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Item

x ∈ Rd
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Class Label

y ∈ {−1, 1}
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Learning

You see a training set (x1, y1), . . . , (xn, yn)

You must learn a good function f : Rd 7→ {−1, 1}
f must predict the label y on test item x, which may not be in the
training set

You need some assumptions
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The World

p(x, y)
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Independent and Identically-Distributed

(x1, y1), . . . , (xn, yn), (x, y)
iid∼ p(x, y)
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Example: Noiseless 1D Threshold Classifier

p(x) = uniform[0, 1]

p(y = 1 | x) =

{
0, x < θ
1, x ≥ θ
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Example: Noisy 1D Threshold Classifier

p(x) = uniform[0, 1]

p(y = 1 | x) =

{
ε, x < θ
1− ε, x ≥ θ
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Generalization Error

R(f) = E(x,y)∼p(x,y)(f(x) 6= y)

Approximated by test set error

1

m

n+m∑
i=n+1

(f(xi) 6= yi)

on test set (xn+1, yn+1) . . . (xn+m, yn+m)
iid∼ p(x, y)
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Zero Generalization Error is a Dream

Speed limit #1: Bayes error

R(Bayes) = Ex∼p(x)

(
1

2
−
∣∣∣∣p(y = 1 | x)− 1

2

∣∣∣∣)
Bayes classifier

sign

(
p(y = 1 | x)− 1

2

)
All learners are no better than the Bayes classifier
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Hypothesis Space

f ∈ F ⊂ {g : Rd 7→ {−1, 1} measurable}
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Approximation Error

F may include the Bayes classifier

e.g. F =
{
g(x) = sign(x ≥ θ′) : θ′ ∈ [0, 1]

}
. . . or not

e.g. F = {g(x) = sign(sin(αx)) : α > 0}

Speed limit #2: approximation error

inf
g∈F

R(g)−R(Bayes)
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Estimation Error

Let f∗ = arg infg∈F R(g). Can we at least learn f∗?

No. You see a training set (x1, y1), . . . , (xn, yn), not p(x, y)

You learn f̂n

Speed limit #3: Estimation error

R(f̂n)−R(f∗)
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Estimation Error

As training set size n increases, estimation error goes down

But how quickly?
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Paradigm 1: Passive Learning

(x1, y1), . . . , (xn, yn)
iid∼ p(x, y)

1D example: O( 1
n)
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Paradigm 2: Active Learning

In iteration t
1 the learner picks a query xt
2 the world (oracle) answers with a label yt ∼ p(y | xt)

Pick xt to maximally reduce the hypothesis space

1D example:

O(
1

2n
)
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Paradigm 3: Teaching

A teacher designs the training set

1D example:

x1 = θ − ε/2, y1 = −1

x2 = θ + ε/2, y2 = 1

n = 2 suffices to drive estimation error to ε (teaching dimension
[Goldman & Kearns’95])
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Teaching as an Optimization problem

min
D

loss(f̂D, θ) + effort(D)
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Teaching Bayesian Learners

min
n,x1,...,xn

− log p(θ∗ | x1, . . . , xn) + cn

if we choose

loss(f̂D, θ
∗) = KL (δθ∗‖p(θ | D))

effort(D) = cn
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Example 1: Teaching a 1D threshold classifier
θ θ

O(1/2 )
n

θ

{{
O(1/n)

passive learning "waits" active learning "explores" teaching "guides"

p0(θ) = 1

p(y = 1 | x, θ) = 1 if x ≥ θ and 0 otherwise

effort(D) = c|D|
For any D = {(x1, y1), . . . , (xn, yn)},
p(θ | D) = uniform [maxi:yi=−1(xi),mini:yi=1(xi)]

The optimal teaching problem becomes

min
n,x1,y1,...,xn,yn

− log

(
1

mini:yi=1(xi)−maxi:yi=−1(xi)

)
+ cn.

One solution: D = {(θ∗ − ε/2,−1), (θ∗ + ε/2, 1)} as ε→ 0 with
TI = log(ε) + 2c→ −∞
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Example 2: Learner with poor perception

Same as Example 1 but the learner cannot distinguish similar items

Encode this in effort()

effort(D) =
c

minxi,xj∈D |xi − xj |

With D = {(θ∗ − ε/2,−1), (θ∗ + ε/2, 1)}, TI = log(ε) + c/ε with
minimum at ε = c.

D = {(θ∗ − c/2,−1), (θ∗ + c/2, 1)}.
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Example 3: Teaching to pick a model out of two

Θ = {θA = N(−1
4 ,

1
2), θB = N(1

4 ,
1
2)}, p0(θA) = p0(θB) = 1

2 .
θ∗ = θA.

Let D = {x1, . . . , xn}. loss(D) = log (1 +
∏n
i=1 exp(xi)) minimized

by xi → −∞.

But suppose box constraints xi ∈ [−d, d]:

min
n,x1,...,xn

log

(
1 +

n∏
i=1

exp(xi)

)
+ cn+

n∑
i=1

I(|xi| ≤ d)

Solution: all xi = −d, n = max
(
0,
[

1
d log

(
d
c − 1

)])
.

Note n = 0 for certain combinations of c, d (e.g., when c ≥ d): the
effort of teaching outweighs the benefit. The teacher may choose to
not teach at all and maintain the status quo (prior p0) of the learner!
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Teaching Dimension is a Special Case

Given concept class C = {c}, define P (y = 1 | x, θc) = [c(x) = +]
and P (x) uniform.

The world has θ∗ = θc∗

The learner has Θ = {θc | c ∈ C}, p0(θ) = 1
|C| .

P (θc | D) = 1
|c∈C consistent with D| or 0.

Teaching dimension [Goldman & Kearns’95] TD(c∗) is the minimum
cardinality of D that uniquely identifies the target concept:

min
D
− logP (θc∗ | D) + γ|D|

where γ ≤ 1
|C| .

The solution D is a minimum teaching set for c∗, and |D| = TD(c∗).
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Teaching Bayesian Learners in the Exponential Family

So far, we solved the examples by inspection.

Exponential family p(x | θ) = h(x) exp
(
θ>T (x)−A(θ)

)
I T (x) ∈ RD sufficient statistics of x
I θ ∈ RD natural parameter
I A(θ) log partition function
I h(x) base measure

For D = {x1, . . . , xn} the likelihood is

p(D | θ) =

n∏
i=1

h(xi) exp
(
θ>s−A(θ)

)
with aggregate sufficient statistics s ≡

∑n
i=1 T (xi)

Two-step algorithm: finding aggregate sufficient statistics +
unpacking
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Step 1: Aggregate Sufficient Statistics from Conjugacy

The conjugate prior has natural parameters (λ1, λ2) ∈ RD × R:

p(θ | λ1, λ2) = h0(θ) exp
(
λ>1 θ − λ2A(θ)−A0(λ1, λ2)

)
The posterior p(θ | D, λ1, λ2) =

h0(θ) exp
(

(λ1 + s)>θ − (λ2 + n)A(θ)−A0(λ1 + s, λ2 + n)
)

D enters the posterior only via s and n

Optimal teaching problem

min
n,s

−θ∗>(λ1 +s)+A(θ∗)(λ2 +n)+A0(λ1 +s, λ2 +n)+effort(n, s)

Convex relaxation: n ∈ R and s ∈ RD (assuming effort(n, s) convex)
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Step 2: Unpacking

Cannot teach with the aggregate sufficient statistics

n← max(0, [n])

Find n teaching examples whose aggregate sufficient statistics is s.
I exponential distribution T (x) = x, x1 = . . . = xn = s/n.
I Poisson distribution T (x) = x (integers), round x1, . . . , xn
I Gaussian distribution T (x) = (x, x2), harder. n = 3, s = (3, 5):

F {x1 = 0, x2 = 1, x3 = 2}
F {x1 = 1

2
, x2 = 5+

√
13

4
, x3 = 5−

√
13

4
}.

An approximate unpacking algorithm:

1 initialize xi
iid∼ p(x | θ∗), i = 1 . . . n.

2 solve minx1,...,xn ‖s−
∑n
i=1 T (xi)‖2 (nonconvex)
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Example 4: Teaching the mean of a univariate Gaussian

The world is N(x;µ∗, σ2), σ2 is known to the learner

T (x) = x

Learner’s prior in standard form µ ∼ N(µ | µ0, σ
2
0)

Optimal aggregate sufficient statistics s = σ2

σ2
0
(µ∗ − µ0) + µ∗n

I s
n 6= µ∗: compensating for the learner’s initial belief µ0.

n is the solution to n− 1
2 effort′(n)

+ σ2

σ2
0

= 0

I e.g. when effort(n) = cn, n = 1
2c −

σ2

σ2
0

Not to teach if the learner initially had a “narrow mind”: σ2
0 < 2cσ2.

Unpacking s is trivial, e.g. x1 = . . . = xn = s/n
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Example 5: Teaching a multinomial distribution

The world multinomial π∗ = (π∗1, . . . , π
∗
K)

The learner Dirichlet prior p(π | β) = Γ(
∑
βk)∏

Γ(βk)

∏K
k=1 π

βk−1
k .

Step 1: find aggregate sufficient statistics s = (s1, . . . , sK)

min
s

− log Γ

(
K∑
k=1

(βk + sk)

)
+

K∑
k=1

log Γ(βk + sk)

−
K∑
k=1

(βk + sk − 1) log π∗k + effort(s)

Relax s ∈ RK≥0

Step 2: unpack sk ← [sk] for k = 1 . . .K.
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Examples of Example 5

world π∗ = ( 1
10 ,

3
10 ,

6
10)

learner’s “wrong” Dirichlet prior β = (6, 3, 1)

If effortless effort(s) = 0,
I s = (317, 965, 1933) (fmincon)
I The MLE from D is (0.099, 0.300, 0.601), very close to π∗.
I “brute-force teaching”: using big data to overwhelm the learner’s prior

If costly effort(s) = 0.3
∑K

k=1 sk,
I s = (0, 2, 8), TI = 2.65.
I Not s = (1, 3, 6): the wrong prior. TI = 4.51
I Not s = (317, 965, 1933), TI = 956.25
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Example 6: Teaching a multivariate Gaussian

world: µ∗ ∈ RD and Σ∗ ∈ RD×D
learner likelihood N(x | µ,Σ), Normal-Inverse-Wishart (NIW) prior

Given x1, . . . , xn ∈ RD, the aggregate sufficient statistics are
s =

∑n
i=1 xi, S =

∑n
i=1 xix

>
i

Step 1: optimal aggregate sufficient statistics via SDP

min
n,s,S

D log 2

2
νn +

D∑
i=1

log Γ

(
νn + 1− i

2

)
− νn

2
log |Λn|

−D
2

log κn +
νn
2

log |Σ∗|+ 1

2
tr(Σ∗−1Λn)

+
κn
2

(µ∗ − µn)>Σ∗−1(µ∗ − µn) + effort(n, s,S)

s.t. S � 0; Sii ≥ s2
i /2, ∀i.

Step 2: unpack s, S
I initializing x1, . . . , xn

iid∼ N(µ∗,Σ∗)
I solve min ‖vec(s, S)−

∑n
i=1 vec(T (xi))‖2
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Examples of Example 6

The target Gaussian is µ∗ = (0,0,0) and Σ∗ = I

The learner’s NIW prior
µ0 = (1, 1, 1), κ0 = 1, ν0 = 2 + 10−5,Λ0 = 10−5I.

“expensive” effort(n, s,S) = n

Optimal D with n = 4, unpacked into a tetrahedron

−1 0 1 −2
0

2

−1

−0.5

0

0.5

1

−1 0 1 −2
0

2

−1

0

1

−1 0 1 −2
0

2
−2

−1.5

−1

−0.5

0

0.5

1

TI(D) = 1.69. Four points ∼ N(µ∗,Σ∗) have
mean(TI) = 9.06± 3.34, min(TI) = 1.99, max(TI) = 35.51
(100,000 trials)
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