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Abstract
In reward-poisoning attacks against reinforcement
learning (RL), an attacker can perturb the environ-
ment reward rt into rt + δt at each step, with the
goal of forcing the RL agent to learn a nefarious
policy. We categorize such attacks by the infinity-
norm constraint on δt: We provide a lower thresh-
old below which reward-poisoning attack is infea-
sible and RL is certified to be safe; we provide a
corresponding upper threshold above which the at-
tack is feasible. Feasible attacks can be further cat-
egorized as non-adaptive where δt depends only
on (st, at, st+1), or adaptive where δt depends
further on the RL agent’s learning process at time
t. Non-adaptive attacks have been the focus of
prior works. However, we show that under mild
conditions, adaptive attacks can achieve the nefar-
ious policy in steps polynomial in state-space size
|S|, whereas non-adaptive attacks require expo-
nential steps. We provide a constructive proof that
a Fast Adaptive Attack strategy achieves the poly-
nomial rate. Finally, we show that empirically
an attacker can find effective reward-poisoning
attacks using state-of-the-art deep RL techniques.

1. Introduction
In many reinforcement learning (RL) applications the agent
extracts reward signals from user feedback. For example, in
recommendation systems the rewards are often represented
by user clicks, purchases or dwell time (Zhao et al., 2018;
Chen et al., 2019); in conversational AI, the rewards can be
user sentiment or conversation length (Dhingra et al., 2016;
Li et al., 2016). In such scenarios, an adversary can manip-
ulate user feedback to influence the RL agent in nefarious
ways. Figure 1 describes a hypothetical scenario of how
conversational AI can be attacked. One real-world example
is that of the chatbot Tay, which was quickly corrupted by a
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group of Twitter users who deliberately taught it misogynis-
tic and racist remarks shortly after its release (Neff & Nagy,
2016). Such attacks reveal significant security threats in the
application of reinforcement learning.

Hey, don’t say that!

Hello! You look pretty!at :
<latexit sha1_base64="WrmHutJH8BBpIxn0fkHZzCJshjQ=">AAAB63icbVDLSgNBEOyNrxhfUY9eFoPgKez6QPEU9OIxgnlAsoTZySQZMjO7zPQKYckvePGgiFd/yJt/42yyB00saCiquunuCmPBDXret1NYWV1b3yhulra2d3b3yvsHTRMlmrIGjUSk2yExTHDFGshRsHasGZGhYK1wfJf5rSemDY/UI05iFkgyVHzAKcFMIj286ZUrXtWbwV0mfk4qkKPeK391+xFNJFNIBTGm43sxBinRyKlg01I3MSwmdEyGrGOpIpKZIJ3dOnVPrNJ3B5G2pdCdqb8nUiKNmcjQdkqCI7PoZeJ/XifBwXWQchUnyBSdLxokwsXIzR53+1wzimJiCaGa21tdOiKaULTxlGwI/uLLy6R5VvXPq5cPF5XabR5HEY7gGE7BhyuowT3UoQEURvAMr/DmSOfFeXc+5q0FJ585hD9wPn8AznqOFw==</latexit>

Thank you!

Hello! You look pretty!at :
<latexit sha1_base64="WrmHutJH8BBpIxn0fkHZzCJshjQ=">AAAB63icbVDLSgNBEOyNrxhfUY9eFoPgKez6QPEU9OIxgnlAsoTZySQZMjO7zPQKYckvePGgiFd/yJt/42yyB00saCiquunuCmPBDXret1NYWV1b3yhulra2d3b3yvsHTRMlmrIGjUSk2yExTHDFGshRsHasGZGhYK1wfJf5rSemDY/UI05iFkgyVHzAKcFMIj286ZUrXtWbwV0mfk4qkKPeK391+xFNJFNIBTGm43sxBinRyKlg01I3MSwmdEyGrGOpIpKZIJ3dOnVPrNJ3B5G2pdCdqb8nUiKNmcjQdkqCI7PoZeJ/XifBwXWQchUnyBSdLxokwsXIzR53+1wzimJiCaGa21tdOiKaULTxlGwI/uLLy6R5VvXPq5cPF5XabR5HEY7gGE7BhyuowT3UoQEURvAMr/DmSOfFeXc+5q0FJ585hD9wPn8AznqOFw==</latexit>

Figure 1. Example: an RL-based conversational AI is learning
from real-time conversations with human users. the chatbot says
“Hello! You look pretty!” and expects to learn from user feedback
(sentiment). A benign user will respond with gratitude, which is
decoded as a positive reward signal. An adversarial user, however,
may express anger in his reply, which is decoded as a negative
reward signal.

In this paper, we formally study the problem of training-
time attack on RL via reward poisoning. As in standard
RL, the RL agent updates its policy πt by performing action
at at state st in each round t. The environment Markov
Decision Process (MDP) generates reward rt and transits
the agent to st+1. However, the attacker can change the
reward rt to rt + δt, with the goal of driving the RL agent
toward a target policy πt → π†.

Figure 2. A chain MDP with attacker’s target policy π†

Figure 2 shows a running example that we use throughout
the paper. The episodic MDP is a linear chain with five
states, with left or right actions and no movement if it hits
the boundary. Each move has a -0.1 negative reward, and
G is the absorbing goal state with reward 1. Without attack,
the optimal policy π∗ would be to always move right. The
attacker’s goal, however, is to force the agent to learn the
nefarious target policy π† represented by the arrows in Fig-
ure 2. Specifically, the attacker wants the agent to move left
and hit its head against the wall whenever the agent is at the
left-most state.
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Our main contributions are:

1. We characterize conditions under which such attacks are
guaranteed to fail (thus RL is safe), and vice versa;

2. In the case where an attack is feasible, we provide upper
bounds on the attack cost in the process of achieving π†;

3. We show that effective attacks can be found empirically
using deep RL techniques.

2. Related Work
Test-time attacks against RL Prior work on adversarial
attacks against reinforcement learning focused primarily on
test-time, where the RL policy π is pre-trained and fixed,
and the attacker manipulates the perceived state st to s†t in
order to induce undesired action (Huang et al., 2017; Lin
et al., 2017; Kos & Song, 2017; Behzadan & Munir, 2017).
For example, in video games the attacker can make small
pixel perturbation to a frame (Goodfellow et al., 2014))
to induce an action π(s†t) 6= π(st). Although test-time
attacks can severely impact the performance of a deployed
and fixed policy π, they do not modify π itself. For ever-
learning agents, however, the attack surface includes π. This
motivates us to study training-time attack on RL policy.

Reward Poisoning: Reward poisoning has been studied
in bandits (Jun et al., 2018; Peltola et al., 2019; Altschuler
et al., 2019; Liu & Shroff, 2019; Ma et al., 2018), where
the authors show that adversarially perturbed reward can
mislead standard bandit algorithms to pull a suboptimal arm
or suffer large regret.

Reward poisoning has also been studied in batch RL (Zhang
& Parkes, 2008; Zhang et al., 2009; Ma et al., 2019) where
rewards are stored in a pre-collected batch data set by some
behavior policy, and the attacker modifies the batch data.
Because all data are available to the attacker at once, the
batch attack problem is relatively easier. This paper in-
stead focuses on the online RL attack setting where reward
poisoning must be done on the fly.

(Huang & Zhu, 2019) studies a restricted version of reward
poisoning, in which the perturbation only depend on the cur-
rent state and action: δt = φ(st, at). While such restriction
guarantees the convergence of Q-learning under the per-
turbed reward and makes the analysis easier, we show both
theoretically and empirically that such restriction severely
harms attack efficiency. Our paper subsumes their results by
considering more powerful attacks that can depend on the
RL victim’s Q-table Qt. Theoretically, our analysis does
not require the RL agent’s underlying Qt to converge while
still providing robustness certificates; see section 4.

Reward Shaping: While this paper is phrased from the
adversarial angle, the framework and techniques are also

applicable to the teaching setting, where a teacher aims
to guide the agent to learn the optimal policy as soon as
possible, by designing the reward signal. Traditionally, re-
ward shaping and more specifically potential-based reward
shaping (Ng et al., 1999) has been shown able to speed up
learning while preserving the optimal policy. (Devlin &
Kudenko, 2012) extend potential-based reward shaping to
be time-varying while remains policy-preserving. More re-
cently, intrinsic motivations(Schmidhuber, 1991; Oudeyer &
Kaplan, 2009; Barto, 2013; Bellemare et al., 2016) was intro-
duced as a new form of reward shaping with the goal of en-
couraging exploration and thus speed up learning. Our work
contributes by mathematically defining the teaching via
reward shaping task as an optimal control problem, and pro-
vide computational tools that solve for problem-dependent
high-performing reward shaping strategies.

3. The Threat Model
In the reward-poisoning attack problem, we consider three
entities: the environment MDP, the RL agent, and the at-
tacker. Their interaction is formally described by Alg 1.

The environment MDP isM = (S,A,R, P, µ0) where S is
the state space, A is the action space, R : S ×A× S → R
is the reward function, P : S×A×S → R is the transition
probability, and µ0 : S → R is the initial state distribution.
We assume S, A are finite, and that a uniformly random
policy can visit each (s, a) pair infinitely often.

We focus on an RL agent that performs standard Q-learning
defined by a tuple A = (Q0, ε, γ, {αt}), where Q0 is the
initial Q table, ε is the random exploration probability, γ is
the discounting factor, {αt} is the learning rate scheduling
as a function of t. This assumption can be generalized: in
the additional experiments provided in appendix G.2, we
show how the same framework can be applied to attack
general RL agents, such as DQN. Denote Q∗ as the optimal
Q table that satisfies the Bellman’s equation:

Q∗(s, a) = EP (s′|s,a)

[
R(s, a, s′) + γmax

a′∈A
Q∗(s′, a′)

]
(1)

and denote the corresponding optimal policy as π∗(s) =
arg maxaQ

∗(s, a). For notational simplicity, we assume
π∗ is unique, though it is easy to generalize to multiple
optimal policies, since most of our analyses happen in the
space of value functions.

The Threat Model The attacker sits between the environ-
ment and the RL agent. In this paper we focus on white-box
attacks: the attacker has knowledge of the environment
MDP and the RL agent’s Q-learning algorithm, except for
their future randomness. Specifically, at time t the attacker
observes the learner Q-table Qt, state st, action at, the
environment transition st+1 and reward rt. The attacker
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Algorithm 1 Reward Poisoning against Q-learning

PARAMETERS: Agent parameters A = (Q0, ε, γ, {αt}),
MDP parametersM = (S,A,R, P, µ0).

1: for t = 0, 1, ... do
2: agent at state st, has Q-table Qt.
3: agent acts according to ε-greedy behavior policy

at ←
{

arg maxaQt(st, a), w.p. 1− ε
uniform from A, w.p. ε. (2)

4: environment transits st+1 ∼ P (· | st, at), produces
reward rt = R(st, at, st+1).

5: attacker poisons the reward to rt + δt.
6: agent receives (st+1, rt + δt), performs Q-learning

update:

Qt+1(st, at)← (1− αt)Qt(st, at)+ (3)

αt

(
rt + δt + γmax

a′∈A
Qt(st+1, a

′)

)
7: environment resets if episode ends: st+1 ∼ µ0.
8: end for

can choose to add a perturbation δt ∈ R to the current en-
vironmental reward rt. The RL agent receives poisoned
reward rt + δt. We assume the attack is inf-norm bounded:
|δt| ≤ ∆,∀t.

There can be many possible attack goals against an RL
agent: forcing the RL agent to perform certain actions;
reaching or avoiding certain states; or maximizing its regret.
In this paper, we focus on a specific attack goal: policy
manipulation. Concretely, the goal of policy manipulation
is to force a target policy π† on the RL agent for as many
rounds as possible.

Definition 1. Target (partial) policy π† : S 7→ 2A: For
each s ∈ S, π†(s) ⊆ A specifies the set of actions desired
by the attacker.

The partial policy π† allows the attacker to desire multiple
target actions on one state. In particular, if π†(s) = A then
s is a state that the attacker “does not care.” Denote S† =
{s ∈ S : π†(s) 6= A} the set of target states on which the
attacker does have a preference. In many applications, the
attacker only cares about the agent’s behavior on a small set
of states, namely |S†| � |S|.

For RL agents utilizing a Q-table, a target policy π† induces
a set of Q-tables:

Definition 2. Target Q-table set

Q† := {Q : max
a∈π†(s)

Q(s, a) > max
a/∈π†(s)

Q(s, a),∀s ∈ S†}

If the target policy π† always specifies a singleton action
or does not care on all states, then Q† is a convex set. But
in general when 1 < |π†(s)| < |A| on any s, Q† will be a
union of convex sets but itself can be in general non-convex.

4. Theoretical Guarantees
Now, we are ready to formally define the optimal attack
problem. At time t, the attacker observes an attack state
(N.B. distinct from MDP state st):

ξt := (st, at, st+1, rt, Qt) ∈ Ξ (4)

which jointly characterizes the MDP and the RL agent. The
attacker’s goal is to find an attack policy φ : Ξ→ [−∆,∆],
where for ξt ∈ Ξ the attack action is δt := φ(ξt), that
minimizes the number of rounds on which the agent’s Qt
disagrees with the attack target Q†:

min
φ

Eφ
∞∑
t=0

1[Qt /∈ Q†], (5)

where the expectation accounts for randomness in Alg 1.
We denote J∞(φ) = Eφ

∑∞
t=0 1[Qt /∈ Q†] the total attack

cost, and JT (φ) = Eφ
∑T
t=0 1[Qt /∈ Q†] the finite-horizon

cost. We say the attack is feasible if (5) is finite.

Next, we characterize attack feasibility in terms of poison
magnitude constraint ∆, as summarized in Figure 3. Proofs
to all the theorems can be found in the appendix.

4.1. Attack Infeasibility

Intuitively, smaller ∆ makes it harder for the attacker to
achieve the attack goal. We show that there is a threshold
∆1 such that for any ∆ < ∆1 the RL agent is eventually
safe, in that πt → π∗ the correct MDP policy. This implies
that (5) is infinite and the attack is infeasible. There is a
potentially larger ∆2 such that for any ∆ < ∆2 the attack
is also infeasible, though πt may not converge to π∗.

While the above statements are on πt, our analysis is via
the RL agent’s underlying Qt. Note that under attack the re-
wards rt + δt are no longer stochastic, and we cannot utilize
the usual Q-learning convergence guarantee. Nonetheless,
we show that Qt is bounded in a polytope in the Q-space.
Theorem 1 (Boundedness of Q-learning). Assume that δt <
∆ for all t, and the stepsize αt’s satisfy that αt ≤ 1 for all
t,
∑
αt = ∞ and

∑
α2
t < ∞. Let Q∗ be defined as (1).

Then, for any attack sequence {δt}, there existsN ∈ N such
that, with probability 1, for all t ≥ N , we have

Q∗(s, a)− ∆

1− γ
≤ Qt(s, a) ≤ Q∗(s, a) +

∆

1− γ
. (6)

Remark 1: The bounds in Theorem 1 are in fact tight. The
lower and upper bound can be achieved by setting δt = −∆
or +∆ respectively.
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Figure 3. A summary diagram of the theoretical results.

We immediately have the following two infeasibility certifi-
cates.

Corollary 2 (Strong Infeasibility Certificate). Define

∆1 = (1− γ) min
s

[
Q∗(s, π∗(s))− max

a6=π∗(s)
Q∗(s, a)

]
/2.

If ∆ < ∆1, there exist N ∈ N such that, with probability 1,
for all t > N , πt = π∗. In other words, eventually the RL
agent learns the optimal MDP policy π∗ despite the attacks.

Corollary 3 (Weak Infeasibility Certificate). Given attack
target policy π†, define

∆2 = (1− γ) max
s

[
Q∗(s, π∗(s))− max

a∈π†(s)
Q∗(s, a)

]
/2.

If ∆ < ∆2, there exist N ∈ N such that, with probability
1, for all t > N , πt(s) /∈ π†(s) for some s ∈ S†. In
other words, eventually the attacker is unable to enforce π†

(though πt may not settle on π∗ either).

Intuitively, an MDP is difficult to attack if its margin
mins

[
Q∗(s, π∗(s))−maxa6=π∗(s)Q

∗(s, a)
]

is large. This
suggests a defense: for RL to be robust against poisoning,
the environmental reward signal should be designed such
that the optimal actions and suboptimal actions have large
performance gaps.

4.2. Attack Feasibility

We now show there is a threshold ∆3 such that for all ∆ >
∆3 the attacker can enforce π† for all but finite number of
rounds.

Theorem 4. Given a target policy π†, define

∆3 =
1 + γ

2
max
s∈S†

[ max
a/∈π†(s)

Q∗(s, a)− max
a∈π†(s)

Q∗(s, a)]+

(7)
where [x]+ := max(x, 0). Assume the same conditions on
αt as in Theorem 1. If ∆ > ∆3, there is a feasible attack
policy φsas∆3

. Furthermore, J∞(φsas∆3
) ≤ O(L5), where L is

the covering number.

Algorithm 2 The Non-Adaptive Attack φsas∆3

PARAMETERS: target policy π†, agent parameters
A = (Q0, ε, γ, {αt}), MDP parameters
M = (S,A,R, P, µ0), maximum magnitude of poisoning
∆.
def Init(π†,A,M):

1: Construct a Q-table Q′, where Q′(s, a) is defined as
Q∗(s, a) +

∆

(1 + γ)
, if s ∈ S†, a ∈ π†(s)

Q∗(s, a)− ∆

(1 + γ)
, if s ∈ S†, a /∈ π†(s)

Q∗(s, a), if s /∈ S†

2: Calculate a new reward function

R′(s, a) = Q′(s, a)− γEP (s′|s,a)

[
max
a′

Q′(s′, a′)
]
.

3: Define the attack policy φsas∆3
as:

φsas∆3
(s, a) = R′(s, a)− EP (s′|s,a) [R(s, a, s)] ,∀s, a.

def Attack(ξt):

1: Return φsas∆3
(st, at)

Theorem 4 is proved by constructing an attack policy
φsas∆3

(st, at), detailed in Alg. 2. Note that this attack
policy does not depend on Qt. We call this type of at-
tack non-adaptive attack. Under such construction, one
can show that Q-learning converges to the target policy
π†. Recall the covering number L is the upper bound
on the minimum sequence length starting from any (s, a)
pair and follow the MDP until all (state, action) pairs ap-
pear in the sequence (Even-Dar & Mansour, 2003). It is
well-known that ε-greedy exploration has a covering time
L ≤ O(e|S|) (Kearns & Singh, 2002). Prior work has con-
structed examples on which this bound is tight (Jin et al.,
2018). We show in appendix C that on our toy example
ε-greedy indeed has a covering time O(e|S|). Therefore,
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the objective value of (5) for non-adaptive attack is upper-
bounded byO(e|S|). In other words, the non-adaptive attack
is slow.

4.3. Fast Adaptive Attack (FAA)

We now show that there is a fast adaptive attack φξFAA
which depends on Qt and achieves J∞ polynomial in |S|.
The price to pay is a larger attack constraint ∆4, and the
requirement that the attack target states are sparse: k =
|S†| ≤ O(log |S|). The FAA attack policy φξFAA is defined
in Alg. 3.

Conceptually, the FAA algorithm ranks the target states
in descending order by their distance to the starting states,
and focusing on attacking one target state at a time. Of
central importance is the temporary target policy νi, which is
designed to navigate the agent to the currently focused target
state s†(i), while not altering the already achieved target
actions on target states of earlier rank. This allows FAA to
achieve a form of program invariance: after FAA achieves
the target policy in a target state s†(i), the target policy on
target state (i) will be preserved indefinitely. We provide
a more detailed walk-through of Alg. 3 with examples in
appendix E.

Definition 3. Define the shortest ε-distance from s to s′ as

dε(s, s
′) = min

π∈Π
Eπε

[T ] (9)

s.t. s0 = s, sT = s′, st 6= s′,∀t < T

where πε denotes the epsilon-greedy policy based on π.
Since we are in an MDP, there exists a common (partial)
policy πs′ that achieves dε(s, s′) for all source state s ∈ S.
Denote πs′ as the navigation policy to s′.

Definition 4. The ε-diameter of an MDP is defined as the
longest shortest ε-distance between pairs of states in S:

Dε = max
s,s′∈S

dε(s, s
′) (10)

Theorem 5. Assume that the learner is running ε-greedy
Q-learning algorithm on an episodic MDP with ε-diameter
Dε and maximum episode length H , and the attacker aims
at k distinct target states, i.e. |S†| = k. If ∆ is large enough
that the Clip∆() function in Alg. 3 never takes effect, then
φξFAA is feasible, and we have

J∞(φξFAA) ≤ k |S||A|H
1− ε

+
|A|

1− ε

[
|A|
ε

]k
Dε, (11)

How large is Dε? For MDPs with underlying structure
as undirected graphs, such as the grid worlds, it is shown
that the expected hitting time of a uniform random walk is
bounded by O(|S|2)(Lawler, 1986). Note that the random
hitting time tightly upper bounds the optimal hitting time,

Algorithm 3 The Fast Adaptive Attack (FAA)

PARAMETERS: target policy π†, margin η, agent
parameters A = (Q0, ε, γ, {αt}), MDP parameters
M = (S,A,R, P, µ0).
def Init(π†,A,M, η):

1: Given (st, at, Qt), define the hypotheti-
cal Q-update function without attack as
Q′t+1(st, at) = (1 − αt)Qt(st, at) +
αt (rt + γ(1− EOE) maxa′∈AQt(st+1, a

′)).
2: Given (st, at, Qt), denote the greedy attack function at
st w.r.t. a target action set Ast as g(Ast), defined as

1
αt

[maxa/∈Ast
Qt(st, a)−

Q′t+1(st, at) + η]+ if at ∈ Ast
1
αt

[maxa∈Ast
Qt(st, a)−

Q′t+1(st, at) + η]− if at /∈ Ast .

(8)

3: Define Clip∆(δ) = min(max(δ,−∆),∆).
4: Rank the target states in descending order as
{s†(1), ..., s

†
(k)}, according to their shortest ε-distance

to the initial state Es∼µ0

[
dε(s, s(i))

]
.

5: for i = 1, ..., k do
6: Define the temporary target policy νi as

νi(s) =

{
πs†

(i)
(s) if s /∈ {s†(j) : j ≤ i}

π†(s) if s ∈ {s†(j) : j ≤ i}.

7: end for

def Attack(ξt):

1: for i = 1, ..., k do
2: if arg maxaQt(s

†
(i), a) /∈ π†(s†(i)) then

3: Return δt ← Clip∆(g({νi(st)})).
4: end if
5: end for
6: Return δt ← Clip∆(g({π†(st)})).

a.k.a. the ε-diameter Dε, and they match when ε = 1. This
immediately gives us the following result:

Corollary 6. If in addition to the assumptions of Theo-
rem 5, the maximal episode length H = O(|S|), then
J∞(φξFAA) ≤ O(ek|S|2|A|) in Grid World environments.
When the number of target states is small, i.e. k ≤
O(log |S|), J∞(φξFAA) ≤ O(poly(|S|)).

Remark 2: Theorem 5 and Corollary 6 can be thought of
as defining an implicit ∆4, such that for any ∆ > ∆4, the
clip function in Alg. 3 never take effect, and φξFAA achieves
polynomial cost.
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Figure 4. Attack cost J105(φ) on different ∆’s. Each curve shows
mean ±1 standard error over 1000 independent test runs.

4.4. Illustrating Attack (In)feasibility ∆ Thresholds

The theoretical results developed so far can be summarized
as a diagram in Figure 3. We use the chain MDP in Figure 2
to illustrate the four thresholds ∆1,∆2,∆3,∆4 developed
in this section. On this MDP and with this attack target
policy π†, we found that ∆1 = ∆2 = 0.0069. The two
matches because this π† is the easiest to achieve in terms
of having the smallest upperbound ∆2. Attackers whose
poison magnitude |δt| < ∆2 will not be able to enforce the
target policy π† in the long run.

We found that ∆3 = 0.132. We know that φsas∆3
should be

feasible if ∆ > ∆3. To illustrate this, we ran φsas∆3
with

∆ = 0.2 > ∆3 for 1000 trials and obtained estimated
J105(φsas∆3

) = 9430. The fact that J105(φsas∆3
) � T = 105

is empirical evidence that φsas∆3
is feasible. We found that

∆4 = 1 by simulation. The adaptive attack φξFAA con-
structed in Theorem 5 should be feasible with ∆ = ∆4 = 1.
We run φξFAA for 1000 trials and observed J105(φξFAA) =
30.4� T , again verifying the theorem. Also observe that
J105(φξFAA) is much smaller than J105(φsas∆3

), verifying the
foundamental difference in attack efficiency between the
two attack policies as shown in Theorem 4 and Corollary 6.

While FAA is able to force the target policy in polynomial
time, it’s not necessarily the optimal attack strategy. Next,
we demonstrate how to solve for the optimal attack problem
in practice, and empirically show that with the techniques
from Deep Reinforcement Learning (DRL), we can find
efficient attack policies in a variety of environments.

5. Attack RL with RL
The attack policies φsas∆3

and φξFAA were manually con-
structed for theoretical analysis. Empirically, though, they
do not have to be the most effective attacks under the rele-
vant ∆ constraint.

In this section, we present our key computational insight: the
attacker can find an effective attack policy by relaxing the
attack problem (5) so that the relaxed problem can be effec-
tively solved with RL. Concretely, consider the higher-level
attack MDP N = (Ξ,∆, ρ, τ) and the associated optimal
control problem:

• The attacker observes the attack state ξt ∈ Ξ.

• The attack action space is {δt ∈ R : |δt| ≤ ∆}.

• The original attack loss function 1[Qt /∈ Q†] is a 0-1 loss
that is hard to optimize. We replace it with a continuous
surrogate loss function ρ that measures how close the
current agent Q-table Qt is to the target Q-table set:

ρ(ξt) =
∑
s∈S†

[
max
a/∈π†(s)

Qt(s, a)− max
a∈π†(s)

Qt(s, a) + η

]
+

(12)
where η > 0 is a margin parameter to encourage that
π†(s) is strictly preferred over A\π†(s) with no ties.

• The attack state transition probability is defined by
τ(ξt+1 | ξt, δt). Specifically, the new attack state
ξt+1 = (st+1, at+1, st+2, rt+1, Qt+1) is generated as
follows:

– st+1 is copied from ξt if not the end of episode, else
st+1 ∼ µ0.

– at+1 is the RL agent’s exploration action drawn ac-
cording to (2), note it involves Qt+1.

– st+2 is the RL agent’s new state drawn according to
the MDP transition probability P (· | st+1, at+1).

– rt+1 is the new (not yet poison) reward according to
MDP R(st+1, at+1, st+2).

– The attack δt happens. The RL agent updates Qt+1

according to (3).

With the higher-level attack MDP N , we relax the optimal
attack problem (5) into

φ∗ = arg min
φ

Eφ
∞∑
t=0

ρ(ξt) (13)

One can now solve (13) using Deep RL algorithms. In this
paper, we choose Twin Delayed DDPG (TD3) (Fujimoto
et al., 2018), a state-of-the-art algorithm for continuous
action space. We use the same set of hyperparameters for
TD3 across all experiments, described in appendix F.

6. Experiments
In this section, We make empirical comparisons between
a number of attack policies φ: We use the naming conven-
tion where the superscript denotes non-adaptive or adaptive



Adaptive Reward-Poisoning Attacks against Reinforcement Learning

4 6 8 10 12
|S|

100

101

102

103

104
J 1

05
(

)

sas
TD3

FAA

FAA + TD3

Figure 5. Attack performances on the chain MDPs of different
lengths. Each curve shows mean ±1 standard error over 1000
independent test runs.

policy: φsas depends on (st, at, st+1) but not Qt. Such
policies have been extensively used in the reward shaping
literature and prior work (Ma et al., 2019; Huang & Zhu,
2019) on reward poisoning; φξ depends on the whole attack
state ξt. We use the subscript to denote how the policy is
constructed. Therefore, φξTD3 is the attack policy found
by solving (13) with TD3; φξFAA+TD3 is the attack policy
found by TD3 initialized from FAA (Algorithm 3), where
TD3 learns to provide an additional δ′t on top of the δt gen-
erated by φξFAA, and the agent receives rt + δt + δ′t as
reward; φsasTD3 is the attack policy found using TD3 with the
restriction that the attack policy only takes (st, at, st+1) as
input.

In all of our experiments, we assume a standard Q-learning
RL agent with parameters: Q0 = 0S×A, ε = 0.1, γ =
0.9, αt = 0.9,∀t. The plots show ±1 standard error around
each curve (some are difficult to see). We will often evaluate
an attack policy φ using a Monte Carlo estimate of the 0-1
attack cost JT (φ) for T = 105, which approximates the
objective J∞(φ) in (5).

6.1. Efficiency of Attacks across different ∆’s

Recall that ∆ > ∆3, ∆ > ∆4 are sufficient conditions
for manually-designed attack policies φsas∆3

and φξFAA to
be feasible, but they are not necessary conditions. In this
experiment, we empirically investigate the feasibilities and
efficiency of non-adaptive and adaptive attacks across dif-
ferent ∆ values.

We perform the experiments on the chain MDP in Fig-
ure 2. Recall that on this example, ∆3 = 0.132 and
∆4 = 1 (implicit). We evaluate across 4 different ∆ values,
[0.1, 0.2, 0.5, 1], covering the range from ∆3 to ∆4. The
result is shown in Figure 4.

Figure 6. The 10 × 10 Grid World. s0 is the starting state and G
the terminal goal. Each move has a −0.1 negative reward, and a
+1 reward for arriving at the goal. We consider two partial target
policies: π†

1 marked by the green arrows, and π†
2 by both the green

and the orange arrows.

We are able to make several interesting observations:
(1) All attacks are feasible (y-axis� T ), even when ∆ falls
under the thresholds ∆3 and ∆4 for corresponding methods.
This suggests that the feasibility thresholds are not tight.
(2) For non-adaptive attacks, as ∆ increases the best-found
attack policies φsasTD3 achieve small improvement, but gener-
ally incur a large attack cost.
(3) Adaptive attacks are very efficient when ∆ is large. At
∆ = 1, the best adaptive attack φξFAA+TD3 achieves a cost
of merely 13 (takes 13 steps to always force π† on the RL
agent). However, as ∆ decreases the performance quickly
degrades. At ∆ = 0.1 adaptive attacks are only as good as
non-adaptive attacks. This shows an interesting transition
region in ∆ that our theoretical analysis does not cover.

6.2. Adaptive Attacks are Faster

In this experiment, we empirically verify that, while both
are feasible, adaptive attacks indeed have an attack cost
O(Poly|S|) while non-adaptive attacks have O(e|S|). The
0-1 costs 1[πt 6= π†] are in general incurred at the beginning
of each t = 0 . . . T run. In other words, adaptive attacks
achieve π† faster than non-adaptive attacks. We use sev-
eral chain MDPs similar to Figure 2 but with increasing
number of states |S| = 3, 4, 5, 6, 12. We provide a large
enough ∆ = 2� ∆4 to ensure the feasibility of all attack
policies. The result is shown in Figure 5. The best-found
non-adaptive attack φsasTD3 is approximately straight on the
log-scale plot, suggesting attack cost J growing exponen-
tially with MDP size |S|. In contrast, the two adaptive attack
polices φξFAA and φξFAA+TD3 actually achieves attack cost
linear in |S|. This is not easy to see from this log-scaled
plot; We reproduce Figure 5 without the log scale in the
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(c) 10 × 10 MDP with π†
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Figure 7. Experiment results for the ablation study. Each curve shows mean ±1 standard error over 20 independent test runs. The gray
dashed lines indicate the total number of target actions.

appendix G.1, where the linear rate can be clearly verified.
This suggests that the upperbound developed in Theorem 5
and Corollary 6 can be potentially improved.

6.3. Ablation Study

In this experiment, we compare three adaptive attack poli-
cies: φξTD3 the policy found by out-of-the-box TD3, φξFAA
the manually designed FAA policy, and φξFAA+TD3 the
policy found by using FAA as initialization for TD3.

We use three MDPs: a 6-state chain MDP, a 12-state chain
MDP, and a 10× 10 grid world MDP.. The 10× 10 MDP
has two separate target policies π†1 and π†2, see Figure 6.

For evaluation, we compute the number of target actions
achieved |{s ∈ S† : πt(s) ∈ π†(s)}| as a function of t.
This allows us to look more closely into the progress made
by an attack. The results are shown in Figure 7.

First, observe that across all 4 experiments, attack policy
φξTD3 found by out-of-the-box TD3 never succeeded in
achieving all target actions. This indicates that TD3 alone
cannot produce an effective attack. We hypothesize that
this is due to a lack of effective exploration scheme: when
the target states are sparse (|S†| � |S|) it can be hard for
TD3 equiped with Gaussian exploration noise to locate all
target states. As a result, the attack policy found by vanilla
TD3 is only able to achieve the target actions on a subset of
frequently visited target states.

Hand-crafted φξFAA is effective in achieving the target poli-
cies, as is guaranteed by our theory. Nevertheless, we found
that φξFAA+TD3 always improves upon φξTD3. Recall that
we use FAA as the initialization and then run TD3. This
indicates that TD3 can be highly effective with a good ini-
tialization, which effectively serves as the initial exploration
policy that allows TD3 to locate all the target states.

Of special interest are the two experiments on the 10× 10
Grid World with different target policies. Conceptually, the
advantage of the adaptive attack is that the attacker can
perform explicit navigation to lure the agent into the target
states. An efficient navigation policy that leads the agent to

all target states will make the attack very efficient. Observe
that in Figure 6, both target polices form a chain, so that
if the agent starts at the beginning of the chain, the target
actions naturally lead the agent to the subsequent target
states, achieving efficient navigation.

Recall that the FAA algorithm prioritizes the target states
farthest to the starting state. In the 10 × 10 Grid World,
the farthest state is the top-left grid. For target states S†1,
the top-left grid turns out to be the beginning of the target
chain. As a result, φξFAA is already very efficient, and
φξFAA+TD3 couldn’t achieve much improvement, as shown
in 7c. On the other hand, for target states S†2, the top-left
grid is in the middle of the target chain, which makes φξFAA
not as efficient. In this case, φξFAA+TD3 makes a significant
improvement, successfully forcing the target policy in about
500 steps, whereas it takes φξFAA as many as 1000 steps,
about twice as long as φξFAA+TD3.

7. Conclusion
In this paper, we studied the problem of reward-poisoning
attacks against reinforcement-learning agents. Theoretically,
we provide robustness certificates that guarantee the truth-
fulness of the learned policy when the attacker’s constraint
is stringent. When the constraint is loose, we show that by
being adaptive to the agent’s internal state, the attacker can
force the target policy in polynomial time, whereas a naive
non-adaptive attack takes exponential time. Empirically, we
formulate that the reward poisoning problem as an optimal
control problem on a higher-level attack MDP, and devel-
oped computational tools based on DRL that is able to find
efficient attack policies across a variety of environments.
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Appendices
A. Proof of Theorem 1
Proof. Consider two MDPs with reward functions defined as R+ ∆ and R−∆, denote the Q table corresponding to them
as Q+∆ and Q−∆, respectively. Let {(st, at)} be any instantiated trajectory of the learner corresponding to the attack policy
φ. By assumption, {(st, at)} visits all (s, a) pairs infinitely often and αt’s satisfy

∑
αt =∞ and

∑
α2
t <∞. Assuming

now that we apply Q-learning on this particular trajectory with reward given by rt + ∆, standard Q-learning convergence
applies and we have that Qt,+∆ → Q+∆ and similarly, Qt,−∆ → Q−∆ (Melo).

Next, we want to show that Qt(s, a) ≤ Qt,+∆(s, a) for all s ∈ S, a ∈ A and for all t. We prove by induction. First, we
know Q0(s, a) = Q0,+∆(s, a). Now, assume that Qk(s, a) ≤ Qk,+∆(s, a). We have

Qk+1,+∆(sk+1, ak+1) (14)

= (1− αk+1)Qk,+∆(sk+1, ak+1) + αk+1

(
rk+1 + ∆ + γmax

a′∈A
Qk,+∆(s′k+1, a

′)

)
(15)

≥ (1− αk+1)Qk(sk+1, ak+1) + αk+1

(
rk+1 + δk+1 + γmax

a′∈A
Qk(s′k+1, a

′)

)
(16)

= Qk+1(sk+1, ak+1), (17)

which established the induction. Similarly, we have Qt(s, a) ≥ Qt,−∆(s, a). Since Qt,+∆ → Q+∆, Qt,−∆ → Q−∆, we
have that for large enough t,

Q−∆(s, a) ≤ Qt(s, a) ≤ Q+∆,∀s ∈ S, a ∈ A. (18)

Finally, it’s not hard to see that Q+∆(s, a) = Q∗(s, a) + ∆
1−γ and Q−∆(s, a) = Q∗(s, a)− ∆

1−γ . This concludes the proof.

B. Proof of Theorem 4
Proof. We provide a constructive proof. We first design an attack policy φ, and then show that φ is a strong attack. For the
purpose of finding a strong attack, it suffices to restrict the constructed φ to depend only on (s, a) pairs, which is a special
case of our general attack setting. Specifically, for any ∆ > ∆3, we define the following Q′:

Q′(s, a) =


Q∗(s, a) +

∆

(1 + γ)
, ∀s ∈ S†, a ∈ π†(s),

Q∗(s, a)− ∆

(1 + γ)
, ∀s ∈ S†, a /∈ π†(s),

Q∗(s, a),∀s /∈ S†, a,

(19)

where Q∗(s, a) is the original optimal value function without attack. We will show Q′ ∈ Q†, i.e., the constructed Q′ induces
the target policy. For any s ∈ S†, let a† ∈ arg maxa∈π†(s)Q

∗(s, a), a best target action desired by the attacker under the
original value function Q∗. We next show that a† becomes the optimal action under Q′. Specifically, ∀a′ /∈ π†(s), we have

Q′(s, a†) = Q∗(s, a†) +
∆

(1 + γ)
(20)

= Q∗(s, a†)−Q∗(s, a′) +
2∆

(1 + γ)
+Q∗(s, a′)− ∆

(1 + γ)
(21)

= Q∗(s, a†)−Q∗(s, a′) +
2∆

(1 + γ)
+Q′(s, a′), (22)
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Next note that

∆ > ∆3 ≥ 1 + γ

2
[ max
a/∈π†(s)

Q∗(s, a)− max
a∈π†(s)

Q∗(s, a)] (23)

=
1 + γ

2
[ max
a/∈π†(s)

Q∗(s, a)−Q∗(s, a†)] (24)

≥ 1 + γ

2
[Q∗(s, a′)−Q∗(s, a†)], (25)

which is equivalent to

Q∗(s, a†)−Q∗(s, a′) > − 2∆

1 + γ
, (26)

thus we have

Q′(s, a†) = Q∗(s, a†)−Q∗(s, a′) +
2∆

(1 + γ)
+Q′(s, a′) (27)

> 0 +Q′(s, a′) = Q′(s, a′). (28)

This shows that under Q′, the original best target action a† becomes better than all non-target actions, thus a† is optimal
and Q′ ∈ Q†. According to Proposition 4 in (Ma et al., 2019), the Bellman optimality equation induces a unique reward
function R′(s, a) corresponding to Q′:

R′(s, a) = Q′(s, a)− γ
∑
s′

P (s′ | s, a) max
a′

Q′(s′, a′). (29)

We then construct our attack policy φsas∆3
as:

φsas∆3
(s, a) = R′(s, a)−R(s, a),∀s, a. (30)

The φsas∆3
(s, a) results in that the reward function after attack appears to be R′(s, a) from the learner’s perspective. This

in turn guarantees that the learner will eventually learn Q′, which achieves the target policy. Next we show that under
φsas∆3

(s, a), the objective value (5) is finite, thus the attack is feasible. To prove feasibility, we consider adapting Theorem 4
in (Even-Dar & Mansour, 2003), re-stated as below.

Lemma 7 (Even-Dar & Mansour). Assume the attack is φsas∆3
(s, a) and letQt be the value of the Q-learning algorithm using

polynomial learning rate αt = ( 1
1+t )

ω where ω ∈ ( 1
2 , 1]. Then with probability at least 1− δ, we have ‖QT −Q′‖∞ ≤ τ

with

T = Ω

(
L3+ 1

ω
1

τ2
(ln

1

δτ
)

1
ω + L

1
1−ω ln

1

τ

)
, (31)

Note that Q† is an open set and Q′ ∈ Q†. This implies that one can pick a small enough τ0 > 0 such that ‖QT −Q′‖∞ ≤ τ0
implies QT ∈ Q†. From now on we fix this τ0, thus the bound in the above theorem becomes

T = Ω

(
L3+ 1

ω (ln
1

δ
)

1
ω + L

1
1−ω

)
. (32)

As the authors pointed out in (Even-Dar & Mansour, 2003), the ω that leads to the tightest lower bound on T is around 0.77.
Here for our purpose of proving feasibility, it is simpler to let ω ≈ 1

2 to obtain a loose lower bound on T as below

T = Ω

(
L5(ln

1

δ
)2

)
. (33)

Now we represent δ as a function of T to obtain that ∀T > 0,

P [‖QT −Q′‖∞ > τ0] ≤ C exp(−L− 5
2T

1
2 ). (34)
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Let et = 1 [‖Qt −Q′‖∞ > τ0], then we have

Eφsas
∆3

[ ∞∑
t=1

1[Qt /∈ Q†]

]
≤ Eφsas

∆3

[ ∞∑
t=1

et

]
(35)

=

∞∑
t=1

P [‖QT −Q′‖∞ > τ0] ≤
∞∑
t=1

C exp(−L− 5
2 t

1
2 ) (36)

≤
∫ ∞
t=0

C exp(−L− 5
2 t

1
2 )dt = 2CL5, (37)

which is finite. Therefore the attack is feasible.

It remains to validate that φsas∆3
is a legitimate attack, i.e., |δt| ≤ ∆ under attack policy φsas∆3

. By Lemma 7 in (Ma et al.,
2019), we have

|δt| = |R′(st, at)−R(st, at)| (38)
≤ max

s,a
[R′(s, a)−R(s, a)] = ‖R′ −R‖∞ (39)

≤ (1 + γ)‖Q′ −Q∗‖ = (1 + γ)
∆

(1 + γ)
= ∆. (40)

Therefore the attack policy φsas∆3
is valid.

Discussion on a number of non-adaptive attacks: Here, we discuss and contrast 3 non-adaptive attack polices developed
in this and prior work:

1. (Huang & Zhu, 2019) produces the non-adaptive attack that is feasible with the smallest ∆. In particular, it solves for the
following optimization problem:

min
δ,Q∈RS×A

‖δ‖∞ (41)

s.t. Q(s, a) = δ(s, a) + EP (s′|s,a)

[
R(s, a, s) + γmax

a′∈A
Q(s′, a′)

]
(42)

Q ∈ Q† (43)

where the optimal objective value implicitly defines a ∆′3 < ∆3. However, it’s a fixed policy independent of the actual ∆
. In other word, It’s either feasible if ∆ > ∆′3, or not.

2. φsas∆3
is a closed-form non-adaptive attack that depends on ∆. φsas∆3

is guaranteed to be feasible when ∆ > ∆3. However,
this is sufficient but not necessary. Implicitly, there exists a ∆′′3 which is the necessary condition for the feasibility of φsas∆3

.
Then, we know ∆′′3 > ∆′3, because ∆′3 is the sufficient and necessary condition for the feasibility of any non-adaptive
attacks, whereas ∆′′3 is the condition for the feasibility of non-adaptive attacks of the specific form constructed above.

3. φsasTD3 (assume perfect optimization) produces the most efficient non-adaptive attack that depends on ∆.

In terms of efficiency, φsasTD3 achieves smaller J∞(φ) than φsas∆3
and (Huang & Zhu, 2019). It’s not clear between φsas∆3

and
(Huang & Zhu, 2019) which one is better. We believe that in most cases, especially when ∆ is large and learning rate αt is
small, φsas∆3

will be faster, because it takes advantage of that large ∆, whereas (Huang & Zhu, 2019) does not. But there
probably exist counterexamples on which (Huang & Zhu, 2019) is faster than φsas∆3

.

C. The Covering Time L is O(exp(|S|)) for the chain MDP
Proof. While the ε-greedy exploration policy constantly change according to the agent’s current policy πt, since L is a
uniform upper bound over the whole sequence, and we know that πt will eventually converge to π†, it suffice to show that
the covering time under π†ε is O(exp(|S|)).

Recall that π† prefers going right in all but the left most grid. The covering time in this case is equivalent to the expected
number of steps taken for the agent to get from s0 to the left-most grid, because to get there, the agent necessarily visited all
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states along the way. Denote the non-absorbing states from right to left as s0, s1, ..., sn−1, with |S| = n. Denote Vk the
expected steps to get from state sk to sn−1. Then, we have the following recursive relation:

Vn−1 = 0 (44)

Vk = 1 + (1− ε

2
)Vk−1 +

ε

2
Vk+1, for k = 1, ..., n− 2 (45)

V0 = 1 + (1− ε

2
)V0 +

ε

2
V1 (46)

Solving the recursive gives

V0 =
p(1 + p(1− 2p))

(1− 2p)2

[
(
1− p
p

)n−1 − 1

]
(47)

where p = ε
2 <

1
2 and thus V0 = O(exp(n)).

D. Proof of Theorem 5
Lemma 8. For any state s ∈ S and target actions A(s) ⊂ A, it takes FAA at most |A|1−ε visits to s in expectation to enforce
the target actions A(s).

Proof. Denote Vt the expected number of visits s to teach A(s) given that under the current Qt, maxa∈A(s) is ranked t
among all actions, where t ∈ 1, ..., |A|. Then, we can write down the following recursion:

V1 = 0 (48)

Vt = 1 + (1− ε)Vt−1ε

[
t− 1

|A|
Vt−1 +

1

A
V1 +

|A| − t
|A|

Vt

]
(49)

Equation (49) can be simplified to

Vt =
1− ε+ ε t−1

|A|

1− ε |A|−t|A|

Vt−1 +
1

1− ε |A|−t|A|

(50)

≤ Vt−1 +
1

1− ε
(51)

Thus, we have

Vt ≤
t− 1

1− ε
≤ |A|

1− ε
(52)

as needed.

Now, we prove Theorem 5.

Proof. Let i ∈ [1, n] be given. First, consider the number of episodes, on which the agent was found in at least one state st
and is equipped with a policy πt, s.t. πt(st) /∈ νi(st). Since each of these episodes contains at least one state st on which νi
has not been successfully taught, and according to Lemma 2, it takes at most |A|1−ε visits to each state to successfully teach

any actions A(s), there will be at most |S||A|1−ε such episodes. These episodes take at most |S||A|H1−ε iterations for all target
states. Out of these episodes, we can safely assume that the agent has successfully picked up νi for all the states visited.

Next, we want to show that the expected number of iterations taken by π†i to get to si is upper bounded by
[
|A|
ε

]i−1

D,

where π†i is defined as
π†i = arg min

π∈Π,π(sj)∈π†(sj),∀j≤i−1

Es0∼µ0
[dπ(s0, si)] . (53)

First, we define another policy

π̂†i (s) =

{
π†(s) if s ∈ {s1, ..., si−1}
πsi(s) otherwise (54)
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Clearly Es0∼µ0

[
dπ†i

(s0, si)
]
≤ Es0∼µ0

[
dπ̂†i

(s0, si)
]

for all i.

We now prove by induction that dπ̂†i (s, si) ≤
[
|A|
ε

]i−1

D for all i and s ∈ S.

First, let i = 1, π̂†i = πs1 , and thus dπ̂†i (s, si) ≤ D.

Next, we assume that when i = k, dπ̂†i (s, si) ≤ Dk, and would like to show that when i = k + 1, dπ̂†i (s, si) ≤
[
|A|
ε

]
Dk.

Define another policy

π̃†i (s) =

{
π†(s) if s ∈ {s2, ..., si−1}
πsi(s) otherwise (55)

which respect the target policies on s2, ..., si−1, but ignore the target policy on s1. By the inductive hypothesis, we have that
dπ̃†i

(s, si) ≤ Dk. Consider the difference between dπ̂†i (s)(s1, sk) and dπ̃†i (s1, sk). Since π̂†i (s) and π̃†i only differs by their
first action at s1, we can derive Bellman’s equation on each policy, which yield

dπ̂†i
(s1, sk) = (1− ε)Q(s1, π

†(s1)) + εQ̄(s1, a) (56)

≤ max
a∈A

Q(s1, a) (57)

dπ̃†i
(s1, sk) = (1− ε)Q(s1, πs1(s1)) + εQ̄(s1, a) (58)

≥ ε

|A|
max
a∈A

Q(s1, a) (59)

(60)

where Q(s1, a) denotes the expected distance to sk from s1 by performing action a in the first step, and follow π̂†i thereafter,
and Q̄(s1, a) denote the expected distance by performing a uniformly random action in the first step. Thus,

dπ̂†i
(s, sk) ≤ |A|

ε
dπ̃†i

(s1, sk) (61)

With this, we can perform the following decomposition:

dπ̂†i
(s, sk) = P [visit s1 before reaching sk]

(
dπ̂†i

(s, s1) + dπ̂†i
(s1, sk)

)
+ P [not visit s1]

(
dπ̂†i

(s, s1)|not visit s1

)
≤ P [visit s1 before reaching sk]

(
dπ̃†i

(s, s1) +
|A|
ε
dπ̃†i

(s1, sk)

)
+ P [not visit s1]

(
dπ̃†i

(s, sk)|not visit s1

)
= dπ̃†i

(s, sk) +

(
|A|
ε
− 1

)
dπ̃†i

(s1, sk)

≤ Dk +

(
|A|
ε
− 1

)
Dk =

|A|
ε
Dk.

This completes the induction. Thus, we have

dπ̂†i
(s, si) ≤

(
|A|
ε

)i−1

D, (62)

and the total number of iterations taken to arrive at all target states sequentially sums up to

n∑
i=1

dπ̂†i
(s, si) ≤

(
|A|
ε

)n
D. (63)

Finally, each target states need to visited for |A|1−ε number of times to successfully enforce π†. Adding the numbers for
enforcing each π†i gives the correct result.
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E. Detailed Explanation of Fast Adaptive Attack Algorithm
In this section, we try to give a detailed walk-through of the Fast Adaptive Attack Algorithm (FAA) with the goal of
providing intuitive understanding of the design principles behind FAA. For the sake of simplisity, in this section we assume
that the Q-learning agent is ε = 0, such that the attacker is able to fully control the agent’s behavior. The proof of correctness
and sufficiency in the general case when ε ∈ [0, 1] is provided in section D.

The Greedy Attack: To begin with, let’s talk about the greedy attack, a fundamental subroutine that is called in every
step of FAA to generate the actual attack. Given a desired (partial) policy ν, the greedy attack aims to teach ν to the agent
in a greedy fashion. Specifically, at time step t, when the agent performs action at at state st, the greedy attack first look
at whether at is a desired action at s + t according to sν, i.e. whether at ∈ ν(st). If at is a desired action, the greedy
attack will produce a large enough δt, such that after the Q-learning update, at becomes strictly more preferred than all
undesired actions, i.e. Qt+1(st, at) > maxa/∈ν(st)Qt+1(st, a). On the other hand, if at is not a desired action, the greedy
attack will produce a negative enough δt, such that after the Q-learning update, at becomes strictly less preferred than all
desired actions, i.e. Qt+1(st, at) < maxa∈ν(st)Qt+1(st, a). It can be shown that with ε = 0, it takes the agent at most
|A| − 1 visit to a state s, to force the desired actions ν(s).

Given the greedy attack procedure, one could directly apply the greedy attack with respect to π† throughout the attack
procedure. The problem, however, is efficiency. The attack is not considered success without the attacker achieving the
target actions in ALL target states, not just the target states visited by the agent. If a target state is never visited by the agent,
the attack never succeed. π† itself may not efficiently lead the agent to all the target states. A good example is the chain
MDP used as the running example in the main paper. In section C, we have shown that if an agent follows π†, it will take
exponentially steps to reach the left-most state. In fact, if ε = 0, the agent will never reach the left-most state following π†,
which implies that the naive greedy attack w.r.t. π† is in fact infeasible. Therefore, explicit navigation is necessary. This
bring us to the second component of FAA, the navigation polices.

The navigation polices: Instead of trying to achieve all target actions at once by directly appling the greedy attack w.r.t.
π†, FAA aims at one target state at a time. Let s†(1), ..., s

†
(k) be an order of target states. We will discuss the choice of

ordering in the next paragraph, but for now, we will assume that an ordering is given. The agent starts off aiming at forcing
the target actions in a single target state s†(1). To do so, the attacer first calculate the corresponding navigation policy ν1,

where ν1(st) = πs†
(1)

(st) when st 6= s†(1), and ν1(st) = π†(st) when st = s†(1). That is, ν1 follows the shortest path policy

w.r.t. s†(1) when the agent has not arrived at s†(1), And when the agent is in s†(1), ν1 follows the desired target actions. Using

the greedy attack w.r.t. ν1 allows the attacker to effectively lure the agent into s†(1) and force the target actions π†(s†(1)). After

successfully forcing the target actions in s†(1), the attacker moves on to s†(2). This time, the attacker defines the navigation

policy ν2 similiar to ν1, except that we don’t want the already forced π†(s†(1)) to be untaught. As a result, in ν2, we define

ν2(s†(1)) = π†(s†(1)), but otherwise follows the corresponding shortest-path policy πs†
(2)

. Follow the greedy attack w.r.t. ν2,

the attacker is able to achieve π†(s†(2)) efficiently without affecting π†(s†(1)). This process is carried on throughout the whole
ordered list of target states, where the target actions for already achieved target states are always respected when defining the
next νi. If each target states s†(i) can be reachable with the corresponding νi, then the whole process will terminate at which
point all target actions are guaranteed to be achieved. However, the reachability is not always guaranteed with any ordering
of target states. Take the chain MDP as an example. if the 2nd left target state is ordered before the left-most state, then after
teaching the target action for the 2nd left state, which is moving right, it’s impossible to arrive at the left-most state when the
navigation policy resepct the moving-right action in the 2nd left state. Therefore, the ordering of target states matters.

The ordering of target states: FAA orders the target states descendingly by their shortest distance to the starting state
s0. Under such an ordering, the target states achieved first are those that are farther away from the starting state, and they
necessarily do not lie on the shortest path of the target states later in the sequence. In the chain MDP example, the target
states are ordered from left to right. This way, the agent is always able to get to the currently focused target state from the
starting state s0, without worrying about violating the already achieved target states to the left. However, note that the bound
provided in theorem 5 do not utilize this particular ordering choice and applies to any ordering of target states. As a result,
the bound diverges when ε→ 0, matching with the pathological case described at the end of the last paragraph.
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Parameters Values Description

exploration noise 0.5 Std of Gaussian exploration noise.
batch size 100 Batch size for both actor and critic
discount factor 0.99 Discounting factor for the attacker problem.
policy noise 0.2 Noise added to target policy during critic update.
noise clip [−0.5, 0.5] Range to clip target policy noise.
action L2 weight 50 Weight for L2 regularization added to the actor network optimization objective.
buffer size 107 Replay buffer size, larger than total number of iterations.
optimizer Adam Use the Adam optimizer.
learning rate critic 10−3 Learning rate for the critic network.
learning rate actor 5−4 Learning rate for the actor network.
τ 0.002 Target network update rate.
policy frequency 2 Frequency of delayed policy update.

Table 1. Hyperparameters for TD3.

F. Experiment Setting and Hyperparameters for TD3
Throughout the experiments, we use the following set of hyperparameters for TD3, described in Table 1. The hyperparameters
are selected via grid search on the Chain MDP of length 6. Each experiment is run for 5000 episodes, where each episode
is of 1000 iteration long. The learned policy is evaluated for every 10 episodes, and the policy with the best evaluation
performance is used for e evaluations in the experiment section.

G. Additional Experiments
G.1. Additional Plot for the rate comparison experiment

See Figure 8.
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Figure 8. Attack performances on the chain MDP of different length in the normal scale. As can be seen in the plot, both φξFAA +
φξTD3+FAA achieve linear rate.

G.2. Additional Experiments: Attacking DQN

Throughout the main paper, we have been focusing on attacking the tabular Q-learning agent. However, the attack MDP also
applies to arbitrary RL agents. We describe the general interaction protocol in Alg. 4. Importantly, we assume that the RL
agent can be fully characterized by an internal state, which determines the agent’s current behavior policy as well as the
learning update. For example, if the RL agent is a Deep Q-Network (DQN), the internal state will consist of the Q-network
parameters as well as the transitions stored in the replay buffer.
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Algorithm 4 Reward Poisoning against general RL agent

Parameters: MDP (S,A,R, P, µ0), RL agent hyperparameters.

1: for t = 0, 1, ... do
2: agent at state st, has internal state θ0.
3: agent acts according to a behavior policy:

at ← πθt(st)
4: environment transits st+1 ∼ P (· | st, at), produces reward rt = R(st, at, st+1) and an end-of-episode indicator

EOE.
5: attacker perturbs the reward to rt + δt
6: agent receives (st+1, rt + δt, EOE), performs one-step of internal state update:

θt+1 = f(θt, st, at, st+1, rt + δt, EOE) (64)

7: environment resets if EOE = 1: st+1 ∼ µ0.
8: end for

Figure 9. Result for attacking DQN on the Cartpole environment. The left figure plots the cumulative attack cost JT (φ) as a function of
T . The right figure plot the performance of the DQN agent J(θt) under the two attacks.

In the next example, we demonstrate an attack against DQN in the cartpole environment. In the cartpole environment, the
agent can perform 2 actions, moving left and moving right, and the goal is to keep the pole upright without moving the cart
out of the left and right boundary. The agent receives a constant +1 reward in every iteration, until the pole falls or the cart
moves out of the boundary, which terminates the current episode and the cart and pole positions are reset.

In this example, the attacker’s goal is to poison a well-trained DQN agent to perform as poorly as possible. The corresponding
attack cost ρ(ξt) is defined as J(θt), the expected total reward received by the current DQN policy in evaluation. The DQN
is first trained in the clean cartpole MDP and obtains the optimal policy that successfully maintains the pole upright for 200
iterations (set maximum length of an episode). The attacker is then introduced while the DQN agent continues to train in the
cartpole MDP. We freeze the Q-network except for the last layer to reduce the size of the attack state representation. We
compare TD3 with a naive attacker that perform δt = −1.1 constantly. The results are shown in Fig. 9.

One can see that under the TD3 found attack policy, the performance of the DQN agent degenerates much faster compared
to the naive baseline. While still being a relatively simple example, this experiment demonstrates the potential of applying
our adaptive attack framework to general RL agents.


