How can a Machine Learn: Passive, Active, and Teaching

Xiaojin Zhu

jerryzhu@cs.wisc.edu
Department of Computer Sciences
University of Wisconsin-Madison

NLP&CC 2013
Item

\[x \in \mathbb{R}^d \]
Class Label

\[y \in \{-1, 1\} \]
Learning

- You see a training set \((x_1, y_1), \ldots, (x_n, y_n)\)
- You must learn a good function \(f : \mathbb{R}^d \mapsto \{-1, 1\}\)
- \(f\) must predict the label \(y\) on test item \(x\), which may not be in the training set
- You need some assumptions
The World

\[p(x, y) \]
Independent and Identically-Distributed

$$(x_1, y_1), \ldots, (x_n, y_n), (x, y) \overset{iid}{\sim} p(x, y)$$
Example: Noiseless 1D Threshold Classifier

\[p(x) = \text{uniform}[0, 1] \]

\[p(y = 1 \mid x) = \begin{cases}
0, & x < \theta \\
1, & x \geq \theta
\end{cases} \]
Example: Noisy 1D Threshold Classifier

\[
p(x) = \text{uniform}[0, 1]
\]

\[
p(y = 1 | x) = \begin{cases}
\epsilon, & x < \theta \\
1 - \epsilon, & x \geq \theta
\end{cases}
\]
Generalization Error

- \(R(f) = \mathbb{E}_{(x,y) \sim p(x,y)}(f(x) \neq y) \)
- Approximated by test set error

\[
\frac{1}{m} \sum_{i=n+1}^{n+m} (f(x_i) \neq y_i)
\]

on test set \((x_{n+1}, y_{n+1}) \ldots (x_{n+m}, y_{n+m}) \sim p(x, y)\)
Zero Generalization Error is a Dream

- **Speed limit #1**: Bayes error

\[R(\text{Bayes}) = \mathbb{E}_{x \sim p(x)} \left(\frac{1}{2} - \left| p(y = 1 \mid x) - \frac{1}{2} \right| \right) \]

- **Bayes classifier**

\[\text{sign} \left(p(y = 1 \mid x) - \frac{1}{2} \right) \]

- **All learners are no better than the Bayes classifier**
Hypothesis Space

\[f \in \mathcal{F} \subset \{ g : \mathbb{R}^d \mapsto \{-1, 1\} \text{ measurable} \} \]
Approximation Error

- \mathcal{F} may include the Bayes classifier

 \[\text{e.g. } \mathcal{F} = \{ g(x) = \text{sign}(x \geq \theta') : \theta' \in [0, 1] \} \]

- ... or not

 \[\text{e.g. } \mathcal{F} = \{ g(x) = \text{sign}(\sin(\alpha x)) : \alpha > 0 \} \]

- **Speed limit #2: approximation error**

 \[\inf_{g \in \mathcal{F}} R(g) - R(\text{Bayes}) \]
Estimation Error

- Let $f^* = \arg \inf_{g \in \mathcal{F}} R(g)$. Can we at least learn f^*?
- No. You see a training set $(x_1, y_1), \ldots, (x_n, y_n)$, not $p(x, y)$
- You learn \hat{f}_n
- Speed limit #3: Estimation error

$$R(\hat{f}_n) - R(f^*)$$
Estimation Error

- As training set size n increases, estimation error goes down
- But how quickly?
Paradigm 1: Passive Learning

- \((x_1, y_1), \ldots, (x_n, y_n) \overset{iid}{\sim} p(x, y)\)
- 1D example: \(O(\frac{1}{n})\)
Paradigm 2: Active Learning

- In iteration t
 1. the learner picks a query x_t
 2. the world (oracle) answers with a label $y_t \sim p(y \mid x_t)$
- Pick x_t to maximally reduce the hypothesis space
- 1D example:

$$O\left(\frac{1}{2^n}\right)$$
Paradigm 3: Teaching

- A teacher **designs** the training set
- 1D example:

\[
x_1 = \theta - \epsilon/2, \quad y_1 = -1 \\
x_2 = \theta + \epsilon/2, \quad y_2 = 1
\]

\(n = 2\) suffices to drive estimation error to \(\epsilon\) (teaching dimension [Goldman & Kearns’95])
Teaching as an Optimization problem

\[\min_{\mathcal{D}} \text{loss}(\hat{f}_\mathcal{D}, \theta) + \text{effort}(\mathcal{D}) \]
Teaching Bayesian Learners

\[
\min_{n,x_1,...,x_n} - \log p(\theta^* | x_1, \ldots, x_n) + cn
\]

if we choose

- \(\text{loss}(\widehat{f}_D, \theta^*) = KL(\delta_{\theta^*} \| p(\theta | D)) \)
- \(\text{effort}(D) = cn \)
Example 1: Teaching a 1D threshold classifier

- $p_0(\theta) = 1$
- $p(y = 1 \mid x, \theta) = 1$ if $x \geq \theta$ and 0 otherwise
- $\text{effort}(\mathcal{D}) = c|\mathcal{D}|$
- For any $\mathcal{D} = \{(x_1, y_1), \ldots, (x_n, y_n)\}$,
 $p(\theta \mid \mathcal{D}) = \text{uniform} \left[\max_{i:y_i=-1}(x_i), \min_{i:y_i=1}(x_i)\right]$
- The optimal teaching problem becomes

$$
\min_{n, x_1, y_1, \ldots, x_n, y_n} - \log \left(\frac{1}{\min_{i:y_i=1}(x_i) - \max_{i:y_i=-1}(x_i)} \right) + cn.
$$

- One solution: $\mathcal{D} = \{(\theta^* - \epsilon/2, -1), (\theta^* + \epsilon/2, 1)\}$ as $\epsilon \to 0$ with $TI = \log(\epsilon) + 2c \to -\infty$
Example 2: Learner with poor perception

- Same as Example 1 but the learner cannot distinguish similar items
- Encode this in effort()

$$\text{effort}(D) = \frac{c}{\min_{x_i, x_j \in D} |x_i - x_j|}$$

- With $D = \{ (\theta^* - \epsilon/2, -1), (\theta^* + \epsilon/2, 1) \}$, $TI = \log(\epsilon) + c/\epsilon$ with minimum at $\epsilon = c$.
- $D = \{ (\theta^* - c/2, -1), (\theta^* + c/2, 1) \}$.

Example 3: Teaching to pick a model out of two

- $\Theta = \{ \theta_A = N(-\frac{1}{4}, \frac{1}{2}), \theta_B = N(\frac{1}{4}, \frac{1}{2}) \}, \ p_0(\theta_A) = p_0(\theta_B) = \frac{1}{2}$.
 $\theta^* = \theta_A$.

- Let $D = \{ x_1, \ldots, x_n \}$. $\text{loss}(D) = \log (1 + \prod_{i=1}^{n} \exp(x_i))$ minimized by $x_i \to -\infty$.

- But suppose box constraints $x_i \in [-d, d]$:

$$\min_{n,x_1,\ldots,x_n} \log \left(1 + \prod_{i=1}^{n} \exp(x_i)\right) + cn + \sum_{i=1}^{n} \mathbb{I}(|x_i| \leq d)$$

- Solution: all $x_i = -d$, $n = \max \left(0, \left[\frac{1}{d} \log \left(\frac{d}{c} - 1\right)\right]\right)$.

- Note $n = 0$ for certain combinations of c, d (e.g., when $c \geq d$): the effort of teaching outweighs the benefit. The teacher may choose to not teach at all and maintain the status quo (prior p_0) of the learner!
Teaching Dimension is a Special Case

- Given concept class $C = \{ c \}$, define $P(y = 1 \mid x, \theta_c) = [c(x) = +]$ and $P(x)$ uniform.

- The world has $\theta^* = \theta_{c^*}$

- The learner has $\Theta = \{ \theta_c \mid c \in C \}$, $p_0(\theta) = \frac{1}{|C|}$.

- $P(\theta_c \mid \mathcal{D}) = \frac{1}{\mid \{ c \in C \text{ consistent with } \mathcal{D} \mid \}}$ or 0.

- Teaching dimension [Goldman & Kearns’95] $TD(c^*)$ is the minimum cardinality of \mathcal{D} that uniquely identifies the target concept:

$$\min_{\mathcal{D}} - \log P(\theta_{c^*} \mid \mathcal{D}) + \gamma |\mathcal{D}|$$

where $\gamma \leq \frac{1}{|C|}$.

- The solution \mathcal{D} is a minimum teaching set for c^*, and $|\mathcal{D}| = TD(c^*)$.
Teaching Bayesian Learners in the Exponential Family

- So far, we solved the examples by inspection.
- Exponential family \(p(x \mid \theta) = h(x) \exp \left(\theta^\top T(x) - A(\theta) \right) \)
 - \(T(x) \in \mathbb{R}^D \) sufficient statistics of \(x \)
 - \(\theta \in \mathbb{R}^D \) natural parameter
 - \(A(\theta) \) log partition function
 - \(h(x) \) base measure
- For \(\mathcal{D} = \{x_1, \ldots, x_n\} \) the likelihood is
 \[
 p(\mathcal{D} \mid \theta) = \prod_{i=1}^n h(x_i) \exp \left(\theta^\top s - A(\theta) \right)
 \]
 with aggregate sufficient statistics \(s \equiv \sum_{i=1}^n T(x_i) \)
- Two-step algorithm: finding aggregate sufficient statistics + unpacking
Step 1: Aggregate Sufficient Statistics from Conjugacy

- The conjugate prior has natural parameters \((\lambda_1, \lambda_2) \in \mathbb{R}^D \times \mathbb{R}\):

\[
p(\theta \mid \lambda_1, \lambda_2) = h_0(\theta) \exp \left(\lambda_1^\top \theta - \lambda_2 A(\theta) - A_0(\lambda_1, \lambda_2) \right)
\]

- The posterior \(p(\theta \mid D, \lambda_1, \lambda_2) = \)

\[
h_0(\theta) \exp \left((\lambda_1 + s)^\top \theta - (\lambda_2 + n) A(\theta) - A_0(\lambda_1 + s, \lambda_2 + n) \right)
\]

- \(D\) enters the posterior only via \(s\) and \(n\)

- Optimal teaching problem

\[
\min_{n, s} -\theta^*^\top (\lambda_1 + s) + A(\theta^*)(\lambda_2 + n) + A_0(\lambda_1 + s, \lambda_2 + n) + \text{effort}(n, s)
\]

- Convex relaxation: \(n \in \mathbb{R}\) and \(s \in \mathbb{R}^D\) (assuming effort\((n, s)\) convex)
Step 2: Unpacking

- Cannot teach with the aggregate sufficient statistics
- \(n \leftarrow \max(0, \lceil n \rceil) \)
- Find \(n \) teaching examples whose aggregate sufficient statistics is \(s \).
 - exponential distribution \(T(x) = x, x_1 = \ldots = x_n = s/n \).
 - Poisson distribution \(T(x) = x \) (integers), round \(x_1, \ldots, x_n \)
 - Gaussian distribution \(T(x) = (x, x^2) \), harder. \(n = 3, s = (3, 5) \):
 - \(\{x_1 = 0, x_2 = 1, x_3 = 2\} \)
 - \(\{x_1 = \frac{1}{2}, x_2 = \frac{5+\sqrt{13}}{4}, x_3 = \frac{5-\sqrt{13}}{4}\} \).

- An approximate unpacking algorithm:
 1. initialize \(x_i \overset{iid}{\sim} p(x \mid \theta^*) \), \(i = 1 \ldots n \).
 2. solve \(\min_{x_1, \ldots, x_n} \|s - \sum_{i=1}^{n} T(x_i)\|^2 \) (nonconvex)
Example 4: Teaching the mean of a univariate Gaussian

- The world is $N(x; \mu^*, \sigma^2)$, σ^2 is known to the learner
- $T(x) = x$
- Learner’s prior in standard form $\mu \sim N(\mu | \mu_0, \sigma_0^2)$
- Optimal aggregate sufficient statistics $s = \frac{\sigma^2}{\sigma_0^2}(\mu^* - \mu_0) + \mu^*n$
 - $\frac{s}{n} \neq \mu^*$: compensating for the learner’s initial belief μ_0.
- n is the solution to $n - \frac{1}{2\text{effort}'(n)} + \frac{\sigma^2}{\sigma_0^2} = 0$
 - e.g. when $\text{effort}(n) = cn$, $n = \frac{1}{2c} - \frac{\sigma^2}{\sigma_0^2}$
- Not to teach if the learner initially had a “narrow mind”: $\sigma_0^2 < 2c\sigma^2$.
- Unpacking s is trivial, e.g. $x_1 = \ldots = x_n = s/n$
Example 5: Teaching a multinomial distribution

- The world multinomial \(\pi^* = (\pi_1^*, \ldots, \pi_K^*) \)
- The learner Dirichlet prior \(p(\pi | \beta) = \frac{\Gamma(\sum \beta_k)}{\prod \Gamma(\beta_k)} \prod_{k=1}^{K} \pi_k^{\beta_k - 1} \).
- Step 1: find aggregate sufficient statistics \(s = (s_1, \ldots, s_K) \)

\[
\min \limits_s - \log \Gamma \left(\sum_{k=1}^{K} (\beta_k + s_k) \right) + \sum_{k=1}^{K} \log \Gamma(\beta_k + s_k) \\
- \sum_{k=1}^{K} (\beta_k + s_k - 1) \log \pi_k^* + \text{effort}(s)
\]

Relax \(s \in \mathbb{R}_{\geq 0}^{K} \)
- Step 2: unpack \(s_k \leftarrow [s_k] \) for \(k = 1 \ldots K \).
Examples of Example 5

- \(\pi^* = \left(\frac{1}{10}, \frac{3}{10}, \frac{6}{10} \right) \)
- learner’s “wrong” Dirichlet prior \(\beta = (6, 3, 1) \)
- If effortless \(\text{effort}(s) = 0 \),
 - \(s = (317, 965, 1933) \) (fmincon)
 - The MLE from \(\mathcal{D} \) is \((0.099, 0.300, 0.601) \), very close to \(\pi^* \).
 - “brute-force teaching”: using big data to overwhelm the learner’s prior
- If costly \(\text{effort}(s) = 0.3 \sum_{k=1}^{K} s_k \),
 - \(s = (0, 2, 8) \), \(TI = 2.65 \).
 - Not \(s = (1, 3, 6) \): the wrong prior. \(TI = 4.51 \)
 - Not \(s = (317, 965, 1933) \), \(TI = 956.25 \)
Example 6: Teaching a multivariate Gaussian

- world: $\mu^* \in \mathbb{R}^D$ and $\Sigma^* \in \mathbb{R}^{D \times D}$
- learner likelihood $N(x \mid \mu, \Sigma)$, Normal-Inverse-Wishart (NIW) prior
- Given $x_1, \ldots, x_n \in \mathbb{R}^D$, the aggregate sufficient statistics are $s = \sum_{i=1}^n x_i, \quad S = \sum_{i=1}^n x_i x_i^\top$
- Step 1: optimal aggregate sufficient statistics via SDP

$$
\begin{align*}
\min_{n, s, S} \quad & \frac{D}{2} \log 2 \nu_n + \sum_{i=1}^D \log \Gamma \left(\frac{\nu_n + 1 - i}{2} \right) - \frac{\nu_n}{2} \log |\Lambda_n| \\
& - \frac{D}{2} \log \kappa_n + \frac{\nu_n}{2} \log |\Sigma^*| + \frac{1}{2} \text{tr}(\Sigma^{-1} \Lambda_n) \\
& + \frac{\kappa_n}{2} (\mu^* - \mu_n)^\top \Sigma^{-1} (\mu^* - \mu_n) + \text{effort}(n, s, S) \\
\text{s.t.} \quad & S \succeq 0; \quad S_{ii} \geq s_i^2/2, \forall i.
\end{align*}
$$

- Step 2: unpack s, S
 - initializing $x_1, \ldots, x_n \sim iid N(\mu^*, \Sigma^*)$
 - solve $\min \|\text{vec}(s, S) - \sum_{i=1}^n \text{vec}(T(x_i))\|^2$
Examples of Example 6

- The target Gaussian is $\mu^* = (0, 0, 0)$ and $\Sigma^* = I$
- The learner’s NIW prior
 $\mu_0 = (1, 1, 1)$, $\kappa_0 = 1$, $\nu_0 = 2 + 10^{-5}$, $\Lambda_0 = 10^{-5} I$.
- “expensive” effort$(n, s, S) = n$
- Optimal \mathcal{D} with $n = 4$, unpacked into a tetrahedron

$$TI(\mathcal{D}) = 1.69$$. Four points $\sim N(\mu^*, \Sigma^*)$ have
mean$(TI) = 9.06 \pm 3.34$, min$(TI) = 1.99$, max$(TI) = 35.51$
(100,000 trials)