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How did nerds, who are bad at writing, create a 
machine good at writing???



Infinite monkey theorem

https://en.wikipedia.org/wiki/Infinite_monkey_theorem
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The English frequency wheel
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Letter probability estimation

• Corpus


• 


• Same for 


•

P(a) =
number of times a appears in corpus

number of letters in corpus

P(b), …, P(z), P(space)

P(a) + P(b) + … + P(z) + P(space) = 1



Writing = sampling

• Repeat: spin the wheel!
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What should come after

q?



Conditional probability

• 


• Same for 


•

P(a ∣ q) =
number of times qa appears in corpus
number of times q appears in corpus

P(b ∣ q), …, P(z ∣ q), P(space ∣ q)

P(a ∣ q) + P(b ∣ q) + … + P(z ∣ q) + P(space ∣ q) = 1



: the “after q” wheelP( ⋅ ∣ q)

X



Now we have 27 wheels
•  the “after j” wheelP( ⋅ ∣ j)
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Writing = sampling

• Say we start with q


• Sample from : spin the “after q” wheel           , we get u   


• Sample from : spin the “after u” wheel, say we get e


• Sample from : spin the “after e” wheel, say we get r


• …

P( ⋅ ∣ q)

P( ⋅ ∣ u)

P( ⋅ ∣ e)

X



This is a Markov chain

• Better than spinning the English frequency wheel


• But we need 27 wheels instead of 1


• Still very bad!



From letters to words
• There are 50,000 common English words a 

aardvark 
abacus 
… 
zydeco 
zygote 
zymurgy



Unigram language model

• 


• Big wheel with 50,000 slices

P(w) =
number of times word w appears in corpus

number of words in corpus
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Sampling Shakespeare unigram LM

• To him swallowed confess hear both. Which. Of save on trail for are ay device and rote life have  
• Every enter now severally so, let 
• Hill he late speaks; or! a more to leg less first you enter 
• Will rash been and by I the me loves gentle me not slavish page, the and hour; ill let  
• Are where exeunt and sighs have rise excellency took of .. sleep knave we. near; vile like  

Jurafsky & Martin, Speech and language processing, Prentice Hall, 2000.



Conditional word probability

• Bigram: 


• 50,000 wheels, each with 50,000 slices

P(w2 ∣ w1) =
number of times w1 w2 appears in corpus

number of times w1 appears in corpus



Sampling Shakespeare bigram LM
• What means, sir. I confess she? then all sorts, he is trim, captain.  

• Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live king.  
Follow.  

• What we, hath got so she that I rest and sent to scold and nature bankrupt, nor the first 
gentleman?  

• Enter Menenius, if it so many good direction found’st thou art a strong upon command of 
fear not a liberal largess given away, Falstaff! Exeunt  

Jurafsky & Martin, Speech and language processing, Prentice Hall, 2000.



Trigram

• 


• 50,000*50,000 wheels, each with 50,000 slices

P(w3 ∣ w1, w2) =
number of times w1 w2 w3 appears in corpus

number of times w1 w2 appears in corpus



Sampling Shakespeare trigram LM

• Sweet prince, Falstaff shall die. Harry of Monmouth’s grave. 
 
• This shall forbid it should be branded, if renown made it empty. 

• What is’t that cried? 

• Indeed the duke; and had a very good friend. 

Jurafsky & Martin, Speech and language processing, Prentice Hall, 2000.



Google-gram

• 


• Internet is the corpus

P(wn ∣ w1, …, wn−1) =
number of pages containing "w1 ... w(n-1)"

number of pages containing "w1 ... wn"

(Demo)



Professor Zhu working on language models at IBM China Research Lab, circa 1996



It’s hard to wreck a nice beach.



Long range dependency

The horse raced past the barn fell.
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Tension

• Need long history  to see dependency


• But then  needs “more than the internet” to estimate


• Resolved by transformers

w1…wn−1

P(wn ∣ w1…wn−1)



Generative Pretrained Transformer (GPT)

• A type of artificial neural network that estimates 


• Allows long history (32768 tokens or ~50 pages)


• Only pays attention to selective parts in history


• Writing = sampling

P(wn ∣ w1…wn−1)



GPT4
•  parameters 


• (human brain has  neurons)


• Trained on  words on internet


• (average person reads  words in lifetime)


• Training cost $100 million


• (world population each pitch in 1 cent)
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1011

1014

108



Stochastic parrot



Parrot = sampling, not reasoning

ChatGPT on July 12, 2023



Will AI kill me?



Improbable
• Sentient AI 



but…
• Sentient AI 


• Dual use

[Dual use of artificial-intelligence-powered drug discovery. Urbina et al, 2022]



Will AI take my job?



Not in the short term 
• The more AI helps your job, the higher the replacement risk

[GPTs are GPTs: An Early Look at the Labor Market Impact Potential of Large Language Models. Eloundou et al. 2023] 

. . .

High

Low 



Does AI belong in my 
classroom?



A language calculator





Artificial Intelligence 
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