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Abstract

We introduce a new topological feature
representation for point cloud objects.
Specifically, we construct a Stochas-
tic Multiresolution Persistent Homology
(SMURPH) kernel which represents an
object’s persistent homology at different
resolutions. Under the SMURPH ker-
nel two objects are similar if they have
similar number and sizes of “holes” at
these resolutions. Our multiresolution
kernel can capture both global topology
and fine-grained topological texture in
the data. Importantly, on large point
clouds the SMURPH kernel is more com-
putationally tractable compared to exist-
ing topological data analysis methods.
We demonstrate SMURPH’s potential
for clustering and classification on sev-
eral applications, including eye disease
classification and human activity recog-
nition.

1 Introduction and Background
There has been growing interest in bringing topological
data analysis (TDA) into machine learning [Bubenik, 2015;
Chazal et al., 2015b; Reininghaus et al., 2015; Ahmed et
al., 2014; Li et al., 2014; Chazal et al., 2015a; Pachauri et
al., 2011]. However, no method exists that is simultaneously
rich in topological information, efficient in computation, and
easy to plug into a machine learning system. We take a step
in this direction by proposing a Stochastic MUltiResolution
Persistent Homology (SMURPH) kernel. Our kernel can be
viewed as a topological feature extractor for machine learning
that compares the number and sizes of “holes” in two point
clouds. Unlike prior TDA methods, SMURPH captures both
the global topology and fine-grained “topological texture” in
point cloud objects. Using SMURPH for machine learning
requires little background in topology, as it just produces a
kernel matrix.

Persistent homology is a TDA method for studying homol-
ogy classes, or “topological holes.” A thorough tutorial is

out of scope of this paper and can be found in e.g. [Edels-
brunner and Harer, 2010; Nanda and Sazdanović, 2014;
Carlsson, 2009; Zhu, 2013]. We will focus on first-order ho-
mology over Z2 (binary) coefficients. For this purpose the
following background knowledge suffices. On a point cloud
X in Rd we construct an ε-hypergraph by creating edges
(known as 1-simplices) between all pair of points xi, xj ∈ X
within distance ε. We also create triangle faces (2-simplices)
among all xi, xj , xk whose pairwise distances are within ε.
This hypergraph is known as a simplicial complex. Follow-
ing the terminology of [Edelsbrunner and Harer, 2010] we
define a first-order homology group whose linearly indepen-
dent generators represents holes (cycles that are not filled in
by triangles) in the graph.

Now imagine we repeat this hypergraph construction sep-
arately for all thresholds ε > 0. This series of hypergraphs
is called a Vietoris-Rips filtration. As ε increases more edges
and triangles will be created. The homology group changes
by gaining or losing generators as holes are born (when a cy-
cle is established) at some ε1 and die (the cycle is filled) at
some ε2 ≥ ε1. Persistent homology tracks such birth and
death events at critical ε values. This information is tradition-
ally stored as a persistence diagram (PD) in the TDA litera-
ture. Intuitively, a PD is a multiset of N points (bi, di) in 2D
for the birth and death time (i.e. ε threshold) of the N holes
encountered during Vietoris-Rips filtration.

The space of PDs is a metric space under the Wasserstein
distance but not a vector space (hence not a Hilbert space).
We instead build our kernels on the recently-proposed per-
sistence landscape (PL) representation, which is a benign
function space [Bubenik, 2015]. To obtain the PL from PD,
one first rotates the PD so that the diagonal becomes the x-
axis, and scale it by 1/

√
2. In the new coordinate system, a

(birth, death) pair (bi, di) takes the coordinate (si, ti) where
si = (bi + di)/2, ti = (di − bi)/2 for i = 1 . . . N .
One defines a “tent function” Λi at each (si, ti): Λi(s) =
max(ti − |s − si|, 0), s ∈ R. The PL is a collection of
piecewise linear functions N × R 7→ R indexed by level l:
λ(l, s) = lmaxNi=1 Λi(s) where lmax returns the lth largest
value in the set, or 0 if the set has less than l items.
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Figure 1: Time to compute a PD vs. point cloud size, log-log
scale

2 The SMURPH Kernel
We will define three kernels on n point cloud objects
X1 . . . Xn. The first kernel K[ captures global persistent ho-
mology but does not scale to large point clouds. The second
kernelK] introduces multi-resolution but also does not scale.
The SMURPH kernel K solves the scalability issue of K]

with Monte Carlo sampling.

2.1 A Global Persistent Homology Kernel K[

For any fixed level l, the lth landscape function λ(l, s) ∈ L2

and is 1-Lipschitz. We define the inner product between two
PL functions λ, λ′ by

〈λ, λ′〉 =
∑
l

∫ ∞
−∞

λ(l, s)λ′(l, s)ds. (1)

We will use |X| to denote the number of points in point cloud
X . The summation over level l is finite, since the maximum
nonzero level in a PL is upper bounded by max(|X|, |X ′|). It
has been noted that this space of PL functions is a Hilbert
space [Bubenik, 2015]. Therefore, we can define a posi-
tive definite topological kernel K[ between two point clouds
X,X ′ via the inner product of their PL functions λX , λX′ :

K[(X,X ′) = 〈λX , λX′〉. (2)

While K[ captures global topological information, there is
a major roadblock in using it for data analysis. Figure 1 shows
the time to compute PD, the building block of PL and K[,
versus the point cloud size |X|. We compared several popular
TDA software: JavaPlex [Tausz et al., 2011], Perseus [Nanda,
2013], the R TDA package [Fasy et al., 2014] with Diony-
sus [Morozov, 2007] and GUDHI [Maria, 2014] solvers, re-
spectively. The reported time is in seconds on a typical desk-
top computer for the software to compute 1st persistence di-
agram. The slopes of these log-log time curves suggest that
computation time scales as |X|3 to |X|4 for 1st persistent ho-
mology. Objects with more than a few hundred points are
computationally prohibitive.

A naive solution to the scalability issue is to sample
b points from X to form a sparser point cloud b(X), as
suggested in [Chazal et al., 2015b; Chazal et al., 2015a].

(a) (b) (c) (d)

Figure 2: (a) top: the ring-of-rings dataset, bottom: the annu-
lus dataset. (b) zoom. The two datasets look identical in their
global PL λ̄msbr with r = diam(X) = 2 in (c), but can be
distinguished at a finer resolution r = 0.06 in (d).

Figure 3: A mug point cloud inside a ball, its persistence land-
scape λB(c,r), and its average persistence landscape λ̄msbr over
m = 20, s = 1 samples.

Repeating the process s times, we obtain point clouds
b1(X) . . . bs(X). A bootstrapping PL function can then be
computed as λ̄sb = 1

s

∑
j λbj(X), where the average applies

to each PL level separately.
Unfortunately, this bootstrap procedure introduces a loss

of resolution. As an example, consider the two point clouds
in Figure 2. At the global level (a) they look the same, but
zooming in (b) we notice that the top one is made of numer-
ous small rings while the bottom one is simply an annulus.
Subsampling globally (c) ignores this difference – justifiably
so if one is only concerned with the overall shape of λX , since
the finer resolution only contributes minimally to the global
PL. Nonetheless, this difference in “topological texture” may
be important for classifying or clustering. For better topolog-
ical data analysis, we need the ability to identify differences
in localized topology.

2.2 A Multiresolution Kernel K]

Inspired by multiresolution data analysis, especially the work
on local relative homology in [Ahmed et al., 2014], we pro-
pose a multiresolution persistent homology description of X
to compute localized topology like those in Figure 2(d). To
this end consider balls of a particular radius r, which we call
the resolution. Let B(c, r) = {x ∈ X : ‖x − c‖ ≤ r} be the
set of points in the ball centered at c with radius r. Let λB(c,r)
be the corresponding PL function computed by performing a
filtration on B(c, r). As an example, Figure 3(left) shows a
3D point cloud of a mug. The ball is shown in yellow, B(c, r)
shown in red1, and λB(c,r) in Figure 3(mid).

1Actually a subset of B(c, r), see section 2.3



We draw centers c from a probability distribution PC . In
this paper, we assumePC is supported onX; that is, each ball
must center on one of the data points in X . A simple choice
of PC is the uniform distribution over points in X , though
a domain expert can design other PC to emphasize certain
interesting regions. Our quantity of interest is the expected
PL function at resolution r:

πr := Ec∼PC
[λB(c,r)]. (3)

When PC is the uniform distribution over X , this quan-
tity is simply πr = 1

|X|
∑
c∈X λB(c,r). Let the diameter

of X be diam(X) = maxi,j∈X ‖i − j‖. Noting that if
r ≥ diam(X), B(c, r) = X for all c ∈ X , we can estab-
lish that ∀r ≥ diam(X), πr = λX . Thus r ≥ diam(X)
recovers the global PL function. To obtain topological infor-
mation of X at finer resolutions, we consider L decreasing
radii r1 > . . . > rL and compute the corresponding expected
PL functions πr1 , . . . , πrL .
Definition 1 The multiresolution persistent homology repre-
sentation of X at radii r1 . . . rL is (πr1 , . . . , πrL).

We now have all the ingredients to define a multiresolu-
tion persistent homology kernel K]. Specifically, we define
homology kernel K] between two point cloud objects X and
X ′ as

K](X,X ′) =

L∑
i=1

wi〈πri , π′ri〉 (4)

where w1, . . . , wL are nonnegative weights to combine dif-
ferent resolutions. A particularly useful weighting scheme is
to set

wi = (r1/ri)
3
, i = 1 . . . L. (5)

To understand this scheme, imagine two holes both born at
b = 0 and die at d = r1. The inner product (1) between
their PLs is r31/12. Now imagine two other holes both with
b = 0, d = ri. Their inner product is r3i /12. The weighting
scheme thus scales up the finer resolution so that all resolu-
tions contribute equally to the kernel.

However, the kernel K] (4) is defined without regard to
computation. In fact K] is more costly to compute than K[

due to two issues: 1. The expectation inside π requires enu-
merating all possible centers c ∈ X; 2. B(c, r) may still con-
tain many points, making persistent homology software slow
(recall Figure 1). We address both issues with sampling next.

2.3 The SMURPH Kernel K
The procedure below is carried out independently at each res-
olution r. We sample m centers c1 . . . cm ∼ PC . For each
center c, we generate j = 1 . . . s bootstrap samples within
the ball B(c, r). Each bootstrap sample bj(c, r) consists of
b points sampled with replacement from B(c, r). Instead of
computing λB(c,r), we compute λbj(c,r). The value of b is
chosen with computation speed in mind, so that state-of-the-
art persistent homology software can finish in a reasonable
amount of time. We define average persistence landscape
(APL), an estimator of πr, as follows:

λ̄msbr =
1

ms

m∑
i=1

s∑
j=1

λbj (ci, r). (6)

The superscripts msb remind the reader that λ̄msbr is subject
to three kinds of randomness: m balls, s bootstraps per ball,
b points per bootstrap.

To illustrate, we go back to Figure 2. Both the ring-of-
rings point cloud and the annulus point cloud in (a) contain
one million points. This poses no computational difficulty for
λ̄msbr in (c) and (d) if we choose e.g. b = 300, which is easily
handled by state of the art TDA software, andm = 20, s = 1.
As another example, Figure 3(right) shows the average persis-
tence landscape on the mug. The most significant persistent
homology class (due to the handle) survives the averaging,
even though we do not expect every random ball to contain
the handle.

Definition 2 The stochastic multiresolution persistent
homology representation of X at radii r1 . . . rL is
(λ̄msbr1 , . . . , λ̄msbrL ).

Finally, we define the Stochastic Multi-Resolution Persis-
tent Homology (SMURPH) kernel as:

K(X,X ′) =

L∑
i=1

wi〈λ̄msbri (x), λ̄′msbri 〉. (7)

Note that K is stochastic due to sampling but given the sam-
ples it is a positive semi-definite kernel matrix. During test
time when one needs to compute the kernel K(Xi, X

∗) be-
tween a training object Xi and a new point cloud object
X∗, it is important that one uses the same representation(
λ̄msbr1 , . . . , λ̄msbrL

)
for Xi during training to ensure that the

kernel matrix is well-defined.
Algorithm 1 specifies the computation of SMURPH ker-

nel K. If we take the state-of-the-art persistent homology
time complexity to be O(b3) as indicated by Figure 1, the
complexity of Algorithm 1 is O(nLmsb3 + n2). We also
note that the inner product (1) can be efficiently computed
in closed-form since PL is piecewise linear as a consequence
of lmax over tent functions. In practice, computing each ob-
ject’s stochastic multiresolution persistent homology repre-
sentation (λ̄msbr1 , . . . , λ̄msbrL ) takes a few seconds for modest b
in the hundreds.

For theoretical consideration, define the n × n SMURPH
kernel matrix K = [Kij ] where Kij = K(Xi, Xj) for

i, j = 1, . . . , n. Similarly, we define K] =
[
K]
ij

]
. Fol-

lowing the technique in [Chazal et al., 2015a; 2013], we
can show that K approximates K]: under mild conditions

E||πr − λ̄msbr ||∞ ≤ O
[(

log b
b

)1/β]
for some constant β.

This means that λ̄msbr is an asymptotically unbiased estima-
tor of πr. Furthermore, we can bound E||K]−K||max where
||.||max is the max matrix norm. If s,m are of the order(

b
log b

)2/β
, then E||K] −K||max ≤ O

[(
log b
b

)1/β]
.

3 Experiments
We present three applications in clustering and classification
to demonstrate the potential of the SMURPH kernel.



Algorithm 1 SMURPH Kernel
Input: n point cloud objects X1, . . . Xn

Parameters: radius scheme (r1, . . . , rL), kernel weight
scheme (w1, . . . , wL), center distribution PC , number of
centers m, bootstrap sample size b, number of bootstraps
s, filtration F .
for object X ∈ {X1 . . . Xn} do

for resolution r ∈ {r1 . . . rL} do
for center i = 1 . . .m do

Sample ci ∼ PC
for bootstrap j = 1 . . . s do

Sample b points within B(ci, r) to form bj(ci, r)
Apply filtration F on bj(ci, r) to compute PL
λbj (ci, r)

end for
end for
λ̄msbr = 1

ms

∑m
i=1

∑s
j=1 λbj (ci, r)

end for
Represent object X by

(
λ̄msbr1 , . . . , λ̄msbrL

)
end for
Define the n × n resolution-r kernel matrix as
Kr(Xi, Xj) = 〈λ̄msbr (Xi), λ̄

msb
r (Xj)〉

Output: SMURPH kernel matrix K =
∑L
i=1 wiKri

3.1 Pots and Pans
We demonstrate SMURPH kernel’s ability to embed point
cloud objects in a meaningful way based on persistent homol-
ogy features. The dataset consists of 41 point cloud kitchen
utensils (e.g. pans, cups, bottles, knives) [Neumann et al.,
2013]. We compute SMURPH kernel matrix using a radius
of r = 0.1, m = 20 centers per point cloud, s = 1 samples
per center, and a budget of b = 350 points per sample.

We embed the 41 objects in 2D using kernel PCA on the
SMURPH kernel matrix. For better visualization we draw
each object centered on its embedding coordinates, see Fig-
ure 4. All objects are drawn at the same scale. We identify
three salient groups with similar persistent homology in this
embedding: (1) mugs with a handle, pots with handles, and
long bottles near (−0.4, 0.2); (2) ladle, knifes, screw drivers
near (0.3, 0); (3) small cans near (−0.4,−0.4). We now ex-
plain why the grouping is topologically meaningful.

Most objects in the group (1) have handles. We have shown
one such mug in Figure 3. Another mug is shown in Fig-
ure 5(left). Colors are solely for better visualization. Han-
dles produce large holes in Vietoris-Rips filtration, whose ef-
fect is preserved in the average persistence landscape as a tall
and long hump. Recall the SMURPH kernel is computed as
inner products between these APL functions. The grouping
in kPCA embedding space reflects the overall similarity be-
tween APL functions. Therefore, objects with handles are
grouped close.

In contrast, objects in group (2), such as the ladle shown in
Figure 5(middle), have no intrinsic holes. Their average per-
sistence landscape is almost flat and distinct from group (1).
Note their APL is not exactly the zero line – this is an artifact
of sampling. To see why, imagine a regular 2D grid of points
in a ball B(c, r). SMURPH samples b points from the ball.
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Figure 4: Kernel PCA embedding with SMURPH kernel ma-
trix on the pots and pans dataset

When b is small relative to the number of points in the ball,
spurious holes will be created during Vietoris-Rips filtration.
In practice, however, this artifact has limited effect and does
not prevent kPCA from producing meaningful embedding.

Finally, group (3) reveals an interesting property of
SMURPH. First, the three cans are defective and missing the
bottom in their point cloud (Figure 5 right), making them
similar to the wine glass at (−0.6,−0.2). Second, when
SMURPH samples from a ball centered near the bottom, the
ball would contain the whole can except the cap. The points
in the ball then form a cylinder, which has a large hole. This
homology feature will enter APL. In other words, SMURPH
reflects both the overall topological structure of the object and
that of its parts. We call the latter topological texture.2 The
topological texture of the cans and the wine glass has its own
distinct APL signature, and is responsible for group (3).

3.2 Drusen Detection in Fundus Photography
Drusen are small yellowish hyaline deposits that develop be-
neath the retinal pigment epithelium. While drusen are nat-
ural phenomena that occur with aging, The presence of nu-
merous, larger drusen is predictive of macular degeneration.
Some drusen sites form small holes in skeletonized images
(Figure 6 right). This suggests SMURPH kernel can help in
classifying drusen vs. non-drusen images.

Data. Our sample consists of 67 retinal images, collected
as part of the STARE [Hoover and Goldbaum, 2013] project.
Of these, 35 have been labeled by experts as images with-
out drusen and 32 as images with drusen. We pre-process

2Such topological texture is also responsible for the long bottles,
which has no intrinsic 1st order holes, to enter group (1).



Figure 5: Three representative point clouds from the Pots and
Pans dataset and their average persistence landscape λ̄msbr .

Non-drusen image Drusen image

Figure 6: Fundus photographs and the point clouds after
skeletonizing.

the images by first binarizing (setting all non-zero pixel val-
ues to 1) and then skeletonizing with MATLAB’s bwmorph.
Our point cloud is then the coordinates of the nonzero pix-
els of this skeletonized image. To compute SMURPH ker-
nel, we sample patch centers with a uniform distribution over
the point cloud. We choose a resolution level of r = 8 and
m = 50, s = 1, b = 300.

Method. We compare SMURPH to two baselines: lin-
ear kernel and radial basis function (RBF) kernel. While
more sophisticated computer vision processing can undoubt-
edly enhance the baselines, our goal is to demonstrate the po-
tential of SMURPH without heavy feature engineering. We
tune all parameters (regularization C for SVM and band-
width σ for RBF kernel) using an inner cross validation (CV)
inside the outer CV training portion. The tuning grid is
C ∈ {2−7, 2−6, . . . , 27} and σ ∈ {100, 101, . . . , 103}. We
feed the kernels to an SVM (kernlab [Karatzoglou et al.,
2004]) for classification and report 5-fold CV accuracy.

Results. Table 1 summarizes our results. SMURPH kernel
outperforms the linear and RBF kernel baselines, demonstrat-
ing that SMURPH captures topological features that help to

Kernel Parameters Accuracy p-value
SMURPH C = 32 70.2% -

RBF C = 2, σ = 10 52.2% 0.040
Linear C = 2 43.3% 0.007

Table 1: 5-fold cross validation accuracy of SVM classifiers
on Fundus data set

detect drusen. To assess the significance of our result, we per-
form a t-test over the accuracy of our classifiers across the CV
folds, testing the accuracy of the SMURPH kernel against the
RBF kernel and the linear kernel. As reported in Table 1, for
either baseline we can reject the null hypothesis that accuracy
does not differ at the 0.05 level.

3.3 Human Activity Recognition
We now demonstrate SMURPH kernel’s ability to handle
point clouds from a state space. In an unsupervised learning
setting we show how kernel PCA embeds the n objects; in a
supervised learning setting we will use activity as the class
label and perform classification.

Data. The “daily and sports activities” data set [Altun et
al., 2010] contains sensor data of several everyday activi-
ties, among which we choose five representative ones: sitting
(A1), walking (A9), running (A12), jumping (A18), and play-
ing basketball (A19). Each activity is performed by 8 people
in their own style for five minutes. Each person’s data is a
time series measured at 25 Hz, for a total of 5∗60∗25 = 7500
measurements. Each measurement is 45-dimensional: 5 sen-
sor units placed on torso, right arm, left arm, right leg, and
left leg; each sensor unit contains x,y,z accelerometers, x,y,z
gyroscopes, and x,y,z magnetometers.

We treat each activity-person combination as an object for
a total of n = 5 ∗ 8 = 40 objects. Each object contains 7500
points. Each point has a time stamp and a 45-dimensional
measurement. No processing is performed on the measure-
ments.

Filtration with Timeline. Since each object here is a time
series, we present a special filtration design which is of inde-
pendent interest. A similar filtration has been used to model
sequences of natural language paragraphs [Zhu, 2013]. Let
the point cloud object be X = {x = (t, z)} where t is the
time stamp and z is the measurement vector at time t. Our
filtration has two unique steps:

(1) The ball is defined by t, not by z. That is, p is the
uniform distribution over time stamps in X . Once we sample
a center in time: c ∼ Pt, we define the ball B(c, r) = {x =
(t, z) ∈ X : ‖t− c‖ ≤ r}, which is in fact a time interval.

(2) We add a “timeline” (a set of edges) before Vietoris-
Rips filtration begins. Within B(c, r), we randomly sam-
ple b points x1 . . . xb. Sort these points by time so that
t1 < . . . < tb. We create the timeline by connecting points
(xi, xi+1) adjacent in time for i = 1 . . . b − 1. The Vietoris-
Rips filtration then proceeds as usual but uses the distance
metric on z. The final complex is the union of the timeline
and the filtration. All in all, the timeline acts as a pre-existing
temporal skeleton to help enhance the filtration. We compute
a b × b distance matrix D where Di,j = ‖zi − zj‖ and set



Di,i+1 = 0 for i = 1 . . . b − 1. Even though D no longer
satisfies the triangle inequality it can still serve as a filtration
function.

Unsupervised kernel PCA Results. We use two reso-
lution levels: r1 = 125 and r2 = 25 which correspond
to 10-second and 2-second intervals. We set the parame-
ters m = 10, s = 1, b = 100. We compute the 40 × 40
SMURPH kernel matrix with weights w1 = w2 = 1 in (7).
We then perform kernel PCA on this kernel matrix to embed
the 40 objects in 2D. Figure 7 shows the embedding with an-
notated activities. Overall the activities form clear clusters.
All eight participants’ sitting activities are overlapping at the
origin. This is expected because each sitting PL is nearly
empty. The participants’ walking activities are similar and
form a tight cluster next to sitting. The cluster of playing
basketball is more spread out than walking but tighter than
running. We speculate that although basketball is more phys-
ical, it also lacks clear periodicity, hence the in-between em-
bedding. Running as a cluster occupies an extreme region in
kernel PCA due to both strong activities and clear periodic-
ity. Finally, jumping is the only activity that spread out in the
embedding across the eight people. The original data collec-
tion in [Altun et al., 2010] instructed people to perform each
activity in free style. We suspect that the cluster spread may
be attributed to a large variation in how consistently people
jumped for five minutes, given that it is a physically demand-
ing activity.

Supervised activity classification. We perform a classi-
fication task to predict the five activities. The input is the
40 × 40 SMURPH kernel matrix. We measure 8-fold CV
error, where in each fold we use 7 people (total of 35 activ-
ities) as the training data, and leave all 5 activities from one
person out as test data. We use SVM light [Joachims, 2008]
with our SMURPH kernel. This SVM problem has a sin-
gle regularization parameter C. We tune C by an inner CV
within the first training fold of 7 people. On a parameter grid
C ∈ {10−5, 10−4, . . . , 105}, this inner CV selects C = 100.
We fix this C for all other outer cross validation folds. The
SVM CV accuracy with the SMURPH kernel is 95.0%. In
contrast, with a linear kernel the SVM CV accuracy is 62.5%.
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Figure 7: Kernel PCA with the SMURPH kernel on eight
people × five activities

4 Related Work
This paper is related to but differs from several recent work
in topological data analysis:

multi-resolution single-resolution
kernel ours KHNLB15, RHBK15, PHCJS11

non-kernel AFW14 Bubenik15, LOC14

The closest work AFW14 is the local persistent homology
proposed by Ahmed, Fasy, and Wenk [2014]. They computed
local relative homology based on PD at various resolutions to
compare street maps. SMURPH differs in that we build on
PL; we address scalability issue with Monte Carlo; and we
construct kernels to enable a much broader range of machine
learning applications.

Also closely related are KHNLB15 [Kwitt et al., 2015] and
RHBK15 [Reininghaus et al., 2015]’s multi-scale kernel. An
important difference is that the “scale” in their multi-scale
kernel means different amount of heat diffusion. Therefore,
their kernels always describe global topology but with vary-
ing amount of smoothing. In contrast SMURPH kernels are
defined over varying spatial scales, which allows us to see
both global topology and fine-grained “topological texture.”
In addition our PL-based kernel avoids the need to perform
heat diffusion on PDs as they do, and enjoys both conceptual
simplicity and computational savings. Both kernels exhibits
stability [Bubenik, 2015; Reininghaus et al., 2015] and can
be used for machine learning.

Bubenik [2015] pointed out that PL is a Hilbert space.
LOC14 [Li et al., 2014] used both PL and PD to measure
the global topological distance between point clouds. Their
methods did not aim to define kernels, nor did they study
multi-resolution. PHCJS11 [Pachauri et al., 2011] proposed
a topological kernel for studying Alzheimer’s disease. That
kernel is based on kernel density estimation within a PD.
However, this is a heuristic because a PD is not a 2D Eu-
clidean space. Our paper inherits Chazal et al.’s bootstrap
approach and approximates the persistent homology on a full
point cloud with that on a random sample [Chazal et al.,
2015b; Chazal et al., 2015a]. Their bootstrap approach loses
resolution with sampling; our multi-resolution approach ame-
liorates this issue.

5 Conclusion
We have presented a novel kernel that compares the topology
of point cloud objects. Our SMURPH kernel is multiresolu-
tional and can handle large point clouds. It serves as a new
bridge between topology and machine learning to encourage
further research that can benefit both communities.

There are many ways one can extend SMURPH. The ex-
periments in this paper are only proof-of-concept. One im-
portant task is to identify applications where SMURPH, in
conjunction with standard kernels, can significantly improve
the performance of machine learning applications. Another
important task is to go beyond kernel methods and bring the
same topological information into probabilistic models.
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