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abstract

Bullying, in both physical and cyber worlds, has been recognized as a serious
health issue among adolescents. Given its significance, scholars are charged with
identifying factors that influence bullying involvement in a timely fashion. However,
previous social studies of bullying are handicapped by data scarcity. The standard
psychological science approach to studying bullying is to conduct personal surveys
in schools. The sample size is typically in the hundreds, and these surveys are often
collected only once. On the other hand, the few computational studies narrowly
restrict themselves to cyberbullying, which accounts for only a small fraction of all
bullying episodes.

My thesis work shows that social media, with appropriate machine learning and natural
language processing techniques, can be a valuable and abundant data source for the study
of bullying. Social media afford a context for cyberbullying to take place, and also
provide a unique vantage point for scholars interested in studying bullying. We
found that participants of a bullying episode (in either physical or cyber venues)
often post social media texts about the experience. We collectively call such social
media posts bullying traces. Bullying traces include but far exceed incidences
of cyberbullying. Bullying traces are valuable, albeit fragmented and noisy, data
which can be used to reconstruct the underlying episodes.

We build standard machine learning models to automatically recognize bullying
traces from social media streams, to identify participants and their roles, to label
the forms of bullying episodes, to determine the types of bullying traces, and to
summarize the topics in bullying traces. We apply the trained models to bullying
traces collected in two consecutive academic years and analyze the dynamics of
bullying posts.

We also propose a new model for recovering the spatiotemporal distribution
of underlying bullying activities from bullying traces. To recognize the emotions
in bullying traces, we design a fast learning procedure to train a classifier with-
out explicitly producing a conventional labeled training dataset. We propose a
probabilistic model to assign individual tweets in a user’s timeline into their corre-
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sponding episodes.
We investigate deletion behaviors and hashtag usages in bullying traces, and

correlate them with some important factors. We also identify several differences in
microblogs of school-based bullying between Twitter and Weibo, and hypothesize
possible explanations for these cultural differences.

To facilitate the research in bullying and social media mining, we make our
dataset and software publicly available under Twitter’s Terms of Service.
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1 introduction

Bullying, also called peer victimization, has been recognized as a serious national
health issue by the White House (2011), the American Academy of Pediatrics (2009),
and the American Psychological Association (2004). This recognition derives from
the growing body of research underscoring the wide-ranging harm associated with
bullying (Juvonen and Graham, 2014). Bullying is associated with psychological
maladjustment (Hawker and Boulton, 2000), physical complaints (Gini and Pozzoli,
2013), and poor functioning in school (Baly et al., 2014) and at work (McTernan
et al., 2013).

Given its significance, social scientists are charged with identifying factors that
influence bullying involvement in a timely fashion. However, a key challenge is
data acquisition and analysis. The standard psychological science approach to
studying bullying is to conduct personal surveys in schools (via self, peer, and
teacher reports) about general experiences of individuals as victims or perpetrators
of bullying (Card and Hodges, 2008). Often these surveys are collected only once.
The sample size is typically in the hundreds, and participants typically write 3
to 4 sentences about each bullying episode (Nishina and Bellmore, 2010). When
studies are longitudinal, the timeline (usually once or twice a year across several
years; e.g., Nylund, Bellmore, Nishina, & Graham (2007); or daily across several
weeks; e.g., Nishina & Juvonen (2005)) is imposed by the researcher rather than the
phenomenon. Note several limitations of the predominant approach: (1) the sample
size is tiny compared to the whole population; (2) school-based experiences of
children and adolescents are emphasized over other social contexts and age groups;
(3) the assessment is typically done only once, or, when carried out longitudinally,
researchers impose a timeline that may be invalid; and (4) the experiences of bullies
and victims are examined more frequently than the experiences of other role-
players.

The computational study of bullying is largely unexplored, with the exception
of a few studies (Lieberman et al., 2011; Dinakar et al., 2011; Ptaszynski et al., 2010;
Kontostathis et al., 2010; Bosse and Stam, 2011; Latham et al., 2010; Dinakar et al.,
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2012; Macbeth et al., 2013). These works mainly aim at automatically recognizing
cyberbullying or hate speech online, and preventing or reporting them once de-
tected. They do not focus on bullying in the physical world or study bullying from
a psychological perspective.

Social media are large-scale, near real-time, dynamic data sources that hold
promise to enrich the study of bullying. This is due to their properties as data, but
more so because social media are an important social context for youth (Lenhart
et al., 2010) and adults (Duggan and Smith, 2013). Social media enhance relation-
ships (Ellison et al., 2007) and promote life satisfaction (Oh et al., 2014), but are also
a vehicle for bullying (Wang et al., 2009). A meta-analysis of youth cyberbullying
research reported that cyberbullying prevalence rates typically range between 10%
and 40% of participants (Kowalski et al., 2014). Cyberbullying is often studied in
the same way that school-based bullying is studied, via self-reports of frequency of
involvement as a perpetrator or victim. As such, it presents a unique context for
studying bullying in adolescence–not only does it yield an extremely large amount
of data, new data are continuously created.

My thesis work shows that social media, with appropriate machine learning and natural
language processing techniques, can be a valuable and abundant data source for the study
of bullying. Key to this endeavor is that interactions that take place both online and
offline might be represented in social media. We have deployed some off-the-shelf
techniques and designed some new models to answer many scientific questions of
interest in this area.

1.1 An Introduction to Bullying

One is being bullied or victimized when he or she is exposed repeatedly over time
to negative actions on the part of others (Olweus, 1993). Far-reaching and insidious
sequelae of bullying include intrapersonal problems (Juvonen and Graham, 2001;
Jimerson et al., 2010) and lethal school violence in the most extreme cases (Moore
et al., 2003). Youth who experience peer victimization report more symptoms of
depression, anxiety, loneliness, and low self-worth compared to their nonvictimized
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counterparts (Bellmore et al., 2004; Biggs et al., 2010; Graham et al., 2007; Hawker
and Boulton, 2000). Other research suggests that victimized youth have more
physical complaints (Fekkes et al., 2006; Nishina and Juvonen, 2005; Gini and
Pozzoli, 2009). Victimized youth are absent from school more often and get lower
grades than nonvictimized youth (Ladd et al., 1997; Schwartz et al., 2005; Juvonen
and Gross, 2008).

Bullying happens traditionally in the physical world and, recently, online as
well; the latter is known as cyberbullying (Cassidy et al., 2009; Fredstrom et al.,
2011; Wang et al., 2009; Vandebosch and Cleemput, 2009). Bullying usually starts
in primary school, peaks in middle school, and lasts well into high school and
beyond (Nansel et al., 2001; Smith et al., 1999; Cook et al., 2010). Across a national
sample of students in grades 4 through 12, 38% of students reported being bullied
by others and 32% reported bullying others (Vaillancourt et al., 2010).

Bullying takes multiple forms, most noticeably face-to-face physical (e.g., hitting),
verbal (e.g., name-calling), and relational (e.g., exclusion) (Archer and Coyne, 2005;
Little et al., 2003; Nylund et al., 2007). Cyberbullying reflects a venue (other than
face to face contact) through which verbal and relational forms can occur.

A main reason individuals are targeted with bullying is perceived differences,
i.e., any characteristic that makes an individual stand out differently from his or
her peers. These include race, socio-economic status, gender, sexuality, physical
appearance, and behavior.

Participants in a bullying episode take well-defined roles (see Figure 1.1). More
than one person can have the same role in a bullying episode. Roles include the
bully (or bullies), the victims, bystanders (who saw the event but did not intervene),
defenders of the victim, assistants to the bully (who did not initiate but went along
with the bully), and reinforcers (who did not directly join in with the bully but
encouraged the bully by laughing, for example) (Salmivalli, 1999). This recognition
that bullying involves multiple roles makes evident the broad-ranging impact of
bullying; any child or adolescent is susceptible to participation in bullying, even
those who are not directly involved (Janosz et al., 2008; Rivers et al., 2009).
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reinforcer

bystander

bully victim

assistant defender reporter

accuser

Figure 1.1: The roles in a bullying episode. Solid circles represent traditional roles
in social science, while dotted circles are new roles we augmented for social media.
The width of the edges represents interaction strength.

1.2 Bullying Traces in Social Media

Twitter presents the opportunity to identify online and offline bullying trends
more comprehensively. By some estimates, Twitter currently produces 400 million
tweets per day. Many studies use Twitter as a data source to answer social science
questions (Lazer et al., 2009; Eisenstein et al., 2010; Gupte et al., 2011).

Participants of a bullying episode (in either physical or cyber venues) often post
social media text about the experience. We collectively call such social media posts
bullying traces. Bullying traces include but far exceed incidences of cyberbullying.
Most of them are in fact responses to a bullying experience – the actual attack is
hidden from view. Among the bullying traces we analyzed, only 0.76% of bullying
traces were direct cyberbullying attacks (see Section 2.4 for more details). Bullying
traces are valuable, albeit fragmented and noisy, data which we can use to piece
together the underlying episodes.

Here are some examples of bullying traces:

• Reporting a bullying episode: “some tweens got violent on the n train, the one
boy got off after blows 2 the chest... Saw him cryin as he walkd away :( bullying not
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cool”

• Accusing someone as a bully: “@USERNAME i didnt jump around and act like
a monkey T_T which of your eye saw that i acted like a monkey :( you’re a bully”

• Revealing self as a victim: “People bullied me for being fat. 7 years later, I was
diagnosed with bulimia. Are you happy now?”

• Cyber-bullying direct attack: “Lauren is a fat cow MOO BITCH”

Bullying traces are abundant. From the publicly available 2011 TREC Microblog
track corpus (16 million tweets sampled between January 23rd and February 8th,
2011), we uniformly sampled 990 tweets for manual inspection by five experienced
annotators. Of the 990 tweets, the annotators labeled 617 as non-English, 371 as
English but not bullying traces, and 2 as English bullying traces. The Maximum
Likelihood Estimate of the frequency of English bullying traces, out of all tweets,
is 2/990 ≈ 0.002. The exact Binomial 95% confidence interval is (0.0002, 0.0073).
This is a tiny fraction. Nonetheless, it represents an abundance of tweets: by some
estimates, Twitter produced 250 million tweets per day in late 2011. Even with the
lower bound on the confidence interval, it translates into 50,000 English bullying
traces per day. The actual number can be much higher.

Bullying traces contain valuable information. For example, Figure 1.2 shows
the daily number of bullying traces identified by our classifier, to be discussed in
Section 2.1. A weekly pattern was obvious in late August 2011. A small peak was
caused by 14-year-old bullying victim Jamey Rodemeyer’s suicide on Sept. 18. This
was followed by a large peak after Lady Gaga dedicated a song to him on Sept. 24.

1.3 Technical Contributions

Like many complex social issues, effective solutions to bullying go beyond tech-
nology alone and require the concerted efforts of parents, educators, and law
enforcement. My thesis work focuses on using machine learning and natural lan-
guage processing techniques to analyze social media posts for bullying. Social
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Figure 1.2: Daily count of bullying traces on Twitter identified by our algorithm.
Our algorithm only identifies a small fraction of bullying traces – The actual number
is much larger.

media posts are often fragmented, noisy and cover only part of a bullying episode.
To discover useful information from them, we develop some new models and use
some standard approaches.

We introduce the social study of bullying to the machine learning and nat-
ural language processing communities by identifying some important scientific
questions and formulating them as computational tasks. We build text classifiers
with careful feature engineering to recognize bullying traces from social media
streams, identifying each author’s role in the episode, and understanding the forms
and types of the bullying traces. We use role labeling to recognize participants
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mentioned in bullying traces and identify their roles. We explore topic modeling
methods to understand the topics in bullying traces.

Existing standard models and algorithms are not sufficient for some of our tasks.
These new challenges encourage and inspire us to develop new mathematical
models and algorithms, which also have broad applications to many domains
beyond the study of bullying.

To study the spatiotemporal distribution of bullying episodes and other inter-
esting real-world phenomena, we formulate the problem as a Poisson point process
estimation problem. We explicitly incorporate human population bias, time delays
and spatial distortions and spatio-temporal regularization into the model. This
addresses the problems with simple counting of posts, which is plagued by sample
bias, and incomplete data.

Many emotions expressed in bullying traces are not well-studied in the sentiment
analysis literature. It poses a challenge to collect enough training data or emotional
lexicons. Inspired by “concept labeling” work, we propose a fast training procedure
without explicitly producing conventionally labeled training datasets.

To go beyond individual tweets, we look into users’ timeline data to obtain
more context information about the same incident. We identify the new problem
of organizing timelines into conversations and propose a new model based on the
distance-dependent Chinese Restaurant Process (Blei and Frazier, 2011).
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2 basics of bullying traces

To discover useful information on bullying from social media, the first step is to
identify bullying traces among the massive amounts of social media posts produced
every day. We formulate the problem as a binary text classification task (Xu et al.,
2012b). With carefully chosen features and classification algorithms, we are able
to recognize bullying traces with satisfactory accuracy. To automatically analyze
bullying traces, we build text classifiers to recognize an author’s role, forms and
types of bullying traces. Then, we investigate several important scientific questions
with bullying traces (Bellmore et al., 2015), including: who are posting bullying
traces? What forms of bullying are mentioned or used on Twitter? Why are people
posting about bullying on Twitter? What topics are people posting about bullying?

2.1 Recognizing Bullying Traces

Since bullying traces account for only a tiny fraction of all tweets, a significant
challenge is to find enough bullying traces without labeling an enormous number
of tweets. For this reason, we restrict ourselves to an “enriched dataset,” which is
obtained by collecting tweets via the public Twitter streaming API using keywords.

To capture a post, the complete words must be identified and followed on Twitter
as opposed to portions of words (e.g., following the word “bull” would not capture
the term “bully”). We followed the following keywords related to the term bully:
bullied, bully, bullyed, bullying, bullyer, bulling. We included several misspelled
keywords as they appear frequently in social media posts (Liu et al., 2012). We also
followed several other words that were identified by our annotators as common
terms in a content analysis of middle school students’ written descriptions of
bullying experiences. These keywords were: ignored, pushed, rumors, locker,
spread, shoved, rumor, teased, kicked, crying. From all the tweets obtained which
contain at least one of these keywords, we then filtered the tweets so that only posts
that contained a word starting with “bull” were retained. For example, the post,
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“Bullies pushed the kid” would be detected and retained even though the keyword
bullies was not initially followed. On the other hand, the post, “He pushed the kid”
would be collected but not retained. In lieu of pre-determining every possible
variation of the word bully to follow on Twitter, this process was used to maximize
the variations that might be used. From this dataset, we removed re-tweets (the
analogy of forwarded emails) by excluding tweets containing the acronym “RT”.
The enrichment process is meant to retain many first-hand bullying traces at the
cost of a selection bias. It is also important to note that this simple keyword filtering
is far from perfect: many irrelevant tweets survived and relevant tweets missed.

A bullying trace was defined as any mention of bullying within the context of a
specific bullying episode the author was involved in. Note that we did not evaluate
the post for compliance with bullying definitions that included notions of power
imbalance and repetition (Olweus, 1993) because this information was often not
evident in short posts. Moreover, we could not determine whether the episode
referred to a single event or a continuous episode over a period of time. We relied
entirely on the text from each individual post, taking it at face value when an author
participated in or reported “bully”ing. Some positively labeled examples include:

• Personal experiences (“ugh u bully me a lot”)

• Reports about specific episodes (“some tweens got violent on the n train, the one
boy got off after blows 2 the chest... Saw him cryin as he walkd away :( bullying not
cool”)

• Newsworthy posts “(5 teens had a 14yo hang herself BC they wouldn’t stop bullying
her”).

Posts were negatively labeled if they were not defined as a bullying episode. Some
examples include:

• Posts clearly copied and pasted a news headline about a bullying episode
“(Bully Staffers Shove CNN Reporter-to Avoid Answering Questions?”)
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• Posts referred to a bullying episode that may happen in the future “(When
school starts, I will bully you”)

• Posts reflected only an opinion about bullying in general “(Bullying is violence
against the weak”)

• Posts where a behavior may sound like bullying but is not identified as such
by the author “(My friend treats me bad-do you think he is a bully?”)

• Posts where a coder recognized the names mentioned in the post as fictional
“(Harry Potter stood up to that bully”)

Data

To identifying the true bullying traces from the enriched dataset, we formulate
it as a binary text categorization task. Annotators labeled 1,762 tweets sampled
uniformly from the enriched dataset on August 6, 2011. Among them, 684 (39%)
were labeled as bullying traces. This dataset and its documentation is archived as
Bullying Trace Data Set (Version 1) (more details in Appendix A.1).

Methods

Following Settles (2011), these 1,762 tweets were case-folded but without any stem-
ming or stopword removal. Any user mentions preceded by a “@” were replaced
by the anonymized user name “@USERNAME”. Any URLs starting with “http”
were replaced by the token “HTTPLINK”. Hashtags (compound words following
“#”) were not split and were treated as a single token. Emoticons, such as “:)” or
“:D”, were also included as tokens.

After these preprocessing procedures, we created three different sets of feature
representations: unigrams (1g), unigrams+bigrams (1g2g), and POS-colored un-
igrams+bigrams (1g2gPOS). POS tagging was done with the Stanford CoreNLP
package (Toutanova et al., 2003). POS-coloring was done by expanding each token
into token:POS.
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(a) 1g (b) 1g2g (c) 1g2gPOS

Figure 2.1: Learning curves for different feature sets and classification algorithms
on binary bullying trace classification task

We chose four commonly used text classifiers, namely, Naive Bayes, SVM with
a linear kernel (SVM(linear)), SVM with an RBF kernel (SVM(RBF)) and Logistic
Regression (equivalent to MaxEnt). We used the WEKA (Hall et al., 2009) imple-
mentation for the first three (calling LibSVM (Chang and Lin, 2011) with WEKA’s
interfaces for SVMs), and the L1General package (Schmidt et al., 2007) for the
fourth.

We held out 262 tweets for testing, and systematically varied the training set
size among the remaining tweets, from 100 to 1,500 with step-size 100. We tuned
all parameters jointly by 5-fold cross validation on the training set with the grid
{2−8, 2−6, . . . , 28}. All four text classifiers were trained on the training sets and
tested on the test set. The whole procedure was repeated 30 times for each feature
representation.

Results

Figure 2.1 reports the held-out set accuracy as the training set size increases. The
error bars are ±1 standard deviation error. With the largest training set size
(1,500), the combination of SVM(linear) + 1g achieved an average accuracy of
79.7%. SVM(linear) + 1g2g achieved 81.3%, which is significantly better (t-test,
p = 4 × 10−6). It shows that including bigrams can significantly improve the
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Total Predicted as
Yes Not

Yes 2,102 1,555 547
No 5,219 503 4,716

Table 2.1: Confusion matrix of bullying trace classification

classification performance. SVM(linear) + 1g2gPOS achieved 81.6%, though the
improvement is not statistically significant (p = 0.088), which indicates that POS
coloring does not help much on this task. SVM(RBF) gives similar performance,
Logistic Regression is slightly worse, and Naive Bayes is much worse, for a large
range of training set sizes. In summary, SVM(linear) + 1g2g is the preferred model
because of its accuracy and simplicity. We make it publicly available in our software
repository (see Appendix B.1). We also note that these accuracies are much better
than the majority class baseline of 61%. On the held-out set, SVM(linear) + 1g2g
achieved precision P=0.76, recall R=0.79, and F-measure 0.77.

Discussion

As to why the best accuracy is not close to 1, one hypothesis is noisy labels caused
by intrinsic disagreement among the annotators. Tweets are short and some are
ambiguous. Without prior knowledge about the users and their other tweets, the
annotators interpreted the tweets in their own ways. For example, for the very short
tweet “feels like a bully.....” our annotators disagreed on whether it is a bullying
trace. Labelers may have different views on these ambiguous tweets, which created
noisy bullying trace labels.

Number of Bullying Traces Identified in 2011-2013

Figure 2.1 shows that the learning curves are still increasing, suggesting that better
accuracy can be obtained if we annotate more training data. To achieve better
performance, our annotators labeled 7,321 tweets (including the 1,762 tweets in the
previous experiment), randomly selected from August 6, 2011 through August 31,
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9/1/11 - 8/31/12 9/1/12 - 8/31/13 total
Count % Count % Count %

Keyword-filtered tweets 12,421,237 20,056,321 32,477,558
Bullying traces 3,955,458 31.8% 5,809,125 29.0% 9,764,583 30.1%

Table 2.2: The number of bullying traces identified in 2011-2013

2011. The inter-rater agreement for identifying bullying traces from the bullying
keyword tweets was calculated based on two annotators coding 1,000 of the 7,321
posts. It was determined to be κ = .83. Of the 7,321 posts, 2,102, or 28.7%, were
labeled as bullying traces. This dataset and its documentation is archived as Bul-
lying Trace Data Set (Version 3) (more details in Appendix A.1) With this larger
training set, the accuracy of our text classifier SVM(linear) + 1g2g improved to 86%
(see Table 2.1 and Appendix B.1). This level of accuracy is similar to the level of
agreement achieved by two different human annotators. Therefore, we determined
that it is possible to use machine learning to automatically and accurately recognize
bullying traces in social media.

We applied the trained classifier to the enriched dataset collected from Septem-
ber 1, 2011 through August 31, 2013. The result is reported in Table 2.2. We
collected 32,477,558 tweets in our enriched dataset via keyword filtering during two
consecutive academic years. Among them, we found that 30.1% (9,764,583) were
recognized as bullying traces by our text classifier. The proportions of bullying
traces and non-bullying traces identified were similar to the human-annotated data
in Table 2.1.

The main difference between the two years is that the overall number of bullying
traces increased from year 1 to year 2, a trend that likely reflects the increased
popularity of Twitter between the two years. There were 3,955,458 bullying traces
in 2011-2012 and 5,809,125 in 2012-2013.
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2.2 Identifying Participants and Their Roles

Current research emphasizes the group-based nature of bullying and the signifi-
cance of all social role players in a bullying episode (Salmivalli et al., 1996). Because
bullying involves multiple roles, any individual is susceptible to being impacted by
bullying, even those who are not directly involved (Rivers et al., 2009). Identifying
participants’ bullying roles (Figure 1.1) is another important task, which is also a
prerequisite for studying how a person’s role evolves over time.

As shown and introduced in Figure 1.1, the original six categories we searched
for were derived from Salmivalli (1999): bully, victim, bystander, defender, assistant,
and reinforcer. For bullying traces in social media, we augmented the traditional
role system with two new roles: reporter (i.e., one who shares information about an
episode but is not involved in any way, including as a bystander), and accuser (i.e.,
one who directly accuses someone of a bullying role in the post but it is unclear
whether the author is a victim, defender, or some other role). Both roles can be a
victim, a defender, or a bystander in the traditional sense – there is just not enough
information in the tweet. Accuser (A), bully (B), reporter (R) and victim (V) are the
four most frequent roles observed in social media. We merged all remaining roles
into a generic category “other” (O) in the following study. Our task is to classify
the role (A, B, R, V, O) of the tweet author and any person-mentions in a tweet. For
example, AUTHOR(R): “We(R) visited my(V) cousin(V) today & #Itreallymakesmemad
that he(V) barely eats bec he(V) was bullied . :( I(R) wanna kick the crap out of those mean(B)

kids(B).” Note that the special token “AUTHOR” is introduced to hold the label of
the author’s role.

Labeling the author’s role and other person-mention’s role are two different
sub-tasks. The former can be formulated as a multi-class text classification task;
the latter is better formulated as a sequential tagging task. We will discuss them
separately below.
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predicted as
A B R V O

A 33 3 39 10 1
B 5 25 57 11 0
R 15 5 249 27 0
V 1 4 48 109 0
O 1 1 37 3 0

Table 2.3: Confusion matrix of author role classification

Author’s Roles

Methods. Our annotators labeled the author’s role for each of the 684 positive
bullying traces in 1,732 tweets in Bullying Traces Data Set (version 1, Appendix A.1)
(296 R, 162 V, 98 B, 86 A, 42 O). We used the same classifiers and features described
in Section 2.1. We conducted 10-fold cross validation to evaluate all combinations
of classifiers and feature sets. Like before, we tuned all parameters jointly by 5-fold
cross validation on the training set with the grid {2−8, 2−6, . . . , 28}.

Results. The best combination was SVM(linear) + 1g2g with cross validation
accuracy 61%. Even though it is far from perfect, it is significantly better than the
majority class (R) baseline of 43%. It shows that there is signal in the text to infer
the authors’ roles.

Table 2.3 shows the confusion matrix of the best model. Most R and V authors
were correctly recognized, but not B and A. The model misclassified many authors
as R. It is possible that the tweets authored by reporters are diverse in topic and
style, and overlap with other classes in the feature space.

Discussion. As tweets are short, our feature representation may not be the best
for predicting the author’s role. Many authors mentioned themselves in the tweets
with first-person pronouns, making it advantageous to consider joint classification
on the author’s role and the person-mention’s role. Furthermore, assuming roles
change infrequently, it may be helpful to jointly classify many tweets authored by
the same person.
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Total predicted as
accuser bully defender reporter victim other

accuser 317 212 12 9 56 28 0
bully 303 24 165 4 45 65 0
defender 178 30 6 39 77 26 0
reporter 708 44 19 12 575 58 0
victim 589 19 16 3 63 488 0
other 7 0 0 0 6 1 0

Table 2.4: Confusion matrix of author role classification (six roles)

Who is Posting about Bullying on Twitter?

With the classifier to identify the author’s role, we next sought to identify the role-
players who post about bullying episodes on Twitter as well as their distribution
in order to describe who posts about bullying versus who participates in bullying.
To achieve more accurate results, out annotators labeled the role of the author of
every post identified as a bullying trace in the training set of 7,321 posts randomly
selected from dates August 6, 2011 through August 31, 2011. This dataset and its
documentation is archived as Bullying Trace Data Set (Version 3, more details in
Appendix A.1). The inter-rater agreement for these nine categories was calculated
based on two coders coding 1,000 of the 7,321 posts. It was determined to be κ =
.79. The human-coded data, presented in Table 2.4, revealed that among the 2,102
bullying traces, reporters (708 (33.68%) bullying trace authors) and victims (589
(28.02%) of bullying trace authors) were the two most frequent types of authors of
bullying posts.

Because only a very small number of assistants and reinforcers were identified,
we classified these groups together into an “other” category. We trained an author
role classifier SVM(linear)+ 1g2g as in the previous section. With this larger training
set, it was able to reliably distinguish defenders from other roles, and achieved
70% cross validation accuracy. The classifier is archived in our repository (see
Appendix B.2).
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Human-Code 9/1/11 - 8/31/12 9/1/12 - 8/31/13 total
Count % Count % Count % Count %

accuser 317 15.1% 662,880 16.8% 983,801 16.9% 1,646,681 16.9%
bully 303 14.4% 496,039 12.5% 685,269 11.8% 1,181,308 12.1%
defender 178 8.5% 99,322 2.5% 145,900 2.5% 245,222 2.5%
reporter 708 33.7% 1,337,205 33.8% 1,838,376 31.7% 3,175,581 32.5%
victim 589 28.0% 1,360,001 34.4% 2,155,759 37.1% 3,515,760 36.0%
other 7 0.3% 11 0.0% 20 0.0% 31 0.0%

Table 2.5: Distribution of human-coded and machine learning identified author
roles

To analyze who posted across all bullying traces during the 2011-2013 school
years, we applied the Author’s Role Classifier to the Bullying Traces in Two Aca-
demic Years data set (see Appendix A.2). Table 2.4 shows the confusion matrix that
illustrates agreement and disagreement between the human-coded bullying role
and the predicted bullying role when we used machine learning methods on the
data.

The classifier found a similar distribution as our coded data with victims (36.0%,
n = 3,515,760) and reporters (32.5%, n = 3,175,581) being identified as authors of
bullying traces most frequently. Table 2.5 contains the distributions across roles for
both the human-coded and machine-coded data for each school year independently
as well as across the two-year time span.

Person-Mention Roles

Many users mentioned in tweet text are also participants involved in a bullying
episode. This sub-task labels each person-mention with a bullying role. It uses
Named Entity Recognition (NER) (Finkel et al., 2005; Ratinov and Roth, 2009; Ritter
et al., 2011) as a subroutine to identify named person entities, though we are also
interested in unnamed persons such as “my teacher” and pronouns. It is related to
Semantic Role Labeling (SRL) (Gildea and Jurafsky, 2002; Punyakanok et al., 2008)
but differs critically in that our roles are not tied to specific verb predicates.
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Methods. Our annotators labeled each token in 684 bullying traces in Bullying
Traces Data Set (version 1, see Appendix A.1) with the tags A, B, R, V, O and N for
not-a-person. There were 11,751 tokens in total. Similar to the sequential tagging
formulation (Màrquez et al., 2005; Liu et al., 2010), we trained a linear CRF to label
each token in the tweet with the CRF++ package (http://crfpp.sourceforge.net/).

As standard in linear CRFs, we used pairwise label features f(yi−1,yi) and input
features f(yi, w), where f’s are binary indicator functions on the values of their
arguments and w is the text. In the following, we introduce our input features using
the example tweet “@USERNAME i’ll tell vinny you bullied me.” with the current
token wi =“vinny”:

(i) The token, lemma, and POS tag of the five tokens around position i. For
example, fbully,wi−1=tell(yi, w) will be 1 if the current token has label yi = “bully ′′

and wi−1 = “tell ′′. Similarly, fvictim,POSi+2=VBD(yi, w) will be 1 if yi = “victim ′′

and the POS of wi+2 is VBD.
(ii) The NER tag of wi.
(iii) Whether wi is a person-mention. This is a Boolean feature that is true if wi

is tagged as PERSON by NER, or if POSi = pronoun (excluding “it”), or if wi is
@USERNAME. For example, this feature is true on “vinny” because it is tagged as
PERSON by NER.

(iv) The relevant verb vi of wi, vi’s lemma, POS, and the combination of vi
with the lemma/POS of wi. The relevant verb vi of wi is defined by the semantic
dependency between wi and the verb, if one exists. Otherwise, vi is the closest
verb to wi. For example, the relevant verb of wi = “vinny ′′ is vi = “tell ′′ because
“vinny” is found as the object of “tell” by dependency parsing.

(v) The distance, relative position (left or right), and dependency type between
vi andwi. For example, the distance between “vinny” and its relevant verb “tell” is
1. “vinny” is on the right and is the object of “tell”.

The lemma, POS tags, NER tags and dependency relationship were obtained
using Stanford CoreNLP.

As a baseline, we trained SVM(linear) with the same input features as CRF.
Classification was done individually on each token. We randomly split the 684
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Accuracy Precision Recall F-1
CRF 0.87 0.53 0.42 0.47
SVM 0.85 0.42 0.31 0.36

Table 2.6: Cross validation result of person-mention roles

tweets into 10 folds and conducted cross validation based on this split. For CRF,
we trained on the tweets in the training set with their labels, and tested the model
on those in the test set. For SVM, we trained and tested at the token level in the
corresponding sets.

Results. Table 2.6 reports the cross validation accuracy, precision, recall and
F-1 measure. Accuracy measures the percentage of tokens correctly assigned the
groundtruth labels, including N (not-a-person) tokens. Precision measures the
fraction of correctly labeled person-mention tokens over all tokens that are not
N according to the algorithm. Recall measures the fraction of correctly labeled
person-mention tokens over all tokens that are not N according to the groundtruth.
F-1 is the harmonic mean of precision and recall. Linear CRF achieved an accuracy
of 87%, which is higher than the baseline of majority class predictor (N, 0.80) (t-test,
p = 10−10). However, the precision and recall is low, potentially because the tweets
are short and noisy. CRF outperformed SVM in all measures, showing the value of
joint classification.

Discussion. Table 2.7 shows the confusion matrix of person-mention role la-
beling by a linear CRF. There are several reasons for these mistakes. First, words
like “teacher,” “sister,” or “girl” were missed by our person mention feature (iii).
Second, the NER tagger was trained on formal English, which is a mismatch for the
informal tweets, leading to NER errors. Third, noisy labeling continues to affect
accuracy. For example, some annotators considered “other people” as an entity
and labeled both tokens as person mentions; others labeled “people” only.

In general, bullying role labeling may be improved by jointly considering multi-
ple tweets at the episode level. Co-reference resolution should improve the perfor-
mance as well.
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predicted as
A B R V O N

A 0 4 5 10 0 4
B 0 406 13 125 103 302
R 0 28 31 67 0 13
V 0 142 28 380 43 202
O 0 112 4 42 156 86
N 0 78 4 41 16 9,306

Table 2.7: Confusion matrix of person-mention roles by CRF

Total predicted as
general cyberbullying verbal physical

general 1,857 1,831 20 4 2
cyberbullying 145 68 73 4 0
verbal 67 53 12 2 0
physical 33 32 0 0 1

Table 2.8: Confusion matrix of the forms of bullying traces

Human-Code 9/1/11 - 8/31/12 9/1/12 - 8/31/13 total
Count % Count % Count % Count %

general 1,857 88.3% 3,765,015 95.2% 5,531,636 95.2% 9,296,651 95.2%
cyberbullying 145 6.9% 164,866 4.2% 239,517 4.1% 404,383 4.1%
verbal 67 3.2% 20,403 0.5% 30,931 0.5% 51,334 0.5%
physical 33 1.6% 5,174 0.1% 7,041 0.1% 12,215 0.1%

Table 2.9: Distribution of human-coded and machine learning identified bullying
forms

2.3 Understanding What Forms of Bullying are
Mentioned or Used in Bullying Traces

Bullying takes multiple forms, most noticeably face-to-face physical (e.g., hit-
ting), verbal (e.g., name-calling), relational (e.g., exclusion), and cyber (e.g., hack-
ing) (Archer and Coyne, 2005; Little et al., 2003; Nylund et al., 2007; Wang et al.,
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2009). Any form may be represented on Twitter because interactions, in both physi-
cal world and online, can be mentioned. We aimed to identify the distribution of
bullying forms in mentions of bullying on Twitter to establish whether these forms
are distinguishable in social media posts, and, if they are, which forms are most
prevalent.

Two annotators labeled the form of bullying mentioned in every post identified
as a bullying trace in the training set of 7,321 posts in the Bullying Trace Data
Set (Version 3, see Appendix A.1). The categories were general (no information
was provided to indicate a form), cyberbullying, physical, verbal, relational, and
property damage (see (Wang et al., 2009) for sample behaviors that correspond to
these categories). The inter-rater agreement across two human coders for these
seven categories was κ = .77.

With the labeled training data, we built a text classifier to predict the forms
of bullying traces (see Appendix B.3) with the annotated data. Due to the small
number of examples for some of the categories, the classifiers were not able to
recognize them correctly when we applied machine learning methods. As a result,
we removed the categories of property damage and relational. After doing this, the
classifier achieved 70% accuracy (see Table 2.8).

Across all bullying traces in 2011-2013 in the Bullying Traces in Two Academic
Years data set (see Appendix A.2), the classifier found that posts about general forms
of bullying were by far the most common–95.2% (n = 9,296,651) of the bullying
traces. Cyberbullying posts comprised the next most frequent form (4.1%, n =
404,383 posts). See the middle panel in Table 2.9 for the counts across labelings by
human coders and the Bullying Form Classifier (see Appendix B.3).

2.4 Understanding Why Users Post Bullying Traces

Twitter can serve as a platform for both sharing information (Java et al., 2007)
and making connections with others (Chen, 2011). Both of these are relevant to
understanding why people might post about bullying. Any author might post for
any reason–victims may seek social support through reporting, defenders may
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offer support, and bullies may aggress against others. To understand the different
functions that bullying posts might serve, we identified different categories of
bullying posts (e.g., self-disclosure) and reported their distribution.

The initial categories of why people post about bullying episodes were deter-
mined by our annotators after preliminary coding and discussions of all bullying
traces in the Bullying Traces Data Set (Version 1, see Appendix A.1). The different
types of bullying traces identified were:

• Reports: Posts that described a bullying episode someone knows about, e.g.,
“some tweens got violent on the n train, the one boy got off after blows 2 the chest....
Saw him cryin as he walkd away :( bullying not cool.”

• Accusations: Posts that accused someone as the bully in an episode, e.g.,
“@USER i didnt jump around and act like a monkey T T which of your eye saw that
i acted like a monkey :( you’re a bully.”

• Self-Disclosures: Posts that revealed the author himself/herself as the bully,
victim, defender, bystander, assistant, or reinforcer, e.g., “People bullied me for
being fat. 7 years later, I was diagnosed with bulimia.”

• Denials: Posts where the author denied a bullying role, e.g., “@USER lol I’m
not a bully man”

• Cyberbullying: Posts that were direct attacks from a bully to a victim. For
example, “@USER really I am just cyberbullying you right now.”

Two annotators labeled the types of bullying trace in Bullying Trace Data Set
(Version 3, see Appendix A.1). The inter-rater agreement for these five categories
based on two human coders was κ = .76. We trained a Bullying Trace Type Classifier
(i.e., why people post) classifier with SVM(linear) + 1g2g (see Appendix B.5). The
accuracy of this classification was 72% (see Table 2.10 for the confusion matrix).
To analyze the distribution across all bullying traces in 2011-2013, we applied the
Bullying Trace Type Classifier to the Bullying Traces in Two Academic Years data set
(Appendix A.2). The classifier found that self-disclosure posts (54.3%, n = 5,306,451)
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Total predicted as
accusation cyberbullying denial report self-disclosure

accusation 316 196 0 2 54 64
cyberbullying 16 4 0 0 7 5
denial 128 10 0 32 9 77
report 709 36 0 0 538 135
self-disclosure 933 48 0 3 132 750

Table 2.10: Confusion matrix of the types of bullying traces

Human-Code 9/1/11 - 8/31/12 9/1/12 - 8/31/13 total
Count % Count % Count % Count %

accusation 316 15.0% 595,383 15.1% 887,508 15.3% 1,482,891 15.2%
cyberbullying 16 0.8% 14 0.0% 28 0.0% 42 0.0%
denial 128 6.1% 79,630 2.0% 106,298 1.8% 185,928 1.9%
report 709 33.7% 1,175,234 29.7% 1,614,037 27.8% 2,789,271 28.6%
self-disclosure 933 44.4% 2,105,197 53.2% 3,201,254 55.1% 5,306,451 54.3%

Table 2.11: Distribution of human-coded and machine learning identified bullying
trace types

were most common followed by reports (28.6%, n = 2,789,271), accusations (15.2%,
n = 1,482,891) and denials (1.9%, n = 185,928). See Table 2.11 for more details.

2.5 Understanding the Topics in Bullying Traces

Besides these quantitative studies of bullying traces, understanding what topics
users are talking about in bullying traces is also helpful for social scientists. Given
the large volume of bullying traces, methods for automatically analyzing what
people are talking about are needed.

Methods. Latent topic models allow us to extract the main topics in bullying
traces to facilitate understanding. We used latent Dirichlet allocation (LDA) (Blei
et al., 2003) as our exploratory tool. Specifically, we ran a collapsed Gibbs sampling
implementation of LDA (Griffiths and Steyvers, 2004).
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The corpus consisted of 188,000 enriched tweets from August 21 to September 17,
2011 that were classified as bullying traces by our Binary Bullying Trace Classifier
(see Appendix B.1). The dataset and its documentation is archived as the Topics in
Bullying Traces (see Appendix A.3). We performed stopword removal and further
removed word types occurring less than 7 times, resulting in a vocabulary of size
about 12,000. We set the number of topics to 50, the Dirichlet parameter for word
multinomials to β = 0.01, the Dirichlet parameter for document topic multinomial
to α = 1, and ran Gibbs sampling for 10,000 iterations.

Results. Space precludes a complete list of topics. Figure 2.2 shows six selected
topics discovered by LDA. Recall that each topic in LDA is a multinomial distri-
bution over the vocabulary. The figure shows each topic’s top 20 words with size
proportional to P(word | topic). The topic names were manually assigned.

These topics contain semantically coherent words relevant to bullying: (feelings)
how people feel about bullying; (suicide) discussions of suicide events; (family) sib-
ling names probably used in a good buddy sense; (school) the school environment
where bullying commonly occurs; (verbal bullying) derogatory words such as fat
and ugly; (physical bullying) actions such as kicking and pushing.

We also ran a variational inference implementation of LDA (Blei et al., 2003).
The results were similar, so we omit discussion of them here.

Discussion. Some recovered topics, including the ones shown here, provide
valuable insights into bullying traces. However, not all topics are interpretable to
social scientists. It may be helpful to allow scientists the ability to combine their
domain knowledge with latent topic modeling, thus arriving at more useful topics.
For example, the scientists can formulate their knowledge in First-Order Logic,
which can then be combined with LDA with stochastic optimization (Andrzejewski
et al., 2011).
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“feelings” “suicide” “family”

“school” “verbal bullying” “physical bullying”

Figure 2.2: Selected topics discovered by latent Dirichlet allocation.
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3 spatiotemporal distribution of bullying traces

Several spatial and timing issues related to bullying episodes are important to
know. For example, social scientists want to know if the prevalence rates of bullying
episodes are different across different cultures and geography. From longitudinal
research, we know when students are most likely to identify as victims across
multiple school years (Nylund et al., 2007). We know little about the timing of
discrete bullying episodes. Monitoring the spatiotemporal variations of bullying
episodes is also important to evaluate the effectiveness of special campaigns or
policies, proving feedback to educators and policy makers.

Besides prevalence rates of bullying episodes, many real-world phenomena of
interest are spatiotemporal in nature as well. Examples include wildlife mortality,
algal blooms, hail damage, and seismic intensity. The signal can be characterized
by a real-valued intensity function f ∈ R>0, where the value fs,t quantifies the
prevalence of the phenomenon at location s and time t. Direct sensing of f using
instruments is often difficult and expensive. Social media offers a unique sensing
opportunity for such spatiotemporal signals, where users serve the role of “sensors”
by posting their experiences of a target phenomenon. For instance, social media
users readily post their encounters with dead animals: “I saw a dead crow on its back
in the middle of the road.”

There are at least three challenges faced when using human social media users
as sensors:

1. Social media sources are not always reliable and consistent, due to factors
including the vagaries of language and the psychology of users. This makes
identifying topics of interest and labeling social media posts extremely chal-
lenging.

2. Social media users are not under our control. In most cases, users cannot be
directed or focused or maneuvered as we wish. The distribution of human
users (our sensors) depends on many factors unrelated to the sensing task
itself.
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3. Location and time stamps associated with social media posts may be erroneous
or missing. Most posts do not include GPS coordinates, and self-reported
locations can be inaccurate or false. Furthermore, there can be random delays
between an event of interest and the time of the social media post related to
the event.

Most prior work in social media event analysis has focused on the first challenge.
Sophisticated natural language processing techniques have been used to identify
social media posts relevant to a topic of interest (Yang et al., 1998; Becker et al., 2011;
Sakaki et al., 2010) and machine learning tools have been proposed to discover
popular or emerging topics in social media (Allan, 2002; Mei et al., 2006; Yin et al.,
2011). We discuss the related work in detail in Section 3.3.

In this chapter, we focus on the latter two challenges. We are interested in a
specific topic or target phenomenon of interest that is given, and we assume that
we are also given a (perhaps imperfect) method, such as our Binary Bullying Trace
Classifier. The main concerns of this work are to deal with the highly non-uniform
distribution of human users (sensors), which affects our capabilities for sensing
natural phenomena, and to cope with the uncertainties in the location and time
stamps associated with related social media posts. The main contribution is a
methodology for deriving accurate spatiotemporal maps of the target phenomenon
in light of these two challenges.

We first analyzed the raw counts of GPS-tagged bullying traces identified in
the academic years 2011-2013 as an empirical exploration study of spatiotemporal
distribution of bullying episodes (Bellmore et al., 2015). However, as mentioned,
counting is plagued by sample bias, incomplete data, and, paradoxically, data
scarcity. We formulate signal recovery as a Poisson point process estimation prob-
lem, which can be used for other applications as well. We propose Socioscope (Xu
et al., 2012a, 2013a) in Section 3.3, which explicitly incorporates human population
bias, time delays and spatial distortions, and spatiotemporal regularization into
the model to address noisy count issues. The code of Socioscope is archived as
Socioscope in our code repository (see Appendix B.4).
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3.1 Where are People Posting about Bullying on
Twitter?

Bullying cross-cuts culture and geography (Jimerson et al., 2010). A real-time social
media source such as Twitter may reveal temporary hot spots of bullying post
activity. These might reflect different authors posting about a single newsworthy
bullying episode or different authors posting about different episodes all occurring
in one locale. To understand how bullying is represented across the United States,
we identified the location of origin of bullying posts and reported their prevalence
relative to the size of the population of their origin.

The geographic location of the source of the post was determined from posts in
which users enabled the Twitter option to provide the Global Positioning System
(GPS) coordinates of their location within their posted tweet. We applied our Binary
Bullying Traces Classifier (see Appendix B.1) to the Bullying Traces in Two Academic
Years dataset (see Appendix A.2). Of 9,764,583 bullying traces identified in the
academic years 2011-2013, about 2% (191,657) of them contain GPS coordinates. We
used a reverse geocoding database (http://www.datasciencetoolkit.org) to obtain
the state names and determined that 105,655 originated in the United States.

To understand the origins of bullying traces, we estimated the number of bully-
ing traces per capita for the 50 US states and Washington DC identified through
posts that contained GPS information. Figure 3.1 shows the state names listed
in alphabetical order, their population based on the 2010 census, the number of
bullying traces, and the per capita number of bullying traces for the years 2011-
2012, 2012-2013, and total. We also present the ranking of each state based on
their population size and their per capita volume of bullying traces. The five states
with the largest number of bullying traces per capita are Delaware, Washington
DC, Maryland, Ohio, and Rhode Island for the period 2011-2013. Spearman rank
order correlations reveal a positive association between rankings of states based on
population size and rankings of states based on the number of bullying traces per
capita, rs (51) = .38, p = .006 in 2011-2012 and rs (51) = .30, p = .033 in 2012-2013.
These values reflect moderate effect sizes (Cohen, 1998).
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Figure 3.1: State population size, number of GPS bullying traces, per capita bullying
traces, and population ranks and per capita bullying traces rank for 50 states and
the District of Columbia between September 1, 2011 and August 31, 2013.
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Figure 3.2: Association between ranking of number of bullying traces per capita (1=
largest; 51 = smallest) and population size (1 = largest; 51 = smallest) for 50 states
and the District of Columbia in 2011-2012 and 2012-2013.
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The imperfect association between population size ranking and the number
of bullying traces per capita ranking is illustrated in Figure 3.2. In both years,
Delaware, Rhode Island, and the District of Columbia emerge as outliers by ranking
high on bullying traces relative to their small populations. We inspected all of
the bullying traces identified in these states across the study period and found no
evidence of any irregularities such as many posts over a short period of time or
many posts referring to the same high profile bullying episode in any location that
would explain their outlier status. In the future work, we plan to investigate the
correlations between bullying trace counts with other factors, such as per capita
income, to see if there are strong correlated factors with bullying.

3.2 When are People Posting about Bullying on
Twitter?

Several timing issues related to bullying episodes are important to know. In this
section, we report on the distribution of bullying episodes across two school years
to determine what days of the week and what times of the day posts occur. We
expected to see fewer bullying traces on weekends when individuals are away from
school and work contexts.

To understand the distribution of bullying traces across time, we evaluated
which day of the week and what time of day bullying traces occur most frequently.
The timestamp is in Coordinated Universal Time (UTC), which may not be the user’s
local time. Establishing the location of each post was necessary to appropriately
determine the time. In this section, we use geo-tagged tweets to get accurate
information of local times. Again, we used the bullying traces identified by our
Binary Bullying Traces Classifier (see Appendix B.1) in Bullying Traces in Two
Academic Years dataset gt(see Appendix A.2). We calculated the timing from the
bullying traces in one east coast state, New York, and from one west coast state,
California, for both years 2011-2013 under investigation. We chose these two states
because they had the largest number of GPS-tagged bullying traces and contained
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Figure 3.3: Number of bullying traces on each day of the week in New York and
California in 2011-2012 and 2012-2013.

Figure 3.4: Number of bullying traces for each hour of the day from September 1,
2011 through August 31, 2012 (left) and September 1, 2012 through August 31, 2013
(right) that originated in New York and California
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a single time-zone. We converted the time in the tweet to the local time in that
location and counted the number of bullying traces created in each hour-of-the-day
and day-of-the-week. We used chi-square tests to evaluate whether the distribution
of bullying traces was statistically uniform across the days of the week in either
time period in both New York and California. The chi-square analyses indicated
that the distribution was not uniform across days of the week in both New York,
χ2(6) = 31.29, p < .001 in 2011-2012 and χ2(6) = 59.78, p < .001 in 2012-2013, and
California χ2(6) = 52.32, p < .001 in 2011-2012 and χ2(6) = 182.62, p < .001 in
2012-2013. The effect size for each test was small (Cohen’s w = .13 and .12 for
New York in 2011-2012 and 2012-2013 and Cohen’s w = .13 and .14 for California
in 2011-2012 and 2012-2013). The standardized residuals indicate that Saturdays
consistently contained fewer posts about bullying episodes than expected if the
posts were distributed evenly across all days in each location and in both years.
Figure 3.3 contains the actual counts, expected counts, and standardized residuals
for each day of the week. With respect to the time of day that bullying traces are
posted, Figure 3.4 illustrates that there is a diurnal pattern such that most posts
occur in waking periods (especially during the evening hours) in both locations in
both years.

3.3 The Socioscope: A Spatiotemporal Model of
Social Media

The Proposed Model

We propose Socioscope, a probabilistic model that robustly recovers spatiotemporal
signals from social media data. Formally, the signal can be characterized by a
real-valued intensity function f ∈ R>0, where the value fs,t quantifies the preva-
lence of the phenomenon at location s and time t. Consider f defined on discrete
spatiotemporal bins. For example, bin (s, t) could be a U.S. state s on day t, or a
county s in hour t. Once we identify the target social media, we can obtain xs,t, the
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count of target social media posts within that bin. The task is to estimate fs,t from
xs,t. A commonly-used estimate is f̂s,t = xs,t itself. This estimate can be justified
as the maximum likelihood estimate of a Poisson model x ∼ Poisson(f). This idea
underlies several emerging systems such as earthquake damage monitoring from
Twitter (Earle et al., 2010). However, this estimate is unsatisfactory since the counts
xs,t can be noisy: as mentioned before, the estimate ignores population bias – more
target posts are generated when and where there are more social media users; the
location of a target post is frequently inaccurate or missing, making it difficult
to assign to the correct bin; and target posts can be sparse even though the total
volume of social media is huge. Socioscope addresses these issues.

For notational simplicity, we often denote our signal of interest by a vector
f = (f1, . . . , fn)> ∈ Rn>0, where fj is a non-negative target phenomenon intensity
in source bin j = 1 . . .n. We will use a wildlife example throughout the section. In
this example, a source bin is a spatiotemporal unit such as “California, day 1,” and
fj is the squirrel activity level in that unit. The mapping between index j and the
aforementioned (s, t) is one-one and will be clear from context.

Correcting Human Population Bias

For now, assume each target post comes with precise location and time metadata.
This allows us to count xj, the number of target posts in bin j. Given xj, it is tempting
to use the maximum likelihood estimate f̂j = xj which assumes a simple Poisson
model xj ∼ Poisson(fj). However, this model is too naive: Even if fj = fk, e.g., the
level of squirrel activities is the same in two bins, we would expect xj > xk if there
are more people in bin j than in bin k, simply because more people see the same
group of squirrels.

To account for this population bias, we define an “active social media user popu-
lation intensity” (informally called “human population” below) g = (g1, . . . ,gn)> ∈
Rn>0. Let zj be the count of all social media posts in bin j, the vast majority of which
are not about the target phenomenon. We assume zj ∼ Poisson(gj). Since typically
zj � 0, the maximum likelihood estimate ĝj = zj is reasonable.
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Importantly, we then posit the Poisson model

xj ∼ Poisson(η(fj,gj)). (3.1)

The intensity is defined by a link function η(fj,gj). In this section, we simply define
η(fj,gj) = fj ·gj but note that other more sophisticated link functions can be learned
from data. Given xj and zj, one can then estimate fj with the plug-in estimator
f̂j = xj/zj.

Handling Noisy and Incomplete Data

This would be the end of the story if we could reliably assign each post to a source
bin. Unfortunately, this is often not the case for social media. In this section, we
focus on the problem of spatial uncertainty due to noisy or incomplete social media
data. A prime example of spatial uncertainty is the lack of location metadata in posts
from Twitter (called tweets).1 In recent data we collected, only 3% of tweets contain
the latitude and longitude at which they were created. Another 47% contain a valid
user self-declared location in his or her profile (e.g., “New York, NY”). However,
such a location does not automatically change when the user travels and thus may
not be the true location at which a tweet is posted. The remaining 50% do not
contain location at all. Clearly, we cannot reliably assign the latter two kinds of
tweets to a spatiotemporal source bin. 2

To address this issue, we borrow an idea from Positron Emission Tomogra-
phy (Vardi et al., 1985). In particular, we definem detector bins, which are conceptu-
ally distinct from the n source bins. The idea is that an event originating in some

1It may be possible to recover occasional location information from the tweet text itself instead
of the metadata, but the problem still exists.

2Another kind of spatiotemporal uncertainty exists in social media even when the local and
time metadata of every post is known: social media users may not immediately post right at the
spot where a target phenomenon happens. Instead, there usually is an unknown time delay and
spatial shift between the phenomenon and the post generation. For example, one may not post a
squirrel encounter on the road until she arrives at home later; the local and time metadata only
reflects tweet-generation at home. This type of spatiotemporal uncertainty can be addressed by the
same source-detector transition model.
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source bin goes through a transition process and ends up in one of the detector
bins, where it is detected. This transition is modeled by anm× nmatrix P = {Pij}

where
Pij = Pr(detector i | source j). (3.2)

P is column stochastic:
∑m
i=1 Pij = 1, ∀j. We defer the discussion of our specific P to

a case study, but we mention that it is possible to reliably estimate P directly from
social media data (more on this later). Recall the target post intensity at source bin
j is η(fj,gj). We use the transition matrix to define the target post intensity hi (note
that hi can itself be viewed as a link function η̃(f, g)) at detector bin i:

hi =

n∑
j=1

Pijη(fj,gj). (3.3)

For the spatial uncertainty that we consider, we create three kinds of detector
bins. For a source bin j such as “California, day 1,” the first kind collects target
posts on day 1 whose latitude and longitude metadata is in California. The second
kind collects target posts on day 1 without latitude and longitude metadata, but
whose user self-declared profile location is in California. The third kind collects
target posts on day 1 without any location information. Note the third kind of
detector bin is shared by all other source bins for day 1, such as “Nevada, day 1,”
too. Consequently, if we had n = 50T source bins corresponding to the 50 US states
over T days, there would bem = (2× 50 + 1)T detector bins.

Critically, our observed target counts x are now with respect to them detector
bins instead of the n source bins: x = (x1, . . . , xm)>. We will also denote the count
sub-vector for the first kind of detector bins by x(1), the second kind x(2), and the
third kind x(3). The same is true for the overall counts z. A trivial approach is to
only utilize x(1) and z(1) to arrive at the plug-in estimator

f̂j = x
(1)
j /z

(1)
j . (3.4)

As we will show, we can obtain a better estimator by incorporating noisy data x(2)
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and incomplete data x(3). z(1) is sufficiently large so we will simply ignore z(2) and
z(3).

Socioscope: Penalized Poisson Likelihood Model

We observe target post counts x = (x1, . . . , xm) in the detector bins. These are
modeled as independent Poisson-distributed random variables:

xi ∼ Poisson(hi), for i = 1 . . .m. (3.5)

The log likelihood factors are

`(f) = log
m∏
i=1

hxii e
−hi

xi!
=

m∑
i=1

(xi loghi − hi) + c, (3.6)

where c is a constant. In (3.6) we treat g as given.
Target posts may be scarce in some detector bins. Indeed, we often have zero

target posts for the wildlife case study to be discussed later. This problem can be
mitigated by the fact that many real-world phenomena are spatiotemporally smooth,
i.e., “neighboring” source bins in space or time tend to have similar intensity. We
therefore adopt a penalized likelihood approach by constructing a graph-based
regularizer. The undirected graph is constructed so that the nodes are the source
bins. Let W be the n× n symmetric non-negative weight matrix. The edge weights
are such that Wjk is large if j and k correspond to neighboring bins in space and
time. Since W is domain specific, we defer its construction to the case study.

Before discussing the regularizer, we need to perform a change of variables.
Poisson intensity f is non-negative, necessitating a constrained optimization prob-
lem. It is more convenient to work with an unconstrained problem. To this end, we
work with the exponential family natural parameters of Poisson. Specifically, let

θj = log fj, ψj = log gj. (3.7)

Our specific link function becomes η(θj,ψj) = eθj+ψj . The detector bin intensities
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become hi =
∑n
j=1 Pijη(θj,ψj).

Our graph-based regularizer applies to θ directly:

Ω(θ) =
1
2
θ>Lθ, (3.8)

where L is the combinatorial graph Laplacian (Chung, 1997): L = D − W, and D is
the diagonal degree matrix with Djj =

∑n
k=1Wjk.

Finally, Socioscope is the following penalized likelihood optimization problem:

min
θ∈Rn

−

m∑
i=1

(xi loghi − hi) + λΩ(θ), (3.9)

where λ is a positive regularization weight.

Optimization

We solve the Socioscope optimization problem (3.9) with BFGS, a quasi-Newton
method (Nocedal and Wright, 1999). The gradient can be computed by

∇ = λLθ− HP>(r − 1), (3.10)

where r = (r1 . . . rm) is a ratio vector with ri = xi/hi, and H is a diagonal matrix
with Hjj = η(θj,ψj).

We initialize θ with the following heuristic. Given counts x and the transition
matrix P, we compute the least-squared projection η0 to ‖x − Pη0‖2. This projection
is easy to compute. However, η0 may contain negative components not suitable for
Poisson intensity. We force positivity by setting η0 ← max(10−4,η0) element-wise,
where the floor 10−4 ensures that log η0 > −∞. From the definition, η(θ,ψ) =

exp(θ+ψ), we then obtain the initial parameter

θ0 = log η0 −ψ. (3.11)

Our optimization is efficient: problems with more than one thousand variables
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(n) are solved in about 15 seconds with fminunc() in Matlab.

Parameter Tuning

The choice of the regularization parameter λ has a profound effect on the smooth-
ness of the estimates. It may be possible to select these parameters based on prior
knowledge in certain problems, but for our experiments we select these parameters
using a cross-validation (CV) procedure, which gives us a fully data-driven and
objective approach to regularization.

CV is quite simple to implement in the Poisson setting. A hold-out set of data can
be constructed by simply sub-sampling events from the total observation uniformly
at random. This produces a partial data set of a subset of the counts that follows
precisely the same distribution as the whole set, modulo a decrease in the total
intensity per the level of subsampling. The complement of the hold-out set is what
remains of the full dataset, and we will call this the training set. The hold-out set is
taken to be a specific fraction of the total. For theoretical reasons beyond the scope
of this work, we do not recommend leave-one-out CV (Van Der Laan and Dudoit,
2003; Cornec, 2010).

CV is implemented by generating a number of random splits of this type (we
can generate as many as we wish), and for each split we run the optimization
algorithm above on the training set for a range of values of λ. Then compute the
(unregularized) value of the log-likelihood on the hold-out set. This provides us
with an estimate of the log-likelihood for each setting of λ. We then select the
setting that maximizes the estimated log-likelihood.

Theoretical Considerations

The natural measure of signal-to-noise in this problem is the number of counts in
each bin. The higher the counts, the more stable and “less noisy” our estimators
will be. Indeed, if we directly observe xi ∼ Poisson(hi), then the normalized error
E[(xi−hi

hi
)2] = h−1

i ≈ x−1
i . So larger counts, due to larger underlying intensities,

lead to small errors on a relative scale. However, the accuracy of our recovery also



40

depends on the regularity of the underlying function f. If it is very smooth, for
example a constant function, then the error would be inversely proportional to the
total number of counts, not the number in each individual bin. This is because in
the extreme smooth case, f is determined by a single constant.

To give some insight into dependence of the estimate on the total number of
counts, suppose that f is the underlying continuous intensity function of interest.
Furthermore, let f be a Hölder α-smooth function. The parameter α is related to the
number of continuous derivatives f has. Larger values of α correspond to smoother
functions. Such a model is reasonable for the application at hand, as discussed in
our motivation for regularization above. We recall the following minimax lower
bound, which follows from the results in (Donoho et al., 1996; Willett and Nowak,
2007).

Theorem 3.1. Let f be a Hölder α-smooth d-dimensional intensity function and suppose
we observeN events from the distribution Poisson(f). Then there exists a constantCα > 0
such that

inf
f̂

sup
f

E[‖f̂− f‖2
1]

‖f‖2
1

> CαN
−2α

2α+d ,

where the infimum is over all possible estimators.

The error is measured with the 1-norm, rather than two norm, which is a more
appropriate and natural norm in density and intensity estimation. The theorem tells
us that no estimator can achieve a faster rate of error decay than the bound above.
There exist many types of estimators that nearly achieve this bound (e.g., to within a
log factor), and with more work it is possible to show that our regularized estimators,
with adaptively chosen bin sizes and appropriate regularization parameter settings,
could also nearly achieve this rate. For the purposes of this discussion, the lower
bound, which certainly applies to our situation, will suffice.

For example, consider just two spatial dimensions (d = 2) and α = 1 which
corresponds to Lipschitz smooth functions, a very mild regularity assumption.
Then the bound says that the error is proportional to N−1/2. This gives useful
insight into the minimal data requirements of our methods. It tells us, for example,
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that if we want to reduce the error of the estimator by a factor of say 2, then the
total number of counts must be increased by a factor of 4. If the smoothness α is
very large, then doubling the counts can halve the error. The message is simple:
More events and higher counts will provide more accurate estimates.

Related Work

To our knowledge, there is no prior work that focuses on robust signal recovery
from social media (i.e., the “second stage” as mentioned at the beginning of this
chapter). However, there has been considerable related work on the first stage of
identifying target social media posts, which we summarize below.

Topic detection and tracking (TDT) aims at identifying emerging topics from
text streams and grouping documents based on their topics. The early work in this
direction began with news text streamed from newswire services and transcribed
from other media (Allan, 2002). Recent research focused on user-generated content
on the web and on the spatiotemporal variation of topics. Latent Dirichlet Allocation
(LDA) (Blei et al., 2003) is a popular unsupervised method to detect topics. Mei
et al. (2006) extended LDA by taking spatiotemporal context into account to identify
subtopics from weblogs. They analyzed the spatio-temporal pattern of topic θ
by Pr(time|θ, location) and Pr(location|θ, time), and showed that documents
created from the same spatiotemporal context tend to share topics. In the same
spirit, Yin et al. (2011) studied GPS-associated documents, whose coordinates are
generated by Gaussian Mixture Model in their generative framework. Cataldi
et al. (2010) proposed a feature-pivot method. They first identified keywords whose
occurrences dramatically increase in a specified time interval and then connected
the keywords to detect emerging topics. Besides text, social network structure also
provides important information for detecting community-based topics and user
interests.

Event detection is highly related to TDT. Yang et al. (1998) used a clustering
algorithm to identify events from news streams. Others tried to distinguish posts
related to real world events from posts about non-events, such as describing daily
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life or emotions (Becker et al., 2011). Real world events were also detected in Flickr
photos with meta information and Twitter. Other researchers were interested in
events with special characteristics, such as controversial events and local events.
Sakaki et al. (2010) monitored Twitter to detect real-time events such as earthquakes
and hurricanes.

Another line of related work used social media as a data source to answer
scientific questions (Lazer et al., 2009). Most previous work studied questions in
linguistic, sociology and human interactions. For example, Eisenstein et al. (2010)
studied the geographic linguistic variation with geotagged social media. Gupte
et al. (2011) studied social hierarchy and stratification in online social network.

As stated earlier, Socioscope differs from past work in its focus on robust signal
recovery on predefined target phenomena. The target posts may be generated at a
very low, though sustained, rate, and are corrupted by noise. The above approaches
are unlikely to estimate the underlying intensity accurately.

A Synthetic Experiment

We start with a synthetic experiment whose known ground-truth intensity f allows
us to quantitatively evaluate the effectiveness of Socioscope. The synthetic experi-
ment matches the case study in the next section. There are 48 US continental states
plus Washington DC, and T = 24 hours. This leads to a total of n = 1, 176 source
bins, andm = (2× 49 + 1)T = 2, 376 detector bins. The transition matrix P is the
same as in the case study, to be discussed later. The overall counts z are obtained
from actual Twitter data and ĝ = z(1).

We design the ground-truth target signal f to be temporally constant but spatially
varying. Figure 3.5(a) shows the ground-truth f spatially. It is a mixture of two
Gaussian distributions discretized at the state level. The modes are in Washington
and New York, respectively. From P, f and g, we generate the observed target
post counts for each detector bin by a Poisson random number generator: xi ∼

Poisson(
∑n
j=1 Pi,jfjgj), i = 1 . . .m. The sum of counts in x(1) is 56, in x(2) 1,106, and

in x(3) 1,030.
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(i) scaled x(1) 14.11
(ii) scaled x(1)/z(1) 46.73
(iii) Socioscope with x(1) 0.17
(iv) Socioscope with x(1) + x(2) 1.83
(v) Socioscope with x(1), x(2) 0.16
(vi) Socioscope with x(1), x(2), x(3) 0.12

Table 3.1: Relative error of different estimators

Given x, P, g, we compare the relative error ‖f − f̂‖2/‖f‖2 of several estimators
in Table 3.1:

(i) f̂ = x(1)/(ε1
∑

z(1)), where ε1 is the fraction of tweets with precise location
stamp (discussed later in the case study). Scaling matches it to the other estimators.
Figure 3.5(b) shows this simple estimator, aggregated spatially. It is a poor estimator:
besides being non-smooth, it contains 32 “holes” (states with zero intensity, colored
in blue) due to data scarcity.

(ii) f̂ = x(1)
j /(ε1z(1)

j ) which naively corrects the population bias as discussed
in (3.4). It is even worse than the simple estimator, because naive bin-wise correction
magnifies the variance in sparse x(1).

(iii) Socioscope with x(1) only. This simulates the practice of discarding noisy or
incomplete data, but regularizing for smoothness. The relative error was reduced
dramatically.

(iv) Same as (iii) but replace the values of x(1) with x(1)+ x(2). This simulates the
practice of ignoring the noise in x(2) and pretending it is precise. The result is worse
than (iii), indicating that simply including noisy data may hurt the estimation.

(v) Socioscope with x(1) and x(2) separately, where x(2) is treated as noisy by P.
It reduces the relative error further, and demonstrates the benefits of treating noisy
data specially.

(vi) Socioscope with the full x. It achieves the lowest relative error among all
methods, and is the closest to the ground truth (Figure 3.5(c)). Compared to (v),
this demonstrates that even counts x(3) without location can also help us recover f
better.
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(a) ground-truth f (b) scaled x(1) (c) Socioscope

Figure 3.5: The synthetic experiment

Case Study: Roadkill

Before we apply Socioscope to bullying, we want to first apply it to a task where
the signal is likely to be strong and interpretable.

We were unaware of public benchmark data sets to test robust signal recovery
from social media. Several social media datasets were released recently, such as
the ICWSM data challenges and the TREC microblog track. These datasets were
intended to study trending “hot topics” such as the Arab Spring, Olympic Games,
or presidential elections. They are not suitable for low intensity sustained target
phenomena, which is the focus of our approach. In particular, these datasets do
not contain ground-truth spatiotemporal intensities and thus are not appropriate
testbeds for the problems we are trying to address. Instead, we report on a real-
world case study on the spatiotemporal intensity of roadkill for several common
wildlife species from Twitter posts.

The study of roadkill has value in ecology, conservation, and transportation
safety. The target phenomenon consists of roadkill events for a specific species
within the continental United States during the period September 22–November
30, 2011. Our spatiotemporal source bins are state×hour-of-day. Let s index the
48 continental US states plus District of Columbia. We aggregate the 10-week
study period into the 24 hours in a day. The target counts x are still sparse even
with aggregation: for example, most state-hour combinations have zero counts
for armadillo and the largest count in x(1) and x(2) is 3. Therefore, recovering the
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(a) ĝ (b) spatial (c) temporal

Figure 3.6: Human population intensity ĝ.

underlying signal f remains a challenge. Let t index the hours from 1 to 24. This
results in |s| = 49, |t| = 24,n = |s||t| = 1, 176,m = (2|s|+1)|t| = 2, 376. We will often
index source or detector bins by the subscript (s, t), in addition to i or j, below. The
translation should be obvious.

Data Preparation

We chose Twitter as our data source because public tweets can be easily collected
through its APIs. All tweets include time metadata. However, most tweets do not
contain location metadata, as discussed earlier.

Overall Counts z(1) and Human Population Intensity g.
To obtain the overall counts z, we collected tweets through the Twitter stream

API using bounding boxes covering the continental U.S.. The API supplied a sub-
sample of all tweets (not just target posts) with geo-tags. Therefore, all these tweets
included precise latitude and longitude on where they were created. Through a
reverse geocoding database (http://www.datasciencetoolkit.org), we mapped
the coordinates to a US state. There are a large number of such tweets. Counting
the number of tweets in each state-hour bin gave us z(1), from which g is estimated.

Figure 3.6 shows the estimated ĝ. The x-axis is hour of day and the y-axis is the
states, ordered by longitude from east (top) to west (bottom). Although ĝ in this
matrix form contains full information, it can be hard to interpret. Therefore, we
visualize aggregated results as well: First, we aggregate out time in ĝ: for each state

http://www.datasciencetoolkit.org
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s, we compute
∑24
t=1 ĝs,t and show the resulting intensity maps in Figure 3.6(b).

Second, we aggregate out state in ĝ: for each hour of day t, we compute
∑49
s=1 ĝs,t

and show the daily curve in Figure 3.6(c). From these two plots, we clearly see that
human population intensity varies greatly both spatially and temporally.

Identifying Target Posts to Obtain Counts x.
To produce the target counts x, we need to first identify target posts describing

roadkill events. Although not part of Socioscope, we detail this preprocessing step
here for reproducibility.

In step 1, we collected tweets using a keyword API. Each tweet must contain
the wildlife name (e.g., “squirrel(s)”) and the phrase “ran over”. We obtained 5,857
squirrel tweets, 325 chipmunk tweets, 180 opossum tweets and 159 armadillo tweets
during the study period. However, many such tweets did not actually describe
roadkill events. For example, “I almost ran over an armadillo on my longboard, luckily
my cat-like reflexes saved me.” Clearly, the author did not kill the armadillo.

In step 2, we built a binary text classifier to identify target posts. Following
(Settles, 2011), the tweets were case-folded without any stemming or stopword
removal. Any user mentions preceded by a “@” were replaced by the anonymized
user name “@USERNAME”. Any URLs staring with “http” were replaced by the
token “HTTPLINK”. Hashtags (compound words following “#”) were not split
and were treated as a single token. Emoticons, such as “:)” or “:D”, were also
included as tokens. Each tweet is then represented by a feature vector consisting of
unigram and bigram counts. If any unigram or bigram included animal names, we
added an additional feature by replacing the animal name with the generic token
“ANIMAL”. For example, we would created an extra feature “over ANIMAL” for
the bigram “over raccoon”. The training data consists of 1,450 manually labeled
tweets in August 2011 (i.e., outside our study period). These training tweets contain
hundreds of animal species, not just the target species. The binary label is whether
the tweet is a true first-hand roadkill experience. We trained a linear Support Vector
Machine (SVM). The CV accuracy was nearly 90%. We then applied this SVM to
classify tweets surviving step 1. Those tweets receiving a positive label were treated
as target posts.
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In step 3, we produce x(1), x(2), x(3) counts. Because these target tweets were
collected by the keyword API, the nature of the Twitter API means that most do not
contain precise location information. As mentioned earlier, only 3% of them contain
coordinates. We processed this 3% using the same reverse geocoding database to
map them to a US state s, and place them in the x(1)

s,t detection bins. 47% of the
target posts did not contain coordinates but can be mapped to a US state from the
user’s self-declared profile location. These are placed in the x(2)

s,t detection bins.
The remaining 50% contained no location metadata, and were placed in the x(3)

t

detection bins. 3

Constructing the Transition Matrix P. In this study, P characterizes the fraction
of tweets that were actually generated in source bin (s, t) and end up in the three
detector bins: precise location st(1), potentially noisy location st(2), and missing
location t(3). We define P as follows:
P
(s,t)(1),(s,t) = 0.03, and P

(r,t)(1),(s,t) = 0 for ∀r 6= s to reflect the fact that we know
precisely 3% of the target posts’ location.
P
(r,t)(2),(s,t) = 0.47Mr,s for all r, s. M is a 49× 49 “mis-self-declare” matrix. Mr,s

is the probability that a user self-declares in her profile that she is in state r, but
her post is in fact generated in state s. We estimated M from a separate large set of
tweets with both coordinates and self-declared profile locations. The M matrix is
asymmetric and interesting in its own right: many posts self-declared in California
or New York were actually produced all over the country; many self-declared
in Washington DC were actually produced in Maryland or Virgina; more posts
self-declare Wisconsin but were actually in Illinois than the other way around.
Pt(3),(s,t) = 0.50. This aggregates tweets with missing information into the third

kind of detector bins.
Specifying the Graph Regularizer. Our graph has two kinds of edges. Tempo-

ral edges connect source bins with the same state and adjacent hours by weight
wt. Spatial edges connect source bins with the same hour and adjacent states by
weight ws. The regularization weight λwas absorbed into wt and ws. We tuned

3There were actually only a fraction of all tweets without location which came from all over the
world. We estimated this US/World fraction using z.
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the weights wt and ws with CV on the 2D grid {10−3, 10−2.5, . . . , 103}2.

Results

We present results on four animals: armadillos, chipmunks, squirrels, and opos-
sums. Perhaps surprisingly, precise roadkill intensities for these animals are appar-
ently unknown to science (This serves as a good example of the value Socioscope
may provide to wildlife scientists). Instead, domain experts were only able to pro-
vide a range map of each animal; see the left column in Figure 3.7. These maps
indicate presence/absence only, and were extracted from NatureServe (Patterson
et al., 2007). In addition, the experts defined armadillo and opossum as nocturnal,
chipmunk as diurnal, and squirrels as both crepuscular (active primarily during
twilight) and diurnal. Due to the lack of quantitative ground-truth, our comparison
will necessarily be qualitative in nature.

Socioscope provides sensible estimates on these animals. For example, Fig-
ure 3.8(a) shows counts x(1) + x(2) for chipmunks which is very sparse (the largest
count in any bin is 3), and Figure 3.8(b) the Socioscope estimate f̂. The axes are the
same as in Figure 3.6(a). In addition, we present the state-by-state intensity maps in
the middle column of Figure 3.7 by aggregating f̂ spatially. The Socioscope results
match the range maps well for all animals. The right column in Figure 3.7 shows
the daily animal activities by aggregating f̂ temporally. These curves match the
animals’ diurnal patterns well, too.

The Socioscope estimates are superior to the baseline methods in Table 3.1. Due
to space limits we only present two examples on chipmunks, but note that similar
observations exist for all animals. The baseline estimator of simply scaling x(1)+x(2)

produced the temporal and spatial aggregates in Figure 3.9(a,b). Compared to
Figure 3.7(b, right), the temporal curve has a spurious peak around 4-5pm. The
spatial map contains spurious intensity in California and Texas, states outside the
chipmunk range as shown in Figure 3.7(b, left). Both are produced by population
bias when and where there were strong background social media activities (see
Figure 3.6(b,c)). In addition, the spatial map contains 27 “holes” (states with zero
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intensity, colored in blue) due to data scarcity. In contrast, Socioscope’s estimates
in Figure 3.7 avoid this problem by regularization. Another baseline estimator
(x(1) + x(2))/z(1) is shown in Figure 3.9(c). Although corrected for population bias,
this estimator lacks the transition model and regularization. It does not address
data scarcity either.

Applying Socioscope to Bullying Hashtags

In Section 3.1 and Section 3.2 we studied the spatiotemporal distribution of bullying
traces, in which social media users post about their personal experiences about
bullying. Besides bullying traces, social media users talk about bullying in many
other ways, for example, recent news stories, general opinions about bullying,
raising awareness of anti-bullying campaigns, and so on. In this section, we use
Socioscope to study the spatiotemporal variations of some special topics about
bullying in social media.

Data Preparation

Instead of training a text classifier to recognize target posts, we use hashtags as
an indicator for relevance. Hashtags are keywords or acronyms that are prefixed
with a # symbol that are annotated within tweets to indicate markers of topic.
In Chapter 5, we will investigate the hashtag usages in bullying posts in more
detail. We collected data from the public Twitter streaming API between January
1, 2012 and December 31, 2012. We captured tweets that contained at least one of
the following keywords: “bully,” “bullied,” and “bullying” through the Twitter
streaming API. We did not remove retweets or apply the Binary Bullying Traces
Classifier to the data, as retweets and general comments are useful to understand
trending topics and opinions. We case-folded all hashtags (i.e., we replaced upper
case letters with lower case ones) to merge different variations of the same hashtag
into a single hashtag. For example, “#RIPAmandaTodd”, “#ripAmandaTodd”,
“#ripamandatodd” were all transformed to “#ripamandatodd.” So, each tweet in
our dataset contains at least one of bullying related keywords and at least one
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(a) armadillo (Dasypus novemcinctus)

(b) chipmunk (Tamias striatus)

(c) squirrel (Sciurus carolinensis and several others)

(d) opossum (Didelphis virginiana)

Figure 3.7: Socioscope estimates match animal habits well. (Left) range map from
NatureServe, (Middle) Socioscope f̂ aggregated spatially, (Right) f̂ aggregated
temporally.
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(a) x(1) + x(2) (b) Socioscope f̂

Figure 3.8: Raw counts and Socioscope f̂ for chipmunks

(a) x(1) + x(2) (b) x(1) + x(2) (c) (x(1) + x(2))/z(1)

Figure 3.9: Examples of inferior baseline estimators. In all plots, states with zero
counts are colored in blue.

hashtag. This dataset is archived as Hashtags in the Bullying Traces Data Set (see
Appendix A.6), and more details are discussed in Chapter 5.

We selected four hashtags from different categories defined in Chapter 5 to
capture different usage scenarios. “#bullying” is a general term to refer to bullying
and the most frequently used hashtag in our dataset. Users may use this term in
many different ways in their tweets related to bullying. “#oomf” is an Everyday
Twitter Trend term, as many social media users use it to refer “one of my follower.”
It is not directly related to bullying, and users may use it everyday. “#spiritday” is
a hashtag related to a campaign that occurred on October 19, 2012 and refers to
GLAAD’s (Gay and Lesbian Alliance Against Defamation) anti-bullying campaign.
“#ripamandatodd” is a hashtag referring to the suicide of Amanda Todd, a 15
year-old, who was a victim of cyberbullying.

For each hashtag, we consider all tweets containing the hashtag (after case-
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folding) in our dataset collected by keyword filtering as target posts. For #bullying
and #oomf, as users use them everyday, we used a longer study period, January 1
- 31, 2012, to see if we can identify some interesting patterns. For #spiritday and
#ripamandatodd, as all hashtag usages are limited to a relative short time window,
we chose a two-week study period, October 10-23, 2012. We chose different time
windows, which may also discover different patterns between different times in the
year. Our spatiotemporal source bins are state × day. Let s index the 48 continental
US states plus District of Columbia. Let t index the days in our study period.

Overall Counts z and Social Media Population Intensity g.
Due to differences in population and hashtag usage across states and days, the

raw counts may not reflect how much social media users engaged into a topic in
each spatiotemporal bin. Therefore, we still need to control these potential biases.
Instead of using all GPS tagged posts from a separate random tweet stream, we
used all tweets collected in our dataset, in which each tweet contained at least one
bullying keyword and one hashtag. So, the overall counts reflect the engagement
of bullying topics and usage of hashtags.

We collected 332,350 tweets with at least one bullying keyword and one hashtag,
during January 1 - 31, 2012. Among them, we have 1,423 tweets with GPS coor-
dinates, and 62,028 tweets with identifiable U.S. states information. We collected
462,175 tweets during October 10 - 23, 2012, among which, 2,255 had GPS coor-
dinates, and 90,022 had U.S. state information. Since the number of GPS-tagged
tweets are not sufficient, we used all these tweets together to estimate social media
population intensity. We used the same “mis-self-declare” matrix in our road-
kill study and Socioscope to recover g. The same parameter setting and tuning
procedures were used.

Figure 3.10 shows the raw counts of posts with location information and the
estimated results ĝ by Socioscope. The recovered ĝ looks similar to the raw counts
z(1) + z(2), as the counts are relatively large compared to the ones in the roadkill
study. Figure 3.11 shows the aggregated results of ĝ. The spatial distribution seems
relatively stable in two different study periods. High population states, such as
California, New York and Texas, have higher intensities. The same trends appear
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January 1-31, 2012 October 10-23, 2012

Figure 3.10: Raw counts z(1) + z(2) and Socioscope ĝ for bullying hashtags. The top
row shows the raw counts for tweets with GPS coordinates or identifiable U.S. state
information z(1) + z(2). The bottom row shows the recovered estimation of ĝ by
Socioscope.

in both study periods. There seem to be more temporal variations. The weekly
pattern is not obvious, but we can see local peaks appear repeatedly over a few
days. At the end of January 2012, there was a huge jump in the number of tweets
with bullying keyword and hashtags. Therefore, we should take variations of
background population into accounts.

Obtaining Target Counts x and Confusion Matrix P.
We use the hashtag as an indicator for target posts on one topic. This is clean and

does not need any supervision to build the classifiers. We produce x(1), x(2), x(3)

counts by direct counting. For #bullying, we collected 19,424 target posts and
among them, 75 tweets are with GPS coordinates, 5,757 with state information.
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January 1-31, 2012 October 10-23, 2012

Figure 3.11: (Top) Socioscope ĝ aggregated spatially, (Bottom) ĝ aggregated tempo-
rally for bullying hashtag.

For #oomf, we collected 1,250 target posts in total, 19 GPS-tagged tweets and 281
tweets with user reported location. For #spiritday, we collected 66,854 target posts
in total, 206 GPS-tagged tweets and 22,569 tweets with user reported location. For
#ripamandatodd, we collected 45,186 target posts in total, 127 GPS-tagged tweets
and 5,632 tweets with user reported location.

We use the same “mis-self-declare” matrix in our roadkill study to construct the
confusion matrix P. However, we use the actual proportions of tweets with GPS
tags, tweets with user-reported locations and tweets without location information
to set the actual weight for different parts of P. For example, for hashtag #bullying,
we set P

(s,t)(1),(s,t) = 79/19424 = 0.004, P
(r,t)(2),(s,t) = 0.296Mr,s, and Pt(3),(s,t) = 0.7.
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#bullying

#oomf

#spiritday

#ripamandatodd

Figure 3.12: Socioscope estimates f̂ for bullying hashtags. (Left) Socioscope f̂
aggregated spatially, (Right) f̂ aggregated temporally.
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Result.
Figure 3.12 shows the aggregated results of f̂ estimated by Socioscope. #bullying

was widely used across the U.S. with similar intensity. #oomf seems to be more
popular in the southeaster U.S. than other regions. We have extremely high intensity
in New Hampshire for #spiritday. But it is not a local event in New Hampshire.
Gay and Lesbian Alliance Against Defamation Organization, based in New York,
worked to promote this event, and we also received target posts from other states.
#ripamandatodd also received attention from all over the country.

In Figure 3.10, we observe a huge jump at the end of January, but we do not see
the same trend for #bullying and #ommf in Figure 3.12. Some special events/games
have occurred at that time to raise the overall counts, but lowered the relative usages
for these two general hashtags. On the other hand, #spiritday and #ripamandatodd
show very high peaks in a short time periods, but nearly zero counts on other days,
as they correspond to a special campaign and news story that happened just once in
2012. However, these two curves are different. #spiritday has a longer rising period
before it peaked and then dropped dramatically. It is possible that organizers used
social media to promote the awareness of the campaign several days ahead the
event. So more and more users were involved in the topic. After the event, only
a few users continued the discussion. However, for #ripamandatodd, the peak
appears earlier and drops relatively slower. Most users were aware of the news on
the first few days, and posted or retweeted using the hashtag. But it lasted longer
and people continued discussing that for several days.

Discussion

Using social media as a data source for spatiotemporal signal recovery is an emerg-
ing area. Socioscope represents a first step toward this goal. There are many open
questions:

1. We treated target posts as certain. In reality, a natural language processing
system can often supply a confidence, e.g., Logistic Regression. For example, a
tweet might be deemed to be a target post only with probability 0.8. It will be
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interesting to study ways to incorporate such confidence into our framework.
2. The temporal delay and spatial displacement between the target event and

the generation of a post is commonplace, as discussed in footnote 2. Estimating
an appropriate transition matrix P from social media data so that Socioscope can
handle such “point spread functions” remains future work.

3. It might be necessary to include psychological factors to better model human
“sensors.” For instance, as we will shown in Chapter 6, students in the western
society and China have different school bullying behaviors and different biases on
how to post them.

4. Instead of discretizing space and time into bins, one may adopt a spatial
point process model to learn a continuous intensity function instead (Møller and
Waagepetersen, 2004).

Addressing these considerations will further improve Socioscope.
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4 emotions in bullying traces

Sentiment analysis on bullying traces is of significant importance. Victims usually
experience negative emotions such as depression, anxiety and loneliness. In extreme
cases such emotions are more violent or even suicidal, for example,

“I’m tired of all this bullying. I could never stand up for myself &
sometimes I just want to kill myself.”

Detecting at-risk individuals via sentiment analysis enables potential interventions.
In addition, social scientists are interested in sentiment analysis on bullying traces
to understand participants’ motivations.

There are a wide range of emotions expressed in bullying traces. After manually
inspecting a number of bullying traces in Twitter, our domain experts identified
seven most common emotions:

1. Anger: “He is always laughing at me because he is a bully damnit! #Ashley”

2. Embarrassment: “@USER everyone is bullying me because I couldn’t find the word
peach in a crossword. It’s 1am”

3. Empathy: “@USER I’m sorry you get bullied. I’m really surprised at how many
people this has happened to. #bulliesSuck ”

4. Fear: “i was being bullied and i didn’t want to go to school really i would throw fits
everymorning and i hope that michel sees this”

5. Pride: “Everyone on this earth is a bully , except me . Because I’m perfect. #jillism”

6. Relief: “@USER I was rambling and then... I cried. Like, CRIED. He was touched!
APC helped me thru the teasing and bullying man...”

7. Sadness: “things were bad when I was younger I got bullied so much because of my
disabilites I don’t want the same thing happening to my brother.”
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This list is by no means comprehensive. Other emotions or mixtures of several
basic emotions may also appear in bullying traces. These seven categories are the
most common ones based on our current study. Also note that due to the length
limits (140 characters), an individual tweet may be only a sentence in a conversation
thread. Therefore, the majority of bullying traces in Twitter cannot be associated
with definite emotions.

Orthogonal to these emotions, we observed that many bullying traces were
written jokingly. One example of a teasing post is “@USERNAME lol stop being a
cyber bully lol :p.” Teasing may indicate the lack of severity of a bullying episode; It
may also be a manifest of coping strategies in bullying victims. Therefore, there
is considerable interest among social scientists to understand teasing in bullying
traces.

Besides these emotions expressed in the text, we found that social media users
who post bullying related tweets may later experience regret. After they post bully-
ing related tweets, they may be aware of the potential risks, such as re-victimization,
embarrassment, and social ostracization. They do not post a new post to express
their regret. Instead, they may delete their original posts.

In this chapter, we first build a standard text classifier to recognized teasing
in bullying traces (Xu et al., 2012b). Then we propose a fast machine learning
procedure for the sentiment analysis in bullying traces (Xu et al., 2012c), as many
categories are not well-studies in the community. To study the regret in bullying
traces (Xu et al., 2013b), we construct a corpus of bullying tweets and periodically
check the existence of each tweet in order to infer if and when it becomes deleted.
We then conduct exploratory analysis in order to isolate factors associated with
deleted posts. Finally, we propose the construction of a regrettable posts predictor
to warn users if a tweet might cause regret.

4.1 Teasing in Bullying Traces

As it is of interest to social scientists, we first investigate teasing in bullying traces.
We formulated it as a binary classification problem, similar to classic positive/neg-
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predicted as
Tease Not

Tease 52 47
Not 26 559

Table 4.1: Confusion matrix of teasing classification

ative sentiment classification (Pang and Lee, 2004). Our annotators labeled each
of the 684 bullying traces in Bullying Traces Data Set (version 1, Appendix A.1)
as teasing (99) or not (585). We used the same feature representations, classifiers
and parameter tuning as in Section 2.1 and 10-fold cross validation procedure. The
classifier is archived as Teasing Bullying Trace Classifier (see Appendix B.6).

The best cross validation accuracy of 89% is obtained by SVM(linear) + 1g2g.
This is significantly better than the majority class (not-teasing) baseline of 86%
(t-test, p = 10−33). It shows that even simple features and off-the-shelf classifier can
detect some signal in the text. However, the accuracy is not high. Table 4.1 shows the
confusion matrix. About half of the tease examples were misclassified. We found
several possible explanations. First, teasing is not always accompanied by joking
emoticons or tokens like “LOL,” “lmao,” “haha.” For example, “I may bully you but I
love you lots. Just like jelly tots!” and “Been bullied into watching a scary film, I love my
friends!” Such teasing sentiment requires deeper NLP or much larger training sets.
Second, tweets containing those joking emoticons and tokens are not necessarily
teasing. For example, “This Year I’m Standing Up For The Kids That Are Being Bullied
All Over The Nation :) .” Third, the joking tokens have diverse spellings. For example,
“lol” was spelled as “loll,” “lolol,” “lollll,” “loool,” “LOOOOOOOOOOOL”; “haha”
was spelled as “HAHAHAHA,” “Hahaha,” “Bwahahaha,” “ahahahah,” “hahah.”

Specialized word normalization for social media text may significantly improve
performance. For example, word lengthening can be identified and used as cues for
teasing (Brody and Diakopoulos, 2011). Teasing is diverse in its form and content.
Our training set is perhaps too small. Borrowing training data from other corpora,
such as one-liner jokes (Mihalcea and Strapparava, 2005), may be helpful.
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4.2 A Fast Machine Learning Procedure for
Sentiment Analysis on Bullying

As shown above, some emotions involved in bullying traces have not been well
studied in sentiment analysis, for example, embarrassment and relief. To make the
problem worse, manually labeling a large amount of training tweets is difficult and
time consuming even for our domain experts.

Recognizing these challenges, we use a fast training procedure for sentiment
analysis. Our goal is supervised learning, specifically classifying a tweet into one of
the predefined emotion categories. However, we require no explicit labeled training
data on tweets. Instead, we will rely on “distantly labeled data” (to be made clear
next) that are much easier to obtain. We point out upfront that it will be difficult to
assess the accuracy of the resulting classifier, since we do not have an in-domain
labeled dataset. However, our observations point to a useful classifier. Coupled
with the ease of training and its applicability to other emotions and domains, our
procedure is still attractive.

Relations to Prior Work

Most sentiment analysis work focused on the overall polarity of a document: posi-
tive, negative or neutral (Pang and Lee, 2008; Liu and Zhang, 2012). A few works
considered several basic emotions at a finer level and created emotional lexicons
for each category (Strapparava and Valitutti, 2004). Recently, sentiment analysis on
social media (Yang et al., 2007), especially Twitter (Pak and Paroubek, 2010), has
been receiving increasing attention. Cambria et al. (2010) proposed a sentiment
analysis approach to identify malicious posts from social media. Our domain of
bullying is fresh with very few existing resources. In addition, although bullying
traces are abundant, only a small fraction of them are associated with strong emo-
tions. It poses challenges to obtain enough training examples for all the emotion
categories, especially the rare and non-standard ones.

Our approach is inspired by the “concept labeling” work of Chenthamarakshan
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et al. (2011) to minimize the supervision effort in constructing text classification
models. In their system, instead of labeling a set of training examples, experts
annotate how “concepts” are related to the target class. We push this idea further
where neither labeled examples nor labeled concepts are necessary for building the
emotion classifiers.

Our procedure consists of two steps. The first step is in the same spirit as the
dictionary-based sentiment lexicon generation method (Hu and Liu, 2004), which
exploits synonym structure of a dictionary to bootstrap the sentiment lexicon. Our
second step is similar to the idea of corpus-based sentiment lexicon generation
method (Hatzivassiloglou and McKeown, 1997; Kanayama and Nasukawa, 2006),
which uses a domain corpus to extend sentiment lexicon by sentence structure
or sentiment consistency assumption. As tweets are very short – usually a few
sentences – the sentiment is usually consistent within a tweet.

Task Description

We obtain bullying traces identified by our Binary Bullying Trace Classifier. We
want to recognize the emotion involved in each bullying trace. We define eight
emotion classes: anger, embarrassment, empathy, fear, pride, relief, sadness, and other.
The last class captures bullying traces without obvious emotion or not one of the
seven emotions. Thus, our task is to build an eight-class Bullying Trace Emotion
Classifier (see Appendix B.7) with little supervision.

Fast Learning

Our learning procedure includes four steps: (1) collecting seed words, (2) collecting
online documents, (3) creating feature extractors, and (4) building a text classifier.
None of the steps requires explicit labeling a corpus.

Collecting Seed Words. We start by collecting seed words Se which are related
to each emotion e (except for the other category). Lexicons exist for certain emotions
such as anger and sadness but not all (Strapparava and Valitutti, 2004). As we want to
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handle the non-standard emotion categories, we create such lists from two general
resources which are available for all emotions:

1. Many websites provide synonym dictionary service.1 We look up the category
name of emotion e such as “anger” and add all its synonyms to SSYNe .

2. We search for the category name of emotion e in WordNet (Miller, 1995;
Fellbaum, 1988), and add all words appearing in the synsets to SWNe . In
addition, we also include all words in synsets listed as their “derivationally
related form” and their “similar to,” “full troponym” or “full hyponyms” sets
depending on the part of speech (adjectives, verbs, or nouns).

By doing so, we collect two seed word lists SSYNe and SWNe for each emotion e. This
step took less than half an hour manually. Note that it does not require any human
judgments and can be implemented automatically if preferred.

Collecting Online Documents. We can broaden the coverage of the keywords
by collecting documents containing them. We invoked Twitter search API to query
each keyword and retrieve up to 100 recent tweets per query. We queried each
word in SSYNe and SWNe separately, and obtained two tweet corpora TSYNe and TWNe .
Obviously, other search services can be employed, too. Given the seed word list,
this step can be automated without any human intervention.

Creating Feature Extractors. We perform stopword removal and stemming
on TSYNe and TWNe as in Section 2.1. Our stopword list is based on the SMART
system (Salton, 1971), augmented with domain specific stopwords such as “bully,”
“bullying,” “bullied,” “bullies,” “@USER,” “ref” and some punctuations. We then
represent each tweet in TSYNe , TWNe by unigrams and bigrams features. We count the
occurrences of each feature collectively within TSYNe or TWNe and remove features
appearing less than five times. We define a vocabulary as the union of seed words
in SSYN ∪ SWN and the remained features in TSYN ∪ TWN.

1http://www.synonyms.net/synonym
http://dico.isc.cnrs.fr/dico/en/search
http://dictionary.reference.com/

http://www.synonyms.net/synonym
http://dico.isc.cnrs.fr/dico/en/search
http://dictionary.reference.com/


64

With the vocabulary, we represent SSYNe as a feature vector vSYNe where the
elements are the counts. We normalize the vector so that it has norm 1. Do the same
for SWNe , TSYNe , and TWNe separately to obtain vWNe , vSYNe , and vWNe . Here we treat
each of TSYNe and TWNe as a single large document. Furthermore, we treat the union
SSYNe ∪ SWNe ∪ TSYNe ∪ TWNe as single document and compute its feature vector valle .
Thus, for each emotion e we have five feature vectors {vSYNe , vWNe , vSYNe , vWNe , valle }.
In total, we have 35 such feature vectors for the seven emotions.

We use these 35 vectors as feature extractors. Given a test document we apply
the same text processing and represent it as feature vector d. We then compute the
inner product

d>v

against each of the 35 feature extractors v above and obtain a 35-dimensional vector
x. Clearly, no supervision from human is needed in this step either.

Building Bullying Trace Emotion Classifier This is the step where traditionally
labeled bullying tweets are needed. Instead, we use easy-to-obtain distantly-labeled
data. Though our domain is tweets, we train a text classifier on Wikipedia pages.
Wikipedia API supports downloading pages matching a title or category name
query. For each word in SSYNe ∪ SWNe , we collect the retrieved Wikipedia pages. 2

Each such page is automatically labeled with emotion e. We therefore automatically
constructed a labeled Wikipedia corpus with 964 pages.

We run each Wikipedia page in this corpus through our feature extractors to
represent the page as a 35-dimensional vector. We train a standard seven-class
SVM (note we do not model the “other” class yet) on the Wikipedia corpus. We
compared linear and RBF kernels, tuned SVM regularization parameter C and γ
in the RBF kernel function (exp(−γ‖x− y‖2)) in the grid {10−3, 10−2, . . . , 103} with
10-fold cross validation. The best model is obtained with RBF kernel, C = 1000
and γ = 0.1. On the Wikipedia corpus, it achieves a CV error of 15%. Its confusion
matrix is shown in Table 4.2.

2It is important to note that the nature of the Wikipedia API means that the pages do not
necessarily contain the query keywords, which enables us to learn something more than keyword
matching.
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Table 4.2: Confusion matrix of the seven-class SVM on the Wikipedia corpus

predicted as
ang. emb. emp. fear pri. rel. sad.

ang. 112 0 0 9 0 2 3
emb. 0 21 0 3 0 2 1
emp. 1 0 7 7 0 1 2
fear 3 1 0 381 1 23 4
pri. 0 0 0 4 23 0 1
rel. 2 1 0 42 0 198 3
sad. 4 0 2 14 0 4 82

Model Evaluation and Usage

To understand the performance of the trained SVM, we compare it against three
baseline methods. Note the comparison is based on the Wikipedia corpus, not the
Twitter domain where we have no labeled data. Using the SVM on Twitter will be
discussed at the end of this section.

The three baseline methods are:

1. SSYN. For test document d, we compute the inner product d>vSYNe for each
emotion e and predict the class with the maximum value:

e∗ = arg max
e
d>vSYNe .

Ties are randomly broken.

2. SWN. Same as above, but use the WordNet keywords:

e∗ = arg max
e
d>vWNe .

Both baselines are related to simple keyword matching.

3. Majority. All five feature extractors make their own predictions as above, and
there is a majority vote among the five for the final decision. Again, ties are
randomly broken.
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Table 4.3: Cross validation error of different methods
Fast Training SVM SSYN SWN Majority

0.15 0.31 0.43 0.42

Table 4.3 shows the cross validation error of these methods. The proposed fast
training SVM achieves the lowest error.

However, the above results were all on the Wikipedia corpus. Recall that our
test domain is Twitter, for which we do not have labeled data. When a test tweet
comes, we first convert it into the 35-dimensional vector via the feature extractors
and apply the trained SVM. We set a threshold τ on the margin output from SVM,
whenever the largest margin is lower than τ, we predict it as other. Otherwise,
we predict the label with the largest margin. The threshold τ is set manually by
controlling the positive rate at 5% on a separate random tweet data set.

4.3 Emotion Distribution in Bullying Traces

We apply the Bullying Trace Emotion Classifier (see Appendix B.7) to 3,001,427
bullying traces from August 5, 2011 to April 12, 2012 (about eight months). The
dataset and its documentation is archived as Bullying Trace Emotion data set (see
Appendix A.4). Figure 4.1 shows the number of daily bullying traces in each
emotion categories. Overall, the number of bullying traces is increasing because
of growing social media usages. All emotion curves have the similar shape but
different offset (note the y-axis is in log scale), indicating that the fraction of different
emotions remain stable in the study period. The curves show a weekly (7-day)
pattern, which we hypothesize is due to fewer direct interactions among students
during the weekends. The few spikes are caused by celebrity events related to
bullying which generated a large number of tweets. In what follows, we remove
the few spike days since they are outliers.

We aggregate the counts over the study period for each category and compute
their fractions over all bullying traces. Figure 4.2(a) shows that most (94%) bullying
traces are not associated with obvious emotions, which matches our observations
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Figure 4.1: The daily counts of bullying traces in different emotion categories from
August 5, 2011 to April 12, 2012.

from manual inspection. Figure 4.2(b) presents a break down of the 6% emotional
bullying traces. Half of them contain fear, followed by sadness, anger and relief.
Embarrassment, empathy and pride are virtually abscent. This also highlights the
data skewness issue if the human annotators were to manually label bullying
traces.

Recall that participants in a bullying episode take several well-defined roles.
We hypothesize that different roles may express different emotions. We apply
author-role classifier in Section 2.2 to the bullying traces, therefore, each tweet is
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(a) emotional or not (b) fraction within emotional

Figure 4.2: Fraction of emotion categories

associated with an author role label by this classifier. Figure 4.3 shows the fraction
of emotions for each author’s role. We assume that authors of one role generate
tweets in one emotion with probability p. The bars show the MLE estimations of
p and the error bars indicate the Binomial 95% confidence intervals. Compared
to other roles, accusers seem to express more fear but less anger. Reporter and
victims seem to experience more sadness and relief than other roles. However,
these observations should be taken with a grain of salt: The emotion in a bullying
trace may not be the author’s own feelings. It is possible that the authors some-
times discuss other participants’ emotions. Our emotion classifier is not capable
of distinguishing emotions of the author vs. of other people. A detailed analysis
with deeper natural language processing remains future work. In addition, we
have noticed that accusers often express fear jokingly (i.e., teasing; see below). For
example, “@USER lol really?! I’m so scared!! I hope I am not verbally beaten. You cyber
bully ;),” “@USER you are such a bully!!!haha & im sooooo scared if him.lol.” This might
help explain why accusers seems to have more fear.

It is interesting to see if there is any differences in terms of emotion between
teasing and non-teasing bullying traces. In Figure 4.4, we observe that teasing



69

Figure 4.3: The fraction of emotions by author’s role.

bullying traces contain less sadness and relief. This seems reasonable, as in general
these emotions are expressed more seriously rather than jokingly. On the other hand,
teasing bullying traces contain more fear. We speculate that people may pretend
to be afraid of a bully even though in reality they are not. For example,“@USER
I’m so scared haha there’s like ten girls then like 30 lads! I’m gonna get so bullied#boohoo,”
“@USER eh ya!!!! sometimes i very scared to approach them, like i want to bully them like
that LOL HAHAHA..”
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Figure 4.4: The fractions of emotions by teasing or not.

4.4 Regrets in Bullying Traces

A large body of literature suggests that participants in bullying events, including
victims, bullies, and witnesses, are likely to report psychological adjustment prob-
lems Jimerson et al. (2010). One potential source of therapy for these issues can be
self-disclosure of the experience to an adult or friend Mishna and Alaggia (2005);
existing research suggests that victims who seek advice and help from others report
less maladjustment than victims who do not Shelley and Craig (2010).

Disclosure of bullying experiences through social media may be a particularly
effective mechanism for participants seeking support because social media has the
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potential to reach large audiences and because participants may feel less inhibition
when sharing private information in an online setting Walther (1996). Furthermore,
there is evidence that online communication stimulates self-disclosure, which leads
to higher quality social relationships and increased well-being Valkenburg and
Peter (2009).

Online disclosure may also present risks for those involved in bullying however,
such as re-victimization, embarrassment, and social ostracization. Evidence exists
that some individuals may react to these risks retroactively, by deleting their social
media posts (Child et al., 2011; Christofides et al., 2009). Several relevant motives
have been found to be associated with deleting posted information, including
conflict management, safety, fear of retribution, impression management, and
emotional regulation (Child et al., 2012).

To better understand, and possibly prevent, user regret after posting bullying
related tweets, we collect bullying traces as in Section 2.1 and perform regular
status checks to determine if and when tweets become inaccessible. While a tweet
becoming inaccessible does not guarantee it has been deleted, we attempt to leverage
http response codes to rule out other common causes of inaccessibility. Speculating
that regret may be a major cause of deletion, we first conduct exploratory analysis
on this corpus and then report the results of an off-the-shelf regret predictor.

Data Collection

We obtain bullying traces as in Section 2.1. Each identified trace contains at least
one bullying related keyword and passes a bullying-or-not text classifier.

Our data was collected in realtime using the Twitter streaming API; once a tweet
is collected, we query its url (https://twitter.com/USERID/status/TWEETID) at
regular intervals and infer its status from the resulting http response code. We
interpret an HTTP 200 response as an indication a tweet still exists and an HTTP
404 response, which indicates the tweet is unavailable, as indicating deletion. A
user changing their privacy settings can also result in an HTTP 403 response; we do
not consider this to be a deletion. Other response codes, which appear quite rarely,

https://twitter.com/USERID/status/TWEETID
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are treated as anomalies and ignored. All non HTTP 200 responses are retried twice
to ensure they are not transient oddities.

To determine when a tweet is deleted, we attempted to access each tweet at time
points Ti = 5× 4i minutes for i = 0, 1 . . . 7 after the creation time. These roughly
correspond to periods of 5 minutes, 20 minutes, 1.5 hours, 6 hours, 1 day, 4 days, 2
weeks, and 2 months. While we assume that user deletion is the main cause of a
tweet becoming unavailable, other causes are possible such as the censorship of
illegal contents by Twitter (Twitter, 2012).

Our sample data was collected from July 31 through October 31, 2012 and
contains 522,984 bullying traces. Because of intermittent network and computer
issues, several multiple day data gaps exist in the data. To combat this, we filter
our data to include only tweets of unambiguous status. If any check within the
20480 minutes (about two weeks) interval returns an HTTP 404 code, the tweet is
no longer accessible and we consider it deleted. If the 20480 minute or 81920 minute
check returns an HTTP 200 response, that tweet is still accessible and we consider
it surviving. The union of the surviving and deleted groups formed our cleaned
dataset, containing 311,237 tweets in total.

This dataset and its documentation is archived as Bullying Trace Regret data set
(see Appendix A.5).

Exploratory Data Analysis

A user’s decision to delete a bullying trace may be the result of many factors which
we would like to isolate and understand. In this section we will examine several
such possible factors.

Word Usage

Our dataset contains 331,070 distinct words and we are interested in isolating those
with a significantly higher presence among either deleted or surviving tweets. We
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define the odds ratio of a word w

r(w) =
P(w | deleted)
P(w | surviving)

,

where P(w | deleted) is the probability of wordw occurring in a deleted tweet, and
P(w | surviving) is the probability of w appearing in a surviving tweet. In order to
ensure stability in the probability estimation, we only considered words appearing
at least 50 times in either the surviving or deleted corpora.

Following (Bamman et al., 2012), we qualitatively analyzed words with extreme
values of r(w), and found some interesting trends. There was a significant tendency
for “joking” words to occur with r(w) < 0.5; examples include “xd,” “haha,” and
“hahaha.” Joking words occur less frequently in deleted tweets than surviving ones.
On the other end of the spectrum, there were no joking words with r(w) > 2. What
we found instead were words such as “rip," “fat," “kill," and “suicide." While it is
relatively clear that joking is less likely to occur in deleted tweets, there was less of
a trend among words appearing more frequently in deleted tweets.

Surviving Time

Let N be the total number of tweets in our corpus, and D(Ti) be the number of
tweets that were first detected as deleted at minute Ti after creation. Note that
D(Ti) is not cumulative over time: it includes only deletions that occurred in the
time interval (Ti−1, Ti]. Then we may define the deletion rate at time Ti as

RT (Ti) =
D(Ti)

N(Ti − Ti−1)
.

In other words, RT (t) is the fraction of tweets that are deleted during the one minute
period (t, t+ 1).

We plot RT vs. t using logarithmic scales on both axes in Figure 4.5 and the
result is a quite strong linear trend. Fitting the plot with a linear regression, we
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Figure 4.5: Deletion rate decays over time.

derive an inverse relationship between RT and t of the form

RT (t) ∝ 1/t.

This result makes sense; the social effects of a particular bullying tweet may decay
over time, making regret less of a factor. Furthermore, the author may assume an
older tweet has already been seen, rendering deletion ineffective. Additionally,
because the drop off in deletion rate is so extreme, we are able to safely exclude
deletions occurring after two weeks from our filtered dataset without introducing a
significant amount of noise. Finally,

∑∞
t=0 RT (t) gives the overall fraction of deletion,

which in our case is around 4%.

Location and Hour of Creations

Some bullying traces contain location meta-data in the form of GPS coordinates
or a user-created profile string. We employed a reverse geocoding database (http:
//www.datasciencetoolkit.org) and a rule-based string matching method to map
these tweets to their origins (at the state level; only for tweets within the USA). This
also allowed us to convert creation timestamps from UTC to local time by mapping

http://www.datasciencetoolkit.org
http://www.datasciencetoolkit.org
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user location to timezone. Because many users don’t share their location, we were
only able to successfully map 85,465 bullying traces to a US state s, and local hour
of day h. Among these traces, 3,484 were deleted which translates to an overall
deletion rate of about 4%.

Let N(s,h) be the count of bullying traces created in state s and hour h. Ag-
gregating these counts temporally yields NS(s) =

∑
hN(s,h), while aggregating

spatially produces NH(h) =
∑
sN(s,h). Similarly, we can define D(s,h), DS(s)

and DH(h) as the corresponding counts of deleted traces. We can now compute
the deletion rate

RH(h) =
DH(h)

NH(h)
, and RS(s) =

DS(s)

NS(s)
.

The top row of Figure 4.6 showsNH(h),DH(h), and RH(h). We find thatNH(h)
and DH(h) peak in the evening, indicating social media users are generally more
active at that time. The peak of RH(h) appears at late night and, while there are
multiple potential causes for this, we hypothesize that users may fail to fully evaluate
the consequences of their posts when tired. The bottom row of Figure 4.6 shows
NS(s),DS(S), andRS(s). The plot ofNS(s) shows that bullying traces are more likely
to originate in California, Texas or New York which is the result of a population
effect. Importantly however, the deletion rateRS(s) is not affected by population bias
and we see, as expected, that spatial differences in RS(s) are small. We performed
χ2-test to see if a state’s deletion rate is significantly different from the national
average. We chose the significance level at 0.05 and used Bonferroni correction for
multiple testing. Only four states have significantly different deletion rates from
the average: Arizona (6.3%, p = 5.9 × 10−5), California (5.2%, p = 2.7 × 10−7),
Maryland (1.9%, p = 2.3× 10−5), and Oklahoma (7.1%, p = 3.5× 10−5).

Author’s Role

Participants in a bullying episode assume well-defined roles which dramatically
affect the viewpoint of the author describing the event. We used our Author’s Role
Classifier (Version 1, see Appendix B.2), to label each bullying trace in the cleaned
corpus by author role: Accuser, Bully, Reporter, Victim or Other.
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NH(h) DH(h) RH(h)

NS(s) DS(s) RS(s)

Figure 4.6: Counts and deletion rates of geo-tagged bullying traces.

Deleted Total P(deleted | Role)
Accuser 2,541 50,088 5.1%
Bully 1,792 30,123 6.0%
Reporter 11,370 147,164 7.7%
Victim 6,497 83,412 7.8%
Other 41 450 9.1%

Table 4.4: Counts and deletion rate for different roles.

Table 4.4 shows that compared to tweets produced by bullies, victims create more
bullying traces, possibly due to an increased need for social support on the part of
the victim. More importantly, P(deleted | victim) is higher than P(deleted | bully),
a statistically significant difference in a two-proportion z-test. Possibly, victims are
more sensitive to their audience’s reaction than bullies.
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Deleted Total P(deleted | Teasing?)
Yes 858 22,876 3.8%
Not 21,383 288,361 7.4%

Table 4.5: Counts and deletion rate for teasing or not.

Teasing

Many bullying traces are written jokingly. We applied our Teasing Bullying Trace
Classifier (see Appendix B.6) to the cleaned corpus to identify teasing posts.

Table 4.5 shows that P(deletion | Teasing) is much lower than P(deletion |

Not Teasing) and the difference is statistically significant in a two-proportion z-
test. It seems plausible that authors are less likely to regret teasing posts because
they are less controversial and have less potential to generate negative audience
reactions. This also corroborates our findings in word usage that joking words are
less frequent in deleted tweets.

Predicting Regrettable Tweets

Once a bullying tweet is published and seen by others, the ensuing effects are
often impossible to undo. Since ill-thought-out posts may cause unexpectedly
negative consequences to an author’s reputation, relationship, and career (Wang
et al., 2011), it would be helpful if a system could warn users before a potentially
regrettable tweet is posted. One straightforward approach is to formulate the task
as a binary text categorization problem, and build a Bullying Trace Regret Classifier
(see Appendix B.8).

We use the cleaned dataset, in which each tweet is known to be surviving or
deleted after 20,480 minutes (about two weeks). Since this dataset contains 22,241
deleted tweets, we randomly sub-sampled the surviving tweets down to 22,241
to force our deleted and surviving datasets to be of equal size. Consequentially,
the baseline accuracy of the classifier is 0.5. While this does make the problem
artificially easier, our initial goal was to test for the presence of a signal in the data.
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We then followed the preprocessing procedure in Section 2.1, performing case-
folding, anonymization, and tokenization, treating URLs, emoticons and hashtags
specially. We also chose the unigrams+bigrams feature representation, only keeping
tokens appearing at least 15 times in the corpus.

We chose to employ a linear SVM implemented in LIBLINEAR (Fan et al., 2008)
due to its efficiency on this large sparse text categorization task and a 10-fold cross
validation was conducted to evaluate its performance. Within the first fold, we use
an inner 5-fold cross validation on the training portion to tune the regularization
parameter on the grid {2−10, 2−9, . . . , 1}; the selected parameter is then fixed for all
the remaining folds.

The resulting cross validation accuracy was 0.607 with a standard deviation of
0.012. While it is statistically significantly better than the random-guessing baseline
accuracy of 0.5 with a p-value of 5.15× 10−10, this accuracy is nevertheless too low
to be useful in a practical system. One possibility is that the tweet text contains
very limited information for predicting inaccessibility; a user’s decision to delete a
tweet potentially depends on many other factors, such as the conversation context
and the characteristics of the author and audience.

In the spirit of exploring additional informative features for deletion prediction,
we also used Teasing Bullying Trace Classifier and Author’s Role Classifier, and
appended the predicted teasing, and author role labels to our feature vector. This
augmented feature representation achieved a cross validation accuracy of 0.606,
with standard deviation 0.007; not statistically significantly different from the text-
only feature representation. While it seems that a signal does exist, leveraging it
usefully in real world scenarios may prove challenging due to the highly-skewed
nature of the data.

Discussion

There have been several recent works examining causes of deletion in social media.
Wang et al. (2011) qualitatively investigated regret associated with users’ posts on
social networking sites and identified several possible causes of regret. Bamman
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et al. (2012) focused on censorship-related deletion of social media posts, identifying
a set of sensitive terms related to message deletion through a statistical analysis
and spatial variation of deletion rate.

Assuming that deletion in social media is indicative of regret, we studied re-
gret in a bullying context by analyzing deletion trends in bullying related tweets.
Through our analysis, we were able to isolate several factors related to deletion,
including word usage, surviving time, and author role. We used these factors to
build a regret predictor which achieved statistically significant results on this very
noisy data. In the future, we plan to explore more factors to better understand
deletion behavior and regret, including users’ recent posts, historical behavior, and
other statistics related to their specific social network.
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5 hashtags usage in bullying traces

Hashtags are keywords or acronyms that are prefixed with a # symbol that are
annotated within tweets to indicated markers of topic. Hashtagging was introduced
around February 2008 for users to tag their content for retrieval (Huang et al., 2010).
Tagging had already been used on Del.icio.us (online web bookmarking site) and
blogging platforms for bloggers to retrieve post topics for themselves and for their
readers. However, now hashtagging is used more as a search term to filter out
certain tweets and to elevate certain topics on Twitter. When hashtags were first
used back in 2008, it was uncommon for tweets to have more than one hashtag.
Now hashtags are used within the phrase or sentence of a tweet and provide a user
with more chances for recognition the more hashtags they use (Huang et al., 2010).

Twitter users can use a keyword to gather instant updates of an event or a con-
versation, such as the protests in Egypt in 2011 (Papacharissi and de Fatima Oliveira,
2012) or The Wall Street occupy movement (Gleason, 2013), sometimes faster than
the news media can (see (Mitchell and Guskin, 2013) for more Twitter event reports).
Twitter users cannot only obtain breaking news from elite news affiliates, but also
from individuals who are witnessing the event in real-time. Twitter users contribute
to the conversation of an event by including an event’s hashtag with their tweet.
The more retweets and mentions a Twitter user receives, the more that user and her
or his tweet is recognized. Hashtags can also bring people together and establish
a sense of solidarity in times of crisis (Papacharissi and de Fatima Oliveira, 2012).
Hashtags not only disseminate information to interested Twitter users, but the users
of hashtags may also have an impact on how events unfold (Kirkland, 2014).

Bullying represents a phenomenon that is discussed in relation to tragic, high
profile events. It also may be discussed on a more day-to-day basis as a function of
individuals’ personal experiences or via organizations that are working to lessen the
negative impact of bullying. As a result, bullying is expected to have relevance for
a broad range of hashtag uses. In this chapter, we seek to understand the bullying
topics that Twitter users posted about across 2012 by studying which hashtags were
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employed and how they were utilized (Calvin et al., 2015). The identified hashtags,
annotations and documentations are archived as Hashtags in Bullying Traces Data
Set (see Appendix A.6).

5.1 Identification of the Hashtags

Our first goal was to identify the hashtags most frequently associated with Twitter
posts that use bullying keywords in 2012. We expected that this would yield
information about important events related to bullying and also general public
opinions about bullying.

We collect data from the public Twitter streaming API between the period of
January 1, 2012 and December 31, 2012. We captured tweets in 2012 that contained
at least one of the following keywords, “bully,” “bullied,” and “bullying” through
the Twitter streaming API. Unless we hit the maximum allowable tweets in a
given day, we received all posts that satisfied this condition for 2012. In total, we
collected 25,370,824 tweets. From this collection of bullying tweets, we extracted
tweets that contained hashtags by searching for any strings which started with “#”
and consisted of only alphanumeric characters (e.g., “#bully”). We case-folded all
hashtags (i.e., we replaced upper case letters with lower case ones) to merge different
variations of the same hashtag into a single hashtag. For example, “#StopBullying”,
“#stopBullying”, “#STOPBullying” were all transformed to “#stopbullying.” After
case-folding, we ended up with 552,831 distinct hashtags in total and 9,815,715 out
of the 25,370,824 tweets contained at least one hashtag. We counted the number of
tweets in which each distinct hashtag appeared. Then we sorted all of the hashtags
by the number of tweets in which they appeared to identify the top 500 most popular
hashtags that appear in Twitter posts with the keywords “bully,” “bullied,” and
“bullying.”
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Table 5.1: Top 500 hashtags used in tweets that contained
bullying keywords collected between January 1, 2012
and December 31, 2012

Continued on next page
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We limited our study to top 500 most popular hashtags because these are most
likely to have been used by many users and may therefore be a better representation
of hashtag use associated with bullying. Five hundred is only about 0.1% of all
unique hashtags (552,831 in total), but they cover 50% of tweets about bullying with
hashtags. The number of tweets with one of the top 500 hashtags is 4,931,270. We
have 9,815,715 tweets with any hashtags. So 4,931,270/9,815,715 ' 0.50.

The 500 hashtags that appeared most frequently are reported in Table 5.1 Among
the top 500, the most common hashtag was #bullying, which appeared 354,128 times
and the least common was #18, which appeared 1,491 times. The identified hashtags,
together with their features and annotations below are archived as Hashtags in
Bullying Traces Data Set (see Appendix A.6).

5.2 Categories of Hashtags

Our second goal was to identify the different types of bullying hashtags that are
used by evaluating their different intents. In doing so, we learn whether hashtags
are used differently despite focusing on the shared topic of bullying. Some users
may seek to raise awareness about specific bullying episodes. For example, in
response to Jamey Rodemeyer’s death, Lady Gaga asked her Twitter followers to
trend “#MakeaLawforJamey.” Other users may be posting general messages about
bullying (“#bullying is wrong”) or supporting specific causes such as (“Stand against
bullying! Wear purple and make your profile pic purple for #SpiritDay”).

We annotated all of the top 500 hashtags to discern whether they could be
categorized. We followed an inductive approach to generate the categories (Miles
and Huberman, 1994). A team of four bullying scholars independently read through
all of the hashtags and noted their first impressions of what they thought the hashtag
referred to. Next, they evaluated the context in which each hashtag was used
through a random sample of 500 tweets that contained the hashtag. For example,
whether the hashtag was used as a word within a sentence such as “#InMiddleSchool
I was bullied a lot because I was different” or whether the hashtag was used separately
such as “I’m taking a stand. Tired of me along with many other people getting bullied.
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#antibullying” was evaluated. At this stage, consistencies in how the hashtag was
used across tweets was also considered (e.g., The hashtag was always used to
promote a cause). Finally, to further identity the category of the hashtag, the coders
searched for the hashtag among all current Twitter posts to see whether it was
still being used as of December 2013, used http://www.tagdef.com to identify
the meaning of the hashtag to discern acronyms and slang terms, and searched
for the hashtag using Google. After independently generating and assigning a
category, the scholars met as a group to review the entire list of 500 hashtags to
reach agreement on their category assignment.

Each of the top 500 hashtags were evaluated and assigned to a category. Eight
categories were identified.

• The General Bullying category (n= 44) included hashtags that contained terms
that included the word bullying in some way (e.g., #bully, #stopbullying).

• The Campaign category (n = 32) included hashtags that were associated with
campaigns such as #spiritday, a day that occurred on October 19, 2012 and
refers to GLAAD’s (Gay and Lesbian Alliance Against Defamation) antibully-
ing campaign, in which supporters for LGBT who are bullied wear purple or
tint their profile pictures or logos in purple to spread awareness.

• The Suicide/Death category (n = 19) contained hashtags with death-related
terms (e.g., #suicide) or references to deaths or suicides that resulted from
bullying (e.g., #ripamandatodd). Amanda Todd, a 15 year-old from British
Columbia, posted a YouTube video involving handwritten flashcards that
described how she was blackmailed into exposing herself to an unknown
individual via webcam, and the photos later went viral to Facebook. About five
weeks after the video was posted, Amanda committed suicide, and her story
was used as a demonstration of the seriousness consequences of cyberbullying.

• The Bullying Terms category (n = 45) included hashtags that referred to
variables or factors that have been studied within psychology in association
with bullying (e.g., #abuse, #glbt).
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• The Media category (n = 33) included hashtags that referred to TV shows
(#xfactorusa), movies (#bullymovie), or content providers (#bbc).

• The Everyday Twitter Trend category (n = 63) contained terms that are used
in everyday online exchanges that are not connected to bullying (e.g., #lol,
#smh).

• The Fill-in-the-Blank/Game category (n = 74) contained hashtags that are
designed as templates for users to copy and use while adding on a response
of their own. These usually take the form of phrases such as #backinelemen-
taryschool and #whydopeoplethinkitsokay.

• The remaining hashtags (n = 190) were assigned to the Other category. This
included a wide variety of terms such as #libra and #usa.

5.3 Characteristics of Hashtags and Hashtag
Categories

Our third goal was to describe the features of tweets associated with the hashtag
categories. The eight features that were analyzed for each tweet were derived
directly from data present within each post that Twitter makes available through
its streaming Application Programming Interface (API). We chose eight features
that we believed would demonstrate differences in various aspects of the level of
recognition of each individual hashtag. We conducted a one-way ANOVA compar-
ing hashtag categories for features one through six. We report the hashtag category
mean values and standard deviations along with indicators for where significant
group differences exists in Table 5.2.

The Number of Tweets

First, we counted the number of tweets in which each hashtag appeared as this is
an indicator of its overall popularity.
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The average number of tweets containing each hashtag differed between cate-
gories, F(7, 492) = 4.58, p < .01, partial eta squared = .06, such that General Bullying
Hashtags appeared in a significantly larger number of tweets than hashtags in any
other category.

Fraction of Retweets

Second, we focused on what percentage of the overall number of tweets in which
each hashtag appeared were retweets. A retweet may represent a qualitatively
different type of post than a user-generated post because the user may not be
adding any of her or his own unique content to such posts.

The fraction of retweets to all tweets that contained each hashtag also differed
between categories, F(7, 492) = 10.25, p < .01, partial eta squared = .13. The hashtag
categories that contained the highest percentage of retweets were the Suicide,
General Bullying, Campaign, Fill-in-the-Blank/Game and Other categories. Only
the Suicide, Campaign, and General Bullying hashtags contained a significantly
higher percentage of retweets than the Media, Everyday Twitter Trend, and Bullying
Term categories.

Number of URLs

Third, we evaluated the number of URLs (i.e., web addresses) included in each tweet
with a given hashtag. Because tweets are limited to 140 characters, individuals may
use that space to direct users to a web address containing additional information.

The number of URLs associated with each hashtag also differed by hashtag
category, F(7, 492) = 19.37, p < .01, partial eta squared = .22. The Bullying Term
category had the highest number of URLs associated with its hashtags and differed
from all other categories. Other, Campaign, and General Bullying hashtags had
the next highest number of URLS, which was significantly higher than the number
used in the Fill-in-the-Blank/Game category. Media, Suicide, and Everyday Twitter
Trend hashtags fell in between these groups and did not differ from either.
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Number of Hashtags

Fourth, we investigated the number of hashtags included in each tweet with a given
hashtag. Hashtags that appear with more other hashtags would be expected to get
more attention because users searching for other hashtags may also come across
the tweet.

The number of hashtags included in each tweet also differed by hashtag category,
F(7, 492) = 11.27, p < .01, partial eta squared = .14. Bullying Terms had the highest
number of hashtags associated with the use of each hashtag within their category
and differed from all other categories. Other and Media had the next highest
numbers; their number of hashtags was significantly higher than those used in the
Fill-in-the-Blank/Game category. Suicide, Everyday Twitter Trend, Campaign, and
General Bullying categories did not differ from one another nor from the Other,
Media, and Fill-in-the-Blank categories.

Number of Distinct Authors

Fifth, we determined the number of distinct authors who used each hashtag. This
count was expected to reveal how widely disseminated the hashtag usage was
among the population.

The number of distinct authors who used each hashtag differed across categories,
F(7, 492) = 4.91, p < .01, partial eta squared = .07, such that General Bullying
hashtags had a larger number of authors than all other categories of hashtags.

Number of User Mentions

Sixth, we calculated the number of users mentioned in each tweet with a given
hashtag. High user mentions was expected to function similarly to high hashtag
usage in that it should get an individual tweet or hashtag more attention among
other users through endogenous sharing within Twitter (Lehmann et al., 2012).

The number of users mentioned in the same tweet with a hashtag differed across
categories, F(7, 492) = 7.36, p < .01, partial eta squared = .10. Campaigns, General
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Bullying, and Other hashtags were posted along with the largest number of user
mentions. General Bullying and Other hashtags did not differ from Suicide/Death
and Everyday Twitter Trend hashtags, which contained the next largest number of
user mentions. Bullying Terms, Media, and Fill-in-the-Blank/Game hashtags were
posted along with the smallest number of user mentions; Everyday Twitter trend,
Suicide/Death and Other did not differ in their frequency from these terms.

Negative, Neutral, and Positive Sentiments

Seventh, we evaluated the strength of the sentiment associated with each hashtag.
In Chapter 4, we study the emotions present within bullying posts on Twitter. Fear,
sadness, anger, and relief were found to be the most common emotions present
within bullying posts. We included a broader range of posts that contained bullying
keywords in this chapter; we expected to capture a wider range of emotions.

To address whether different emotions characterized the tweets, sentiment
analysis was computed. Sentiment analysis is widely studied in natural language
processing and has been applied in many business and social domains (Liu and
Zhang, 2012). Many sentiment analysis algorithms first learn a sentiment lexicon
with weights, which are words and phrases commonly used to express positive or
negative sentiments, from a coded list and/or existing corpus. The sentiment of a
new document is then detected by aggregating the weights of the sentiment lexicon
that appears in the document with a set of rules designed from the earlier coded
list. Recent algorithms also take informal spelling and emoticons into account to
improve the performance on social media posts. SentiStrength (Thelwall et al., 2010)
was used as it has been shown to have human-level accuracy for short social media
posts in English. This algorithm allowed us to produce the fraction of negative
(“@USER I’m in so much painnnnn. #Bully”), neutral (“my lil sister a #BULLY”), and
positive tweets (e.g., “The movie #bully is extremely inspirational. Strongly suggest.”)
associated with each hashtag by assigning a sentiment to each tweet associated
with each hashtag.

Once the fraction of negative, positive, and neutral tweets was determined for
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each hashtag we conducted a Repeated Measures ANOVA comparing the hashtag
categories on these variables. This analysis revealed that the fraction differed be-
tween sentiments, F(2, 491) = 2247.20, p < .01, partial eta squared = .90. Posthoc
pairwise comparisons conducted with a Bonferroni correction revealed that neutral
tweets (M = .75, SE = .01) represented a significantly larger fraction of tweets than
negative tweets (M = .20, SE = .01). Positive tweets represented a significantly
smaller fraction of tweets than both other sentiments (M = .05, SE = .00). Nei-
ther the between-category main effect nor the category by sentiment interaction
revealed significant differences. See Table 5.2 for the mean fraction of tweets for
each sentiment that was found for each hashtag category.

Temporal Patterns of Hashtags

Eighth, we tallied the daily number of tweets containing each hashtag across the
year. Doing so allowed us to differentiate between hashtags that showed a high
percentage of usage for a short period of time, called micro-memes or “bursty”
hashtags (Lehmann et al., 2012), and those that have more spread over time and no
extreme increases or decreases of use (Huang et al., 2010).

To understand whether temporal patterns differ among the top 500 individual
hashtags, we computed the daily number of tweets containing each hashtag for one
year, and then ran a Principal Component Analysis (PCA). For each hashtag h, we
had a 366-dimension vector xh, which consists of the daily number of tweets using
hashtag h. We plotted them as temporal curves (see Figure 5.2) to study how the
numbers vary over the year. The scale of xh reflects the popularity of the hashtag
h, and we have studied it in the first feature (the number of tweets containing each
hashtag) above. Now, we focus on the temporal variations, how the curves relatively
change over the year, ignoring the actual scales. The cosine distance between two
vectors xh1 and xh2 is scale invariance, i.e., the distance does not change with the
scale of xh1 or xh2 . In addition, many hashtags have similar trends, e.g., single peak,
but happened at different time points. This indicates they are very similar to each
other and so we wanted to further remove this variance in the distance measure.
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Figure 5.1: Representation of the hashtags within each of eight hashtag categories
along Principal Component 1 (x-axis), which is related to the number of major
peaks and Principal Component 2 (y-axis), which is related to the relative level of
background counts and peaks.
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Therefore, we defined a shifting function τ(x, t) as

τ(x, t) = [xt+1xt+1 . . . x366x1 . . . xt]

which shifts the first t elements of x to its end. We define the cosine distance with
alignment as

d(h1,h2) = min
t=1,...,366

consine_dist(xh1 , τ(xh2 , t))

Intuitively, the measure tries all possible ways to shift one temporal curve to match
the other, and uses the cosine distance between the best match to the other as the
distance.

We computed the pairwise distances between all pairs of hashtags and per-
formed PCA to embed the hashtags in two-dimension space. The results are shown
in Figure 5.1. Each dot represents one hashtag, and hashtags with similar trends are
closer. Each panel shows hashtags of one category, and all the panels have exactly
the same ranges. The PCA procedure did not use any category information. We
investigated the curves embedded at different positions in the space, and found
that the two components identified by PCA are related to the shapes of the curves.
Principal Component 1 (x-axis) is related to the number of major peaks, and Princi-
pal Component 2 (y-axis) is related to the relative level of background counts and
peaks. #oomf (Figure 5.2 (left)) at the upper left corner has the highest background
count level; in other words, it has a lot of major peaks with similar scale. At the
other end, #ripamandatodd (Figure 5.2 (right)) at the lower right corner have a
single peak and zeros for all other days.

The PCA results also show that for some categories, temporal curves of hashtags
in the same category tend to be similar. Most temporal curves from Suicide/Death
and Fill-in-the-blank are embedded in the right lower corner, because they each have
a single peak as the associated events happen only once. Most curves for Campaign
and Media are embedded in the right lower corner as well, but spread over more
space than the previous two categories, because there are some campaigns and TV
shows that run multiple times a year. They may have multiple peaks but not too
many. Most curves of Bullying Terms and Everyday Twitter Trends are embedded
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in the left upper corner, as most of them are used on a daily basis. The General
Bullying and Other category spread over all spaces, as they capture different types
of curves discussed above.

5.4 Discussion

We identified the most widely used hashtags associated with Twitter posts from
2012 that used bullying keywords. The results reveal a range of uses for hash-
tags associated with bullying. The uses ranged from discussing high profile sui-
cides/deaths to discussing current television programs to promoting antibullying
campaigns and participating in Twitter culture through games and established
hashtags. Importantly, we found several features from the tweets associate with
different hashtags, which indeed demonstrated differences between the hashtag
categories. The differences between categories show how hashtags associated with
bullying can have both an immediate, large-scale influence on a lot of people as
well as a more enduring everyday impact.

One consistent difference between hashtag categories was that hashtags within
the General Bullying category (e.g., #bully, #bullying) were found to occur within
the highest number of tweets and to be associated with the highest number of
different authors. Both of these features indicate widespread usage of the hashtag
within bullying keyword tweets. The finding that General Bullying hashtags oc-
curred within the highest number of tweets might be explained by the fact that the
tweets studied in our work all contained bullying keywords. As a result, the same
text, #bully, might serve as both a keyword for collecting the tweet and a hashtag.
However, this overlap is not explained by the fact that General Bullying hashtags
were used by the highest number of authors. Rather, it may be that authors who
hoped to gain attention to their post about bullying chose to include the most
generic terms that directly related to bullying.

Hashtags within the Bullying Terms category occurred in tweets with the largest
number of URLs and the largest number of hashtags. This group of hashtags, which
contained terms such as “#parents,” “#children,” “#school,” may have been used
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to share information about a range of topics related to bullying or with key stake-
holders. The target audience may have been directed to a website with additional
information on these topics. To evaluate if this is the case, the content of the links
could be coded in a future analysis.

The hashtags associated with the largest fraction of retweets were General
Bullying, Suicide/Death, Campaign, and Fill-in-the-Blank/Game hashtags. This
pattern makes sense especially for the Suicide/Death and Campaign hashtags as
users may have been re-reporting events or campaigns with their tweets. This sort
of activity could benefit organizations promoting their campaigns about bullying.
Note that the Campaign hashtags were among the categories that contained the
most mentions of other users. This might be the first step in the process–A campaign
can mention several users within their tweet and these users will then be notified of
their inclusion within the tweet. This may prompt the users to retweet the message.
This process is important for nonprofit organizations that use hashtags to relay
information, foster online communities with their followers, and promote action
by their followers (Lovejoy and Saxton, 2012). Retweets also indicate endogenous
influence suggesting that news about bullying events, such as Suicide/Death and
Campaign hashtags, are spread largely through users forwarding these events to
their followers (Lehmann et al., 2012).

Sentiment analysis revealed differences in which emotions were distributed
across all 500 top hashtags associated with bullying keywords, but not between-
category differences. In general, most tweets (i.e., 75%) using the hashtags were
neutral in their tone. Twenty percent of tweets were identified as negative in tone,
and 5% were positive. While the percentage with an emotion may seem low, it is
higher than the 6% of bullying episodes found to contain an emotion in Section 4.3.
Different methods were used to identify emotions in the two studies, but the finding
may suggest that hashtag usage is associated with stronger emotionality.

The temporal analysis illustrated striking differences between hashtag cate-
gories. Among the eight categories, we found several different patterns of hashtag
use across one year. The daily pattern of hashtag popularity has been described
as originating through both exogenous and endogenous propagation (Lehmann
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et al., 2012). Exogenous propagation involves a hashtag becoming popular because
of an online or offline influence outside of Twitter, such as the media (news or
entertainment) or relevant events (elections, sports, etc.). Endogenous reasons for a
hashtag becoming popular involve activity within Twitter through either retweets,
popular users such as Lady Gaga using the hashtag (Katrandjian, 2011), or the
posting of the hashtag on Twitter’s top trending topics list. Popular hashtags display
four common daily temporal profiles around a peak in which the hashtag is most
frequently used: activity before and during the peak (usually involving anticipa-
tion for a particular event such as #spiritday), high activity during the peak and
after (occurs with unexpected events such as a teen committing suicide), activity
symmetrically occurring before and after the peak, and activity occurring on the
single day during the peak (Lehmann et al., 2012). High activity during the peak
and afterwards characterized how the hashtag #ripamandatodd, a hashtag within
the Suicide/Death category, was used. In contrast, more symmetric usage across
the year, with no single peak, characterized how the #oomf, an Everyday Trend was
used. These trends map on for these individual hashtag examples. However, some
hashtag categories showed a lot of differences in their temporal patterns. Future
work is needed to evaluate whether important subcategories of hashtags exist that
might explain these different temporal patterns.

Limitation

The present study reflects an inquiry into a new area of research on bullying. As
such, it faces some unique limitations. It is important to keep in mind that this
study examines these hashtags only in relation to tweets that contained bullying
keywords. The exact same hashtag may operate very differently when combined
with other words. An additional challenge within our work is that many hashtags
were coded as “Other” because their function could not be determined from single
tweets alone. Some hashtags also were not necessarily hashtags-e.g., #1. Because we
relied on a # matching procedure to collect hashtags, we may have included some
that were not intended to be used as such. Our use of the Twitter API generates
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individual tweets with our criteria (i.e., keywords), rather than full conversations.
This makes it difficult to evaluate the context and meaning of hashtag usage without
additional exploration. Further, a small proportion of tweets that use hashtags
could be considered spam, such that possible users may be trying to promote or
advertise a website, video, or business by composing the tweet almost entirely with
hashtags to gain attention. Future studies might filter out such tweets as they may
skew the data in detrimental ways.

An additional limitation is that we do not know how the hashtag originated or
whether the hashtag was introduced through endogenous or exogenous means. For
instance, many media outlets now use hashtags to gather real time opinions or for
fans, viewers, or readers to follow a particular live event through hashtag searching
(e.g., #xfactor). Further resources are needed to identify who first initiated the
hashtag, which could give a better idea of the hashtag’s purpose. Like the game
of telephone, sometimes the message or news is altered from user to user or from
retweet to retweet (boyd et al., 2010). Locating the origin of the hashtag will help to
track the progression of bullying events, opinions, and trends.

Future Directions

Our work provides a first glance into how bullying is discussed within social media.
It illustrates that the online world is an important data source for observing social
interactions that take place there. There are numerous directions future work
could pursue. It would be interesting to see how conversations on Twitter affect a
particular event. In the present study and most other studies, the presumptions is
that particular event impacts Twitter activity. However, social media usage itself
may have an impact on an event or future events, such that popular hashtags may get
more attention (e.g., #bringbackourgirls (Kirkland, 2014)). Another line to pursue
could be the association between posting on social media and offline behavior.
Sharing publically through hashtags online about one’s bullying opinion, bullying
events, or promoting a bullying cause may change how users see themselves, make
users more accountable for their actions, and pressure users to follow through
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on their beliefs (Gonzales and Hancock, 2011). For instance, do users that tweet
“Stand up to bullies” or “be a friend to someone who is bullied” actually perform
these activities? Future studies connecting social media behavior with overt offline
behavior could be beneficial for bullying intervention. Finally, the focus here was
at the tweet level. Public social media data also allow researchers to take a user-
level perspective. For example, an important next step would be to investigate the
network infiltration of bullying keyword hashtags. Power or popularity within the
conversation network is achieved through other users retweeting one’s tweets, and
having a large number of followers. Having one’s hashtags used by others may be
one way to gain this power. It would be intriguing to examine how different types
of hashtags travel through users within social media to identify those who are the
most influential on different topics related to bullying. In this way, the influence of
social media on bullying could be parlayed for good to get positive messages and
information out rather than only serving as conduit for cyberbullying.
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6 culture differences in bullying traces

Bullying at school is a worldwide health issue among adolescents. During the last
decade, several East Asian countries and regions started paying close attention to
this problem as well. Researchers have reported bully and victim prevalence rates
and forms in Asian countries that are similar to those in western society (Kanetsuna
et al., 2006; Schwartz et al., 2001; Wei et al., 2007).

Yet similar prevalence rates do not necessarily mean similar dynamics among
bullying participants. East Asian cultures are more prone to emphasize the devel-
opment of interdependence and the relational self, during which an individual is
expected to keep group harmony and align one’s own behaviors with others’ in the
same context, whereas individuals in western countries are more prone to develop
a sense of independence and the separate self (Kağitçibaşi, 2007; Lam and Zane,
2004). These cultural differences have implications for the different behaviors of
participants in bullying episodes. However, to the best of our knowledge, the study
on such differences is largely unexplored.

The widespread usage of social media makes it convenient to collect data from
different countries. This facilitates many cultural comparative studies, such as user
behaviors (Yang et al., 2011) and emoticon usages (Park et al., 2013). We propose to
use social media as an excellent data source for a cultural comparative study on
bullying.

In this chapter, we collect a bilingual microblogs corpus on school bullying1 ,
including English posts (tweets) from Twitter.com and Chinese posts (weibos) from
Weibo.com, to study the differences on school bullying behaviors between western
society and China. This dataset and its documentation is archived as Bilingual
Bullying Traces Data Set (see Appendix A.7) We investigate the corpus to examine
cultural differences in author’s role, teasing, temporal dynamics and social process.
We also hypothesize possible explanations for these differences.

1Our corpus is not aligned, meaning that one language is not the translation of the other. The
data is available at http://research.cs.wisc.edu/bullying.



102

all tweets in 2012 

describing 
bullying 
episodes  

containing 
keywords  

posted during 
Oct 11-24, 2012 

Figure 6.1: Venn diagram of bullying tweets. The temporal analysis is based on the
red and yellow set. All other analyses are based on the yellow set only.

6.1 Data Collection

We collected English tweets using the public Twitter Streaming API by tracking
bullying related keywords: “bully,” “bullied,” and “bullying.” As our focus is on
school bullying posts, we only kept the tweets which further contain at least one
of the school-related words: “college,” “university,” “school,” and “class.” The
filtering is case-insensitive and we included the plural forms of these keywords.
We removed retweets by filtering tweets with the token “RT.”

We collected Chinese weibos through the keyword search function provided by
Weibo.com. Since there is no single term in Chinese that exactly corresponds to the
English word bullying, we considered all seven near synonyms suggested in (Smith
et al., 2002): . We chose three corresponding school
keywords: . We required at least one match from each keyword list, with
the option “original post only” to exclude posts reposting other weibos.

We collected data in this way for the whole year of 2012. In total, there are 756,449
tweets and 75,044 weibos in our dataset (the red and yellow set in Figure 6.1). As
shown in Section 2.1, not all of keyword-filtered posts are bullying traces, i.e. posts
describing actual school bullying episodes.

To ensure the quality of our result, we conducted our analysis on an annotated
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Author’s Role Tweet Weibo p-value
Accuser 67 6.0% 11 1.4% 6.5× 10−7

Assistant 1 0.1% 1 0.1% 6.3× 10−1

Bully 72 6.4% 133 16.4% 3.6× 10−12

Defender 26 2.3% 36 4.4% 1.3× 10−2

Reinforcer 3 0.3% 1 0.1% 8.5× 10−1

Reporter 429 38.3% 296 36.5% 4.6× 10−1

Victim 523 46.7% 333 41.1% 1.6× 10−2

Table 6.1: Number and percentage of author’s role in bullying traces.

subset of the corpus. We selected a study period of October 11-24, 2012, with the
consideration of avoiding major vacations and holidays. 45,785 tweets and 3,123
weibos fell in this study period. To reduce the burden of annotation, for each day
we randomly subsampled tweets so that it has the same size as all weibos collected
on that day. Therefore, our annotators labeled 3123 tweets and 3123 weibos (purple
set in Figure 6.1). Among them, 1121 (36%) tweets and 811 (26%) weibos were
coded as bullying traces (yellow set in Figure 6.1). One possible explanation for
the lower percentage of bullying traces in Weibo is that multiple Chinese bullying
keywords have other meanings as well.

6.2 Fewer Victims in Weibo

In Section 2.2, we categorize the author of a bullying trace into several role. We
expected the roles to be identical across the two cultures, but hypothesized that
their distribution may differ. Therefore, our annotators labeled each author’s role of
the 1121 tweets and 811 weibos. Table 6.1 shows the number of posts from each role
and their percentages. We conducted χ2-tests to test if the fraction of one category
in tweets is significantly different from the one in weibos, and reported the p-value
in the table, too. We found that the fractions of bullies and defenders in weibos
almost double the ones in tweets. On the other hand, the fractions of accusers and
victims in Weibo are significantly lower than the ones in tweets.
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Tweet Weibo p-value
Teasing 44 3.9% 70 8.6% 2.3× 10−5

Table 6.2: Number and percentage of teasing posts in bullying traces.

The distribution of author roles may reflect cultural differences between the
two societies. Asian culture differs from western culture in that it stresses values
of interdependence in which the development of relational self is emphasized
and group harmony is highly valued over individual independence (Wei et al.,
2007). In contrast, western society is conceptualized as a culture of independence in
which the independent and separate self is strongly shaped (Kağitçibaşi, 2007). It is
possible that youth in the Asian culture, where greater emphasis is on interpersonal
relationships, will perceive more social responsibilities for each other in terms
of offering help in a peer victimization event. As a result, more youth may be
identified as defenders in the Chinese language social media posts.

There were fewer victims identified in the Asian culture. This may be because
of the prevalent notion of “saving face” – the confidence and moral values in ego’s
integrity that an individual must keep (Shi, 2011; Yu, 2003). In contrast to posts
generated in tweets, Weibo victims, to save face, may be less likely to post about
their own experiences and others may be less likely to post about them. Instead,
more people label themselves or act as a bully in weibos.

6.3 More Teasing in Weibo

In Section 4.1, we discusses that some bullying traces are written jokingly, which
indicates lower severity of a bullying episode; It may also represent positive social
interaction among friends to increase relational bonds. For example, (Tweet)“Miss
them. No, don’t think if I miss the school but I miss my friends. I miss the moment when I
bullying them ·_·Well, I miss the foods too.”

Due to the different levels of self concerns and face concerns in the cultures, we
would expect that Asians are more likely to accept teasing because they tend to think
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Author’s Role Tweet Weibo p-value
Accuser 11 25% 0 0% 4.6× 10−5

Bully 10 23% 39 56% 1.1× 10−3

Defender 1 2% 0 0% 8.1× 10−1

Reporter 7 16% 10 14% 9.7 × 10−1

Victim 15 34% 21 30% 4.6× 10−1

Table 6.3: Number and percentage of author’s role in teasing bullying traces.

affiliation is a positive consequence of teasing with friends (Keltner et al., 2001).
Table 6.2 shows the number of teasing posts within the posts coded as bullying
traces. Among the annotated bullying traces, 44 (3.9%) tweets and 70 (8.6%) weibos
were written jokingly. The fraction of teasing posts is significantly higher in Weibo
than in Twitter (p-value 2.3× 10−5). More Weibo users talk about bullying as an
interaction among friends, instead of a serious issue.

Members of different cultures and backgrounds may tease and perceive teasing
in different ways (Campos et al., 2007). Table 6.3 shows the number and percentage
of author’s roles in teasing bullying traces. Here are some example teasing posts
where the author takes the bully role (Weibo, translated)“I used to bully a nerd boy
in my class. In fact, it was wrong when I look back. I am a fool. lol lol”, the accuser
role (Tweet)“@USER @USER report yall for cyber bullying ! lol”, and victim role
(Tweet)“@USER lol shut the hell up. You’re always bullying me at school in the hallways!”

More than half of teasing weibos were written by bullies, and the fraction is
significantly higher than the one in Twitter. In contrast, we found more teasing
tweet from accusers and victims. This result is consistent with our assumption on
saving face in the Asian culture. Even in teasing, users tend to act as bullies instead
of victims.

6.4 More Weibo Posts in the Evening

Understanding the temporal dynamics of school bullying is important for research
and practice. The traditional social science study of bullying relies on personal
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In Semester Off Semester Off/In Ratio
Tweet 2194 1770 81%
Weibo 222 157 71%

Table 6.4: Average daily counts of microblogs containing school bullying keywords
off/in-semester, and the ratio of these two categories.

surveys in schools. The number of participants and the frequency of such survey
are usually low. Therefore, the study of temporal dynamics is handicapped by data
scarcity. In contrast, we can collect a large number of school bullying microblogs at
near real-time with very high temporal resolution.

Figure 6.2 (left) shows the percentage of microblogs containing school bullying
keywords we collected from Twitter and Weibo in each day of 2012. Although these
counts include the false positives (non bullying traces), the false positive rate is
relatively stable during the study period of October 11-24, 2012. Therefore, the
trend of actual bullying traces should be similar to Figure 6.2(left).

We first look into the peaks and valleys. Twitter has several extremely high and
narrow peaks, which are usually caused by special events. On the other hand, Weibo
has a relatively stable but slowly increasing trend. It is possible that new users kept
signing up. Most narrow valleys in both platforms appear during weekends, when
students have less direct interactions. The percentages are even lower during major
long holidays, as highlighted in Figure 6.2(left).

To quantify the differences between in-semester and off-semester, we com-
puted the average daily counts of microblogs containing school bullying keywords.
Most schools in western societies are in-semester during mid-January to mid-June
and September to mid-December. Most schools in China are in-semester during
mid-February to end of June and September to mid-January. All other days are
considered as off-semester. Table 6.4 shows the results. There are more posts with
school bullying keywords in-semester as we expected. However, the number of
such posts off-semester is far from zero. This shows that a focus on in-semester data
collection as is normally done in psychology may be missing the bigger picture,
since bullying or discussion thereof are happening off-semester as well.
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Figure 6.2: (top) The percentage of microblog posts containing school bullying
keywords created in each day over the year of 2012. The highlight regions are(from
left to right): Chinese New Year, Chinese National Day, and Christmas. (bottom)
The percentage of microblogs containing school bullying keywords created in each
hour-of-the-day.
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Family Friend Humans
Tweet 0.61 0.25 1.84
Weibo 1.41 0.24 2.10

Table 6.5: Social process scores of bullying traces by LIWC.

It is also interesting to look at the number of posts created in each hour-of-the-
day. China uses a single time zone, and timestamps in Weibo are in local time.
Twitter users spread cross many time-zones and location information is needed to
convert the timestamps to the user’s local time. We employed a reverse geocoding
database (http://www.datasciencetoolkit.org) and a rule-based string matching
method to map tweets to their origins (at the state level; only for tweets within the
United States).

Figure 6.2(right) shows the percentage of microblogs containing school bullying
keywords created in each hour-of-the-day. For both Twitter and Weibo the percent-
age is low at late night and in the early morning, and high in the evening. This
is the typical diurnal social media usage pattern as we expected. The difference
between the two cultures is obvious if we compare two time intervals, afternoon
(12:00-18:00) and evening (18:00-24:00). From afternoon to evening, the increment
of Weibo is more significant. This difference may be caused by the difference of
cellphone usage policies in schools between the two countries. It is also possible
that China may have a longer school day than the US (Fuligni and Stevenson, 1995),
so Twitter users have more hours in the afternoon when they are free to generate
posts.

6.5 Family Mentioned More in Weibo

Social media users are involved in different social groups, families, and friends. We
want to see the strength of interactions with different groups when users talk about
their bullying experiences. Linguistic Inquiry and Word Count (LIWC) (Tausczik
and Pennebaker, 2010) is a text analysis tool, which calculates the degree to which
people use different categories of words. We applied LIWC to the annotated bully-
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ing tweets and the weibos (translated into English by Google Translate). Google
Translate did a reasonable job in word choice, which is sufficient for word counting
by LIWC.

Table 6.5 shows the scores of different categories under social process produced
by LIWC. Weibo users use more words related to family, as the significance of
family in Asian countries is presumed to be higher than in western countries in
line with its collectivistic orientation where the group is emphasized over the
individual (Triandis, 1995). Chinese parents pay close attention to children’s educa-
tion performance and environment. For example, (Weibo, translated) “There is one
bully in my daughter’s class. Several parents complain that he bullies other girls, graping
their faces, even pushing them from stairs. My daughter also told me many times. I think
naughty is children’s nature, but manners are also very important. Parents should not let
their children be offensive. They should see a psychiatrist and apologize to other parents.”

6.6 Discussion

Social media provide an excellent data source for comparative study of school
bullying in different cultures. We collected and annotated a bilingual microblogs
corpus on school bullying consisting of Chinese Weibo and English Twitter posts.
We examined the differences in author’s role, teasing, temporal dynamics and social
process, and proposed possible explanations for several observed differences. There
could be alternative causes for our findings as well. For instance, both Twitter and
Weibo limit a post to 140 characters, but in English and Chinese, respectively. The
information content of a single Weibo post is thus considerably higher than that of
a tweet. Such difference may affect our annotator’s confidence and hence the labels.
In future work we plan to validate these and other hypotheses.
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7 segmenting user’s timeline into episodes

So far, we have been investigating individual tweets one by one. Since tweets are
short and some are ambiguous, it would be helpful to look at it under its context if
available. More context about the incidents could be more informative for us to
determine if they are bullying traces and other characters of these incidents. We
use the count of bullying traces to study the prevalence rates of bullying episodes
in previous chapters, with the implicit assumption that individual bullying trace
correspond to distinct bullying episodes. However, this may not be always true, as
several users may have a conversation containing multiple bullying traces.

To address these issues, we should put the bullying traces in the same episode
together. However, given the huge amount of bullying traces, it is not feasible to
consider all pairs of bullying traces without explicit connections. Therefore, as a
first step towards collectively investigate bullying posts, we focus on users’ timelines.
The timeline of user u includes (a)tweets created or retweeted by u, (b)replies to
any tweet created by u, and (c)retweets of any tweet created by u. This can be easily
collected through Twitter Streaming APIs via following a set of users.

In this chapter, we are interested in identifying name calling episode, which in-
cludes the tweets where name calling happened and all the context tweets about
this incident. Name calling could be one form of verbal bullying. We solve this task
by two steps. We first segment the timelines into episodes, i.e., assign each tweet
an episode id. Tweets with the same episode id are considered to be talking about
the same episode. The second step is training a classifier to recognize name calling
episodes from the segmentation result. We focus on the first step in this chapter.

7.1 Proposed Model

Notation

For notation simplicity, we describe our model with a single timeline. It is straight-
forward to extend our model to multiple ones by considering them as independent
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realizations of the same random process.
Let the total number of tweets collected in the timeline be N. Denote X =

{x1, x2, . . . , xN}, where xi ∈ Z∗V is the bag-of-words counts for i-th tweet and the
vocabulary size is V . For each tweet, we also have its creation time ti ∈ R+ from
its timestamp. The tweets are sorted by their creation time, so t1 6 t2 6 · · · 6 tN.
Let S be the set of links between tweets. We consider two types of links, reply and
prev. If tweet i replies to tweet j, then (i, j, reply) ∈ S. If a tweet replies to a tweet
which is not in our dataset or it does not reply to any other tweet, we call it original
tweet. If tweet i is an original tweet, and tweet j is the most recent original tweet
before tweet i, then (i, j,prev) ∈ S. Note that the links are directed. For any tweet
i > 1, there is exactly one link pointing from i. So S defines the edge set of a tree.

Distance Dependent Chinese Restaurant Process (dist-CRP)

Tweets in a timeline comes sequentially, which is very similar as the customers
in Chinese Restaurant Process (CRP). We want to assign the tweets to their corre-
sponding episodes. As a non-parametric model, CRP does not require setting the
number of tables. This is very important for our task, as we may not know how
many episodes in a timeline. It is not valid to assume tweets are independent or
exchangeable and use standard as the generative story for the timeline. Zhu et al.
(2005) and Blei and Frazier (2011) defined some variations of CRP, where customers
arrive in sequential, and the probability that a new customer sits at the same table
with previous customers depends on the history and the distances.

CRP represents the partition of customers with table assignments. Each customer
is assigned with a table label (cluster index). Dist-CRP (Blei and Frazier, 2011)
represents the partition with connections between customers. When a new customer
comes, dist-CRP assigns the index of customer with whom the new customer sits.
For customer i, ci is a back pointer to the previous customer with which i shares the
same cluster. At the end, if we connect customers by this relationship, customers
in the same connected component are assigned to the same cluster. So note that
ci ∈ {1, . . . , i} in the following section means that tweet i is in the same episode with
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tweet ci; if ci = i, tweet i starts a new episode. ci is not the cluster assignment.
Let the first tweet starts a new episode c1 = 1. When the i-th tweet arrives

(ordered by the creation time), the probabilities that it has the same episode with
tweet k ∈ {1, . . . , i− 1} and the probability that it starts a new episode (k = i) are
defined as,

P(ci = k) =
h(i,k)∑i
k ′=1 h(i,k ′)

,k ∈ {1, 2, . . . , i} (7.1)

where h(i,k) is a function that reflects the probability that tweet i has the same
episode with tweet k, and h(i, i) reflects the probability that tweet i starts a new
episode. So we may still have the probability to come back to any old episodes, and
the probabilities may decay over the distance between the pair of tweets.

Notice the choice of ci does not depend on the values of other c−i. The prob-
ability is determined by the h(i, ·). So the joint distribution of c = {c1, . . . , cN}
is

P(c) =
N∏
i=1

P(ci | h(i, ·)) (7.2)

Choice on h(i,k)

In general, we haveM different features to characterize the probability that ci = k,
k ∈ {1, 2, . . . , i} with feature vector fik ∈ RM+ , and we have a weight vector β ∈ RM.
Note that the feature vector fik is defined on a pair of tweets, instead of individual
ones. We require that the features take non-negative values, and larger feature
values mean that the pair of tweets tend to be in the same episode. Since f are
non-negative, we require β > 0 to make sure h is non-negative.

h(i,k) = β>fik,β > 0 (7.3)

In our tasks, we have four different sources of information that may be related
to the probability: difference in creation time, reply relationship, temporal relation-
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ships and text similarity. For each pair of tweets i and k, k 6 iwe have

fik =



1[k = i]
1[k<i]

|ti−tk|+1

1[(i,k,prev) ∈ S]

1[(i,k, reply) ∈ S]

1[k < i] x>i xk
‖xi‖‖xk‖


(7.4)

Note that we consider the sequential CRP. For any k > i, we define the feature
vectors fik = 0, so h(i,k) = 0. When the first feature 1[k = i] is one, all other
features are 0. This allows us to specify the potential that tweet i starts a new
episode, so β1 serves as the concentration parameter α in dist-CRP.

From c to Cluster Assignment

The distribution of P(c) is well defined by dist-CRP. An assignment of c for all
tweets induces a partition of the tweets. However, the mapping from c to partition
is many-to-one, i.e. multiple different values of c could induce the same partition.
In our task, we care more about the partition, instead of how the tweets link to each
other. Our labeled data have episode IDs, but no direct labels on c. So we need to
fill the gap between c and the segmentation result.

For a partition B = {B1, . . . ,BM} of N tweets withM blocks (M 6 N), we label
each block Bm,m ∈ {1, . . . ,M}, with the smallest index of the tweets in Bm. Then
we represent the partition B with z = {z1, . . . , zN}, where zi is the label of the block
in which i-th tweet is assigned to by B. It is obvious that for each B, we will have a
unique z; and for any meaningful z, we could recover the partition B.

Since the block label is the smallest index in a block, zi ∈ {1, . . . , i} for all i ∈
{1, . . . ,N}. However not any sequence {z1, . . . , zN} is a valid representation of a
partition under our block label rule. For example, {1, 1, 2} is not valid, as the label
for the block that the third tweet belongs to should be 3. Our model assigns
probability zero to these z.
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We have defined the distribution of c, and we know that c induces a unique
partition B, and B induces a unique representation z. Now let us consider the
distribution of z,

P(z) =
∑

c that forms partition z

P(c) (7.5)

As we assume the tweets arrive sequentially, ci could take any value in {1, . . . , i}.
If zi = i, the i-th tweet starts a new episode, and ci has to be i. If zi < i, the i-th
tweet belongs to some old episode with previous tweets, and ci must point to one
of the tweets in that episode. Given {z1, . . . , zi−1}, zi depends only on which tweet
ci points to.

1[c forms zi | z1, . . . , zi−1] = 1[ci forms zi | z1, . . . , zi−1]

= 1[ci = zi = i or (ci < i and zci = zi)],
(7.6)

and

1[c forms z] =
N∏
i=1

1[ci = zi = i or (ci < i and zci = zi)]. (7.7)

We have

P(z) =
∑

c

1[c forms z]P(c)

=

1∑
c1=1

2∑
c2=1

· · ·
N∑
cN=1

(
N∏
i=1

1[ci = zi = i or (ci < i and zci = zi)]P(ci)

)

=

N∏
i=1

(
i∑

ci=1

1[ci = zi = i or (ci < i and zci = zi)]P(ci)

) (7.8)

Another way to think about P(zi = j | z1, . . . , zi−1, c) is that the cluster assign-
ment only depends on previous cluster assignment and ci. If zi = i, then ci has to
be i; if zi < i, then ci points to any tweets in the same cluster will produce zi. It
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does not depends on other ci or any future cluster assignment.

P(zi = j | z1, . . . , zi−1) =

i∑
k=1

P(zi = j, ci = k | z1, . . . , zi−1)

=

i∑
k=1

P(zi = j | z1, . . . , zi−1, ci = k)P(ci = k)

=

i∑
k=1

1[k = j = i or (k < i and zk = j)]P(ci = k)

=

i∑
k=1

1[k = j = i or (k < i and zk = j)]
h(i,k)∑i
k ′=1 h(i,k ′)

=

∑i
k=1 1[k = j = i or (k < i and zk = j)]h(i,k)∑i

k ′=1 h(i,k ′)

=
1[j = i]h(i, i) +

∑i−1
k=1 1[zk = j]h(i,k)∑i

k ′=1 h(i,k ′)

(7.9)

Therefore, by the chain rule, we have the joint distribution of z

P(z) =
N∏
i=1

P(zi | z1, z2, . . . , zi−1)

=

N∏
i=1

1[zi = i]h(i, i) +
∑i−1
k=1 1[zk = zi]h(i,k)∑i

k ′=1 h(i,k ′)

(7.10)

Inference

For inference, we are given β and f for all pairs. So, we have the full distribution of z
defined as above in the conditional form. Since we have included all the information
in the function h(·), we do not have a generative model for the features from the
distribution of z. Therefore, we need to find the z with highest probability defined
by Eq 7.10.
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Sampling from the Conditional Distribution

We could sample z by following the above conditional probability P(zi = j |

z1, . . . , zi−1)definedinEq 7.9. If we are interested in finding the z with the highest
probability, we can generate multiple samples, evaluate their probabilities and
choose the one with the highest probability. It is easy to generate samples (time
complexity O(n2)), but the probability of hitting the mode is small. Another possi-
bility is to sample c, which is much faster. Then we convert c to z, and see which z
appears most frequently.

Beam Search

Instead of generating a single sample by following p(zi | z1, . . . , zi−1), we could
do beam search to find the best configuration of z1, . . . zN. For first few zi’s, we
can keep all possible partial paths z1, . . . , zi. Then for each path fit in our memory,
we compute all possible configurations of z1, . . . , zi, zi+1 and their scores. If we
have more than R (a constant to make sure all paths in memory) partial paths
z1, . . . , zi, zi+1, we only keep the top R paths with the highest scores, and discard
the others.

Parameter Learning

In our model, the only parameters to estimate is β. We want to find β which
maximizes the likelihood of z observed,

L(β) = log P(z | β)

=
∑N
i=1 log P(zi | β, z1, . . . , zi−1)

=
∑N
i=1 log

(
1[zi=i]h(i,i)+

∑i−1
k=1 1[zk=zi]h(i,k)∑i

k ′=1 h(i,k ′)

)
=

∑N
i=1

[
log
(

1[zi = i]h(i, i) +
∑i−1
k=1 1[zk = zi]h(i,k)

)
− log

(∑i
k ′=1 h(i,k ′)

)]
=

∑N
i=1

[
log
(

1[zi = i]β>fii +
∑i−1
k=1 1[zk = zi]β

>fik
)
− log

(∑i
k ′=1 β

>fik ′
)]

(7.11)
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To maximize this log-likelihood, we find the gradient of β

∂L

∂β
=

N∑
i=1

[
1[zi = i]fii +

∑i−1
k=1 1[zk = zi]fik

1[zi = i]β>fii +
∑i−1
k=1 1[zk = zi]β

>fik
−

∑i
k ′=1 fik ′∑i

k ′=1 β
>fik ′

]
(7.12)

We can use gradient method to maximize L with the constraints β > 0.

Parameter Learning with Partially Observed z

Social scientists are only interested in name calling episodes. Therefore, they will
only annotate zi for those tweets in name calling episodes. The remaining zi’s are
non-interesting, but separate episodes will not be annotated. However, for these
unknown tweet i, we know that zi could not be the same as any other observed
cluster indices. So ci can only point to itself or any other previous k with unknown
zk. Therefore, if zi is unknown, we denote zi = unk and the possible value for zi is
{1, 2, . . . , i} ∪ {unk}.

P(zi | z1, . . . , zi−1) =
1[zi ∈ {i,unk}]h(i, i) +

∑i−1
k=1 1[zk = zi]h(i,k)∑i

k ′=1 h(i,k ′)
(7.13)

Note that when both zi and zk are unknown, we consider 1[zk = zi] = 1.
Similarly, we find the gradient of β, and estimate the parameter β by maximum

likelihood via gradient descent.

∂L

∂β
=

N∑
i=1

[
1[zi ∈ {i,unk}]fii +

∑i−1
k=1 1[zk = zi]fik

1[zi ∈ {i,unk}]β>fii +
∑i−1
k=1 1[zk = zi]β

>fik
−

∑i
k ′=1 fik ′∑i

k ′=1 β
>fik ′

]
(7.14)

7.2 Experiment

Synthetic Dataset

To verify the effectiveness of our proposed model as well as learning and inference
procedure, we create a synthetic dataset, where the groundtruth is available to
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compare with.
Our model specifies the probabilities of partitions given the feature values and

parameters. It is not a fully generative model to generate reply tree structures or
tweet content. However, to generate our synthetic dataset, we need these features.
Instead of hand crafting a small toy example, we generate our dataset with a
probabilistic model, whose parameters is similar to our real data in next section.
There are five features in Eq 7.1. To generate these feature values for our synthetic
dataset, we need to generate creation time of each tweet, reply structure of timeline,
and text similarity among each pair of tweets.

First, we generate tweet creation time with an exponential distribution. If we
assume the number of tweets in a time window follows a Poisson distribution,
then the gap between two consecutive tweets follows an exponential distribution.
Therefore, we let the creation time of the first tweet in timeline to be zero, and for
each new tweets, we add a random number sampled from exponential distribution
with parameter 5. This is a simplified model, as we do not consider the diurnal
patterns of social media users. If timelines span multiple days, it will be clear that
user do not post for a few hours during sleep, but post a lot in a short time period.
We think the simplified model is still valid, as it allows a large range of gaps.

Second, we need the reply structure for previous original tweet and reply-to
features. For each tweet, we first sample a number from a Bernoulli distribution
with head probability 0.6. It it is head, the current tweet is an original tweet, and
we link it with ’prev’ link to most recent original tweet before it. If it is tail, it is
a tweet reply to a previous tweet in the timeline. We observed from the real data
that about half of reply-to-other tweets replies to the most recent tweet in timeline,
and about one quarter replies to the second most recent tweet in timeline, which
suggests an exponential decay pattern. Therefore, if the current tweet is replying
to other tweet, we sample all previous tweets with exponential decaying weights,
which assigns the highest weight to most recent tweet.

To assign the text similarity among each pair of tweet, we use a simple language
model to generate tweet text. We choose a vocabulary with size 100. For each
tweet, its length is sampled from a Poisson distribution with parameter 15. Then
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we sample that number of words from vocabulary with the same probability. Given
the generated word counts, we can computer the similarities between each pair.

Parameter Learning

Following above procedures, we have created the unlabeled timelines. We want to
show that with reasonable amount of annotation, our learning algorithm could learn
the parameter. For purpose, we set the underlying parameter β = [1, 0.1, 0.1, 10, 0.1].
We know the importance of reply-to links, and set a large weigh to it. We set equal
values for other features except the first one, which controls the probability of new
episode. We choose the timeline size to be 3000, which is a reasonable number for
annotation. z is sampled as in our model to create clustering.

Our learning algorithm uses feature values f and labeled z to learn β as in our
real task. With this amount of data, our algorithms learn β̂= [1.0000, 0.0778, 0.0701,
10.0632, 0.1011]. The estimated result is very similar to the underlying parameters.
It assigns the correct magnitude to different features.

Inference

To segment unlabeled timelines, we need to infer the partition with the highest
probability given our model and learned parameters. As we mentioned, the search
space is factorial in the number tweets in timeline. To make sure that we find the
partition with the highest probability, we run global search, which computes the
probability for every partition. Due to the huge search space, we were not able to do
this with large number of tweets. Therefore, we set the number of tweets in timeline
to be 12. Even with this small number of tweets, we have 479,001,600 different
assignments of c. We limit our beam size in beam search to be 10, which keeps only
a tiny portion of partial paths. In each trial, we randomly generate features and
use the true parameter to find the partition with highest probability. We repeated
100 trials, and beam search always finds the correct partitions. The global search
takes 54.6 seconds for each trial, but beam search only takes 0.0159 seconds. So
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User #tweets #episodes #tweets in average median
name calling episode size size

1 4,291 18 45 2.50 1
2 1,222 7 9 1.29 1
3 1,119 26 44 1.69 1
4 1,364 1 2 2.00 2
5 5,810 135 4,171 30.90 7
6 3,861 290 1,432 4.94 2
7 2,877 97 176 1.81 1
8 6,069 135 1,753 12.99 9
9 1,746 185 411 2.22 1

Table 7.1: Basic statistics of labeled name calling timeline data.

we believe beach search is efficient and have high probability to discover the best
partitions for the given model.

Real Dataset

From April 2013, we have been following 5000 users, who posted most bullying
traces during January - March 2013. Our annotators manually choose a few time-
lines with the hope to identify more name calling incidents in their timelines. For
the chosen 9 timelines, the tweets were collected during September 2013. For each
timeline, the annotators will try to identify all name calling incident and label
all tweets in the same episode with the same episode ID. But they will leave all
other tweets in the timeline, which are not related to any name calling episodes,
unlabeled. More details on this dataset and its documentation is archived and can
be found in Appendix A.8.

It is clear that the timeline is partially labeled as many tweets are not associated
with any episode ids. Table 7.1 shows the statistics of our data set. The number of
tweets are significantly different in different timelines, as user may post in different
level of engagement in that month. The number of name calling episodes in each
timeline and the tweets related to name calling episode are significantly different as
well. For User 5, we have 135 name calling episode, and more than 70% tweets are
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annotated with an episode id. On the other hand, there is only one name calling
episode in timeline of User 4, which make it not useful for our experiment. The
average size of episode (the number of tweets in one episode) is small for most
timelines, except User 5 and User 8. In these two timelines, they constantly discuss
some topics over time and many name calling in that topic were assigned with the
same ID. The median size of bullying episode shows that most episode only have
few tweets with it.

From these statistics, we see that timelines are very different. Therefore, we may
need to learn parameters individually. We split each timeline into training and test
parts. The training set contains the first 2/3 of tweets in each timeline, and the test
set contains the rest 1/3. The goal is to learn the parameter with the training set
and test the segmentation performance on the test set.

We choose the measurement commonly used in word segmentation (Peng et al.,
2004) and topic segmentation (Cardoso et al., 2013) in natural language processing
community. For each gap between tweet, there could be a separator. We measure
the precision, recall and F-1 measure of the predicted separators comparing to the
labeled data in test set. As our dataset is partially labeled, we do not consider the
separators between two unlabeled tweets. However, we do measure the separators
between labeled and unlabled tweets, as we know these unlabeled tweets belong to
different episodes from the labeled ones.

We choose a simple baseline method, which assigns each reply-tree as a single
episode. It doesn’t consider time stamp and text features. This method does not
need any training, and is a reasonable baseline.

Table 7.2 shows the results of our proposed method and the simple baseline on
the test set. We did not include timeline of User 4, as there is only one episode. The
baseline method achieves better numbers than our method on average. We notice
that baseline method achieves higher performances on timelines of User 5 and User
8. In the timeline of User 5, several topics constantly appear over time. User may
talked about multiple times, but the tweets in the same episode were split into
multiple disconnected chucks. Over segmenting the timeline does not introduce
extra errors. Therefore, baseline method may obtain better result. In the timeline
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Baseline Proposed
User precision recall F1 precision recall F1
1 0.97 1.00 0.98 0.97 0.93 0.95
2 1.00 1.00 1.00 1.00 1.00 1.00
3 0.83 0.71 0.77 0.75 1.00 0.86
5 0.79 1.00 0.88 1.00 0.55 0.71
6 0.85 1.00 0.92 0.85 0.99 0.92
7 1.00 0.76 0.86 0.91 0.97 0.93
8 0.61 1.00 0.76 1.00 0.39 0.56
9 0.92 0.82 0.87 0.86 0.99 0.92
Average 0.87 0.91 0.88 0.92 0.85 0.86

Table 7.2: Performance of proposed and baseline methods on test set.

of User 8, only a few tweets were replying to other tweets. The user posts multiple
short tweets in a short time period about one topic, which shows the time features
and previous original tweet link might be important. But this is not always true.
Actually, this timeline is also challenging for baseline method. Baseline method
receives high recall but low precision, as it over segmented this timeline. Given
these observations, we should consider the patterns how user posts and extract
more meaningful features to capture these information and make better prediction.
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8 conclusion

This thesis has presented how we explore social media, with appropriate machine
learning and natural language processing techniques, as a valuable and abundant
data source for the study of bullying.

8.1 Summary

As the first step of the study, Chapter 2 demonstrated how we recognize bullying
traces from large-scale real-time social media stream, and how we automatically
extract basic information about these posts and underlying bullying episodes. Bul-
lying traces account for only a tiny fraction of all social media posts, which poses
a significant challenge for our annotators to find enough bullying traces without
labeling an unreasonable amount of tweets. We restricted ourselves to an “enriched
dataset” obtained by keyword filtering from the public Twitter streaming APIs. To
further remove false positives, we explored multiple feature representations and
classification algorithms, and SVM(linear) with unigrams+bigrams achieves the
best accuracy at 86%. This accuracy is similar to the level of agreement achieved
by two different human annotators. This trained Binary Bullying Trace Classifier
identified 9,764,583 bullying traces between September 1, 2011 to August 31, 2013.
To analyze the large amount of data, we also built machine learning models to
identify participants and their roles, to categorize bullying traces by their types
and forms of bullying episodes, and to discover the topics users are talking about.

In Chapter 3, we studied the spatiotemporal distribution of bullying traces,
as several spatial and timing issues related to bullying episodes are important to
know. As an empirical exploration study, we first analyzed raw counts of GPS-
tagged bullying traces, whose location and time information can be extracted from
meta-data. However, only 2% bullying traces contain GPS coordinates. Most posts
do not include GPS coordinates, and self-reported locations can be inaccurate or
false. Besides the data scarcity issue, such direct counting method is also plagued



124

by sample bias and incomplete data. To address these issues, we formulated the
task as a Poisson point process estimation problem and propose Socioscope in
Section 3.3. It explicitly incorporated human population bias, time delays and
spatial distortions, and spatiotemporal regularizations into the model. Socioscope
has broad applications where spatiotemporal signals are of interest, such as wildlife
mortality, algal blooms, hail damage, and seismic intensity.

We focused on emotions associated with bullying traces in Chapter 4. First,
we built a Teasing Bullying Traces Classifier to recognize bullying traces written
jokingly, as there is considerable interest among social scientists to understand
teasing in bullying traces. After manually inspecting a number of bullying traces,
our domain experts identified seven most common emotions: anger, embarrass-
ment, empathy, fear, pride, relief, and sadness. Some emotions have not been well
studied in sentiment analysis community. Therefore, it requires manually labeling
a large amount of training tweets or emotional lexicons. To address this challenge,
we proposed a fast training procedure for sentiment analysis without explicitly
producing a conventional labeled training dataset. We applied it to a large amount
of bullying traces to study emotion distributions. Last, we investigated the behavior
of deleting bullying traces after post. We managed to collect a corpus with dele-
tion information, conduct exploratory analysis and build an off-the-shelf regret
predictor.

Hashtags are widely used in Twitter to mark keywords or topics in a Tweet.
Therefore, analyzing hashtags associated with public mentions of bullying can help
us understand general discussions on bullying. In Chapter 5, we extracted 552,831
distinct hashtags used in tweets with the keywords “bully,” “bullied,” and “bullying”
collected between January 1, 2012 and December 31, 2012. We organized the most
frequently used 500 hashtags into eight categories. Hashtag features, including
the number of tweets and retweets in which the hashtag appeared, the number
of unique authors who used the hashtag, and the numbers of URLs, hashtags,
and user mentions are found to be associated with hashtag category membership.
Differences in the daily usage of hashtags used with bullying keywords are also
identified. The differences show that bullying has both an immediate, large scale
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influence as well as a more every day presence.
In Chapter 6, we collected and annotated a bilingual microblogs corpus on school

bullying consisting of Chinese Weibo and English Twitter posts. We examined the
differences in author’s role, teasing, temporal dynamics and social process, and
proposed possible explanations for several observed differences. First, we saw a
smaller fraction of victim authors in Weibo than in Twitter. We hypothesized that
this may be due to Asian culture’s emphasis on saving face where it is more of a
taboo to be a victim or label someone a victim. Second, we saw different temporal
dynamics of school bullying posts due to differences in holidays and length of
school days. Finally, bullying posts from Weibo contain more mentions of family
than those from Twitter. This may be due to the greater emphasis on family in
Asian cultures. There could be alternative causes for our findings as well.

Since individual bullying trace may be fragmental and noisy, we recovered the
underlying episodes by piecing together multiple bullying traces about the same
episode in Chapter 7. We focuses on user’s timelines, which includes the tweets
created or retweeted by seed user, replies to any tweet created by seed user, and
retweets of any tweet created by seed user. We proposed a probabilistic model to
segment timeline into multiple episodes. Based on our observations from data,
we allowed the interleaving among episodes and the number of episodes are not
pre-fixed. We applied beam search for inferring the episode assignment for new
timelines and proposed efficient learning algorithms with partially observed data.

8.2 Future Directions

Our work introduces a novel data source and research approach to bullying study. It
also introduces an interesting application to the machine learning, natural language
process and social media mining communities. As such, it faces some unique
limitations, and much work remains in this new research direction.
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From Enriched Dataset to Full Range of Posts

We restrict ourselves to an enriched dataset, which is keyword filtered social media
stream. This approach is able to collect a substantial number of bullying traces, but
does not capture all bullying related tweets, as users may discuss bullying without
directly using the keywords in our list. The keyword filter may introduce some
potential bias in our dataset.

Therefore, a future direction is to extend the Binary Bullying Trace Classifier
from the “enriched data” to the full range of tweets. There are a few challenges
along this direction. First, most researchers do not have access or are able to process
the full range of tweet stream. One trade off might be to strategically expand
the keyword filtering to include additional words that capture bullying behaviors
that might facilitate better representation of different forms of bullying on Twitter.
However, even with this approach, it will be difficult to capture all bullying episodes
because they can be represented in so many different ways. Furthermore, Twitter
sets a rate limit on the percentage of tweets available in public streaming APIs. If
researchers requested a long list of keywords or the requested keywords produce
a large number of posts, rate limits will be hit and Twitter will sub-sample the
resulting tweets. The sub-sampling procedure is not transparent to researchers and
may introduce a potential sampling bias (Morstatter et al., 2013). It is essential to
avoid this potential bias by carefully choosing keywords.

Second, since bullying traces only account for a small fraction of public social
media posts, finding enough bullying trace examples to build classifiers requires a
huge amount of annotation effort. One solution is to train the classifier with the
enriched dataset as what we did. Clearly, the training set has different distribution
from the targeting test set, the full range of tweets. Techniques used for covariate
shift may be adapted to solve this problem (Blitzer, 2008). Another possible solution
is using active learning to find diverse positive examples from the dataset, which
can be used to train a classification model.
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Social Network Structure

Our work mainly focuses on the content of social media, and investigates individual
post separately. In Chapter 7, we collect user’s timeline and have all posts in ego-
networks centred at the seed users. There, we capture part of the interactions among
users. We could push this further to collect data from a subset of social networks,
from example, students in a school, as a bullying episode might be discussed in
several separated groups. With the social network structure, friendship relation
among users, we may piece these posts together to better recover the underlying
episodes.

We could look into the friend relationships and interaction patterns among users
to study how these factors correlate with bullying. We can conduct longitudinal
studies. We observed that some users post bullying traces frequently, which may
indicate that they constantly involve in bullying episodes. We would like to follow
their posts for a longitudinal study. This helps us to study the evolution of roles in
bullying episodes of a user over time. What’s more important, we want to identify
the individuals at risk. If we could identify them, necessary intervention may
prevent some tragedies.
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a data repository

This chapter lists the datasets we have collected and used in our study. To facilitate
researches on bullying, machine learning, and natural language processing, we try
our best to make our datasets available at http://research.cs.wisc.edu/bullying.
However, as per Terms of Services of Twitter, some datasets are not released there.

All tweets are collected through Twitter Streaming APIs. We have been using
two different streams to retrieve tweets from Twitter Streaming APIs. The first one
is tracking keywords, we have been tracking bullying related keyword list “ignored,
pushed, rumors, locker, spread, shoved, rumor, teased, kicked, crying, bullied,
bully, bullyed, bullying, bullyer, bulling” since Aug 3, 2011. Since they are not
commonly used words in general tweets, we expect to collect almost all the tweets
containing these keywords since then.

The second method is to follow users. We identified the top 5000 users, who
posted most bullying traces collected by our algorithm described in Section 2.1
between January 1 and March 31, 2013. We have been following these 5000 seed
users since April 24, 2013. We are able to collect all of (a) tweets created or retweeted
by these seed users, (b) replies to any tweet created by these seed users, and (c)
retweets of any tweet created by these seed users.

Most datasets listed below are the subsets of the tweets we collected above. They
might be focused on a special time windows, or be annotated for different tasks.

A.1 Bullying Traces Data Set

The tweets were collected from keyword tracking stream. We only kept the tweets
with at least one token starting with “bull.” We further removed re-tweets by
excluding tweets containing the acronym “RT.”

We randomly sampled 1762 tweets collected on August 6, 2011 and our anno-
tators labeled each tweets with the following informations. They first annotated
if it is a bullying trace. If it is, they also annotated the type of bullying traces, the
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form of bullying episode, if it is teasing, the author’s and person mentions’ roles
and emotions. We refer to this dataset as version one of Bullying Traces Data Set.
There is also a version two which has exactly the same tweets and labels, but the
tweets are identified by Twitter ID so researchers can download the actual tweets
from Twitter.

To futhure improve the performance of our text classifiers and obtain reliable
results, our annotators labeled more tweets. The tweets were filtered with the same
procedure. 7321 posts (including the 1762 posts in previous section) were randomly
sampled from the tweets collected from dates August 6, 2011 through August 31,
2011. They annotated the tweets in the same way, except that they did not annotate
the person mentions’ roles. We refer this dataset as version three of Bullying Traces
Data Set.

A.2 Bullying Traces in Two Academic Years

The tweets were collected by tracking bullying keywords during September 1, 2011
to August 31, 2013. Then, we filtered with the bull* keywords and removed the
tweets containing “RT”. 32,477,558 tweets are contained in this data set. We applied
our Binary Bullying Trace Classifier to recognize bullying traces. This data set was
mainly used in our paper (Bellmore et al., 2015). We don’t have annotation on this
dataset, but we do have applied multiple classifiers to study the distributions of
author’s role, the form of bullyings, and the types of bullying traces. The result is
also reported in Chapter 2 and Chapter 3.

A.3 Topics in Bullying Traces

The tweets were collected by tracking bullying keywords during August 21, 2011
to September 17, 2011. Then, we filtered with the bull* keywords and removed
the tweets containing “RT”. We applied our Binary Bullying Trace Classifier to
recognize bullying traces. In total, we have 188,908 bullying traces in this dataset.
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This data set was mainly used in our paper (Xu et al., 2012b) to study the topics in
bullying traces. The result is also reported in Chapter 2.

A.4 Bullying Trace Emotion

This data set contains all the tweets we collected by keyword tracking during
August 5, 2011 to April 12, 2012 (about eight months). We filtered with the bull*
keywords, removed the tweets containing “RT”, and applied our Binary Bullying
Trace Classifier to recognize bullying traces. In total, we have 3,001,427 bullying
traces in this dataset. This data set was mainly used in our paper (Xu et al., 2012c)
to study the emotion distributions in bullying traces. There is no annotation. We
applied our Bullying Trace Emotion Classifier to study the emotion distribution.
The result is also reported in Chapter 4.

A.5 Bullying Trace Regret

The dataset used in section 4.4 for studying regret in bullying traces. The tweets
were collected by tracking bullying keywords from July 31 through October 31,
2012. We applied our Binary Bullying Trace Classifier to recognize bullying traces.
Then we regularly check if they have been deleted after they were posted. Please
refer Chapter 4.4 for the details on how to collect the data. There is no annotation.
But for each tweet, we have multiple tags if it was deleted at different check points.

A.6 Hashtags in Bullying Traces Data Set

The dataset used in Chapter 5 for studying hashtags in bullying traces. The tweets
were collected by tracking bullying keywords during January 1, 2012 to December
31, 2012. We further filtered the tweets with “bull*” keywords. We kept the retweets
and did not filtered with Binary Bullying Trace Classifier.
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We extracted all hashtags and ranked them by their occurrences. Our annotators
assigned each hashtag into one of the eight pre-defined categories. For these 500
hashtags, we also extracted many features from the tweets containing each hashtag.
See Chapter 5 for details.

A.7 Bilingual Bullying Traces Data Set

The dataset is used in Chapter 6 for studying culture differences in bullying traces.
We collected English tweets using the public Twitter Streaming API by tracking
bullying related keywords: “bully,” “bullied,” and “bullying”. As our focus is on
school bullying posts, we only kept the tweets which further contain at least one
of the school-related words: “college,” “university,” “school,” and “class.” The
filtering is case-insensitive and we included the plural forms of these keywords.
We removed retweets by filtering tweets with the token “RT.”

We collected Chinese weibos through the keyword search function provided by
Weibo.com. Since there is no single term in Chinese that exactly corresponds to the
English word bullying, we considered all seven near synonyms suggested in (Smith
et al., 2002): . We chose three corresponding school
keywords: . We required at least one match from each keyword list, with
the option “original post only” to exclude posts reposting other weibos.

We collected data in this way for the whole year of 2012. In total, there are
756,449 tweets and 75,044 weibos in our dataset. Our annotator labeled 3123 tweets
and 3123 weibos collected during October 11-24, 2012. Among them, 1121 (36%)
tweets and 811 (26%) weibos were coded as bullying traces. For all bullying traces,
our annotators also label the author’s role, teasing.

A.8 Bullying Timeline Data Set

Starting from May 2013, we have been following 5000 users who posted most
bullying traces in January - March, 2013. We manually selected a few timelines
which tend to contain more name calling episode. Our annotator labeled 9 timelines
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collected during September 2013. For each tweet in timeline, they label if it is a
name calling tweet, and if it is, assign it to an episode. The dataset was used in
Chapter 7.
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b code repository

This chapter lists all the softwares we developed to collect and analyze bullying
traces. We will make them publicly available at http://research.cs.wisc.edu/bullying.
We believe these will help social scientists to process social media and other re-
searchers for comparison.

B.1 Binary Bullying Trace Classifier

The best classifier introduced in Section 2.1. It uses the unigram + bigram feature
representation and support vector machines. We have two versions of the classifier,
which were trained on two version of Bullying Traces Data Set (Appendix A.1 first
and third versions). The first version achieves 81.3% cross validation accuracy and
the second version was improved to 86%. More information about the construction
and performance of the classifier were discussed in Chapter 2.1.

B.2 Author’s Role Classifier

It uses the unigram + bigram feature representation and support vector machines.
We have two versions of the classifier, which were trained on two version of Bul-
lying Traces Data Set (Appendix A.1, first and third versions). The first version
achieves cross validation accuracy of 61% on five categories. The second version
was improved to 70% on six categories. We have different number of categories in
different versions, because with fewer training examples, there were few examples
for Defender category. With larger dataset, we were able to reliably identify them.
More information about the construction and performance of the classifier were
discussed in Chapter 2.2.
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B.3 Bullying Form Classifier

It uses the unigram + bigram feature representation and support vector machines.
It was trained on Bullying Traces Data Set (Version 2, Appendix A.1). It achieves
cross validation accuracy of 70%. More information about the construction and
performance of the classifier were discussed in Chapter 2.3.

B.4 Socioscope

The code package includes the implementation of Socioscope and example datasets.
It was implemented in Matlab, with the functionality of tuning regularization
parameters by cross validation. Besides the implementation, it also includes an
example file of how to use the code with an example datasets.

B.5 Bullying Trace Type Classifier

It uses the unigram + bigram feature representation and support vector machines.
It was trained on Bullying Traces Data Set (Version 2, Appendix A.1). It achieves
cross validation accuracy of 72%. More information about the construction and
performance of the classifier were discussed in Chapter 2.4.

B.6 Teasing Bullying Trace Classifier

It uses the unigram + bigram feature representation and support vector machines.
It was trained on Bullying Traces Data Set (Version 2, Appendix A.1). It achieves
cross validation accuracy of 89%. More information about the construction and
performance of the classifier were discussed in Chapter 4.1.
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B.7 Bullying Trace Emotion Classifier

Our classifier was trained with minimum supervision for sentiment analysis in
Section 4.2. It takes the raw texts of tweet as input. Necessary code of tokenization
and stopword removal are also included in the package. After preprocessing, we
convert each tweet into a 35 dimension similarity vectors to the feature extractors.
The model was build with libsvm and the training data from Wikipedia pages.

B.8 Bullying Trace Regret Classifier

Our classifier was trained to predict deletion in Section 4.4. The model is trained
with the cleaned dataset, in which each tweet is known to be surviving or deleted
after 20,480 minutes (about two weeks). Since this dataset contains 22,241 deleted
tweets, we randomly sub-sampled the surviving tweets down to 22,241 to force
our deleted and surviving datasets to be of equal size. We then followed the pre-
processing procedure in Section 2.1, performing case-folding, anonymization, and
tokenization, treating URLs, emoticons and hashtags specially. We also chose the
unigrams+bigrams feature representation, only keeping tokens appearing at least
15 times in the corpus. We chose to employ a linear SVM implemented in LIBLIN-
EAR (Fan et al., 2008) due to its efficiency on this large sparse text categorization
task and a 10-fold cross validation was conducted to evaluate its performance. The
resulting cross validation accuracy was 0.607 with a standard deviation of 0.012.
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