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Abstract

Persistent homology is a mathematical tool from
topological data analysis. It performs multi-scale
analysis on a set of points and identifies clusters,
holes, and voids therein. These latter topologi-
cal structures complement standard feature repre-
sentations, making persistent homology an attrac-
tive feature extractor for artificial intelligence. Re-
search on persistent homology for AI is in its in-
fancy, and is currently hindered by two issues: the
lack of an accessible introduction to AI researchers,
and the paucity of applications. In response, the
first part of this paper presents a tutorial on persis-
tent homology specifically aimed at a broader audi-
ence without sacrificing mathematical rigor. The
second part contains one of the first applications
of persistent homology to natural language pro-
cessing. Specifically, our Similarity Filtration with
Time Skeleton (SIFTS) algorithm identifies holes
that can be interpreted as semantic “tie-backs” in a
text document, providing a new document structure
representation. We illustrate our algorithm on doc-
uments ranging from nursery rhymes to novels, and
on a corpus with child and adolescent writings.

1 Introduction
Imagine dividing a document into smaller units such as para-
graphs. A paragraph can be represented by a point in some
space, for example, as the bag-of-words vector in Rd where d
is the vocabulary size. All paragraphs in the document form
a point cloud in this space. Now let us “connect the dots”
by linking the point for the first paragraph to the second, the
second to the third, and so on. What does the curve look like?
Certain structures of the curve capture information relevant
to Natural Language Processing (NLP). For instance, a good
essay may have a conclusion paragraph that “ties back” to
the introduction paragraph. Thus the starting point and the
ending point of the curve may be close in the space. If we
further connect all points within some small ε diameter, the
curve may become a loop with a hole in the middle. In con-
trast, an essay without any tying back may not contain holes,
no matter how large ε is.

There has been geometric methods for visualizing docu-
ments and information flow, e.g. based on differential ge-
ometry [Lebanon et al., 2007; Lebanon, 2006; Gous, 1999;
Hall and Hofmann, 2000]. In contrast, we introduce an alge-
braic method based on persistent homology. As a branch of
topological data analysis, persistent homology has the advan-
tage of capturing novel invariant structural features of doc-
uments. Intuitively, persistent homology can identify clus-
ters (0-th order holes), holes (1st order, as in our loopy
curve), voids (2nd order holes, the inside of a balloon),
and so on in a point cloud. Considering the importance of
clustering today, the value of these higher order structures
is tantalizing. Indeed, in the last few years persistent ho-
mology has found applications in data analysis, including
neuroscience [Singh et al., 2008], bioinformatics [Kasson
et al., 2007], sensor networks [de Silva and Ghrist, 2007a;
de Silva and Ghrist, 2007b], medical imaging [Chung et al.,
2009], shape analysis [Gamble and Heo, 2010], and computer
vision [Freedman and Chen, 2011].

Unfortunately, existing homology literature requires ad-
vanced mathematical background not easily accessible to a
broader audience. Our first contribution is an accessible yet
rigorous tutorial that contains many unpublished materials.
Although a tutorial is unconventional in a technical paper, we
feel that there is value to the AI community as it paves the
way to further interdisciplinary research. Our second con-
tribution is a novel text representation using persistent ho-
mology. It formalizes the curve-and-loop intuition based on
Vietoris-Rips filtration over semantic similarity. We hope this
paper inspires future innovations on topology and AI.

2 Persistent Homology
We aim for mathematical rigor and intuition, but have to sac-
rifice completeness. Readers can follow up with [Singh et al.,
2008; Giblin, 2010; Freedman and Chen, 2011; Zomorodian,
2001; Rote and Vegter, 2006; Edelsbrunner and Harer, 2010;
Hatcher, 2001; Carlsson, 2009; Edelsbrunner and Harer,
2007; Balakrishnan et al., 2012; Balakrishnan et al., 2013]
for detailed treatment.

Persistent homology finds “holes” by identifying equiv-
alent cycles: Consider the following space in yellow with
a small white hole. Imagine the blue cycle as a rubber
band. It can be stretched and bent within the space into
the green cycle, but not the red one without tearing itself.



There are two equivalent classes of rubber bands: some sur-
round the hole and others do not. Conversely, two equivalent
classes indicate one hole. To formalize this idea, we need to
introduce some algebraic concepts.

2.1 Group Theory
Definition 1. A group 〈G, ∗〉 is a set G with a binary opera-
tion ∗ such that (1. associative) a ∗ (b ∗ c) = (a ∗ b) ∗ c for
all a, b, c ∈ G. (2. identity) ∃e ∈ G so that e ∗ a = a ∗ e = a
for all a ∈ G. (3. inverse) ∀a ∈ G, ∃a′ ∈ G where
a ∗ a′ = a′ ∗ a = e.

For example, integer addition 〈Z,+〉, real number addition
〈R,+〉 are groups with identity 0 and a’s inverse −a. Posi-
tive real numbers and multiplication is a group 〈R+,×〉 with
identity 1 and a’s inverse 1

a . However, 〈R,×〉 is not a group
since 0 ∈ R does not have an inverse under ×. Real numbers
except 0 is again a group 〈R\{0},×〉. Z2 is the only group
(up to element renaming) of size two:

+2 0 1
0 0 1
1 1 0

We can think of +2 as the XOR function or mod-2 addition.
For any set A = {a1, . . . , an}, its power set forms a group

〈2A,+2〉 where +2 is the symmetric difference: B +2 C =
(B ∪ C)\(B ∩ C). The identity is the empty set ∅, and the
inverse of any B ⊆ A is B itself.

Definition 2. A group G is abelian if the operation ∗ is com-
mutative: ∀a, b ∈ G, a ∗ b = b ∗ a.

All groups in this paper are abelian. For an example of
non-abelian groups, consider n× n invertible matrices under
matrix multiplication.

Definition 3. A subset H ⊆ G of a group 〈G, ∗〉 is a sub-
group of G if 〈H, ∗〉 is itself a group.

{e} is the trivial subgroup of any group G (we often omit
the operation when it is clear). 〈R+,×〉 is a subgroup of
〈R\{0},×〉 by restricting multiplication to positive numbers.
Note however multiplication on negative numbers 〈R−,×〉 is
not a subgroup because the result is not in R−.

Definition 4. Given a subgroupH of an abelian groupG, for
any a ∈ G, the set a ∗H = {a ∗ h | h ∈ H} is the coset of
H represented by a.

Consider H = R+ and G = R\{0}. Then 3.14 × R+

is a coset which is the same as R+. In fact for any a > 0,
a × R+ = R+, i.e., many different a’s represent the same
coset. On the other hand, −1 × R+ = R−, so R− is a coset
represented by -1 (or any negative number, for that matter).
Since R− is not a group, we see the cosets do not have to be
subgroups. Also note that the two cosets, R+ and R−, have
equal size and partition G. This fact will be important for
counting cycles for homology later.

We now consider mappings from one group 〈G, ∗〉 to an-
other 〈G′, ?〉.

Definition 5. A map φ : G 7→ G′ is a homomorphism if
φ(a ∗ b) = φ(a) ? φ(b) for ∀a, b ∈ G.

For example, the groups 〈R+,×〉 and 〈Z2,+2〉 do not look
similar at all. But there is a trivial homomorphism φ(a) =
0,∀a ∈ R+. Note the last 0 is in Z2. This simply says that
we map all positive real numbers to the “0” in mod-2 addition.
Obviously 0 = φ(a × b) = φ(a) +2 φ(b) = 0 +2 0 = 0 for
∀a, b ∈ R+.

As another example, consider the group of (somewhat arti-
ficial) negation in natural language: GN = {t, not} with the
following operation, where t stands for whitespace:

∗ t not
t t not

not not t
i.e., single negation stays while double negation cancels.
There is a homomorphism between GN and Z2: φ(t) =
0, φ(not) = 1. In fact, GN and Z2 are identical up to re-
naming. There is a name for such homomorphisms:

Definition 6. A homomorphism that is a one-to-one corre-
spondence is called an isomorphism.

Definition 7. The kernel of a homomorphism φ : G 7→ G′ is
kerφ = {a ∈ G | φ(a) = e′}. In other words, the kernel is
the elements that map to identity.

Theorem 1. For any homomorphism φ : G 7→ G′, kerφ is a
subgroup of G.

G
G’

e’
kerφ

φ

Because kerφ is a subgroup (depicted as the blue square
above), we can partition G into cosets of the form a ∗ kerφ
for a ∈ G. These cosets are the white or blue squares. For
example, φ : 〈R\{0},×〉 7→ GN with φ(a) = t if a > 0 and
“not” if a < 0, then kerφ = R+ is one coset and R− is the
only other coset.

We need one more piece of definition. Let 〈H, ∗〉 be a sub-
group of an abelian group 〈G, ∗〉. We can introduce a new
binary operation ? not on the elements of G but on the cosets
of H: (a ∗H) ? (b ∗H) = (a ∗ b) ∗H,∀a, b ∈ G. The oper-
ation ? is well-defined and does not depend on the particular
choice of representer.

Definition 8. The cosets {a∗H | a ∈ G} under the operation
? form a group, called the quotient group G/H .

It is useful to think of quotient groups as “higher level”
groups defined on the squares in the previous picture. kerφ
(the blue square) is a subgroup of G. The elements of the
quotient group G/kerφ are the cosets of kerφ, i.e. all the
squares. In a previous exampleG = R\{0} and kerφ = R+,
and there were two cosets: R+ and R−. Thus the quotient
group (R\{0})/R+ is a small group with those two cosets as
elements. Furthermore, note R− ?R− = (−1×R+)? (−1×
R+) = (−1 × −1) × R+ = 1 × R+ = R+. Therefore, this
quotient group (R\{0})/R+ is isomorphic to Z2.



Definition 9. Let S ⊂ G. The subgroup generated by S, 〈S〉,
is the subgroup of all elements of G that can expressed as the
finite operation of elements in S and their inverses.

For example, Z is itself the subgroup generated by {1}, the
group of even integers is the subgroup of Z generated by {2}.
Definition 10. The rank of a group G is the size of the small-
est subset that generates G.

For example, rank(Z) = 1 since Z = 〈{1}〉. rank(Z ×
Z) = 2 since Z × Z = 〈{(0, 1), (1, 0)}〉. Note there is no
one-element basis for Z× Z.

Group theory is important because when counting “holes”
in homology,Gwill be the group of cycles (the rubber bands).
The blue square will be the subgroup of “uninteresting rub-
ber bands” that do not surround holes, similar to the earlier
blue and green rubber bands. The quotient group “all rub-
ber bands”/“uninteresting rubber bands” will identify holes.
However, the rubber bands are continuous and difficult to
compute. We first need to discretize the space into a simpler
structure called simplicial complex.

2.2 Simplicial Homology
The building blocks of our discrete space are simplices.
Definition 11. A p-simplex σ is the convex hull of p + 1
affinely independent points x0, x1, . . . , xp ∈ Rd. We denote
σ = conv{x0, . . . , xp}. The dimension of σ is p.

Affinely independent means the p vectors xi − x0 for i =
1 . . . p are linearly independent, i.e., they are in general po-
sition. The convex hull is simply the solid polyhedron deter-
mined by the p+1 vertices. A 0-simplex is a vertex, 1-simplex
an edge, 2-simplex a triangle, and 3-simplex a tetrahedron:

Definition 12. A face of σ is convS where S ⊂ {x0, . . . , xp}
is a subset of the p+ 1 vertices.

For example, a tetrahedron has four triangle faces corre-
sponding to the four subsets S obtained by removing one ver-
tex at a time from σ. These four triangle faces are 2-simplices
themselves. It also has six edge faces and four singleton ver-
tex faces.

Our space of interest is properly arranged simplices:
Definition 13. A simplicial complex K is a finite collection
of simplices such that σ ∈ K and τ being a face of σ implies
τ ∈ K, and σ, σ′ ∈ K implies σ∩σ′ is either empty or a face
of both σ and σ′.

The intuition of simplicial complex is that if a sim-
plex is in K, all its faces need to be in K, too. In
addition, the simplices have to be glued together along
whole faces or be separate. The figure on the left is
a simplicial complex, while the one on the right is not:

Simplicial complex plays the role of the yellow space in the
rubber band example. We next introduce the discrete version
of the rubber bands.

Definition 14. A p-chain is a subset of p-simplices in a sim-
plicial complex K.

For example, let K be a tetrahedron. By definition the
four triangle faces (i.e., 2-simplices) are in K, too. A 2-
chain is a subset of these four triangles, e.g., all four trian-
gle, the bottom triangle face only, or the empty set. There
are 24 distinct 2-chains. Similarly, by definition all six edges
of the tetrahedron are in K, too. Thus, there are 26 dis-
tinct 1-chains. Despite the name “chain,” a p-chain does
not have to be connected. The figure below shows a 2-
chain on the left and a 1-chain (the blue edges) on the right:

Recall for any set A, its power set forms a group 〈2A,+2〉.
Definition 15. The set of p-chains of a simplicial complex K
form a p-chain group Cp.

When adding two p-chains we get another p-
chain with duplicate p-simplices cancel out. We
have a separate chain group for each dimension
p. Below is an example of 1-chain addition:

+ =

Definition 16. The boundary of a p-simplex is the set of (p−
1)-simplices faces.

The boundary of a tetrahedron is the set of four triangles
faces; the boundary of a triangle is its three edges; the bound-
ary of an edge is its two vertices.

Definition 17. The boundary of a p-chain is the +2 sum of the
boundaries of its simplices. Taking the boundary is a group
homomorphism ∂p from Cp to Cp−1.

Note faces shared by an even number of
p-simplices in the chain will cancel out:

+ =
2

We have finally reached our discrete p-dimensional rubber
bands: the p-cycles.

Definition 18. A p-cycle c is a p-chain with empty boundary:
∂pc = 0 (the identity in Cp−1).

The figure below shows a 1-cycle in blue on
the left, and a 1-chain on the right that is not
a cycle because it has the red boundary vertices.

Let Zp be all the p-cycles, i.e., all the “rubber bands.” Since
∂pZp = 0, by definition 7 Zp is the kernel ker∂p, which is a
subgroup of Cp.

We now identify the “uninteresting rubber bands.” It
may not be obvious but the boundary of any higher
order (p + 1)-chain is always a p-cycle. For ex-
ample, the left figure below shows a simplicial com-
plex containing a (p + 1) = 2 chain (the yellow tri-



angle). Its boundary c1 (blue) is indeed a 1-cycle.

c          c           c1 2 3

Theorem 2. For every p and every (p + 1)-chain c,
∂p(∂p+1c) = 0.

Definition 19. A p-boundary-cycle is a p-cycle that is also
the boundary of some (p+ 1)-chain.

Let Bp = ∂p+1Cp+1, namely all the p-boundary-cycles.
Bp are the uninteresting rubber bands. In the example above,
B1 = {0, c1}, none surrounding any holes. It is easy to see
that Bp is a group, therefore a subgroup of Zp (all rubber
bands).

Are there “interesting rubber bands”? In other words, do
we have anything in Zp besides Bp? It depends on the struc-
ture of the simplicial complex. In the example above, the
1-cycles c2 and c3 (red) are not inB1 since the rectangle does
not contain any 2-simplices. These are interesting because
they surround the hole in the rectangle. In fact, we can drag
the rubber band c2 over the yellow triangle and turn it into
c3. Formally, we do this by c3 = c2 + c1. Intuitively, c2 and
c3 are equivalent in the hole they surround. More generally,
such equivalence class is obtained by c+Bp: we are allowed
to drag a p-cycle rubber band c over any (p + 1)-simplices
without changing the holes (or the lack thereof) it surrounds.

Returning to the example, we now see all the 1-cycles for
this simplicial complex: Z1 = {0, c1, c2, c3}. The uninterest-
ing ones are B1 = {0, c1}, a subgroup of Z1. The interesting
ones are c2 + B1 = c3 + B1 = {c2, c3}: this should remind
us of cosets and quotient group.
Definition 20. The p-th homology group is the quotient
group Hp = Zp/Bp. The p-th Betti number is its rank:
βp = rank(Hp).

We have arrived at the core of homology. In our example,
H1 = {0, c1, c2, c3}/{0, c1} which is isomorphic to Z2. The
first Betti number is β1 = rank(Z2) = 1, indicating one
independent 1st-order hole not filled in by triangles.

In general, βp is the number of independent p-th holes. For
example, a tetrahedron has β0 = 1 since the shape is con-
nected, β1 = β2 = 0 since there is no holes or voids. A
hollow tetrahedron has β0 = 1, β1 = 0, β2 = 1 because of
the void. Further removing the four triangle faces but keeping
the six edges, the skeleton has β0 = 1, β1 = 3 (there are 4
triangular holes but one is the sum of the other three), β2 = 0
(no more void). Finally removing the edges but keeping the
four vertices, β0 = 4 (4 connected components each a single
vertex) and β1 = β2 = 0.

2.3 Persistent Homology
Usually we are given data as a point cloud x1, . . . , xn ∈ Rd.
Where does the simplicial complex come from in the first
place? One way to create it is to examine all subsets of points.
If any subset of p+ 1 points are “close enough,” we add a p-
simplex σ with those points as vertices to the complex:
Definition 21. A Vietoris-Rips complex of diameter ε is the
simplicial complex V R(ε) = {σ | diam(σ) ≤ ε}.

Here diam(σ) is the largest distance between two points in
σ. Note if σ ∈ V R(ε), all its faces are, too. The following fig-
ure shows four points (0,0), (0,1), (2,1), (2,0) and the Vietoris-
Rips complex with different ε. V R(

√
5) is a flat tetrahedron.

VR( 5)VR(1) VR(2)

A natural question is what best ε to use for any data set. Per-
sistent homology examines all ε’s to see how the system of
holes change.
Definition 22. An increasing sequence of ε produces a fil-
tration, i.e., a sequence of increasing simplicial complexes
V R(ε1) ⊆ V R(ε2) ⊆ . . ., with the property that a simplex
enters the sequence no earlier than all its faces.

Persistent homology tracks homology classes along the fil-
tration: at what value of ε does a hole appear, and how long
does it persist till it is filled in? A convenient way to vi-
sualize persistent homology is the barcode plot shown be-
low. The x-axis is ε. Each horizontal bar represents the
birth–death of a separate homology class. Longer bars cor-
respond to more robust topological structure in the data.

0 0.5 1 1.5 2 2.5

barcode (dimension 0)

0 0.5 1 1.5 2 2.5

barcode (dimension 1)

The top panel shows H0 (0-th order holes or clusters). At
ε = 0 there are four bars for the four disconnected vertices
in V R(0). The Betti number at any given ε is the number
of bars above it, in this case β0 = 4. At ε = 1 two edges
appear in V R(1), reducing the number of connected compo-
nents to two. This is why the top two bars die and β0 reduces
to 2. At ε = 2, V R(2) forms a rectangle and becomes fully
connected, so one more bar dies and β0 = 1 thereafter. The
remaining bar represents the one vertex that grabs everything
to eventually become the fully connected component. It never
dies (represented by the arrow at the end of the bar). We note
that the clusters are precisely those obtained from hierarchical
clustering with single-linkage.

The bottom panel showsH1 (1st order holes). In the exam-
ple above, a homology class corresponding to the hole is born
at ε = 2 when the rectangle becomes connected. It persists
until ε =

√
5 and dies because the Vietoris-Rips complex be-

comes the solid tetrahedron. This is represented by the single
short bar. The Betti number is β1 = 1 in the interval [2,

√
5)

and 0 otherwise.

3 A Natural Language Processing Application
We all have the intuition that some documents tell a straight
story while others twist and turn. We hope persistent homol-
ogy captures such structures. We assume that a document has
been divided into small units x1, . . . , xn. We are given a dis-
tance function D(xi, xj) ≥ 0 so that similar units have small



distance. We will focus on the 0-th (clusters) and 1st (holes)
order homology classes. We introduce two algorithms: SIF
and SIFTS.

Similarity Filtration (SIF). SIF is a simple method to
compute persistent homology by creating a Vietoris-Rips
complex over x1, . . . , xn, where the diameter measures the
similarity between text units:

1. Dmax = maxD(xi, xj),∀i, j = 1 . . . n
2. FOR m = 0, 1, . . .M
3. Add V R

(
m
MDmax

)
to the filtration

4. END
5. Compute persistent homology on the filtration

The growing diameter corresponds to allowing looser tie-
backs: more dissimilar text units are linked together to form
simplices in the Vietoris-Rips complex. Note the order of
x1 . . . xn is ignored.

Similarity Filtration with Time Skeleton (SIFTS). We
may be more interested in the flow of the document. Recall
we “connect the dots” in the introduction. This prompts us to
add “time edges” (xi, xi+1), i = 1 . . . n− 1 to the simplicial
complex before any similarity filtration. These edges form a
“time skeleton” by connecting units in document order. The
SIFTS algorithm implements time skeleton by adding the fol-
lowing preprocessing step before the SIF algorithm in sec-
tion 3:

0. D(xi, xi+1) = 0 for i = 1, . . . , n− 1

The key difference between SIF and SIFTS is that a
time-skeleton edge can be arbitrarily long as mea-
sured by D(). By adding the time skeleton upfront,
we enable “tie-back” holes in SIFTS. This is illus-
trated by the toy document (0, 0), (1, 0), (2, 0), (− 1

2 , 0)
below, with the Vietoris-Rips complex V R(0.5):

SIF sees the Vietoris-Rips complex on the left as four vertices
and an edge between (0, 0), (− 1

2 , 0). Even though the edge
represents a tie-back between the first and last units, no hole
has formed. In contrast, SIFTS sees the combined complex
on the right with time skeleton in red. The similarity and
time edges together form a hole (i.e., β1 = 1). The complete
barcodes for SIF and SIFTS are presented below. SIF detects
no hole at all (β1 = 0 always): as ε increase the filtration fills
the complex with solid triangles, preventing holes. The hole
detected by SIFTS persists until ε is large enough to cover
(1, 0) and (− 1

2 , 0). Also note SIFTS complex is trivially
connected by the time skeleton, hence β0 = 1 always.

0 1 2

SIF (dimension 0)

0 1 2

SIF (dimension 1)
0 1 2

SIFTS (dimension 0)

0 1 2

SIFTS (dimension 1)

3.1 On Nursery Rhymes and Other Stories
We now illustrate persistent homology as computed by SIF
and SIFTS on a few nursery rhymes. Nursery rhymes are
repetitive and familiar, ideal for homology examples. Each
unit is a sentence. We perform minimum tokenization by
case-folding and punctuation removal only. The distance
D() is the Euclidean distance between sentence-level bag-of-
words count vectors. All filtrations has M = 100 steps.

Figure 1(a) shows Itsy Bitsy Spider. Its homology is strik-
ingly similar to the previous toy document, as the spider
climbed up the water spout in both the 1st and the 4th sen-
tences. This hole is detected by SIFTS but not SIF.

Figure 1(b) shows Row Row Row Your Boat. Its four sen-
tences are distinct from each other, forming a “linear progres-
sion.” Both SIF and SIFTS give β1 = 0: there is no hole.

Figure 1(c) shows London Bridge is Falling Down. The
lyric has n = 48 sentences; The sentence “My fair Lady”
repeats 12 times. With the time skeleton, SIFTS therefore de-
tects 11 independent holes (β1 = 11) right away in V R(0).
These holes are not detected by SIF. Both SIF and SIFTS de-
tect more holes later, some are caused by the near-repetition
“Build it up withX and Y ”, whereX,Y vary from wood and
clay to silver and gold.

We now move on to longer documents. Here and in
next section, the text units are natural paragraphs (or chap-
ters for Alice). We perform Penn Treebank tokenization,
case-folding, punctuation removal, and SMART stopword re-
moval [Salton, 1971]. Each text unit is converted to a tf.idf
vector, where idf is computed within the document. We
compute the cosine similarity then take the angular distance:
D(xi, xj) = cos−1

(
x>
i xj

‖xi‖·‖xj‖

)
.

Figure 1(d,e,f) show the barcodes on three stories. In gen-
eral, SIFTS detects more holes and detects them earlier than
SIF. The homology classes that persist the longest tend to be
reappearance of salient words. For example, in Red-Cap the
first SIFTS hole is between the sentences “The better to see
you with, my dear” and “The better to eat you with!”

3.2 On Child and Adolescent Writing
As a real world example, we quantitatively study whether
children’s writing become structurally richer as they grow up.
Specifically, our hypothesis is that older writers have more 1-
homology groups than younger writers.

We use the LUCY corpus which contains roughly matched
child and adolescent writing [Sampson, 2003]. We merge
the F,H,K,M groups (ages 9–12, 150 essays) to form a child-
writing set. We use the E group (undergraduates, 48 essays)
as the adolescent-writing set. The main differences between
the two sets are age and average article length (child=11.6
sentences, adolescent=25.8 sentences), see LUCY documen-
tation for other minor differences.

We compute each essay’s SIFTS barcode. To facilitate
comparison, we extract two summary statistics. The first
is |H1|, the total number of 1st-order persistent homology
classes (holes) over the whole ε range. This is obtained by
counting the number of bars. Note |H1| ≥ β1 since the Betti
number is for a specific ε. The second is ε∗, the smallest ε



0 1 2 3

SIF (dimension 0)

0 1 2 3

SIF (dimension 1)
0 1 2 3

SIFTS (dimension 0)

0 1 2 3

SIFTS (dimension 1)
0 2 4

SIF (dimension 0)

0 2 4

SIF (dimension 1)
0 2 4

SIFTS (dimension 0)

0 2 4

SIFTS (dimension 1)
0 2 4

SIF (dimension 0)

0 2 4

SIF (dimension 1)
0 2 4

SIFTS (dimension 0)

0 2 4

SIFTS (dimension 1)

(a) Itsy Bitsy Spider (b) Row Row Row Your Boat (c) London Bridge

0 0.5 1 1.5

SIF (dimension 0)

0 0.5 1 1.5

SIF (dimension 1)
0 0.5 1 1.5

SIFTS (dimension 0)

0 0.5 1 1.5

SIFTS (dimension 1)
0 0.5 1 1.5

SIF (dimension 0)

0 0.5 1 1.5

SIF (dimension 1)
0 0.5 1 1.5

SIFTS (dimension 0)

0 0.5 1 1.5

SIFTS (dimension 1)
0 0.5 1 1.5

SIF (dimension 0)

0 0.5 1 1.5

SIF (dimension 1)
0 0.5 1 1.5

SIFTS (dimension 0)

0 0.5 1 1.5

SIFTS (dimension 1)

(d) The Emperor’s New Clothes (e) Little Red-Cap (f) Alice in Wonderland

Figure 1: Persistent homology on nursery rhymes and other stories

child adolescent adol. trunc.
holes? 87% 100%∗ 98%∗
|H1| 3.0 (±0.2) 17.6 (±0.9)∗ 3.9 (±0.2)∗
ε∗ 1.35 (±.02) 1.27 (±.02)∗ 1.38 (±.01)

Table 1: Statistics on child vs. adolescent writing. Entries
significantly different from child are marked by ∗

when the first hole in H1 forms. If there is no hole we set
ε∗ = π/2, the largest angular distance possible.

The first two columns in Table 1 show a marked difference
between child vs. adolescent writing. Only 87% of child es-
says have holes while all adolescent essays do (p = 0.01,
Fisher’s test). The average child essay has 3 holes while ado-
lescent has 17.6 (p = 10−55, t-test). First hole appears earlier
in adolescent (p = 0.01, t-test).

One has reason to suspect that the homology differs solely
because adolescent essays are about twice as long. We thus
create a third “adolescent truncated” data set, where we keep
the first 11 sentences in each adolescent essay to match child
writing. This perhaps removed many later tie-backs in the
essays. The third column in Table 1, however, still shows
some differences compared to child writing: more truncated
adolescent essays contain holes (p = 0.03, Fisher’s test). On
average a truncated essay has one more hole (p = 0.03, t-
test). But the first-birth ε∗ is no longer significantly different
(p = 0.2, t-test).

We conclude that persistent homology detects significant
differences between child and adolescent writing using only
structural features. The point is not that classifying the two
classes requires such sophisticated machinery – simpler fea-
tures such as word usage probably suffice. Rather, our ex-
periment shows that there is useful information in homology.
Incorporating such information into existing text representa-
tion for NLP tasks such as discourse structure modeling or
parsing can potentially enhance these tasks. This remains fu-
ture work.

4 Discussion: Merely Counting Repeats?

Our nursery rhyme examples may give the impression that
persistent homology computed by SIFTS is simply finding
repeated (ε-close) text units. After all, in a document x1  
x2  x3 where x1, x2, x3 are within ε of each other and 
represents long sequence of mutually dissimilar units, SIFTS
will identify exactly two independent holes: x1  x2 where
x2 ties back to x1, and similarly x2  x3. k such repeats of
x will generate k− 1 holes. It seems one can just count k the
number of repeats to get the Betti number β1 = k − 1.

This impression is incomplete. Consider the document
x1 x2 x3 y z x4 depicted on left, where y and z are distant.
The SIFTS time skeleton is in red. There are k = 4 repeats of
x but β1 = 1 not 3, since the x’s form a 3-simplex (yellow).

x x

xx

1 2

3
4

yz

x
1

x13
ε

Perhaps such problem can be dealt with by preprocessing,
where one merges contiguous units within ε? Surely with
x1x2x3 merged into a super unit x′, we can using count-
ing again to detect two repeats x′, x4 and correctly infer one
hole. However, consider another document x1x2 . . . x13 on
the right, where all contiguous unit pairs are within ε (the
short diagonal length). The preprocessing will merge all units
into a single super unit, thus incorrectly predicting 0 holes. In
contrast, SIFTS can correctly identify the two holes. Homol-
ogy is not just counting repeated text units.

The barcodes in this paper were computed
with the javaPlex software [Tausz et al., 2011].
Our data and SIF, SIFTS code is online at
http://pages.cs.wisc.edu/∼jerryzhu/publications.html.
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