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Supervised Learning
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Semi-Supervised Learning
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Prediction Problems

The feature space X = Rd

The label space Y = {0, 1} or R
Samples (X, Y ) ∈ X × Y ∼ PXY

I X: feature vector
I Y : label

Goal: construct a predictor f : X 7→ Y to minimize

R(f) ≡ E(X,Y )∼PXY
[loss(Y, f(X))]
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Learning from Data

The optimal predictor

f∗ = argminfE(X,Y )∼PXY
[loss(Y, f(X))]

depends on PXY , which is often unknown.

However, we can learn a good predictor from a training set

{(Xi, Yi)}n
i=1

iid∼ PXY

Supervised Learning:

{(Xi, Yi)}n
i=1 ⇒ f̂n
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Semi-Supervised Learning

In many applications in science and engineering, labeled data are
scarce, but unlabeled data are abundant and cheap.

{(Xi, Yi)}n
i=1

iid∼ PXY , {Xj}m
j=1

iid∼ PX ,m � n

Semi-Supervised Learning (SSL):

{(Xi, Yi)}n
i=1, {Xj}m

j=1 ⇒ f̂m,n
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Example: Handwritten Digits Recognition
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Example: Handwritten Digits Recognition

many unlabeled data + a few labeled data

knowledge of manifold/cluster + a few labels in each manifold/cluster
is sufficient to design a good predictor
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Common Assumptions in SSL

Cluster assumption: f∗ is constant or smooth on connected high
density regions.

Manifold assumption: Support set of PX lies on low-dimensional
manifolds. f∗ is smooth wrt geodesic distance on manifolds.
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Mathematical Formalization

Generic Learning Classes:

PXY =
{
PXPY |X : PX ∈ PX , PY |X ∈ PY |X

}
”Linked” Learning Classes:

P ′XY =
{
PXPY |X : PX ∈ PX , PY |X ∈ PY |X(PX) ⊂ PY |X

}
Link: unlabeled data may inform design of predictor

SSL can yield faster rate of error convergence than supervised
learning:

sup
P ′

XY

E[R(f̂m,n)] ≤ inf
fn

sup
P ′

XY

E[R(fn)]

I f̂n: predictor based on n labeled examples
I f̂m,n: based on n labeled and m unlabeled examples

Xiaojin Zhu (Wisconsin) Semi-Supervised Learning 11 / 36



The Value of Unlabeled Data

Castelli and Cover’95 (classification): assume identifiable mixture

p(x) = p(x|Y = 0)p(Y = 0) + p(x|Y = 1)p(Y = 1)

Learn decision regions from (the many) unlabeled examples

Label decision regions from (the few) labeled examples

Main result:
sup
P ′

XY

E[R(f̂∞,n)]−R∗ ≤ Ce−αn

What about more general cluster or manifold assumptions?
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Do Unlabeled Data Help in General?

No. Lafferty & Wasserman (2007)
I fix complexity of PXY , let n grow
I given enough labeled data, unlabeled data is superfluous (no faster

rates of convergence for SSL).

Yes. Niyogi (2008)
I let complexity of PXY grow with n
I given finite n, the complexity of the learning problem can be such that

supervised learning fails, while SSL has small expected error.

Both are correct, capturing two extremes. Finite sample bounds give
a more complete picture.
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Decision Regions

Our assumption: P ′XY ≡ (pX , f)
supp(pX) = ∪iCi, union of compact sets with γ separation

marginal density pX bounded away from zero, smooth in Ci

regression function f(x) Hölder-α smooth on each support set
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Adaptive Supervised Learning

If γ ≥ γ0 > 0 and n →∞, SL will “discover” decision regions,
eventually the excess risk of SL (squared loss) is minimax (SSL has no
advantage):

sup
P ′

XY

E[R(f̂n)]−R∗ ≤ Cn−
2α

2α+d

But, if n fixed and γ → 0, eventually SL will mix up decision regions
and mess up:

cn−
1
d ≤ inf

fn

sup
P ′

XY

E[R(fn)]−R∗

Unlabeled data identify decision regions, mess up later (smaller γ)
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Unlabeled Data: Now it helps, now it doesn’t

(Singh, Nowak & Zhu, NIPS 2008)
margin SSL SL SSL

upper lower helps?

n−
1
d ≤ γ n−

2α
2α+d n−

2α
2α+d no

m− 1
d ≤ γ < n−

1
d n−

2α
2α+d n−

1
d yes

−m− 1
d ≤ γ < m− 1

d n−
1
d n−

1
d no

γ < −m− 1
d n−

2α
2α+d n−

1
d yes
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An SSL Algorithm

Given n labeled examples and m unlabeled examples,

1 Use unlabeled data to infer log(n) decision regions Ĉi

I plug in your favorite manifold clustering algorithm that detects abrupt
change in support, density, dimensionality, etc.

I carve up ambient space into Ĉi: Voronoi
I each Ĉi has to be “big enough”, ≥ n/ log2(n) labeled examples,
≥ m/ log2(n) unlabeled examples

2 Use the labeled data in Ĉi to train SL f̂i

3 If a test point x∗ ∈ Ĉi, predict f̂i(x∗)
Similar to “cluster & label”.
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Building Blocks: Local Covariance Matrix

For x ∈ {xi}n+m
i=1 , find its [log(n + m)] nearest neighbors (in

Euclidean distance)

The local covariance matrix of the neighbors

Σx =
1

[log(n + m)]− 1

∑
j

(xj − µx)(xj − µx)>

Σx captures local geometry
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Building Blocks: Local Covariance Matrix
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A Distance Between Σ1 and Σ2

Hellinger distance

H2(p, q) =
1
2

∫ (√
p(x)−

√
q(x)

)2
dx

H(p, q) symmetric, in [0, 1]
Let p = N(0,Σ1), q = N(0,Σ2). We define

H(Σ1,Σ2) =

√√√√1− 2
d
2
|Σ1|

1
4 |Σ2|

1
4

|Σ1 + Σ2|
1
2

(computed in common subspace)
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Hellinger Distance

Comment H(Σ1,Σ2)

similar 0.02

density 0.28

dimension 1

orientation∗ 1

* smoothed version: Σ + εI
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A Sparse Subset
Two close points will have similar neighbors ⇒ small H even they are
on different manifolds
Compute a sparse subset of m′ = m

log(m) points (red dots):
I Start from an arbitrary x0

I Remove its log(m) nearest neighbors
I Let x1 be the next nearest neighbor, repeat

Include all labeled data
Random sampling might work too
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A Sparse Graph on the Sparse Subset

Sparse nearest neighbor graph on the sparse subset, use Mahalanobis
distance to trace the manifold

d2(x, y) = (x− y)>Σ−1
x (x− y)

Gaussian edge weight on sparse edges

wij = e−
H2(Σxi ,Σxj )

2σ2

Combines locality and shape
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A Sparse Graph on the Sparse Subset
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A Sparse Graph on the Sparse Subset
Red=large w, yellow=small w
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Multi-Manifold Separation as Graph Cut

Cut the graph W = [wij ] into k ≡ [log(n)] parts

Each part has at least n/ log2(n) labeled examples, m′/ log2(n)
unlabeled examples

Formally: RatioCut with size constraints
I Let the k parts be A1, . . . , Ak

I cut(Ai, Āi) =
∑

s∈Ai,t∈Āi
wst

I cut(A1, . . . , Ak) =
∑k

i=1 cut(Ai, Āi)
I Minimize cut directly tend to produce very unbalanced parts
I RatioCut(A1, . . . , Ak) =

∑k
i=1

cut(Ai,Āi)
|Ai|

I However, this balancing heuristic may not satisfy our size constraints
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RatioCut Approximated by Spectral Clustering

Well-known RatioCut approximation (without size constraints) [e.g., von
Luxburg 2006]

Define k indicator vectors h1, . . . , hk

hij =
{

1/
√

Aj if i ∈ Aj

0 otherwise

Matrix H has columns h1, . . . , hk, H>H = I

RatioCut(A1, . . . , Ak) = 1
2 tr(H>LH)

minH tr(H>LH) subject to H>H = I

Relax elements of H to R ⇒ [Rayleigh-Ritz] h1, . . . , hk are the first k
eigenvectors of L.

“Un-relax” H to hard partition: k-way clustering
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RatioCut Approximated by Spectral Clustering

The spectral clustering algorithm (without size constraints):

1 Unnormalized Laplacian L = D −W

2 First k eigenvectors v1, . . . , vk of L

3 V matrix: v1, . . . , vk as columns, n + m′ rows

4 New representation of xi: the ith row of V

5 Cluster xi into k clusters with k-means. The clusters define
A1, . . . , Ak.

Next: enforce size constraints in k-means.
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Standard (Unconstrained) k-Means

k-means clusters x1 . . . xN into k clusters with center C1 . . . Ck:

min
C1...Ck

N∑
i=1

min
h=1...k

(
1
2
‖xi − Ch‖2

)
Introduce indicator matrix T , Tih = 1 if xi belongs to Ch

min
C,T

∑N
i=1

∑k
h=1 Tih

(
1
2‖xi − Ch‖2

)
s.t.

∑k
h=1 Tih = 1, T ≥ 0

Local optimum found by starting from arbitrary C1 . . . Ck and
iterating:

1 Update Ti·: assign each point xi to its closest center Ch

2 Update centers C1 . . . Ck by the mean of points assigned to that center

Note: each step reduces the objective.
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Size Constrained k-Means

(Bradley, Bennett, Demiriz. 2000)

Size constraints: cluster h must have at least τh points

min
C,T

∑N
i=1

∑k
h=1 Tih

(
1
2‖xi − Ch‖2

)
s.t.

∑k
h=1 Tih = 1, T ≥ 0∑N

i=1 Tih ≥ τh, h = 1 . . . k.

Solving T looks like a difficult integer problem

Surprise: efficient integer solution found by Minimum Cost Flow
linear program
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Minimum Cost Flow

A graph with supply nodes (bi > 0) and demand nodes (bi < 0);
directed edge i → j has unit transportation cost cij , traffic variable
yij ≥ 0; Meet demand with minimum transportation cost

min
y

∑
i→j cijyij

s.t.
∑

j yij −
∑

j yji = bi
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Minimum Cost Flow with Two Constraints

Each cluster has at least n/ log2(n) labeled examples, m′/ log2(n)
unlabeled examples
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Example Cuts
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SSL Example: Two Squares
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SSL Example: Two Squares
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SSL Example: Dollar Sign
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