3)} po(0a) = po(0p) = 5.
0 =04.

o Let D= {z1,...,z,}. loss(D) = log (1 + [[;~, exp(x;)) minimized
by x; — —o0.

@ But suppose box constraints x; € [—d, d]:

min  log (1 + Hexp(wﬁ) +en+ Z]I(]a:z| < d)
T,T 1 yeeey Ty pale P
e Solution: all z; = —d, n = max (0, [4log (¢ —1)]).

@ Note n = 0 for certain combinations of ¢, d (e.g., when ¢ > d): the
effort of teaching outweighs the benefit. The teacher may choose to
not teach at all and maintain the status quo (prior po) of the learner!
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Teaching Dimension is a Special Case

@ Given concept class C' = {c}, define P(y =1 | z,0.) = [¢(z) = +]
and P(x) uniform.

@ The world has 6* = 6.
@ The learner has © = {0. | c € C'}, po(0) = ﬁ

e P(6.|D)= or 0.

1
|ceC consistent with D
@ Teaching dimension [Goldman & Kearns'95] T'D(c*) is the minimum
cardinality of D that uniquely identifies the target concept:

mén —log P(6.« | D) + ~|D|

where v < ﬁ

@ The solution D is a minimum teaching set for ¢*, and |D| = T'D(c*).
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Teaching Bayesian Learners in the Exponential Family

@ So far, we solved the examples by inspection.

o Exponential family p(z | 6) = h(z)exp (0T T(z) — A(0))
T(z) € RP sufficient statistics of =

6 € RP natural parameter

A(0) log partition function
h(z) base measure

e For D = {z1,...,2z,} the likelihood is

\4

vvyy

n
p(D|0) = [ h(w) exp (075 — A®))
i=1
with aggregate sufficient statistics s = Y ;- | T'(z;)
@ Two-step algorithm: finding aggregate sufficient statistics +

unpacking
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Step 1: Aggregate Sufficient Statistics from Conjugacy

o The conjugate prior has natural parameters (A, \2) € RP x R:
p(B | A, h2) = ho(8) exp (A6 = MaA(9) — Ao(Ar, o))
@ The posterior p(0 | D, A1, A2) =
ho(6) exp (()\1 +5)70 — (Ao + n)A(B) — Ag(Ay +8,Xo + n))

@ D enters the posterior only via s and n

@ Optimal teaching problem

min —0*" (A; +8)+ A(0") (A2 +n) + Ag(A1 +, Ay + 1) + effort(n, s)

n,s

o Convex relaxation: n € R and s € R” (assuming effort(n,s) convex)
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Step 2: Unpacking

Cannot teach with the aggregate sufficient statistics

n < max(0, [n])
Find n teaching examples whose aggregate sufficient statistics is s.
» exponential distribution T'(z) =z, ©1 = ... =z, = s/n.
» Poisson distribution T'(z) = z (integers), round z1, ..., 2,
» Gaussian distribution T'(z) = (x,2?%), harder. n = 3,s = (3,5):
* {r1=0,22 =1,23 =2}
1 5+“1/ﬁ,9c3 _ S_Z/ﬁ}'

* {x1:§7x2:

@ An approximate unpacking algorithm:

© initialize x; Zjvdp(yc [6%),i=1...n.
@ solve min,, . |ls—> ", T(x;)||* (nonconvex)
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Example 4: Teaching the mean of a univariate Gaussian

e The world is N(xz; u*, 0?), 02 is known to the learner
o T(zx)==x
e Learner's prior in standard form p ~ N(u | po,03)
o Optimal aggregate sufficient statistics s = g—;(u* — o) + p'n
0

» 2 o p*: compensating for the learner’s initial belief 1.

. . 1 a? _
@ n is the solution ton—m+% =0

— _ 1 2

» e.g. when effort(n) =cn, n = 5; — %0;
o Not to teach if the learner initially had a “narrow mind": o < 2co?.
@ Unpacking s is trivial, e.g. 1 = ... =z, = s/n
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Example 5: Teaching a multinomial distribution

e The world multinomial 7* = (7], ..., 7})
@ The learner Dirichlet prior p(7 | 5) = OB

6 1
TIT(Bx) Hk 1T
e Step 1: find aggregate sufficient statistics s = (s,

K K
min  —logT" (Z(ﬂk + sk>)

+ Z log (B + sk)
k=1

..,SK)

k=1

K
Z B + sk — 1) log 7). + effort(s)
k=1

K
Relax s € R,

o Step 2: unpack si < [s] for k=1... K.
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Examples of Example 5

L0300
107 10° 10

@ learner’'s “wrong" Dirichlet prior 5 = (6,3,1)
o If effortless effort(s) =0,

» s =(317,965,1933) (fmincon)

» The MLE from D is (0.099,0.300,0.601), very close to 7*.

» “brute-force teaching”: using big data to overwhelm the learner’s prior
o If costly effort(s) = 0.3 Zle Sk»

> s=(0,2,8), TI = 2.65.

» Not s =(1,3,6): the wrong prior. TI = 4.51

> Not s = (317,965,1933), T1I = 956.25

e world 7 = (
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Example 6: Teaching a multivariate Gaussian

e world: p* € RP and ©* € RP*P
o learner likelihood N(z | i, X), Normal-Inverse-Wishart (NIW) prior
o Given z1,...,x, € RP the aggregate sufficient statistics are

s=2wi, S=301 min)
@ Step 1: optimal aggregate sufficient statistics via SDP

D .
. Dlog?2 v,+1—1 v,
min g Vp + Ellogl—‘ (n—> — §10g|An|
1=

n,8,S 2 2

D n 1 _
- log kp + % log [X*] + itr(E* Ay

K _
5 (1 = ) TS (" — i) + effort(n, 5, 5)
st.  S>=0; Syu>s7/2, Vi
@ Step 2: unpack s,S
> initializing 71, ..., 2, < N(u*, £%)
» solve min |Jvec(s,S) — D1, vee(T'(z;))|)?
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Examples of Example 6

@ The target Gaussian is u* = (0,0,0) and ¥* = |

@ The learner's NIW prior
po = (1,1,1),k0 = 1,19 =2+ 1072, Ag = 107°1.

o ‘“expensive” effort(n,s,S) =n

@ Optimal D with n = 4, unpacked into a tetrahedron

e TI(D) = 1.69. Four points ~ N(u*, ¥*) have
mean(7]) = 9.06 + 3.34, min(7I) = 1.99, max(7I) = 35.51
(100,000 trials)
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