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Supervised Learning
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Semi-Supervised Learning
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Prediction Problems

The feature space X = R¢

The label space Y = {0,1} or R
Samples (X,Y) € X x Y ~ Pxy
» X: feature vector
> Y label

Goal: construct a predictor f : X +— ) to minimize

R(f) = E(x,y)~pyy oss(Y, f(X))]
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Learning from Data

@ The optimal predictor

f* = argmin (E(x y)pyy loss(Y, f(X))]

depends on Pxy, which is often unknown.
@ However, we can learn a good predictor from a training set
iid
{(X:, Vi) ey ~ Pxy

@ Supervised Learning:

{(X0, Y)Y = fu
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Semi-Supervised Learning

@ In many applications in science and engineering, labeled data are
scarce, but unlabeled data are abundant and cheap.

n  iid miid
{(Xi, Vi) Yoy ~ Pxy {X;}j2 ~ Px,m>n
e Semi-Supervised Learning (SSL):

{(Xa, Yoy AXG M) =
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Example: Handwritten Digits Recognition
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Example: Handwritten Digits Recognition

@ many unlabeled data + a few labeled data

@ knowledge of manifold/cluster + a few labels in each manifold/cluster
is sufficient to design a good predictor
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Common Assumptions in SSL

o Cluster assumption: f* is constant or smooth on connected high
density regions.

@ Manifold assumption: Support set of Px lies on low-dimensional
manifolds. f* is smooth wrt geodesic distance on manifolds.

A face pose distribution curve -
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Mathematical Formalization

@ Generic Learning Classes:
Pxy = {PxPy|x : Px € Px,Py|x € Py|x}
@ "Linked" Learning Classes:
Pyy = {PXPY|X : Px € Px, Pyix € Pyx(Px) C PY|X}

Link: unlabeled data may inform design of predictor

@ SSL can yield faster rate of error convergence than supervised
learning: R
sup E[R(fm,n)] < inf sup E[R(fy)]

Py fn Pyy

> an: predictor based on n labeled examples
> fm,n: based on n labeled and m unlabeled examples
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The Value of Unlabeled Data

o Castelli and Cover'95 (classification): assume identifiable mixture

p(z) =p(|Y = 0)p(Y =0) + p(z]Y = 1)p(Y =1)

o Learn decision regions from (the many) unlabeled examples
@ Label decision regions from (the few) labeled examples

@ Main result: R
sup E[R(foo,n)] — R* < Ce™ "
Pxy

@ What about more general cluster or manifold assumptions?
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Do Unlabeled Data Help in General?

e No. Lafferty & Wasserman (2007)
» fix complexity of Pxy, let n grow

» given enough labeled data, unlabeled data is superfluous (no faster
rates of convergence for SSL).

@ Yes. Niyogi (2008)

> let complexity of Pxy grow with n
given finite n, the complexity of the learning problem can be such that
supervised learning fails, while SSL has small expected error.

@ Both are correct, capturing two extremes. Finite sample bounds give
a more complete picture.
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Decision Regions

Our assumption: Py = (px, f)

supp(px) = U;C;, union of compact sets with « separation

@ﬂm

“+ margin” margln

—1 1 K\_I

marginal density px bounded away from zero, smooth in C;

regression function f(z) Holder-a smooth on each support set
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Adaptive Supervised Learning

Holder-a Holder-a

X

Y

n—1/(d+2a) n—1/(d+2a)

@ If vy >~y >0and n — oo, SL will “discover” decision regions,
eventually the excess risk of SL (squared loss) is minimax (SSL has no
advantage):

sup E[R(fn)] — R* < Cn~7ata
Pxy
@ But, if n fixed and v — 0, eventually SL will mix up decision regions
and mess up:
en~a < inf sup E[R(f,)] — R*
" Pxy
@ Unlabeled data identify decision regions, mess up later (smaller 7)
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Unlabeled Data: Now it helps, now it doesn't

(Singh, Nowak & Zhu, NIPS 2008)

margin SSL SL SSL
upper lower  helps?
= @l&
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An SSL Algorithm

Given n labeled examples and m unlabeled examples,

© Use unlabeled data to infer log(n) decision regions C;

> plug in your favorite manifold clustering algorithm that detects abrupt

change in support, density, dimensionality, etc.
» carve up ambient space into C;: Voronoi

» each C; has to be “big enough”, > n/ logQ(n) labeled examples,
> m/ log?(n) unlabeled examples

@ Use the labeled data in C’i to train SL ﬁ
O If a test point z* € (;, predict ﬁ(m*)
Similar to “cluster & label”.
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Building Blocks: Local Covariance Matrix

e For z € {x;}4™, find its [log(n + m)] nearest neighbors (in
Euclidean distance)

@ The local covariance matrix of the neighbors

= ! ] Z(SU] — pa) (5 — Nw)T

[log(n + m)] -

@ X, captures local geometry
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Building Blocks: Local Covariance Matrix
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A Distance Between X1 and X

@ Hellinger distance

H*(p,q) = %/ (\/@— M)Qd:ﬁ

e H(p,q) symmetric, in [0, 1]
e Let p=N(0,%1),g = N(0,%3). We define

1 1
EPTNIRYIE

H(El,ZQ) =,/1 -
|21 + Xa2

(computed in common subspace)
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Hellinger Distance

Comment  H(X;,X9)
similar 0.02
density 0.28

dimension 1

orientation* 1

* smoothed version: X 4 €]
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A Sparse Subset

@ Two close points will have similar neighbors =- small H even they are
on different manifolds
o Compute a sparse subset of m’ = % points (red dots):
» Start from an arbitrary 2°
» Remove its log(m) nearest neighbors
> Let 2! be the next nearest neighbor, repeat
Include all labeled data

Random sampling might work too
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A Sparse Graph on the Sparse Subset

@ Sparse nearest neighbor graph on the sparse subset, use Mahalanobis
distance to trace the manifold

P(x,y) = (z—y) 2 (z —y)
@ Gaussian edge weight on sparse edges

H?(Sz;,%a))
wij =€ 202

@ Combines locality and shape
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A Sparse Graph on the Sparse Subset
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A Sparse Graph on the Sparse Subset
Red=large w, yellow=small w
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Multi-Manifold Separation as Graph Cut

o Cut the graph W = [w;;] into k = [log(n)] parts

o Each part has at least n/log?(n) labeled examples, m//log?(n)
unlabeled examples
@ Formally: RatioCut with size constraints
> Let the k parts be Aj, ..., Ay
> cut(4;, A;) = ZseAi,tEAi Wst
> cut(Ar,. .., Ay) = S, cut(A;, A;)
Minimize cut directly tend to produce very unbalanced parts

RatioCut(Ay, ..., Ag) = Y Cm(\ﬁi’\&)

However, this balancing heuristic may not satisfy our size constraints

v

v Vv
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RatioCut Approximated by Spectral Clustering

Well-known RatioCut approximation (without size constraints) [e.g., von

Luxburg 2006]

@ Define k indicator vectors hq,..., hy

1/,/ o ific A
g = otherW|se
Matrix H has columns hy,...,hy, H'H =1
RatioCut(Ay, ..., Ay) = str(H'"LH)
mingy tr(H T LH) subject to H'H =1

eigenvectors of L.
@ “Un-relax” H to hard partition: k-way clustering
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Relax elements of H to R = [Rayleigh-Ritz] hq,...,

h; are the first k
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RatioCut Approximated by Spectral Clustering

The spectral clustering algorithm (without size constraints):
© Unnormalized Laplacian L=D — W
@ First k eigenvectors vy, ..., v, of L
@ V matrix: vy,...,v; as columns, n + m’ rows
© New representation of x;: the ith row of V
© Cluster z; into k clusters with k-means. The clusters define
Aq, ..., A,

Next: enforce size constraints in k-means.
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Standard (Unconstrained) k-Means

@ k-means clusters x1 ...z into k clusters with center C] ..

al 1
. . - o C 2
Iy pt Btk (2 i = Chl )

@ Introduce indicator matrix T, T;;, = 1 if x; belongs to C,

. N k
%11%1 Ei:l Eh:l Tin (%sz - ChHQ)

s.t. S Tin=1,T>0

Ck

@ Local optimum found by starting from arbitrary C ... C} and

iterating:
@ Update T;.: assign each point x; to its closest center C},

@ Update centers C ...} by the mean of points assigned to that center

Note: each step reduces the objective.
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Size Constrained k-Means

(Bradley, Bennett, Demiriz. 2000)

@ Size constraints: cluster h must have at least 75, points

. N —k
i Sty > one1 Tin (3l — Cull?)
s.t. 22:1 T, =1,T>0
SN T >mh=1.. .k

@ Solving T looks like a difficult integer problem

@ Surprise: efficient integer solution found by Minimum Cost Flow
linear program
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Minimum Cost Flow

@ A graph with supply nodes (b; > 0) and demand nodes (b; < 0);
directed edge 7 — j has unit transportation cost c;;, traffic variable
yij > 0; Meet demand with minimum transportation cost

Xiaojin Zhu (Wisconsin)

min 2 i CijYij

s.t. Zj Yij — Zj Yji = bl

b=1 Caf::| ‘xi'ch| ‘2

b:'(*N':T; Tn)
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Minimum Cost Flow with Two Constraints

Each cluster has at least n/log?(n) labeled examples, m//log?(n)
unlabeled examples

labeled
examples

/ b=catchrest
unlabeled |
examples

_@9@

b=-m’/log?(n)
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Example Cuts
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SSL Example: Two Squares

dataset 1
12
unlabeled truth
O sl
© sup
© clair. sup
" bayes
®  labeled truth
[m] = = =
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SSL Example: Two Squares

— Clairvoyant supervised
— Agnostic SSL
Naive supervised

" = 1)
\\\ {not enough m

log( mean excess risk over 10 random datasets )

107 . . PR L . L L

10' 107 10°
log( n = number of labeled points )
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SSL Example: Dollar Sign

n=40, Clairvoyant Supervised n=40, Agnostic SSL (R=2) n=40, Naive Supervised
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