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Persistent homology

A rapidly growing branch of topology

mathematically defines “holes” in data:

I 0th order holes: clusters
I 1st order holes: holes
I 2nd order holes: voids
I higher order holes, too

Betti numbers: the number of kth order holes
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Betti number examples

[Reproduced from Singh et al. J. Vision 2008]
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Plan of this talk

Persistent homology tutorial

An application in natural language processing
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Holes and equivalent rubber bands

blue ∼ green, not red

two equivalent classes ⇔ one hole.
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Group Theory

Definition

A group 〈G, ∗〉 is a set G with a binary operation ∗ such that

1 (associative) a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, c ∈ G.

2 (identity) ∃e ∈ G so that e ∗ a = a ∗ e = a for all a ∈ G.

3 (inverse) ∀a ∈ G, ∃a′ ∈ G where a ∗ a′ = a′ ∗ a = e.

Examples: 〈Z,+〉, 〈R,+〉, 〈R+,×〉, 〈R\{0},×〉.
Z2

+2 0 1

0 0 1
1 1 0

All our groups G are abelian: ∀a, b ∈ G, a ∗ b = b ∗ a.
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Subgroup

Definition

A subset H ⊆ G of a group 〈G, ∗〉 is a subgroup of G if 〈H, ∗〉 is itself a
group.

{e} is the trivial subgroup of any group G

〈R+,×〉 is a subgroup of 〈R\{0},×〉
not 〈R−,×〉
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Coset

Definition

Given a subgroup H of an abelian group G, for any a ∈ G, the set
a ∗H = {a ∗ h | h ∈ H} is the coset of H represented by a.

H = R+, G = R\{0}
3.14× R+ is a coset which is the same as R+

−1× R+ = R− is another coset (not a subgroup)

cosets have equal sizes and partition G.
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Homomorphism

Definition

A map φ : G 7→ G′ is a homomorphism if φ(a ∗ b) = φ(a) ? φ(b) for
∀a, b ∈ G.

〈R+,×〉 to 〈Z2,+2〉: trivial homomorphism φ(a) = 0,∀a ∈ R+

negation in natural language: GN

∗ t not

t t not
not not t

homomorphism (isomorphism) from GN to Z2: φ(t) = 0, φ(not) = 1.
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Kernel

Definition

The kernel of a homomorphism φ : G 7→ G′ is
kerφ = {a ∈ G | φ(a) = e′}.

In the φ : GN 7→ Z2 example, kerφ = {t}.
Another example: φ : 〈R\{0},×〉 7→ GN by φ(a) = t if a > 0 and
“not” if a < 0. kerφ = R+

For any homomorphism φ : G 7→ G′, kerφ is a subgroup of G.

Cosets a ∗ kerφ partition G
G

G’

e’
kerφ

φ
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Quotient group

Let 〈H, ∗〉 be a subgroup of an abelian group 〈G, ∗〉.

A new operation on the cosets of H:
(a ∗H) ? (b ∗H) = (a ∗ b) ∗H,∀a, b ∈ G.

Definition

The cosets {a ∗H | a ∈ G} under the operation ? form a group, called the
quotient group G/H.

Example: G = R\{0} and kerφ = R+, two cosets: R+ and R−.

The quotient group (R\{0})/R+ has the two coset elements.

R−?R− = (−1×R+)?(−1×R+) = (−1×−1)×R+ = 1×R+ = R+.

This quotient group (R\{0})/R+ is isomorphic to Z2.
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Rank

Definition

Let S be a subset of a group G. The subgroup generated by S, 〈S〉, is the
subgroup of all elements of G that can expressed as the finite operation of
elements in S and their inverses.

Z is itself the subgroup generated by {1}
Even integers is the subgroup generated by {2}.

Definition

The rank of a group G is rank(G) = min{|S| | S ⊆ G, 〈S〉 = G}.

rank(G) is the size of the smallest subset that generates G.

rank(Z) = 1 since Z = 〈{1}〉.
rank(Z× Z) = 2 since Z× Z = 〈{(0, 1), (1, 0)}〉.
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rank(G) is the size of the smallest subset that generates G.

rank(Z) = 1 since Z = 〈{1}〉.
rank(Z× Z) = 2 since Z× Z = 〈{(0, 1), (1, 0)}〉.
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The group of rubber bands

To count “holes” in homology, consider the group of cycles (the
rubber bands)

The kernel: “uninteresting rubber bands” that do not surround holes

The quotient group “all rubber bands”/“uninteresting rubber bands”
will identify holes.

Computation: need discrete rubber bands ⇒ simplicial complex
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Simplex

Definition

A p-simplex σ is the convex hull of p+ 1 affinely independent points
x0, x1, . . . , xp ∈ Rd. We denote σ = conv{x0, . . . , xp}. The dimension of
σ is p.

p = 0, 1, 2, 3

(Zhu, University of Wisconsin-Madison) Persistent homology 14 / 37
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Simplicial complex

Definition

A simplicial complex K is a finite collection of simplices such that σ ∈ K
and τ being a face of σ implies τ ∈ K, and σ, σ′ ∈ K implies σ ∩ σ′ is
either empty or a face of both σ and σ′.

Properly aligned

Simplicial complex = the yellow space in the rubber band picture
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Chain

Definition

A p-chain is a subset of p-simplices in a simplicial complex K.

Example: K=tetrahedron.

A 2-chain is a subset of the four triangles.

24 distinct 2-chains.

26 distinct 1-chains (subsets of edges).

Left: a 2-chain, right: a 1-chain

A p-chain does not have to be connected.
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Chain group

Definition

The set of p-chains of a simplicial complex K form a p-chain group Cp.

Mod-2 addition

+ =
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Boundary

Definition

The boundary of a p-simplex is the set of (p− 1)-simplices faces.

boundary of a tetrahedron = the four triangles faces

boundary of a triangle = the three edges

boundary of an edge = its two vertices
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Boundary of a p-chain

Definition

The boundary of a p-chain is the Mod-2 sum of the boundaries of its
simplices. Taking the boundary is a group homomorphism ∂p from Cp to
Cp−1.

Faces shared by an even number of p-simplices in the chain will
cancel out:

+ =
2
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Cycles

Definition

A p-cycle c is a p-chain with empty boundary: ∂pc = 0 (the identity in
Cp−1).

Discrete p-dimensional “rubber bands”

Left: a 1-cycle; Right: not a cycle

Zp= all p-cycles (all rubber bands)

∂pZp = 0: Zp is the kernel ker∂p and a subgroup of Cp.
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Boundary-Cycle

The boundary of any (p+ 1)-chain is always a p-cycles

c          c           c1 2 3

Definition

A p-boundary-cycle is a p-cycle that is also the boundary of some
(p+ 1)-chain.

Let Bp = ∂p+1Cp+1, the p-boundary-cycles.

Bp are the uninteresting rubber bands (e.g., B1 = {0, c1})
Bp is a subgroup of Zp (all rubber bands).
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Interesting rubber bands

c          c           c1 2 3

c2 and c3 in Z1 but not in B1

We can drag rubber band c2 over the yellow triangle to make c3

Formally, c3 = c2 + c1.

c2 and c3 are equivalent in the hole they surround.

The equivalence class: c+Bp

(Zhu, University of Wisconsin-Madison) Persistent homology 22 / 37
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Homology group

Definition

The p-th homology group is the quotient group Hp = Zp/Bp.

Example:

c          c           c1 2 3

All the 1-cycles : Z1 = {0, c1, c2, c3}.
The uninteresting 1-cycles: B1 = {0, c1}, a subgroup of Z1.

The interesting 1-cycles: c2 +B1 = c3 +B1 = {c2, c3}
The homology group H1 = Z1/B1 isomorphic to Z2
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Betti number

Definition

The p-th Betti number is the rank of the homology group: βp = rank(Hp).

In our example, β1 = rank(Z2) = 1 (one 1st-order hole)

βp is the number of independent p-th holes.

A tetrahedron has β0 = 1 (connected), β1 = β2 = 0 (no holes or
voids)

A hollow tetrahedron has β0 = 1, β1 = 0, β2 = 1

Removing the four triangle faces, the edge skeleton has β0 = 1,
β1 = 3 (one is the sum of the other three), β2 = 0 (no more void).

Removing the edges, β0 = 4 (4 vertices) and β1 = β2 = 0.
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From data to simplicial complex

Given data x1, . . . , xn ∈ Rd.

If any subset of p+ 1 points are within diameter ε, we add a
p-simplex generated by those points.

Definition

A Vietoris-Rips complex of diameter ε is the simplicial complex
V R(ε) = {σ | diam(σ) ≤ ε}.

Example

VR( 5)VR(1) VR(2)
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Filtration

Which ε should we pick?

Don’t pick – look at all ε’s

Definition

An increasing sequence of ε produces a filtration, i.e., a sequence of
increasing simplicial complexes V R(ε1) ⊆ V R(ε2) ⊆ . . ., with the property
that a simplex enters the sequence no earlier than all its faces.
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Persistent homology

In a filtration, at what value of ε does a hole appear, and how long
does it persist till it is filled in?

Barcode

VR( 5)VR(1) VR(2)

0 0.5 1 1.5 2 2.5

barcode (dimension 0)

0 0.5 1 1.5 2 2.5

barcode (dimension 1)
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Applications to natural language processing

Good articles “tie back.”

Introduction

conclusion

next paragraph

...

How can we capture such loopy structure in text documents?
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Applications to natural language processing

Some documents “straight,” others “twist and turn”

Divide a document into small units x1, . . . , xn (e.g., sentences,
paragraphs).

Given distance function D(xi, xj) ≥ 0 (e.g., Euclidean, cosine)

We will focus on the 0-th (clusters) and 1st (holes) order homology
classes.

(Zhu, University of Wisconsin-Madison) Persistent homology 29 / 37



Applications to natural language processing

Some documents “straight,” others “twist and turn”

Divide a document into small units x1, . . . , xn (e.g., sentences,
paragraphs).

Given distance function D(xi, xj) ≥ 0 (e.g., Euclidean, cosine)

We will focus on the 0-th (clusters) and 1st (holes) order homology
classes.

(Zhu, University of Wisconsin-Madison) Persistent homology 29 / 37



Applications to natural language processing

Some documents “straight,” others “twist and turn”

Divide a document into small units x1, . . . , xn (e.g., sentences,
paragraphs).

Given distance function D(xi, xj) ≥ 0 (e.g., Euclidean, cosine)

We will focus on the 0-th (clusters) and 1st (holes) order homology
classes.

(Zhu, University of Wisconsin-Madison) Persistent homology 29 / 37



Applications to natural language processing

Some documents “straight,” others “twist and turn”

Divide a document into small units x1, . . . , xn (e.g., sentences,
paragraphs).

Given distance function D(xi, xj) ≥ 0 (e.g., Euclidean, cosine)

We will focus on the 0-th (clusters) and 1st (holes) order homology
classes.

(Zhu, University of Wisconsin-Madison) Persistent homology 29 / 37



Example: Itsy bitsy spider

The Itsy Bitsy Spider climbed up the water spout
Down came the rain and washed the spider out
Out came the sun and dried up all the rain

And the Itsy Bitsy Spider climbed up the spout again

bag-of-words

vertices
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Similarity Filtration (SIF)

Dmax = maxD(xi, xj), ∀i, j = 1 . . . n
FOR m = 0, 1, . . .M

Add V R
(
m
MDmax

)
to the filtration

END
Compute persistent homology on the filtration

larger diameter, looser tie-backs

order of x1 . . . xn ignored
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Similarity Filtration with Time Skeleton (SIFTS)

D(xi, xi+1) = 0 for i = 1, . . . , n− 1
Dmax = maxD(xi, xj), ∀i, j = 1 . . . n
FOR m = 0, 1, . . .M

Add V R
(
m
MDmax

)
to the filtration

END
Compute persistent homology on the filtration

time edges allow tie-back in time
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SIF vs. SIFTS on Itsy bitsy spider

0 1 2

SIF (dimension 0)

0 1 2

SIF (dimension 1)
0 1 2

SIFTS (dimension 0)

0 1 2

SIFTS (dimension 1)
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On Nursery Rhymes and Other Stories

0 2 4

SIF (dimension 0)

0 2 4

SIF (dimension 1)
0 2 4

SIFTS (dimension 0)

0 2 4

SIFTS (dimension 1)
0 2 4

SIF (dimension 0)

0 2 4

SIF (dimension 1)
0 2 4

SIFTS (dimension 0)

0 2 4

SIFTS (dimension 1)

Row Row Row Your Boat London Bridge

0 0.5 1 1.5

SIF (dimension 0)

0 0.5 1 1.5

SIF (dimension 1)
0 0.5 1 1.5

SIFTS (dimension 0)

0 0.5 1 1.5

SIFTS (dimension 1)
0 0.5 1 1.5

SIF (dimension 0)

0 0.5 1 1.5

SIF (dimension 1)
0 0.5 1 1.5

SIFTS (dimension 0)

0 0.5 1 1.5

SIFTS (dimension 1)

Little Red-Cap Alice in Wonderland

London Bridge:“My fair Lady” repeats 12 times.

Little Red-Cap: “The better to see you with, my dear” and “The
better to eat you with!”
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On Child and Adolescent Writing

Older writers have more complex barcodes?

LUCY corpus: children (ages 9–12, 150 essays), undergraduates (48
essays)

average article length: child=11.6 sentences, adolescent=25.8

SIFTS barcode summary statistics:

I holes?: what percentage of articles have H1 holes
I |H1|: number of holes in the article
I ε∗: the smallest ε when the first hole in H1 forms.

child adolescent adol. trunc.
holes? 87% 100%∗ 98%∗

|H1| 3.0 (±0.2) 17.6 (±0.9)∗ 3.9 (±0.2)∗

ε∗ 1.35 (±.02) 1.27 (±.02)∗ 1.38 (±.01)
∗: statistically significantly different from “child”
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Is Homology Merely Counting Repeats?

On x1  x2  x3 where x1, x2, x3 SIFTS will find two holes:
x1 
 x2, x2 
 x3

k such repeats of x will generate k − 1 holes. The Betti number
β1 = k − 1?

No.
x x

xx

1 2

3
4

yz

x
1

x13
ε

I Left: k − 1 = 3, SIFTS correctly finds β1 = 1
I Right: k − 1 = 12, merging x 0 holes, SIFTS correctly finds β1 = 2
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Summary

Persistent homology may offer new representations for machine
learning

How to best use it?

To read more, see the references in
Xiaojin Zhu. Persistent homology: An introduction and a new text
representation for natural language processing. IJCAI, 2013.
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