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Chapter 1

Introduction

Background. The Markov Decision Process (MDP), introduced by Richard Bell-

man as part of his foundational work on dynamic programming, has become one of

the most powerful tools for modeling decision-making under uncertainty. Just as

dynamic programming provides a general algorithmic strategy for solving sequential

problems, MDPs offer a remarkably expressive formalism for capturing a wide array of

optimization tasks. Classical problems such as the knapsack problem and the clique

problem, among others, can be encoded within the MDP framework. In fact, with

sufficient modeling flexibility, many discrete optimization problems can be cast as

MDPs and approximately solved using standard techniques. Reinforcement learning

(RL) further extends the power of this framework by enabling the solution of such

problems through repeated interaction with an environment, even in the absence of

an explicit model. The extension to Markov games (MG), multi-agent generalizations

of MDPs, broadens the scope even further to include competitive, cooperative, and

general multi-agent systems. Unsurprisingly, a framework of this generality and power

has become central to a wide range of real-world applications, including robotics,

finance, recommendation systems, online advertising, and autonomous control.
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Safe RL. However, when deployed in real-world environments, the standard Markov

game model may fail to capture the full spectrum of risks necessary to ensure agent

safety. For instance, an opponent may strategically conceal its true objectives to

manipulate an agent into dangerous or suboptimal behavior. In more severe cases, an

external attacker — or even benign but unpredictable sensory noise — can disrupt

the agent-environment interaction in subtle but critical ways. Consider, for example,

a nefarious actor who strategically and iteratively obscures road signs to mislead an

autonomous vehicle to a dangerous location. Even in the absence of adversaries, the

environment itself may present latent hazards that are not easily encoded within a

standard MG formulation. For example, a requirement to ensure a low probability of

tire failure over repeated delivery routes introduces complex probabilistic constraints

that fall outside the expressiveness of the basic framework since reward shaping

cannot induce precise probabilities of success.

The Safety Landscape. These examples illustrate that we must expand beyond

the standard model if agent safety is to be guaranteed. Generally, we see that

safety concerns manifest in two key ways, each corresponding to a fundamental

entity of the MG: threats from other agents and threats from the environment itself.

The first category — safety against adversarial agents or malicious attackers — is

the central focus of adversarial reinforcement learning (adversarial RL). Here, the

goal is to compute policies that are robust to worst-case opponents or external

perturbations. The second category — safety against environmental hazards or

operational requirements — is typically modeled through constraints and studied

within constrained reinforcement learning (constrained RL). In this setting, the goal

is to compute policies that satisfy constraints while maximizing the expected return.

Together, these two lines of research address both essential considerations necessary
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for deploying autonomous agents in high-stakes, uncertain environments.

Prior Work. Despite the importance of these fields, many fundamental open

problems have remained unresolved. On the adversarial RL side, prior work had

established how to compute optimal perceived-state attacks and had developed

no-regret strategies for reward poisoning. However, the general problem of designing

optimal attacks and, importantly, computing robust defense policies, remained

largely open. In addition, more realistic misinformation attacks, in which opponent

agents strategically misreport their rewards, had not been formally studied. On the

constrained RL side, existing results were limited to the computation of optimal

stochastic policies under expectation constraints. As a result, the foundational

question of efficiently computing safe deterministic policies or policies satisfying more

general classes of constraints remained unanswered for nearly 25 years.

Our Contributions. In this work, we aim to make progress on, if not entirely

resolve, each of the open questions outlined above. The first two chapters focus on

problems in adversarial RL, specifically the derivation of polynomial-time algorithms

for both attack and defense settings. The final three chapters address questions

in constrained RL, culminating in polynomial-time algorithms for computing near-

optimal deterministic policies that satisfy a multitude of constraint criteria. Here,

we focus on the single agent case in the first two chapters and then extend to the

full multi-agent setting in the last chapter. A breakdown of the main contributions

from each chapter follows.

1. In Chapter 2, we study classic manipulation attacks in multi-agent reinforcement

learning (MARL), where an opponent agent or external attacker can directly

alter components of the agent-environment interaction, such as observations
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and rewards. This chapter culminates in polynomial-time algorithms for the

attack problem under arbitrary attack surfaces, and for the defense problem

under any combination of non-perceived-state attacks. This work appeared in

AAAI 2024.

2. In Chapter 3, we study misinformation attacks in MARL. In this setting, an

opponent player in a two-player game can strategically share a falsified reward

function with the victim player. The opponent’s objective is to constrain

the victim’s rational responses to maximize their own payoff. This chapter

culminates in a polynomial-time algorithm for computing the optimal fake

reward function, when restricted to the class of dominant-column reward

matrices. This work appeared in RLC 2024.

3. In Chapter 4, we introduce a new type of constraint, called an anytime con-

straint, designed to ensure strict safety. An anytime constraint requires that the

cumulative cost incurred by a policy remains within budget at all time steps.

This chapter culminates in a polynomial-time (0, ϵ)-bicriteria approximation

algorithm for computing anytime-compliant policies. This work appeared in

AISTATS 2024.

4. In Chapter 5, we study the computation of deterministic policies for general

constrained MDPs with a single constraint. Here, we consider a class of

constraints characterized by generalized policy evaluation equations, which

includes expectation, almost-sure, and anytime constraints. This chapter

culminates in a fully polynomial-time approximation scheme (FPTAS) for

computing deterministic, constrained policies. This work appeared in NeurIPS

2024.

5. In Chapter 6, we extend the constrained policy computation framework to
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general constrained MGs with an arbitrary number of constraints. The con-

straint model considered includes all known variants studied in the literature,

including chance constraints. This chapter culminates in a polynomial-time

(0, ϵ)-bicriteria approximation algorithm for computing constrained policies.

This work appeared in ICML 2025.

Collectively, these results advance the theoretical foundations of safe reinforcement

learning by providing the first polynomial-time algorithms for a range of adversarial

and constrained decision-making settings.
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Chapter 2

Manipulation Attacks

Acknowledgments. This chapter was a joint work with Young Wu, Jerry Zhu,

and Qiaomin Xie that appeared in AAAI 2024.

Abstract. To ensure the usefulness of Reinforcement Learning (RL) in real systems,

it is crucial to ensure they are robust to noise and adversarial attacks. In adversarial

RL, an external attacker has the power to manipulate the victim agent’s interaction

with the environment. We study the full class of online manipulation attacks, which

include (i) state attacks, (ii) observation attacks (which are a generalization of

perceived-state attacks), (iii) action attacks, and (iv) reward attacks. We show the

attacker’s problem of designing a stealthy attack that maximizes its own expected

reward, which often corresponds to minimizing the victim’s value, is captured by a

Markov Decision Process (MDP) that we call a meta-MDP since it is not the true

environment but a higher level environment induced by the attacked interaction.

We show that the attacker can derive optimal attacks by planning in polynomial

time or learning with polynomial sample complexity using standard RL techniques.

We argue that the optimal defense policy for the victim can be computed as the

solution to a stochastic Stackelberg game, which can be further simplified into a
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partially-observable turn-based stochastic game (POTBSG). Neither the attacker

nor the victim would benefit from deviating from their respective optimal policies,

thus such solutions are truly robust. Although the defense problem is NP-hard, we

show that optimal Markovian defenses can be computed (learned) in polynomial

time (sample complexity) in many scenarios.

2.1 Introduction

Reinforcement Learning (RL) has become a staple with a plethora of applications

including the breakthrough ChatGPT [85]. With the growth of RL applications, it

is critical to understand the security threats posed to RL and how to defend against

them. In many applications, noisy measurements can cause the agent-environment

interaction to evolve entirely differently than what one would expect in theory. Even

worse, malicious attackers can strategically modify the agent-environment interaction

to induce catastrophic outcomes for the agent. If RL methods are to be used in

diverse and critical settings, it is essential to ensure these RL algorithms are robust

to potential attacks.

In adversarial RL, a victim agent interacts with an environment while being

disrupted by an attacker. The attacker has the power to manipulate each aspect

of the victim-environment interaction. In particular, the attacker can change: (i)

the environment’s state (state attacks), (ii) the victim’s observation (observation

attacks), (iii) the action taken by the victim (action attacks), and (iv) the reward

received by the victim (reward attacks). When the environment is fully-observable,

observation attacks translate to well-studied perceived-state attacks. We refer to

all of these attack surfaces by online manipulation attacks. The attacker may use

a subset or all of these attack surfaces to optimize its own expected reward from
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the attack, which often corresponds to minimizing the victim’s value. However, the

attacker cannot perform arbitrary manipulations without raising suspicion. Hence,

the attacker must restrict its manipulations to a predefined set of stealthy attacks.

On the other hand, the attacker-aware victim seeks to choose a defense policy whose

value is provably robust even under the worst possible stealthy attack.

From the attacker’s perspective, it faces an optimal control problem: it needs

to strategically choose stealthy attacks to optimize its value. Unlike typical control

problems, the attacker must deal with the uncertainty of the victim’s actions in

addition to that of the stochastic environment. Thus, the attacker’s problem involves

a multi-agent feature. For any fixed victim policy π, we can view the attacker’s

problem as computing its best response attack to the victim’s chosen π. From the

victim’s perspective, we argue it faces a Stochastic Stackelberg game: it needs to

choose a policy that achieves maximum value in the environment under the attacker’s

best-response attack. A defense policy designed following this principle ensures

neither the victim nor the attacker would benefit from deviating from their chosen

policies, and so an equilibrium would be achieved. This implies that regardless of the

attack, the defense policy always achieves at least the game’s optimal value. However,

computing optimal Stackelberg strategies for stochastic games is NP-hard. Thus,

both the attacker and the victim are faced with challenging optimization problems.

Although the attack and defense problems are of great importance, complete

solutions have yet to be discovered. For the attack problem, most works focus on the

empirical aspects, lacking theoretical guarantees. Provably optimal attacks have only

been devised for the special case of test-time, perceived-state attacks [99, 129, 104].

The situation is even worse for the defense problem, which is arguably more important.

Nearly all proposed defenses are designed to be effective against a specific, known

attack. This results in a cat-and-mouse game: the attacker can just design a new
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attack for the given defense policy and so the victim would always be at risk. In

addition, the two approaches with provable guarantees are restricted to the planning,

reward-poisoning setting [8], and the test-time, perceived-state attack setting [130].

Furthermore, neither defense can be computed efficiently and it is unrealistic to

assume the victim knows the attacker’s exact algorithm.

Our Contributions. Despite the challenges of the attack and defense problems, we

develop frameworks for computing optimal attacks and defenses for any combination

of attack surfaces, which are provably efficient in many cases. From the attacker’s

side, we show that for any fixed victim policy, the optimal attack can be computed as

the solution to another Markov Decision Process (MDP). We call this environment a

meta-MDP since it is not the true environment, but is a higher-level environment

induced by the victim-attacker-environment interaction. Importantly, the attacker

can simulate an interaction with the meta-MDP by interacting with the victim

and the true environment. Hence, the attacker can attack optimally by solving

the meta-MDP using any standard MDP planning or RL algorithms. In addition,

we show that the size of the meta-MDP is polynomial in the size of the original

environment and the size of the victim’s policy. Thus, optimal attacks can always be

computed or learned efficiently. Our framework also extends to linear MDPs. Hence,

we provide the first provably optimal attacks for beyond perceived-state attacks and

the first provably optimal attacks for the linear setting, all of which can be computed

in polynomial time. We note our framework also solves the certifying robustness

problem posed in [118].

On the victim’s side, we argue that the defense problem is most naturally modeled

by a stochastic Stackelberg game [113], which can be captured by a much simpler

partially-observable turn-based stochastic game (POTBSG) [49]. Thus, the victim



10

can compute its optimal robust defense by finding a weak Stackelberg equilibrium

(WSE) for the meta-POTBSG. Again, the victim can simulate the meta-POTBSG

by interacting with the attacker and the true environment. When the attacker is

adversarial, the victim can defend optimally by solving the meta-POTBSG using any

standard zero-sum POTBSG planning or distributed learning algorithms. Unlike the

attack problem, we show that the victim’s defense problem is NP-hard in general

even to find approximate solutions when observation attacks are permitted. However,

we show that optimal Markovian defenses can be computed efficiently when excluding

observation attacks by exploiting the sequential nature of the attacks. This gives a

broad class of games for which WSE is computable. Overall, we present the first-ever

provable defense algorithms for both the planning and learning settings and show

our defenses can be computed efficiently for a broad class of instances.

2.1.1 Related Work

Many prior works have studied adversarial RL under various models and objectives.

Amongst the first works, Behzadan and Munir [9], Huang et al. [58], Kos and Song

[66] study perceived-state attacks through the lens of adversarial examples for deep

neural nets [42]. Kos and Song [66] also considers adversarial examples, but with

the goal of minimizing the number of attacks needed to achieve large damage. These

works focused on achieving large damage at the current time. Later Lin et al.

[71], Sun et al. [103] developed more advanced heuristics that incorporate future

value into their attacks to achieve long-term damage. Meanwhile, Tretschk et al.

[108] trained an adversarial deep net to compute perturbations that allows other

objectives for the attacker.

Afterward, many works began considering the objective of maximizing the damage

to the victim rather than minimizing the number of attacks. Russo and Proutiere
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[99], Zhang et al. [129] developed optimal algorithms for computing perceived-state

attacks. Both works formulated the attack problem as a different MDP as we do

here. Sun et al. [104] formulated an actor-director model for the attack problem that

is easier to solve for some MDPs and retains guarantees of optimality. The idea

of adversarial training was then used in conjunction with the attack formulation

from [129] to obtain experimentally robust victim policies [130].

Action and reward attacks have been considered heavily in the training-time

setting. For example, Tessler et al. [106], Lee et al. [67] considered action attacks.

Reward poisoning attacks are the focus of the work by Zhang et al. [131], Rangi et al.

[95]. In fact, a combination action and reward attack are devised by Rangi et al. [95].

Most of these works consider the policy teaching setting, where the attacker’s goal is

for the victim to follow a fixed policy π†. Some algorithms achieve sublinear regret

for the attacker when the victim policy is no regret [72]; though, none compute

truly optimal attacks.

2.2 Attack Surfaces

POMDPs. We denote a infinite-horizon discounted environment POMDP by M =

(S,O,A, P, R, γ, µ) where (i) S is the state set, (ii) O is the observation set, (iii) A is

the action set, (iv) P : S ×A → ∆(S) is the transition kernel, (v) R : S ×A → ∆(R)

is the reward distribution, (vi) γ is the discount factor, and (vii) µ ∈ ∆(S) is the

initial state distribution. We let O(s) denote the distribution of observations at state

s. We also let R denote the set of all supported rewards. The total expected reward

the victim receives from following policy π in environment M is its value, i.e., the

expected cumulative discounted rewards V π
M := Eπ

M [
∑∞

t=0 γ
tr(st, at)].

Suppose the victim interacts with a Markovian environment, M , using a fixed
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stationary, Markovian policy π : O → ∆(A). At any time t, let st denote M ’s current

state and ot denote the generated observation. In the standard setting, the victim

chooses an action at ∼ π(ot) and then receives a reward rt ∼ R(st, at). Afterwards,

M transitions to its next state st+1 ∼ P (st, at). We see there are several points

during time t at which information is exchanged between the victim and M . We

further break down the interaction at time t based on these points of information

exchange, which we call subtimes :

1. At the first subtime, t1, M receives its state st ∼ P (st−1, at−1).

2. At the second subtime, t2, the victim receives its observation ot ∼ O(st).

3. At the third subtime, t3, M receives the victim’s action at ∼ π(ot).

4. At the fourth subtime, t4, the victim receives its reward rt ∼ R(st, at).

Online Attacks. In the adversarial setting, a third-party called the attacker

interferes with the victim-M interaction. Here, the attacker may intercept and then

corrupt the information being exchanged between the victim and environment M .

The attacker has access to four attack surfaces:

1. (State Attack) A state attack changes the state of M from st to s†t . The attack

influences the observation ot ∼ O(s†t). If M receives action at, the attack also

influences the reward rt ∼ R(s†t , at) and the next state st+1 ∼ P (s†t , at).

2. (Observation Attack) An observation attack causes the victim to receive ob-

servation o†t instead of ot ∼ O(st). The attack influences the victim’s action

at ∼ π(o†t).

3. (Action Attack) An action attack causes M to receive action a†t instead of at.

The attack influences the reward rt ∼ R(st, a
†
t) and next state st+1 ∼ P (st, a

†
t).
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4. (Reward Attack) A reward attack causes the victim to receive reward r†t instead

of reward rt ∼ R(st, at).

We call each of these attack surfaces as online manipulation attacks. These attack

surfaces in conjunction give the attacker the power to corrupt every element of the

triple (s, a, r) that define the interaction between the victim and M .

If M is fully observable, observation attacks correspond to perceived-state attacks,

which change what the victim thinks is M ’s state. Notice unlike the other surfaces,

state attacks could be performed at two different subtimes. Namely, the attacker can

change the state before M transitions at t1 or before M receives the victim’s action

at t3. For simplicity, we assume state attacks only happen at t1, but our results

apply equally well to both versions.

Adversarial Interaction. Overall, the victim-attacker-M interaction at time t

now evolves as follows:

1. At subtime t1, M is in state st.

(a) Attacker: changes st to s†t .

(b) M : enters state s†t and generates observation ot ∼ O(s†t).

2. At subtime t2, M is in state s†t and has generated observation ot.

(a) Attacker: changes ot to o†t .

(b) Victim: chooses action at ∼ π(o†t).

3. At subtime t3, M is in state s†t and the victim chose action at.

(a) Attacker: changes at to a†t .

(b) M : generates reward rt ∼ R(s†t , a
†
t) and generates state st+1 ∼ P (s†t , a

†
t).
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4. At subtime t4, M has generated reward rt.

(a) Attacker: changes rt to r†t .

(b) Victim: receives reward r†t .

This process then repeats starting from st+1.

Attacker Constraints. In general, the attacker may not arbitrarily manipulate

the interaction. For example, some attacks may be physically impossible or risk

detection. As such, we assume the attacker has a set B that defines the feasible

manipulations it can perform. For example, the attacker might require a manipulated

observation to be visually similar to the true observation. Thus, the set of feasible

observation attacks should depend on the true observation. Applying the same logic

to each attack surface, we see the feasible attack sets should take the form: B(s) ⊆ S,

B(o) ⊆ O, B(a) ⊆ A, and B(r) ⊆ R. However, in some cases, the feasibility of

an attack would depend on the interaction before the attack, not just the current

element being manipulated. To be fully general, we allow the feasibility sets to

take the form: at subtime t1, B(s) ⊆ S; at subtime t2, B(s, o) ⊆ O; at subtime t3,

B(s, o, a) ⊆ A; and, at subtime t4, B(s, o, a, r) ⊆ R.

2.3 Optimal Attacks

Attacker’s Goal. We saw how an attacker can disrupt an interaction but have

yet discussed why it would do this. Suppose the attacker has a reward function

g(s, a, r) that depends on the victim’s received reward, possibly in addition to M ’s

state and the victim’s action. The attacker’s goal is then to construct an attack

that maximizes its own expected reward. Commonly, an attacker just wants to

minimize the victim’s expected reward under attack, or equivalently maximize the
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damage to the victim’s expected reward. In this case, the attacker’s reward function

is g(s, a, r) = −r. Alternatively, the attacker may want the victim to behave in a

specified way. This goal is equivalent to the attacker wanting the victim to choose

actions that match a fixed target policy π† as often as possible. In this case, the

attacker’s reward function is g(s, a, r) = 1
{
a = π†(s)

}
.

Definition 1 (Attack Problem). For any π, the attacker’s seeks a policy ν∗ ∈ N

that maximizes its expected reward from the victim-attacker-M interaction:

ν∗ ∈ argmax
ν∈N

Eπ,ν
M

[
∞∑
t=0

γtg(st, at, rt)

]
. (2.1)

We show that the attacker’s problem is captured by a MDP. The key insight is

that by defining the attacker’s state set to capture the results of previous attacks

from t1 up to the current subtime, then each attack becomes Markovian with respect

to the expanded state set. This is not a significant burden on the attacker since it

would need to keep track of this information anyway to compute the feasible attack

sets. Thus, the attacker just needs to keep track of the information within a time

step to compute optimal attacks.

Definition 2 (Meta-MDP). For any victim policy π, the attacker’s meta-MDP is

M̄ = (S̄, Ā, P̄ , r̄, γ, µ̄) where,

• S̄ = S ∪ (S ×O) ∪ (S ×O ×A) ∪ (S ×O ×A×R).

• Ā(s) = B(s), Ā(s, o) = B(s, o), Ā(s, o, a) = B(s, o, a), and Ā(s, o, a, r) =

B(s, o, a, r).

• The transitions vary per subtime. Let s̄ ∈ S̄, ā ∈ Ā(s̄), and s̄′ ∈ S̄.

1. If s̄ = s, then ā = s† and s̄′ = (s†, o): P̄ (s̄′ | s̄, ā) = O(o | s†).
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2. If s̄ = (s, o), then ā = o† and s̄′ = (s, o†, a): P̄ (s̄′ | s̄, ā) = π(a | o†).

3. If s̄ = (s, o, a), then ā = a† and s̄′ = (s, o, a†, r): P̄ (s̄′ | s̄, ā) = R(r | s, a†).

4. If s̄ = (s, o, a, r), then ā = r† and s̄′ = s′: P̄ (s̄′ | s̄, ā) = P (s′ | s, a).

All other transitions have probability 0.

• Let s̄ ∈ S̄, and ā ∈ Ā(s̄). If s̄ = (s, o, a, r) and ā = r†, then r̄(s̄, ā) = g(s, a, r†).

For all other meta-states, r̄(s̄, ā) = 0.

• γ = γ1/4.

• µ̄(s) = µ(s) for s ∈ S and µ̄(s̄) = 0 otherwise.

Reward Subtlety. Note that the attacker only receives a reward at every fourth

subtime. This means the discount factor has to be “slowed down” so that the factor

at every fourth time step matches that of each single time step of M . Specifically,

choosing γ = γ1/4 ensures that γ4t = γt.

Proposition 1. The maximum expected reward the attacker can achieve from any

attack on π is V ∗
M̄

, the maximum expected total discounted reward for the meta-MDP

M̄ . Furthermore, any optimal deterministic, stationary policy ν∗ for M̄ is an optimal

attack policy.

Online Interaction. Suppose the attacker has computed some attack policy ν

from M̄ . In order to use ν to interact with the victim and M , the attacker must

know the meta-state at any given subtime. As long as the attacker can observe

the interaction between the victim policy π and M , it can effectively simulate the

interaction with the meta-MDP M̄ online using a constant amount of memory. At

time t, the attacker only needs to store st, ot, at, and rt when they are revealed to
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Algorithm 1 Attacker Interaction Protocol
Input: (π, ν)

1: for t = 1 . . . do
2: Attacker sees st, and computes a state attack s†t = ν(st)
3: Attacker sees ot ∼ O(s†t), and computes o†t = ν(st, ot)
4: Attacker sees at ∼ π(o†t), and computes a†t = ν(st, ot, at)
5: Attacker sees rt ∼ R(s†t , a

†
t), and computes r†t = ν(st, ot, at, rt)

6: Attacker receives reward g(s†t , a
†
t , r

†
t ), and forgets (st, ot, at, rt)

the attacker. With this information, the attacker knows the meta-state for each

subtime and so can apply ν to determine its next attack. Upon reach the next time

t+ 1, the attacker can forget st, ot, at, and rt and start from st+1. See Algorithm 1.

Solving M̄ . If the attacker has full knowledge of M and the victim’s policy π, then

the attacker has all the knowledge needed to construct the meta-MDP M̄ . Once M̄

is constructed, the attacker can use any planning algorithm, such as policy iteration,

to compute the optimal attack. Alternatively, if the attacker does not know M and

π, it can still simulate interacting with M̄ online as described before to perform

learning. In particular, the attacker can replace the call to ν in Algorithm 1 with

any off-the-shelf learning algorithm. For the episodic setting, we view the attacker

as attacking a new victim following the same policy π in each episode.

Observe that |S̄| ≤ |S||O||A||R|, |Ā| ≤ |S| + |O| + |A| + |R|, and γ = γ1/4.

Thus, whenever M ’s rewards are finitely supported, |M̄ | = poly(|M |), where |M |

is the total size of M ’s description. As such, any polytime planning algorithm or

polynomial sample-complexity learning algorithm applied to M̄ yields an algorithm

for computing optimal attacks that has polynomial complexity.

Proposition 2. When M ’s rewards have finite support or no reward attacks are

allowed, |M̄ | = poly(|M |). Thus, an optimal attack policy can be computed in
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polynomial time by planning in M̄ , and learning an optimal attack policy can be

performed with polynomial sample complexity by learning in M̄ .

Remark 1 (Restricted Surfaces). By restricting Ā to singleton sets (e.g. set Ā(s, o, a)

= {a} to disallow action attacks), M̄ recovers optimal attacks for each individual

surface as well as attacks for any subset of available attack surfaces. This captures

all standard test-time attacks, generalizing the perceived-state attack MDP of [129].

We also note if the attacker does not perform reward attacks, M̄ can be modified to

avoid R and so M having finite supported rewards is unnecessary in the complexity

results.

One might ask whether the perceived-state attack MDP defined in [129] would

work in the linear setting. We point out that the transition takes the following form,

P̃ (s′ | s, s†) = Ea∼π(s†)P (s
′ | s, a)

=

∫
a

P (s′ | s, a)π(a | s†)da.

As π and P are multiplied together, P̃ would be a quadratic transition. On the other

hand, our particular choice of subtimes induces linear structure in M̄ . Specifically,

each transition of P̄ is defined by a single distribution involving π or M . If both π

and M have a linear structure, then so will M̄ . Then, M̄ can be solved by standard

linear RL algorithms. Thus, so long as π is linear, the attacker can compute optimal

attacks on linear environments.

Theorem 1. If M is linear and π is linear, then M̄ is linear. Furthermore, the

dimension of M̄ , d(M̄), is at most max{d(π), d(M)}+1. Thus, if π is linear, optimal

attacks on linear environments can be computed or learned efficiently

Remark 2 (Beyond Markovian Policies). Our construction can be easily modified to

handle non-Markovian victim policies. If the victim uses some finite amount of past
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history H̃, we simply modify the meta-state space to remember the same amount

of past history and adjust the construction appropriately. The size of M̄ is now a

polynomial in both |M | and the size of the policy when described explicitly as a

mapping from histories to action distributions. We defer the details to the Appendix.

2.4 Optimal Defense

Now that we have seen how the attacker can best attack, it begs the question of how

the victim should defend against attacks. Intuitively, the victim should choose a

defense policy that is robust to attack. However, it does not suffice to just be robust

against a particular attack. In fact, the attacker could lie about its attack algorithm

to bait the victim into choosing a policy that actually benefits the attacker. Even if

some attacker does use that particular attack algorithm, other attackers may employ

different methods that lead the victim to poor value. As new attacks are formulated,

the victim would have to constantly create more complex policies designed with all

known attacks in mind. This would become a never-ending cat-and-mouse game

during which the victim’s policy will often be at risk of new attacks. Thus, for a

policy to be satisfactorily robust, we require it to be robust against the worst possible

attack. This way, no matter what future strategies an attacker may use, the victim

is already prepared.

We can formalize this intuition using the Stackelberg approach for Security

Applications [65]. For any π and ν, let V π,ν
1 and V π,ν

2 denote the victim’s and

attacker’s expected reward respectively under the victim-attacker-M interaction

induced by π and ν. Note, both of these quantities can be computed efficiently

using the previous section’s techniques. Let V1 and V2 denote infinite matrices whose

(π, ν) entry corresponds to V π,ν
1 and V π,ν

2 respectfully. We define an infinite bimatrix
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game G whose payoff matrices are (V1, V2). For any fixed victim π, it is clear that a

rational attacker would play some best-response policy, ν ∈ BR(π) := maxν∈N V
π,ν
2 .

Thus, an optimal defense policy is exactly an optimal Stackelberg strategy for player

1 in G [25].

Definition 3 (Defense Problem). The victim seeks a policy π∗ that maximizes its

expected reward from the victim-attacker-M interaction under the worst-case attack:

π∗ ∈ max
π∈Π

min
ν∈BR(π)

V π,ν
1 . (2.2)

Observe that this solution is truly robust: by definition, the attacker given π

would never want to deviate from BR(π), and similarly, by definition the victim

would never want to deviate from its defense policy when assuming the worst possible

attack. Thus, we consider such attack and defense policies as truly optimal. However,

as the victim faces partial observability, an optimal defense for the victim is history-

dependent in general. Consequently, the attacker’s best response must also be

history-dependent. Thus, Π and N consist of history-dependent policies in the

definition above.

Although optimal Stackelberg strategies for Stochastic games are generally difficult

to compute [68], we can exploit the special structure of the victim-attacker-M

interaction to develop useful algorithms. Recall that at subtime t2 in Algorithm 1,

the attacker changes the observation to o†, and then the victim chooses an action

a = π(o†). If we simply give the victim the autonomy to choose any action a at

this point rather than according to a fixed policy π, then this interaction evolves

like a turn-based game. In fact, we show this game can be modeled as a partially

observable turn-based stochastic game (POTBSG) [133]. POTBSGs exhibit much

more structure than a general imperfect-information stochastic game, so enable more
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efficient solution methods. We see the construction is almost identical to Definition 2.

Definition 4. The victim-attacker’s POTBSG is G = (S̄1 ∪ S̄2,O, Ā, P̄ , r̄, γ, µ̄)

where,

• S̄1 := S ×O× {∅} and S̄2 := S ∪ (S ×O)∪ (S ×O×A)∪ (S ×O×A×R).

• O(s̄) := o for s̄ = (s, o,∅) and O(s̄) := s̄ otherwise.

• Ā(s) := B(s), Ā(s, o) := B(s, o), Ā(s, o,∅) := A, Ā(s, o, a) := B(s, o, a), and

Ā(s, o, a, r) := B(s, o, a, r).

• Let s̄ ∈ S̄, ā ∈ Ā(s̄), and s̄′ ∈ S̄.

1. If s̄ = s, then ā = s† and s̄′ = (s†, o):

P̄ (s̄′ | s̄, ā) := O(o | s†).

2. If s̄ = (s, o), then ā = o† and s̄′ = (s, o†,∅):

P̄ (s̄′ | s̄, ā) := π(a | o†).

3. If s̄ = (s, o,∅), then ā = a and s̄′ = (s, o†, a):

P̄ (s̄′ | s̄, ā) := 1.

4. If s̄ = (s, o, a), then ā = a† and s̄′ = (s, o, a†, r):

P̄ (s̄′ | s̄, ā) := R(r | s, a†).

5. If s̄ = (s, o, a, r), then ā = r† and s̄′ = s′:

P̄ (s̄′ | s̄, ā) := P (s′ | s, a).

All other transitions have probability 0.

• Let s̄ ∈ S̄, and ā ∈ Ā(s̄). r̄1(s̄, ā) := r† and r̄2(s̄, ā) := g(s, a, r†) if s̄ =

(s, o, a, r) and r̄1(s̄, ā) := r̄2(s̄, ā) := 0 otherwise.

• γ := γ1/5.
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• µ̄(s) := µ(s) for s ∈ S and µ̄(s̄) := 0 otherwise.

Note that S̄1 is the set of states in which the victim takes an action, and S̄2 is

the set of states in which the attacker takes an action. The observation and action

set O and Ā as functions of the states are combined for the two players, and this

implies that the observations and actions for the victim are Ā(S̄1) and O(S̄1), and

for the attacker are Ā(S̄2) and O(S̄2). Observe that V π,ν
G,1 = V π,ν

1 and V π,ν
G,2 = V π,ν

M̄

and so G is just the normal-form representation of the POTBSG G.

Proposition 3. Any WSE for G yields an optimal defense policy.

In general, methods to compute WSE are unknown. However, we show many

settings where a WSE for G can be computed, even efficiently. First, suppose the

attacker is completely adversarial so that G becomes a zero-sum game. In this case,

it is known that WSE = SSE = NE. Thus, it suffices to compute an NE for a

zero-sum POTBSG.

Proposition 4. If the attacker is completely adversarial, an optimal defense policy

can be computed as an NE of G using any planning or distributed learning algorithms

for zero-sum POTBSGs.

Note, it is important that the victim uses a distributed learning algorithm since

it would not be able to see the attacker’s manipulations, only the effects of the

manipulations, nor be able to collaborate with the attacker. From Proposition 3, we

see that the victim can compute an optimal defense policy to an adversarial attacker

by computing any CCE to G. However, even computing an approximately optimal

Markovian policy against a fixed attack is equivalent to solving a POMDP, which

is NP-hard [73]. Thus, computing near-optimal defenses is intractable in the worst

case.
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Proposition 5. For any ϵ > 0 an ϵ-approximate optimal defense policy is NP-hard

to compute even when restricting Π and N to be the class of Markovian policies.

Efficient Methods. The main bottleneck to computing defenses efficiently in

fully-observable systems is the presence of perceived-state attacks. Absent these

attacks, the POTBSG specializes to a traditional TBSG, which is a special case of a

stochastic game.

Observation 1. When M is fully observable and the attacker cannot perform

perceived-state attacks, G simplifies to a TBSG.

In the adversarial case, we see that G is simply a zero-sum TBSG. In zero-sum

TBSGs, even stationary NE can be computed or learned efficiently [27] unlike the

case with CCE for MGs [29] and the solutions are exact.

Proposition 6. If M is fully-observable, no perceived-state attacks are allowed,

and M ’s rewards have finite support (or no reward attacks are allowed), and the

attacker is adversarial, then an optimal stationary defense policy can be computed in

polynomial time and learned with polynomial sample complexity.

Although it is unclear whether Markovian policies guarantee the victim as much

value as history-dependent ones, Markovian policies are commonplace since they are

easier to store and deploy in practice. In fact, for the finite-horizon planning setting,

the attacker need not be restricted. We give polynomial time planning algorithms

to compute an optimal defense so long as perceived-state attacks are banned. To

our knowledge, this is the first non-trivial setting for which WSE can be computed

efficiently and the first non-trivial setting for which SSE can be computed beyond

single-period games.
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Theorem 2. If M is fully-observable and has a finite horizon, no perceived-state

attacks are allowed, and M ’s rewards have finite support (or no reward attacks are

allowed), then an optimal defense policy can be computed in polynomial time.

The intuition is the victim can simulate the attacker’s best-response function

using backward induction. Once it knows the best response for a particular stage

game, it can then brute-force find the best action to take at that stage. The key

insight is that the attacker’s best response is always deterministic since it gets to see

the victim’s realized actions. Thus, the victim also has no benefit from randomization.

As such, the victim can brute-force compute its optimal deterministic action to take

during a single stage and then propagate that solution backward to be used in

previous times.

To illustrate this, we derive a backward induction algorithm for efficient defense

against action attacks and present the full defense algorithm in the Appendix.

Suppose the victim has already committed to {π∗
t }Ht=h+1, where H is the finite time-

horizon. Clearly, for any choice of victim’s action a, the attacker’s best response to

a and the future partial policy is:

BRh(s, a) = argmax
a†∈Ā(s,a)

gh(s, a, rh(s, a)) + Es′∼Ph(s,a†)V
∗
h+1,2(s

′, π∗
h+1(s

′)),

where V ∗
h,2(s, a) is the maximum value achieved. Then, the victim can compute its

best action for the stage game (h, s) as a maximizer of,

V ∗
h,1(s) =max

a∈A
min

a†∈BRh(s,a)
rh(s, a

†) + Es′∼Ph(s,a†)V
∗
h+1,1(s

′).

The construction for defending against all non-perceived state surfaces is a bit

more complicated but retains this same structure.
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Remark 3 (Multi-Agent Extension). We note that all of our results remain the same

when multiple victims are present. This can be done without changing any of the

previous notations by interpreting A = A1× . . .×An as the joint action space and π

as a joint policy. From the attacker’s perspective, attacking many victims just looks

like attacking a single victim with a large action space. A WSE in G still breaks up

into an independent joint policy for the victims and the attacker, but the joint policy

may require the victims to correlate with each other.

2.5 Experiments

We illustrate our frameworks with a classical grid-world shortest path problem with

obstacles. Here, each state is a cell in a n× n grid. Some grid cells are filled with

lava and so dangerous to the victim. From any cell, the victim can move left (L),

right (R), up (U), or down (D) so long as it remains on the grid. In addition, the

victim can stay (S) in its current cell. The agent wishes to get from the top-left

cell (0, 0) to the bottom-right, “goal”, cell (n− 1, n− 1) as quickly as possible while

avoiding lava. To capture this goal, we assume the victim receives a reward of 1 for

entering the goal cell and continues to receive a reward of 1 for each time it remains

there to incentivize the victim to reach the goal quickly. We also assume the victim

receives a penalty reward of −H whenever it enters a lava cell, where H is the finite

horizon.

Here, we test our methods on a 10×10 grid world with H = 20 so that the victim

has enough time to reach the goal and stay there. We computed an optimal policy

π∗ for the grid, which achieves the victim a value of 3. In Figure 2.1 we visualize π∗

through the path the victim follows when using π∗. The black cells represent a cell

the victim entered during its interaction. The orange cells represent lava.
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Figure 2.1: Optimal Policy Path.

Figure 2.2: Attacked Paths.

2.5.1 Grid Attacks

The attacker can utilize its surfaces to disrupt the victim’s path. For simplicity,

assume that the attacker is purely adversarial and so it seeks to prevent the victim

from reaching the goal and even trick it into lava cells if possible. Suppose that most

of the grid is under security and so attacks cannot be safely made. The attacker is

restricted to only attacking edges of the grid, which are not monitored. Here, the

regions include the top-right subgrid and the bottom-left subgrid shaded in yellow.

However, in those regions, it may use any attack it likes from its given surface.

In Figure 2.2, we see from left to right the path under an optimal perceived-state

attack, true-state attack, and action attack. The agent receives −100, 0, and −160

value from each attack respectively. In all cases, the victim no longer reaches the goal

after getting attacked in the top-right subgrid. We see the perceived-state attack

functions by tricking the agent into entering lava; whereas the action attack simply

forces the victim into lava. On the other hand, the state attacks can transport the

victim into lava, but they immediately leave and so suffers less damage than in the

other attacks despite seeming to be the most powerful.
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Figure 2.3: Defense Policy Path

2.5.2 Grid Defense

We see that if the victim simply follows π∗, the effects of attacks can be catastrophic.

The victim knows the upper-right and bottom-left subgrids are not monitored and

so can assume attacks are conducted there. Using this information, the defense

algorithm yields a policy π̂ that completely avoids the unsafe region. The victim

still achieves the optimal value of 3 even under the strongest-possible attack. The

new path under attack is illustrated in Figure 2.3. We see the robust path simply

squeezes between the two unsafe regions.

2.6 Conclusion

In this chapter, we rigorously studied the attack and defense problems of reinforcement

learning. We showed that for any attack’s surface, a malicious attacker can optimally

and efficiently maximize its own rewards by solving a higher lever meta-MDP. Even

against linear environments, an attacker can still efficiently compute optimal attacks.

Thus, we call for an agent to play a robust policy to be safe against such attacks.

To this end, we formally defined the defense problem to be a weak-Stackelberg

equilibrium of the natural partially-observable turn-based stochastic game that is

induced by the victim-attacker-environment interaction. In the zero-sum setting, we

showed the defense problem boils down to finding a Nash equilibrium in a zero-sum

POTBSG so standard planning and learning methods can find optimal defense
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policies. When perceived-state attacks are not allowed, the victim can also compute

an optimal defense policy in polynomial time using a robust backward induction

algorithm. Although we present an optimal defense, this defense may not be useful

if the attacker is too powerful. It is critical for the victim to improve its detection

abilities to restrict the attacker’s feasible actions.
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Chapter 3

Misinformation Attacks

Acknowledgments. This chapter was a joint work with Young Wu, Yudong Chen,

Jerry Zhu, and Qiaomin Xie that appeared in RLC 2024.

Abstract. We study security threats to Markov games due to information asymme-

try and misinformation. We consider an attacker player who can spread misinforma-

tion about its reward function to influence the robust victim player’s behavior. Given

a fixed fake reward function, we derive the victim’s policy under worst-case rationality

and present polynomial-time algorithms to compute the attacker’s optimal worst-case

policy based on linear programming and backward induction. Then, we provide an

efficient inception ("planting an idea in someone’s mind") attack algorithm to find

the optimal fake reward function within a restricted set of reward functions with

dominant strategies. Importantly, our methods exploit the universal assumption

of rationality to compute attacks efficiently. Thus, our work exposes a security

vulnerability arising from standard game assumptions under misinformation.
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3.1 Introduction

As multi-agent systems become increasingly decentralized and privacy-focused, games

with incomplete information become inevitable. In many scenarios, a player only

has partial information about the opponent’s rewards and rationality, gleaned from

external sources like the internet. However, misinformation spread by the oppo-

nent—possibly through fake news—can significantly impact the player’s decision-

making. For example, participants in first-price auctions may intentionally misrep-

resent their intended bids to manipulate other bids downward. To build robust

multi-agent systems, it is crucial to understand the impact of misinformation on

games.

We focus on two-player Markov Games (MG). We suppose that the second player,

the attacker, knows both reward functions, (R1, R2). In contrast, the first player,

the victim, only knows its reward function, R1, and a misinformed attacker reward

function, R†
2. A robust victim also constructs an uncertainty set Πb

2(R
†
2) of possible

attacker policies. Nevertheless, the attacker can choose R†
2 to manipulate the victim’s

behavior. We call these fake rewards inception attacks. The attacker’s goal is to

design an inception attack that optimizes its worst-case utility.

Although inception attacks can be devastating, computing optimal attacks is often

challenging. Unlike standard reward poisoning [120], an inception attack can not

modify both players’ rewards, which is necessary to illicit arbitrary victim behavior.

Even if an oracle gave the attacker optimal fake rewards, computing a worst-case

optimal attacker policy is a constrained optimization problem with nested maximins.

Moreover, due to the information asymmetry, the attacker cannot utilize standard

algorithms for computing robust optimization equilibrium (ROE) [2] or Bayes-Nash

equilibrium (BNE) [50] to tackle this lower-level policy optimization problem.



31

Our Contributions. Although the computational complexity of inception might

seem to limit its threat, we show that inception attacks can be efficiently computed

by leveraging the universal rationality assumptions in multi-agent reinforcement

learning (MARL). Specifically, for any rational or robust victim, we present an

efficient algorithm for computing optimal dominant-policy inception attacks. The key

insight is a rational victim always best-responds to a perceived attacker dominant

strategy. Consequently, if the attacker focuses on fake reward functions admitting a

dominant strategy, its complex optimization can be solved efficiently via backward

induction. Our work exposes a security vulnerability arising from standard game

assumptions under misinformation, motivating the need for novel approaches to

building robust multi-agent systems.

To develop our inception algorithm, we first characterize outcomes in MGs with

misinformation under worst-case rationality. Armed with these insights, we propose

an efficient approach to compute the corresponding worst-case optimal policy for a

given inception attack. Our method involves iteratively solving linear programs (LPs)

based on worst-case Q functions. We derive these LPs by dualizing the best-response

polytope, which transforms the maximin problems into maximization problems. Our

approach accommodates any finitely generated victim uncertainty set, including

completely naive and secure victims.

3.1.1 Related Work.

Information Asymmetry. Incomplete information games were first studied

through the framework of Bayesian games [50, 51, 52] and with the solution concept

being BNE. To address the high sensitivity of BNE to the player’s beliefs [98, 59], the

work [54] introduced a more robust equilibrium concept called ex-post equilibrium,

which is a NE under all possible realizations of the uncertain parameters. Going
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beyond the need for belief distributions, [2] introduced the notion of robust games

with the solution concept being ROE. However, both the BNE and ROE approaches

require non-trivial assumptions about the information structure, namely, an un-

certainty parametrization or distributional assumption on the opponent’s rewards.

Thus, they do not apply to our setting where the victim knows nothing concrete

about the attacker’s true rewards.

Reward Poisoning Attacks. Most reward-poisoning attacks, for example, Ma

et al. [74], Rakhsha et al. [92, 93], Rangi et al. [94], Zhang and Parkes [127], Zhang

et al. [128] in the single-agent setting, and Wu et al. [122, 121, 119] in the multi-

agent setting, focus on changing the victim’s perceived rewards to induce negative

behaviors rather than changing the victim’s perception of the attacker’s rewards.

Unlike reward poisoning, which may not be possible in situations where the victim

knows their preferences, inception attacks are more often possible since they fake the

preferences of the attacker, which is usually not public information. Our setting also

differs from past work by Gleave et al. [41], Guo et al. [46] on adversarial multi-agent

reinforcement learning where an attacker is one of the agents (or controls one of the

agents): they studied the problem in which an attacker modifies the action of an

agent to influence the behavior of another agent (the victim).

3.1.2 Notations

We defer formal definitions of standard concepts in game theory to Appendix B.1.

Normal-form Games. Let A ∈ Rn×m and B ∈ Rn×m denote the reward

matrices for the victim and attacker, respectively. We represent a pure strategy by a

one-hot vector, so ei ∈ Rn corresponds to the victim’s strategy i and ej ∈ Rm the

attacker’s strategy j. Let ∆(k) :=
{
s ∈ [0, 1]k |

∑k
i=1 si = 1

}
denote the set of mixed
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strategies, where s ∈ ∆(k) corresponds to playing ei with probability si.

Markov Games. A finite-horizon Markov game [100] is defined by a tuple

G = (S,A, R, P,H, µ) with state-space S, joint action space A = A1×A2 = [n]× [m]

([i] := {1, . . . , i}), joint reward function R, transition function P , horizon H, and

initial state distribution µ. We denote by π = {π1,h(s) ∈ ∆(n)×∆(m)}h,s a joint

Markovian policy. Let Πi denote the set of all Markovian policies for player i ∈ {1, 2}

(victim and attacker). The value received by player i under π is the expected total

rewards over H steps: V π
i := Eπ

G

[∑H
h=1 π1,h(sh)

⊤Ri,h(sh)π2,h(sh)
]
. Similarly we

define the stage value, V π
i,h(s), for each h ∈ [H] by summing rewards over steps h

through H. Throughout the paper, we assume that players know the transition

function P.

3.2 Inception

Reward Uncertainty. We formalize misinformation threats through Markov

games with reward uncertainty. Suppose that the victim has learned an alleged R†
2

directly from the attacker or external sources. A robust victim is aware that R†
2 may

be inaccurate, so it constructs an uncertainty set U(R†
2) that it believes contains

the attacker’s true rewards. Furthermore, the victim believes the attacker behaves

as playing some policy π2 ∈ Πb
2(U(R

†
2)), which depends on the belief rewards. To

simplify notation, we assume the victim’s belief about the attacker takes the form

Πb
2(R

†
2) ⊆ Π2, with the understanding that the victim may be using robust reasoning

inside the belief function.

Assumption 1 (Victim’s Belief). The victim knows some uncertain reward function

R†
2 and believes the attacker’s policy must lie in the set Πb

2(R
†
2). Furthermore, this is

common knowledge.



34

Example 1 (Naive Belief). If the victim believes it knows exactly which policy π†
2

the attacker will play, then Πb
2(R

†
2) = {π

†
2}.

Example 2 (Secure Belief). If the victim believes it knows nothing about the

attacker, it may assume any attacker policy is possible, Πb
2(R

†
2) = Π2.

Example 3 (Rational Belief). If the victim believes the standard assumption of

common-knowledge rationality, which is the case if it uses any standard MARL

algorithm, then it assumes the attacker is rational. Concretely, the victim might

assume the attacker plays some solution to the perceived game, Πb
2(R

†
2) = {π2 ∈

Π2 | ∃π1 ∈ Π1, (π1, π2) ∈ Sol(R1, R
†
2)}, where Sol is any standard solution concept

such as DSE, NE, and maximin equilibrium1. In this work, we focus on inception

attacks that only require the most basic form of rationality: rational agents never

play strictly dominated strategies [120], which includes all the Sol options above.

3.2.1 Game Outcomes for Fixed R†2

For any fixed R†
2, we can reason how both players will behave when the victim believes

the attacker’s policy is contained in the uncertainty set Πb
2(R

†
2). To formally reason

about the outcomes of such games, we turn to the standard notion of worst-case

rationality [2].

Assumption 2. (Worst-Case Rationality) Both players seek to optimize their worst-

case value given their available information.

Victim Behavior. For the victim to be robust, it should optimize against the

worst possible policy the attacker could play. By Assumption 1, it need only consider

attacker policies in Πb
2(R

†
2).

1The assumption also holds for CCE, where Sol corresponds to the marginal policy of the CCE
for each player.
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Observation 2 (Victim Behaviour). Under Assumption 1 and Assumption 2, the

victim plays some policy π∗
1 ∈ Π∗

1(R
†
2) and achieves the optimal worst-case value

V ∗
1 (R

†
2) where,

Π∗
1(R

†
2) := argmax

π1∈Π1

min
π2∈Πb

2(R
†
2)

V π1,π2

1 and V ∗
1 (R

†
2) := max

π1∈Π1

min
π2∈Πb

2(R
†
2)

V π1,π2

1 . (VBR)

We observe that this behavior may be computationally intractable in general but

is provably optimal under worst-case rationality. Also, this behavior can be viewed

as a constrained security strategy that exploits the victim’s beliefs to achieve better

outcomes. This behavior directly generalizes security strategies, corresponding to

the case when Πb
2(R

†
2) = Π2.

Attacker Behavior. According to Assumption 1, the attacker knows Πb
2(R

†
2).

Thus, it can reason that the victim optimizes its worst-case value. Given this

information, it can follow the same reasoning as the victim to predict how the victim

behaves according to Observation 2. Specifically, the attacker should choose a policy

that optimizes its value for the worst possible π1 ∈ Π∗
1(R

†
2).

Observation 3. Under Assumption 1 and Assumption 2, the attacker plays some

π∗
2 ∈ Π∗

2(R
†
2) and achieves the optimal worst-case value V ∗

2 (R
†
2) where,

Π∗
2(R

†
2) := argmax

π2∈Π2

min
π1∈Π∗

1(R
†
2)

V π1,π2

2 and V ∗
2 (R

†
2) := max

π2∈Π2

min
π1∈Π∗

1(R
†
2)

V π1,π2

2 . (ABR)

Importantly, the attacker exploits its information asymmetry to constrain the

inner minimization. This allows the attacker to achieve a higher value than it would

from a standard security strategy.

Overall, we can see exactly how the Markov game with reward uncertainty will

play out.
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Proposition 7 (Game Outcomes). For any fixed R†
2, under Assumption 1 and

Assumption 2, (π∗
1, π

∗
2) is a solution to the game if and only if (π∗

1, π
∗
2) ∈ Π∗

1(R
†
2)×

Π∗
2(R

†
2).

3.2.2 Inception Attacks

The attacker can induce the fake reward R†
2 that the victim learns, possibly by

spreading misinformation. For any induced R†
2, the attacker can achieve up to

V ∗
2 (R

†
2) value in the worst-case according to Observation 3. Thus, the attacker should

choose an inception attack, R†
2, that maximizes V ∗

2 (R
†
2).

Definition 5 (Inception). An optimal inception attack is any R†
2 that achieves V ∗

2

where,

V ∗
2 := max

R†
2

V ∗
2 (R

†
2). (INC)

In general, (INC) is a complex, bi-level optimization problem. However, this does

not mean the victim is safe from such attacks. We show in Section 3.3 that damaging

inception attacks can be computed in polynomial time for many settings.

Example 4 (Inception Attack). Consider the simple normal-form game (R1, R2)

and its corresponding inception-attack-induced game (R1, R
†
2) given in Figure 3.1.

Also, suppose that the victim believes the attacker plays its part of an NE for the

faked game, i.e., Πb
2(R

†
2) = {y | ∃x, (x, y) ∈ NE(R1, R

†
2)}.

1. The original game in Figure 3.1a has a unique NE that is the pure strategy

(D,L). Thus, Πb
2(R2) = {L} and the victim plays its best-response D. This

leads to the attacker always achieving a value of 0.

2. The fake game in Figure 3.1b has a unique NE which is the pure strategy

(U,R). Thus, Πb
2(R

†
2) = {R} and the victim plays its best-response U . This
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leads to the attacker always achieving its highest possible value of 5 for the

true game.

Therefore, the attacker can simply fake that it prefers action R while it actually

prefers action L to manipulate the victim into achieving its ideal value.

L R
U 0, 5 1, 0
D 1, 0 0, 0

(a) True Game

L R
U 0, 5 1, 5+ϵ
D 1, 0 0, ϵ

(b) Inception Attack

Figure 3.1: Inception Example

3.3 Efficient Inception Algorithms

In this section, we show that for certain families of victims, the optimal inception

attacks can be computed efficiently. To start, we show for a fixed R†
2 how the attacker

can efficiently compute some best response policy in Π∗
2(R

†
2), which is already a

complex problem. Then, we move on to computing optimal inception attacks for

restricted classes of reward functions.

3.3.1 Efficiently Exploiting R†2

Suppose that R†
2 is fixed. We observe that computing some π2 ∈ Π∗

2(R
†
2) is a com-

plicated optimization problem with constraints and a nested maximin optimization.

Specifically,

Π∗
2(R

†
2) = argmax

π∗
2∈Π2

min
π∗
1∈Π∗

1

V
π∗
1 ,π

∗
2

2

s.t. Π∗
1 = argmax

π1∈Π1

min
π2∈Πb

2(R
†
2)

V π1,π2

1 .

(3.1)
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The optimization (3.1) can be arbitrarily complicated due to the arbitrary belief

set Πb
2(R

†
2). To have any hope of efficient solutions, we must restrict the belief set.

Here, we consider any belief set that is a per-stage mixture of some finite set of base

policies.

Assumption 3 (Finite Generation). The victim’s belief set is Πb
2(R

†
2) = ∆(Π),

where Π := {π1
2, . . . , π

K
2 } ⊆ Π2 is a finite set of attacker policies and ∆(Π) is the

simplex of per-stage mixings of Π, i.e.,

∆(Π) :=

{
π ∈ Π2 | ∀(h, s), ∃p ∈ ∆(K) s.t. π1,h(s) =

K∑
k=1

pkπ
k
2,h(s)

}
. (3.2)

Normal-form Games

To see how Assumption Assumption 3 enables efficient computation, consider a

normal-form game (A,B) and Π = {y1, . . . , yK} ⊆ ∆(m).

Victim Best Response. It is well-known [28] that the victim can efficiently

compute a maximin solution for A, i.e., maxx∈∆(n) miny∈∆(m) x
⊤Ay, by solving the

LP in Figure 3.2a. The inequalities z ≤ x⊤Aej for all j ensure that x is the best

response to any of the attacker’s pure strategies, which then implies it is the best

response to any mixture in ∆(m). In particular, x must be the best response to the

worst possible mixed strategy in ∆(m).

The same reasoning applies if we replace each ej with yj. The inequalities

z ≤ x⊤Ayj for all j then guarantee that x is a best response to the set ∆({y1, . . . , yK}).

Observe that we can equivalently formulate these inequalities by replacing A in

Figure 3.2a with A′ := [Ay1, . . . , AyK ] := AΠ⊤. Again, this implies x is the best

response to the worst possible mixed strategy in ∆({y1, . . . , yK}). Since Π∗
1(R

†
2) is

the set of the victim’s worst-case best responses to Πb
2(R

†
2) = ∆({y1, . . . , yK}), we

can compute some x ∈ Π∗
1(R

†
2) by solving LP Figure 3.2a with the modified reward
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matrix A′.

max
x∈Rn,z∈R

z

s.t. z ≤ x⊤Aej, ∀j ∈ [m]

1⊤x = 1, x ≥ 0.

(a) Victim’s BR LP

max
y∈Rm,w∈RK ,α∈R

z∗1⊤w − α

s.t. α + e⊤i By − e⊤i A′w ≥ 0 ∀i ∈ [n]

1⊤y = 1, y ≥ 0 w ≥ 0.

(b) Attacker’s BR LP

Figure 3.2: Best-response LPs

Lemma 1. If (x∗, z∗) is a solution to LP 3.2a for input A′ := [Ay1, . . . , AyK ],

then V ∗
1 (R

†
2) = z∗ and x∗ ∈ Π∗

1(R
†
2). Furthermore, Π∗

1(R
†
2) = {x ∈ ∆(n) | ∀j ∈

[K], x⊤A′ej ≥ z∗} is a non-empty polytope.

Attacker Best Response. Now that we have understood the victim’s best

response Π∗
1(R

†
2) polytope, the attacker can exploit this structure to compute some

y ∈ Π∗
2(R

†
2). Recall the attacker’s true reward matrix is B. For any fixed y, note

that the attacker’s inner minimization in (3.1) can be written as the following LP

and its dual in Figure 3.3.

min
x∈Rn

≥0

x⊤By

s.t. z∗ − x⊤A′ej ≤ 0, ∀j ∈ [K],

1⊤x− 1 = 0.

(a) Primal

max
w∈RK

≥0,α∈R
z∗1⊤w − α

s.t. α + e⊤i By − e⊤i A′w ≥ 0, ∀i ∈ [n].

(b) Dual

Figure 3.3: Attacker’s Inner Minimization

Applying maxy∈∆(m) on top of (3.3b) yields the LP in Figure 3.2b, which computes

a y ∈ Π∗
2(R

†
2). We give the full derivation in the Appendix.

Lemma 2. If (y∗, w∗, α∗) is a solution to LP 3.2b, then V ∗
2 (R

†
2) = z∗1⊤w∗ − α∗ and

y∗ ∈ Π∗
2(R

†
2). Furthermore, Π∗

2(R
†
2) is a non-empty polytope.
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Algorithm 2 Normal-Form Game Attacker Best Response
Input: Π, A, and B
1: A′ ← AΠT

2: (x∗, z∗)← Sol(LP 3.2a(A′))
3: (y∗, w∗, α∗)← Sol(LP 3.2b(z∗, A′, B))
4: return (y∗, z∗, z∗1⊤w∗ − α∗)

Therefore, the attacker can compute a y ∈ Π∗
2(R

†
2) by first computing a solution

(x∗, z∗) to LP 3.2a and then using z∗ to formulate and solve LP 3.2b. Importantly,

the attacker can solve LP 3.2a due to the information asymmetry: it knows the

victim’s A. The computation is summarized in Algorithm 2.

Theorem 3. If K ≤ poly(m), then under Assumption 3 the attacker can compute

some y ∈ Π∗
2(R

†
2) for a normal-form game in polynomial time by using Algorithm 2.

Markov Games

To extend our results to full Markov games, we solve our LPs on each stage game

via backward induction. To formalize this approach, we study the worst-case stage

value and its corresponding worst-case Q functions:

V ∗
1,h(s) := max

π1∈Π1

min
π2∈Πb

2(R
†
2)

V π1,π2

1,h (s) and V ∗
2,h(s) := max

π2∈Π2

min
π1∈Π∗

1(R
†
2)

V π1,π2

2,h (s), (3.3)

Q∗
i,h(s)[a1, a2] := Ri,h(s, a1, a2) +

∑
s′

Ph(s
′ | s, a1, a2)V ∗

i,h+1(s
′). (3.4)

In particular, for each h ∈ [H], s ∈ S, the worst-case stage-value functions

V ∗
i,h(s) can be computed from the worst-case Q functions Q∗

i,h(s), using Algorithm 2

with (Q∗
1,h(s), Q

∗
2,h(s)) as the norm-form game reward matrix. We let π1,h(s) :=

{π1
2,h(s), . . . , π

K
2,h(s)}.

Lemma 3. For all h, s, we have that Algorithm 2(π1,h(s), Q
∗
1,h(s), Q

∗
2,h(s)) outputs

(∗, V ∗
1,h(s), V

∗
2,h(s)).
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Algorithm 3 Markov Game Attacker Best Response
Input: Π and G
1: V ∗

i,H+1(s) = 0 for all s ∈ S.
2: for h = H down to 1 do
3: for s ∈ S do
4: Q∗

1,h(s), Q
∗
2,h(s)← Equation (3.4)

5: π∗
2,h(s), V

∗
1,h(s), V

∗
2,h(s)← Algorithm 2(π1,h(s), Q

∗
1,h(s), Q

∗
2,h(s))

6: return π∗
2 := {π∗

2,h(s)}h,s

Since the worst-case value is uniquely defined, we can use backward induction to

compute a solution for the whole Markov game in Algorithm 3.

Theorem 4. If K ≤ poly(m), then under Assumption 3 the attacker can compute

some π2 ∈ Π∗
2(R

†
2) for a Markov game in polynomial time using Algorithm 3.

Remark 4 (Secure Victims). If the victim does not trust R†
2 as in Example 2 and simply

ignores the information by computing a maximin strategy, maxπ1∈Π1 minπ2∈Π2 V
π1,π2

1 ,

the attacker can still exploit its information asymmetry. In particular, it can

compute its best response in polynomial time using Algorithm 3 on Π = {πj
2}mj=1

where πj
2,h(s) := ej. This leads to ∆(Π) = Π2.

3.3.2 Efficiently Optimizing R†2

In the previous section, we saw how to compute best-response policies for a class of

beliefs of the victim. However, to compute an optimal inception attack, we require

additional structure on how the victim maps rewards to belief sets.

Assumption 4 (Common Rationality). If π†
2 is an ι-strictly dominant Markov-perfect

strategy for R†
2, then Πb

2(R
†
2) = {π

†
2}.

Remark 5. (Rationality) Note that Assumption 4 holds whenever the victim believes

common knowledge rationality as in Example 3. We again emphasize this assumption
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is made by all standard MARL algorithms as rationality is the basis of these game-

theoretic approaches.

Policy Reduction. Observe that if Πb
2(R

†
2) = Πb

2(R
††
2 ), then V ∗

2 (R
†
2) = V ∗

2 (R
††
2 ).

Consequently, whenever Πb
2(R

†
2) = {π

†
2}, we see that V ∗

2 (R
†
2) is completely determined

by π†
2 and not the specific structure of R†

2. Thus, with a slight abuse of notation,

we can view V ∗
2 as a function of π†

2 by defining V ∗
2 (π

†
2) := V ∗

2 (R
†
2) where R†

2 is any

reward functions satisfying Πb
2(R

†
2) = {π

†
2}. Overall, we can reduce the problem of

finding fake rewards to the problem of finding a fake policy.

If Πb
2(R

†
2) = {π

†
2}, then by definition Π∗

1(R
†
2) = argmaxπ1∈Π1

V
π1,π

†
2

1 =: BR(π†
2) is

just the victim’s traditional best response to π†
2. In addition, V ∗

2 (π
†
2) = maxπ2∈Π2

minπ1∈BR(π†
2)
V π1,π2

2 can be efficiently computed using Algorithm 3. As only deter-

ministic policies can be dominant, this simplifies the attacker’s search to a finite set.

Thus, the policy version of the problem is simpler to tackle. The attacker can then

do inverse reward engineering to find a reward function for which π†
2 is a dominant

strategy, which is possible even for robust victims [120].

Lemma 4 (Reward-Policy Reduction). Under Assumption 4,

max
R†

2∈D
V ∗
2 (R

†
2) = max

π†
2∈ΠD

2

V ∗
2 (π

†
2), (3.5)

where D is the set reward functions with an ι-strictly dominant Markov-perfect strat-

egy, and ΠD
2 is the set of deterministic attacker policies. We let V̂2 := maxπ†

2∈ΠD
2
V ∗
2 (π

†
2)

denote the optimal value.

Lemma 4 states that if the misinformation-induced reward function R†
2 is restricted

to the set admitting strictly dominant strategies, one can solve the optimal inception

attack problem by solving the pure strategy optimization problem. We note this
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restricted set is infinite and captures many interesting reward functions.

Remark 6 (Reward Design). We note the choice of R†
2,h(s, a) = ι (H−h+1)(H−h+2)

2
I[a2 =

π†
2,h(s)] suffices to ensure π†

2 is the dominant strategy in any stage game and can be

computed in polynomial time. If there are other constraints on the reward function,

other reward poisoning frameworks can be used black box to compute optimal

attacks.

Algorithmic Approach. For the normal-form game (A,B), it is easy to see

that for any pure strategy j ∈ [m] that V ∗
2 (j) = maxy∈∆(m) minx∈BR(j) x

⊤By can

be computed using Algorithm 2({j}, A,B) in polynomial time. The maximal pure

strategy can then be found efficiently by iterating over all j ∈ [m]: V̂2 = maxj V
∗
2 (j).

Thus, we can solve the policy problem for a normal-form game efficiently by repeatedly

applying Algorithm 2.

This line of argument can be extended to Markov games by replacing (A,B)

with the Q-function matrices and using backward induction. Suppose the attacker

has already constructed a partial policy π†
2 for times h+ 1, . . . , H. At time h and

state s, the attacker can tentatively define π†
2,h(s) = j. For this choice, the attacker

can reason about the victim’s best-response set and value V̂1,h(s, j), which is also

constructed via backward induction. The attacker can then just choose the optimal

j that leads to its highest worst-case stage value, V̂2,h(s, j). Formally, we define,

V̂2,h(s) = max
π†
2∈ΠD

2

min
π1∈BR(π†

2)

V π1,π2

2,h (s) and V̂1,h(s) = max
π1∈Π1

V
π1,π

†
2

1,h (s), (3.6)

to be the value of the best inception policy for the attacker at the current stage and

the victim’s best response value to a fixed inception policy π†
2, respectively. We can

similarly define the corresponding Q̂ function through (3.4) by replacing V ∗ with V̂ .
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Algorithm 4 Policy Inception
Input: Π and G
1: V̂i,H+1(s) = 0 for all s ∈ S.
2: for h = H down to 1 do
3: for s ∈ S do
4: Q̂1,h(s), Q̂2,h(s)← Equation (3.4)
5: for j ∈ [m] do
6: π∗

2,h(s), V̂1,h(s, j), V̂2,h(s, j)← Algorithm 2({j}, Q̂1,h(s), Q̂2,h(s))

7: π†
2,h(s)← argmaxj∈[m] V̂2,h(s, j)

8: V̂i,h(s)← V̂i,h(s, π
†
2,h(s)) for i ∈ [2]

9: return π†
2 := {π

†
2,h(s)}h,s

Then, for any fixed j ∈ [m], we define,

V̂2,h(s, j) = max
y∈∆(m)

min
x∈BR(j)

x⊤Q̂2,h(s)y and V̂1,h(s, j) = max
x∈∆(n)

x⊤Q̂1,h(s)ej, (3.7)

as the value when the attacker chooses π†
2,h(s) = j at step h, and applies the optimal

inception policy for times h+ 1, . . . , H.

Lemma 5. For all h, s, j, we have that Algorithm 2({j}, Q̂1,h(s), Q̂2,h(s)) outputs

(∗, V̂1,h(s, j), V̂2,h(s, j)). Furthermore, if j∗ ∈ argmaxj∈[m] V̂2,h(s, j), then V̂i,h(s) =

V̂i,h(s, j
∗) for each i ∈ {1, 2}.

In the same spirit as Algorithm 3, we can compute an optimal π†
2 using Algo-

rithm 4.

Theorem 5. Under Assumption 4, Algorithm 4 computes a fake policy achieving

value V̂2 in polynomial time.

Remark 7 (Dominant Mixtures). The algorithm can be extended to allow a mixture

of a set of policies by changing {j} to a subset of actions. This captures reward

matrices with several equally dominant columns.
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3.4 Conclusion

In this chapter, we studied misinformation attacks on two-player MGs. When the

victim player only knows a false attacker reward function, we showed how the game

plays out under worst-case rationality. Then, we showed how the attacker can

compute its worst-case optimal policy in polynomial time. Using this method as a

subroutine, the attacker can exploit the universal assumption of rationality in MARL

to compute an optimal dominant-policy inception attack in polynomial time. Our

work highlights that the standard rationality notions produce vulnerabilities when

misinformation is present. Thus, new approaches are needed to build multi-agent

systems that are robust against misinformation.
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Chapter 4

Anytime Constraints

Acknowledgments. This chapter was a joint work with Jerry Zhu that appeared

in AISTATS 2024.

Abstract. In this chapter, we introduce and study constrained Markov Decision

Processes (cMDPs) with anytime constraints. An anytime constraint requires the

agent to never violate its budget at any point in time, almost surely. Although Mar-

kovian policies are no longer sufficient, we show that there exist optimal deterministic

policies augmented with cumulative costs. In fact, we present a fixed-parameter

tractable reduction from anytime-constrained cMDPs to unconstrained MDPs. Our

reduction yields planning and learning algorithms that are time and sample-efficient

for tabular cMDPs so long as the precision of the costs is logarithmic in the size of

the cMDP. However, we also show that computing non-trivial approximately optimal

policies is NP-hard in general. To circumvent this bottleneck, we design provable

approximation algorithms that efficiently compute or learn an arbitrarily accurate

approximately feasible policy with optimal value so long as the maximum supported

cost is bounded by a polynomial in the cMDP or the absolute budget. Given our

hardness results, our approximation guarantees are the best possible under worst-case
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analysis.

4.1 Introduction

Suppose M is a constrained Markov Decision Process (cMDP). An anytime constraint

requires that cost accumulated by the agent’s policy π is within the budget at any time,

almost surely: Pπ
M

[
∀k ∈ [H],

∑k
t=1 ct ≤ B

]
= 1. If ΠM denotes the set of policies

that respect the anytime constraints, then a solution to the anytime-constrained

cMDP is a policy π∗ ∈ argmaxπ∈ΠM
V π
M . For example, consider planning a minimum-

time route for an autonomous vehicle to travel from one city to another. Besides

time, there are other important considerations including [86] (1) the route does not

exhaust the vehicle’s fuel, and (2) the route is safe. We can model (1) by defining

the fuel consumed traveling a road to be its cost and the tank capacity to be the

budget. Refueling stations are captured using negative costs. We can model many

safety considerations (2) similarly.

Since nearly every modern system is constrained in some way, one key step to

modeling more realistic domains with MDPs is allowing constraints. To address this,

a rich literature of constrained reinforcement learning (CRL) has been developed,

almost exclusively focusing on expectation constraints [5, 1, 14] or high-probability

(chance) constraints [19, 84, 23]. However, in many applications, especially where

safety is concerned or resources are consumed, anytime constraints are more natural.

An agent would not be reassured by the overall expected or probable safety of a

policy when it is faced with a reality or intermediate time where it is harmed. For

instance, a car cannot run on expected or future gas, so must satisfy the B budget at

any time along the route. Similarly, in goal-directed RL [57, 80, 11], the goal must be

achieved; maximizing reward is only a secondary concern. These issues are especially
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crucial in medical applications [26, 87, 64], disaster relief scenarios [35, 117, 109],

and resource management [75, 70, 90, 13].

Anytime constraints are natural, but introduce a plethora of new challenges.

Traditional Markovian and history-dependent policies are rarely feasible and can

be arbitrarily suboptimal; the cost history must also be considered. Naively using

backward induction to compute an optimal cost-history-dependent policy is possible

in principle for tabular cost distributions, but the time needed to compute the policy

and the memory needed to store the policy would be super-exponential. Since the

optimal solution value is a discontinuous function of the costs, using standard CRL

approaches like linear programming is also impossible. In fact, not only is computing

an optimal policy NP-hard but computing any policy whose value is approximately

optimal is also NP-hard when at least two constraints are present.

Known works fail to solve anytime-constrained cMDPs. Expectation-constrained

approaches [5, 89, 31, 61, 34] and chance-constrained approaches [84, 123, 23, 82] yield

policies that arbitrarily violate an anytime constraint. This observation extends to

nearly every known setting: Knapsack constraints [17, 22, 20], risk constraints [15, 23],

risk sensitivity [126, 57, 102, 80], quantile constraints [60, 124], and instantaneous

constraints [69, 37, 43]. If we were instead to use these models with a smaller

budget to ensure feasibility, the resultant policy could be arbitrarily suboptimal if

any policy would be produced at all. Dangerous-state [96, 107] and almost-sure [18]

constraints can be seen as a special case of our model with binary costs. However,

their techniques do not generalize to our more complex setting. Moreover, absent

expectation constraints, none of these approaches are known to admit polynomial

time planning or learning algorithms.
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Our Contributions. We present the first formal study of anytime-constrained

cMDPs. Although traditional policies do not suffice, we show that deterministic

augmented policies are always optimal. In fact, an optimal policy can be computed

by solving an unconstrained, augmented MDP using any standard RL planning or

learning algorithm. Using the intuition of safe exploration and an atypical forward

induction, we derive an augmented state space rich enough to capture optimal policies

without being prohibitively large. To understand the resultant augmented policies,

we design new machinery requiring a combination of backward and forward induction

to argue about optimality and feasibility. Overall, we show our reduction to standard

RL is fixed-parameter tractable (FPT) [33] in the cost precision when the cMDP and

cost distribution are tabular. In particular, as long as the cost precision is logarithmic

in the size of the cMDP, our planning (learning) algorithms are polynomial time

(sample complexity), and the produced optimal policy can be stored with polynomial

space.

Since we show computing any non-trivial approximately-optimal policy is NP-

hard, we turn to approximate feasibility for the general case. For any ϵ > 0, we

consider additive and relative approximate policies that accumulate cost at most

B + ϵ and B(1 + ϵ) anytime, respectively. 1 Rather than consider every cumulative

cost induced by safe exploration, our approximation scheme inductively accumulates

and projects the costs onto a smaller space. Following the principle of optimism, the

approximate cost is constructed to be an underestimate to guarantee optimal value.

Our approach yields planning (learning) algorithms that produce optimal value,

and approximately feasible policies in polynomial time (sample complexity) for any,

possibly non-tabular, cost distribution whose maximum supported cost is bounded

by a polynomial in the cMDP or by the absolute budget. Given our hardness results,
1Critically, we can also ensure strict budget B feasibility but with a weaker value guarantee.

See section 4.4.1.
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this is the best possible approximation guarantee one could hope for under worst-case

analysis. We also extend our methods to handle different budgets per time, general

almost-sure constraints, and infinite discounting.

4.1.1 Related Work.

Knapsack Constraints. The knapsack-constrained frameworks [17, 22, 20] were

developed to capture constraints on the learning process similar to bandits with

knapsacks [6]. Brantley et al. [17] and Cheung [22] both constrain the total cost

violation that can be produced during training. On the other hand, Chen et al. [20]

introduces the RLwK framework that constrains the total cost used per episode. In

RLwK, each episode terminates when the agent violates the budget for that episode.

In all of these models, the environment is given the ability to terminate the process

early; the final policy produced after learning need not satisfy any kind of constraint.

In fact, the agent still keeps the reward it accumulated before violation, the agent is

incentivized to choose unsafe actions in order to maximize its reward. Thus, such

methods produce infeasible policies for our anytime constraints regardless of the

budget they are given.

Almost Sure Constraints. Performing RL while avoiding dangerous states [96,

107, 44] can be seen as a special case of both anytime and expectation constraints with

binary costs and budget 0. However, these works require non-trivial assumptions, and

being a special case of expectation constraints implies their techniques cannot solve

our general setting. Similarly, Castellano et al. [18] introduced almost sure constraints

with binary costs, which can be seen as a special case of anytime constraints. However,

they focus on computing minimal budgets, which need not lead to efficient solutions

in general since the problem is NP-hard even with a budget of 1. Lastly, the infinite
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time-average case with almost sure constraints has been thoroughly studied [97].

Since we focus on finite-horizon and discounted settings, our policies would always

have a time-average cost of 0 and so those methods cannot produce policies that are

feasible for anytime constraints.

4.2 Anytime Constraints

Constrained Markov Decision Processes. A (tabular, finite-horizon) Con-

strained Markov Decision Process is a tuple M = (S,A, P, R,H, s0, C,B), where (i)

S is a finite set of states, (ii) A is a finite set of actions, (iii) Ph(s, a) ∈ ∆(S) is the

transition distribution, (iv) Rh(s, a) ∈ ∆(R) is the reward distribution, (v) H ∈ N

is the finite time horizon, (vi) s0 ∈ S is the initial state, (vii) Ch(s, a) ∈ ∆(Rd) is

the cost distribution, and (viii) B ∈ Rd is the budget vector. Here, d ∈ N denotes

the number of constraints. We overload notation by letting Ch(s, a) denote both

the cost distribution and its support. We also let rh(s, a) = E[Rh(s, a)] denote the

expected reward. Lastly, we let S := |S|, A := |A|, [H] := {1, . . . , H}, and |M | be

the description size of the cMDP.

Interaction Protocol. A complete history with costs takes the form τ = (s1, a1, c1,

. . . , sH , aH , cH , sH+1), where sh ∈ S denotes M ’s state at time h, ah ∈ A denotes

the agent’s chosen action at time h, and ch ∈ Ch(sh, ah) denotes the cost incurred at

time h. We let c̄h :=
∑h−1

t=1 ct denote the cumulative cost up to (but not including)

time h. Also, we denote by τh = (s1, a1, c1, . . . , sh) the partial history up to time

h and denote by Hh the set of partial histories up to time h. The agent interacts

with M using a policy π = (πh)
H
h=1, where πh : Hh → ∆(A) specifies how the agent

chooses actions at time h given a partial history.

The agent starts at state s0 with partial history τ1 = (s0). For any h ∈ [H], the
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agent chooses an action ah ∼ πh(τh). Afterward, the agent receives reward rh ∼

Rh(sh, ah) and cost ch ∼ Ch(sh, ah). Then, M transitions to state sh+1 ∼ Ph(sh, ah)

and the history is updated to τh+1 = (τh, ah, ch, sh+1). This process is repeated for

H steps total; the interaction ends once sH+1 is reached.

Objective. The agent’s goal is to compute a π∗ that is a solution to the following

optimization problem4:

max
π

Eπ
M

[
H∑

h=1

rh(sh, ah)

]

s.t. Pπ
M

[
∀t ∈ [H],

t∑
h=1

ch ≤ B

]
= 1.

(ANY)

Here, Pπ
M denotes the probability law over histories induced from the interac-

tion of π with M , and Eπ
M denotes the expectation with respect to this law.

We let V π := Eπ
M

[∑H
t=1 rt(st, at)

]
denote the value of a policy π, ΠM :=

{
π |

Pπ
M

[
∀k ∈ [H],

∑k
t=1 ct ≤ B

]
= 1

}
denote the set of feasible policies, and V ∗ :=

maxπ∈ΠM
V π denote the optimal solution value 2. If there are no feasible policies,

V ∗ := −∞ by convention.

Optimal Solutions. It is well-known that expectation-constrained cMDPs always

admit a randomized Markovian policy [5]. However, under anytime constraints, feasi-

ble policies that do not remember the cumulative cost can be arbitrarily suboptimal.

The intuition is that without knowing the cumulative cost, a policy must either play

it too safe and suffer small value or risk an action that violates the constraint.

Proposition 8. Any class of policies that excludes the full cost history is suboptimal

for anytime-constrained cMDPs. In particular, Markovian policies can be arbitrarily
2By using a negative budget, we capture the covering constraints that commonly appear in

goal-directed problems. We consider the other variations of the problem in the Appendix.
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suboptimal even for cMDPs with S = 1 and A = H = 2.

Corollary 1. (Approximately) optimal policies for cMDPs with expectation con-

straints, chance constraints, or their variants can arbitrarily violate an anytime

constraint. Furthermore, (approximately) optimal policies for a cMDP defined by a

smaller budget to achieve feasibility can be arbitrarily suboptimal.

Although using past frameworks out of the box does not suffice, one might be

tempted to use standard cMDP techniques, such as linear programming, to solve

anytime-constrained problems. However, continuous optimization techniques fail

since the optimal anytime-constrained value is discontinuous in the costs and budgets.

Even a slight change to the cost or budget can lead to a dramatically smaller solution

value.

Proposition 9. V ∗ is a continuous function of the rewards, but a discontinuous

function of the costs and budgets.

Intractability. In fact, solving anytime-constrained cMDPs is fundamentally

harder than expectation-constrained cMDPs; solving (ANY) is NP-hard. The intu-

ition is that anytime constraints capture the knapsack problem. With a single state,

we can let the reward at time i be item i’s value and the cost at time i be item i’s

weight. Any deterministic policy corresponds to choosing certain items to add to the

knapsack, and a feasible policy ensures the set of items fit in the knapsack. Thus,

an optimal deterministic policy for the cMDP corresponds to an optimal knapsack

solution.

On the other hand, a randomized policy does not necessarily yield a solution

to the knapsack problem. However, we can show that any randomized policy can

be derandomized into a deterministic policy with the same cost and at least the

same value. The derandomization can be performed by inductively choosing any



54

supported action that leads to the largest value. This is a significant advantage over

expectation and chance constraints which typically require stochastic policies.

Lemma 6 (Derandomization). For any randomized policy π̄, there exists a determin-

istic policy π whose cumulative cost is at most π̄’s anytime and whose value satisfies

V π ≥ V π̄.

Since the existence of a randomized solution implies the existence of a deterministic

solution with the same value via Lemma 6, the existence of a high-value policy for

an anytime-constrained cMDP corresponds to the existence of a high-value knapsack

solution. Thus, anytime constraints can capture the knapsack problem. Our problem

remains hard even if we restrict to the very specialized class of deterministic, non-

adaptive (state-agnostic) policies, which are mappings from time steps to actions:

π : [H]→ A.

Theorem 6 (Hardness). Solving (ANY) is NP-complete even when S = 1, A = 2,

and both the costs and rewards are deterministic, non-negative integers. This remains

true even if restricted to the class of non-adaptive policies. Hardness also holds for

stationary cMDPs so long as S ≥ H.

Given the hardness results in Theorem 6, it is natural to turn to approximation

algorithms to find policies efficiently. The most natural approach would be to settle

for a feasible, although, approximately-optimal policy. Unfortunately, even with only

d = 2 constraints, it is intractable to compute a feasible policy with any non-trivial

approximation factor. This also means designing an algorithm whose complexity is

polynomial in d is likely impossible.

Theorem 7 (Hardness of Approximation). For d ≥ 2, computing a feasible solution

to (ANY) is NP-hard. Furthermore, for any ϵ > 0, it is NP-hard to compute a

feasible policy π satisfying either V π ≥ V ∗ − ϵ or V π ≥ V ∗(1− ϵ).
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Remark 8. Note, Theorem 7 does not only rule out the existence of fully-polynomial-

time approximation schemes (FPTAS). Since ϵ > 0 is arbitrary, it rules out any

non-trivial approximation similar to the (non-metric) Traveling Salesman Problem.

4.3 FPT Reduction

Despite our strong hardness results, Theorem 6 and Theorem 7, we show for a large

class of cMDPs, (ANY) can be solved efficiently. The key is to augment the state

space of the system to capture the constraint consideration. In this section, we

assume the cost distributions have finite support; we generalize to broader classes of

distributions in Section 4.4.

Assumption 5. n := suph,s,a |Ch(s, a)| <∞.

Proposition 8 illustrates that a key issue with standard policies is that they cannot

adapt to the costs seen so far. This forces the policies to be overly conservative or

to risk violating the budget. At the same time, cost-history-dependent policies are

undesirable as they are computationally expensive to construct and store in memory.

Instead, we claim the agent can exploit a sufficient statistic of the cost sequence:

the cumulative cost. By incorporating cumulative costs carefully, the agent can

simulate an unconstrained MDP, M̄ , whose optimal policies are solutions to (ANY).

The main challenge is defining the augmented states, S̄h.

Augmented States. We could simply define S̄h to be S × Rd, but this would

result in an infinite state MDP with a discontinuous reward function, which can-

not easily be solved. The ideal choice would be Fh := {(s, c̄) ∈ S × Rd | ∃π ∈

ΠM , Pπ
M [sh = s, c̄h = c̄] > 0}, which is the minimum set containing all (state, cost)-

pairs induced by feasible policies. However, Fh is difficult to characterize.
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Instead, we consider a relaxation stemming from the idea of safe exploration.

Namely, we look at the set of all (state, cost)-pairs that the agent could induce if

it repeatedly interacted with M and only took actions that would not violate the

constraint given the current history. This set can be constructed inductively. First,

the agent starts with (s0, 0) because it has yet to incur any costs. Then, if at time h,

the agent has safely arrived at the pair (s, c̄), the agent can now safely choose any

action a for which Prc∼Ch(s,a) [c̄+ c ≤ B] = 1.

Definition 6 (Augmented States). S̄1 := {(s0, 0)}, and for any h ≥ 1,

S̄h+1 :=
{
(s′, c̄′) | ∃(s, c̄) ∈ S̄h, a ∈ A, c′ ∈ Ch(s, a),

c̄′ = c̄+ c′, Pr
c∼Ch(s,a)

[c̄+ c ≤ B] = 1, Ph(s
′ | s, a) > 0

}
.

Unlike the backward induction approaches commonly used in MDP theory, observe

that S̄ is constructed using forward induction. This feature is critical to computing

a small, finite augmented-state space. We also point out that S̄h is a relaxation of

Fh since actions chosen based on past costs without considering the future may not

result in a fully feasible path. Nevertheless, the relaxation is not too weak; whenever

0 cost actions are always available, S̄h exactly matches Fh.

Lemma 7. ∀h ∈ [H + 1], S̄h ⊇ Fh and |S̄h| < ∞. Furthermore, equality holds if

∀h, s,∃a for which Ch(s, a) = {0}.

If the agent records its cumulative costs and always takes safe actions, the

interaction evolves according to the following unconstrained MDP.

Definition 7 (Augmented MDP). The augmented MPD M̄ := (S̄, Ā, P̄ , R,H, s̄0)

where,

• S̄h is defined in Definition 6.



57

Algorithm 5 Reduction to Unconstrained RL
Input: cMDP M
1: M̄ ← Definition 7(M)
2: π,V∗ ← Solve(M̄)
3: if V∗ = −∞ then
4: return “Infeasible"
5: else
6: return π

• Āh(s, c̄) :=
{
a ∈ A | Prc∼Ch(s,a) [c̄+ c ≤ B] = 1

}
.

• P̄h((s
′, c̄+ c) | (s, c̄), a) := Ph(s

′ | s, a)Ch(c | s, a).

• Rh((s, c̄), a) := Rh(s, a).

• s̄0 := (s0, 0).

Theorem 8 (Optimality). Algorithm 5 solves (ANY) and can be implemented to

run in finite time.

We see from Theorem 8 that an anytime-constrained cMDP can be solved using

Algorithm 5. If M is known, the agent can directly construct M̄ using Definition 7

and then solve M̄ using any RL planning algorithm. If M is unknown, the agent

can still solve M̄ by replacing the call to πh(s, c̄) in Algorithm 6 by a call to any RL

learning algorithm.

Corollary 2 (Reduction). An optimal policy for an anytime-constrained cMDP can

be computed from Algorithm 5 paired with any RL planning or learning algorithm.

Thus, anytime-constrained RL reduces to standard RL.

Augmented Policies. Observe that any Markovian policy π for M̄ is a augmented

policy that maps (state, cost)-pairs to actions. This policy can be translated into

a full history policy or can be used directly through the new interaction protocol
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Algorithm 6 Augmented Interaction Protocol
Input: augmented policy π
1: s̄1 = (s0, 0) and c̄1 = 0.
2: for h = 1 to H do
3: ah = πh(s̄h).
4: ch ∼ Ch(sh, ah) and sh+1 ∼ Ph(sh, ah).
5: c̄h+1 = c̄h + ch.
6: s̄h+1 = (sh+1, c̄h+1).

described in Algorithm 6. By recording the cumulative cost, the agent effectively

simulates the π − M̄ interaction through the π −M interaction.

Analysis. To understand augmented policies, we need new machinery than typical

MDP theory. Since traditional policies are insufficient for anytime constraints,

we need to directly compare against cost-history-dependent policies. However, we

cannot consider arbitrary histories, since an infeasible history could allow higher

value. Rather, we focus on histories that are induced by safe exploration:

Wh(s, c̄) :=
{
τh ∈ Hh | ∃π, Pπ

τh
[sh = s, c̄h = c̄] = 1,

Pπ
τk
[c̄k+1 ≤ B] = 1 ∀k ∈ [h− 1]

}
.

Here, Pπ
τh
[·] := Pπ

M [· | τh] and Eπ
τh
[·] := Eπ

M [· | τh] denote the conditional probability

and expectation given partial history τh. The condition Pπ
τk
[c̄k+1 ≤ B] = 1 enforces

that any action taken along the trajectory never could have violated the budget.

We must also restrict to policies that are feasible given such a history: ΠM (τh) :=

{π | Pπ
τh
[∀k ∈ [H], c̄k+1 ≤ B] = 1}. Note that generally ΠM(τh) ⊃ ΠM so some

π ∈ ΠM(τh) need not be feasible, but importantly ΠM(s0) = ΠM contains only

feasible policies. We define,

V ∗
h (τh) := max

π∈ΠM (τh)
V π
h (τh) ;V∗

h(s, c̄) := max
π
Vπ
h (s, c̄),
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to be the optimal feasible value conditioned on τh, and the optimal value for M̄

from time h onward starting from (s, c̄), respectively. We show that optimal feasible

solutions satisfy the augmented bellman-optimality equations.

Lemma 8. For any h ∈ [H + 1], (s, c̄) ∈ S̄h, and τh ∈ Wh(s, c̄), V∗
h(s, c̄) = V ∗

h (τh).

The proof is more complex than the traditional bellman-optimality equations.

It requires (1) backward induction to argue that the value is maximal under any

safe partial history and (2) forward induction to argue the costs accrued respect the

anytime constraints. It then follows that solutions to M̄ are solutions to (ANY).

4.3.1 Complexity Analysis

To analyze the efficiency of our reduction, we define a combinatorial measure of a

cMDP’s complexity.

Definition 8 (Cost Diversity). The cost diversity, DM , is the total number of distinct

cumulative costs the agent could face at any time:

DM := max
h∈[H+1]

∣∣{c | ∃s, (s, c) ∈ S̄h}∣∣ .
When clear from context, we refer to DM as D.

We call D the diversity as it measures the largest cost population that exists in

any generation h. The diversity naturally captures the complexity of an instance

since the agent would likely encounter at least this many cumulative costs when

computing or learning an optimal policy using any safe approach.

In particular, we can bound the complexity of the planning and learning algorithms

produced from our reduction in terms of the diversity. For concreteness, we pair
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Algorithm 5 with backward induction [5] to produce a planning algorithm and with

BPI-UCBVI [81] to produce a learning algorithm.

Proposition 10 (Complexity). Using Algorithm 5, an optimal policy for an anytime-

constrained cMDP can be computed in O (HS2AnD) time and learned with

Õ
(
H3SAD log(1

δ
)/γ2

)
sample complexity. Furthermore, the amount of space needed

to store the policy is O (HSD).

In the worst case, D could be exponentially large in the time horizon. However,

for many cMDPs, D is small. One key factor in controlling the diversity is the

precision needed to represent the supported costs in memory.

Lemma 9 (Precision). If the cost precision is at most k, then D ≤ Hd2(k+1)d.

We immediately see that when the costs have precision k, all of our algorithms

have complexity polynomial in the size of M and exponential in k and d. By

definition, this means our algorithms are fixed-parameter tractable in k so long as

d is held constant. Moreover, we see as long as the costs can be represented with

logarithmic precision, our algorithms have polynomial complexity.

Theorem 9 (Fixed-Parameter Tractability). For constant d, if k = O(log(|M |)),

planning (learning) for anytime-constrained cMDPs can be performed in polynomial

time (sample complexity) using Algorithm 5, and the computed policy can be stored

with polynomial space.

Remark 9. Many cost functions can be represented with small precision. In practice,

all modern computers use fixed precision numbers. So, in any real system, our

algorithms have polynomial complexity. Although technically efficient, our methods

can be prohibitively expensive when k or d is large. However, this complexity seems

unavoidable since computing exact solutions to (ANY) is NP-hard in general.
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4.4 Approximation Algorithms

Since Theorem 7 rules out the possibility of traditional value-approximation algo-

rithms due to the hardness of finding feasible policies, we relax the requirement of

feasibility. We show that even with a slight relaxation of the constraint, solutions

with optimal value can be found efficiently. Conversely, we can satisfy the constraint

but with a weaker guarantee on value. Our approximate-feasibility methods can even

handle infinite support distributions so long as they are bounded above.

Assumption 6. cmax := suph,s,a supCh(s, a) <∞.

If Hcmax ≤ B, then every policy is feasible, which just leads to a standard

unconstrained problem. A similar phenomenon happens if cmax ≤ 0. Thus, we

assume WLOG that Hcmax > B and cmax > 0.

Definition 9 (Approximate Feasibility). For any ϵ > 0, a policy π is ϵ-additive

feasible if,

Pπ
M

[
∀t ∈ [H],

t∑
h=1

ch ≤ B + ϵ

]
= 1, (4.1)

and ϵ-relative feasible if,

Pπ
M

[
∀t ∈ [H],

t∑
h=1

ch ≤ B(1 + ϵσB)

]
= 1, (4.2)

where σB is the sign of B3.

Approximation. The key to reducing the complexity of our reduction is lowering

the cost diversity. Rather than consider every cost that can be accumulated from

safe exploration, the agent can consider a smaller set of approximate cumulative

3When the costs and budgets are negative, negating the constraint yields
∑H

t=1 ct ≥ |B| (1− ϵ),
which is the traditional notion of relative approximation for covering objectives.
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Algorithm 7 Approximate Reduction
Input: cMDP M and projection f
1: M̂ ← Definition 10(M, f)
2: π, V̂ ∗ ← Solve(M̂)
3: if V̂ ∗ = −∞ then
4: return “Infeasible"
5: else
6: return π

costs. Specifically, for any cumulative cost c̄h and cost ch, the agent considers some

ĉh+1 = fh(c̄h, ch) instead of c̄h+1 = c̄h + ch.

We view f as projecting a cumulative cost onto a smaller approximate cost space.

Following the principle of optimism, we also ensure that f(c̄h, ch) ≤ c̄h + ch. This

guarantees that any optimal policy under the approximate costs achieves optimal

value at the price of a slight violation in the budget.

If the agent records the approximate costs induced by the projection f , the

interaction evolves according to the following unconstrained MDP.

Definition 10 (Approximate MDP). The approximate MPD M̂ := (Ŝ, Â, P̂ , R̂, H,

ŝ0) where,

Ŝh+1 :=
{
(s′, ĉ′) | ∃(s, ĉ) ∈ Ŝh, a ∈ A, c′ ∈ Ch(s, a),

ĉ′ = fh(ĉ, c
′), Pr

c∼Ch(s,a)
[fh(ĉ, c) ≤ B] = 1,

Ph(s
′ | s, a) > 0

}
,

is defined using approximate costs produced by safe exploration with a projection

step. The other objects are defined analogously to Definition 7.

Our approximation algorithms, Algorithm 7, equate to solving M̂ for different

choices of f . To use any Markovian π for M̂ , the agent just needs to apply f when

updating its approximate costs. In effect, the agent accumulates then projects to
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create each approximate cost. The new interaction protocol is given by Algorithm 8.

To derive our choice of f , we first observe that the cumulative cost can never

surpass B. Furthermore, should the agent ever accumulate a cost of B −Hcmax, it

can no longer violate the budget along that trajectory. Thus, the agent’s cumulative

cost is always effectively within the interval [B −Hcmax, B].

Projection. Our approach is to evenly subdivide the interval [B −Hcmax, B] by

length-ℓ intervals centered around 0. Then, the projection always maps a point in

an interval to its left endpoint. Alternatively, we can think of ℓ as defining a new

unit of measurement, and the projection maps each cumulative cost to its largest

integer multiple of ℓ below the cumulative cost. Should the agent ever encounter an

extremely negative cost, we safely truncate it to the projection of B − (H − h)cmax.

In symbols, we define our projection by, fh(ĉ, c) :=
ĉ+

⌊
c
ℓ

⌋
ℓ if ĉ+ c ≥ B − (H − h)cmax⌊

B−(H−h)cmax

ℓ

⌋
ℓ o.w.

Critically, the projection is defined so that each approximate cost is an underestimate

of the true cost, but no farther than ϵ away from the true cost (except when a cost

smaller than B − (H − h)cmax is encountered).

Lemma 10. For any feasible policy π for M̂ and any h ∈ [H+1], Pπ
M [(ĉh ≤ c̄h ≤ ĉh+

(h− 1)ℓ)∨ (c̄h, ĉh ≤ B− (H −h+1)cmax)] = 1. Also,
∣∣∣{ĉh | ∃s ∈ S, (s, ĉh) ∈ Ŝh}∣∣∣ ≤(

H∥cmax∥∞
ℓ

+ 2
)d

.

We see that solving M̂ gives additive feasible solutions and M̂ has far fewer states

than M̄ .
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Algorithm 8 Approximate Interaction Protocol
Input: policy π and projection f
1: ŝ1 = (s0, 0) and ĉ1 = 0.
2: for h = 1 to H do
3: ah = πh(ŝh)
4: ch ∼ Ch(sh, ah) and sh+1 ∼ Ph(sh, ah)
5: ĉh+1 = fh(ĉh, ch)
6: ŝh+1 = (sh+1, ĉh+1)

Theorem 10 (Approximation). Algorithm 7 computes an Hℓ-additive feasible policy

whose value is at least the optimal value of (ANY) and that can be stored with

O
(
Hd+1S ∥cmax∥d∞ /ℓd

)
space.

Like with our original reduction, the interaction protocol in Algorithm 8 allows

the agent to simulate M̂ online through M . Thus, planning and learning in M̂ can

be done through M .

Remark 10. Note, the agent does not need to construct Ŝ using Definition 10; it

suffices to consider the finite, stationary state space S × C, where C is the ℓ-cover

of [B −Hcmax, B] defined by f . Technically, for learning, the agent should already

know or have learned a bound on cmax to know the approximate state space.

4.4.1 Approximation Guarantees

We can use Algorithm 7 with different choices of ℓ to achieve the traditional approxi-

mation guarantees defined in Definition 9.

Additive Approximation. Given any ϵ > 0, we can compute an ϵ-additive feasible

solution by choosing ℓ := ϵ
H

. This approach is efficient so long as cmax is not too

large, since cmax controls the number of discretized costs we need to consider.

Corollary 3 (Additive Reduction). For any ϵ > 0, an optimal value, ϵ-additive feasi-

ble policy for an anytime-constrained cMDP can be computed in O
(
H4d+1S2A ∥cmax∥2d∞
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/ϵ2d
)

time and learned with Õ
(
H2d+3SA ∥cmax∥d∞ log(1

δ
)/γ2ϵd

)
sample complexity us-

ing Algorithm 7 with ℓ := ϵ
H

. Furthermore, the amount of space needed to store the

policy is O
(
H2d+1S ∥cmax∥d∞ /ϵd

)
. Thus, if d is constant and cmax ≤ poly(|M |), our

additive methods are polynomial time and sample complexity.

Relative Approximation. Given any ϵ > 0, we can compute an ϵ-relative feasible

solution by choosing ℓ := ϵ|B|
H

. This approach is efficient so long as cmax is not much

larger than |B|. This allows us to capture cost ranges that are polynomial multiples

of |B|, which could be exponentially large, unlike the additive approximation which

requires that cmax to be polynomial.

Corollary 4 (Relative Reduction). For any ϵ > 0, if cmax ≤ x |B|, an optimal

value, ϵ-relative feasible policy for an anytime-constrained cMDP can be computed

in O
(
x2dH4d+1S2A/ϵ2d

)
time and learned with Õ

(
xdH2d+3SA/ϵd log(1

δ
)/γ2

)
sample

complexity using Algorithm 7 with ℓ = ϵ|B|
H

. Furthermore, the amount of space needed

to store the policy is O
(
xdH2d+1S/ϵd

)
. Thus, if d is constant and x ≤ poly(|M |),

our methods are polynomial time and sample complexity.

Corollary 5. If all costs are positive, the H dependence in each guarantee of both the

additive and relative approximation improves to H2d+1, Hd+3, and Hd+1, respectively.

Limitations. Using our additive approximation, we can efficiently handle any

cMDP with cmax ≤ poly(|M |). Using the relative approximation, we can even

handle the case that cmax is exponentially large so long as cmax ≤ poly(|M |) |B|.

Thus, we can efficiently compute approximately feasible solutions so long as cmax ≤

poly(|M |)max(1, |B|).

We point out that the condition cmax ≤ poly(|M |) |B| is very natural. If the

costs all have the same sign, any feasible policy induces costs with cmax ≤ |B|. In
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our driving example, the condition simply says the vehicle cannot use more fuel than

the capacity of the tank. In fact, this bottleneck is not due to our approach; some

bound on cmax is necessary for efficient computation as Proposition 11 shows.

Proposition 11. For any fixed ϵ > 0, computing an optimal-value, ϵ-additive or

ϵ-relative feasible solution to the knapsack problem with negative weights is NP-hard.

Hence, it is hard for anytime-constrained cMDPs.

Feasibility Scheme. Let OPT (B) denote the optimal value V ∗ of an anytime-

constrained cMDP with budget B. Algorithm 7 provides an efficient approximation

and guarantees at least OPT (B) value but with the possibility of slightly going

over budget, up to B + ϵ or B(1 + ϵ). If it is important that the budget B is never

violated, we can use the same approximate algorithm with one change: We instead

give it M̂ ′, which is M̂ constructed from M under a smaller budget: (1) B − ϵ for

the additive approximation and (2) B/(1 + ϵ) for the relative approximation. Then,

any over-budget by Algorithm 7 is compensated by the smaller budget, so that

the cumulative cost is still under B. Thus we have both efficiency and (budget B)

feasibility. The drawback is that the algorithm now only guarantees a value at least

OPT (B − ϵ) or OPT (B/(1 + ϵ)), both can be much smaller than OPT (B).

Proposition 12 (Feasible Solutions). If π is returned by Algorithm 7 using ℓ = ϵ
H

(ℓ = ϵ|B|
H

) with budget B′ = B − ϵ (B′ = B
1+ϵ

), then π is feasible for (ANY).

4.5 Conclusion

In this chapter, we formalized and rigorously studied anytime-constrained cMDPs.

Although traditional policies cannot solve anytime-constrained cMDPs, we showed

that deterministic augmented policies suffice. We also presented a fixed-parameter
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tractable reduction based on cost augmentation and safe exploration that yields

efficient planning and learning algorithms when the cost precision is O(log(|M |)).

In addition, we developed efficient planning and learning algorithms to find ϵ-

approximately feasible policies with optimal value whenever the maximum supported

cost is O(poly(|M |)max(1, |B|)). Based on our hardness of approximation results,

this is the best approximation guarantee we can hope for under worst-case analysis.
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Chapter 5

FPTAS for One Constraint

Abstract. In this chapter, we present a novel algorithm that efficiently computes

near-optimal deterministic policies for constrained reinforcement learning (CRL)

problems. Our approach combines three key ideas: (1) value-demand augmentation,

(2) action-space approximate dynamic programming, and (3) time-space rounding.

Our algorithm constitutes a fully polynomial-time approximation scheme (FPTAS)

for any time-space recursive (TSR) cost criteria. A TSR criteria requires the

cost of a policy to be computable recursively over both time and (state) space,

which includes classical expectation, almost sure, and anytime constraints. Our

work answers three open questions spanning two long-standing lines of research:

polynomial-time approximability is possible for 1) anytime-constrained policies,

2) almost-sure-constrained policies, and 3) deterministic expectation-constrained

policies.

5.1 Introduction

Constrained Reinforcement Learning (CRL) traditionally produces stochastic, expec-

tation constrained policies that can behave undesirably - imagine a self-driving car
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that randomly changes lanes or runs out of fuel. However, artificial decision-making

systems must be predictable, trustworthy, and robust. One approach to ensuring

these qualities is to focus on deterministic policies, which are inherently predictable,

easily implemented [36], reliable for autonomous vehicles [56, 40], and effective for

multi-agent coordination [88]. Similarly, almost sure and anytime constraints [79]

provide inherent trustworthiness and robustness, essential for applications in medi-

cine [26, 87, 64], disaster relief [35, 117, 109], and resource management [75, 70, 90, 13].

Despite the advantages of deterministic policies and stricter constraints, even the

computation of approximate solutions has remained an open challenge since NP-

hardness was proven nearly 25 years ago [36]. Our work addresses this challenge

by studying the computational complexity of computing deterministic policies for

general constraint criteria.

Consider a constrained Markov Decision Process (cMDP) denoted by M . Let

C represent an arbitrary cost criterion and B be the available budget. We focus

on the set of deterministic policies denoted by ΠD. Our objective is to compute:

maxπ∈ΠD V π
M s.t. Cπ

M ≤ B, where V π
M is the value and Cπ

M is the cost of π in M .

This objective generalizes the example of a self-driving car calculating the fastest

fixed route without running out of fuel. Our main question is the following:

Can near-optimal deterministic policies for constrained reinforcement

learning problems be computed in polynomial time?

Although optimal stochastic policies for expectation-constrained problems are

efficiently computable [5], the situation drastically changes when we require deter-

ministic policies and general constraints. Computing optimal deterministic policies

is NP-hard for most popular constraints, including expectation [36], chance [123],

almost sure, and anytime constraints [79]. This complexity remains even if we relax

our goal to finding just one feasible policy, provided that we are dealing with a single
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chance constraint [123], or at least two of the other mentioned constraints [79]. Be-

yond these computational challenges, traditional solution methods, such as backward

induction [91, 5], fail to apply due to the cyclic dependencies among subproblems:

the value of any decision may depend on the costs of both preceding and concurrent

decisions, preventing a solution from being computed in a single backward pass.

Past Work. Past approaches fail to simultaneously achieve computational efficiency,

feasibility, and optimality. Optimal and feasible algorithms, albeit inefficient, utilize

Mixed-Integer Linear Programs [32] and Dual-guided heuristic forward searches [55]

for expectation-constraints, and cost-augmented MDPs for almost sure [18] and any-

time constraints [79]. Conversely, optimal and efficient, though infeasible, algorithms

are known for expectation [105], almost sure, and anytime constraints [79]. A fully

polynomial-time approximation scheme (FPTAS) [116] is known for expectation

constraints, but it requires strong assumptions such as a constant horizon [63]. Bal-

ancing computational efficiency, feasibility, and optimality remains the bottleneck to

efficient approximation.

Our Contributions. We present an FPTAS for computing deterministic policies

under any time-space recursive (TSR) constraint criteria. A TSR criteria requires

the cost of a policy to be computable recursively in both time and (state) space,

which captures expectation, almost sure, and anytime constraints. Since non-TSR

criteria, such as chance constraints [123], are provably inapproximable, TSR seems

pivotal for efficient computation. Overall, our general framework answers three open

complexity questions spanning two longstanding lines of work: we prove polynomial-

time approximability for 1) anytime-constrained policies, 2) almost-sure-constrained

policies, and 3) deterministic expectation-constrained policies, which have been open

for nearly 25 years [36].
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Our approach breaks down into three main ideas: (1) value-demand augmentation,

(2) action-space approximate dynamic programming, and (3) time-space rounding.

We augment the states with value demands and the actions with future value demands

to break cyclic subproblem dependencies, enabling dynamic programming methods.

Importantly, we use values because they can be rounded without compromising

feasibility [79] and can capture constraints that are not predictable from cumulative

costs. However, this results in an exponential action space that makes solving the

Bellman operator as hard as the knapsack problem. By exploiting the space-recursive

nature of the criterion, we can efficiently approximate the Bellman operator with

dynamic programming. Finally, rounding value demands result in approximation

errors over both time and space, but carefully controlling these errors ensures provable

guarantees.

5.1.1 Related Work

Approximate Packing. Many stochastic packing problems, which generalize

the knapsack problem, are captured by our problem. Dean et al. [30], Frieze and

Clarke [38] derived optimal approximation ratio algorithms for stochastic packing

and integer packing with multiple constraints, respectively. Yang et al. [125], Bhalgat

et al. [12] designed efficient approximation algorithms for variations of the stochastic

knapsack problem. Then, Halman et al. [48] derived an FPTAS for a general class

of stochastic dynamic programs, which was then further improved in [47, 3]. These

methods require a single-dimensional state space that captures the constraint. In

contrast, our problems have an innate state space in addition to the constraint. Our

work forms a similar general dynamic programming framework for the more complex

MDP setting.
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Constrained RL. It is known that stochastic expectation-constrained policies are

polynomial-time computable via linear programming [5], and many planning and

learning algorithms exist for them [89, 110, 14, 53]. Some learning algorithms can

even avoid violation during the learning process under certain assumptions [115, 7].

Furthermore, Brantley et al. [17] developed no-regret algorithms for cMDPs and

extended their algorithms to the setting with a constraint on the cost accumulated

over all episodes, which is called a knapsack constraint [17, 22].

Safe RL. The safe RL community [39, 45] has mainly focused on no-violation

learning for stochastic expectation-constrained policies [24, 16, 4, 21, 10] and solving

chance constraints [114, 132], which capture the probability of entering unsafe

states. Performing learning while avoiding dangerous states [132] is a special case

of expectation constraints that has also been studied [96, 107] under non-trivial

assumptions. In addition, instantaneous constraints, which require the expected cost

to be within budget at all times, have also been studied [69, 37, 43].

5.2 Cost Criteria

In this section, we formalize our problem setting. We also define our conditions for

cost criteria.

Constrained Markov Decision Processes. A (tabular, finite-horizon) Con-

strained Markov Decision Process (cMDP) is a tuple M = (S,A, P, r, c,H), where (i)

S is the finite set of states, (ii) A is the finite set of actions, (iii) Ph(s, a) ∈ ∆(S) is the

transition distribution, (iv) rh(s, a) ∈ R is the reward, (v) ch(s, a) ∈ R is the cost, and

(vi) H ∈ N is the finite time horizon. We let S := |S|, A := |A|, [H] := {1, . . . , H},

and M denote the set of all cMDPs. We also let rmax
def
= maxh,s,a |rh(s, a)| denote
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the maximum magnitude reward, rmin
def
= minh,s,a rh(s, a) denote the true minimum

reward, and pmin
def
= minh,s,a,s′ Ph(s

′ | s, a) denote the minimum transition probability.

Since S is a finite set, we often assume S = [S] WLOG. Lastly, for any predicate p,

we use the Iverson bracket notation [p] to denote 1 if p is true and 0 otherwise, and

we let χp denote the characteristic function which evaluates to 0 if p is true and ∞

otherwise.

Interaction Protocol. The agent interacts with M using a policy π = (πh)
H
h=1.

In the fullest generality, πh : Hh → ∆(A) is a mapping from the observed history

at time h to a distribution of actions. In contrast, a deterministic policy takes

the form πh : Hh → A. We let Π denote the set of all possible policies and ΠD

denote the set of all deterministic policies. The agent starts at the initial state

s0 ∈ S with observed history τ1 = (s0). For any h ∈ [H], the agent chooses an

action ah ∼ πh(τh). Then, the agent receives immediate reward rh(sh, ah) and cost

ch(sh, ah). Lastly, M transitions to state sh+1 ∼ Ph(sh, ah) and the agent updates the

history to τh+1 = (τh, ah, sh+1). This process is repeated for H steps; the interaction

ends once sH+1 is reached.

Objective. For any cost criterion C :M× Π→ R and budget B ∈ R, the agent’s

goal is to compute a solution to the following optimization problem:

max
π∈Π

Eπ
M

[
H∑

h=1

rh(sh, ah)

]
s.t.


Cπ

M ≤ B

π deterministic
. (CON)

Here, Pπ
M denotes the probability law over histories induced from the interaction

of π with M , and Eπ
M denotes the expectation defined by this law. We let V π

M
def
=

Eπ
M

[∑H
t=1 rt(st, at)

]
denote the value of a policy π, and V ∗

M denote the optimal
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solution value to (CON).

Cost criteria. We consider a broad family of cost criteria that satisfy a strength-

ening of the standard policy evaluation equations [91]. This strengthening requires

not only the cost of a policy to be computable recursively in the time horizon, but

at each time the cost should also break down recursively in (state) space.

Definition 11 (TSR). We call a cost criterion C time-recursive (TR) if for any

cMDP M and policy π ∈ ΠD, π’s cost decomposes recursively into Cπ
M = Cπ

1 (s0).

Here, Cπ
H+1(·) = 0 and for any h ∈ [H] and τh ∈ Hh,

Cπ
h (τh) = ch(s, a) + f

((
Ph(s

′ | s, a), Cπ
h+1 (τh, a, s

′)
)
s′∈Ph(s,a)

)
, (TR)

where s = sh(τh), a = πh(τh), and f is a non-decreasing function1 computable in

O(S) time. For technical reasons, we also require that f(x) =∞ whenever ∞ ∈ x.

We further say C is time-space-recursive (TSR) if the f term above is equal to

gτh,ah (1). Here, gτh,ah (S + 1) = 0 and for any t ≤ S,

gτh,ah (t) = α
(
β
(
Ph(t | s, a), Cπ

h+1 (τh, a, t)
)
, gτh,ah (t+ 1)

)
, (SR)

where α is a non-decreasing function, and both α, β are computable in O(1) time.

We also assume that α(·,∞) = ∞, and β satisfies α(β(0, ·), x) = x to match f ’s

condition.

Since the TR condition is a slight generalization of traditional policy evaluation, it

is easy to see that we can solve for minimum-cost policies using backward induction.

1When we say a multivariate function is non-decreasing, we mean it is non-decreasing with
respect to the partial ordering induced by component-wise ordering.



75

Proposition 13 (TR Intuition). If C is TR, then C satisfies the usual optimality

equations. Furthermore, argminπ∈ΠD Cπ
M can be computed using backward induction

in O(HS2A) time.

Although the TR condition is straightforward, the TSR condition is more strict.

We will see the utility of the TSR condition in Section 5.4 when computing Bellman

updates. For now, we point out that the TSR condition is not too restrictive: it is

satisfied by many popular criteria studied in the literature.

Proposition 14 (TSR examples). The following classical constraints can be modeled

by a TSR cost constraint.

1. (Expectation Constraints) are captured by Cπ
M

def
= Eπ

M

[∑H
h=1 ch(sh, ah)

]
≤ B.

We see C is TSR by defining α(x, y) def
= x+ y and β(x, y) def

= xy.

2. (Almost Sure Constraints) are captured by Cπ
M

def
= maxτ∈HH+1,

Pπ
M [τ ]>0

∑H
h=1 ch(sh, ah) ≤

B. We see C is TSR by defining α(x, y) def
= max(x, y) and β(x, y) def

= [x > 0]y.

3. (Anytime Constraints) are captured by Cπ
M

def
= maxt maxτ∈HH+1,

Pπ
M [τ ]>0

∑t
h=1 ch(sh, ah)

≤ B. We see C is TSR by defining α(x, y) def
= max(0,max(x, y)) and β(x, y) def

=

[x > 0]y.

Remark 11 (Extensions). Our methods can also handle stochastic costs and infinite

discounting. We defer the details to Appendix D.5. Moreover, we can handle multiple

constraints using vector-valued criteria so long as the comparison operator is a total

ordering of the vector space.

Remark 12 (Inapproximability). Our methods cannot handle chance constraints

or more than one of our example constraints. However, this is not a limitation

of our framework as the problem becomes provably inapproximable under said

constraints [123, 79].
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5.3 Covering Algorithm

In this section, we propose an algorithm to solve (CON). Our approach relies on

converting the original problem into an equivalent covering problem that can be

solved using an unconstrained MDP. This covering MDP is derived using the key

idea of value augmentation.

Packing and Covering. We can view (CON) as a packing program, which wishes

to maximize V π
M subject to Cπ

M ≤ B. However, we could also tackle the problem by

reversing the objective: attempt to minimize Cπ
M subject to V π

M ≥ V ∗
M . If (CON) is

feasible, then any optimal solution π to this covering program satisfies V π
M ≥ V ∗

M and

Cπ
M ≤ B. Thus, we can solve the original packing program by solving the covering

program.

Proposition 15 (Packing-Covering Reduction). Suppose that C∗
M

def
= minπ∈ΠD Cπ

M

s.t. V π
M ≥ V ∗

M . Then, C∗
M ≤ B ⇐⇒ V ∗

M > −∞. Furthermore, if V ∗
M > −∞, then,

argminπ∈ΠD Cπ
M

V π
M ≥ V ∗

M

⊆
argmaxπ∈ΠD V π

M

Cπ
M ≤ B

. (PC)

Thus, any solution to the covering program is a solution to the packing program.

We focus on the covering program for several reasons. To optimize the value

recursively, we would need to predict the final cost resulting from intermediate

decisions to ensure feasibility. Generally, such predictions would require strict

assumptions on the cost criteria. By treating the value as the constraint instead, we

only need to assume the cost can be optimized efficiently. Moreover, values are well

understood in RL and are more amenable to approximation [79]. Thus, the covering

program allows us to capture many criteria, ensure feasibility, and compute accurate
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value approximations.

Value Augmentation. We can solve the covering program by solving a cost-

minimizing MDP M̄ . The key idea is to augment the state space with value demands,

(s, v). Then, the agent can recursively reason how to minimize its cost while meeting

the current value demand. If the agent starts at (s0, V
∗
M ), then an optimal policy for

M̄ should be a solution to the covering program.

The key invariant we desire is that any feasible policy π for M̄ should satisfy

V̄ π
h (s, v) ≥ v. To ensure this invariance, we recall the policy evaluation equations [91].

If πh(s) = a, then,

V̄ π
h (s, v) = rh(s, a) +

∑
s′

Ph(s
′ | s, a)V̄ π

h+1(s
′, vs′). (PE)

For the value invariant to be satisfied, it suffices for the agent to choose an action a

and commit to future value demands vs′ satisfying,

rh(s, a) +
∑
s′

Ph(s
′ | s, a)vs′ ≥ v. (DEM)

We can view choosing future value demands as part of the agent’s augmented

actions. Then, at any augmented state (s, v), the agent’s augmented action space

includes all (a,v) ∈ A×RS satisfying (DEM). When M transitions to s′ ∼ Ph(s, a),

the agent’s new augmented state should consist of the environment’s new state in

addition to its chosen demand for that state, (s′, vs′). Putting these pieces together

yields the definition of the cover MDP, Definition 12.

Definition 12 (Cover MDP). The cover MDP M̄
def
= (S̄, Ā, P̄ , c̄, H) where,

1. S̄ def
= S × V where V def

=
{
v | ∃π ∈ ΠD, h ∈ [H + 1], τh ∈ Hh, V

π
h (τh) = v

}
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Algorithm 9 Reduction to RL
Input: (M,C,B)
1: M̄, C̄ ← Definition 12(M,C)
2: π, C̄∗ ← Solve(M̄, C̄)
3: if C̄∗

1(s0, v) > B for all v ∈ V then
4: return “Infeasible”
5: else
6: return π

Algorithm 10 Augmented Interaction
Input: π
1: s̄1 = (s0, V

∗
M)

2: for h← 1 to H do
3: (a,v)← πh(s̄h)
4: rh = rh(s, a) and sh+1 ∼ Ph(sh, a)
5: s̄h+1 = (sh+1, vsh+1

)

2. Āh(s, v)
def
=
{
(a,v) ∈ A× VS | rh(s, a) +

∑
s′ Ph(s

′ | s, a)vs′ ≥ v
}
.

3. P̄h((s
′, v′) | (s, v), (a,v)) def

= Ph(s
′ | s, a)[v′ = vs′ ].

4. c̄h((s, v), (a,v))
def
= ch(s, a).

The objective for M̄ is to minimize the cost function C̄
def
= CM̄ with modified base

case C̄π
H+1(s, v)

def
= χ{v≤0}.

Covering Algorithm. Importantly, the action space definition ensures the value

constraint is satisfied. Meanwhile, the minimum cost objective ensures optimal cost.

So long as our cost is TR, M̄ can be solved using fast RL methods instead of the

brute force computation required for general covering programs. These properties

ensure our method, Algorithm 9, is correct.

Theorem 11 (Reduction). If Solve is any finite-time MDP solver, then Algorithm 9

correctly solves (CON) in finite time for any TR cost criterion.
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Remark 13 (Execution). Given a value-augmented policy π output from Algorithm 9,

the agent can execute π using Algorithm 10. To compute V ∗
M as the starting value,

it suffices for the agent to compute,

V ∗
M = max

{
v ∈ V | C̄∗

1(s0, v) ≤ B
}
. (5.1)

This computation can be easily done given C̄∗
1(s0, ·) in O(|V|) time.

5.4 Fast Bellman Updates

In this section, we present an algorithm to solve M̄ from Definition 12 efficiently.

Although the Bellman updates can be as hard to solve as the knapsack problem, we

use ideas from knapsack approximation algorithms to create an efficient method. Our

approach exploits (SR) through approximate dynamic programming on the action

space.

Even if V were small, solving M̄ would still be challenging due to the exponentially

large action space. Even a single Bellman update requires the solution of a constrained

optimization problem:

C̄∗
h(s, v) = min

a,v
ch(s, a) + f

((
Ph(s

′ | s, a), C̄∗
h+1 (s

′, vs′)
)
s′∈Ph(s,a)

)
s.t. rh(s, a) +

∑
s′

Ph(s
′ | s, a)vs′ ≥ v.

(BU)

Above, we used the fact that (s′, v′) ∈ P̄h((s, v), (a,v)) iff s′ ∈ Ph(s, a) and v′ = vs′

to simplify f ’s input. Observe that even when each vs′ only takes on two possible

values, {0, ws′}, the optimization above can capture the minimization version of the

knapsack problem, implying that it is NP-hard to compute.
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Recursive Approach. Fortunately, we can use the connection to the Knapsack

problem positively to efficiently approximate the Bellman update. For any fixed

(s, v) ∈ S̄ and a ∈ A, we focus on the inner constrained minimization over v:

min
v∈VS ,

rh(s,a)+
∑

s′ Ph(s
′|s,a)vs′≥v

f
((
Ph(s

′ | s, a), C̄∗
h+1 (s

′, vs′)
)
s′∈Ph(s,a)

)
(5.2)

We use (SR) to transform this minimization over v into a sequential decision-making

problem that decides each vs′ . As above, we can use the definition of P̄ to simplify

g
(s,v),(a,v)
h (t, v′) into a function of t alone:

g
(s,v),(a,v)
h (t) = α

(
β
(
Ph(t | s, a), C̄∗

h+1 (t, vt)
)
, g

(s,v),(a,v)
h (t+ 1)

)
. (5.3)

Since v only constrains the valid (a,v) pairs, we can discard v and use the simplified

notation gs,ah,v(t) instead of g(s,v),(a,v)h (t). It is then clear that we can recursively

optimize the value of vt by focusing on gs,ah,v(t).

To recursively encode the value constraint, we can record the partial value

u = rh(s, a) +
∑t−1

s′=1 Ph(s
′ | s, a)vs′ that we have accumulated so far. Then, we can

check if our choices for v satisfied the constraint with the inequality u ≥ v. The

formal recursion is defined in Definition 13.

Definition 13. For any h ∈ [H], s ∈ S, v ∈ V , and u ∈ R, we define, gs,ah,v(S+1, u) =

χ{u≥v} and for t ≤ S,

gs,ah,v(t, u) = min
vt∈V

α
(
β
(
Ph(t | s, a), C̄∗

h+1 (t, vt)
)
, gs,ah,v(t+ 1, u+ Ph(t | s, a)vt)

)
. (DP)

Recursive Rounding. This approach can still be slow due to the exponential

number of partial values u induced. Similarly to the knapsack problem, the key is

to round each input u to ensure fewer subproblems. Unlike the knapsack problem,
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however, we do not have an easily computable lower bound on the optimal value.

Thus, we turn to a more aggressive recursive rounding. Since rounding may cause

originally feasible values to violate the demand constraint, we also relax the demand

constraint to u ≥ κ(v) for some lower bound function κ.

Definition 14. Fix a rounding function ⌊·⌋G and a lower bound function κ. For any

h ∈ [H], s ∈ S, v ∈ V , and u ∈ R, we define, ĝs,ah,v(S + 1, u) = χ{u≥v} and for t ≤ S,

ĝs,ah,v(t, u)
def
= min

vt∈V
α
(
β
(
Ph(t | s, a), C̄∗

h+1 (t, vt)
)
, ĝs,ah,v(t+ 1, ⌊u+ Ph(t | s, a)vt)⌋G

)
.

(ADP)

Fortunately, the approximate version behaves similarly to the original. The main

difference is the constraint now ensures the rounded sums are at least the value lower

bound. This is formalized in Lemma 11.

Lemma 11. For any t ∈ [S + 1] and u ∈ R, we have that,

ĝs,ah,v(t, u) = min
v∈VS−t+1

gs,ah,v̂(t)

s.t. σ̂s,a
h,v(t, u) ≥ κ(v),

(5.4)

where σ̂s,a
h,v(t, u)

def
=
⌊
⌊u+ Ph(t | s, a)vt⌋G + . . .+ Ph(S | s, a)vS

⌋
G.

To turn this recursion into a usable dynamic programming algorithm, we must

also pre-compute the inputs to any sub-computation. Unlike in standard RL, this

computation must be done with a forward recursion. The details for the approximate

Bellman update are given in Definition 15.

Definition 15 (Approx Bellman). For any h ∈ [H], s ∈ S, and a ∈ A, we define
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Algorithm 11 Approx Bellman Update
Input: (h, s, v, C̄∗

h+1)
1: for a ∈ A do
2: ĝs,ah,v(S + 1, u)← χ{u≥v} ∀u ∈ Û s,a

h (S + 1)
3: for t← S down to 1 do
4: for u ∈ Û s,a

h (t) do
5: vt,a, ĝ

s,a
h,v(t, u)← (ADP)

6: a∗, Ĉ∗
h(s, v)← mina∈A ch(s, a) + ĝs,ah,v(1, rh(s, a))

7: return (a∗, v1,a∗ , . . . , vS,a∗) and Ĉ∗
h(s, v)

Algorithm 12 Approx Solve
Input: (M̄, C̄)
1: Ĉ∗

H+1(s, v)← χ{v≤0} for all (s, v) ∈ S̄
2: for h← H down to 1 do
3: for (s, v) ∈ S̄ do
4: â, Ĉ∗

h(s, v)← Algorithm 11(h, s, v, Ĉ∗
h+1)

5: πh(s, v)← â

6: return π and Ĉ∗

Û s,a
h (1)

def
= {rh(s, a)} and for any t ∈ [S],

Û s,a
h (t+ 1)

def
=
⋃
vt∈V

⋃
u∈Ûs,a

h (t)

{
⌊u+ Ph(t | s, a)vt⌋G

}
. (5.5)

Then, an approximation to the Bellman update can be computed using Algorithm 11.2

Proposition 16. Algorithm 12 runs in O(HS2A|V|2Û) time, where Û def
= maxh,s,a

|Û s,a
h |. When ⌊·⌋G and κ are the identity function, Algorithm 12 outputs an optimal

solution to M̄ .

Remark 14 (Speedups). The runtime of our methods can be quadratically improved

by rounding the differences instead of the sums. We defer the details to Appendix D.5.
2We use the notation x, o ← minx z(x) to say that x is the minimizer and o the value of the

optimization.
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5.5 Approximation Algorithms

In this section, we present our approximation algorithms for solving (CON). We

carefully round the value demands over both time and space to induce an approximate

MDP. Solving this approximate MDP with Algorithm 12 yields our FPTAS.

Although we can avoid exponential-time Bellman updates, the running time of

the approximate Bellman update will still be slow if |V| is large. To reduce the

complexity, we instead use a smaller set of approximate values by rounding elements

of |V|. By rounding down, we effectively relax the value-demand constraint. More

aggressive rounding not only leads to smaller augmented state spaces but also to

smaller cost policies. The trade-off is aggressive rounding leads to weaker guarantees

on the computed policy’s value. Thus, it is critical to carefully design the rounding

and lower bound functions to balance this trade-off.

Value Approximation. Given a rounding down function ⌊·⌋G , we would ideally use

the rounded set
{
⌊v⌋G | v ∈ V

}
to form our approximate state space. To avoid having

to compute V explicitly, we instead use the rounded superset
{
⌊v⌋G | v ∈ [vmin, vmax]

}
,

where vmin and vmax are bounds on the extremal values that we specify later. To

ensure we can use Algorithm 12 to find solutions efficiently, we must also relax the

augmented action space to only include vectors that lead to feasible subproblems

for (ADP). From Lemma 11, we know this is exactly the set of (a, v̂) for which

σ̂s,a
h,v̂(1, rh(s, a)) ≥ κ(v). Combining these ideas yields the new approximate MDP,

defined in Definition 16.

Definition 16 (Approximate MDP). Given a rounding function ⌊·⌋G and lower

bound function κ, the approximate MDP M̂
def
= (Ŝ, Â, P̂ , ĉ, H) where,

1. Ŝ def
= S × V̂ where V̂ def

=
{
⌊v⌋G | v ∈ [vmin, vmax]

}
.
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2. Âh(s, v̂)
def
=
{
(a, v̂) ∈ A× V̂S | σ̂s,a

h,v̂(1, rh(s, a)) ≥ κ(v̂)
}

.

3. P̂h((s
′, v̂′) | (s, v̂), (a, v̂)) def

= Ph(s
′ | s, a)[v̂′ = v̂s′ ].

4. ĉh((s, v̂), (a, v̂))
def
= ch(s, a).

The objective for M̂ is to minimize the cost function Ĉ
def
= CM̂ with modified base

case Ĉπ
H+1(s, v̂)

def
= χ{v̂≤0}.

We can show that rounding down in Definition 16 achieves our goal of producing

smaller cost policies. This ensures feasibility is even easier to achieve. We formalize

this observation in Lemma 12.

Lemma 12 (Optimistic Costs). For our later choices of ⌊·⌋G and κ, the following

holds: for any h ∈ [H + 1] and (s, v) ∈ S̄, we have Ĉ∗
h(s, ⌊v⌋G) ≤ C̄∗

h(s, v).

Thus, Algorithm 13 always outputs a policy with better than optimal cost when

the instance is feasible, V ∗
M > −∞. If the instance is infeasible, all policies have cost

larger than B by definition and so Algorithm 13 correctly indicates the instance is

infeasible. The remaining question is whether Algorithm 13 outputs policies having

near-optimal value.

Time-Space Errors. To assess the optimality gap of Algorithm 13 policies, we

must first explore the error accumulated by our rounding approach. Rounding each

value naturally accumulates approximation error over time. Rounding the partial

values while running Algorithm 11 accumulates additional error over (state) space.

Thus, solving M̂ using Algorithm 12 accumulates error over both time and space,

unlike other approximate methods in RL. As a result, our rounding and threshold

functions will generally depend on both H and S.
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Algorithm 13 Approximation Scheme
Input: (M,C,B)
1: Hyperparameters: ⌊·⌋G and κ
2: M̂, Ĉ ← Definition 16(M,C, ⌊·⌋G , κ)
3: π, Ĉ∗ ← Algorithm 12(M̂, Ĉ)
4: if Ĉ∗

1(s0, v̂) > B for all v̂ ∈ V̂ then
5: return “Infeasible"
6: else
7: return π

Arithmetic Rounding. Our first approach is to round each value down to its

closest element in a δ-cover. This guarantees that v − δ ≤ ⌊v⌋G ≤ v. Thus, ⌊v⌋G is

an underestimate that is not too far from the true value. By setting δ to be inversely

proportional to SH, we control the errors over time and space. The lower bound

must also be a function of S since it controls the error over space.

Definition 17 (Additive Approx). Fix ϵ > 0. We define,

⌊v⌋G
def
=
⌊v
δ

⌋
δ and κ(v) def

= v − δ(S + 1), (5.6)

where δ def
= ϵ

H(S+1)+1
, vmin

def
= −Hrmax, and vmax

def
= Hrmax.

Theorem 12 (Additive FPTAS). For any ϵ > 0, Algorithm 13 using Definition 17

given any cMDP M and TSR criteria C either correctly outputs the instance is

infeasible, or produces a policy π satisfying V̂ π ≥ V ∗
M − ϵ in O(H7S5Ar3max/ϵ

3) time.

Thus, it is an additive-FPTAS for the class of cMDPs with polynomial-bounded rmax

and TSR criteria.

Geometric Rounding. Since the arithmetic approach can be slow when rmax is

large, we can instead round values down to their closest power of 1/(1− δ). This

guarantees the number of approximate values needed is upper bounded by a function

of log(rmax), which is polynomial in the input size. We choose a geometric scheme
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satisfying v(1− δ) ≤ ⌊v⌋G ≤ v so that the rounded value is an underestimate and

a relative approximation to the true value. To ensure this property, we must now

require that all rewards are non-negative.

Definition 18 (Relative Approx). Fix ϵ > 0. We define,

⌊v⌋G
def
= vmin

(
1

1− δ

)⌊
log 1

1−δ

v

vmin

⌋
and κ(v) def

= v(1− δ)S+1, (5.7)

where δ def
= ϵ

H(S+1)+1
, vmin = pHminrmin, and vmax = Hrmax.

Theorem 13 (Relative FPTAS). For ϵ > 0, Algorithm 13 using Definition 18 given

any cMDP M and TSR criteria C either correctly outputs the instance is infeasible, or

produces a policy π satisfying V̂ π ≥ V ∗
M (1− ϵ) in O(H7S5A log (rmax/rminpmin)

3 /ϵ3)

time. Thus, it is a relative-FPTAS for the class of cMDPs with non-negative rewards

and TSR criteria.

Remark 15 (Assumption Necessity). We also note the mild reward assumptions

we made to guarantee efficiency are unavoidable. Without reward bounds, (CON)

captures the knapsack problem which does not admit additive approximations.

Similarly, without non-negativity, relative approximations for maximization problems

are generally not computable.

5.6 Conclusions

In this chapter, we studied the computational complexity of computing deterministic

policies for CRL problems. Our main contribution was the design of an FPTAS,

Algorithm 13, that solves (CON) for any cMPD and TSR criteria under mild reward

assumptions. In particular, our method is an additive-FPTAS if the cMDP’s rewards
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are polynomially bounded, and is a relative-FPTAS if the cMDP’s rewards are non-

negative. We note these assumptions are necessary for efficient approximation, so

our algorithm achieves the best approximation guarantees possible under worst-case

analysis. Moreover, our algorithmic approach, which uses approximate dynamic

programming over time and the state space, highlights the importance of the TSR

condition in making (CON) tractable. Our work finally resolves the long-standing

open questions of polynomial-time approximability for 1) anytime-constrained policies,

2) almost-sure-constrained policies, and 3) deterministic expectation-constrained

policies.
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Chapter 6

Bicriteria for Arbitrary Constraints

Abstract. In this chapter, we study the computational complexity of approximating

general constrained Markov decision processes. Our primary contribution is the design

of a polynomial time (0, ϵ)-additive bicriteria approximation algorithm for finding

optimal constrained policies across a broad class of recursively computable constraints,

including almost-sure, chance, expectation, and their anytime variants. Matching

lower bounds imply our approximation guarantees are optimal so long as P ̸= NP .

The generality of our approach results in answers to several long-standing open

complexity questions in the constrained reinforcement learning literature. Specifically,

we are the first to prove polynomial-time approximability for the following settings:

policies under chance constraints, deterministic policies under multiple expectation

constraints, policies under non-homogeneous constraints (i.e., constraints of different

types), and policies under constraints for continuous-state processes.

6.1 Introduction

Constrained Reinforcement Learning (CRL) is growing increasingly crucial for man-

aging complex, real-world applications such as medicine [26, 87, 64], disaster re-
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lief [35, 117, 109], and resource management [75, 70, 90, 13]. Various constraints,

including expectation [5], chance [123], almost-sure [18], and anytime constraints [78],

were each proposed to address new challenges. Despite the richness of the literature,

most works focus on stochastic, expectation-constrained policies, leaving many popu-

lar settings with longstanding open problems. Even chance constraints, arguably a

close second in popularity, still lack any polynomial-time, even approximate, algo-

rithms despite being introduced over a decade ago [123]. Other settings for which

polynomial-time algorithms are open include deterministic policies under multiple

expectation constraints, policies under non-homogeneous constraints (i.e., constraints

of different types), and policies under constraints for continuous-state processes. Con-

sequently, we study the computational complexity of general constrained problems

to resolve many of these fundamental open questions.

Formally, we study the solution of Constrained Markov Decision Processes

(CMDPs). Here, we define a CMDP through three fundamental parts: (1) an

MDP M that accumulates both rewards and costs, (2) a general cost criterion C,

and (3) a budget vector B. Additionally, we allow the agent to specify whether

they require their policy to be deterministic or stochastic, formalized through a goal

policy class Π. The agent’s goal is to solve maxπ∈Π V
π
M subject to Cπ

M ≤ B, where

V π
M denotes the agent’s value and Cπ

M denotes the agent’s cost under π. This model

can capture very general problems, including minimum time routes for self-driving

vehicles that must satisfy 1) an anytime constraint on fuel consumption, 2) an

expectation constraint on CO2 consumption, and 3) a chance constraint on vehicle

wear and tear. Our main question is the following:

Can general CMDPs be approximated in polynomial time?
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Hardness. Solving general CMDPs is notoriously challenging. When restricted

to deterministic policies, solving a CMDP with just one constraint is NP-hard [36,

123, 78, 76]. This difficulty increases with the number of constraints: with at least

two constraints, finding a feasible deterministic policy, let alone a near-optimal one,

becomes NP-hard [78]. Even if we relax the deterministic requirement, this hardness

remains for all constraint types other than expectation. Computational hardness

aside, standard RL techniques fail to apply due to the combinatorial nature induced

by many constraint types. Adding in additional constraints with fundamentally

different structures further complicates the problem.

Past Work. A few works have managed to derive provable approximation algo-

rithms for some cases of CRL. McMahan [76] presented a fully polynomial-time

approximation scheme (FPTAS) for the computation of deterministic policies of a

general class of constraints, which includes expectation, almost-sure, and anytime con-

straints. Although powerful, their framework only works for one constraint and fails

to capture anytime-expectation constraints along with chance constraints. Similarly,

Khonji et al. [63] achieves an FPTAS for expectation and chance constraints, but

only in the constant horizon setting. In contrast, McMahan and Zhu [78] develops a

polynomial-time (0, ϵ)-additive bicritiera approximation algorithm for anytime and

almost-sure constraints. However, their framework is specialized to those constraint

types and thus fails for our purpose. In contrast, Xu and Mannor [123] developed a

pseudo-polynomial time algorithm for finding feasible chance-constrained policies,

but their methods do not lead to polynomial-time solutions.

Our Contributions. We design a polynomial-time (0, ϵ)-additive bicriteria ap-

proximation algorithm for tabular, SR-criterion CMDPs. An SR criterion is required

to satisfy a generalization of the policy evaluation equations and includes expectation,
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chance, and almost-sure constraints along with their anytime equivalents. Our frame-

work implies the first positive polynomial-time approximability results for (1) policies

under chance constraints, (2) deterministic policies under multiple expectation con-

straints, and (3) policies under non-homogeneous constraints – each of which has been

unresolved for over a decade. We then extend our algorithm into a polynomial-time

(ϵ, ϵ)-additive bicriteria approximation algorithm for continuous-state CMPDs under

a general class of constraints, which includes expectation, almost-sure, and anytime

constraints.

Our Techniques. Our algorithm requires several key techniques. First, we trans-

form a constraint concerning all realizable histories into a simpler per-time constraint.

We accomplish this by augmenting the state space with an artificial budget and

augmenting the action space to choose future budgets to satisfy the constraint.

However, Bellman updates then become as hard as the knapsack problem due to

the large augmented action space. For tabular cMDPs, we show that the Bellman

updates can be approximately computed using dynamic programming and rounding.

By strategically rounding the artificial budget space, we achieve a (0, ϵ)-bicriteria

approximation for tabular CMDPs. By appropriately discretizing the continuous

state space, our method becomes a (ϵ, ϵ)-bicriteria approximation algorithm for

continuous state CMDPs.

6.1.1 Related Work

Constrained RL. It is known that stochastic expectation-constrained policies are

polynomial-time computable via linear programming [5], and many planning and

learning algorithms exist for them [89, 110, 14, 53]. Some learning algorithms can

even avoid violation during the learning process under certain assumptions [115, 7].
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Furthermore, Brantley et al. [17] developed no-regret algorithms for cMDPs and

extended their algorithms to the setting with a constraint on the cost accumulated

over all episodes, which is called a knapsack constraint [17, 22].

Safe RL. The safe RL community [39, 45] has mainly focused on no-violation

learning for stochastic expectation-constrained policies [24, 16, 4, 21, 10] and solving

chance constraints [114, 132], which capture the probability of entering unsafe

states. Performing learning while avoiding dangerous states [132] is a special case

of expectation constraints that has also been studied [96, 107] under non-trivial

assumptions. In addition, instantaneous constraints, which require the immediate

cost to be within budget at all times, have also been studied [69, 37, 43].

6.2 Constraints

Cost-Accumulating MDPs. In this work, we consider environments that accu-

mulate both rewards and costs. Formally, we consider a (finite-horizon, tabular) cost-

accumulating Markov Decision Process (caMDP) tuple M = (H,S,A, P, R,C, s0),

where (i) H ∈ Z≥0 is the finite time horizon, (ii) Sh is the finite set of states, (iii)

Ah(s) is the finite set of available actions, (iv) Ph(s, a) ∈ ∆(S) is the transition

distribution for a given state s ∈ S and action a ∈ A (note, ∆(S) represents the

probability simplex over S), (v) Rh(s, a) ∈ ∆(R) is the reward distribution, (vi)

Ch(s, a) ∈ ∆(Rm) is the cost distribution, and (vii) s0 ∈ S is the initial state.

To simplify notation, we let rh(s, a)
def
= E[Rh(s, a)] denote the expected reward,

ch(s, a) represent the cost function when costs are deterministic (which will be the

case throughout the main text), S def
= |S| denote the number of states, A def

= |A|

denote the number of joint actions, [H]
def
= {1, . . . , H},M be the set of all caMDPs,

and |M | be the total description size of the caMDP. We also use the Iverson Bracket
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notation [P ]
def
= 1{P=True} and the characteristic function χP which is ∞ when P is

False and 0 otherwise.

Agent Interactions. The agent interacts with M using a policy π = {πh}Hh=1.

In the fullest generality, πh : Hh → ∆(A) is a mapping from the observed history

at time h (including costs) to a distribution of actions. Often, researchers study

Markovian policies, which take the form πh : S → ∆(A), and deterministic policies,

which take the form πh : Hh → A. We let Π denote the set of all policies and ΠD

denote the set of all deterministic policies.

The agent starts in the initial state s0 with observed history τ1 = (s0). For any

h ∈ [H], the agent chooses a joint action ah ∼ πh(τh). Then, the agent receives

immediate reward rh ∼ Rh(s, a) and cost vector ch ∼ Ch(s, a). Lastly, M transitions

to state sh+1 ∼ Ph(sh, ah), prompting the agent to update its observed history to

τh+1 = (τh, ah, ch, sh+1). This process is repeated for H steps; the interaction ends

once sH+1 is reached.

Constrained Processes. Suppose the agent has a cost criterion C :M×Π→ Rm

and a corresponding budget vector B ∈ Rm. We refer to the tuple (M,C,B) as a

Constrained Markov Decision Process (CMDP). Given a CMDP and desired policy

class Π ∈ {ΠD,Π}, the agent’s goal is to solve the constrained optimization problem:

max
π∈Π

V π
M

s.t. Cπ
M ≤ B

(CON)

In the above, V π
M

def
= Eπ

M

[∑H
h=1 rh(sh, ah)

]
denotes the value of a policy π, Eπ

M

denotes the expectation defined by Pπ
M , and Pπ

M denotes the probability law over

histories induced from the interaction of π with M . Lastly, we let V ∗ denote the
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optimal solution value to (CON). In the main paper, we focus on the case where

Π = ΠD.

SR Criteria. We study cost criteria that generalize the standard policy evaluation

equations to enable dynamic programming techniques. In particular, we require the

cost of a policy to be recursively computable with respect to the time horizon. For

our later approximations in Section 6.5, we will also need key functions defining the

recursion to be short maps, i.e., 1-Lipschitz, with respect to the infinity norm.

Definition 19 (SR). We call a cost criterion shortly recursive (SR) if for any caMDP

M and any policy π ∈ ΠD, π’s cost decomposes recursively into Cπ
M = Cπ

1 (s0), where

Cπ
H+1 = 0 and for all h ∈ [H] and τh ∈ Hh letting s = sh(τh) and a = πh(τh),

Cπ
h (τh) = ch(s, a) + f

s′
g (Ph (s

′ | s, a))Cπ
h+1 (τh, a, s

′) . (SR)

Here, f s′ is the finite extension of an associative, non-decreasing, binary function f ,

and g is a [0, 1]-valued function rooted at 0. Moreover, we require that f is a short

map when either of its inputs are fixed, satisfies f(0, x) = f(x, 0) = x for all x, and

when combined with g , i.e., f s′ g (Ph (s
′ | s, a))xs′ , is a short map in x.

Remark 16 (Stochastic Variants). Our results generalize to both stochastic policies

and stochastic costs as well. The algorithmic approach is identical, but the definitions

and analysis are more complex. Consequently, we focus on the deterministic cases in

the main text.

Constraint Formulations. The fundamental constraints considered in the CRL

literature are Expectation, Chance, and Almost-sure constraints. Each of these

induces a natural anytime variant that stipulates the required constraint must hold

for the truncated cost
∑t

h=1 ch at all times h ∈ [H]. We give the formal definitions
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Con/Time Expectation Chance Almost-Sure

Classical Eπ
M

[
H∑

h=1

ch

]
≤ B Pπ

M

[
H∑

h=1

ch > B

]
≤ δ Pπ

M

[
H∑

h=1

ch ≤ B

]
= 1

∀t ∈ [H] Eπ
M

[
t∑

h=1

ch

]
≤ B Pπ

M

[
t∑

h=1

ch > B

]
≤ δ Pπ

M

[
t∑

h=1

ch ≤ B

]
= 1

Figure 6.1: The Constraint Landscape

in Figure 6.1. Importantly, each constraint is equivalent to Cπ
M ≤ B′ for some

appropriately chosen SR criteria.

Proposition 17 (SR Modeling). The classical constraints can be modeled by SR

constraints of the form Cπ
M ≤ B′ as follows:

1. Expectation Constraints – f (x, y)
def
= x+ y, g(x) def

= x, and B′ def
= B.

2. Chance Constraints – (f , g) defined as above and B′ def
= δ. Here, we assume M’s

states are augmented with cumulative costs and that ch((s, c̄), a)
def
= [ch(s, a)+c̄ >

B] for the anytime variant and ch((s, c̄), a)
def
= [ch(s, a) + c̄ > B][h = H]

otherwise.

3. Almost-sure Constraints – f (x, y)
def
= max(x, y), g(x) def

= [x > 0], and B′ def
= B.

Anytime variant – f (x, y)
def
= max(0,max(x, y)) while g and B′ remain the

same.

General anytime variants, including anytime expectation constraints, can be mod-

eled by
{
Cπ

M,t ≤ B
}
t∈[H]

where Cπ
M,t is the original SR criterion but defined for the

truncated-horizon process with horizon t.

Computational Limitations. It is known that computing feasible policies for

CMDPs is NP-hard [76, 78]. As such, we must relax feasibility for any hope of

polynomial-time algorithms. Consequently, we focus on bicriteria approximation

algorithms.
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Definition 20 (Bicriteria). A policy π is an (α, β)-additive bicriteria approximation

to a CMDP (M,C,B) if V π
M ≥ V ∗ − α and Cπ

M ≤ B + β. We refer to an algorithm

as an (α, β)-bicriteria if for any CMDP it outputs an (α, β)-additive bicriteria

approximation or correctly reports the instance is infeasible.

The existence of a polynomial-time bicriterion for our general constrained problem

implies brand-new approximability results for many classic problems in the CRL

literature. For clarity, we will explicitly state the complexity-theoretic implications

for each classical setting.

Theorem 14 (Implications). A polynomial-time (ϵ, ϵ)-bicriteria implies that in

polynomial time it is possible to compute a policy π ∈ Π satisfying V π
M ≥ V ∗ − ϵ and

any constant combination of the following constraints:

1. Eπ
M

[∑H
h=1 ch

]
≤ B + ϵ

2. Pπ
M

[∑H
h=1 ch ≤ B + ϵ

]
= 1

3. Pπ
M

[∑H
h=1 ch > B + ϵ

]
≤ δ + ϵ.

In other words, polynomial-time approximability is possible for each of the settings

described in Section 6.1 when the number of constraints is constant.

Remark 17 (Extensions). All of our results hold for Markov games and infinite

discounted settings.

6.3 Reduction

In this section, we present a general solution approach to SR-criterion CMDPs. Our

approach revolves around converting the general cost constraint into a per-step action

constraint. This leads to the design of an augmented MDP that can be solved with

standard RL methods.
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Augmentation. State augmentation is the known approach for solving anytime-

constrained MDPs [78]. The augmentation permits the problem to be solved by the

following dynamic program:

V ∗
h (s, c) = max

a∈A,
c+ch(s,a)≤B

rh(s, a) +
∑
s′

Ph(s
′ | s, a)V ∗

h+1(s, c+ ch(s, a)). (6.1)

When moving to other constraints, the cumulative cost may no longer suffice to

determine constraint satisfaction. For example, the expected cost depends on the

cumulative cost of all realizable branches, not just the current branch.

Expectation Constraints. Instead, we can exploit the recursive nature of the

expected cost to find a solution. Suppose at stage (s, h) we impose an artificial

budget b on the expected cost of a policy π from time h onward: Eπ
[∑H

t=h ct

]
≤ b.

By the policy evaluation equations, we know this equates to satisfying:

Cπ
h (s) = ch(s, a) +

∑
s′

Ph(s
′ | s, a)Cπ

h+1(s
′) ≤ b. (6.2)

For this invariant to be satisfied, it suffices for the agent to choose future artificial

budgets bs′ for s′ ∈ S satisfying,

ch(s, a) +
∑
s′

Ph(s
′ | s, a)bs′ ≤ b. (6.3)

and ensure the future artificial budgets are obeyed inductively: Cπ
h+1(s

′, bs′) ≤ bs′ .

General Approach. We can apply the same reasoning for general recursively

computable cost criteria. If C is SR, then we know that Cπ
h (s) obeys (SR). Thus, to
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guarantee that Cπ
h (s) ≤ b it suffices to choose bs′ ’s satisfying,

ch(s, a) + f
s′
g (Ph(s

′ | s, a)) bs′ ≤ b, (6.4)

and inductively guarantee that Cπ
h+1(s

′) ≤ bs′ .

We can view choosing future artificial budgets as part of the agent’s augmented

actions. Then, at any augmented state (s, b), the agent’s augmented action space

includes all (a,b) ∈ A × RS satisfying (6.3). When M transitions to s′ ∼ Ph(s, a),

the agent’s new augmented state should consist of the environment’s new state in

addition to its chosen demand for that state, (s′, bs′). Putting these pieces together

yields the definition of the reduced, action-constrained MDP, Definition 21.

Definition 21 (Reduced MDP). Given any SR-criterion CMDP (M,C,B), we define

the reduced MDP M̄
def
= (H, S̄, Ā, P̄ , R, s̄0) where,

1. S̄h
def
= Sh × B where B def

=
⋃

π∈ΠD

⋃
h∈[H+1]

⋃
τh∈Hh

{Cπ
h (τh)}

2. Āh(s, b)
def
= {(a,b) ∈ Ah(s)× RS | ch(s, a) + f s′ g (Ph(s

′ | s, a), bs′) ≤ b}

3. P̄h((s
′, b′) | (s, b), (a,b)) def

= Ph(s
′ | s, a)[b′ = bs′ ]

4. Rh((s, b), (a,b))
def
= Rh(s, a)

5. s̄0
def
= (s0, B)

We also re-define the base case value to V̄ ∗
H+1(s, b)

def
= −χ{b≥0}. Note, the reduced

MDP has a non-stationary state and action set, unlike the base MDP.

Reduction. Importantly, M̄ ’s augmented action space ensures constraint satisfac-

tion. Thus, we have effectively reduced a problem involving total history constraints

to one with only standard per-time-step constraints. So long as our cost is SR, M̄
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Algorithm 14 Reduction
Input: (M,C,B)
1: M̄ ← Definition 21(M,C,B)
2: π, V̄ ∗ ← Solve(M̄)
3: if V̄ ∗ = −∞ then
4: return “Infeasible”
5: else
6: return π

Algorithm 15 Augmented Interaction
Input: π
1: s̄1 = (s0, B)
2: for h← 1 to H do
3: (a,b)← πh(s̄h)
4: sh+1 ∼ Ph(sh, a)
5: s̄h+1 = (sh+1, bsh+1

)

can be solved using fast RL methods instead of the brute force computation required

for general CMDPs. These properties ensure our method, Algorithm 14, is correct.

Lemma 13 (Value). For any h ∈ [H + 1], τh ∈ Hh, and b ∈ B, if s = sh(τh), then,

V̄ ∗
h (s, b) ≥ sup

π∈ΠD

V π
h (τh)

s.t. Cπ
h (τh) ≤ b.

(6.5)

Lemma 14 (Cost). Suppose that π ∈ ΠD. For all h ∈ [H + 1] and (s, b) ∈ S̄, if

V̄ π
h (s, b) > −∞, then C̄π

h (s, b) ≤ b.

Theorem 15 (Reduction). If Solve is any finite-time MDP solver, then Algo-

rithm 14 correctly solves (CON) in finite time for any SR-criterion CMDP.

Remark 18 (Deployment). Given a budget-augmented policy π output from Algo-

rithm 14, the agent can execute π using Algorithm 15.
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6.4 Bellman Updates

In this section, we discuss efficient methods for solving M̄ . Our approach relies on

using (SR) to break down the Bellman update so that it is solvable using dynamic

programming. We then use dynamic rounding to achieve an efficient approximation

algorithm.

Bellman Hardness. Even a small set of artificial budgets, B, needed to be

considered, solving M̄ would still be challenging due to its exponentially large,

constrained action space. Just one Bellman update equates to solving the constrained

optimization problem:

V̄ ∗
h (s, b) = max

a,b
rh(s, a) +

∑
s′

Ph(s
′ | s, a)V ∗

h+1 (s
′, bs′)

s.t. ch(s, a) + f
s′
g (Ph (s

′ | s, a)) bs′ ≤ b.

(BU)

Above, we used the fact that (s′, b′) ∈ Supp(P̄h((s, b), (a,b))) iff s′ ∈ Supp(Ph(s, a))

and b′ = bs′ . In fact, even when each bs′ only takes on two possible values, {0, ws′},

this optimization problem generalizes the knapsack problem, implying that it is

NP-hard to solve.

Dynamic Programming. To get around this computational bottleneck, we must

fully exploit Definition 19. For any fixed (h, (s, b), a), the key idea is to treat choosing

b′s as its own sequential decision-making problem. Suppose we have already chosen

b1, . . . , bt−1 leading to partial cost F def
= f t−1

s′=1 g(Ph(s
′ | s, a))bs′ . Since f is associative,

we can update our partial cost after choosing bt to f (F, g(Ph(t | s, a))bt). Once we

have made a choice for each future state, we can verify if (a,b) ∈ Āh(s, b) by checking

the condition: ch(s, a) + F ≤ b. By incorporating the value objective, we design a
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dynamic program for computing (BU).

Definition 22 (DP). For any h ∈ [H], (s, b) ∈ S̄, a ∈ A and F ∈ R, we define

V̄ s,a
h,b (S + 1, F ) = −χ{ch(s,a)+F≤b}, and for any t ∈ [S],

V̄ s,a
h,b (t, F )

def
= max

bt∈B
Ph(t | s, a)V̄ ∗

h+1(t, bt) + V̄ s,a
h,b (t+ 1, f (F, g(Ph(t | s, a))bt)) . (6.6)

Lemma 15 (DP Correctness). For any h ∈ [H] and (s, b) ∈ S̄, we have that

V̄ ∗
h (s, b) = maxa∈A rh(s, a) + V̄ s,a

h,b (1, 0).

Dynamic Rounding. Although a step in the right direction, solving Definition 22

can still be slow due to the exponential number of considered partial costs. We

resolve this issue by rounding each partial cost to an element of some small set F̂ .

Since f need not be linear, using rounding in a preprocessing step does not suffice:

we must re-round at each step to ensure inputs are a valid element of our input set.

For any ℓ > 0, we view ℓ as a new unit length. Our rounding function maps any

real number to its closest upper bound in the set of integer multiples of ℓ. We use

upper bounds to guarantee that the rounded partial costs are always larger than the

true partial costs. Smaller ℓ ensures less approximation error, while larger ℓ ensures

fewer considered partial costs. Thus, ℓ directly controls the accuracy-efficiency

trade-off.

Definition 23 (Rounding Functions). For any ℓ > 0 and x ∈ R, we define ⌈x⌉ℓ
def
=⌈

x
ℓ

⌉
ℓ to be the smallest integer multiple of ℓ that is larger than x. We also define

κℓ(x)
def
= x+ ℓ(S + 1). Note, when considering vectors, all operations are performed

component-wise.

Since we round up the partial costs, the approximate partial cost of a feasible

b could exceed b. To ensure all feasible choices of b are considered, we must also
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relax the budget comparison. Instead, we compare partial costs to a carefully chosen

upper threshold κ(b). Putting these pieces together yields our approximate Bellman

update method.

Definition 24 (Approximate Update). Fix any ℓ > 0 and function κ : Rm → Rm.

For any h ∈ [H], (s, b) ∈ S̄, a ∈ A and F̂ ∈ Rm, we define V̂ s,a
h,b (S + 1, F̂ )

def
=

−χ{ch(s,a)+F̂≤κ(b)}, and for any t ∈ [S],

V̂ s,a
h,b (t, F̂ )

def
= max

bt∈B
Ph(t | s, a)V̄ ∗

h+1(t, bt) + V̂ s,a
h,b

(
t+ 1,

⌈
f
(
F̂ , g(Ph(t | s, a))bt

)⌉
ℓ

)
.

(ADP)

We then define the approximate update by,

V̂ ∗
h (s, b)

def
= max

a∈A
rh(s, a) + V̂ s,a

h,b (1, 0). (AU)

Overall, solving the ADP yields an approximate solution.

Lemma 16 (Approximation). For any h ∈ [H], (s, b) ∈ S̄, a ∈ A, F̂ ∈ Rm, and

t ∈ [S + 1], we have that,

V̂ s,a
h,b (t, F̂ ) = max

b∈BS−t+1

S∑
s′=t

Ph(s
′ | s, a)V̄ ∗

h+1(s
′, bs′)

s.t. ch(s, a) + f̂
s,a

h,b(t, F̂ ) ≤ κ(b),

(6.7)

where f̂
s,a

h,b(t, F̂ ) is the dynamic rounding of f
(
F̂ , f Ss′=t g(Ph(t | s, a), bt)

)
. Moreover,

if ⌈⌉ℓ and κ are replaced with the identity function, (AU) is equivalent to (BU).

Remark 19 (DP details). Technically, to turn this recursion into a true dynamic

program, we must also precompute the inputs to any subproblem. Unlike in standard

RL, this computation must be done with a forward recursion. If we let F̂ s,a
h (t)
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Algorithm 16 Approximate Backward Induction
Input: M̄
1: V̂ ∗

H+1(s, b)← χ{b≥0} for all (s, b) ∈ S̄
2: for h← H down to 1 do
3: for (s, b) ∈ S̄ do
4: â, V̂ ∗

h (s, b)← (AU)
5: πh(s, b)← â

6: return π, V̂ ∗

denote the set of possible input rounded partial costs for state t, then the set

satisfies the inductive relationship F̂ s,a
h (1)

def
= {0} and for any t ∈ [S], F̂ s,a

h (t+ 1)
def
=⋃

bt∈B
⋃

F∈F̂s,a
h (t) {⌈f (F,+ g(Ph(t | s, a))bt⌉ℓ}. This relationship translates directly

into an iterative algorithm for computing all needed inputs. Using this gives a

complete DP algorithm for solving (ADP)1.

Theorem 16 (Approx Solve). When ⌈⌉ℓ and κ are replaced with the identity func-

tion, Algorithm 16 correctly solves any M̄ produced from Definition 21. Moreover,

Algorithm 16 runs in time O (Hm+1Sm+2A|B|2 ∥cmax − cmin∥m∞ /ℓm).

6.5 Bicriteria

Algorithm 16 allows us to approximately solve M̄ in finite cases much faster than

traditional methods. However, when |B| is large, the algorithm still runs in exponen-

tial time. Similarly to the partial cost rounding in Definition 24, we can reduce the

size of |B| by considering a smaller approximate set based on rounding. Since we

still desire optimistic budgets, we use the same rounding function from Definition 23

but with a different choice of ℓ.
1We use the notation x, o ← minx z(x) to say that x is the minimizer and o the value of the

optimization.
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Budget Rounding. Rounding naturally impacts the state space, but has other

consequences as well. To avoid complex computation, we consider the approximate

set B̂ def
= {⌈b⌉ℓ | b ∈ [bmin, bmax]} where [bmin, bmax] ⊇ B is a superset of all required

artificial budgets that we formalize later. As before, rounding the budgets may cause

originally feasible choices to now violate the constraint. To ensure all feasible choices

are considered and that we can use Algorithm 16 to get speed-ups, we define the

approximate action space to include all vectors that lead to feasible subproblems

of (ADP). From Lemma 16, we know this set is exactly the set of (a, b̂) satisfying

ch(s, a) + f̂ s,a

h,b̂
(1, 0) ≤ κ(b̂). Putting these ideas together yields a new, approximate

MDP.

Definition 25 (Approximate MDP). Given any SR-criterion CMDP (M,C,B), we

define the approximate MDP M̂
def
= (H, Ŝ, Â, P̂ , R̂, ŝ0) where,

1. Ŝh
def
= Sh × B̂ where B̂ def

= {⌈b⌉ℓ | b ∈ [bmin, bmax]}.

2. Âh(s, b̂)
def
= {(a, b̂) ∈ Ah(s)× B̂S | ch(s, a) + f̂

s,a

h,b̂(1, 0) ≤ κ(b̂)}

3. P̂h((s
′, b̂′) | (s, b), (a, b̂)) def

= Ph(s
′ | s, a)[b̂′ = b̂s′ ]

4. R̂h((s, b̂), a)
def
= Rh(s, a)

5. ŝ0
def
= (s0, ⌈B⌉ℓ)

We again re-define the base case value to V̂ ∗
H+1(s, b̂)

def
= −χ{b̂≥0}.

Since we always round budgets up, the agent can make even better choices

than originally. It is then easy to see that policies for M̂ always achieve optimal

constrained value. We formalize this observation in Lemma 17.

Lemma 17 (Optimal Value). For any h ∈ [H + 1] and (s, b) ∈ S̄, V̂ ∗
h (s, ⌈b⌉ℓ) ≥

V̄ ∗
h (s, b).
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Algorithm 17 Bicriteria
Input: (M,C,B)
1: Hyperparameter: ℓ
2: M̂ ← Definition 25(M, (f, g), B, ℓ)
3: π, V̂ ∗ ← Algorithm 16(M̂, (f, g), ℓ)
4: if V̂ ∗

1 (s0, ⌈B⌉ℓ) = −∞ then
5: return “Infeasible"
6: else
7: return π

Time-Space Errors. To assess the violation gap of Algorithm 17 policies, we

must first explore the error accumulated by our rounding approach. Rounding each

artificial budget naturally accumulates approximation error over time. Rounding the

partial costs while running Algorithm 16 accumulates additional error over (state)

space. Thus, solving M̂ using Algorithm 17 accumulates error over both time and

space, unlike standard approximate methods in RL. As a result, our rounding and

threshold functions will generally depend on both H and S.

Arithmetic Rounding. Our approach is to round each value down to its closest

element in an ℓ-cover. Using the same rounding as in Definition 23, we guarantee

that b ≤ ⌈b⌉ℓ ≤ b+ ℓ. Thus, ⌈b⌉ℓ is an overestimate that is not too far from the true

value. By setting ℓ to be inversely proportional to SH, we control the errors over

time and space. The lower bound must also be a function of S since it controls the

error over space.

Lemma 18 (Approximate Cost). Suppose that π ∈ ΠD. For all h ∈ [H + 1] and

(s, b̂) ∈ Ŝ, if V̂ π
h (s, b̂) > −∞, then Ĉπ

h (s, b̂) ≤ b̂+ ℓ(S + 1)(H − h+ 1).

Theorem 17 (Bicriteria). For any SR-criterion CMDP with polynomially-bounded

costs and ϵ > 0, the choice of ℓ def
= ϵ

1+(S+1)H
ensures Algorithm 17 is a (0, ϵ)-bicriteria

running in polynomial time O
(
H6m+1S4m+2A ∥cmax − cmin∥3m∞ /ϵ3m

)
.
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Corollary 6 (Relative). For any ϵ > 0, the choice of ℓ def
= ϵ

B(H(S+1)+1)
ensures

Algorithm 17 is a polynomial time (0, 1 + ϵ)-relative bicriteria for the class of

polynomial-budget-bounded-cost CMDPs with SR-cost criteria. This includes all

SR-criterion CMDPs with non-negative costs.

Remark 20 (Chance Constraints). Technically, for chance constraints, we first create

a cost-augmented MDP that is initially passed into the input. This allows us to

write chance constraints in the SR form. Consequently, the S term in Theorem 17

is really a larger augmented S. To achieve ϵ cost violation, [78] showed that an

augmented space of size O(SH2 ∥cmax − cmin∥∞ /ϵ) is needed, which still results in a

polynomial-time complexity.

Remark 21 (Approximation Optimality). [78] showed that our assumptions on

cost bounds are necessary to achieve polynomial-time approximations. Thus, our

approximation guarantees are the best possible. Moreover, we can show that our

dependency on the number of constraints is also unavoidable. This is formalized in

Proposition 18.

Proposition 18 (Multi-Constraint Hardness). If m = Ω(n1/d) for some constant d,

then computing an ϵ-feasible policy for a CMDP is NP-hard for any ϵ > 0.

6.5.1 Continuous MDPs

We also show that approximations are possible in infinite state settings under certain

continuity assumptions.

Assumption 7 (Continuity). We assume the caMDP M is Lipschitz continuous.

Formally, we require that (1) S = [smin, smax], (2) the reward function is λr Lipschitz,

(3) the cost function is λc Lipschitz, (4) the transitions are λp Lipschitz – each with

respect to the state input, and (5) each of these quantities is polynomial-sized in the
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input representation. For SR-criterion CMDPs, we also assume that f has a natural

finite equivalent denoted f̃ , g is a sublinear short map, and f s′ z ≤ (smax − smin) for

any constant z.

All we need to do is discretize the state space, and run our previous algorithm on

the following discretized CMDP.

Definition 26 (Discretized CMDP). Given any SR-criterion CMDP (M,C,B),

we define the discretized CMDP (M̃, C̃, B) where M̃ = (H, S̃,A, P̃ , R, C, s̃0) is the

discretized caMDP defined by,

1. S̃h
def
= {⌈s⌉ℓ | s ∈ S}

2. P̃h(s̃
′ | s̃, a) def

=
∫ s̃′+ℓ

s′=s̃′
Ph(s

′ | s̃, a)ds′

3. s̃0
def
= (⌈s0⌉ℓ , B)

and C̃ is the cost criterion defined by replacing f s′ with its natural finite equivalent

f̃ .

We see that discretization results in a small impact to both the value and cost

that depend on the continuity parameters.

Lemma 19 (Discretization). For all h ∈ [H + 1], τh ∈ Hh, and π ∈ ΠD, we let

τ̃h denote τh with each state st rounded to ⌈st⌉ℓ. Then, we have that Ṽ π
h (τ̃h) ≥

V ∗
h (τh) − ℓ(λr + λp)Hrmax(smax − smin)(H − h + 1) and C̃π

h (τ̃h) ≤ C∗
h(τh) + ℓ(λc +

λp)Hcmax(smax − smin)(H − h+ 1). For almost-sure/anytime constraints, the cost

incurs an additional factor of 1/p̃min, where p̃min denotes the smallest non-zero

transition probability for M̃ .

Overall, using our previous bicriteria on M̃ yields our approximation results.
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Theorem 18 (Continuous Bicriteria). For any SR-criterion CMDP satisfying As-

sumption 7 and any ϵ > 0, the choice of ℓd
def
= ϵ/2

(λr+λc+λp)H max(cmax,rmax)(smax−smin)

and approximation ℓa
def
= ϵ/2

1+(S+1)H
ensures Algorithm 17(M̃) is a (ϵ, ϵ)-bicriteria

running in time O
(
H6m+1S̃4m+2A ∥cmax − cmin∥3m∞ /ϵ3m

)
, where S̃ = O((λr + λc +

λp)Hmax(cmax, rmax)(smax − smin)
2/ϵ). This time is polynomial so long as |smax −

smin| = O(|M |). Moreover, almost-sure/anytime constraints enjoy the same guaran-

tee with an additional factor of p̃min in S̃.

Corollary 7 (Simplified). For continuous-state SR-criterion CMDPs satisfying

Assumption 7, there exist polynomial-time (ϵ, ϵ)-bicriteria solutions for expectation

constraints, almost-sure constraints, anytime-almost-sure constraints, and any combi-

nations of these constraints.

6.6 Conclusion

In this chapter, we studied the question of whether polynomial-time approximation

algorithms exist for many of the classic formulations studied in the CRL literature.

We conclude that for the vast majority of constraints, including all the standard

constraints, polynomial-time approximability is possible. We demonstrated this

phenomenon by developing polynomial-time bicriteria approximations with the

strongest possible guarantees for a general class of constraints that can be written in

a form that satisfies general policy evaluation equations. Overall, our work resolves

the polynomial-time approximability of many settings, some of which have lacked any

polynomial-time algorithm for over a decade. In particular, we are the first to develop

a polynomial-time algorithm with any kind of guarantee for chance constraints and

non-homogeneous constraints.
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Chapter 7

Conclusion

In this work, our aim was to advance the field of safe MARL through the answering of

several long-standing open questions and the development of brand new polynomial-

time algorithms for fundamental problems. We achieved this goal by studying safety

both from other agents through Adversarial RL as well as the environment itself

through Constrained RL. A summary of our main results from each chapter follows

below.

1. In Chapter 2, we rigorously studied the attack and defense problems of reinforce-

ment learning. We showed that for any attack’s surface, a malicious attacker

can optimally and efficiently maximize its own rewards by solving a higher

lever meta-MDP. When perceived-state attacks are not allowed, we showed

that the victim can also compute an optimal defense policy in polynomial time

using a robust backward induction algorithm.

2. In Chapter 3, we studied misinformation attacks on two-player MGs. When the

victim player only knows a false attacker reward function, we showed how the

game plays out under worst-case rationality. Then, we showed how the attacker

can compute its worst-case optimal policy in polynomial time. Using this
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method as a subroutine, the attacker can exploit the universal assumption of

rationality in MARL to compute an optimal dominant-policy inception attack

in polynomial time.

3. In Chapter 4, we formalized and rigorously studied anytime-constrained cMDPs.

We presented a fixed-parameter tractable reduction based on cost augmentation

and safe exploration that yields efficient planning and learning algorithms when

the cost precision is O(log(|M |)). In addition, we developed efficient planning

and learning algorithms to find ϵ-approximately feasible policies with optimal

value whenever the maximum supported cost is O(poly(|M |)max(1, |B|)).

4. In Chapter 5, we studied the computational complexity of computing deter-

ministic policies for CRL problems. Our main contribution was the design

of an FPTAS, Algorithm 13, that solves (CON) for any cMPD and TSR

criteria under mild reward assumptions. In particular, our method is an

additive-FPTAS if the cMDP’s rewards are polynomially bounded, and is a

relative-FPTAS if the cMDP’s rewards are non-negative. Our work finally

resolves the long-standing open questions of polynomial-time approximability

for 1) anytime-constrained policies, 2) almost-sure-constrained policies, and 3)

deterministic expectation-constrained policies.

5. In Chapter 6, we developed polynomial-time bicriteria approximations with

the strongest possible guarantees for a general class of constraints that can be

written in a form that satisfies general policy evaluation equations. Overall,

our work resolves the polynomial-time approximability of many settings, some

of which have lacked any polynomial-time algorithm for over a decade. In

particular, we are the first to develop a polynomial-time algorithm with any

kind of guarantee for chance constraints and non-homogeneous constraints.
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Overall, these results advanced the theoretical foundations of safe MARL and we

hope provide new insights that may lead to future practical deployments.

Future Directions. One prevailing theme in all of these works is the use of worst-

case analysis. As we have seen, many of these problems are incredibly hard in the

worst case, but it is not clear if these problems are as hard in practice. One way to

circumvent these worst-case hardness dead-ends is to focus on average case and the

more refined smoothed analysis. Such an analysis could give strong evidence that

many of these problems are not as hard practice and even suggest useful strategies for

solving them. For example, a beyond-worst case analysis for POMGs could enable

the efficient computation of robust policies even in the face of observation attacks.

Similarly, such an analysis could enable the efficient computation of truly feasible

constrained policies even under a complex set of heterogeneous constraints.

On a different note, our constrained works focus on constraints on cumulative

costs. However, especially in goal-based RL settings, covering and other more

complex constraints are not easily modeled by a cumulative cost. A more applicable

formulation of constrained RL allows general set-based constraints. For example, in a

disaster relief scenario, an autonomous vehicle must visit each survivor location. Such

a constraint cannot be guaranteed even by an almost sure constraint since revisiting

the same location multiple times could falsely indicate to the vehicle that all survivors

have been rescued. Instead a constraint on the actual set of visited locations is

necessary to guarantee survivor safety. The most tractable of these set constraints

are submodular constraints. Developing a new framework to handle MDPs and MGs

with submodular constraints would be the most realistic and impactful future work.
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Appendix A

Chapter 2 Appendix

A.1 Proofs for Optimal Attacks

The proof of the Proposition 1 is immediate from the definition of each attack surface

and the well-known fact that any MDP admits an optimal deterministic, Markovian

policy. Proposition 2 follows from the complexity results given in [91] and [101].

Proof of Theorem 1.

Proof. The key idea is each meta-state transitions according to either, O, π, R, or

P , and since each of these quantities is linear, the meta-transitions are linear. Also,

as the rewards are a deterministic projection, they are also linear. If M and π are

linear then,

O(o | s) = ⟨ϕ(s), γ(o)⟩ , π(a | o) = ⟨ψ(o), δ(a)⟩ , R(r | s, a) = ⟨ϕ(s, a), θ(r)⟩ ,

P (s′ | s, a) = ⟨ϕ(s, a), µ(s′)⟩ .

We first design a feature vector ϕ̄(s̄, ā) and vector µ̄(s̄) that captures the transitions.
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Let s̄ ∈ S, ā ∈ A(s̄), and s̄′ ∈ S. From the definition of M̄ ,

1. If s̄ = s, then ā = s† and s̄′ = (s†, o):

P̄ (s̄′ | s̄, ā) := O(o | s†) =
〈
ϕ(s†), γ(o)

〉
.

Define ϕ̄(s, s†) = ϕ(s†) and µ̄(s†, o) = γ(o). Then,

〈
ϕ(s†), γ(o)

〉
=
〈
ϕ̄(s̄, ā), µ̄(s̄′)

〉
.

2. If s̄ = (s, o), then ā = o† and s̄′ = (s, o†, a):

P̄ (s̄′ | s̄, ā) := π(a | o†) =
〈
ψ(o†), δ(a)

〉
.

Define ϕ̄((s, o), o†) = ψ(o†) and µ̄(s, o†, a) = δ(a). Then,

〈
ψ(o†), δ(a)

〉
=
〈
ϕ̄(s̄, ā), µ̄(s̄′)

〉
.

3. If s̄ = (s, o, a), then ā = a† and s̄′ = (s, o, a†, r):

P̄ (s̄′ | s̄, ā) := R(r | s, a†) =
〈
ϕ(s, a†), θ(r)

〉
.

Define ϕ̄((s, o, a), a†) = ϕ(s, a†) and µ̄(s, o, a, r) = θ(r). Then,

〈
ϕ(s, a†), θ(r)

〉
=
〈
ϕ̄(s̄, ā), µ̄(s̄′)

〉
.

4. If s̄ = (s, o, a, r), then ā = r† and s̄′ = s′:

P̄ (s̄′ | s̄, ā) := P (s′ | s, a) = ⟨ϕ(s, a), µ(s′)⟩ .
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Define ϕ̄((s, o, a, r), r†) = ϕ(s, a) and µ̄(s′) = µ(s′). Then,

⟨ϕ(s, a), µ(s′)⟩ =
〈
ϕ̄(s̄, ā), µ̄(s̄′)

〉
.

We lift each vector to dimension d = max(d(π), d(M)) so each vector is in the same

dimension.

Now, to capture rewards, we will need to lift the vectors to one dimension higher.

We add one entry to each vector. The entry is g(s, a, r†) for meta-states of form

(s, a, r) and meta-action r†, making the new vector ϕ′(s̄, ā) =

g (s, a, r†)
ϕ̄(s̄, ā)

. All

other meta-states and meta-actions have a 0 in the new entry, or ϕ′(s̄, ā) =

 0

ϕ̄(s̄, ā)

.

We define θ̄ = e1, the basis vector with a 1 in the entry that we just added to the

features. From the definition of M̄ ,

r̄(s, s†) = r̄((s, a), a†) = r̄((s, a), s†) = 0 =
〈
ϕ̄′(s̄, ā), e1

〉
.

r̄((s, a, r), r†) = g(s, a, r†) =
〈
ϕ̄′(s̄, ā), e1

〉
.

Thus, M̄ is linear with dimension at most 1 + max(d(π), d(M)).

We note that for the finite-horizon case, the proof remains the same except

for one aspect. If the attacker’s reward g is time-dependent, then the feature

vectors involving r† must save gh(s, a, r†) for all h. Thus the dimension would be

H + 1 +max(d(π), d(M)) if we modify the proof in the obvious way.

More Details of Remark 2. When the victim’s policy is not Markovian, i.e.

uses some amount of history, the construction of M̄ needs to be slightly modified.
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SupposeM denotes the victim’s finite memory. For any m ∈M, we let m(·) denote

the victim’s updated memory upon receiving new information. Since the victim has

a finite amount of memory, we assume that when the memory is updated, it removes

the oldest saved information to make space for the new information. We also assume

here, the attacker is attacking a Markov game G so that π is now a joint policy as

described in Remark 3. We define the attacker’s meta-MDP as M̄ = (S̄, Ā, P̄ , r̄, γ, µ̄),

where,

• S̄ = (M×S) ∪ (M×S ×O) ∪ (M×S ×O ×A) ∪ (M×S ×O ×A×R).

• Ā ⊆ S ∪ A ∪ R consists of all the attacker’s potential manipulations of the

interaction. The meta-action space is meta-state dependent: A(m, s) ⊆ S,

A(m, s, o) ⊆ O, A(m, s, o, a) ⊆ S ∪ A, and A(m, s, o, a, r) ⊆ R.

• Suppose that m ∈M, s ∈ S, o ∈ O, a ∈ A, and r ∈ R. Then,

– If ā = s† is a true-state attack at the first subtime, then G’s state becomes

s† and generates an observation according to P (s†).

P̄ ((m, s†, o) | (m, s), s†) := P (o | s†).

– If ā = o† ∈ O is an observation attack, then the agents choose a joint

action a ∼ π(m, o†). Also, the agent sees the attacked observation and so

updates its memory to m(o†).

P̄ ((m(o†), s, o†, a) | (m, s, o), o†) := π(a | m, o†).

– If ā = a† ∈ A is an action attack, G receives action a†. Thus, G generates

reward according to R(s, a†). The agents also update their memory to
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m(a).

P̄ ((m(a), s, o, a†, r) | (m, s, o, a), a†) := R(r | s, a†).

– If ā = s† ∈ S is a true-state attack at the third subtime, G’s state

becomes s†. Thus, G generates reward according to R(s†, a). The agents

also update their memory to m(a).

P̄ ((m(a), s†, o, a, r) | (m, s, o, a), s†) := R(r | s†, a).

– If ā = r† ∈ R is a reward attack, G’s transitions are not effected. Thus,

G transitions normally according to P (s, a). Also, the agent sees the

attacked reward and so updates its memory to m(r†).

P̄ ((m(r†), s′) | (m, s, o, a, r), r†) := P (s′ | s, a).

All other transitions have probability 0.

• Using the same definitions as above,

– There is no immediate reward to the attacker for non-reward attacks since

the agents have not received a reward yet.

r̄((m, s), s†) = r̄((m, s, o), o†) = r̄((m, s, o, a), a†) = r̄((m, s, o, a), s†) = 0.

– If ā = r† ∈ R, the agents receive reward r† and so the attacker receives

reward according to its reward function g(s, a, r†).

r̄(s̄, ā) = r̄((m, s, o, a, r), r†) = g(s, a, r†).
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• µ̄(s) = µ(∅, s) for each s ∈ S where ∅ denotes the empty memory, and

µ̄(s̄) = 0 otherwise.

Deterministic Markovian policy and deterministic reward. If the agent’s pol-

icy is deterministic and Markovian, which is the standard for optimal policies, and M

is fully-observable with deterministic rewards, the attacker’s meta-MDP can be drasti-

cally simplified. We define the attacker’s meta-MDP as M̄ = (S̄, Ā, {P̄h}, {r̄h}, H, µ̄),

where,

• S̄ = S.

• Ā = (S × {p}) ∪ A ∪ (S × {t}) ∪ R, where (s, p) is a perceived state attack

and (s, t) is a true state attack.

• P̄h(s̄
′ | s̄, ā)’s definition varies depending on the choice of ā. Suppose that s is

the current state at time h. Then,

– If ā = (s†, p) ∈ S × {p} is a perceived-state attack,

P̄h(s
′ | s, (s†, p)) = Ph(s

′ | s, πh(s†)).

– If ā = a† ∈ A,

P̄h(s
′ | s, a†) = Ph(s

′ | s, a†).

– If ā = (s†, t) ∈ S × {t} is a true-state attack,

P̄h(s
′ | s, (s†, t)) = Ph(s

′ | s†, πh(s†)).

– If ā = r† ∈ R,

P̄h(s
′ | s, r†) = Ph(s

′ | s, πh(s)).
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and all other transitions have probability 0 at time h.

• r̄h(s̄, ā)’s definition similarly depends on ā as well as the form of s̄. Using the

same definitions as above, we have

– If ā = (s†, p) ∈ S̄ × {p} is a perceived-state attack,

r̄h(s, (s
†, p)) = g(s, rh(s, πh(s

†))).

– If ā = a† ∈ Ā,

r̄h(s, a
†) = g(s, rh(s, a

†)).

– If ā = (s†, t) ∈ S × {t} is a true-state attack,

r̄h(s, (s
†, t)) = g(s, rh(s

†, πh(s
†))).

– If ā = r† ∈ R,

r̄h(s, r
†) = g(s, r†).

• µ̄(s) = µ(s) for each s ∈ S and µ̄(s̄) = 0 otherwise.

A.2 Proofs for Optimal Defense

The proof of Proposition 3 and Proposition 4 is immediate from the definitions of

the defense problem, the victim-attacker-environment interaction, and the definition

of turn-based stochastic games [49].

Proof of Proposition 5.
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Proof. We show that the defense problem with observation or perceived-state attacks

captures solutions to POMDPs. As such, all hardness results for POMDPs apply to

Defense. Namely, computing ϵ-optimal deterministic Markovian policies is NP-hard

[73]. Also, for the discounted infinite horizon case, computing an optimal stationary

stochastic memory-less policy is NP-hard [111].

We note any POMDP can be formulated as an equivalent POMDP with a

deterministic observation function that is only polynomially sized larger. Thus, we

can focus on POMDPs with a deterministic observation function o : S → O. We

can also assume that O ⊆ S. Given such a POMDP, define M to be the same

as the POMDP ignoring the observation part, and define the set constraints for

a perceived-state attack to be the singleton B(s) = {o(s)}. This ensures the only

feasible attack ν is exactly the observation function o. Thus, solving the defense

problem for a maximum policy π over some class of policies Π is exactly equivalent

to solving the POMDP over that class of policies Π. Hardness then follows.

The proof of Proposition 6 follows from Observation 1 and the stated complexity

results.

Proof of Theorem 2. We present a formal backward induction algorithm for com-

puting defenses. We define V ∗
h,1(s) := maxπ∈Πh

minν∈BRh(π) V
π,ν
h,1 (s), where Πh is the

set of Markovian partial policies from time h forward, BRh(π) := argmaxν∈Nh
V π,ν
h,2 (s),

and V π,ν
h,i (s) is the value of the stage game (h, s) for player i (i.e. their expected value

from time h onward starting from state s). It is clear that V ∗
h,1(s) admits optimal

substructure: if π∗
h(s) is a maximizer of V ∗

h,1(s), then it must be the case that π∗
h+1(s

′)

is a maximizer of V ∗
h+1,1(s

′) for any s′ reachable with non-zero probability under

π∗
h(s). Otherwise, more value could be achieved by improving the value in the future.
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This is the standard argument for why rollback successfully computes a subgame

perfect equilibrium in sequential games. Here it is crucial that the defense problem is

captured by a turn-based game, which gives us this sequential structure. Given this

observation, it is clear that V ∗
h,i(s) can be computed recursively as follows. Suppose

the victim already computed its optimal π∗
h+1. Then, π∗

h(s) can be computed as a

maximizer of V ∗
h,1(s), where:

V ∗
h,1(s) := max

a∈A
min

a†∈BRh(s,a)
Er∼Rh(s,a†)

[
min

r†∈BRh(s,a†,r)
r†

+Es′∼Ph(s,a†)

[
min

s†∈BRh+1(s′)
V ∗
h+1,1(s

†)

] ]
.

(A.1)

Each best-response function is defined as follows. In each case, the attacker must

wait for further information and then adapt to each realization. Hence the separate

best-response functions.

BRh(s, a) := argmax
a†∈Āh(s,a)

Er∼Rh(s,a†)V
∗
h,2(s, a, r). (A.2)

BRh(s, a, r) := argmax
r†∈Āh(s,a,r)

gh(s, a, r
†) + Es′∈Ph(s,a)V

∗
h+1(s

′). (A.3)

BRh+1(s) := max
s†∈Āh+1(s)

V ∗
h+1,2(s

†, πh+1(s
†))) (A.4)

In all cases, V ∗
h+1,2(·) is defined to be the maximizing value for each corresponding

BR set.

In the zero-sum case, we get the even simpler expression,



121

V ∗
h,1(s) = max

a∈A
min

a†∈Āh(s,a†)
Er∼Rh(s,a†)

[
min

r†∈Ā(s,a†,r)
r† + Es′∼Ph(s,a†)

[
min

s†∈Ā(s′)
V ∗
h+1,1(s

†)

]]
.

(A.5)

Since turn-based games admit deterministic solutions, it is clear that the victim

can compute its optimal defense in polynomial time by simply brute-force computing

each max and min in the above expressions, which are finite optimizations in the

tabular case.

A.3 Code Details

We conducted our experiments using standard python3 libraries. We provide our

code in a jupyter notebook with the example grid being hard-coded in to ensure the

experiments can be easily reproduced1.

1Code can be found at https://github.com/jermcmahan/Attack-Defense.

https://github.com/jermcmahan/Attack-Defense
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Appendix B

Chapter 3 Appendix

B.1 Extended Preliminaries

Normal-form Games. In a (finite) normal-form game, two players compete

simultaneously to maximize their reward. Suppose the first player, the victim, has

n pure strategies and the second player, the attacker, has m pure strategies. Let

A ∈ Rn×m and B ∈ Rn×m denote the reward matrices for the victim and attacker,

respectively. We may represent a pure strategy by a one-hot vector, so ei ∈ Rn

corresponds to the victim’s strategy i and ej ∈ Rm the attacker’s strategy j. Let

∆(k) :=
{
s ∈ [0, 1]k |

∑k
i=1 si = 1

}
denote the set of mixed strategies, where choosing

s ∈ ∆(k) corresponds to playing ei with probability si. For a pair of mixed strategies

x ∈ ∆(n) and y ∈ ∆(m), the expected rewards to the victim and attacker are x⊤Ay

and x⊤By, respectively.

Nash Equilibrium. Solutions to games manifest as equilibrium concepts, among

which the most famous is the Nash Equilibrium (NE) [83]. An NE of a bimatrix
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game is a pair of strategies (x∗, y∗) ∈ ∆(n)×∆(m) satisfying,

x∗ ∈ argmax
x∈∆(n)

x⊤Ay∗ and y∗ ∈ argmax
y∈∆(m)

x∗⊤By.

In words, x∗ and y∗ are mutual best-responses to each other. We let NE(A,B)

denote the set of all NEs for the game (A,B).

Security Strategies. Another solution concept is a maximin strategy or security

strategy, which is a pair (x∗, y∗) given by,

x∗ ∈ argmax
x∈∆(n)

min
y∈∆(m)

x⊤Ay and y∗ ∈ argmax
y∈∆(m)

min
x∈∆(n)

x⊤By. (B.1)

In a zero-sum game (B = −A), the Minimax Theorem [112] implies (x∗, y∗) is a NE

if and only if it is a maximin strategy pair. Note that a game may have multiple

NEs and maximin strategies. However, in zero-sum games, each player receives the

same expected reward in every NE, which we denote by pNE
v and pNE

e respectively.

Markov Game Solutions. Equilibrium concepts can be defined for a Markov

Game by viewing it as a (very large) bimatrix game with reward matrices (V π1,π2

1 )π1,π2

and (V π1,π2

2 )π1,π2 . To avoid this complexity blowup, many works focus on Markov

Perfect Equilibrum (MPE), which requires the stricter property that a policy pair is

an equilibrium at every stage game, not just at stage h = 1. Formally, (π∗
1, π

∗
2) is a

MPE if, for all (h, s) ∈ [H]× S,

V
π∗
1 ,π

∗
2

1,h (s) = max
π1∈Π1

V
π1,π∗

2
1,h (s) and V

π∗
1 ,π

∗
2

2,h (s) = max
π2∈Π2

V
π∗
1 ,π2

2,h (s).
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B.2 Proofs for Section 3.2

All the proofs from section 2 are immediate from the arguments given in the main

text.

B.3 Proofs for Section 3.3.1

As mentioned in the main text, the proof of Lemma 1 is immediate from standard

bimatrix game theory [28].

B.3.1 Proof of Lemma 1

The proof is immediate from the argument given in the main text.

B.3.2 Proof of Lemma 2

To construct the dual in Figure 3.3, we introduce a dual vector w ∈ RK
≥0 corresponding

to the inequality constraints and a dual variable v ∈ R corresponding to the equality

constraint. We multiply these dual variables by their respective constraints and add

them to the objective to get the equivalent optimization:

max
w≥0,v

min
x≥0

x⊤By + (z∗1⊤ − x⊤A′)w + (x⊤1− 1)v

By rearranging the objective to be in terms of x, we get:

max
w≥0,v

min
x≥0

x⊤(By − A′w + 1v) + z∗1⊤w − v
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Moving the terms involving x into the constraints then gives the Dual:

max
w≥0,α

z∗1⊤w − α

s.t. α + e⊤i By − e⊤i A′w ≥ 0 ∀i ∈ [n],

Applying maxy∈∆(m) outside of the Dual, yields the attacker’s LP 3.2b:

max
y,w∈RK ,α∈R

z∗1⊤w − α

s.t. α + e⊤i By − e⊤i A′w ≥ 0 ∀i ∈ [n]

1⊤y = 1, y ≥ 0 w ≥ 0.

The fact that there exist optimal solutions, i.e., Π∗
2(R

†
2) ̸= ∅, follows from LP 3.2b

being feasible and bounded. Specifically, it is easily seen that choosing y = e1, w = 0,

and α = maxi∈[n] |e⊤i Be1 gives a feasible solution to LP 3.2b. Boundedness follows

from the fact that by LP duality, LP 3.2b is value equivalent to the original problem

maxy∈∆(m) minx∈Π∗
1(R

†
2)
x⊤By, which is bounded being that (A,B) is a finite normal-

form game. This completes the proof.

B.3.3 Proof of Theorem 3

The proof is immediate from Lemma 2.
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B.3.4 Proof of Lemma 3

From Theorem 3 and the definition of Q∗, it suffices to show that V ∗ satisfies the

following optimality equations:

V ∗
1,h(s) = max

π1,h(s)∈∆(n)
min

π2,h(s)∈π1,h(s)
Ea∼π1,h(s)

[
R1,h(s, a) +

∑
s′

Ph(s
′ | s, a)V ∗

1,h+1(s
′)

]
,

(B.2)

and,

V ∗
2,h(s) = max

π2,h(s)∈∆(m)
min

π1,h(s)∈Π∗
1,h(s)

Ea∼π1,h(s)

[
R2,h(s, a) +

∑
s′

Ph(s
′ | s, a)V ∗

2,h+1(s
′)

]
,

(B.3)

where Π∗
1,h(s) is the set of maximizers to (B.2). This follows from similar arguments

to the proof of the NashVI algorithm [62] but with an added constraint set. For

completeness, we give a full proof.

Proof. We show (B.3). The proof of (B.2) follows even easier as the constraint set is

fixed in advance, independent of the attacker’s actions. We proceed by induction on

h. For the base case, consider the final time step h = H + 1. The claim is trivial as

both values are 0. For the inductive step, consider any time step h < H and fix any

s ∈ S. Applying the bellman-consistency equations to the definition of V ∗
2,h(s) yields:

V ∗
2,h(s) = max

π2∈Π2

min
π1∈Π∗

1(R
†
2)

Ea∼π1,h(s)

[
R2,h(s, a) +

∑
s′

Ph(s
′ | s, a)V π

2,h(s
′)

]
.

Observe that the expression decomposes: the expectation only considers the policies

at the current state and time, (π1,h(s), π2,h(s)), and the summation only considers

the policies at future time steps. Consequently, we can break down the maxπ2∈Π2

into the separate optimizations: maxπ2,h(s)∈∆(m) and maxπ2∈Π2,h+1(s′) for each s′ ∈ S,

where Π2,h+1(s
′) is the set of partial policies for the attacker from time h+1 onwards
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starting at state s′.

Similarly, we can break down the minπ1∈Π∗
1(R

†
2)

into the separate optimizations:

minπ1,h(s)∈Π∗
1,h(s)

and minπ1∈Π∗
1,h(s

′) for each s′ ∈ S. This yields the equivalent opti-

mization:

max
π2,h(s)∈∆(m)

max
π2∈×s′ Π2,h+1(s′)

min
π1,h(s)∈Π̂∗

1,h(s)
min

π∈×s′ Π
∗
1,h(s

′)
Eπ1,h(s),π2,h(s) [. . .] .

Now, consider the summation term inside of the optimization:

Eπ1,h(s),π2,h(s)

[∑
s′

Ph(s
′ | s, a)V π

2,h+1(s
′)

]
.

We can apply linearity of expectation to get the equivalent term:

∑
s′

Eπ1,h(s),π2,h(s)

[
Ph(s

′ | s, a)V π
2,h+1(s

′)
]
.

Also, since V π
2,h+1(s

′) depends only on the partial policies at future steps, V π
2,h+1(s

′)

is constant with respect to (π1,h(s), π2,h(s)) so can be pulled out of the summation

to get the equivalent term:

∑
s′

V π
2,h+1(s

′)Eπ1,h(s),π2,h(s) [Ph(s
′ | s, a)] .

Now, by the induction hypothesis, we know for any s′ at time h+ 1,

V ∗
2,h+1(s

′) = max
π2,h+1(s′)∈Π2,h+1(s′)

min
π1,h+1(s′)∈Π∗

1,h+1(s
′)

Eπ1,h+1(s′),π2,h+1(s′)

[
R2,h+1(s

′, a) +
∑
s′

Ph+1(s
′′ | s′, a)V ∗

2,h+2(s
′′)

]
.

Since the term V ∗
2,h+2(s

′′) is fixed and shared amongst all s′ at time h+ 1, we see the
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only variation in the stage value V ∗
2,h+1(s

′) comes from choosing (π1,h+1(s
′), π2,h+1(s

′))

(i.e. varying the future partial policy cannot increase the objective value). These can

be independently chosen for all s′ at time h+ 1. Thus, the optimization problems

maxπ2∈Π2,h+1(s′) minπ1∈Π∗
1,h+1(s

′) V
π
2,h+1(s

′) = V ∗
2,h+1(s

′) are separable over s′. Thus, we

can bring the maximin over partial policies into the summation to get the term:

∑
s′

max
ν∈Π2,h+1(s′)

min
π∈Π∗

1,h+1(s
′)
V π
2,h+1(s

′)Eπ1,h(s),π2,h(s) [Ph(s
′ | s, a)] .

Since V ∗
2,h+1(s

′) = maxπ2∈Π2,h+1(s′) minπ1∈Π∗
1,h+1(s

′) V
∗
2,h+1(s

′), the expression becomes:

∑
s′

V ∗
2,h+1(s

′)Eπ1,h(s),π2,h(s) [Ph(s
′ | s, a)] .

As V ∗
2,h+1(s

′) is still constant with respect to (π1,h(s), π2,h(s)), we can reverse the

previous steps of pulling out this term and applying linearity of expectation to get

the final expression:

V ∗
2,h(s) = max

π2,h(s)∈∆(m)
min

π1,h(s)∈Π̂∗
1,h(s)

Eπ1,h(s),π2,h(s)

[
R2,h(s, a) +

∑
s′

Ph(s
′ | s, a)V ∗

2,h+1(s
′)
]

B.3.5 Proof of Theorem 4

The proof is immediate from Lemma 3.
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B.4 Proofs for Section 3.3.2

B.4.1 Proof of Lemma 4

The proof is immediate from the argument given in the main text.

B.4.2 Proof of Lemma 5

The proof follows similarly to the proof of Lemma 3 and the arguments from the

main text.

B.4.3 Proof of Theorem 5

The proof is immediate from Lemma 5.
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Appendix C

Chapter 4 Appendix

C.1 Proofs for Section 4.2

C.1.1 Proof of Proposition 8

Proof. Fix any H ≥ 2. For any h ∈ [H − 1], let π be a cost-history-dependent

policy that does not record the cost at time h. For any such π, we construct a

cMDP instance for which π is arbitrarily suboptimal. This shows that any class of

policies that does not consider the full cost history is insufficient to solve (ANY). In

particular, the class of Markovian policies does not suffice.

Consider the simple cMDP Mh defined by a single state, S = {0}, two actions,

A = {0, 1}, and horizon H. The initial state is trivially 0 and the transitions are

trivially self-loops from 0 to 0. Importantly, Mh has non-stationary rewards and

costs. The rewards are deterministic. For any t ̸= h + 1, rt(s, a) = 0. For some

large x > 0, rh+1(s, 1) = x and rh+1(s, 0) = 0. The costs are deterministic except

at time h. For any t ̸∈ {h, h + 1}, ct(s, a) = 0. For t = h + 1, ch+1(s, 1) = B and
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ch+1(s, 0) = 0. For t = h, the costs are random:

Ch(s, a) :=


B w.p. 1

2

0 w.p. 1
2

The budget is any B > 0.

Clearly, an optimal cost-history-dependent policy can choose any action it likes

other than at time h + 1. At time h + 1, an optimal policy chooses a = 1 if the

cost incurred at time h was 0 and otherwise chooses action a = 0. The value of the

optimal policy is x/2 since the agent receives total reward x whenever ch = 0, which

is half the time, and otherwise receives total reward 0. Thus, V ∗
Mh

= x/2.

On the other hand, consider π’s performance. Since π does not record ch, it

cannot use ch to make decisions. Hence, p := Pπ
Mh

[ah+1 = 1] is independent of ch’s

value. If p > 0 then with probability 1/2p > 0, the agent accrues cost B at both

time h and time h + 1 so violates the constraint. Thus, if π is feasible, it must

satisfy p = 0. Consequently, π can never choose a = 1 at time h + 1 and so can

never receive rewards other than 0. Thus, V π
Mh

= 0 << x/2 = V ∗
Mh

. By choosing

x large enough, we see policies that do not consider the entire cost history can be

arbitrarily suboptimal. By applying this argument to H = 2 and h = 1, we see

that Markovian policies can be arbitrarily suboptimal and so do not suffice to solve

anytime-constrained cMDPs.

C.1.2 Proof of Corollary 1

Proof. Since optimal policies for expectation-constrained cMDPs are always Mar-

kovian, Proposition 8 immediately implies such policies are infeasible or arbitrarily

suboptimal. In fact, we can see this using the same construction of Mh.
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1. Under an expectation constraint, the optimal policy π can choose p = 1/2

and still maintain that Eπ
M [
∑H

t=1 ct] = B/2 + pB = B ≤ B. Thus, such a

policy violates the anytime constraint by accumulating cost 2B with probability

1/4. In fact, if we generalize the construction of Mh to have ch = B
2δ

with

probability δ > 0 (where δ = 1/2 in the original construction), then the optimal

expectation-constrained policy is the same π but now accumulates cost B
2δ

+B

with probability δ/2 > 0. Since δ can be chosen to be arbitrarily small, the

violation of the anytime constraint, which is B/2δ, can be arbitrarily large.

Even if we relax the policy to just be ϵ-optimal, for any ϵ > 0 we can choose x

large enough to where all ϵ-optimal policies still select action 1 with non-zero

probability.

2. A similar construction immediately shows the arbitrarily infeasibility of opti-

mal chance-constrained policies. Consider a chance constraint that requires

Pπ
M [
∑H

t=1 ct > B] ≤ δ for some δ > 0. We can use the same construction as

above but with an arbitrarily larger cost of ch = y B
2δ

for some y > 0. Then,

an optimal chance constrained policy can always let p = 1 since the cost only

exceeds budget when ch > 0 which happens with probability δ. Such a policy

clearly violates the anytime constraint by y B
2δ

, which is arbitrarily large by

choosing y to be arbitrarily large. Also, observe this does not require us to

consider Markovian policies since whether the budget was already violated at

time h or not, the policy is still incentivized to choose action 1 at time h+ 1

as additional violation does not effect a chance-constraint. Again, considering

an ϵ-optimal policy does not change the result.

3.

Suppose instead we computed an optimal policy using a smaller budget B′.
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1. For expectation-constraints, to ensure the resultant policy is feasible for anytime

constraints, we need that p = 0 as before. By inspection, it must be that

B′ = B/2 but then the value of the policy is 0 which is arbitrarily suboptimal

as we saw before.

2. For chance-constraints, the situation is even worse. Consider the Mh but with

ch = B w.p. δ. Then, no matter what B′ we choose, the resultant policy is not

feasible. Specifically, an optimal cost-history-dependent policy under the event

that ch = B/2 will then choose ah+1 = 1 almost surely since the extent of the

violation does not matter. But even ignoring this issue, under the event that

ch = 0 the policy would then have to choose ah+1 = 0 which is again arbitrarily

suboptimal.

For the knapsack-constrained frameworks, the policy is allowed to violate the

budget arbitrarily once per episode. Thus, no matter how we change the budget

feasibility is never guaranteed: it will always choose ah+1 = 1 in any realization. The

other frameworks also fail using slight modifications of the constructions above.

C.1.3 Proof of Proposition 9

Proof. For continuity with respect to rewards, notice that if a certain reward is not

involved in the optimal solution, then any perturbation does not change V ∗. On

the other hand, if a reward is in an optimal solution, since V ∗ is defined by an

expectation of the rewards, it is clear that V ∗ is continuous in that reward: a slight

perturbation in the reward leads to the same or an even smaller perturbation in V ∗

due to the probability weighting.

On the other hand, V ∗ can be highly discontinuous in c and B. Suppose a cMDP
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has only one state and two actions with cost 0 and B, and reward 0 and x ∈ R>0

respectively. Then slightly increasing the cost or slightly decreasing the budget to

create a new instance Mϵ moves a solution value of x all the way down to a solution

value of 0. In particular, we see V ∗
M = x >> V ∗

Mϵ
if we only perturb the budget

slightly by some ϵ > 0.

C.1.4 Proof of Lemma 6

We first formally define the anytime cost of a policy π as,

Cπ := max
h∈[H]

max
τh∈Hh,
Pπ [τh]>0

c̄h.

In words, Cπ is the largest cost the agent ever accumulates at any time under any

history.

Proof. Consider the deterministic policy π′ defined by,

π′
h(τh) := max

a∈A,
πh(a|τh)>0

rh(s, a) + Ec,s′
[
V π
h+1(τh, a, c, s

′)
]
,

for every h ∈ [H] and every τh ∈ Hh.

We first show that for any τh ∈ Hh, if Pπ′
[τh] > 0 then Pπ[τh] > 0. This means

that the set of partial histories induced by π′ with non-zero probability are a subset

of those induced by π. Hence,

Cπ′
= max

h∈[H]
max
τh∈Hh,

Pπ′
[τh]>0

c̄h ≤ max
h∈[H]

max
τh∈Hh,
Pπ [τh]>0

c̄h = Cπ.

We show the claim using induction on h. For the base case, we consider h = 1.

By definition, we know that for both policies, Pπ′
[s0] = Pπ[s0] = 1. For the inductive
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step, consider any h ≥ 1 and suppose that Pπ′
[τh+1] > 0. Decompose τh+1 into

τh+1 = (τh, a, c, s
′) and let s = sh. As we have shown many times before,

0 < Pπ′
[τh+1] = π′

h(a | τh)Ch(c | s, a)Ph(s
′ | s, a)Pπ′

[τh]

Thus, it must be the case that π′
h(τh) = a (since π′ is deterministic), Ch(c | s, a) > 0,

Ph(s
′ | s, a) > 0, and Pπ′

[τh] > 0. By the induction hypothesis, we then know that

Pπ[τh] > 0. Since by definition π′
h(τh) = a ∈ {a′ ∈ A | πh(a′ | τh) > 0}, we then see

that,

Pπ[τh+1] = πh(a | τh)Ch(c | s, a)Ph(s
′ | s, a)Pπ[τh] > 0

This completes the induction.

Next, we show that for any h ∈ [H] and τh ∈ Hh, V π′

h (τh) ≥ V π
h (τh). This implies

that V π′
M = V π′

1 (s0) ≥ V π
1 (s0) = V π

M which proves the second claim. We proceed by

backward induction on h. For the base case, we consider h = H + 1. By definition,

both policies achieve value V π′
H+1(τ) = 0 = V π

H+1(τ). For the inductive step, consider

h ≤ H. By (PE),

V π′

h (τh) = rh(s, π
′(τh)) + Ec,s′ [V

π′

h+1(τh+1)]

≥ rh(s, π
′(τh)) + Ec,s′ [V

π
h+1(τh+1)]

≥ Ea[rh(s, a) + Ec̃,s′ [V
π
h+1(τh+1)]]

= V π
h (τh).

The second line used the induction hypotheses. The third lines used the fact that

the maximum value is at least any weighted average. This completes the induction.

Thus, we see that π′ satisfies Cπ′
M ≤ Cπ

M and V π′
M ≥ V π

M as was to be shown.
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Furthermore, we see that π′ can be computed from π in linear time in the size of

π by just computing V π
h (τh) by backward induction and then directly computing a

solution for each partial history.

C.1.5 Proof of Theorem 6

Proof. We present a poly-time reduction from the knapsack problem. Suppose we

are given n items each with a non-negative integer value vi and weight wi. Let B

denote the budget. We construct an MDP M with S = {0}, A = {0, 1}, and H = n.

Naturally, having a single state implies the initial state is s0 = 0, and the transition

is just a self-loop: P (0 | 0, a) = 1 for any a ∈ A. The rewards of M correspond

to the knapsack values: ri(s, 1) = vi. The costs of M correspond to the knapsack

weights: ci(s, 1) = wi. The budget remains B.

Clearly, any (possibly non-stationary) deterministic policy corresponds to a choice

of items for the knapsack. By definition of the rewards and costs, πh(·) = 1 if and

only if the agent gets reward vh and accrues cost ch. Thus, there exists a deterministic

π ∈ Π with V π
M ≥ V and Cπ

M ≤ B if and only if ∃I ⊆ [n] with
∑

i∈I vi ≥ V and∑
i∈I wi ≤ B. From Lemma 6 if there exists a stochastic optimal policy for the cMDP

with value at least V and anytime cost at most B, then there exists a deterministic

policy with value at least V and anytime cost at most B. As M can be constructed

in linear time from the knapsack instance, the reduction is complete.

C.1.6 Proof of Theorem 7

Proof. We show that computing a feasible policies for anytime constrained cMDPs

with only d = 2 constraints is NP-hard via a reduction from Partition. Suppose

X = {x1, . . . , xn} is a set of non-negative integers. Let Sum(X) :=
∑n

i=1 xi. We
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define a simple cMDP similar to the one in the proof of Theorem 6. Again, we define

S = {0}, A = {0, 1}, and H = n. The cost function is deterministic, defined by

ci,h(s, i) = xh and ci,h(s, 1− i) = 0. The budgets are B0 = B1 = Sum(X)/2.

Intuitively, at time h, choosing action ah = 0 corresponds to placing xh in the left

side of the partition and ah = 1 corresponds to placing xh in the right side. The total

cumulative cost for each constraint corresponds to the sum of elements in each side

of the partition. If both sides sum to at most Sum(X)/2 then it must be the case

that both are exactly Sum(X)/2 and so we have found a solution to the Partition

problem.

Formally, we show that ∃π ∈ ΠM if and only if ∃Y ⊆ [n] with Sum(Y ) =

Sum(Z) = Sum(X)/2 where Z = X \ Y .

• ( =⇒ ) Suppose π is a feasible deterministic policy for M (We can assume

deterministic again by Lemma 6). Define Y := {i | πh(s) = 0} and Z := {i |

πh(s) = 1}. Since π is deterministic we know that each item is assigned to one

set or the other and so Y ∪ Z = X.

By definition of the constraints, we have that Pπ
M [
∑H

h=1 ci,h ≤ Bi] = 1. Since

all quantities are deterministic this means that
∑H

h=1 ci,h ≤ Bi. By definition

of Y and Z we further see that Sum(Y ) =
∑H

h=1 c0,h ≤ Sum(X)/2 and

Sum(Z) =
∑H

h=1 c1,h ≤ Sum(X)/2. Since,

Sum(X) = Sum(Y ∪ Z) = Sum(Y ) + Sum(Z)

≤ Sum(X)/2 + Sum(X)/2 = Sum(X),

the inequality must be an equality. Using Sum(Y ) = Sum(X)−Sum(Z), then

implies that Sum(Y ) = Sum(Z) = Sum(X)/2 and so (Y, Z) is a solution to

the partition problem.
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Algorithm 18 Compute {S̄h}h
Input: (M,C,B)

S̄1 = {(s0, 0)}
for h← 1 to H − 1 do
S̄h+1 = ∅
for (s, c̄) ∈ S̄h do

for s′ ∈ S do
for a ∈ A do

if Ph(s
′ | s, a) > 0 and Prc∼Ch(s,a)[c̄+ c ≤ B] = 1 then

for c ∈ Ch(s, a) do
S̄h+1 ← S̄h+1 ∪ {(s′, c̄+ c)}

return {S̄h}h.

• (⇐= ) On the other hand, suppose that (Y, Z) is a solution to the partition

problem. We can define πh(s) = 0 if h ∈ Y and πh(s) = 1 if h ∈ Z. By

definition, we see that Sum(Y ) =
∑H

h=1 c0,h = Sum(X)/2 = B0 and Sum(Z) =∑H
h=1 c1,h = Sum(X)/2 = B1. Thus, π is feasible for M .

As the construction of M can clearly be done in linear time by copying the costs

and computing Sum(X)/2, the reduction is polynomial time. Thus, it is NP-hard to

compute a feasible policy for an anytime-constrained cMDP.

Since the feasibility problem is NP-hard, it is easy to see approximating the

problem is NP-hard by simply defining a reward of 1 at the last time step. Then, if

an approximation algorithm yields any finite-value policy, we know it must be feasible

since infeasible policies yield −∞ value. Thus, any non-trivial approximately-optimal

policy to an anytime-constrained cMDP is NP-hard to compute.

C.2 Proofs for Section 4.3

The complete forward induction algorithm that computes S̄ as defined in Definition 7

is given in Algorithm 18.
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Suppose τh+1 ∈ Hh+1 is any partial history satisfying Pπ
τh
[τh+1] > 0. By the

Markov property (Equation (2.1.11) from [91]), we have that

Pπ
τh
[τh+1] = πh(a | τh)Ch(c | s, a)Ph(s

′ | s, a). (MP)

Thus, it must be the case that τh+1 = (τh, a, c, s
′) where πh(a | τh) > 0, Ch(c | s, a) >

0, and Ph(s
′ | s, a) > 0.

C.2.1 Proof of Lemma 7

We show an alternative characterization of the safe exploration state set:

SEh :=
{
(s, c̄) | ∃π ∃τh ∈ Hh, Pπ

τh
[sh = s, c̄h = c̄] = 1 and

∀k ∈ [h− 1] Pπ
τk
[c̄k+1 ≤ B] = 1

}
.

(C.1)

Observe that Pπ
τh
[sh = s, c̄h = c̄] = 1 is equivalent to requiring that for τh, sh = s,

c̄h = c̄, and Pπ[τh] > 0.

Lemma 20. For all h ∈ [H + 1], S̄h = SEh.

We break the proof into two claims.

Claim 1. For all h ∈ [H + 1], S̄h ⊆ SEh.

Proof. We proceed by induction on h. For the base case, we consider h = 1. By

definition, S̄1 = {(s0, 0)}. For τ1 = s0, we have c̄1 = 0 is an empty sum. Thus, for

any π ∈ Π, Pπ[s1 = s0, c̄1 = 0 | τ1] = 1. Also, [h − 1] = [0] = ∅ and so the second

condition vacuously holds. Hence, (s0, 0) ∈ SE1 implying that S̄1 ⊆ SE1.

For the inductive step, we consider any h ≥ 1. Let (s′, c̄′) ∈ S̄h+1. By definition,



140

we know that there exists some (s, c̄) ∈ S̄h, a ∈ A, and c ∈ R satisfying,

Ch(c | s, a) > 0, Pr
c∼Ch(s,a)

[c̄+ c ≤ B] = 1, c̄′ = c̄+ c, and Ph(s
′ | s, a) > 0.

By the induction hypothesis, (s, c̄) ∈ SEh and so there also exists some π ∈ Π and

some τh ∈ Hh satisfying,

Pπ
τh
[sh = s, c̄h = c̄] = 1 and ∀k ∈ [h− 1], Pπ

τk
[c̄k+1 ≤ B] = 1.

Overwrite πh(τh) = a and define τh+1 = (τh, a, c, s
′). Then, by definition of the

interaction with M , Pπ[τh+1] ≥ Pπ[τh]πh(a | τh)Ch(c | s, a)Ph(s
′ | s, a) > 0. Here

we used the fact that if Pπ
τh
[sh = s, c̄h = c̄] = 1 then Pπ[τh] > 0 by the definition

of conditional probability. Thus, Pπ
τh+1

[sh+1 = s′, c̄h+1 = c̄′] = 1. By assumption,

Pπ
τk
[c̄k+1 ≤ B] holds for all k ∈ [h− 1]. For k = h, we have

Pπ
τh
[c̄h+1 ≤ B] = Pπ

τh
[c̄h + ch ≤ B | sh = s, c̄h = c̄]

=
∑
a′

πh(a
′ | τh) Pr

Ch(s,a′)
[c̄+ c ≤ B]

= Pr
Ch(s,a)

[c̄+ c ≤ B]

= 1.

The first line used the law of total probability, the fact that Pπ
τh
[sh = s, c̄h = c̄] = 1,

and the recursive decomposition of cumulative costs. The second line uses law of

total probability on ch. The third line follows since πh(a | τh) = 1 since πh(τh) = a

deterministically. The last line used the fact that Prc∼Ch(s,a)[c̄+ c ≤ B] = 1. Thus,

we see that (s′, c̄′) ∈ SEh+1.

Claim 2. For all h ∈ [H + 1], S̄h ⊇ SEh.
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Proof. We proceed by induction on h. For the base case, we consider h = 1. Observe

that for any π ∈ Π, the only τ1 that has non-zero probability is τ1 = s0 since M

starts at time 1 in state s0. Also, c̄1 = 0 since no cost has been accrued by time 1.

Thus, SE1 ⊆ {(s0, 0)} = S̄1.

For the inductive step, we consider any h ≥ 1. Let (s′, c̄′) ∈ SEh+1. By definition,

there exists some π ∈ Π and some τ ∈ H satisfying,

Pπ
τh+1

[sh+1 = s′, c̄h+1 = c̄′] = 1 and ∀k ∈ [h], Pπ
τk
[c̄k+1 ≤ B] = 1.

Decompose τh+1 = (τh, a, c, s
′) where sh = s and c̄h = c̄. Since Pπ

τh+1
[sh+1 = s′, c̄h+1 =

c̄′] = 1, we observe that

0 < Pπ[τh+1] = Pπ[τh]πh(a | τh)Ch(c | s, a)Ph(s
′ | s, a).

Thus, Pπ
τh
[sh = s, c̄h = c̄] = 1. Also, we immediately know that Pπ

τk
[c̄k+1 ≤ B]

∀k ∈ [h − 1] since any sub-history of τh is also a sub-history of τh+1. Hence,

(s, c̄) ∈ SEh and so the induction hypothesis implies that (s, c̄) ∈ S̄h. We have

already seen that c̄′ = c̄ + c, Ch(c | s, a) > 0 and Ph(s
′ | s, a). To show that

(s′, c̄′) ∈ S̄h+1, it then suffices to argue that Prc∼Ch(s,a)[c̄+ c ≤ B] = 1. To this end,

observe as in Claim 1 that,

1 = Pπ
τh
[c̄h+1 ≤ B] =

∑
a′

πh(a
′ | τh) Pr

Ch(s,a′)
[c̄+ c ≤ B].

This implies that for all a′, PrCh(s,a′)[c̄+ c ≤ B] = 1, otherwise we would have,

∑
a′

πh(a
′ | τh) Pr

Ch(s,a′)
[c̄+ c ≤ B] <

∑
a′

πh(a
′ | τh) = 1,
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which is a contradiction. Thus, c+ Ch(s, a) ≤ B and so (s′, c̄′) ∈ S̄h+1.

Proof of Lemma 7.

Proof.

First Claim. Fix any (s, c̄) and suppose that Pπ
M [sh = s, c̄h = c̄] > 0 where

π ∈ ΠM . Since π ∈ ΠM , we know that Pπ
M

[
∀k ∈ [H]

∑k
t=1 ct ≤ B

]
= 1. Since the

history distribution has finite support whenever the cost distributions do, we see for

any history τh+1 ∈ Hh+1 with Pπ
M [τh+1] > 0 it must be the case that c̄h+1 ≤ B. In

fact, it must also be the case that Prc∼Ch(sh,ah)[c+ c̄h ≤ B] = 1 otherwise there exists

a realization of c and c̄h under π for which the anytime constraint would be violated.

Moreover, this must hold for any subhistory of τh+1 since those are also realized

with non-zero probability under π. In symbols, we see that Pπ
τk
[c̄k+1 ≤ B] = 1 for all

k ∈ [h]. Thus, (s, c̄) ∈ SEh. Since (s, c̄) was arbitrary, we conclude by Lemma 20

that S̄h = SEh ⊇ Fh.

observe that |S̄1| = 1. By the inductive definition of S̄h+1, we see that for any

(s, c̄) ∈ S̄h, (s, c̄) is responsible for adding at most S
∑

a∈A |Ch(s, a)| ≤ SAn pairs

(s′, c̄′) into S̄h+1. Specifically, each next state s′, current action a, and current cost

c ∈ Ch(s, a) yields at most one new element of S̄h+1. Thus, |S̄h+1| ≤ SAn|S̄h|. Since

S,A, n <∞, we see inductively that |S̄h| <∞ for all h ∈ [H + 1].

Second Claim. Suppose that for each (h, s) there is some a with Ch(s, a) = {0}.

For any (s, c̄) ∈ SEh+1, we know that there exists some π and τh+1 for which

Pπ
τk
[c̄k+1 ≤ B] = 1 for all k ∈ [h]. Now define the deterministic policy π′ by

π′
k(τk) = πk(τk) for all subhistories τk of τh+1, and π′

k(τk) = a for any a with

Ck(sk, a) = {0} otherwise. Clearly, π′ never accumulates more cost than a subhistory
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of τh+1 since it always takes 0 cost actions after inducing a different history than one

contained in τh+1.

Since under any subhistory of τh+1, π′ satisfies the constraints by definition of

SEh+1, we know that π′ ∈ ΠM . We also see that Pπ′
M [sh+1 = s, c̄h+1 = c̄] > 0 and

so (s, c̄) ∈ Fh+1. Since (s, c̄) was arbitrary we have that SEh+1 = Fh+1. As h was

arbitrary the claim holds.

Observation 4. For all h > 1, if (s, c̄) ∈ S̄h, then c̄ ≤ B.

Proof. For any h ≥ 1, any (s, c̄) ∈ S̄h+1 satisfies c̄′ = c̄ + c where c ∈ Ch(s, a) and

Prc∼Ch(s,a)[c̄+ c ≤ B] = 1. Since Ch(s, a) has finite support, this means that for any

such c ∈ Ch(s, a), we have that c̄+ c ≤ B. In particular, c̄′ = c̄+ c ≤ B.

C.2.2 Proof of Lemma 8

The tabular policy evaluation equations (Equation 4.2.6 [91]) naturally translate to

the cost setting as follows:

V π
h (τh) =

∑
a∈A

πh(a | τh)

(
rh(s, a) +

∑
c

∑
s′

Ch(c | s, a)Ph(s
′ | s, a)V π

h+1(τh, a, c, s
′)

)
.

We can write this more generally in the compact form:

V π
h (τh) = Eπ

τh

[
rh(s, a) + Eπ

τh+1

[
V π
h+1(τh+1)

]]
. (PE)

The classic Bellman Optimality Equations (Equation 4.3.2 [91]) are,

V∗
h(s) = max

a∈A(s)
rh(s, a) + Es′

[
V∗
h+1(s

′)
]
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Observe that the optimality equations for M̄ are,

V∗
h(s̄) = max

ā∈Āh(s̄)
r̄h(s̄, ā) + Es̄′

[
V∗
h+1(s̄

′)
]
,

which reduce to

V∗
h(s, c̄) = max

a:Prc∼Ch(s,a)[c̄+c≤B]=1
rh(s, a) + Ec,s′

[
V∗
h+1(s

′, c̄+ c)
]
, (BE)

where V∗
H+1(s, c̄) = 0. We then define V∗

h(s, c̄) = supπ V
π
h (s, c̄). Note, if π chooses

any action a for which a ̸∈ Ā(s, c̄), then V π
h (s, c̄) := −∞ and we call π infeasible for

M̄ .

Observation 5. For any τh ∈ Wh(s, c̄), if a ∈ A satisfies Prc∼Ch(s,a)[c̄+ c ≤ B] = 1,

s′ ∈ S satisfies Ph(s
′ | s, a) > 0, and c ∈ Ch(s, a), then for τh+1 := (τh, a, c, s

′),

τh+1 ∈ Wh+1(s
′, c̄+ c).

Proof. If τh ∈ Wh(s, c̄), then there exists some π ∈ Π with,

Pπ
τh
[sh = s, c̄h = c̄] = 1 and ∀k ∈ [h− 1], Pπ

τk
[c̄k+1 ≤ B] = 1.

Define πh(τh) = a. Immediately, we see,

Pπ[τh+1] = Pπ[τh]πh(a | τh)Ch(c | s, a)Ph(s
′ | s, a) > 0,

so Pπ
τh+1

[sh+1 = s′, c̄h+1 = c̄+ c] = 1. Also, Pπ
τh
[c̄h+1 ≤ B] = Prc∼Ch(s,a)[c̄+ c ≤ B] = 1

using the same argument as in Claim 1. Thus, τh+1 ∈ Wh+1(s
′, c̄+ c).

Now, we split the proof of Lemma 8 into two claims.

Claim 3. For any h ∈ [H + 1], if (s, c̄) ∈ S̄h and τh ∈ Wh(s, c̄), then V∗
h(s, c̄) ≥

V ∗(τh).
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Proof. We proceed by induction on h. For the base case, we consider h = H +

1. Let (s, c̄) ∈ S̄H+1 and τH+1 ∈ WH+1(s, c̄). By definition, V∗
H+1(s, c̄) = 0. If

ΠM(τH+1) = ∅, then V ∗(τH+1) = −∞ < 0 = V∗
H+1(s, c̄). Otherwise, for any

π ∈ ΠM(τH+1), V π
H+1(τH+1) = 0 by definition. Since π was arbitrary we see that

V ∗(τH+1) = 0 ≤ 0 = V∗
H+1(s, c̄).

For the inductive step, we consider h ≤ H. Fix any (s, c̄) ∈ S̄h and let τh ∈

Wh(s, c̄). If ΠM(τh) = ∅, then V ∗(τh) = −∞ ≤ V∗
h(s, c̄). Otherwise, fix any

π ∈ ΠM(τh). Suppose τh+1 = (τh, a, c, s
′) where πh(a | τh) > 0, Ch(c | s, a) > 0,

and Ph(s
′ | s, a) > 0. For any full history τ ∈ H satisfying Pπ

τh+1
[τ ] > 0, we have

Pπ
τh
[τ ] = Pπ

τh+1
[τ ]Pπ

τh
[τh+1] > 0. Since π ∈ ΠM(τh), we know that for all complete

histories τ ∈ H with Pπ
τh
[τ ] > 0 that c̄k+1 ≤ B for all k ∈ [H]. Consequently, for

any τ ∈ H satisfying Pπ
τh+1

[τ ] > 0, c̄k+1 ≤ B for all k ∈ [H]. This means that

Pπ
τh+1

[c̄k+1 ≤ B] = 1 for all k ∈ [H] and so π ∈ ΠM(τh+1).

By (BE),

V∗
h(s, c̄) = max

a:Prc∼Ch(s,a)[c̄+c≤B]=1
rh(s, a) + Ec,s′

[
V∗
h+1(s

′, c̄+ c)
]

≥ max
a:Prc∼Ch(s,a)[c̄+c≤B]=1

rh(s, a) + Ec,s′
[
V ∗
h+1(τh+1)

]
≥

∑
a:Prc∼Ch(s,a)[c̄+c≤B]=1

πh(a | τh)
(
rh(s, a) + Eτh+1

[
V ∗
h+1(τh+1)

])
≥

∑
a:Prc∼Ch(s,a)[c̄+c≤B]=1

πh(a | τh)
(
rh(s, a) + Eτh+1

[
V π
h+1(τh+1)

])
=
∑
a∈A

πh(a | τh)
(
rh(s, a) + Eτh+1

[
V π
h+1(τh+1)

])
= V π

h (τh).

The second line follows from the induction hypothesis, where τh+1 = (τh, a, c, s
′) ∈

Wh+1(s
′, c̄+ c) by Observation 5. The third line follows since the finite maximum
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is larger than the finite average (see Lemma 4.3.1 of [91]). The fourth line follows

since π ∈ ΠM(τh+1) implies V ∗(τh+1) ≥ V π
h+1(τh). Prc∼Ch(s,a)[c̄ + c ≤ B] = 1. The

fifth line follows since π cannot place non-zero weight on any action a satisfying

c̄+ Ch(s, a) > B. Otherwise, we would have,

Pπ
τh
[c̄h+1 > B] ≥ πh(a | τh) Pr

c∼Ch(s,a)
[c̄+ c > B] > 0,

contradicting that π ∈ ΠM(τh). The final line uses (PE).

Since π was arbitrary, we see that V∗
h(s, c̄) ≥ V ∗(τh).

Claim 4. For any h ∈ [H + 1], if (s, c̄) ∈ S̄h and τh ∈ Wh(s, c̄), then V∗
h(s, c̄) ≤

V ∗(τh).

Proof. We proceed by induction on h. For the base case, we consider h = H + 1. If

(s, c̄) ∈ S̄H+1 and τH+1 ∈ WH+1(s, c̄), then by definition there exists some π ∈ Π for

which Pπ[τH+1] > 0 and Pπ
τk
[c̄k+1 ≤ B] = 1 for all k ∈ [H]. We saw in the proof of

Claim 2 that for any k ≤ H, (sk+1, c̄k+1) ∈ S̄k+1. Thus, by Observation 4, we have

c̄k+1 ≤ B for all k ∈ [H] which implies that Pπ
τH+1

[c̄k+1 ≤ B] = 1 for all k ∈ [H].

Hence, π ∈ ΠM(τH+1) is a feasible solution to the optimization defining V ∗(τH+1)

implying that V ∗(τH+1) = 0. By definition, we also have V∗
H+1(s, c̄) = 0 ≤ V ∗(τH+1).

For the inductive step, we consider h ≤ H. Let (s, c̄) ∈ S̄h and τh ∈ Wh(s, c̄).

Consider the deterministic optimal partial policy π̄ for M̄ defined by solutions to

(BE). Formally, for all t ≥ h,

π̄t(s, c̄) ∈ argmax
a:PrCt(s,a)

[c̄+c≤B]=1

rt(s, a) + Ec,s′
[
V∗
t+1(s

′, c̄+ c)
]
.

If there is no feasible action for any of these equations of form (t, s′, c̄′) where



147

t ≥ h and (s′, c̄′) ∈ S̄t are reachable from (h, s, c̄) with non-zero probability, then

V∗
h(s, c̄) = −∞. In this case, clearly V∗

h(s, c̄) ≤ V ∗(τh). Otherwise, suppose solutions

to (BE) exist so that π̄ is well-defined from (s, c̄) at time h onward. It is well

known (see Theorem 4.3.3 from [91]) that V π̄
t (s

′, c̄′) = V∗
t (s

′, c̄′) for all t ≥ h and all

(s′, c̄′) ∈ S̄t. We unpack π̄ into a partial policy π for M defined by,

πt(τt) =


π̄t(st, c̄t) if (st, c̄t) ∈ S̄t

a1 o.w.

Here, a1 is an arbitrary element of A. To make π a full policy, we can define πt

arbitrarily for any t < h.

We first show that for all t ≥ h, Pπ
τh
[(st, c̄t) ∈ S̄t] = 1. We proceed by induction

on t. For the base case, we consider t = h. By assumption, τh ∈ Wh(s, c̄) so

(sh, c̄h) = (s, c̄) ∈ S̄h. Thus, Pπ
τh
[(sh, c̄h) ∈ S̄h] = Pπ

τh
[(s, c̄) ∈ S̄h] = 1.

For the inductive step, we consider t ≥ h. By the induction hypothesis, we know

that Pπ
τh
[(st, c̄t) ∈ S̄t] = 1. By the law of total probability, it is then clear that,

Pπ
τh
[(st+1, c̄t+1) ∈ S̄t+1] = Pπ

τh
[(st+1, c̄t+1) ∈ S̄t+1 | (st, c̄t) ∈ S̄t]

=
∑

(s′,c̄′)∈S̄t

Pπ
τh
[(st+1, c̄t+1) ∈ S̄t+1 | st = s′, c̄t = c̄′]Pπ

τh
[st = s′, c̄t = c̄′].

Above we have used the fact that for any (s′, c̄′) ∈ S̄t, the event that {st = s′, c̄t =

c̄′, (st, c̄t) ∈ S̄t} = {st = s′, c̄t = c̄′}.

For any τt with (st, c̄t) = (s′, c̄′) ∈ S̄t, by definition, πt(τt) = π̄t(s
′, c̄′) = a′ ∈

{a ∈ A | c̄′ + Ct(s
′, a) ≤ B}. By the inductive definition of S̄t+1, we then see that

(s′′, c̄′ + c′) ∈ S̄t+1 for any s′′ ∼ Pt(s
′, a′) and c′ ∼ Ct(s

′, a′). Hence, Pπ
τh
[(st+1, c̄t+1) ∈
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S̄t+1 | st = s′, c̄t = c̄′] = 1. We then see that,

Pπ
τh
[(st+1, c̄t+1) ∈ S̄t+1] =

∑
(s′,c̄′)∈S̄t

Pπ
τh
[st = s′, c̄t = c̄′]

= Pπ
τh
[(st, c̄t) ∈ S̄t]

= 1

This completes the induction.

Since under τh, π induces only histories whose state and cumulative cost are in

S̄, we see that π’s behavior is identical to π̄’s almost surely. In particular, it is easy

to verify by induction using (PE) and Observation 5 that,

V π
h (τh) = Eπ

τh

[
rh(s, a) + Eτh+1

[
V π
h+1(τh+1)

]]
= Eπ̄

(s,c̄)

[
rh((s, c̄), a) + E(s′,c̄′)

[
V π̄
h+1(s

′, c̄′)
]]

= V π̄
h (s, c̄)

= V∗
h(s, c̄).

By Observation 4, we see if (sk+1, c̄k+1) ∈ S̄k+1 then c̄k+1 ≤ B. It is then clear by

monotonicity of probability that Pπ
τh
[ck+1 ≤ B] ≥ Pπ

τh
[(sk+1, ck+1) ≤ S̄k+1] = 1 for all

k ∈ [H]. Hence, π ∈ ΠM(τh) and so V∗
h(s, c̄) = V π

h (τh) ≤ V ∗(τh).

Observation 6 (Cost-Augmented Probability Measures). We note we can treat π̄

defined in the proof of Claim 4 as a history dependent policy in the same way we

defined π. Doing this induces a probability measure over histories. We observe that

measure is identical as the one induced by the true history-dependent policy π. Thus,

we can directly use augmented policies with M and reason about their values and
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costs with respect to M .

C.2.3 Proof of Theorem 8

Proof. From Lemma 8, we see that V ∗ = V ∗(s0) = V∗
1 (s0, 0) = V∗. Furthermore, in

Claim 4, we saw the policy defined by the optimality equations (BE) achieves the

optimal value, V π̄ = V∗ = V ∗. Furthermore, π̄ behaves identically to a feasible history-

dependent policy π almost surely. In particular, as argued in Claim 4 both policies

only induce cumulative costs appearing in S̄h at any time h and so by Observation 4

we know that both policies’ cumulative costs are at most B anytime.

C.2.4 Proof of Corollary 2

The theorem follows immediately from Theorem 8 and the argument from the main

text.

C.2.5 Proof of Proposition 10

Proof. By definition of S̄, it is clear that |S̄h| ≤ |S|D, and by inspection, we see

that |Ā| ≤ |A|. The agent can construct S̄ using our forward induction procedure,

Algorithm 18, in O(
∑H−1

h=1 |S̄h|SAn) = O(HS2AnD) time. Also, the agent can

compute P̄ by forward induction in the same amount of time so long as the agent

only records the non-zero transitions. Thus, M̄ can be computed in O(HS2AnD)

time.

1. By directly using backward induction on M̄ [91], we see that an optimal policy

can be computed in O(H|S̄|2|Ā|) = O(HS2AD2) time. However, this analysis

can be refined: for any sub-problem of the backward induction (h, (s, c̄)) and

any action a, there are at most nS state-cost pairs that can be reached in
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the next period (namely, those of the form (s′, c̄+ c)) rather than SD. Thus,

backward induction runs in O(HS2AnD) time, and so planning in total can

be performed in O(HS2AnD) time.

2. Similarly, PAC (probably-approximately correct) learning can be done with

sample complexity Õ(H3|S̄||Ā| log(1
δ
)/γ2) = Õ(H3SAD log(1

δ
)/γ2) [81], where

δ is the confidence and γ is the accuracy. Note, we are translating the guarantee

to the non-stationary state set setting which is why the |S̄| term becomes SD

instead of HSD.

C.2.6 Proof of Lemma 9

Proof. Suppose each cost is represented with k bits of precision. For simplicity, we

assume that k includes a possible sign bit. By ignoring insignificant digits, we can

write each number in the form 2−ib−i + . . . 2−1b−1 + 20b0 + . . .+ 2k−i−1bk−i for some

i. By dividing by 2−i, each number is of the form 20b0 + . . .+ 2k−1bk−1. Notice, the

largest possible number that can be represented in this form is
∑k−1

i=0 2
i = 2k − 1.

Since at each time h, we potentially add the maximum cost, the largest cumulative

cost ever achieved is at most 2kH − 1. Since that is the largest cost achievable, no

more than 2kH can ever be achieved through all H times. Similarly, no cost can be

achieved smaller than −2kH.

Thus each cumulative cost is in the range [−2kH + 1, 2kH − 1] and so at most

2k+1H cumulative costs can ever be created. By multiplying back the 2−i term, we

see at most 2k+1H costs are ever generated by numbers with k bits of precision. Since

this argument holds for each constraint independently, the total number of cumulative

cost vectors that could ever be achieved is (H2k+1)d. Hence, D ≤ Hd2(k+1)d.
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C.2.7 Proof of Theorem 9

Theorem 9 follows immediately from Proposition 10, Lemma 9, and the definition of

fixed-parameter tractability [33].

C.3 Proofs for Section 4.4

For any h we let ĉh+1 := f(τh+1) be a random variable of the history defined

inductively by ĉ1 = 0 and ĉk+1 = fk(ĉk, ck) for all k ≤ h. Notice that since f

is a deterministic function, ĉk can be computed from τh+1 for all k ∈ [h + 1].

Then, a probability distribution over ĉ is induced by the one over histories. As

such, approximate-cost augmented policies can also be viewed as history-dependent

policies for M as in Observation 6.

C.3.1 Proof of Lemma 10

Proof. We proceed by induction on h. Fix any feasible policy π for M̂ . For the base

case, we consider h = 1. By definition, c̄1 = 0 = ĉ1 and so the claim trivially holds.

For the inductive step, we consider any h ≥ 1. By the induction hypothesis, we know

that ĉh ≤ c̄h ≤ ĉh + (h− 1)ℓ or ĉh, c̄h ≤ B − (H − h+ 1)cmax almost surely. We split

the proof into cases.

1. First, suppose that ĉh ≤ c̄h ≤ ĉh + (h− 1)ℓ.

(a) Furthermore, suppose that ĉh + ch ≥ B − (H − h)cmax so that ĉh+1 =

fh(ĉh, ch) = ĉh +
⌊
ch
ℓ

⌋
ℓ. By definition of the floor function,

⌊
ch
ℓ

⌋
≤ ch

ℓ
.

Thus,

ĉh+1 ≤ ĉh +
ch
ℓ
ℓ = ĉh + ch ≤ c̄h + ch = c̄h+1,
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holds almost surely, where we used the inductive hypothesis with our case

assumption to infer that ĉh ≤ c̄h almost surely in the second inequality.

Also, by definition of the floor function, ch
ℓ
≤
⌊
ch
ℓ

⌋
+ 1. We then see that,

c̄h+1 = c̄h +
ch
ℓ
ℓ ≤ c̄h + (

⌊ch
ℓ

⌋
+ 1)ℓ ≤ ĉh + (h− 1)ℓ+

⌊ch
ℓ

⌋
ℓ+ ℓ

= ĉh+1 + hℓ.

The first inequality used the induction hypothesis with our case assumption

and the second used the property of floors.

(b) Now, suppose that ĉh + ch < B − (H − h)cmax so that ĉh+1 = fh(ĉh, ch) =⌊
B−(H−h)cmax

ℓ

⌋
ℓ.

i. If c̄h+1 ≤ ĉh+1, then by definition we have,

c̄h+1, ĉh+1 ≤
⌊
B − (H − h)cmax

ℓ

⌋
ℓ ≤ B − (H − h)cmax,

and we are done.

ii. Otherwise, if ĉh+1 ≤ c̄h+1, then we see that,

c̄h+1 = c̄h + ch ≤ ĉh + (h− 1)ℓ+ ch < B − (H − h)cmax + (h− 1)ℓ

≤ (

⌊
B − (H − h)cmax

ℓ

⌋
+ 1)ℓ+ (h− 1)ℓ = ĉh+1 + hℓ,

where the first inequality used the induction hypothesis with our case

assumption.

2. Lastly, suppose that c̄h, ĉh ≤ B − (H − h+ 1)cmax. Then, it is clear that,

c̄h+1 = c̄h + ch ≤ c̄h + cmax ≤ B − (H − h+ 1)cmax + cmax = B − (H − h)cmax.
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Similarly, we see that either,

ĉh+1 = ĉh +
⌊ch
ℓ

⌋
ℓ ≤ ĉh + ch ≤ ĉh + cmax ≤ B − (H − h+ 1)cmax + cmax

= B − (H − h)cmax,

or,

ĉh+1 =

⌊
B − (H − h)cmax

ℓ

⌋
ℓ ≤ B − (H − h)cmax.

This completes the induction.

We next show the second claim. By definition, any approximate cost is an integer

multiple of ℓ where the integer is in the range {
⌊
B−Hcmax

ℓ

⌋
, . . . ,

⌊
B
ℓ

⌋
}. The number

of elements in this set is exactly,

⌊
B

ℓ

⌋
−
⌊
B −Hcmax

ℓ

⌋
+ 1 ≤ B

ℓ
− (

B −Hcmax

ℓ
− 1) + 1 =

Hcmax

ℓ
+ 2.

When there are d constraints, this analysis applies to each separately since we do

vector operations component-wise. Thus, the total number of approximate costs is

(
H∥cmax∥∞

ℓ
+ 2)d.

C.3.2 Proof of Theorem 10

Proof. We first note that the same argument used to prove Theorem 8 immediately

extends to the approximate MDP and implies that any feasible π for M̂ satisfies

Pπ
M̂
[∀t ∈ [H], ĉt+1 ≤ B] = 1. Also, we note since ĉ is a deterministic function of

the history, we can view any policy π for M̂ as a cost-history-dependent policy for

M similar to in the proof of Observation 6. Thus, Lemma 10 implies that for any

feasible π for M̂ and any h ∈ [H+1], Pπ
M [ĉh ≤ c̄h ≤ ĉh+(h−1)ℓ∨ c̄h, ĉh ≤ B− (H−



154

h+1)cmax] = 1. Since ĉh+1 ≤ B a.s., we immediately see that Pπ
M [c̄h+1 ≤ B+hℓ] = 1

for all h ∈ [H].

Furthermore, we observe that any feasible policy π for the anytime constraint

is also feasible for M̂ since Pπ
M [ĉh ≤ c̄h ∨ c̄h, ĉh ≤ B − (H − h+ 1)cmax] = 1 implies

that Pπ
M [ĉh+1 ≤ B] = 1 since c̄h+1 ≤ B almost surely. Since the rewards of M̂ only

depends on the state and action, we see π achieves the same value in both MDPs.

Thus, V̂ ∗ ≥ V ∗.

Lastly, Lemma 10 implies that DM̂ ≤ (
H∥cmax∥∞

ℓ
+ 2)d which with Proposition 10

gives the storage complexity.

C.3.3 Proof of Corollary 3

Proof. The proof is immediate from Theorem 10 and Proposition 10.

C.3.4 Proof of Corollary 4

Proof. The proof is immediate from Theorem 10 and Proposition 10.

C.3.5 Proof of Corollary 5

First observe that if B < 0 then the instance is trivially infeasible which can

be determined in linear time. Otherwise, the immediate cost (in addition to the

cumulative cost) induced by any feasible π is always in the range [0, B]. Specifically,

the larger costs xB can never be accrued since there are no negative costs now to

offset them, so we can effectively assume that cmax ≤ B. Since the floor of any

non-negative number is non-negative, the integer multiples of ℓ needed are now in the

range [0, ⌊cmax/ℓ⌋] ⊆ [0, ⌊B/ℓ⌋]. Thus, we have O(Hcmax

ϵ
) approximate costs for the

additive approximation since ℓ = ϵ/H, and O(H
ϵ
) approximate costs for the relative
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approximation since ℓ = ϵB/H. The complexities are reduced accordingly.

C.3.6 Proof of Proposition 11

Proof. Note that computing an optimal-value, ϵ-additive solution for the knapsack

problem is equivalent to just solving the knapsack problem when ϵ < 1. In particular,

since each weight is integer-valued, if the sum of the weights is at most B+ ϵ < B+1

then it is also at most B. By scaling the weights and budget by ⌈2ϵ⌉, the same

argument implies hardness for ϵ ≥ 1.

For relative approximations, we present a reduction from Partition to the problem

of finding an optimal-value, ϵ-relative feasible solution to the knapsack problem

with negative weights. Again, we focus on the ϵ < 1 regime but note the proof

extends using scaling. Let X = {x1, . . . , xn} be the set of positive integers input

to the partition problem and Sum(X) :=
∑n

i=1 xi. Observe that Sum(X)/2 must

be an integer else the instance is trivially a “No” instance. Define vi = 2xi and

wi = 2xi for each i ∈ [n]. Also, we define a special item 0 with v0 = −Sum(X) and

w0 = −Sum(X). We define the budget to be B = 1. We claim that there exists

some Y ⊆ [n] with Sum(Y ) = Sum(Y ) = Sum(X)/2 if and only if there exists an

I ⊆ [n] ∪ {0} with
∑

i∈I vi ≥ 0 and
∑

i∈I wi ≤ B(1 + ϵ).

• [ =⇒ ] if Y is a solution to Partition, then we define I = Y ∪ 0. We observe

that,

∑
i∈I

vi = −Sum(X) + 2
∑
i∈S

xi = −Sum(X) + 2Sum(X)/2 = 0.

Similarly,
∑

i∈I wi = 0 < 1 ≤ B(1 + ϵ). Thus, I satisfies the conditions.

• [⇐= ] if I is an ϵ-relative feasible solution to Knapsack, observe that I must

contain 0. In particular, each wi = 2xi ≥ 2 > (1 + ϵ) = B(1 + ϵ) and so for
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approximate feasibility to hold it must be the case that a negative weight was

included. Let Y = I \ 0. Then, we see that,

0 ≤
∑
i∈I

vi = −Sum(X) + 2
∑
i∈Y

xi = −Sum(X) + 2Sum(Y ).

Thus, Sum(Y ) ≥ Sum(X)/2. Similarly,

1 + ϵ ≥
∑
i∈I

wi = −Sum(X) + 2Sum(Y ).

Thus, Sum(Y ) ≤ Sum(X)/2+(1+ ϵ)/2 < Sum(X)/2+1 since ϵ < 1. Because

Sum(Y ) is a sum of positive integers, and Sum(X)/2 is a positive integer, it

must be the case that Sum(Y ) ≤ Sum(X)/2. Pairing this with Sum(Y ) ≥

Sum(X)/2 implies equality holds. Thus, Y is a solution to Partition.

Since the transformation can be made in linear time, we see that the reduction is

polynomial time. Since Partition is NP-hard, we then see finding an optimal-value,

ϵ-relative feasible solution to the knapsack problem with negative weights is NP-hard.

C.3.7 Proof of Proposition 12

Proof. The proof is immediate from Corollary 3 and Corollary 4.

C.4 Extensions

C.4.1 Generalized Anytime Constraints

Consider the constraints of the form,
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Pπ
M

[
∀k ∈ [H],

k∑
t=1

ct ∈ [Lk, Uk]

]
= 1. (C.2)

All of our exact methods carry over to this more general setting by simply tweaking

the safe exploration set. In particular, we define,

S̄h+1 :=
{
(s′, c̄′) ∈ S × Rd | ∃(s, c̄) ∈ S̄h, ∃a ∈ A,∃c ∈ Ch(s, a),

c̄′ = c̄+ c, Pr
c∼Ch(s,a)

[c+ c̄ ∈ [Lh, Uh]] = 1, Ph(s
′ | s, a) > 0

}
. (C.3)

Similarly, each quantity in the analysis changes to consider the different intervals

per time step. The proof is otherwise identical.

For the approximate methods, the additive results imply the costs are at most

Uk + ϵ anytime, and since the costs are independent of the new restrictions, the

complexity guarantees are the same. We could similarly give an approximation

concerning the lower bound by using pessimistic costs. For the relative approximation,

we now define ℓ with respect to |Umin| = mink |Uk| and all costs should lie below

|Umin|. The guarantees then translate over with |Umin| taking the role of |B|.

C.4.2 General Almost-Sure Constraints

General almost-sure constraints require that,

Pπ
M

[
H∑
t=1

ct ≤ B

]
= 1. (C.4)

This can be easily captured by the generalized anytime constraints by making Lk

smaller than kcmin and Uk larger than kcmax for any k < H so that the process is

effectively unconstrained until the last time step where UH = B.

Observe then when applying our relative approximation, Umin = UH = B and so
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the guarantees translate similarly as to the original anytime constraints. In particular,

although cmax ≤ |B|, the cumulative cost could be up to H|B|. This means the

multiples of ℓ that need to be considered are in the set {⌊−xH2/ϵ⌋ , . . . , ⌊xH2/ϵ⌋}d.

This changes the exact constants considered, but the asymptotic guarantees are the

same. We do note however that the improvements in Corollary 5 do not extend to

the general almost-sure case.

On the other hand, the additive approximation results now have ∥2Hcmax −B∥∞

terms instead of ∥cmax∥∞ terms. The asymptotic bounds then have ∥cmax −B/H∥∞

terms.

C.4.3 Infinite Discounting

If the rewards and costs are discounted, it is easy to see that Theorem 8 still holds but

the resultant MDP has infinite states and discontinuous reward function. However,

our approximate methods work well. By simply using the horizon H to be the earliest

time in which
∑∞

t=H+1 γ
tct ≤ ϵ almost surely, we can use our reduction to get an

ϵ-additive feasible policy. Pairing this with our approximation algorithms gives a

computationally efficient solution. To get a desired accuracy the effective horizon H

may need to be increased before using the approximation algorithms.
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Appendix D

Chapter 5 Appendix

D.1 Proofs for Section 5.2

D.1.1 Proof of Proposition 13

The proof follows from the standard proof of backward induction [91]. The main

ideas for the proof can also be seen in the proof of Lemma 22 and Lemma 23.

D.1.2 Proof of Proposition 14

Proof.

1. (Expectation Constraints) We claim Cπ
M captures expectation constraints. This

is immediate as an expectation constraint takes the form Eπ
M [
∑

h ch(sh, ah)]

≤ B and by definition Cπ
M = Eπ

M

[∑H
h=1 ch(sh, ah)

]
. Moreover, the standard

policy evaluation equations for deterministic policies immediately imply,

Cπ
h (τh) = ch(s, a) +

∑
s′

Ph(s
′ | s, a)Cπ

h+1(τh, a, s
′). (EC)

Thus, (TR) holds. It is also easy to see that
∑

s′ Ph(s
′ | s, a)Cπ

h+1(τh, a, s
′) can
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be computed recursively state-wise by,

Ph(1 | s, a)Cπ
h+1(τh, a, 1) +

S∑
s′=2

Ph(s
′ | s, a)Cπ

h+1(τh, a, s
′), (D.1)

and so (SR) holds. The infinity conditions and non-decreasing requirements

are also easy to verify.

2. (Almost Sure Constraints) We claim that Cπ
M captures almost sure constraints.

This is because that for tabular MDPs, Pπ
M [
∑H

h=1 ch(sh, ah) ≤ B] = 1 if and

only if for all τ ∈ HH+1 with Pπ
M [τ ] > 0 it holds that

∑H
h=1 ch(sh, ah) ≤ B if

and only if Cπ
M = maxτ∈HH+1:

Pπ
M [τ ]>0

∑H
h=1 ch(sh, ah) ≤ B.

Let c(τ) =
∑H

h=1 ch(sh, ah) denote the cost of a full history τ ∈ HH+1 and let

ch:t(τ) =
∑t

k=h ck(sk, ak) denote the partial cost of τ from time h to time t.

Our choice of α and β imply that,

Cπ
h (τh) = ch(s, a) + max

s′∈Ph(s,a)
Cπ

h+1(τh, a, s
′). (ASC)

To show that Cπ
M satisfies (TR), we prove for all h ∈ [H + 1] and all τh ∈ Hh

that

Ch(τh) = max
τ∈HH+1:

Pπ
M [τ |τh]>0

ch:H(τ). (D.2)

Then, we see that Cπ
1 (s0) = max τ∈HH+1:

Pπ
M [τ |s0]>0

c1:H(τ) = maxτ∈HH+1:
Pπ
M [τ ]>0

∑H
h=1 ch(sh, ah)

= Cπ
M . Thus, Cπ

M satisfies (TR). Furthermore, it is clear that maxs′∈Ph(s,a)

Cπ
h+1(τh, a, s

′) can be computed state-recursively by,

max(Cπ
h+1(τh, a, 1)[Ph(1 | s, a) > 0],

S
max
s′=2

Cπ
h+1(τh, a, s

′)[Ph(s
′ | s, a) > 0]),

(D.3)



161

and so Cπ
M satisfies (SR). The infinity conditions and non-decreasing require-

ments are also easy to verify.

We proceed by induction on h.

• (Base Case) For the base case, we consider h = H + 1. Observe that

for any history τ , we have cH+1:H(τ) = 0 since it is an empty sum.

Then, by definition of Cπ
M , we see that Cπ

H+1(τH+1) = 0 = maxτ 0 =

maxτ cH+1:H(τ).

• (Inductive Step) For the inductive step, we consider h ≤ H. Let s = sh(τh)

and a = πh(τh). For any τ ∈ HH+1 for which Pπ
M [τ | τh] > 0, we can

decompose its cost by ch:H(τ) = ch(s, a) + ch+1:H(τ). Since a is fixed, we

can remove ch(s, a) from the optimization to get,

max
τ∈HH+1:

Pπ
M [τ |τh]>0

ch:H(τ) = ch(s, a) + max
τ∈HH+1:

Pπ
M [τ |τh]>0

ch+1:H(τ).

Next, we observe by the Markov property that Pπ
M [τ | τh] =

∑
s′ Pπ

M [τ |

τh, a, s
′]Ph(s

′ | s, a). Thus, Pπ
M [τ | τh] > 0 if and only if there exists some

s′ ∈ Ph(s, a) satisfying Pπ
M [τ | τh, a, s′] > 0. This implies that,

max
τ∈HH+1:

Pπ
M [τ |τh]>0

ch+1:H(τ) = max
s′∈Ph(s,a)

max
τ∈HH+1:

Pπ
M [τ |τh,a,s′]>0

ch+1:H(τ).
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By applying the induction hypothesis, we see that,

max
τ∈HH+1:

Pπ
M [τ |τh]>0

ch:H(τ) = ch(s, a) + max
s′∈Ph(s,a)

max
τ∈HH+1:

Pπ
M [τ |τh,a,s′]>0

ch+1:H(τ)

= ch(s, a) + max
s′∈Ph(s,a)

Cπ
h+1(τh, a, s

′)

= Ch(τh).

The second line used the induction hypothesis and the third line used the

definition of Cπ
M .

3. (Anytime Constraints) We claim that Cπ
M captures anytime constraints. This

is because that for tabular MDPs, Pπ
M [∀t ∈ [H],

∑t
h=1 ch(sh, ah) ≤ B] =

1 if and only if for all t ∈ [H] and τ ∈ HH+1 with Pπ
M [τ ] > 0 it holds

that
∑t

h=1 ch(sh, ah) ≤ B if and only if Cπ
M = maxt∈[H] maxτ∈HH+1:Pπ

M [τ ]>0∑t
h=1 ch(sh, ah) ≤ B.

Our choice of α and β imply that,

Cπ
h (τh) = ch(s, a) + max

(
0, max

s′∈Ph(s,a)
Cπ

h+1(τh, a, s
′)

)
. (AC)

To show that Cπ
M satisfies (TR), we show that for all h ∈ [H + 1] and all

τh ∈ Hh that

Ch(τh) = max
t≥h

max
τ∈HH+1:

Pπ
M [τ |τh]>0

ch:t(τ). (D.4)

Then, we see that Cπ
1 (s0) = maxtmax τ∈HH+1:

Pπ
M [τ |s0]>0

c1:t(τ) = maxt∈[H] maxτ∈HH+1:
Pπ
M [τ ]>0∑t

h=1 ch(sh, ah) = Cπ
M . Thus, Cπ

M satisfies (TR). Furthermore, it is clear that
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max(0,maxs′∈Ph(s,a)C
π
h+1(τh, a, s

′)) can be computed state-recursively by,

max
(
max(0, Cπ

h+1(τh, a, 1)[Ph(1 | s, a) > 0]),

max(0,
S

max
s′=2

Cπ
h+1(τh, a, s

′)[Ph(s
′ | s, a) > 0])

)
,

(D.5)

and so Cπ
M satisfies (SR). The infinity conditions and non-decreasing require-

ments are also easy to verify.

We proceed by induction on h.

• (Base Case) For the base case, we consider h = H + 1. Observe that

for any history τ and t, we have cH+1:t(τ) = 0 since it is an empty sum.

Then, by definition of Cπ
M , we see that Cπ

H+1(τH+1) = 0 = maxt maxτ 0 =

maxtmaxτ cH+1:t(τ)
1.

• (Inductive Step) For the inductive step, we consider h ≤ H. Let s = sh(τh)

and a = πh(τh). By separately considering the case where t = h and
1Technically, there is no t ∈ [H] satisfying t ≥ H + 1. We instead interpret the t ≥ h condition

in the max as over all integers and define the immediate costs to be 0 for all future times to simplify
the base case.
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t ≥ h+ 1 in the maxt≥h, we see that, maxt≥h max τ∈HH+1:
Pπ
M [τ |τh]>0

ch:t(τ) =

max

 max
τ∈HH+1:

Pπ
M [τ |τh]>0

ch:h(τ), max
t≥h+1

max
τ∈HH+1:

Pπ
M [τ |τh]>0

ch:t(τ)


= max

ch(s, a), ch(s, a) + max
t≥h+1

max
τ∈HH+1:

Pπ
M [τ |τh]>0

ch+1:t(τ)


= ch(s, a) + max

0, max
t≥h+1

max
τ∈HH+1:

Pπ
M [τ |τh]>0

ch+1:t(τ)


= ch(s, a) + max

0, max
t≥h+1

max
s′∈Ph(s,a)

max
τ∈HH+1:

Pπ
M [τ |τh,a,s′]>0

ch+1:t(τ)


= ch(s, a) + max

0, max
s′∈Ph(s,a)

max
t≥h+1

max
τ∈HH+1:

Pπ
M [τ |τh,a,s′]>0

ch+1:t(τ)


= ch(s, a) + max

(
0, max

s′∈Ph(s,a)
Cπ

h+1(τh, a, s
′)

)
= Ch(τh).

The second line used the fact that ch:h(τ) = ch(s, a) and the recursive

definition of ch:t(τ). The fourth line used the result proven for the almost

sure case above. The sixth line used the induction hypothesis. The last

line used the definition of Cπ
M .
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D.2 Proofs for Section 5.3

D.2.1 Helpful Technical Lemmas

Here, we use a different, inductive definition for V then in the main text. However,

the following lemma shows they are equivalent.

Definition 27 (Value Space). For any s ∈ S, we define VH+1(s)
def
= {0}, and for any

h ∈ [H],

Vh(s)
def
=
⋃
a

⋃
v∈×s′ Vh+1(s′)

{
rh(s, a) +

∑
s′

Ph(s
′ | s, a)vs′

}
. (D.6)

We define V def
=
⋃

h,s Vh(s).

Lemma 21 (Value Intution). For all s ∈ S and h ∈ [H + 1],

Vh(s) =
{
v ∈ R | ∃π ∈ ΠD, τh ∈ Hh, (s = sh(τh) ∧ V π

h (τh) = v)
}
, (D.7)

and |Vh(s)| ≤ A
∑H

t=h SH−t. Thus, V can be computed in finite time using backward

induction.

Lemma 22 (Cost). For any h ∈ [H + 1], τh ∈ Hh, and v ∈ V, if s = sh(τh), then,

C̄∗
h(s, v) ≤ min

π∈ΠD
Cπ

h (τh)

s.t. V π
h (τh) ≥ v.

(D.8)

Lemma 23 (Value). Suppose that π ∈ ΠD. For all h ∈ [H + 1] and (s, v) ∈ S̄, if

C̄π
h (s, v) <∞, then V̄ π

h (s, v) ≥ v.

Remark 22 (Technical Subtlety). Technically, V π
h (τh) is only well defined if Pπ

M [τh] > 0

and all of our arguments technically should assume this is the case. However, it is

standard in MDP theory to define the policy evaluation equations on non-reachable
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trajectories using the standard recursion to simplify proofs, as we have done here.

Formally, this is equivalent to assuming the process starts initially at τh instead

of just conditioning on reaching τh, or defining the values to correspond to policy

evaluation equations directly. This is consistent with the usual definition when

Pπ
M [τh] > 0 but gives it a defined value also when Pπ

M [τh] = 0. In either case, this

detail only means our recursive definition of V is a superset rather than exactly the

set of all values as we defined in the main text. This does not effect the final results

since unreachable trajectories do not effect π’s overall value in the MDP anyway,

and only effects the interpretations of some intermediate variables.

D.2.2 Proof of Proposition 15

Proof. By definition of V ∗
M and C∗

M ,

V ∗
M > −∞ ⇐⇒ ∃π ∈ ΠD, Cπ

M ≤ B ∧ V π
M ≥ V ∗

M

⇐⇒ C∗
M ≤ B.

For the second claim, we observe that if V ∗
M > −∞ then by the above argument

any optimal deterministic policy π for COVER satisfies Cπ
M = C∗

M ≤ B and V π
M ≥ V ∗

M .

Thus, COV ER ⊆ PACK.

D.2.3 Proof of Lemma 21

Proof. We proceed by induction on h. Let s ∈ S be arbitrary.

Base Case. For the base case, we consider h = H + 1. In this case, we know that

for any π ∈ ΠD and any τ ∈ HH+1, V π
H+1(τH+1) = 0 ∈ {0} = VH+1(s) by definition.

Furthermore, |VH+1(s)| = 1 = A0 = A
∑H

t=H+1 S
t .
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Inductive Step. For the inductive step, we consider h ≤ H. In this case, we know

that for any π ∈ ΠD and any τh ∈ Hh, if s = sh(τh) and a = πh(τh), then the policy

evaluation equations imply,

V π
h (τh) = rh(s, a) +

∑
s′

Ph(s
′ | s, a)V π

h+1(τh, a, s
′).

We know by the induction hypothesis that V π
h+1(τh, a, s

′) ∈ Vh+1(s
′). Thus, by (D.6),

V π
h (τh) ∈ Vh(s). Lastly, we see by (D.6) and the induction hypothesis that,

|Vh(s)| ≤ A
∏
s′

|Vh+1(s
′)| ≤ A

∏
s′

A
∑H

t=h+1 S
H−t

= A1+S
∑H

t=h+1 S
H−t

= A
∑H

t=h SH−t

.

This completes the proof.

D.2.4 Proof of Lemma 22

Proof. We proceed by induction on h. Let τh ∈ Hh and v ∈ V be arbitrary and

suppose that s = sh(τh). We let C∗
h(τh, v) denote the minimum for the RHS of (D.8).

Base Case. For the base case, we consider h = H + 1. Observe that for any

π ∈ ΠD, V π
H+1(τH+1) = 0 by definition. Thus, there exists a π ∈ ΠD satisfying

V π
H+1(τH+1) ≥ v if and only if v ≤ 0. We also know by definition that any such

policy π satisfies Cπ
H+1(τH+1) = 0 and if no such policy exists C∗

H+1(τH+1, v) =∞ by

convention. Therefore, we see that C∗
H+1(τH+1, v) = χ{v≤0}. Then, by definition of

the base case for C̄, it follows that,

C̄∗
H+1(s, v) = χ{v≤0} = C∗

H+1(τH+1, v).
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Inductive Step. For the inductive step, we consider h ≤ H. If C∗
h(τh, v) = ∞,

then trivially C̄∗
h(s, v) ≤ C∗

h(τh, v). Instead, suppose that C∗
h(τh, v) < ∞. Then,

there must exist a feasible π ∈ ΠD satisfying V π
h (τh) ≥ v. Let a∗ = πh(τh). By the

policy evaluation equations, we know that,

V π
h (τh) = rh(s, a

∗) +
∑
s′

Ph(s
′ | s, a∗)V π

h+1(τh, a
∗, s′).

For each s′ ∈ S, define v∗s′
def
= V π

h+1(τh, a
∗, s′) and observe that v∗s′ ∈ Vh+1(s

′) ⊆ V by

Lemma 21. Thus, we see that (a∗,v∗) ∈ A×VS and rh(s, a)+
∑

s′ Ph(s
′ | s, a)vs′ ≥ v,

which implies (a∗,v∗) ∈ Āh(s, v).

Since π satisfies V π
h+1(τh, a

∗, s′) ≥ v∗s′ , it is clear that C∗
h+1(s

′, v∗s′) ≤ Cπ
h+1(τh, a

∗, s′).

The induction hypothesis implies that C̄∗
h+1(s

′, v∗s′) ≤ C∗
h+1(s

′, v∗s′) ≤ Cπ
h+1(τh, a

∗, s′).

The optimality equations for M̄ then imply that,

C̄∗
h(s, v) = min

(a,v)∈Āh(s,v)
ch(s, a) + f

((
Ph(s

′ | s, a), C̄∗
h+1 (s

′, vs′)
)
s′∈Ph(s,a)

)
≤ ch(s, a

∗) + f
((
Ph(s

′ | s, a∗), C̄∗
h+1 (s

′, v∗s′)
)
s′∈Ph(s,a∗)

)
≤ ch(s, a

∗) + f
((
Ph(s

′ | s, a), Cπ
h+1 (τh, a

∗, s′)
)
s′∈Ph(s,a∗)

)
= Cπ

h (τh).

The first inequality used the fact that (a∗,v∗) ∈ Āh(s, v). The second inequality

relied on f being non-decreasing and the induction hypothesis. The final equality

used (TR).

Since π was an arbitrary feasible policy for the optimization defining C∗
h(τh, v),

we see that C̄∗
h(s, v) ≤ C∗

h(τh, v). This completes the proof.
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D.2.5 Proof of Lemma 23

Proof. We proceed by induction on h. Let (s, v) ∈ S̄ be arbitrary.

Base Case. For the base case, we consider h = H+1. By definition and assumption,

C̄π
H+1(s, v) = χ{v≤0} <∞. Thus, it must be the case that v ≤ 0 and so by definition

V̄ π
H+1(s, v) = 0 ≥ v.

Inductive Step. For the inductive step, we consider h ≤ H. We decompose

πh(s, v) = (a,v) where we know (a,v) ∈ Āh(s, v) since π has finite cost2. Moreover,

it must be the case that for any s′ ∈ S with Ph(s
′ | s, a) > 0 that C̄π

h+1(s
′, vs′) <∞

otherwise the property that f outputs ∞ when inputted an ∞ would imply a

contradiction:

C̄π
h (s, v) = ch(s, a) + f

((
Ph(s

′ | s, a), C̄π
h+1 (s

′, vs′)
)
s′∈Ph(s,a)

)
= ch(s, a) + f(. . . ,∞, . . .)

=∞.

Thus, the induction hypothesis implies that V̄ π
h+1(s

′, vs′) ≥ vs′ for any such s′ ∈ S.

By the policy evaluation equations, we see that,

V̄ π
h (s, v) = rh(s, a) +

∑
s′

Ph(s
′ | s, a)V̄ π

h+1(s
′, vs′)

≥ rh(s, a) +
∑
s′

Ph(s
′ | s, a)vs′

≥ v.

The third line uses the definition of Āh(s, v). This completes the proof.
2By convention, we assume min∅ =∞
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D.2.6 Proof of Theorem 11

Proof. If C̄∗
1(s0, v) > B for all v ∈ V, then C∗

M > B since otherwise we would have

C̄∗
1(s0, v) ≤ C∗

1(s0, v) = C∗
M ≤ B by Lemma 22. Thus, if Algorithm 9 outputs

“infeasible” it is correct.

On the other hand, suppose that there exists some v ∈ V for which C̄∗
1 (s0, v) ≤ B.

By standard MDP theory, we know that since π ∈ ΠD is a solution to M̄ , it must

satisfy the optimality equations. In particular, C̄π
1 (s0, v) = C̄∗

1(s0, v) ≤ B. Since

Cπ
M = C̄π

1 (s0, v)
3, we see that there exists a π ∈ ΠD for which Cπ

M ≤ B and so

V ∗
M > −∞.

Since V ∗
M is the value of some deterministic policy, Lemma 21 implies that V ∗

M ∈ V .

Thus, Lemma 23 implies that V π
1 (s0, V

∗
M) ≥ V ∗

M and Cπ
1 (s0, V

∗
M) ≤ C∗

1(s0, V
∗
M) ≤ B.

Consequently, running π with initial state s̄0 = (s0, V
∗
M) is an optimal solution to

(CON). In either case, Algorithm 9 is correct.

D.3 Proofs for Section 5.4

Definition 28. We define the exact partial sum,

σs,a
h,v(t, u)

def
= u+

S∑
s′=t

Ph(s
′ | s, a)vs′ . (D.9)

Observation 7. We observe that both σ and σ̂ can be computed recursively. Specif-

ically, σs,a
h,v(S + 1, u) = u and σs,a

h,v(t, u) = σs,a
h,v(t, u + Ph(t | s, a)vt). Similarly,

σ̂s,a
h,v(S + 1, u) = u and σ̂s,a

h,v(t, u) = σs,a
h,v(t, ⌊u+ Ph(t | s, a)vt⌋G).

For completeness, and to assist with other arguments, we also prove the exact
3We can view C̄ (V̄ ) as the extension of C (V ) needed to formally evaluate memory-augmented

policies. Since we consider deterministic policies, it is trivial to convert any memory-augmented
policy into a history-dependent policy that is defined in the original environment M .



171

recursion we presented in Definition 13 is correct using Lemma 24.

Lemma 24. For any t ∈ [S + 1] and u ∈ R, we have that,

gs,ah,v(t, u) = min
v∈VS−t+1

gs,ah,v(t)

s.t. u+
S∑

s′=t

Ph(s
′ | s, a)vs′ ≥ v.

(D.10)

Moreover, C̄∗
h(s, v) = mina∈A ch(s, a) + gs,ah,v(1, rh(s, a)).

D.3.1 Proof of Lemma 24

Proof. We proceed by induction on t.

Base Case. For the base case, we consider t = S + 1. Since
∑S

s′=S+1 Ph(s
′ |

s, a)vs′ = 0 is the empty sum, the condition u+
∑S

s′=S+1 Ph(s
′ | s, a)vs′ ≥ v is true

iff u ≥ v. Also, for any v, gs,ah,v(S +1) = 0 by definition. Thus, the minimum defining

gs,ah,v(S + 1, u) is 0 when u ≥ v and is ∞ due to infeasibility otherwise. In symbols,

gs,ah,v(S + 1, u) = χ{u≥v} as was to be shown.
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Inductive Step. For the inductive step, we consider t ≤ S. We see that, gs,ah,v(t, u) =

min
v∈VS−t+1

u+
∑S

s′=t Ph(s
′|s,a)vs′≥v

gs,ah,v(t)

= min
v∈VS−t+1

u+
∑S

s′=t Ph(s
′|s,a)vs′≥v

α
(
β
(
Ph(t | s, a), C̄∗

h+1 (t, vt)
)
, gs,ah,v(t+ 1)

)
= min

vt∈V
min

v∈VS−t

(u+Ph(t|s,a)vt)+
∑S

s′=t+1 Ph(s
′|s,a)vs′≥v

α
(
β
(
Ph(t | s, a), C̄∗

h+1 (t, vt)
)
, gs,ah,v(t+ 1)

)

= min
vt∈V

α

β (Ph(t | s, a), C̄∗
h+1 (t, vt)

)
, min

v∈VS−t

(u+Ph(t|s,a)vt)+
∑S

s′=t+1 Ph(s
′|s,a)vs′≥v

gs,ah,v(t+ 1)


= min

vt∈V
α
(
β
(
Ph(t | s, a), C̄∗

h+1 (t, vt)
)
, gs,ah,v(t+ 1, u+ Ph(t | s, a)vt)

)
The second lined used (SR). The third line split the optimization into the first

decision and the remaining decisions and decomposed the sum in the constraint. The

fourth line used the fact that α is a non-decreasing function of both its arguments

and the fact that the second optimization only concerns the second argument. The

last line used the induction hypothesis.

The observation that mina∈A ch(s, a) + gs,ah,v(1, rh(s, a)) = C̄∗
h(s, v) then follows

from the definition of Āh(s, v) and (BU):

min
a∈A

ch(s, a) + gs,ah,v(1, rh(s, a)) = min
a∈A

ch(s, a) + min
v∈VS

rh(s,a)+
∑

s′ Ph(s
′|s,a)vs≥v

gs,ah,v(1)

= min
a∈A

min
v∈VS

rh(s,a)+
∑

s′ Ph(s
′|s,a)vs≥v

ch(s, a) + gs,ah,v(1)

= min
(a,v)∈Āh(s,v)

ch(s, a) + gs,ah,v(1)

= C̄∗
h(s, v).
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D.3.2 Proof of Lemma 11

Proof. We proceed by induction on t.

Base Case. For the base case, we consider t = S+1. By definition, σ̂s,a
h,v̂(S+1, u) =

u so the constraint is satisfied iff u ≥ v. Since for any v̂, ĝs,ah,v̂(S+1) = 0 by definition,

the minimum defining ĝs,ah,v̂(S + 1, u) is 0 when u ≥ v and is ∞ due to infeasibility

otherwise. In symbols, ĝs,ah,v(S + 1, u) = χ{u≥v} as was to be shown.

Inductive Step. For the inductive step, we consider t ≤ S. We see that,

ĝs,ah,v(t, u) = min
v∈VS−t+1

σ̂s,a
h,v(t,u)≥v

gs,ah,v(t)

= min
v∈VS−t+1

σ̂s,a
h,v(t,u)≥v

α
(
β
(
Ph(t | s, a), C̄∗

h+1 (t, vt)
)
, gs,ah,v(t+ 1)

)
= min

vt∈V
min

v∈VS−t

σ̂s,a
h,v(t+1,⌊u+Ph(t|s,a)vt⌋G)≥v

α
(
β
(
Ph(t | s, a), C̄∗

h+1 (t, vt)
)
, gs,ah,v(t+ 1)

)

= min
vt∈V

α

β (Ph(t | s, a), C̄∗
h+1 (t, vt)

)
, min

v∈VS−t

σ̂s,a
h,v(t+1,⌊u+Ph(t|s,a)vt⌋G)≥v

gs,ah,v(t+ 1)


= min

vt∈V
α
(
β
(
Ph(t | s, a), C̄∗

h+1 (t, vt)
)
, ĝs,ah,v(t+ 1, ⌊u+ Ph(t | s, a)vt⌋G)

)
The second lined used (SR). The third line split the optimization into the first

decision and the remaining decisions and used the recursive definition of σ̂ in the

constraint. The fourth line used the fact that α is a non-decreasing function of both

its arguments and the fact that the second optimization only concerns the second

argument. The last line used the induction hypothesis.
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D.3.3 Proof of Proposition 16

Proof. The runtime guarantee is easily seen since Algorithm 12 consists of nested

loops. The fact that it computes an optimal solution for M̄ absent rounding or lower

bounding follows immediately from Lemma 24.

D.4 Proofs for Section 5.5

D.4.1 Helpful Technical Lemmas (Additive)

The following claims all assume Definition 17.

Observation 8. For any v ∈ R,

v − δ ≤ ⌊v⌋G ≤ v. (D.11)

Lemma 25. For any h ∈ [H], s ∈ S, a ∈ A, v ∈ RS, u ∈ R, and t ∈ [S + 1], we

have,

σs,a
h,v(t, u)− (S − t+ 1)δ ≤ σ̂s,a

h,v(t, u) ≤ σs,a
h,v(t, u). (D.12)

Lemma 26 (Cost). For any h ∈ [H + 1] and (s, v) ∈ S̄, Ĉ∗
h(s, ⌊v⌋G) ≤ C̄∗

h(s, v).

Lemma 27 (Approximation). Suppose that π ∈ ΠD. For all h ∈ [H + 1] and

(s, v̂) ∈ Ŝ, if Ĉπ
h (s, v̂) <∞, then V̂ π

h (s, v̂) ≥ v̂ − δ(S + 1)(H − h+ 1).

D.4.2 Helpful Technical Lemmas (Relative)

The following claims all assume Definition 18.

Observation 9. For any v ∈ R,

v(1− δ) ≤ ⌊v⌋G ≤ v. (D.13)
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Lemma 28. For any h ∈ [H], s ∈ S, a ∈ A, v ∈ RS
≥0, u ∈ R≥0, and t ∈ [S + 1], we

have,

σs,a
h,v(t, u)(1− δ)

S−t+1 ≤ σ̂s,a
h,v(t, u) ≤ σs,a

h,v(t, u). (D.14)

Lemma 29 (Cost). Suppose all rewards are non-negative. For any h ∈ [H + 1] and

(s, v) ∈ S̄, Ĉ∗
h(s, ⌊v⌋G) ≤ C̄∗

h(s, v).

Lemma 30 (Approximation). Suppose all rewards are non-negative and π ∈ ΠD. For

all h ∈ [H +1] and (s, v̂) ∈ Ŝ, if Ĉπ
h (s, v̂) <∞, then V̂ π

h (s, v̂) ≥ v̂(1− δ)(S+1)(H−h+1).

D.4.3 Proof of Observation 8

Proof. Using properties of the floor function, we can infer that,

⌊v⌋G =
⌊v
δ

⌋
δ ≤ v

δ
δ = v,

and,

⌊v⌋G =
⌊v
δ

⌋
δ ≥ (

⌈v
δ

⌉
− 1)δ =

⌈v
δ

⌉
δ − δ ≥ v − δ.

D.4.4 Proof of Lemma 25

Proof. We proceed by induction on t.

Base Case. For the base case, we consider t = S + 1. By definition, we have

σ̂s,a
h,v(S + 1, u) = u = σs,a

h,v(S + 1, u).



176

Inductive Step. For the inductive step, we consider t ≤ S. We first see that,

σ̂s,a
h,v̂(t, u) = σ̂s,a

h,v̂(t+ 1, ⌊u+ Ph(t | s, a)v̂t⌋G)

≤ σs,a
h,v̂(t+ 1, ⌊u+ Ph(t | s, a)v̂t⌋G)

= ⌊u+ Ph(t | s, a)v̂t⌋G +
S∑

s′=t+1

Ph(s
′ | s, a)v̂t

≤ u+
S∑

s′=t

Ph(s
′ | s, a)v̂t

= σs,a
h,v̂(t, u).

The first inequality used the induction hypothesis and the second inequality used

the fact that ⌊x⌋G ≤ x.

We also see that,

σ̂s,a
h,v̂(t, u) = σ̂s,a

h,v̂(t+ 1, ⌊u+ Ph(t | s, a)v̂t⌋G)

≥ σs,a
h,v̂(t+ 1, ⌊u+ Ph(t | s, a)v̂t⌋G)− δ(S − t)

= ⌊u+ Ph(t | s, a)v̂t⌋G +
S∑

s′=t+1

Ph(s
′ | s, a)v̂t − δ(S − t)

≥ u+
S∑

s′=t

Ph(s
′ | s, a)v̂t − δ(S − t+ 1)

= σs,a
h,v̂(t, u)− δ(S − t+ 1).

The first inequality used the induction hypothesis and the second inequality used

the fact that ⌊x⌋G ≥ x− δ.

D.4.5 Proof of Lemma 26

Proof. We proceed by induction on h. Let (s, v) ∈ S̄ be arbitrary.
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Base Case. For the base case, we consider h = H + 1. Since ⌊v⌋G ≤ v, we

immediately see,

Ĉ∗
H+1(s, ⌊v⌋G) = χ{⌊v⌋G≤0} ≤ χ{v≤0} = C̄∗

H+1(s, v).

Inductive Step. For the inductive step, we consider h ≤ H. If C̄∗
h(s, v) = ∞,

then trivially Ĉ∗
h(s, ⌊v⌋G) ≤ C̄∗

h(s, v). Instead, suppose that C̄∗
h(s, v) < ∞. Let π

be a solution to the optimality equations for M̄ so that C̄π
h (s, v) = C̄∗

h(s, v) < ∞.

Since C̄∗
h(s, v) <∞, we know that (a∗,v∗) = πh(s, v) ∈ Āh(s, v). By the definition

of Āh(s, v), we know that,

σs,a∗

h,v∗(1, rh(s, a
∗)) = rh(s, a

∗) +
∑
s′

Ph(s
′ | s, a∗)v∗s′ ≥ v ≥ ⌊v⌋G .

For each s′ ∈ S, define v̂∗s′
def
= ⌊v∗s′⌋G and recall that v∗s′ ∈ V . We first observe that,

σs,a∗

h,v̂∗(1, rh(s, a
∗)) = rh(s, a

∗) +
∑
s′

Ph(s
′ | s, a) ⌊vs′⌋G

≥ rh(s, a
∗) +

∑
s′

Ph(s
′ | s, a)(vs′ − δ)

= rh(s, a
∗) +

∑
s′

Ph(s
′ | s, a)vs′ − δ

= σs,a∗

h,v∗(1, rh(s, a
∗))− δ.
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Then by Lemma 25,

σ̂s,a∗

h,v̂∗(1, rh(s, a
∗)) ≥ σs,a∗

h,v̂∗(1, rh(s, a
∗))− δS

≥ σs,a∗

h,v∗(1, rh(s, a
∗))− δ(S + 1)

≥ ⌊v⌋G − δ(S + 1)

= κ(⌊v⌋G).

Thus, (a∗, v̂∗) ∈ Âh(s, ⌊v⌋G).

Since v∗s′ ∈ V , the induction hypothesis implies that Ĉ∗
h+1(s

′, v̂∗s′) ≤ C̄∗
h+1(s

′, v∗s′) =

C̄π
h+1(s

′, v∗s′). The optimality equations for M̂ then imply that,

Ĉ∗
h(s, ⌊v⌋G) = min

(a,v̂)∈Âh(s,v)
ch(s, a) + f

((
Ph(s

′ | s, a), Ĉ∗
h+1 (s

′, v̂s′)
)
s′∈Ph(s,a)

)
≤ ch(s, a

∗) + f

((
Ph(s

′ | s, a∗), Ĉ∗
h+1 (s

′, v̂∗s′)
)
s′∈Ph(s,a∗)

)
≤ ch(s, a

∗) + f
((
Ph(s

′ | s, a), C̄π
h+1 (s

′, v∗s′)
)
s′∈Ph(s,a∗)

)
= C̄π

h (s, v)

= C̄∗
h(s, v).

The first inequality used the fact that (a∗,v∗) ∈ Âh(s, v). The second inequality

relied on f being non-decreasing and the induction hypothesis. The penultimate

equality used (TR). This completes the proof.

D.4.6 Proof of Lemma 27

Proof. We proceed by induction on h. Let (s, v̂) ∈ Ŝ be arbitrary.



179

Base Case. For the base case, we consider h = H+1. By definition and assumption,

Ĉπ
H+1(s, v̂) = χ{v̂≤0} <∞. Thus, it must be the case that v̂ ≤ 0 and so by definition

V̂ π
H+1(s, v̂) = 0 ≥ v̂.

Inductive Step. For the inductive step, we consider h ≤ H. As in the proof

of Lemma 23, we know that πh(s, v) = (a, v̂) ∈ Âh(s, v̂) and for any s′ ∈ S with

Ph(s
′ | s, a) > 0 that Ĉπ

h+1(s
′, vs′) <∞. Thus, the induction hypothesis implies that

V̂ π
h+1(s

′, v̂s′) ≥ v̂s′ − δ(S + 1)(H − h) for any such s′ ∈ S. By the policy evaluation

equations, we see that,

V̂ π
h (s, v̂) = rh(s, a) +

∑
s′

Ph(s
′ | s, a)V̂ π

h+1(s
′, v̂s′)

≥ rh(s, a) +
∑
s′

Ph(s
′ | s, a)v̂s′ − δ(S + 1)(H − h)

= σs,a
h,v̂(1, rh(s, a))− δ(S + 1)(H − h)

≥ σ̂s,a
h,v̂(1, rh(s, a))− δ(S + 1)(H − h)

≥ v̂ − δ(S + 1)− δ(S + 1)(H − h)

= v̂ − δ(S + 1)(H − h+ 1).

The first inequality used the induction hypothesis. The second inequality used

Lemma 25. The third inequality used the fact that by definition of Âh(s, v̂) and κ,

σ̂s,a
h,v̂(1, rh(s, a)) ≥ κ(v̂) = v̂ − δ(S + 1). This completes the proof.

D.4.7 Proof of Theorem 12

Proof.
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Correctness. If Ĉ∗
1(s0, v) > B for all v̂ ∈ V̂, then C∗

M > B since otherwise we

would have Ĉ∗
1 (s0, ⌊v⌋G) ≤ C̄∗

1 (s0, v) ≤ C∗
M ≤ B by Lemma 26. Thus, if Algorithm 13

outputs “infeasible” it is correct.

On the other hand, suppose that there exists some v̂ ∈ V̂ for which Ĉ∗
1 (s0, v̂) ≤ B.

By standard MDP theory, we know that since π ∈ ΠD is a solution to M̂ , it must

satisfy the optimality equations. In particular, Ĉπ
1 (s0, v̂) = Ĉ∗

1 (s0, v) ≤ B. As in the

proof of Theorem 11, since Cπ
M = Ĉπ

1 (s0, v̂), we see that there exists a π ∈ ΠD for

which Cπ
M ≤ B and so V ∗

M > −∞.

Since V ∗
M is the value of some deterministic policy, Lemma 21 implies that

V ∗
M ∈ V. Thus, Lemma 27 implies that V̂ π

1 (s0, ⌊V ∗
M⌋G) ≥ ⌊V ∗

M⌋G − δ(S + 1)H ≥

V ∗
M − δ(1 + (S + 1)H) = V ∗

M − ϵ and Ĉπ
1 (s0, V

∗
M) ≤ C∗

1(s0, V
∗
M) ≤ B. Consequently,

running π with initial state s̄0 = (s0, ⌊V ∗
M⌋G) is an optimal solution to (CON). In

either case, Algorithm 13 is correct.

Complexity. For the complexity claim, we observe that the running time of

Algorithm 13 is O(HS2A|V̂|2|Û |). To bound |V̂|, we observe that the number of

integer multiples of δ required to capture the range [−Hrmax, Hrmax] is at most

O(Hrmax

δ
) = O(H2Srmax/ϵ) by definition of δ. Moreover, |Û | = O(|V̂|+ S) = O(|V̂|)

for sufficiently large rmax

ϵ
.

In particular, we see that the range of the rounded sums defining Û is at widest

[−2Hrmax − δS, 2Hrmax] since for any t+ 1 the rounded input is,

⌊
⌊rh(s, a) + Ph(1 | s, a)v̂1⌋G + . . .+ Ph(t | s, a)v̂t

⌋
G ≤ rh(s, a) +

t∑
s′=1

Ph(s
′ | s, a)v̂s′ ,
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which is at most 2Hrmax, and,

⌊
⌊rh(s, a) + Ph(1 | s, a)v̂1⌋G + . . .+ Ph(t | s, a)v̂t

⌋
G

≥ rh(s, a) +
t∑

s′=1

Ph(s
′ | s, a)v̂s′ − δt,

which is at least −2Hrmax − δS. Overall, we see that O(|V̂|2|Û |) = O(|V̂|3) =

O(H6S3r3max/ϵ
3) implying that the total run time is O(H7S5Ar3max/ϵ

3) as claimed.

D.4.8 Proof of Observation 9

Proof. Using properties of the floor function, we can infer that,

⌊v⌋G = vmin

(
1

1− δ

)⌊
log 1

1−δ

v

vmin

⌋
≤ vmin

(
1

1− δ

)log 1
1−δ

v

vmin

=
v

vmin
vmin = v,

and,

⌊v⌋G = vmin

(
1

1− δ

)⌊
log 1

1−δ

v

vmin

⌋
≥ vmin

(
1

1− δ

)log 1
1−δ

v

vmin−1

= v(1− δ).

D.4.9 Proof of Lemma 28

Proof. We proceed by induction on t.

Base Case. For the base case, we consider t = S + 1. By definition, we have

σ̂s,a
h,v(S + 1, u) = u = σs,a

h,v(S + 1, u).
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Inductive Step. For the inductive step, we consider t ≤ S. We first see that,

σ̂s,a
h,v̂(t, u) = σ̂s,a

h,v̂(t+ 1, ⌊u+ Ph(t | s, a)v̂t⌋G)

≤ σs,a
h,v̂(t+ 1, ⌊u+ Ph(t | s, a)v̂t⌋G)

= ⌊u+ Ph(t | s, a)v̂t⌋G +
S∑

s′=t+1

Ph(s
′ | s, a)v̂t

≤ u+
S∑

s′=t

Ph(s
′ | s, a)v̂t

= σs,a
h,v̂(t, u).

The first inequality used the induction hypothesis and the second inequality used

the fact that ⌊x⌋G ≤ x.

We also see that,

σ̂s,a
h,v̂(t, u) = σ̂s,a

h,v̂

(
t+ 1, ⌊u+ Ph(t | s, a)v̂t⌋G

)
≥ σs,a

h,v̂

(
t+ 1, ⌊u+ Ph(t | s, a)v̂t⌋G

)
(1− δ)S−t

=

(
⌊u+ Ph(t | s, a)v̂t⌋G +

S∑
s′=t+1

Ph(s
′ | s, a)v̂t

)
(1− δ)S−t

≥

(
(1− δ)u+ (1− δ)

S∑
s′=t

Ph(s
′ | s, a)v̂t

)
(1− δ)S−t

= σs,a
h,v̂(t, u)(1− δ)

S−t+1.

The first inequality used the induction hypothesis and the second inequality used

the fact that ⌊x⌋G ≥ x− δ and the fact that all rewards and values are non-negative

allowing us to add a (1− δ)-factor to the other value demands.
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D.4.10 Proof of Lemma 29

Proof. We proceed by induction on h. Let (s, v) ∈ S̄ be arbitrary.

Base Case. For the base case, we consider h = H + 1. Since ⌊v⌋G ≤ v, we

immediately see,

Ĉ∗
H+1(s, ⌊v⌋G) = χ{⌊v⌋G≤0} ≤ χ{v≤0} = C̄∗

H+1(s, v).

Inductive Step. For the inductive step, we consider h ≤ H. If C̄∗
h(s, v) = ∞,

then trivially Ĉ∗
h(s, ⌊v⌋G) ≤ C̄∗

h(s, v). Instead, suppose that C̄∗
h(s, v) < ∞. Let π

be a solution to the optimality equations for M̄ so that C̄π
h (s, v) = C̄∗

h(s, v) < ∞.

Since C̄∗
h(s, v) <∞, we know that (a∗,v∗) = πh(s, v) ∈ Āh(s, v). By the definition

of Āh(s, v), we know that,

σs,a∗

h,v∗(1, rh(s, a
∗)) = rh(s, a

∗) +
∑
s′

Ph(s
′ | s, a∗)v∗s′ ≥ v ≥ ⌊v⌋G .

For each s′ ∈ S, define v̂∗s′
def
= ⌊v∗s′⌋G and recall that v∗s′ ∈ V . We first observe that,

σs,a∗

h,v̂∗(1, rh(s, a
∗)) = rh(s, a

∗) +
∑
s′

Ph(s
′ | s, a) ⌊vs′⌋G

≥ rh(s, a
∗) +

∑
s′

Ph(s
′ | s, a)vs′(1− δ)

≥

(
rh(s, a

∗) +
∑
s′

Ph(s
′ | s, a)vs′

)
(1− δ)

= σs,a∗

h,v∗(1, rh(s, a
∗))(1− δ).
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The second inequality used the fact that all rewards are non-negative. Then by

Lemma 28,

σ̂s,a∗

h,v̂∗(1, rh(s, a
∗)) ≥ σs,a∗

h,v̂∗(1, rh(s, a
∗))(1− δ)S

≥ σs,a∗

h,v∗(1, rh(s, a
∗))(1− δ)S+1

≥ ⌊v⌋G (1− δ)
S+1

= κ(⌊v⌋G).

Thus, (a∗, v̂∗) ∈ Âh(s, ⌊v⌋G).

Since v∗s′ ∈ V , the induction hypothesis implies that Ĉ∗
h+1(s

′, v̂∗s′) ≤ C̄∗
h+1(s

′, v∗s′) =

C̄π
h+1(s

′, v∗s′). The optimality equations for M̂ then imply that,

Ĉ∗
h(s, ⌊v⌋G) = min

(a,v̂)∈Âh(s,v)
ch(s, a) + f

((
Ph(s

′ | s, a), Ĉ∗
h+1 (s

′, v̂s′)
)
s′∈Ph(s,a)

)
≤ ch(s, a

∗) + f

((
Ph(s

′ | s, a∗), Ĉ∗
h+1 (s

′, v̂∗s′)
)
s′∈Ph(s,a∗)

)
≤ ch(s, a

∗) + f
((
Ph(s

′ | s, a), C̄π
h+1 (s

′, v∗s′)
)
s′∈Ph(s,a∗)

)
= C̄π

h (s, v)

= C̄∗
h(s, v).

The first inequality used the fact that (a∗,v∗) ∈ Âh(s, v). The second inequality

relied on f being non-decreasing and the induction hypothesis. The penultimate

equality used (TR).

This completes the proof.

D.4.11 Proof of Lemma 30

Proof. We proceed by induction on h. Let (s, v̂) ∈ Ŝ be arbitrary.
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Base Case. For the base case, we consider h = H+1. By definition and assumption,

Ĉπ
H+1(s, v̂) = χ{v̂≤0} <∞. Thus, it must be the case that v̂ ≤ 0 and so by definition

V̂ π
H+1(s, v̂) = 0 ≥ v̂.

Inductive Step. For the inductive step, we consider h ≤ H. As in the proof

of Lemma 23, we know that πh(s, v) = (a, v̂) ∈ Âh(s, v̂) and for any s′ ∈ S with

Ph(s
′ | s, a) > 0 that Ĉπ

h+1(s
′, vs′) <∞. Thus, the induction hypothesis implies that

V̂ π
h+1(s

′, v̂s′) ≥ v̂s′(1 − δ)(S+1)(H−h) for any such s′ ∈ S. By the policy evaluation

equations, we see that,

V̂ π
h (s, v̂) = rh(s, a) +

∑
s′

Ph(s
′ | s, a)V̂ π

h+1(s
′, v̂s′)

≥ rh(s, a) +
∑
s′

Ph(s
′ | s, a)v̂s′(1− δ)(S+1)(H−h)

≥ σs,a
h,v̂(1, rh(s, a))(1− δ)

(S+1)(H−h)

≥ σ̂s,a
h,v̂(1, rh(s, a))(1− δ)

(S+1)(H−h)

≥ v̂(1− δ)S+1(1− δ)(S+1)(H−h)

= v̂(1− δ)(S+1)(H−h+1).

The first inequality used the induction hypothesis. The second inequality used the

fact that the rewards are non-negative. The third inequality used Lemma 28. The

fourth inequality used the fact that by definition of Âh(s, v̂) and κ, σ̂s,a
h,v̂(1, rh(s, a)) ≥

κ(v̂) = v̂(1− δ)S+1.

This completes the proof.

D.4.12 Proof of Theorem 13

Proof.



186

Correctness. If Ĉ∗
1(s0, v) > B for all v̂ ∈ V̂, then C∗

M > B since otherwise we

would have Ĉ∗
1 (s0, ⌊v⌋G) ≤ C̄∗

1 (s0, v) ≤ C∗
M ≤ B by Lemma 29. Thus, if Algorithm 13

outputs “infeasible” it is correct.

On the other hand, suppose that there exists some v̂ ∈ V̂ for which Ĉ∗
1 (s0, v̂) ≤ B.

By standard MDP theory, we know that since π ∈ ΠD is a solution to M̂ , it must

satisfy the optimality equations. In particular, Ĉπ
1 (s0, v̂) = Ĉ∗

1 (s0, v) ≤ B. As in the

proof of Theorem 11, since Cπ
M = Ĉπ

1 (s0, v̂), we see that there exists a π ∈ ΠD for

which Cπ
M ≤ B and so V ∗

M > −∞.

Since V ∗
M is the value of some deterministic policy, Lemma 21 implies that

V ∗
M ∈ V. Thus, Lemma 30 implies that V̂ π

1 (s0, ⌊V ∗
M⌋G) ≥ ⌊V ∗

M⌋G (1 − δ)(S+1)H ≥

V ∗
M(1 − δ)(S+1)H+1 = V ∗

M(1 − ϵ
(S+1)H+1

)(S+1)H+1 ≥ V ∗
M(1 − ϵ) and Ĉπ

1 (s0, V
∗
M) ≤

C∗
1(s0, V

∗
M) ≤ B. Consequently, running π with initial state s̄0 = (s0, ⌊V ∗

M⌋G) is an

optimal solution to (CON). In either case, Algorithm 13 is correct.

Complexity. For the complexity claim, we observe that the running time of

Algorithm 13 is O(HS2A|V̂|2|Û |). To bound |V̂|, we observe that the number of

vmin-scaled powers of 1/(1− δ) required to capture the range [0, Hrmax] is at most

one plus the largest power needed, which is

O(log1/(1−δ)(
Hrmax

vmin

)) = O(log(
Hrmax

vmin

)/ log(1/(1− δ)))

= O(log(
Hrmax

vmin

)/δ)

= O(log(HS
Hrmax

pHminrmin

)/ϵ)

= O(H2S log(
rmax

pminrmin

)/ϵ),

by definition of δ and the fact that log( 1
1−δ

) = − log(1 − δ) ≥ − log(e−δ) = δ.

Moreover, |Û | = O(|V̂|).
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We see that the range of the rounded sums is at widest [0, 2Hrmax] since for any

t+ 1 rounding non-negative sums is at least 0 and,

⌊
⌊rh(s, a) + Ph(1 | s, a)v̂1⌋G + . . .+ Ph(t | s, a)v̂t

⌋
G ≤ rh(s, a) +

t∑
s′=1

Ph(s
′ | s, a)v̂s′ ,

which is at most 2Hrmax. Then, the same analysis from before shows that the number

of scaled powers of 1/(1− δ) needed to cover this interval is O(|V̂|). Thus, we see

that O(|V̂|2|Û |) = O(|V̂|3) = O(H6S3 log( rmax

pminrmin
)3/ϵ3) implying that the total run

time is O(H7S5A log( rmax

pminrmin
)3/ϵ3) as claimed.

D.5 Extensions

D.5.1 Stochastic Costs

Suppose each cost ch(s, a) is replaced with a cost distribution Ch(s, a). Here, we

consider finitely supported cost distributions whose supports are at most m ∈ N.

Then, instead of the agent occurring cost ch(s, a) upon taking action a in state s at

time h, the agent occurs a random cost ch ∼ Ch(s, a). Generally, this necessitates

histories be cost dependent, and so the policy evaluation equations become,

V π
h (τh) = rh(s, a) +

∑
c′,s′

Ch(c
′ | s, a)Ph(s

′ | s, a)V π
h+1(τh, a, c

′, s′). (CPE)

Cover MDP. This implicitly changes the definition of V since the histories con-

sidered in the definition must now include cost history. Since the cost distributions

are finitely supported, V remains a finite set. The main difference for M̄ is that the

future value demands must depend on both the immediate cost and the next state.
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This slightly changes the action space:

Āh(s, v)
def
=

{
(a,v) ∈ A× Vm×S | rh(s, a) +

∑
c′,s′

Ch(c
′ | s, a)Ph(s

′ | s, a)vc′,s′ ≥ v

}
.

Bellman Updates. In order to solve M̄ using Algorithm 12, we must extend the

definition of TSR to also be recursive in the immediate costs. The key difference of

the TSRC condition is that g’s recursion is now two dimensional.

Definition 29 (TSRC). We call a criterion C time-space-cost-recursive (TSRC) if

Cπ
M = Cπ

1 (s0) where Cπ
H+1(·) = 0 and for any h ∈ [H] and τh ∈ Hh letting s = sh(τh)

and a = πh(τh),

Cπ
h (τh) = ch(s, a) + f

((
Ch(c

′ | s, a), Ph(s
′ | s, a), Cπ

h+1 (τh, a, c
′, s′)

)
c′,s′

)
. (D.15)

In the above, c′ ∈ Ch(s, a) and s′ ∈ Ph(s, a). We now require that f be computable

in O(mS) time. We also require that the f term above is equal to gτh,ah (1, 1), where,

gτh,ah (m+ 1, 1) = 0, gτh,ah (k, S + 1) = gτh,ah (k + 1, 1), and,

gτh,ah (k, t) = α
(
β
(
Ch(ck | s, a), Ph(t | s, a), Cπ

h+1 (τh, a, t)
)
, gτh,ah (k, t+ 1)

)
. (D.16)

In the above, we assume ck is the kth supported cost of Ch(s, a). Again, both α, β

can be computed in O(1) time, but now α(β(y, ·), x) = x whenever 0 ∈ y.

Our examples from before also carry over to the stochastic cost setting.

Proposition 19 (TSCR examples). The following classical constraints can be modeled

by a TSCR cost constraint.

1. (Expectation Constraints) We capture these constraints by defining α(x, y) def
=

x+ y and β(x, y, z) def
= xyz.
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2. (Almost Sure Constraints) We capture these constraints by defining α(x, y) def
=

max(x, y) and β(x, y, z) def
= [x > 0 ∧ y > 0]z.

3. (Anytime Constraints) We capture these constraints by defining α(x, y)
def
=

max(0,max(x, y)) and β(x, y, z) def
= [x > 0 ∧ y > 0]z.

We can then modify our approximate recursion from before.

Definition 30. We define, ĝs,ah,v(m+1, 1, u)
def
= χ{u≥v}, ĝs,ah,v(k, S+1, u)

def
= ĝs,ah,v(k+1, 1, u)

and for t ≤ S,

ĝs,ah,v̂(k, t, u)
def
= min

vk,t∈V
α
(
β
(
Ch(ck | s, a), Ph(t | s, a), C̄∗

h+1 (t, vk,t)
)
,

ĝs,ah,v

(
k, t+ 1, ⌊u+ Ch(ck | s, a)Ph(t | s, a)vk,t⌋G

) )
.

(D.17)

Approximation. Lastly, our rounding now occur error over time, space, and cost.

Thus, we simply need to slightly modify our rounding functions. The main change is

we use δ def
= ϵ

H(mS+1)+1
. We also further relax our lower bounds to κ(v) def

= v−δ(mS+1)

and κ def
= v(1− δ)mS+1 respectively. Our running times correspondingly will have m3

terms now.

D.5.2 Infinite Discounting

Approximations. Since we focus on approximation algorithms, the infinite dis-

counted case can be immediately handled by using the idea of effective horizon.

We can treat the problem as a finite horizon problem where the finite horizon H

defined so that
∑∞

h=H γ
h−1rmax ≤ ϵ′. By choosing ϵ′ and ϵ small enough, we can get

traditional value approximations. The discounting also ensures the effective horizon

H is polynomially sized implying efficient computation. We just need to assume that

0-cost actions are always available so that the policy can guarantee feasibility after

the effective horizon has passed.
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Hardness. We also note that all of the standard hardness results concerning

deterministic policy computation carries over to the infinite discounting case even if

all quantities are stationary.

D.5.3 Faster Approximations

We can significantly improve the running time of our FPTAS. The main guarantee is

given in Corollary 8. They key step is to modify Algorithm 11 to use the differences

instead of the sums. It is easy to see that this is equivalent since,

rh(s, a) +
∑
s′

Ph(s
′ | s, a)vs′ ≥ v ⇐⇒ v −

∑
s′

Ph(s
′ | s, a)vs′ ≤ rh(s, a).

Since rounding down the differences make them larger, it becomes harder to be below

rh(s, a). Consequently, we now interpret κ as an upper bound for rh(s, a) instead

of a lower bound on v The approximate dynamic programming method based on

differences can be seen in Definition 31.

Definition 31. Fix a rounding down function ⌊·⌋G and upper bound function κ. For

any h ∈ [H], s ∈ S, v ∈ V, and u ∈ R, we define, ĝs,ah,v(S + 1, u) = χ{u≤κ(rh(s,a))} and

for t ≤ S,

ĝs,ah (t, u)
def
= min

vt∈V
α
(
β
(
Ph(t | s, a), C̄∗

h+1 (t, vt)
)
, ĝs,ah (t+ 1, ⌊u− Ph(t | s, a)vt)⌋G

)
.

(DIF)

The recursion is nearly identical to the originally, and unsurprisingly, it retains

the same theoretical guarantees but in the reverse order. The guarantees can be seen

in Lemma 31, which is straightforward to prove following the approach in the proof

of Lemma 11.
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Algorithm 19 Approx Solve
Input: (M̄, C̄)
1: Ĉ∗

H+1(s, v)← χ{v≤0} for all (s, v) ∈ S̄
2: for h← H down to 1 do
3: for s ∈ S do
4: for a ∈ A do
5: ĝs,ah (S + 1, u)← χ{u≤κ(rh(s,a))} ∀u ∈ Û

s,a
h

6: for t← S down to 1 do
7: for u ∈ Û s,a

h do
8: v̂t,aĝ

s,a
h (t, u)← (DIF)

9: for v ∈ V do
10: a∗, Ĉ∗

h(s, v)← mina∈A ch(s, a) + ĝs,ah (1, v)
11: πh(s, v)← a∗

12: return π and Ĉ∗

Lemma 31. For any t ∈ [S + 1] and u ∈ R, we have that,

ĝs,ah (t, u) = min
v∈VS−t+1

ĝs,ah,v̂(t)

s.t. σ̃s,a
h,v(t, u) ≤ κ(rh(s, a)),

(D.18)

where σ̃s,a
h,v(t, u)

def
=
⌊
⌊u− Ph(t | s, a)vt⌋G − . . .− Ph(S | s, a)vS

⌋
G.

The difference version so far does not help us get faster algorithms. The key is

in how we use it. Since the base case of the recursion is rh(s, a) and not v, we can

compute the approximate bellman update for all v’s simultaneously. This ends up

saving us a factor of |V| that we had in the original Algorithm 12. The new algorithm

is defined in Algorithm 19. The inputs to the recursion are define in Definition 32.

Definition 32. For any h ∈ [H], s ∈ S, and a ∈ A, we define Û s,a
h (1)

def
= V and for

any t ∈ [S],

Û s,a
h (t+ 1)

def
=
⋃
vt∈V

⋃
σ̂∈Ûs,a

h (t)

{
⌊σ̂ − Ph(t | s, a)vt⌋G

}
. (D.19)

Proposition 20. The running time of Algorithm 19 is O(HS2A|V|σ̂).
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Corollary 8 (Running Time Improvements). Using Algorithm 19, the running time

of our additive-FPTAS becomes O(H5S4Ar2max/ϵ
2), and the running time of our

relative-FPTAS becomes O(H5S4A log( rmax

rminpmin
)2/ϵ2)

Approximation Details. Although the running times our clear from removing

the factor of |V̂ |, we need to slightly alter our approximation schemes for this to

work. First, we need to use κ(rh(s, a))
def
= rh(s, a) + δ for the additive approximation.

The proof from before goes through almost identically.

However, for the relative approximation, no choice of upper bound can ensure

enough feasibility. Thus, we simply use κ(rh(s, a))
def
= rh(s, a) and apply a different

analysis. We also note that technically, differences can become negative. To deal

with this the relative rounding function should simply send any negative number to

0: ⌊−x⌋G
def
= 0. The analysis is mostly the same, but the feasibility statement must

be slightly modified.

Lemma 32. Suppose all rewards are non-negative. For any h ∈ [H + 1] and

(s, v) ∈ S̄, Ĉ∗
h(s,

⌊
v(1− δ)H−h+1

⌋
G) ≤ C̄∗

h(s, v).

The idea is that since no fixed upper bound can capture arbitrary input values,

we simply input relative values. Then, the feasibility part of Lemma 29 goes through

as before. The proofs mostly remain the same, but the rounding must again change.

We must now start at the smaller vmin that is the original vmin scaled by a factor of

(1− δ)H to ensure that
⌊
V ∗
M(1− δ)H

⌋
is in V̂ . This makes V̂ larger, but not by too

much as we argued in previous analyses.
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Appendix E

Chapter 6 Appendix

E.1 Proofs for Section 6.2

E.1.1 Proof of Proposition 17

Proof.

Expectation Constraints. We define Cπ
M

def
= EM

[∑H
h=1 cH

]
. Under this defini-

tion, the standard policy evaluation equations imply that,

Cπ
h (τh) = ch(s, a) +

∑
s′

Ph(s
′ | s, a)Cπ

h+1(τh+1). (E.1)

It is then clear that this can be written in (f, g)-form for f being summation and g

being the identity. It is easy to see that these functions have the desired properties.

Chance Constraints. Let M0 denote the initial caMDP. We define Cπ
M0

def
=

Pπ
M

[∑H
h=1 ch > B

]
. We see that the probability can be recursively decomposed as
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follows for the anytime variant:

Cπ
h (τh, c̄) = [ch(s, a) + c̄ > B] +

∑
s′

Ph(s
′ | s, a)Cπ

h+1(τh+1, ch(s, a) + c̄). (E.2)

For the general invariant, we only include the indicator term at step H. To write

this into the desired form, we can define a cost-augmented MDP M that keeps track

of the cumulative cost at each step as in [77]. In particular, the anytime variant has

the immediate cost defined to be ch((s, c̄), a)
def
= [ch(s, a) + c̄ > B]. Then, it is clear

that the expected cost for the new M exactly corresponds to the probability cost.

Thus, the claim holds.

Almost-sure Constraints. We define Cπ
M

def
= max τH+1

Pπ
M [τH+1]>0

[∑H
h=1 cH

]
to be the

worst case cost. Under this definition, it is known that the worst-case cost decomposes

into,

Cπ
h (τh) = ch(s, a) + max

s′
[Ph(s

′ | s, a) > 0]Cπ
h+1(τh+1). (E.3)

It is then clear that this can be written in (f, g)-form for f being maximum and g being

the indicator. Properties of maximum imply that maxs′(C(s′) + ϵ) ≤ maxs′ C(s′) + ϵ.

Thus, the total combination is a short map, and the rest of the needed properties

can be seen to hold. The anytime variant follows similarly.

E.1.2 Proof of Theorem 14

Proof. The theorem follows immediately by translating the results on the SR-criterion

into their original forms in the proof above.
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E.2 Proof for Section 6.3

E.2.1 Helpful Technical Lemmas

Definition 33 (Budget Space). For any s ∈ S, we define BH+1(s)
def
= {0}, and for

any h ∈ [H],

Bh(s)
def
=
⋃
a

⋃
b∈×s′ Bh+1(s′)

{
ch(s, a) + f

s′
g(Ph(s

′ | s, a), bs′)
}
. (E.4)

We define B def
=
⋃

h,s Bh(s).

Lemma 33 (Budget Space Intution). For all s ∈ S and h ∈ [H + 1],

Bh(s) =
{
b ∈ Rd | ∃π ∈ ΠD, τh ∈ Hh, (s = sh(τh) ∧ Cπ

h (τh) = b)
}
, (E.5)

and |Bh(s)| ≤ A
∑H

t=h SH−t. Thus, B can be computed in finite time using backward

induction.

Proof. We proceed by induction on h. Let s ∈ S be arbitrary.

Base Case. For the base case, we consider h = H + 1. In this case, we know that

for any π ∈ ΠD and any τ ∈ HH+1, Cπ
H+1(τH+1) = 0 ∈ {0} = BH+1(s) by definition.

Furthermore, |BH+1(s)| = 1 = A0 = A
∑H

t=H+1 S
t .

Inductive Step. For the inductive step, we consider h ≤ H. In this case, we know

that for any π ∈ ΠD and any τh ∈ Hh, if s = sh(τh) and a = πh(τh), then the policy

evaluation equations imply,

Cπ
h (τh) = ch(s, a) + f

s′
g(Ph(s

′ | s, a), Cπ
h+1(τh, a, s

′)).
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We know by the induction hypothesis that V π
h+1(τh, a, s

′) ∈ Bh+1(s
′). Thus, by (E.4),

Cπ
h (τh) ∈ Bh(s). Lastly, we see by (E.4) and the induction hypothesis that,

|Bh(s)| ≤ A
∏
s′

|Bh+1(s
′)| ≤ A

∏
s′

A
∑H

t=h+1 S
H−t

= A1+S
∑H

t=h+1 S
H−t

= A
∑H

t=h SH−t

.

This completes the proof.

E.2.2 Proof of Lemma 13

Proof. First, let V ∗
h (τh, b) denote the supremum in (6.5). We proceed by induction

on h.

Base Case. For the base case, we consider h = H + 1. Definition 19 implies

that Cπ
H+1(τH+1) = 0 for any π ∈ ΠD. Thus, there exists a π ∈ ΠD satisfying

Cπ
H+1(τH+1) ≤ b if and only if b ≥ 0. We also know by definition that any policy

π satisfies V π
H+1(τH+1) = 0 and if no feasible policy exists V ∗

H+1(τH+1, b) = −∞ by

convention. Therefore, we see that V ∗
H+1(τH+1, b) = −χ{b≥0}. Then, by definition of

V̄ ∗
H+1, it follows that,

V̄ ∗
H+1(s, b) = −χ{b≥0} = V ∗

H+1(τH+1, b).

Inductive Step. For the inductive step, we consider any h ≤ H. If V ∗
h (τh, b) = −∞,

then trivially V̄ ∗
h (s, b) ≥ V ∗

h (τh, b). Instead, suppose that V ∗
h (τh, b) > −∞. Then,

there must exist a π ∈ ΠD satisfying Cπ
h (τh) ≤ b. Let a∗ = πh(τh). By (SR), we

know that,

Cπ
h (τh) = ch(s, a

∗) + f
s′
g (Ph(s

′ | s, a∗))Cπ
h+1(τh, a

∗, s′).
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For each s′ ∈ S, define b∗s′
def
= Cπ

h+1(τh, a
∗, s′) and observe that b∗s′ ∈ B. Thus, we see

that (a∗,b∗) ∈ A× BS and ch(s, a) + f s′ g(Ph(s
′ | s, a))bs′ ≤ b, so (a∗,b∗) ∈ Āh(s, b)

by definition.

Since π satisfies Cπ
h+1(τh, a

∗, s′) ≤ b∗s′ , we see that V ∗
h+1(s

′, b∗s′) ≥ V π
h+1(τh, a

∗, s′).

Thus, the induction hypothesis implies V̄ ∗
h+1(s

′, b∗s′) ≥ V ∗
h+1(s

′, b∗s′) ≥ V π
h+1(τh, a

∗, s′).

The optimality equations for M̄ then give us,

V̄ ∗
h (s, b) = max

ā∈Āh(s,b)
r̄h((s, b), ā) +

∑
s̄′

P̄h(s̄
′ | (s, b), ā)V̄ ∗

h+1(s̄
′)

= max
(a,b)∈Āh(s,b)

rh(s, a) +
∑
s′

Ph(s
′ | s, a)V̄ ∗

h+1(s
′, bs′)

≥ rh(s, a
∗) +

∑
s′

Ph(s
′ | s, a∗)V̄ ∗

h+1(s
′, b∗s′)

≥ rh(s, a
∗) +

∑
s′

Ph(s
′ | s, a∗)V π

h+1(τh, a, s
′)

= V π
h (τh).

The second line used the definition of each quantity in M̄ . The first inequality used

the fact that (a∗,b∗) ∈ Āh(s, b). The second inequality used the induction hypothesis.

The final equality used the deterministic policy evaluation equations.

Since π was an arbitrary feasible policy for the optimization defining V ∗
h (τh, b),

we see that V̄ ∗
h (s, b) ≥ V ∗

h (τh, b). This completes the proof.

E.2.3 Proof of Lemma 14

Proof. We proceed by induction on h.
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Base Case. For the base case, we consider h = H+1. By definition and assumption,

V̄ π
H+1(s, b) = −χ{b≥0} > −∞. Thus, it must be the case that b ≥ 0 and so by

Definition 19 C̄π
H+1(s, b) = 0 ≤ b.

Inductive Step. For the inductive step, we consider any h ≤ H. We decompose

πh(s, b) = (a,b) where we know (a,b) ∈ Āh(s, b) since V̄ π
h (s, b) > −∞ 1. Moreover,

it must be the case that for any s′ ∈ S with Ph(s
′ | s, a) > 0 that V̄ π

h+1(s
′, bs′) > −∞

otherwise the average reward would be −∞ which would imply a contradiction:

V̄ π
h (s, b) = rh(s, a) +

∑
s′

Ph(s
′ | s, a)V̄ π

h+1 (s
′, bs′)

= rh(s, a) + . . .+ Ph(s
′ | s, a)(−∞) + . . .

= −∞.

Thus, the induction hypothesis implies that C̄π
h+1(s

′, bs′) ≤ bs′ for any such s′ ∈ S.

By (SR), we see that,

C̄π
h (s, b) = ch(s, a) + f

s′
g(Ph(s

′ | s, a))C̄π
h+1(s

′, bs′)

≤ ch(s, a) + f
s′
g(Ph(s

′ | s, a))bs′

≤ b.

The second line used the fact that f is non-decreasing and g is a non-negative scalar.

The third line used the fact that (a,b) ∈ Āh(s, b). This completes the proof.
1By convention, we assume max∅ = −∞
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E.2.4 Proof of Theorem 15

Proof. If V̄ ∗
1 (s0, B) = −∞, then we know by Lemma 13 that,

−∞ = V̄ ∗
1 (s0, B) ≥ sup

π∈ΠD

V π
1 (s0)

s.t. Cπ
1 (s0) ≤ B.

(E.6)

In other words, no feasible π exists, so Algorithm 14 reporting “Infeasible” is correct.

On the other hand, suppose that V̄ ∗
1 (s0, B) > −∞ and let π∗ be any solution to the

optimality equations for M̄ . By Lemma 14, we know that Cπ
1 (s0, B) ≤ B implying

that π∗ is a feasible solution. Moreover, Lemma 13 again tells us that,

V̄ π∗

1 (s0, B) = V̄ ∗
1 (s0, B) ≥ sup

π∈ΠD

V π
1 (s0)

s.t. Cπ
1 (s0) ≤ B.

(E.7)

Thus, π∗ is an optimal solution to (CON) and Algorithm 14 correctly returns it.

Therefore, in all cases, Algorithm 14 is correct.

E.3 Proofs for Section 6.4

Formally, f̂
s,a

h,b(t, F̂ )
def
= f̂

s,a

h,b

(
t+ 1, ⌊ℓ⌋G f (F̂ , g(Ph(t | s, a))bt)

)
is recursively defined

with base case f̂
s,a

h,b(S + 1, F̂ )
def
= F̂ .
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E.3.1 Proof of Lemma 15

Proof. First, we show that,

V̄ s,a
h,b (t, F̂ ) = max

b∈BS−t+1

S∑
s′=t

Ph(s
′ | s, a)V̄ ∗

h+1(s
′, bs′)

s.t. ch(s, a) + f s,a
h,b(t, F ) ≤ b,

(E.8)

For notational simplicity, we define V̄ s,a
h,b(t)

def
=
∑S

s′=t Ph(s
′ | s, a)V̄ ∗

h+1(s
′, bs′). We

proceed by induction on t.

Base Case. For the base case, we consider t = S + 1. By definition, we know that

V̄ s,a
h,b (t, F ) = −χ{ch(s,a)+F≤b}. We just need to show that the maximum in (E.8) also

matches this expression. First, observe objective is the empty summation, which is

0. Also, f s,a
h,b(S + 1, F ) = F , so the constraint is satisfied iff ch(s, a) + F ≤ b. Thus,

the maximum is 0 when ch(s, a) + F ≤ b and is −∞ due to infeasibility otherwise.

In other words, it equals −χ{ch(s,a)+F≤b} as was to be shown.
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Inductive Step. For the inductive step, we consider any t ≤ S. From (6.6), we

see that,

V̄ s,a
h,b (t, F ) = max

bt∈B
Ph(t | s, a)V̄ ∗

h+1(t, bt) + V̄ s,a
h,b (t+ 1, f (F, g(Ph(t | s, a))bt))

= max
bt∈B

Ph(t | s, a)V̄ ∗
h+1(t, bt) + max

b∈BS−t,
ch(s,a)+fs,a

h,b(t+1,f (F,g(Ph(t|s,a))bt))≤b

V̄ s,a
h,b(t+ 1)

= max
bt∈B

max
b∈BS−t,

ch(s,a)+fs,a
h,b(t+1,f (F,g(Ph(t|s,a))bt))≤b

Ph(t | s, a)V̄ ∗
h+1(t, bt) + V̄ s,a

h,b(t+ 1)

= max
b∈BS−t+1,

ch(s,a)+fs,a
h,b(t+1,f (F,g(Ph(t|s,a))bt))≤b

Ph(t | s, a)V̄ ∗
h+1(t, bt) + V̄ s,a

h,b(t+ 1)

= max
b∈BS−t+1,

ch(s,a)+fs,a
h,b(t,F )≤b

Ph(t | s, a)V̄ ∗
h+1(t, bt) + V̄ s,a

h,b(t+ 1)

= max
b∈BS−t+1,

ch(s,a)+fs,a
h,b(t,F )≤b

V̄ s,a
h,b(t)

The second line used the induction hypothesis. The third line used the fact that the

first term is independent of future b values. The fourth line used the properties of

maximum. The fourth line used the recursive definition of f s,a
h,b(t, F ). The last line

used the recursive definition of V̄ s,a
h,b(t).
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For the second claim, we observe that,

V̄ ∗
h (s, b) = max

a,b,
ch(s,a)+f s′ g(Ph(s

′|s,a))bs′≤b

rh(s, a) +
∑
s′

Ph(s
′ | s, a)V̄ ∗

h+1(s
′, bs′)

= max
a,b,

ch(s,a)+fs,a
h,b(1,0)≤b

rh(s, a) +
∑
s′

Ph(s
′ | s, a)V̄ ∗

h+1(s
′, bs′)

= max
a

max
b,

ch(s,a)+fs,a
h,b(1,0)≤b

rh(s, a) +
∑
s′

Ph(s
′ | s, a)V̄ ∗

h+1(s
′, bs′)

= max
a
rh(s, a) + max

b,
ch(s,a)+fs,a

h,b(1,0)≤b

∑
s′

Ph(s
′ | s, a)V̄ ∗

h+1(s
′, bs′)

= max
a
rh(s, a) + V̄ s,a

h,b (1, 0).

E.3.2 Proof of Lemma 16

Proof. Recall, as in the proof of Lemma 15, we define V̄ s,a
h,b(t)

def
=
∑S

s′=t Ph(s
′ |

s, a)V̄ ∗
h+1(s

′, bs′) to simplify expressions. We proceed by induction on t.

Base Case. For the base case, we consider t = S + 1. By definition, we know that

V̂ s,a
h,b (t, F̂ ) = −χ{ch(s,a)+F̂≤κ(b)}. We just need to show that the maximum in (6.7) also

matches this expression. First, observe objective is the empty summation, which

is 0. Also, f̂ s,a
h,b(S + 1, F ) = F , so the constraint is satisfied iff ch(s, a) + F̂ ≤ κ(b).

Thus, the maximum is 0 when ch(s, a) + F̂ ≤ κ(b) and is −∞ due to infeasibility

otherwise. In other words, it equals −χ{ch(s,a)+F̂≤κ(b)} as was to be shown.
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Inductive Step. For the inductive step, we consider any t ≤ S. From (ADP), we

see that, V̂ s,a
h,b (t, F̂ ) =

max
bt∈B

Ph(t | s, a)V̄ ∗
h+1(t, bt) + V̂ s,a

h,b

(
t+ 1,

⌈
f
(
F̂ , g(Ph(t | s, a))bt

)⌉
ℓ

)
= max

bt∈B
Ph(t | s, a)V̄ ∗

h+1(t, bt) + max
b∈BS−t,

ch(s,a)+f̂s,a
h,b(t+1,⌈f (F̂ ,g(Ph(t|s,a))bt)⌉

ℓ
)≤κ(b)

V̄ s,a
h,b(t+ 1)

= max
bt∈B

max
b∈BS−t,

ch(s,a)+f̂s,a
h,b(t+1,⌈f (F̂ ,g(Ph(t|s,a))bt)⌉

ℓ
)≤κ(b)

Ph(t | s, a)V̄ ∗
h+1(t, bt) + V̄ s,a

h,b(t+ 1)

= max
b∈BS−t+1,

ch(s,a)+f̂s,a
h,b(t+1,⌈f (F̂ ,g(Ph(t|s,a))bt)⌉

ℓ
)≤κ(b)

Ph(t | s, a)V̄ ∗
h+1(t, bt) + V̄ s,a

h,b(t+ 1)

= max
b∈BS−t+1,

ch(s,a)+f̂s,a
h,b(t,F̂)≤κ(b)

Ph(t | s, a)V̄ ∗
h+1(t, bt) + V̄ s,a

h,b(t+ 1)

= max
b∈BS−t+1,

ch(s,a)+f̂s,a
h,b(t,F̂)≤κ(b)

V̄ s,a
h,b(t)

The second line used the induction hypothesis. The third line used the fact that the

first term is independent of future b values. The fourth line used the properties of

maximum. The fourth line used the recursive definition of f̂ s,a
h,b(t, F̂ ). The last line

used the recursive definition of V̄ s,a
h,b(t).

For the second claim, we simply observe without rounding that (ADP) is the

same as (6.6). Thus, Lemma 15 yields the result.

E.3.3 Proof of Theorem 16

Proof. The fact that Algorithm 16 correctly solves any M̄ follows from the fact that

(AU) is equivalent to (BU) via Lemma 16.

For the time complexity claim, observe that the number of subproblems considered

is O(HS2A|B||F̂ |) and the time needed per subproblem is O(|B|) to explicitly
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optimize each artificial budget. Thus, the running time is O(HS2A|B|2|F̂ |). We can

further analyze |F̂ | in terms of the original input variables. First, we claim that

F̂ ⊆ [bmin, bmax + ℓS]. To see this, observe that the rounded input at state t+ 1 is,

f (F̂ , ⌈bt⌉ℓ) ≥ f (F, bt) =
t

f
s′=1

g(Ph(s
′ | s, a))bs′ ≥

t

f
s′=1

g(Ph(s
′ | s, a))bmin ≥ bmin.

Here, we used the fact that f is non-decreasing and the weighted combination is a

short map rooted at 0. Similarly, we see,

f (F̂ , ⌈bt⌉ℓ) ≤ f (F, ⌈bt⌉ℓ) + ℓ(t− 1)

≤
t

f
s′=1

g(Ph(s
′ | s, a))(bs′ + ℓ) + ℓ(t− 1)

≤
t

f
s′=1

g(Ph(s
′ | s, a))bmax + ℓt

≤ bmax + ℓt.

Under this assumption, it is clear that the number of integer multiples of ℓ residing

in this superset is O((bmax + ℓS − bmin)/ℓ) per constraint. When considering all con-

straints at once, this becomes O(∥bmax + ℓS − bmin∥m∞ /ℓm) = O(∥bmax − bmin∥m∞ /ℓm

+Sm). Incorporating this into the runtime gives O(HSm+2A|B|2 ∥bmax − bmin∥m∞ /ℓm).

Similar to the reasoning above, we can see the cost of any policy, and thus the

artificial budget set, is contained within [Hcmin, Hcmax]. Using this fact, we get the

final running time O(Hm+1Sm+2A|B|2 ∥cmax − cmin∥m∞ /ℓm).
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E.4 Proofs for Section 6.5

E.4.1 Time-Space Error Lemmas

Lemma 34 (Time Error). For any h ∈ [H], a ∈ A, if b′ ≤ b+ x, then,

f s,a
h,b(1, 0) ≤ f s,a

h,b′(1, 0) ≤ f s,a
h,b(1, 0) + x. (E.9)

Here, we translate a scalar x > 0 into the vector (x, . . . , x).

Proof. By definition of f s,a
h,b′ ,

f s,a
h,b′(1, 0) = f (0, f

s′
g(Ph(s

′ | s, a))b′s′)

= f
s′
g(Ph(s

′ | s, a))b′s′

≥ f
s′
g(Ph(s

′ | s, a))bs′

= f (0, f
s′
g(Ph(s

′ | s, a))bs′)

= f s,a
h,b(1, 0).

The second and fourth lines used the fact that f is identity preserving. The inequality

uses the fact that f is non-decreasing and g is a non-negative scalar, so the total

weighted combination is also non-decreasing.
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Similarly, we see that,

f s,a
h,b′(1, 0) = f (0, f

s′
g(Ph(s

′ | s, a))b′s′)

= f
s′
g(Ph(s

′ | s, a))b′s′

≤ f
s′
g(Ph(s

′ | s, a))(bs′ + x)

≤ f
s′
g(Ph(s

′ | s, a))bs′ + x

= f (0, f
s′
g(Ph(s

′ | s, a))bs′) + x

= f s,a
h,b(1, 0) + x.

The second and fifth lines used the fact that f is identity preserving. The first

inequality again uses the fact that the weighted combination is non-decreasing. The

second inequality follows since the weighted combination is a short map with respect

to the infinity norm.

In particular, since |α(y)− α(z)| ≤ ∥y − z∥∞ holds for any infinity-norm short

map α, we see that |α(y + z) − α(y)| ≤ ∥z∥∞. Moreover, if α is non-decreasing

and z is a positive scaler treated as a vector, we further have α(y + z) − α(y) =

|α(y + z) − α(y)| ≤ ∥z∥∞ = z. This final inequality immediately implies that

α(y + z) ≤ α(y) + z. When α is vector-valued, this inequality holds component-

wise.

Since f is associative, we can define f s,a
h,b(t, F ) = f(F, f Ss′=t g(Ph(s

′ | s, a))bs′)

either forward recursively or backward recursively.

Lemma 35 (Space Error). For any h ∈ [H], a ∈ A, b ∈ Rm×S, u ∈ Rm, and

t ∈ [S + 1],

f s,a
h,b(t, u) ≤ f̂ s,a

h,b(t, u) ≤ f s,a
h,b(t, u) + (S − t+ 1)ℓ. (E.10)
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Proof. We proceed by induction on t.

Base Case. For the base case, we consider t = S + 1. By definition, we have that

f̂ s,a
h,b(S + 1, u) = u = f s,a

h,b(S + 1, u). Thus, the claim holds.

Inductive Step. For the inductive step, we consider any t ≤ S. The recursive

definition of f̂ s,a
h,b implies,

f̂ s,a
h,b(t, u) = f̂ s,a

h,b(t+ 1, ⌈f (u, g(Ph(t | s, a))bt)⌉ℓ)

≥ f s,a
h,b(t+ 1, ⌈f (u, g(Ph(t | s, a))bt)⌉ℓ)

= f (⌈f (u, g(Ph(t | s, a))bt)⌉ℓ ,
S

f
s′=t+1

g(Ph(s
′ | s, a)bs′))

≥ f (f (u, g(Ph(t | s, a))bt),
S

f
s′=t+1

g(Ph(s
′ | s, a)bs′))

= f (u, f (g(Ph(t | s, a))bt,
S

f
s′=t+1

g(Ph(s
′ | s, a)bs′)))

= f s,a
h,b(t, u).

The first inequality used the induction hypothesis to replace f̂ with f , and the second

inequality used that f is non-decreasing in either input and ⌈bt⌉ℓ ≥ bt. The other

lines use f ’s associativity.
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Similarly, we see that,

f̂ s,a
h,b(t, u) = f̂ s,a

h,b(t+ 1, ⌈f (u, g(Ph(t | s, a))bt)⌉ℓ)

≤ f s,a
h,b(t+ 1, ⌈f (u, g(Ph(t | s, a))bt)⌉ℓ) + (S − t)ℓ

= f (⌈f (u, g(Ph(t | s, a))bt)⌉ℓ ,
S

f
s′=t+1

g(Ph(s
′ | s, a)bs′)) + (S − t)ℓ

≤ f (f (u, g(Ph(t | s, a))bt) + ℓ,
S

f
s′=t+1

g(Ph(s
′ | s, a)bs′)) + (S − t)ℓ

≤ f (f (u, g(Ph(t | s, a))bt),
S

f
s′=t+1

g(Ph(s
′ | s, a)bs′)) + (S − t+ 1)ℓ

= f (u, f (g(Ph(t | s, a))bt,
S

f
s′=t+1

g(Ph(s
′ | s, a)bs′))) + (S − t+ 1)ℓ

= f s,a
h,b(t, u) + (S − t+ 1)ℓ.

The first inequality used the induction hypothesis to replace f̂ with f . The second

inequality used that f is non-decreasing in either input and ⌈x⌉ℓ ≤ x+ ℓ. The third

inequality used that f is a short map in the first input. The other lines use f ’s

associativity.

This completes the proof.

E.4.2 Proof of Lemma 17

Proof. We proceed by induction on h.

Base Case. For the base case, we consider h = H + 1. Since ⌈b⌉ℓ ≥ b, we

immediately see,

V̂ ∗
H+1(s, ⌈b⌉ℓ) = −χ{⌈b⌉ℓ≥0} ≥ −χ{b≥0} = V̄ ∗

H+1(s, b). (E.11)
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Inductive Step. For the inductive step, we consider any h ≤ H. If V̄ ∗
h (s, b) = −∞,

then trivially V̂ ∗
h (s, ⌈b⌉ℓ) ≥ V̄ ∗

h (s, b). Now, suppose that V̄ ∗
h (s, b) > −∞. Let π

be a solution to the optimality equations for M̄ . Consequently, we know that

V̄ π
h (s, b) = V̄ ∗

h (s, b) > −∞, which implies (a∗,b∗) = πh(s, b) ∈ Āh(s, b). By definition

of Āh(s, b),

ch(s, a
∗) + f s,a∗

h,b∗(1, 0) = ch(s, a
∗) + f

s′
g(Ph(s

′ | s, a∗))b∗s′ ≤ b ≤ ⌈b⌉ℓ . (E.12)

For each s′ ∈ S, define b̂∗s′
def
= ⌈b∗s′⌉ℓ. We show (a∗, b̂∗

s′) ∈ Âh(s, ⌈b⌉ℓ) as follows:

ch(s, a
∗) + f̂ s,a

h,b̂∗(1, 0) ≤ ch(s, a
∗) + f s,a

h,b̂∗(1, 0) + ℓS

≤ ch(s, a
∗) + f s,a

h,b∗(1, 0) + ℓ(S + 1)

≤ ⌈b⌉ℓ + ℓ(S + 1)

= κ(⌈b⌉ℓ).

The first inequality follows from Lemma 35. The second inequality follows from

Lemma 34 with b̂∗ ≤ b∗ + ℓ. The third inequality follows from (E.12). The equality

follows by definition of κ. Thus, (a∗, b̂∗
s′) ∈ Âh(s, ⌈b⌉ℓ).

Since b∗s′ ∈ B by definition, the induction hypothesis implies that V̂ ∗
h+1(s

′, b̂∗s′) ≥
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V̄ ∗
h+1(s

′, b∗s′) = V̄ π
h+1(s

′, b∗s′). The optimality equations for M̂ then imply that,

V̂ ∗
h (s, ⌈b⌉ℓ) = max

(a,b̂)∈Âh(s,b)
rh(s, a) +

∑
s′

Ph(s
′ | s, a)V̂ ∗

h+1

(
s′, b̂s′

)
≥ rh(s, a

∗) +
∑
s′

Ph(s
′ | s, a)V̂ ∗

h+1

(
s′, b̂∗s′

)
≥ rh(s, a

∗) +
∑
s′

Ph(s
′ | s, a)V̄ π

h+1 (s
′, b∗s′)

= V̄ π
h (s, b)

= V̄ ∗
h (s, b).

The first inequality used the fact that (a∗, b̂∗) ∈ Âh(s, b). The second inequality

follows from the induction hypothesis. The last two equalities follow from the

standard policy evaluation equations and the definition of π, respectively. This

completes the proof.

E.4.3 Proof of Lemma 18

Proof. We proceed by induction on h.

Base Case. For the base case, we consider h = H+1. By definition and assumption,

V̂ π
H+1(s, b̂) = −χ{b̂≥0} > −∞. Thus, it must be the case that b̂ ≥ 0 and so by

definition Ĉπ
H+1(s, b̂) = 0 ≤ b̂.

Inductive Step. For the inductive step, we consider any h ≤ H. As in the proof

of Lemma 14, we know that (a, b̂) = πh(s, b) ∈ Âh(s, b̂) and for any s′ ∈ S with

Ph(s
′ | s, a) > 0 that V̂ π

h+1(s
′, bs′) > −∞. Thus, the induction hypothesis implies

that Ĉπ
h+1(s

′, b̂s′) ≤ b̂s′ + ℓ(S + 1)(H − h) for any such s′. For any other s′, we have
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g(Ph(s
′ | s, a)) = g(0) = 0 by assumption.

Thus, the weighted combination of Ĉπ
h+1(s

′, b̂s′) is equal to the weighted com-

bination of b̂′ where b̂′s′
def
= Ĉπ

h+1(s
′, b̂s′) if Ph(s

′ | s, a) > 0 and b̂′s′
def
= 0 otherwise.

Moreover, we have b̂′ ≤ b̂+ ℓ(S + 1)(H − h) since ℓ > 0. Thus, by (SR),

Ĉπ
h (s, b̂) = ch(s, a) + f

s′
g(Ph(s

′ | s, a))Ĉπ
h+1(s

′, b̂s′)

= ch(s, a) + f s,a

h,b̂′(1, 0)

≤ ch(s, a) + f s,a

h,b̂
(1, 0) + ℓ(S + 1)(H − h)

≤ κ(b̂) + ℓ(S + 1)(H − h)

= b̂+ ℓ(S + 1)(H − h+ 1).

The first inequality used Lemma 34. The second inequality used the fact that

(a, b̂) ∈ Ah(s, b̂). The last line used the definition of κ. This completes the proof.

E.4.4 Proof of Theorem 17

Proof. If (CON) is feasible, then inductively we see that V̂ ∗
1 (s0, ⌈B⌉ℓ) > −∞. The

contrapositive then implies if V̂ ∗
1 (s0, ⌈ℓ⌉2B) = −∞, then (CON) is infeasible. Thus,

when Algorithm 17 outputs “Infeasible”, it is correct.

On the other hand, suppose V̂ ∗
1 (s0, ⌈B⌉ℓ) > −∞ and that π is an optimal solution

to M̂ . By Lemma 17 and Lemma 13, we know that V̂ π
1 (s0, ⌈B⌉ℓ) ≥ V̄ π

1 (s0, B) ≥ V ∗.

Also, by Lemma 18, we know that Ĉπ
1 (s0, ⌈B⌉ℓ) ≤ ⌈B⌉ℓ + ℓ(S + 1)H ≤ B + ℓ(1 +

(S + 1)H). Our choice of ℓ = ϵ
1+(S+1)H

then implies that Ĉπ = Ĉπ
1 (s0, ⌈B⌉ℓ) ≤ B + ϵ.

Thus, π is an (0, ϵ)-additive bicriteria approximation for (CON).

Both cases together imply that Algorithm 17 is a valid (0, ϵ)-bicriteria.
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Time Complexity. We see immediately from Theorem 16 that the running time

of Algorithm 17 is at most O
(
H2m+1S2m+2A|B̂|2 ∥cmax − cmin∥m∞ /ϵm

)
. To complete

the analysis, we need to bound |B̂|. First, we note |B̂| is at most the number of

integer multiples of ℓ in the range [bmin, bmax] ⊆ [Hcmin, Hcmax]
m. For any individual

constraint, this number is at most O(H(cmax −Hcmin)/ℓ) ≤ O(H2S(cmax − cmin)/ϵ)

using the definition of ℓ = ϵ
1+(S+1)H

. Thus, the total number of rounded artificial

budgets is at most O((H2S ∥cmax − cmin∥ /ϵ)m). Squaring this quantity and plugging

it back into our original formula yields: O
(
H6m+1S4m+2A ∥cmax − cmin∥3m∞ /ϵ3m

)
.

E.4.5 Proof of Proposition 18

Proof. We consider a reduction from the Hamiltonian Path problem. The transitions

reflect the graph structure, and the actions determine the edge to follow next. To

determine if a Hamiltonian path exists, we can simply make an indicator constraint

for each node that signals that node has been reached. It is then clear that relaxing

the budget constraint does not help since we can always shrink the budget for any

given ϵ-slackness. Thus, the claim holds.

E.4.6 Proof of Lemma 19

Proof. We proceed by induction on h.

Base Case. For the base case, we consider h = H + 1. By definition, we have

Ṽ π
H+1(τ̃H+1) = 0 = V π

H+1(τH+1) and C̃π
H+1(τ̃H+1) = 0 = Cπ

H+1(τH+1).

Inductive Step. For the inductive step, we consider any h ≤ H. For simplicity,

let x def
= ℓ(λr + λp)Hrmax(smax − smin). The standard policy evaluation equations
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imply that,

Ṽ π
h (τ̃h) = rh(⌈s⌉ℓ , a) +

∑
s̃′

P̃h(s̃
′ | ⌈s⌉ℓ , a)Ṽ

π
h+1(τ̃h+1)

= rh(⌈s⌉ℓ , a) +
∑
s̃′

∫ s̃′+ℓ

s′=s̃′
Ph(s

′ | ⌈s⌉ℓ , a)ds
′Ṽ π

h+1(τ̃h+1)

= rh(⌈s⌉ℓ , a) +
∫
s′
Ph(s

′ | ⌈s⌉ℓ , a)Ṽ
π
h+1(τ̃h+1)ds

′

≥ rh(⌈s⌉ℓ , a) +
∫
s′
Ph(s

′ | ⌈s⌉ℓ , a)(V
π
h+1(τh+1)− x(H − h))ds′

= rh(⌈s⌉ℓ , a) +
∫
s′
Ph(s

′ | ⌈s⌉ℓ , a)V
π
h+1(τh+1)ds

′ − x(H − h)

≥ rh(s, a)− ℓλr +
∫
s′
(Ph(s

′ | s, a)− ℓλp)V π
h+1(τh+1)ds

′ − x(H − h)

= V π
h (τh)− ℓλr − ℓλp

∫
s′
V π
h+1(τh+1)ds

′ − x(H − h)

≥ V π
h (τh)− ℓλr − ℓλpHrmax(smax − smin)− x(H − h)

≥ V π
h (τh)− ℓ(λr + λp)Hrmax(smax − smin)− x(H − h)

= V π
h (τh)− x(H − h+ 1).
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If we let y def
= ℓ(λc + λp)Hcmax(smax − smin), we also see that,

C̃π
h (τ̃h) = ch(⌈s⌉ℓ , a) + f̃ s̃′P̃h(s̃

′ | ⌈s⌉ℓ , a)C̃
π
h+1(τ̃h+1)

= ch(⌈s⌉ℓ , a) + f̃ s̃′

∫ s̃′+ℓ

s′=s̃′
Ph(s

′ | ⌈s⌉ℓ , a)ds
′C̃π

h+1(τ̃h+1)

= ch(⌈s⌉ℓ , a) + f
s′
Ph(s

′ | ⌈s⌉ℓ , a)C̃
π
h+1(τ̃h+1)

≤ ch(⌈s⌉ℓ , a) + f
s′
Ph(s

′ | ⌈s⌉ℓ , a)(C
π
h+1(τh+1) + y(H − h))

≤ ch(⌈s⌉ℓ , a) + f
s′
Ph(s

′ | ⌈s⌉ℓ , a)C
π
h+1(τh+1) + y(H − h)

≤ ch(s, a) + ℓλc + f
s′
(Ph(s

′ | s, a) + ℓλp)C
π
h+1(τh+1) + y(H − h)

= ch(s, a) + f
s′
Ph(s

′ | s, a)Cπ
h+1(τh+1) + ℓλc + ℓλp f

s′
Cπ

h+1(τh+1) + y(H − h)

≤ Cπ
h (τh) + ℓλc + ℓλp f

s′
Hcmax + y(H − h)

≤ Cπ
h (τh) + ℓλc + ℓλp(smax − smin)Hcmax + y(H − h)

≤ Cπ
h (τh) + ℓ(λc + λp)(smax − smin)Hcmax + y(H − h)

= Cπ
h (τh) + y(H − h+ 1).

We note the above also holds if P is replaced with a g(P ) for a sublinear short map

g.

For almost-sure constraints, the proof is slightly different since we need to keep

the inner integral by definition of the worst-case cost for continuous state spaces.
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Letting y def
= ℓ(λc + λp)Hcmax(smax − smin)/p̃min, the bound then becomes,

C̃π
h (τ̃h) = ch(⌈s⌉ℓ , a) + max

s̃′
[P̃h(s̃

′ | ⌈s⌉ℓ , a) > 0]C̃π
h+1(τ̃h+1)

= ch(⌈s⌉ℓ , a) + max
s̃′

[

∫ s̃′+ℓ

s′=s̃′
Ph(s

′ | ⌈s⌉ℓ , a)ds
′ > 0]C̃π

h+1(τ̃h+1)

= ch(⌈s⌉ℓ , a) + max
s̃′

∫ s̃′+ℓ

s′=s̃′
Ph(s

′ | ⌈s⌉ℓ , a)ds′

ps̃′
C̃π

h+1(τ̃h+1)

= ch(⌈s⌉ℓ , a) + max
s̃′

∫ s̃′+ℓ

s′=s̃′
Ph(s

′ | ⌈s⌉ℓ , a)C̃
π
h+1(τ̃h+1)ds

′/ps̃′

≤ ch(⌈s⌉ℓ , a) + max
s̃′

∫ s̃′+ℓ

s′=s̃′
Ph(s

′ | ⌈s⌉ℓ , a)(C
π
h+1(τh+1) + y(H − h))ds′/ps̃′

≤ ch(⌈s⌉ℓ , a) + max
s̃′

∫ s̃′+ℓ

s′=s̃′
Ph(s

′ | ⌈s⌉ℓ , a)C
π
h+1(τh+1)ds

′/ps̃′ + y(H − h)

≤ ch(s, a) + ℓλc +max
s̃′

∫ s̃′+ℓ

s′=s̃′
Ph(s

′ | s, a)Cπ
h+1(τh+1)ds

′/ps̃′

+ ℓλpmax
s̃′

∫ s̃′+ℓ

s′=s̃′
Cπ

h+1(τh+1)ds
′/ps̃′ + y(H − h)

≤ ch(s, a) + max
S′⊆S

∫
S′

Ph(s
′ | s, a)
pS′

Cπ
h+1(τh+1)ds

′ + ℓλc + ℓ2λpHcmax/p̃min

+ y(H − h)

= Cπ
h (τh) + ℓλc + ℓ2λpHcmax/p̃min + y(H − h)

≤ Cπ
h (τh) + ℓ(λc + λp)(smax − smin)Hcmax/p̃min + y(H − h)

= Cπ
h (τh) + y(H − h+ 1).

E.4.7 Proof of Theorem 18

Proof. The theorem follows immediately from Theorem 17 and Lemma 19.



216

E.5 Extensions

Markov Games. It is easy to see that our augmented approach works to compute

constrained equilibria. For efficient algorithms, using −∞ to indicate infeasibility

becomes problematic. However, we can still use per-stage LP solutions and add a

constraint that the equilibrium value must be larger than some very small constant

to rule out invalid −∞ solutions. Alternatively, the AND/OR tree approach used in

[77] can be applied here to directly compute all the near-feasible states.

Infinite Discounting. Since we focus on approximation algorithms, the infinite

discounted case can be immediately handled by using the idea of effective horizon.

We can treat the problem as a finite horizon problem where the finite horizon H

is defined so that
∑∞

h=H γ
h−1cmax ≤ ϵ′. By choosing ϵ′ and ϵ small enough, we can

get equivalent feasibility approximations. The discounting also ensures the effective

horizon H is polynomially sized, implying efficient computation.

Stochastic Policies. For stochastic policies, our approximate results follow from

simply replacing each maxa and maxbt with a general linear program over a finite

distribution, which can be solved in polynomial time.

Stochastic Costs. For finitely-supported cost distributions, all results remain the

same except for almost-sure/anytime constraints, which now must be written in the

form:

Cπ
h (τh) = max

c∈Supp(Ch(s,a))
c+max

s′
[Ph(s

′ | s, a) > 0]Cπ
h (τh, a, c, s

′). (E.13)

Also, note that histories must now be cost-dependent.

Now, we have that future budgets depend on both the next state and the realized
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cost, so our (ADP) must now be dependent on both states and immediate costs for

subproblems. The construction is similar to the approach in [76].
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