Semi-Supervised Learning by Multi-Manifold Separation

Xiaojin (Jerry) Zhu

Department of Computer Sciences University of Wisconsin–Madison

Joint work with Andrew Goldberg, Zhiting Xu, Aarti Singh, and Rob Nowak

通 ト イヨ ト イヨト

Supervised Learning

э

<ロ> (日) (日) (日) (日) (日)

Semi-Supervised Learning

э

(日) (周) (三) (三)

Prediction Problems

- The feature space $\mathcal{X} = \mathbb{R}^d$
- The label space $\mathcal{Y} = \{0, 1\}$ or \mathbb{R}
- Samples $(X, Y) \in \mathcal{X} \times \mathcal{Y} \sim P_{XY}$
 - X: feature vector
 - ► Y: label
- Goal: construct a *predictor* $f : \mathcal{X} \mapsto \mathcal{Y}$ to minimize

$$R(f) \equiv \mathbb{E}_{(X,Y) \sim P_{XY}}[loss(Y, f(X))]$$

Learning from Data

The optimal predictor

$$f^* = \operatorname{argmin}_{f} \mathbb{E}_{(X,Y) \sim P_{XY}}[\operatorname{loss}(Y, f(X))]$$

depends on P_{XY} , which is often unknown.

• However, we can *learn* a good predictor from a *training set*

$$\{(X_i, Y_i)\}_{i=1}^n \stackrel{iid}{\sim} P_{XY}$$

• Supervised Learning:

 $\{(X_i, Y_i)\}_{i=1}^n \Rightarrow \hat{f}_n$

• • = • • = •

• In many applications in science and engineering, labeled data are scarce, but unlabeled data are abundant and cheap.

$$\{(X_i, Y_i)\}_{i=1}^n \stackrel{iid}{\sim} P_{XY}, \{X_j\}_{j=1}^m \stackrel{iid}{\sim} P_X, m \gg n$$

• Semi-Supervised Learning (SSL):

$$\{(X_i, Y_i)\}_{i=1}^n, \{X_j\}_{j=1}^m \Rightarrow \hat{f}_{m,n}$$

- E - - E -

Example: Handwritten Digits Recognition

012345678901234567 890123456789012345 678901234567890123 45678901234567890123 456789012345678901 234507890123456789

イロト イヨト イヨト

Example: Handwritten Digits Recognition

- many unlabeled data + a few labeled data
- knowledge of manifold/cluster + a few labels in each manifold/cluster is sufficient to design a good predictor

Common Assumptions in SSL

• *Cluster assumption*: f^* is constant or smooth on connected high density regions.

• *Manifold assumption*: Support set of P_X lies on low-dimensional manifolds. f^* is smooth wrt geodesic distance on manifolds.

Mathematical Formalization

• Generic Learning Classes:

$$\mathcal{P}_{XY} = \left\{ P_X P_{Y|X} : P_X \in \mathcal{P}_X, P_{Y|X} \in \mathcal{P}_{Y|X} \right\}$$

• "Linked" Learning Classes:

$$\mathcal{P}'_{XY} = \left\{ P_X P_{Y|X} : P_X \in \mathcal{P}_X, P_{Y|X} \in \mathcal{P}_{Y|X}(P_X) \subset \mathcal{P}_{Y|X} \right\}$$

Link: unlabeled data may inform design of predictor

• SSL can yield faster rate of error convergence than supervised learning:

$$\sup_{\mathcal{P}'_{XY}} \mathbb{E}[R(\hat{f}_{m,n})] \le \inf_{f_n} \sup_{\mathcal{P}'_{XY}} \mathbb{E}[R(f_n)]$$

• \hat{f}_n : predictor based on n labeled examples

• $\hat{f}_{m,n}$: based on n labeled and m unlabeled examples

イロト 不得 トイヨト イヨト

The Value of Unlabeled Data

• Castelli and Cover'95 (classification): assume identifiable mixture

$$p(x) = p(x|Y = 0)p(Y = 0) + p(x|Y = 1)p(Y = 1)$$

- Learn decision regions from (the many) unlabeled examples
- Label decision regions from (the few) labeled examples
- Main result:

$$\sup_{\mathcal{P}'_{XY}} \mathbb{E}[R(\hat{f}_{\infty,n})] - R^* \le Ce^{-\alpha n}$$

• What about more general cluster or manifold assumptions?

()

Do Unlabeled Data Help in General?

- No. Lafferty & Wasserman (2007)
 - fix complexity of P_{XY} , let n grow
 - given enough labeled data, unlabeled data is superfluous (no faster rates of convergence for SSL).
- Yes. Niyogi (2008)
 - let complexity of P_{XY} grow with n
 - given finite n, the complexity of the learning problem can be such that supervised learning fails, while SSL has small expected error.
- Both are correct, capturing two extremes. Finite sample bounds give a more complete picture.

通 ト イヨ ト イヨト

Decision Regions

- Our assumption: $\mathcal{P}'_{XY} \equiv (p_X, f)$
- $supp(p_X) = \bigcup_i C_i$, union of compact sets with γ separation

- marginal density p_X bounded away from zero, smooth in C_i
- \bullet regression function f(x) Hölder- α smooth on each support set

- 4 目 ト - 4 日 ト - 4 日 ト

Adaptive Supervised Learning v_i x_i x_i y_i y_i

• If $\gamma \geq \gamma_0 > 0$ and $n \to \infty$, SL will "discover" decision regions, eventually the excess risk of SL (squared loss) is minimax (SSL has no advantage):

$$\sup_{\mathcal{P}'_{XY}} \mathbb{E}[R(\hat{f}_n)] - R^* \le C n^{-\frac{2\alpha}{2\alpha+d}}$$

• But, if n fixed and $\gamma \rightarrow 0$, eventually SL will mix up decision regions and mess up:

$$cn^{-\frac{1}{d}} \leq \inf_{f_n} \sup_{\mathcal{P}'_{XY}} \mathbb{E}[R(f_n)] - R^*$$

• Unlabeled data identify decision regions, mess up later (smaller γ)

Unlabeled Data: Now it helps, now it doesn't

(Singh, Nowak & Z	Zhu, NIPS 2008)			
	margin	SSL	SL	SSL
		upper	lower	helps?
	$n^{-\frac{1}{d}} \leq \gamma$	$n^{-\frac{2\alpha}{2\alpha+d}}$	$n^{-\frac{2\alpha}{2\alpha+d}}$	no
	$m^{-\frac{1}{d}} \leq \gamma < n^{-\frac{1}{d}}$	$n^{-\frac{2\alpha}{2\alpha+d}}$	$n^{-\frac{1}{d}}$	yes
	$-m^{-\frac{1}{d}} \le \gamma < m^{-\frac{1}{d}}$	$n^{-rac{1}{d}}$	$n^{-rac{1}{d}}$	no
	$\gamma < -m^{-\frac{1}{d}}$	$n^{-rac{2lpha}{2lpha+d}}$	$n^{-\frac{1}{d}}$	yes

(日) (周) (三) (三)

An SSL Algorithm

Given n labeled examples and m unlabeled examples,

- **(**) Use unlabeled data to infer $\log(n)$ decision regions \hat{C}_i
 - plug in your favorite manifold clustering algorithm that detects abrupt change in support, density, dimensionality, etc.
 - carve up ambient space into \hat{C}_i : Voronoi
 - ▶ each \hat{C}_i has to be "big enough", $\geq n/\log^2(n)$ labeled examples, $\geq m/\log^2(n)$ unlabeled examples
- 2 Use the labeled data in \hat{C}_i to train SL \hat{f}_i
- (3) If a test point $x^* \in \hat{C}_i$, predict $\hat{f}_i(x^*)$

Similar to "cluster & label".

Building Blocks: Local Covariance Matrix

- For $x \in \{x_i\}_{i=1}^{n+m}$, find its $[\log(n+m)]$ nearest neighbors (in Euclidean distance)
- The local covariance matrix of the neighbors

$$\Sigma_x = \frac{1}{[\log(n+m)] - 1} \sum_j (x_j - \mu_x) (x_j - \mu_x)^{\top}$$

• Σ_x captures local geometry

通 ト イヨト イヨト

Building Blocks: Local Covariance Matrix

(日) (周) (三) (三)

A Distance Between Σ_1 and Σ_2

Hellinger distance

$$H^{2}(p,q) = \frac{1}{2} \int \left(\sqrt{p(x)} - \sqrt{q(x)}\right)^{2} dx$$

• H(p,q) symmetric, in [0,1]

• Let $p = N(0, \Sigma_1), q = N(0, \Sigma_2)$. We define

$$H(\Sigma_1, \Sigma_2) = \sqrt{1 - 2^{\frac{d}{2}} \frac{|\Sigma_1|^{\frac{1}{4}} |\Sigma_2|^{\frac{1}{4}}}{|\Sigma_1 + \Sigma_2|^{\frac{1}{2}}}}$$

(computed in common subspace)

通 ト イヨ ト イヨ ト

Hellinger Distance

* smoothed version: $\Sigma + \epsilon I$

3

(日) (周) (三) (三)

A Sparse Subset

- Two close points will have similar neighbors ⇒ small H even they are on different manifolds
- Compute a sparse subset of $m' = \frac{m}{\log(m)}$ points (red dots):
 - Start from an arbitrary x⁰
 - Remove its log(m) nearest neighbors
 - Let x¹ be the next nearest neighbor, repeat
- Include all labeled data
- Random sampling might work too

A Sparse Graph on the Sparse Subset

• Sparse nearest neighbor graph on the sparse subset, use Mahalanobis distance to trace the manifold

$$d^{2}(x,y) = (x-y)^{\top} \Sigma_{x}^{-1}(x-y)$$

• Gaussian edge weight on sparse edges

$$w_{ij} = e^{-\frac{H^2(\Sigma_{x_i}, \Sigma_{x_j})}{2\sigma^2}}$$

• Combines locality and shape

A Sparse Graph on the Sparse Subset

★ E ► < E ►</p>

A Sparse Graph on the Sparse Subset Red=large w, yellow=small w

Xiaojin Zhu (Wisconsin)

Multi-Manifold Separation as Graph Cut

- Cut the graph $W = [w_{ij}]$ into $k \equiv [\log(n)]$ parts
- Each part has at least $n/\log^2(n)$ labeled examples, $m'/\log^2(n)$ unlabeled examples
- Formally: RatioCut with size constraints
 - Let the k parts be A_1, \ldots, A_k
 - $\operatorname{cut}(A_i, \bar{A}_i) = \sum_{s \in A_i, t \in \bar{A}_i} w_{st}$
 - $\operatorname{cut}(A_1,\ldots,A_k) = \sum_{i=1}^k \operatorname{cut}(A_i,\bar{A}_i)$
 - Minimize cut directly tend to produce very unbalanced parts
 - RatioCut $(A_1, \ldots, A_k) = \sum_{i=1}^k \frac{cut(A_i, \bar{A}_i)}{|A_i|}$
 - However, this balancing heuristic may not satisfy our size constraints

|山田 | 山田 | 山田 |

RatioCut Approximated by Spectral Clustering

Well-known RatioCut approximation (without size constraints) [e.g., von Luxburg 2006]

• Define k indicator vectors h_1, \ldots, h_k

$$h_{ij} = \begin{cases} 1/\sqrt{A_j} & \text{if } i \in A_j \\ 0 & \text{otherwise} \end{cases}$$

- Matrix H has columns h_1, \ldots, h_k , $H^\top H = I$
- RatioCut $(A_1, \ldots, A_k) = \frac{1}{2}tr(H^\top LH)$
- $\min_H tr(H^\top LH)$ subject to $H^\top H = I$
- Relax elements of H to $\mathbb{R} \Rightarrow$ [Rayleigh-Ritz] h_1, \ldots, h_k are the first k eigenvectors of L.
- "Un-relax" H to hard partition: k-way clustering

イロト イポト イヨト イヨト 二日

RatioCut Approximated by Spectral Clustering

The spectral clustering algorithm (without size constraints):

- I nnormalized Laplacian L = D W
- **2** First k eigenvectors v_1, \ldots, v_k of L
- **③** V matrix: v_1, \ldots, v_k as columns, n + m' rows
- **9** New representation of x_i : the *i*th row of V
- So Cluster x_i into k clusters with k-means. The clusters define A_1, \ldots, A_k .

Next: enforce size constraints in k-means.

Standard (Unconstrained) k-Means

• k-means clusters $x_1 \dots x_N$ into k clusters with center $C_1 \dots C_k$:

$$\min_{C_1...C_k} \sum_{i=1}^N \min_{h=1...k} \left(\frac{1}{2} \|x_i - C_h\|^2 \right)$$

• Introduce indicator matrix T, $T_{ih} = 1$ if x_i belongs to C_h

$$\min_{C,T} \quad \sum_{i=1}^{N} \sum_{h=1}^{k} T_{ih} \left(\frac{1}{2} \| x_i - C_h \|^2 \right)$$

s.t.
$$\sum_{h=1}^{k} T_{ih} = 1, T \ge 0$$

• Local optimum found by starting from arbitrary $C_1 \dots C_k$ and iterating:

1 Update T_i : assign each point x_i to its closest center C_h

2 Update centers $C_1 \dots C_k$ by the mean of points assigned to that center

Note: each step reduces the objective.

イロト 不得下 イヨト イヨト 二日

Size Constrained k-Means

(Bradley, Bennett, Demiriz. 2000)

• Size constraints: cluster h must have at least τ_h points

$$\min_{C,T} \sum_{i=1}^{N} \sum_{h=1}^{k} T_{ih} \left(\frac{1}{2} \| x_i - C_h \|^2 \right)$$

s.t.
$$\sum_{h=1}^{k} T_{ih} = 1, T \ge 0$$
$$\sum_{i=1}^{N} T_{ih} \ge \tau_h, h = 1 \dots k.$$

- Solving T looks like a difficult integer problem
- Surprise: efficient integer solution found by Minimum Cost Flow linear program

イロト 不得下 イヨト イヨト

Minimum Cost Flow

 A graph with supply nodes (b_i > 0) and demand nodes (b_i < 0); directed edge i → j has unit transportation cost c_{ij}, traffic variable y_{ij} ≥ 0; Meet demand with minimum transportation cost

$$\min_{y} \qquad \sum_{i \to j} c_{ij} y_{ij} \\ \text{s.t.} \qquad \sum_{j} y_{ij} - \sum_{j} y_{ji} = b_{i}$$

Minimum Cost Flow with Two Constraints

Each cluster has at least $n/\log^2(n)$ labeled examples, $m'/\log^2(n)$ unlabeled examples

Example Cuts

Xiaojin Zhu (Wisconsin

33 / 36

SSL Example: Two Squares

イロト イポト イヨト イヨト

SSL Example: Two Squares

35 / 36

∃ → (∃ →

SSL Example: Dollar Sign

36 / 36

<ロ> (日) (日) (日) (日) (日)