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Abstract

Machine teaching studies the fundamental problem of how a knowledgeable teacher can

design an optimal demonstration to efficiently teach a target concept to learning agents.

Prior works have established the Teaching Dimension as a measure of sample complexity for

various types of learners. However, these works predominantly assume idealized conditions:

an omnipotent teacher capable of constructing arbitrary datasets, single-stage learners, and

an unlimited resource budget. In contrast, teachers in the real world are often subject to

strict resource and transition constraints of the environment. This thesis bridges the gap

by developing machine teaching algorithms for various real-world settings, specifically

addressing: teaching a family of linear learners, teaching under budget constraints, and

teaching under environment transition constraints.

First, we tackle the challenge of teaching a family of consistent linear learners (e.g.,

Support Vector Machines, Logistic Regression) using a single dataset. We show that this

problem reduces to teaching the most unbiased learner in the family, a Linear Version Space

learner, and present a provable approximation algorithm based on the extreme ray structure

of the target cone to solve the problem efficiently.

Second, we study teaching behavior cloning learners where the teacher cannot create an

arbitrary dataset and is subject to transition constraints of a Markov Decision Process (MDP)

environment. We formulate this problem as Stochastic Set Cover Problem (SSCP) to find a

teaching policy that minimizes the coverage time of a universe set. We solve this problem

by reducing it to a well-studied Stochastic Shortest Path Problem, providing value/policy

iteration algorithms with convergence guarantees.

Third, we extend the notion of optimal teaching to the Reinforcement Learning (RL)

setting. We formulate and studyMinimum Expected Teaching Length (METaL) for Q-learning
agents under four levels of control by the teacher. We propose efficient algorithms to solve

the problem exactly in the first two levels and achieve a tight matching bound on the
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worst-case teaching complexity when the teacher is further subject to transition constraints

of the MDP environment in the latter two levels.

Finally, we introduce the framework of “Nurture-then-Nature” to study budget-constrained

teaching of supervised learning agents. When the teaching budget is insufficient to fully

teach the target concept, the teacher aims to create a dataset that optimizes the learner’s

efficiency in the subsequent nature learning phase. We study this problem in various settings

and propose exact and approximation algorithms to solve it efficiently.
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Introduction

Machine teaching studies a fundamental problem: how should a knowledgeable teacher design
an optimal dataset or experience to teach a target concept to a learning agent optimally? The

pioneering work in this direction was done by Goldman et. al. [29] who formalized the

idea of optimal teaching through the Teaching Dimension (TD), the size of the smallest

dataset that is required to uniquely teach the target concept to a given learner. They studied

teaching of classical version space learners, in which a teacher provides examples that shrink

the set of hypotheses consistent with the dataset until only the target remains. More recent

works have extended this notion to more complex supervised learners and have studied

their teaching dimension. In most of these settings, success often comes from exploiting

learner’s algorithmic bias to teach them efficiently. For instance, the max-margin bias of

Support Vector Machines (SVM) [54] allows them to be taught with just a few data points.

Despite clear insights, much of the prior theory adopts idealized conditions: the teacher

can construct arbitrary dataset, the learner is typically a single supervised algorithm, the

environment has no transition dynamics that the teacher has to obey, and the teacher’s

budget is large enough to meet TD exactly. These assumptions are frequently violated

in many practical scenarios, making them less appealing. For example, when teaching a

student in real world sequential decision-making environment, the teacher is subject to the

state transition constraints of the environment and thus it cannot generate arbitrary dataset.

Or in curriculum learning setting, the teacher can only teach a small fixed number of lessons

to the students before they graduate and so teaching the target concept completely to them

may not be possible. This thesis develops machine teaching principles and algorithms to

capture these real world scenarios specifically, (i) teaching families of linear learners in a

classroom setting, (ii) optimal teaching under transition constraints of the environment, (iii)

teaching sequential decision making learners whose actions shape their experience they

receive, and finally (iv) teaching under strict budget constraints on the teacher.

Novel Challenges in Realistic Teaching Settings

We develop the traditional notion of teaching in two major orthogonal dimensions based on

the type of agent/learner being taught and the level of control given to the teacher:
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From Single Stage Supervised Agents to Multi Stage RL Agents

The machine learning literature is replete with a wide spectrum of learners, from supervised

classifiers like SVMs, logistic regression, neural networks etc., to sequential decision making

agents in reinforcement learning (RL) like Q-learning, policy-gradient methods etc. For

each such learner, one may ask how a knowledgeable teacher, with some control over the

learner’s experience, can teach a target concept or policy to them in an optimal way.

Most existing works in machine teaching focus on individual supervised learners, such
as finite-hypothesis version space learners, SVMs, logistic regression, perceptrons, etc., and

typically require the teacher to teach a target concept to the individual learners using a

minimum-sized dataset. We address two gaps in this direction. First, we extend optimal

teaching from teaching individual supervised linear learners (e.g., SVM, perceptron), to

teaching an entire family of consistent linear learners. Importantly, instead of solving

optimal teaching problem for each of the learner the family, the teacher has to construct a

dataset that can succeed in teaching all the learners in the family simultaneously.

Second, we move beyond single-stage supervised agents to multi-stage RL agents. We

develop a teaching framework for RL agents like Q-learning, which interact with a Markov

Decision Process(MDP) environment over a long time horizon to learn a policy that maxi-

mizes their cumulative return. In this setting, the teacher’s task shifts from constructing

a static dataset to designing a sequence of experiences that steers the learner’s learning

trajectory toward a desired policy. Due to the online nature of the environment, the goal of

the teacher shifts from finding a minimal-size teaching dataset to finding a teaching policy

that can teach the target policy to the learner in minimum expected time.

From Omnipotent to Budget and Transition Constrained Teaching:

A second dimension of realism from the level of control the teacher has over the learning
experience of the learner. In classical supervised settings, the teacher is often modeled

as omnipotent: it can construct an arbitrary dataset in the dataset space tailored to opti-

mally teach the target concept to the learner. In practice, however, teachers are frequently

constrained in both quantity and form of experience they can provide to the learners.

The most natural form of constraints comes from the finiteness of time and resources;

for example, in curriculum learning settings, an instructor may only have a fixed number

(budget) of lectures that they can teach to the student before they graduate. The number



3

Overview of teaching settings studied in this thesis, arranged along two key dimensions.

of lessons may not be sufficient to fully teach the target concept to the students. However,

the students themselves may keep learning about the target concept by interacting with

the environment after graduation. We study this problem of budget constrained teaching

called ‘Nurture-then-Nature’ teaching and consider two different teaching objectives for the

teacher: 1.) minimize the risk of the learner at the end of the environment learning phase, or

2.) minimize the time taken to learn the target concept in the environment learning phase.

Moving to reinforcement learning further enriches the control spectrum: a teacher may

influence one or more of the learner’s state, its action choices, and the rewards it receives,

but often only in restricted ways and subject to the MDP’s transition dynamics. This leads

to several interesting challenges and solutions from teachers perspective. We note that

while budget constraints can be applied together with transition constraints, we defer this

setting to a future work to address.

We study several regimes along this constraints axis, ranging from powerful constructive

teachers that can teach arbitrary datasets, to teachers that can provide only a budgeted

teaching dataset, down to highly constrained RL teachers that must obey the environment

dynamics and may only shape learner trajectory through reward manipulation. We present

an overview of the individual teaching problems investigated in this thesis, accompanied by

an outline of the associated chapters. Notably, each of these work incorporate one or more

of the characteristics outlined above.
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(A) Teaching A Family of Linear Learners using a Single Dataset.

Consider a setting where a teacher has to teach a classroom of students. Each student has

their own learning mechanism: one uses max-margin SVMs, another logistic ERM, a third

a version space learner, and so on. However, all of them satisfy a consistency property,

i.e., they eventually learn one or a subset of hypotheses that is consistent with the dataset.

The instructor wants to create a single optimal dataset so that all students, despite differing

learning mechanisms, learn the same target policy.

The teaching problem essentially boils down to teaching the most unbiased student

in the class, the linear version space learner. We study optimal teaching of this learner

and connect it to optimal teaching of the entire consistent linear family. For a consistent

presentation, we adopt the perspective of a linear behavior cloning (BC) agent in RL setting,

which is equivalent to linear version space (LVS) learner in a supervised learning setting.

Problem setting: We consider an environment with finite state space S, finite action

spaceA and a feature mapϕ : S×A→Rd that induces a linear policy under a weight vector
w ∈ Rd as follows,

πw(s) = argmax

a∈A
w⊤ϕ(s,a).

Given demonstrations D⊆ S×A, any consistent linear BC learner(e.g., linear SVM, linear

logistic ERM, or linear version space learner) must return a policy or a subset of it agreeing

with D. The hypothesis set consistent with dataset D form an open polyhedral cone,

V(D) =
{
w : w⊤ψsab > 0 ∀(s,a) ∈D, ∀b ̸= a

}
, where ψsab = ϕ(s,a)−ϕ(s,b).

The teacher can create an arbitrary dataset and is challenged with the task to choose a single

datasetD so that V(D) contains only those parameters that induce the unique target policy
π∗ on all consistent learners C,

(Teach-C) D∗← min

D⊆S×A
|D|

s.t. ∀L ∈ C, L learns π∗ uniquely. (1)

Chapter Outline: Chapter 1 formalizes a family of consistent linear behavior-cloning

learners with featuresϕ : S×A→Rd and weightsw, where demonstrations induce an open
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polyhedral cone of feasible parameters. We show the equivalence between teaching the

entire family and teaching the hardest-to-teach member in the family - the LVS learner. We

show that teaching such a learner naively requires solving an impractical infinite set-cover
problem in w-space. We then characterize optimal teaching in terms of extreme rays of

the target cone and reduce the teaching problem to a set cover problem over the finite

extreme ray space induced by the target policy π∗. We then prove that the smallest dataset

that covers all the extreme rays ends up teaching the target policy to the LVS learner. We

also prove NP-hardness of finding an exact optimal teaching set and provide an efficient

and provable approximation algorithm that first computes the extreme rays using a

sequence of linear programs and then solves a set cover over those extreme rays using a

greedy mechanism to find the minimum teaching set. Finally, we present experimental

results on toy and real-world environments like “Pick the Right Diamond”; and “Visual

Block Programming” to validate the effectiveness of our algorithm and compare them to

baselines.

(B) Teacher Constrained by Environment Dynamics.

In the previous setting, the teacher was allowed to create any dataset to teach the behavior

cloning learners. However, in real-world settings, the teacher may not have the power/-

control to create or put the learner in arbitrary states. For example, consider a teaching

setting where a driving instructor wants to teach a learner how to drive. The teacher cannot

place the car at each critical intersection to demonstrate the right-of-way rule. Instead, the

instructor must drive to those intersections by following the dynamics of the environment

(laws of the physical world, stochastic traffic, and diversions), and optimize for the time

spent to reach critical spots required to teach the target concept to the learner.

Problem setting: We model this problem as optimal teaching of finite or linear BC

learners under state transition constraints of the environment imposed on the teacher. The

teacher has to act in the environment to efficiently collect a demonstration dataset that

can be demonstrated to the BC learners. Due to the stochastic nature of the environment,

some states may take much longer to reach than others and hence the size of dataset |D|

no longer remains a relevant cost function; rather, we minimize the expected time required
by the teacher to find a valid teaching dataset (one that eliminates all inconsistent policies
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from the policy class) from stochastic trajectory roll-outs and is given as follows:

Online-Teach(S,A,P,Π,π∗) :

π†(s)←min

π
Eτ∼π

[
min{t⩾ 0 : ∪t⩽t ′Wst ′ = Π\π

∗|s0 = s
]

We refer the readers to the chapter 2 for a complete description. Finding a valid teaching

dataset in both finite and linear settings requires covering a finite universe of elements

using subsets induced by individual states, except now they have to be covered by following

the transition dynamics of the environment. In essence, the goal of the teacher is to find an

optimal navigation policy that covers a set of universe elements through subsets induced by

individual states that are connected through stochastic MDP transitions.

Outline: In Chapter 2, we study this problem and cast optimal teaching as a Stochastic
Set Cover Problem (SSCP) with a goal to minimize expected cover time objective. We

transform this problem to a well-studied problem in sequential decision-making literature

called Stochastic Shortest-Path Problem (SSPP) in a meta MDP. We characterize the

expected and optimal cover times using Bellman equations. Under standard assumptions

(known transitions, reachability), we present a pseudo-polynomial algorithm to solve

SSCP via SSPP using value and policy iteration, thereby establishing the correctness and

complexity guarantees. We discuss the hardness of this problem, specifically, the problem

captures two NP-hard problems: 1.) the set cover problem and 2.) the traveling salesman

problem making it a much harder NP-hard problem. We conjecture that this problem is

inapproximable even in a deterministic transition setting.

(C) Teaching an Online RL Agent.

In this work, we shift our attention to fully sequential decision-making framework, wherein

agents learn to maximize long-term rewards by interacting with stochastic environments. To

appreciate this setting, consider a robot running an ε-greedy Q-learning on-device to learn

to solve a robotic manipulation task. The robot interacts with the environment over multiple

steps of time, and its behavior directly influences the future that it gets to experience. Unlike

a supervised learner, the robot cannot be taught by a one-shot batch dataset; instead, it has

to be taught through a sequence of experiences.
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A powerful teacher can place the robot in a specific position, guide its action, and provide

different rewards to guide the robot to the target policy much more efficiently than letting it

learn from trial-and-error interaction with the environment. However, such a level of control

may not always be possible in real-world scenarios, for example, in a more realistic scenario,

the teacher cannot move the robot or directly manipulate its action, but it can still influence

its behavior through reward. To accommodate these scenarios, we consider teachers with

different levels of control on the agent’s experience and study their corresponding optimal

teaching complexity to “teach” a target policy π† to the agent very quickly.

Problem setting: We study optimal teaching of Q-learning algorithm that learns using a

Q-table Qt, which is updated through experience tuples et = (st,at,rt,st+1) obtained from

environment or the teacher. The teacher’s control ranges from being able to fully control

(s,a,r) to a reward-only control regime where it has to obey environment state transition

and actions taken by the agent. We measure teaching complexity via theMinimum Expected
Teaching Length defined as follows:

METaL(M,L,Q0,π
†) =min

ν
Eν[min{t : πQt

= π†}],

and study the class optimal teaching dimension across different control regimes. We refer

the readers to chapter 3 for a complete description. To design an effective teaching strategy,

the teacher needs to reason about the online update mechanism of the learner and design

interventions that shape the evolution of the learner’s Q-value table over time towards the

induced target policy.

Outline: In Chapter 3, we introduce a teaching protocol for ε-greedy Q-learning with

initial table Q0, defines theMinimum Expected Teaching LengthMETaL for instances

and an RL teaching dimension (worst-case METaL) over instance families, and propose

four control regimes. In the unconstrained setting: Level 1 with full control over (s,a,r),

our teacher constructs a minimal teaching trajectory that achieves exact METaL. In Level 2

teaching with state-and-reward control, we design a teacher that constructs an optimal

state/reward experience, thereby driving the Q-updates to the target with near-optimal

time guarantees. In Level 3, we introduce the more challenging notion of control where

the teacher can only create states supported by P,µ and propose a novel navigation-guided
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teaching algorithm called Nav-Teach to teach the learner effectively. We provide a worst-

case lower bound on METaL objective and show that Nav-Teach achieves a matching tight
upper bound. Finally, in Level 4, we study a teacher with the strictest level of control,

where it has to completely obey the environment transition dynamics and can only influence

the behavior of the learner through reward-based control. We prove that the Nav-Teach

algorithm also achieves a nearly tight bound on the worst-case TDim in this setting.

(D) Nurture–then–Nature Teaching under Budget Constraints.

In this chapter, we shift our attention to a budget-constrained teacher in a supervised

learning setting. Consider a semester curriculum, where an instructor has at most B lectures

to shape the understanding of the students/learners before they graduate and head to work

in the real world, where they still keep learning from real-world data. Given a limited budget

and the vastness of the syllabus, perfect mastery in class is unrealistic; so the goal shifts to

optimally position students so that they can learn rapidly and effectively in the real world.

Problem setting: Consider a two-phase learning process called Nurture-then-Nature

where in the first phase called the nurture (teaching) phase, the learner learns under the

guidance of a budget constrained teacher that can provide a dataset DT of size at most B,

leaving the learner with a surviving version space V1 = V(DT ;H) at the end of teaching.

After teaching, the learner moves to the second phase called the nature (environment

learning) phase and keeps learning from the independent and identically distributed (i.i.d.)

data DE ∼ P received from the environment until a satisfactory mastery is achieved. When

B < TD, mastery in the nurture phase is impossible; so we study two novel objectives: (i)

minimizing risk at the end of the nature phase, given as,

D∗T ← argmin

DT :|DT |⩽B
EDE∼P

n [RP(A(DT ∪DE)] ,

or (ii) minimize expected time-to-mastery in the nature phase, given as,

D∗T ← min

DT :|DT |⩽B
EDE∼P

∞ [T(DE,V(DT\{h∗}))].
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The teacher must shape the version space V1 that survives at the end of nurture phase

(e.g., its VC dimension, or the hardest hypothesis in it) to optimize downstream learning

performance of the learner in the nature phase under sample from P.

Outline: In Chapter 4, we first formalize the two-phase learning framework called

Nurture-then-Nature, where learning under a teacher (nurture) produces a surviving version

space V1 and subsequent i.i.d. learning under the environment (nature) shrinks it to V2. We

study the optimal teaching problem in two different settings: 1.) the instance-agnostic
setting (unknown P), and 2.) the instance-aware setting. In instance-agnostic setting,

we reduce the problem to optimizing the VC complexity of the version space and provide

efficient and provably near optimal algorithms thatminimize the VC dimension of
V1 under budget B for various hypothesis classes like (i) finite binary hypothesis classes,

(ii) axis-aligned rectangles on a grid, (iii) linear separators, and (iv) polynomial classifiers

etc. In the instance-aware setting (known P), we first study a finite hypothesis class and

present an efficient algorithm that achieves the bicriteria approximation guarantee for
minimizing expected nature-phase learning time. Then, we study teaching using function

approximation, and propose methods that utilize risk estimators like linear and neural
datamodels to approximate NtN risk and produce practical teaching sets to reduce NtN

risk for any ERM learners under suitable assumptions. Finally, we present experimental

results to demonstrate the efficacy of our algorithm in both settings and compare them to

baselines.
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Chapter 1

Optimal Teaching for Linear BC Agents

1.1 Motivation

Behavior Cloning (BC) [9, 22, 84] is an important paradigm of learning in Reinforcement

Learning (RL), that has been applied extensively to solve real-world problems like teaching

machines to drive autonomous vehicles [69, 70], fly planes [75], perform robotic manipula-

tions [50] etc. These real-world environments have large state space where the ability to

generalize using linear or neural hypothesis class becomes essential for effective learning.

However, naively teaching an optimal policy to a BC learner using i.i.d. sample often

demands a dataset that scales with the horizon length, the complexity of learner’s hypothesis

class and desired error [4, 74]. In many scenarios, like teaching to drive cars, an expert

teacher may know a (near)-optimal policy and can leverage this knowledge to construct a

small, non-i.i.d. dataset to teach the target policy to the BC learner far more efficiently. This

problem is known as Machine Teaching and the size of smallest teaching set so produced is

called Teaching Dimension (TD) [29, 96].

Several existing works [54, 55, 65] have studied optimal teaching in linear settings,

primarily targeting individual surrogate learners, such as linear support vector machines

(SVM). These surrogate learners often exhibit optimization biases, arguably making it easier

to teach them individually. Consequently, the teaching set for a specific learner is often

highly tailored to their biases, limiting its effectiveness for others. In contrast, in many

real-world scenarios, such as teaching a classroom of students [98], the teacher must teach

the entire class of students with a single lesson, even though each student may have unique
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biases. In this work, we focus on the task of optimally teaching a family of linear BC learners

that satisfy the consistency property, meaning each learner in this family produce a (subset

of) hypotheses consistent with a demonstration dataset. We seek to answer the following

question:

What is the smallest dataset required to teach a policy to a family of consistent linear BC
learners?

To demonstrate the effectiveness of optimally teaching the linear BC family with a single

dataset, we consider the following example.

Example 1.1 (Pick the Right Diamond). The game is shown in Figure 1.1(a). There is a board
with n= 6 slots where each slot can have one of 4 different types of diamonds or can be empty.
The game rule says that one must pick the most expensive diamond i.e. one with the highest
number of edges, first; and if there are ties one must pick the rightmost one. The game continues
until the board is empty. The teacher wants to find a minimal demonstration set to convey this
rule to the agent.

There are 5n−1 number of states with A= [n]. Consider the family of consistent linear
BC learners with a two-dimensional feature space denoting slot index and the number of edges
in the slot. A naive teacher would demonstrate target action in all 5n−1 states which grows
exponentially with n. However, a clever teacher succeeds by just demonstrating two states(refer
to Section 1.5.1 for complete results), thereby significantly saving the teaching cost from O(5n)
to 2.

Towards our goal of optimal teaching, we make the following contributions:

1. We formulate the problem of optimally teaching a family of linear BC learners and

show that this problem is equivalent to teaching the hardest member in the family,

i.e., a linear version space learner (Lemma 1.4).

2. We characterize optimal teaching in terms of covering extreme rays of primal cone and

design a novel algorithm called ‘TIE’ 1 to optimally teach the family (Theorem 1.9).

3. However, as shown in Theorem 1.10, solving this problem is NP-hard and we propose

an efficient algorithm with an approximation ratio of log(|A|− 1) on TD (Theo-

rem 1.11).
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(a) (b)

Figure 1.1: a) A board in a “Pick the Right Diamond” game. In this example 1.1, the

target policy says to pick the diamond with the highest edge breaking the tie in favor of

the rightmost slot if any. There are a total of 5
n− 1 candidate teaching state and action

pairs. We ask what is the minimum set of demonstrations of such boards would allow the

teacher to teach the target policy to consistent linear learners. b) Only two carefully chosen

demonstrations are sufficient to teach.

4. Through a set of experiments on real-world environments, we demonstrate the effec-

tiveness of our TIE algorithm compared to other baselines (Section 1.5).

1.2 Related Work

Several prior works have studied optimal teaching of version space learners but mostly in

finite or countable infinite version space settings [29, 44]. Some works like [98] have studied

teaching multiple learners simultaneously but in an unsupervised learning setting of mean

teaching. Instead, we study teaching a family of consistent behavior-cloning learners in a

linear hypothesis space setting.

Comparatively, studies on optimal teaching of different linear learners are highly relevant

to our work. For example, [54, 65] examined teaching linear learners like SVM, perceptron

and logistic regression which can be seen as individual instances of consistent linear BC

learners. These works focus on teaching individual learners, where teachers could exploit

the strong biases of these learners to teach them relatively easily. On the other hand, we aim

to teach the entire family of consistent linear BC learners where the teacher cannot base

their teaching on the bias of individual learners. Additionally, [55] delved into the optimal

teaching of iterative learners like gradient descent which is also biased [81]. Further, [48, 71]

have explored the teaching dimension of kernel learners for teaching a linear/non-linear

boundary in Rd space. Furthermore, these studies typically assume a more powerful teacher

capable of constructing arbitrary covariate and label pairs, whereas our teacher is restricted
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to selecting states from a fixed state space and aims to teach the learner to generalize to

other states using feature covariates induced by the feature function.

Another significant line of research involves teaching-by-demonstration in an RL setting.

Relevant studies by [14, 17] have focused on teaching linear IRL learners [2, 64] which

reward based imitation learners that learn primarily in reward space and require planning

access to the environment to eventually learn an optimal policy. Unlike them, our linear BC

learners learn directly in the policy space by only using teaching demonstrations and do

not require access to the MDP environment.

1.3 Problem Formulation

Consider a Markov Decision Process (MDP)M= (S,A,R,P,γ,µ) where S is a state space,

A a finite action space, R : S×A→ [0,1] is reward function, P : S×A→ ∆(S) is transition

function, γ is the discount factor and µ is the initial state distribution. For simplicity, we

assume S is finite, however, our analysis also extends to infinite case under reasonable

assumptions. Letϕ : S×A→Rd be a feature function that defines a structured linear policy

class. Given a fixed w ∈ Rd, it induces a set of policies Πw defined as follows:

∀s ∈ S, Πw(s) = ∆

(
argmax

a∈A
w⊤ϕ(s,a)

)
.

Consider a linear hypothesis classH=Rd and letΠ=∪w∈HΠw,ΠDet= {Πw ∈Π :Πw ∈AS}

be the set of all stochastic and deterministic policies induced by H respectively. The value

of a policy π ∈ Π in MDPM is given by Vπµ = Eπ,P
[∑∞

t=0
γtr(st,at)

]
. Furthermore, a class

optimal policy π∗ ∈ Π is the one that maximizes value among all policies in the linear class,

i.e., π∗ = argmaxπ∈ΠV
π
µ .

1.3.1 The Learner Family

We consider a Behavior Cloning (BC) learner L :D→ 2
H
that learns using a linear policy

class H = Rd. On receiving a dataset D = {(si,ai) : i ∈ [n]} ⊆ S×A, it aims to learn a

‘good’ policy by imitating the dataset using a supervised learning algorithm [1, 74].

Given a datasetD, the learner maintains a set Ll(D) of empirical risk minimizing (ERM)
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hypotheses defined by a loss function ℓ :A×A→ R+
, i.e.,

Lℓ(D)← arg min

π∈Πw,w∈H

∑
(s,a)∈D

Ea ′∼π(s)[ℓ(a
′
,a)].

During deployment, the learner first arbitrarily selects a w ∈ Lℓ(D) and a π ∈ Πw and

then uses π to execute all its actions. Correspondingly, it suffers a worst-case value risk

of R(D;L) = Vπ
∗
µ −minπ∈Πw,w∈Lℓ(D)V

π
µ in the MDP environment. We remark that a BC

learner is nothing but a supervised learner applied to RL setting.

Consistent Linear BC Learners: We consider teaching a family of linear BC learners

that have the consistency property and denote the family by C. The consistency property is

as follows: given any realizable dataset D, i.e., a dataset generated by any policy π ∈ ΠDet,

L always maintains a non-empty subset of hypotheses consistent with D, i.e.,

∀π∈ΠDet,D ∼∆(∪s∈S{(s,π(s))}), we have that, ∀w∈Lℓ(D),Πw(s)=π(s), ∀(s,π(s))∈D.

In linear settings, many well-known learners, such as the linear support vector ma-

chine(SVM), linear perceptron are consistent learners. We remark that each consistent

learner may have their own bias to prefer certain consistent hypotheses over others which is

directly influenced by their surrogate loss function or update methods [23, 81]. For example,

an SVM learner always prefers a max-margin hypothesis over other hypotheses.

However, this family also contains arguably the most simplest linear BC learner, one

that maintains the entire version space of consistent hypotheses and does not have any bias

to prefer one consistent hypothesis over the other. We call it a linear version space(LVS)

learner.

Linear Version Space (LVS) Learner: An LVS learner maintains the entire version space

of hypothesis V(D) consistent with input dataset D, i.e.,

V(D) = {w ∈ Rd :w⊤(ϕ(s,a)−ϕ(s,b))> 0, ∀(s,a) ∈D,a ̸= b}. (1.1)

Equivalently, it does empirical risk minimization with respect to zero-one loss, i.e., V(D) =

L0-1(D). Note that for a realizable dataset D, V(D)⊋ {} is an open polyhedral cone in Rd.
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Remark 1.2. We introduce the following notation: letψsab :=ϕ(s,a)−ϕ(s,b) be the feature
difference vector for preferring action a over b in state s, Ψ(D) be the set of all feature
difference vectors induced by dataset D, i.e., Ψ(D) = {ψsab : (s,a) ∈D,b ∈ A,b ̸= a}. We
define the primal cone of Ψ(D) as cone(Ψ(D)) := {

∑
ψ∈Ψ(D)λψψ : λψ ⩾ 0,λ ̸= 0}, and its

dual as cone∗(Ψ(D)) := {w ∈Rd : ⟨w,ψ⟩> 0,∀ψ ∈Ψ(D)}. Note that the version space is the
dual cone of Ψ(D), i.e., V(D) = cone

∗(Ψ(D)). We refer to Example 1.5 for an illustration.

1.3.2 The Teacher

In our setup, there is a helpful teacher who controls the dataset D ⊆ S×A provided to

the learner. The teacher knows an optimal deterministic policy π∗ : S→ A induced by a

w∗ ∈H, i.e,π∗ = πw∗ and has the following teaching objective:

It wants to unambiguously teach the target policy π∗ to the entire family of consistent
linear BC learners C using as few demonstrations as possible.

We remark that our framework can handle teaching any deterministic policy in ΠDet to

the learner. But for simplicity, we will consider teaching an optimal deterministic policy π∗.

Formally, given a teaching instance (M,ϕ,π∗), the optimal teaching problem of the teacher

is defined by the following optimization problem:

(Teach-C) D∗← min

D⊆S×A
|D|

s.t. ∀L ∈ C, L learns π∗ uniquely. (1.2)

This formulation models a classroom teaching setting, where the teacher is required to

teach π∗ to all learners in C using a single dataset which is more challenging than teaching

individual biased learners studied in prior works [48, 54, 65]. The size of the optimal teaching

set TD(π∗;C) = |D∗| is called the teaching dimension(TD) of the family C.

Remark 1.3. Teaching the entire family C has its drawback; if the teacher knows the learning
bias of a specific learner, it may be able to possibly teach them with a smaller dataset. For
example, to optimally teach a linear SVM in Rd just requires two examples [54]. However,
such individual learner-specific teaching sets may not even be a valid teaching set for other
learners in the C like version space learners, hence useless for teaching the entire family. See
Figure 1.3(a) for an example.
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(a) (b) (c) (d)

Figure 1.2: A simple illustration on importance of extreme rays. D,D ′,D ′′ succeed in

teaching but D♭
fails depending on if they cover the extreme rays of cone(Ψ(D)).

In a finite state setting, a naive teacher could succeed in teaching by demonstrating a

full dataset DS = {(s,π∗(s)) : s ∈ S} to the learner. However, teaching on entire state space

can be suboptimal and prohibitively expensive for large state space environments. A clever

teacher who knows π∗ can utilize the linear feature function of the learner family to teach

π∗ to them using a much smaller dataset. As shown in Example 1.5, demonstrating π∗ on

only one state is sufficient for teaching on the entire state space.

We recall that our problem 1.2 requires the teacher to teach π∗ to all learners in C, which

includes a large and diverse set of learners. In fact, enumerating all consistent learners may

not even be practical. To address this issue, our next lemma shows that it is sufficient to

focus on teaching the most challenging member of the family, i.e., the linear version space

learner. The proof can be found in the Appendix.

Lemma 1.4. Optimally teaching the family of consistent linear BC learners is equivalent to
optimally teaching the linear version space BC learner.

Hence, the teacher can achieve its objective by just focusing on optimally teaching the

LVS learner. From now on, we will focus on optimally teaching π∗ to an LVS learner given

by the following optimization problem:

(Teach-LVS) D∗← min

D⊆S×A
|D|

s.t. ∀w ∈ V(D),π ∈ Πw, π(s) = π∗(s),∀s ∈ S. (1.3)

This requires finding a minimal dataD∗ that induces π∗ uniquely as the version space under

D∗.
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(a) (b)

Figure 1.3: a.) Optimal teaching set D of a (biased) consistent learner like SVM induce a

larger space of weights w some of which (shown in yellow region) are inconsistent wrt

π∗ and so they cannot succeed in teaching LVS learner and the entire family of consistent

learners. b.) Optimal teaching example in higher dimension d⩾ 3 can have a large number

of extreme rays to be covered using a subset of states making it an NP-hard problem 1.10.

Previous works have studied the problem of optimal teaching of version space learners,

but have mostly been limited to either a finite hypothesis setting [7, 29] or highly structured

hypothesis classes like axis-aligned rectangles [19, 29] which is very different from our

structured linear setting. Before delving into the algorithm, we present an illustrative

example in R2
.

Example 1.5 (An instance of teaching linear version space BC learner in R2
). Let S =

{s,t,u}, A = {a,b,c}, and π∗(s) = a, ∀s ∈ S. Consider the full demonstration set D =

{(s,a),(t,a),(u,a)} that induce Ψ(D) = {ψsab,ψsac,ψtab,ψtac,ψuab,ψuac} as indicated
by dots in Figure 1.2(a). The primal cone cone(Ψ(D)) is shown in blue, and the version space
V(D) is in green. We note that the primal cone is supported by two extreme rays.

The subset D♭ is not valid/feasible teaching set as its version space V(D♭) (shown in green
in Figure 1.2(b)) is wider than V(D) and contains some w’s that do not induce π∗ in all states,
thus violating the feasibility condition in equation 1.3. On the other hand, both D ′ and D ′′

induce the correct version space V(DS) (as shown in green in Figures 1.2(c) and 1.2(d)) on the
learner and succeeds in teaching π∗ to it. Furthermore, D ′′ which consists of teaching on only
one state is the optimal set. The problem becomes challenging as we move to higher dimensions
where we can have a large number of extreme rays as shown in Figure 1.3(b).
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1.4 Teaching Algorithm and Analysis

We first describe a naive teaching algorithm that frames optimal teaching as an infinite

set covering problem in the hypothesis space. This approach underscores the challenge of

addressing our problem using the greedy inconsistent hypothesis elimination algorithm

proposed in prior works [29].

1.4.1 Optimal Teaching as an Infinite Set Cover Problem in w Space

We observe that demonstrating π∗(s) on a state s induces |A|− 1 feature difference vectors

Ψsπ∗(s) = {ψsπ∗(s)b : b ∈A,b ̸= π∗(s)} in the primal (feature) space and correspondingly a

version space cone
∗(Ψsπ∗(s)) = {w∈Rd :w⊤ψ> 0,∀ψ∈Ψsπ∗(s)} in the dual (weight) space

of the LVS learner. Each such inequality, w⊤ψsπ∗(s)b > 0, eliminates a halfspaceWsb :=

{w :w⊤ψsπ∗(s)b ⩽ 0}⊂ Rd. Therefore, the effect of demonstrating (s,π∗(s)) is to eliminate

the set of weights Ws := ∪b̸=π∗(s)Wsb = (cone∗(Ψsπ∗(s)))
C
. The full demonstration set

DS = ∪s∈S{(s,π∗(s))} over all states eliminates the union ∪s∈SWs, such that only the

consistent version space V(DS) = {w ∈Rd :w⊤ψsπ∗(s)b > 0,∀s ∈ S,b ∈A,b ̸= a} survives.
The optimal teaching problem requires finding the smallest demonstration set that

produces V(DS) in the dual space which is equivalent to covering/eliminating the infinite

set of inconsistent weights V(DS)
C
by a smallest finite collection of infinite subsets {Ws}s∈S.

This is an infinite set cover problem in the weight space given as follows:

min

T⊆S
|T | s.t. V(DS)

C = ∪t∈TWt.

At first glance, solving this problem may seem daunting. Certainly, since the inconsistent

hypotheses set is uncountably infinite, we cannot keep track of inconsistent weights that

have been eliminated so far and perform a greedy hypotheses elimination by greedily

selecting the state that eliminates the maximal number of inconsistent hypotheses, as

proposed by prior works [29, 44].

However, we note that V(DS) = cone
∗(Ψ(DS)) has a nice polyhedral cone structure

that can be utilized further to simplify our problem as we show in the next section.
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1.4.2 Teaching Via Covering of Extreme Rays of Primal Cone

To overcome the challenge mentioned above, we characterize the target version space cone

V(DS) in terms of extreme rays of primal cone(Ψ(DS)) and devise an optimal teaching

algorithm based on this insight. Before doing that, we introduce some definitions below.

Definition 1.6 (Extreme Ray and its Cover). A ray R induced by a vector v ∈ Rd\{0} is the
set R = {cv : c > 0}. Any vector in R serves as a representative of R. A ray R is called an
extreme ray of a cone K ⊆ Rd if for any x,y ∈ K, x+y ∈ R =⇒ x,y ∈ R. We say that a
state s ∈ S covers a ray R if ∃b ̸= π∗(s) :ψsπ∗(s)b ∈ R. Similarly, T ⊆ S is said to cover R if
∃s ∈ T that covers R.

Recall that demonstrating π∗ on a state s induces the feature difference set Ψsπ∗(s) in

the primal space. Collectively teaching π∗ on entire S induces feature difference set Ψ(DS)

in primal and correspondingly version space cone
∗(Ψ(DS)) in the dual space. By definition,

a w ∈ Rd induces π∗ if and only if w ∈ cone
∗(Ψ(DS)). Thus, for successful teaching 1.2,

the teacher needs to exactly induce the version space cone
∗(Ψ(DS)) in the dual space of

the learner. This is equivalent to covering all the extreme rays of the primal cone(Ψ(DS))

as shown by the next lemma. We defer the proof to the appendix.

Lemma 1.7 (Necessary and Sufficient Condition for Teaching). A subset T ⊆ S is a valid
teaching set if and only if it induces a representative vector on each extreme ray of the primal
cone(Ψ(DS)).

We denote the extreme ray set of primal cone(Ψ(DS)) by Ψ
∗
. Note that demonstrating

DS trivially induces Ψ∗, however, doing so may not be optimal. Instead, as suggested by the

above lemma, it is sufficient to find a minimal subset of states that covers all rays in Ψ∗.

At a high level, our algorithm TIE 1 utilizes this insight to solve the optimal teaching

problem in two stages. It first finds the extreme ray set Ψ∗ of primal cone(Ψ(DS)). Next, it

solves a set cover problem to find a minimal set of states that covers Ψ∗.

Stage 1: Finding extreme rays of primal cone(Ψ(DS)): Given a set of vectors X, we

propose an iterative algorithm to find all the extreme rays, i.e., a representative for each

extreme rays of the primal cone(X). The algorithm solves a sequence of linear program

LP(x,X), where at each step it tests whether a candidate x ∈X is a unique representative of

an extreme ray of cone(X). If not, it removes x from X and moves to the next candidate as
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shown inMinimalExtreme procedure 1. Otherwise, it has to keep x to cover all extreme

rays. The proof can be found in the appendix.

Lemma 1.8 (Extreme Ray Test). Given a set of vectors X ∈ Rd, a candidate x ∈ X is a
unique representative of an extreme ray of primal cone(X), i.e., x /∈ cone(X\{x}) if and only
if LP(x,X) = −∞, where,

LP(x,X) : minw ⟨w,x⟩ s.t. ⟨w,x ′⟩⩾ 1 ∀x ′ ∈ X\{x}.

We remark that x is not a unique representative if and only if LP(x,X) > 0 and in

that case we can safely remove x. Employing this test iteratively on each element of X

produces a unique representative for each extreme ray of primal cone(X). We apply this

process to X= Ψ(DS) to obtain an extreme ray set Ψ∗ ⊆ Ψ(DS) that contains exactly one

representative for each extreme ray of cone(Ψ(DS)).

Stage 2: Finding minimal subset of states that cover the extreme rays Ψ∗: Once we

have the extreme ray set Ψ∗, Lemma 1.7 requires a valid teaching set to cover all the rays in

Ψ∗. To do that optimally using the smallest dataset, the teacher has to solve the following

set covering problem on extreme rays space:

minT⊆S |T | s.t. ∪s∈T Vs =U.
where universe U= Ψ∗ and each state s ∈ S covers a subset of extreme rays Vs ⊆ Ψ∗.

Note that, unlike the infinite set cover problem over hypotheses space (1.4.1), this is a finite

set cover problem over an extreme ray set. An optimal solution to this subproblem produces

the optimal teaching set for teaching LVS learners which, by Lemma 1.4, is also an optimal

teaching set for teaching the entire family of consistent linear BC learners.

1.4.3 Theoretical Results

We provide a complete pseudocode of our teaching algorithm‘TIE’ in Algorithm 1. ‘TIE’

achieves the following guarantee on the Teaching Dimension.

Theorem 1.9 (Optimal Teaching in Finite State Setting). Given an optimal teaching problem
instance (M,ϕ,π∗) 1.2, our teaching algorithm TIE 1 correctly finds the optimal teaching set
D∗ and achieves the Teaching Dimension TD(π∗;C).
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Computational Complexity: We note that stage 1 of ‘TIE’ is efficiently solvable. How-

ever, stage 2 involves solving a finite set cover problem where each subset Vs can cover as

many as |A|−1 elements. Note that for |A|= 2, each subset is singular, and the set cover

problem can be efficiently computed. Hence, ‘TIE’ efficiently computes the optimal teaching

set for instances with |A|⩽ 2.

Algorithm 1: Teach using Iterative Elimination (TIE)

def MinimalExtreme(X):

1: for each xj ∈ X do
2: Solve LP(xj,X/{x}) defined by 1.8

3: if vj > 0 then
4: X← X\xj ▷ eliminate xj if not necessary

5: return X ▷ extreme vectors

def OptimalTeach(S,A,π∗,ϕ):

1: let Ψ(DS) = {ψsπ∗(s)b ∈ Rd : s ∈ S,b ∈A,b ̸= π∗(s)} ▷ compute feature differences

2: Ψ∗←MinimalExtreme(Ψ(DS))

3: for s ∈ S do
4: Vs←

{
ψ ∈ Ψ∗ : ∃ψsπ∗(s)b ∈ Ψ(DS), ˆψsπ∗(s)b = ˆψ

}
▷extreme rays covered by s

5: {Vs : s ∈ T∗ ⊆ S}← SetCover(Ψ∗, {Vs}|s∈S) ▷T∗ is smallest cover of all extreme rays

6: teach D∗ = {(t,π∗(t)) : t ∈ T∗} to the agent ▷D∗ is the minimum demonstration set

However, for |A| > 2, stage 2 requires solving a general set cover problem which is

NP-hard to solve. We show that no teacher can avoid this hardness by giving a poly-time

reduction from a finite set cover problem to our optimal teaching problem. We defer the

proof to the appendix.

Theorem 1.10 (Hardness of Optimal Teaching). Finding an optimal teaching set for teaching
a linear version space BC learner is NP-hard in general for instances with action space size
|A|> 2.

Although the set cover subproblem is NP-hard to solve, we can obtain an approximate

solution efficiently using a greedy covering strategy. Applying this approach to solve our set

cover problem in line 5 of Algorithm 1 yields an efficient, approximately optimal algorithm,

called ‘Greedy-TIE’ with the following guarantee:
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Corollary 1.11 (Approximately Optimal Teaching). Our algorithm Greedy-TIE 1 efficiently
teaches a family of consistent linear BC learners, C, and finds an approximately optimal
teaching set ˜D such that | ˜D|⩽ log(|A|−1)|D∗|.

The log(|A|−1) approximation ratio of Greedy-TIE comes from the approximating set

cover problem [90]. Furthermore, ‘Greedy-TIE’ runs in poly-time O((|S||A|)3).

So far, we have assumed that the state space is finite. This assumption can be relaxed to

infinite state setting under mild assumption as stated next. The proof can be found in the

appendix.

Corollary 1.12 (Optimal Teaching for Infinite State Setting). Consider our optimal teaching
problem with infinite state space S. Under the assumption that cone(Ψ(DS)) is a closed and
convex with finite extreme rays and the teacher knows the extreme rays to state mapping, our
algorithm Greedy-TIE 1 correctly finds an approximately optimal teaching set.

In the general case of an infinite state space, the induced version space may contain an

(uncountable) infinite number of extreme rays. Consequently, covering this infinite set of

extreme rays with a finite teaching set becomes impossible, which renders optimal teaching

impractical.

Now, we turn to the issue of distribution shift which has been a pertinent issue in behavior

cloning in RL [74]. For a BC learner imitating teacher’s policy π∗ using a learnt policy π,

the error amplification in value is given by |Vπµ −V
π∗
µ |⩽ 1

1−γ ·Es∼dπ∗ [||π(s)−π
∗(s)||1] .

However, in our teaching setting, this issue is resolved as the optimal teacher ensures

the learner precisely learns π∗, leading to the following corollary.

Corollary 1.13 (Optimal Value Guarantee). Under teaching by our algorithm TIE, the entire
family of linear learners C achieve a zero approximate value risk, i.e., ∀L ∈ C, R(D∗;L) = 0.

Furthermore, it can be argued that BC learners are the most natural choice for a learner

when a supportive teacher is available to demonstrate the target behavior. Unlike other

learners like inverse RL [3, 14], BC operates directly in policy space, eliminating the need

for planning. On the downside, since they maintain consistent hypotheses, they are limited

to teaching only deterministic policies.
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1.5 Experiments

We evaluate our teaching algorithm Greedy-TIE on three environments: 1) Pick the Right
Diamond, 2) Visual Programming inMaze with Repeat Loops and 3) Polygon Tower environment
(provided in the appendix). Through these experiments, we aim to demonstrate the following:

a) Our algorithm Greedy-TIE finds an optimal or near-optimal teaching set in all these

environments. b) The optimal teaching dataset so produced is competitive with a learner-

specific optimal teaching set and can teach any consistent linear BC learners, and c) Greedy-
TIE performs significantly better than competitive baselines like Teach-Random and Teach-All
that we define below.

Baselines: We consider two baselines. 1) Teach-All: This teacher simply teacher the target

action in all states to the learner, 2) Teach-Random: This teacher draws states uniformly at

random s ∼U(S) and adds it to a collection until the collection becomes a valid teaching

set, i.e., it induces the target cone V(DS). We note that the teaching set produced by prior

works [54, 65] are specialized to individual learners and do not yield a feasible set for

teaching the entire family of consistent linear learners. Furthermore, their teacher directly

constructs covariate vectors (features) in Rd and is not able to choose individual states, thus,
not directly applicable to our setting.

1.5.1 Pick the Right Diamond

Recall the game from Example 1.1. A state in S = {7,D,□,△,o}n/{o}n consists of a n

dimensional board with one of four types of diamond or be empty(o). Each action in action

space A= [n] represents picking an object in one of the cells. The complete description of

the MDP environment can be found in the appendix.

Feature representation & optimal policy: The learner uses a natural feature function in

R2
given as follows, ϕ(s,a) = [a, #edges of diamond at a], where [#edges of diamond at a]

is 0 if the slot is empty. The optimal policy is to collect the diamonds in order of decreasing

value i.e. from a large to a small number of edges. In the case of ties, the learner should

choose the rightmost diamond. This policy is feasible under the above featurization, for

example,w∗ = [1,10] uniquely induces π∗. For a board of sizen= 6, there are a total of 5
6−1

states, and their feature difference vectors Ψ(DS) are shown as blue dots in Figure 1.4(a).
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Figure 1.4: Optimal teaching in “Pick the right diamond” with n = 6 slots. a) Feature

difference vectors Ψ(DS) induced by target policy is shown as blue dots, primal cone

cone(Ψ(DS)) as blue area, and dual version space V(DS) as green area. b) A teaching set

produced by Greedy-TIE on board of size 6. c) Comparison of our Greedy-TIE algorithm with

other baselines.

The primal cone cone(Ψ(DS)) is the blue-shaded area. It contains two extreme rays, both

need to be covered for successful teaching. The version space is denoted in green.

Optimal teaching set: We note that any set that covers the two extreme rays is a valid

teaching set. On a board instance of sizen= 6, our algorithmGreedy-TIE produces a teaching
set of size two as illustrated in Figure 1.4(b). This is an instance optimal teaching set and

shows a dramatic improvement over teaching all 5
6−1 states. We performed experiments

on boards of different sizes and found that Greedy-TIE significantly outperforms the other

two baselines as shown in Figure 1.4(c).

1.5.2 Visual Block Programming in Maze with Repeat Loop

We consider a real-world visual programming platform used for teaching kids/learners to

write code to complete visual tasks in a maze environment [5, 16, 18, 24]. Further, we choose

a domain that aims to teach learners to use repeat code blocks to write succinct code to

complete a navigation-based task in maze environments of different sizes. The environment

state consists of a n×n maze with a turtle (shown in green in Figure 1.5(a)) facing one of

four directions, a goal cell (shown by a red star), and a (partial) piece of code that can be

executed to move the turtle in the maze. The learners’ objective is to assemble code blocks

in sequence to write a piece of code that can solve the given maze task.
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Figure 1.5: a) An example of a programming task in 5×5 with solution code. The maze

contains a turtle facing one of four directions (shown by a green arrow) and a goal cell

(shown by a red star). The optimal (smallest) solution code to lead the turtle to the goal is

shown on the side. The action space consisting of 5 basic code blocks is shown on the right.

b) Performance of Greedy-TIE compared to baselines on this domain with different maze

sizes.

The action space A consists of n actions (each representing a basic code block) available

to the learner to write code and is given as follows: Turn-Left (TL): turns turtle to its left,
Turn-Right (TR): turns turtle to its right, Move-Forward (MV): moves turtle forward by one

cell, Repeat-k-Times-Move (Rk-MV) is a complex block with repeat loop that moves the turtle

forward by k cells in a single command where k ∈ {3, · · · ,n− 1} The task is to teach the

agent to write most succint piece of code that can be executed to make the turtle reach

the goal cell. This is captured by a reward function that gives a reward of −1 to the first

three code blocks (TL/TR/MV ) and a reward of −2 to repeat blocks Rk-MV. 1 The complete

description of the MDP defining this problem can be found in the appendix.

Feature representation & optimal policy: We consider an execution-guided feature

representation [18] that takes an initial board with a partial piece of code and constructs a

feature vector by first executing the partial code to get an intermediate state and extracting

features from that state. We use a natural feature representation ϕ : S×A→ Rd that

encodes the relative orientation and distance of the goal cell from the turtle cell; refer to

the appendix for more details. The optimal policy is realizable by a linear policy under this

1
We note that repeats are complex code blocks that have two components and should be used only when

they provide an advantage, i.e., they can substitute more than two basic blocks.
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Figure 1.6: Optimal Teaching Set produced by Greedy-TIE on a goal-reaching coding task

with 5× 5 maze. The demonstration consists of states with an initial board without any

partial code. The optimal action demonstrated to the learner is shown below each state.

representation. The teacher knows ϕ and can construct a dataset D of (state and optimal

action) tuples and provide it to the learners. Its goal is to teach the target optimal policy of

writing a succinct code to the entire family of learners C.

Optimal teaching set: We run our algorithm Greedy-TIE on environments with different

sizes of maze and observe that it is able to find an optimal teaching set for each of the

environments; refer to Figure 1.6 for an example on 5× 5 maze. This optimal teaching

set demonstrates each action exactly once on a suitable maze state where that action is

an optimal one. Our algorithm performs significantly better than the other two baselines:

Teach-Random and Teach-All when run on a maze of different sizes as shown by Figure 1.5(b).

We also trained other candidate consistent learners like linear SVM, linear perception, and

linear logistic regression on teaching set obtained by Greedy-TIE and verified that all of

them achieve a risk of zero as claimed by our Theorem 1.9.
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Chapter 2

Teaching BC Agents under MDP
Constraints

2.1 Motivation

In the previous chapter, we studied a very powerful teacher that had the power to construct

any dataset that it wanted to teach the target policy to the behavior cloning agent. However,

in many real-world sequential decision-making settings, the teacher cannot put the learner

in arbitrary states and instead has to first lead the learners to individual states (obeying the

state transition constraints of the environment) and then teach them there. For example,

consider a teacher helping a student learner to learn how to drive. The teacher cannot

arbitrarily place the learner at challenging spots on the roads to teach them an important

lesson; rather, it has to first navigate them to those spots and then teach the right action

there. This introduces an additional aspect of optimal navigation to satisfy the teaching

criteria characterized by the objective of minimizing the expected time required to reach a

valid teaching set of states.

In this chapter, we consider teaching a finite or linear behavior cloning agent under

an online MDP transition constraint on the teacher. In this setting, the teacher cannot

generate an arbitrary dataset but rather has to sample a teaching sequence by acting in

the environment. We consider a simpler online batch teacher where the teacher has to

first collect a subset of “valid” teaching states by acting in a reward-free environment MDP

M= {S,A,P} using some navigation policy π† : (S×A)∗→∆(A) and once it has done that,
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it can teach the target action on a subset of those states to the learner with a goal to induce

the target policy in them.

The notion of what constitutes a valid teaching set is defined by the learning algorithm,

for example, in linear behavior cloning setting a valid teaching set consists of a subset of

states that covers all the extreme rays of the induced polyhedral cone while for finite tabular

version space learner, a valid teaching set consists of subset of states that eliminates all the

inconsistent hypothesis H\h∗ from the version space. Note that both of these problems

are characterized by an underlying finite set cover structure, which is NP-hard to solve.

Moreover, in the online RL setting, the teacher no longer has the power to construct arbitrary

states and has to obey the environment’s transition dynamics to find a “valid” teaching

set in minimum expected time. Towards that end, we study the following question in this

setting:

Question: What is the optimal strategy to teach π∗ to a BC learner in minimum time
under online MDP constraints?

and make the following contribution: 1.) We formalize the problem of teaching BC agents

under online MDP constraints. 2.) We show that this problem is equivalent to solving

a novel problem Stochastic Set Cover Problem (SSCP) problem and provide an efficient

reduction from SSCP to Stochastic Shortest Path problem (SSPP) which has been well studied

in literature. 3.) We present planning algorithm and relevant convergence guarantee of

value and policy iteration for solving SSCP through SSPP in Meta-MDP. 4.) Finally, we

comment on the hardness of this problem and future directions.

For simplicity, we present this chapter from the viewpoint of a finite BC agent which

can be easily generalized to linear BC by using relevant set cover structure.

2.2 Problem Formulation

This setting contains three important components, 1.) The MDP Environment, 2.) The

Behavior Cloning (BC) learner, and 3.) The Teacher.

The MDP Environment

We consider a finite rewardless MDP environment defined by the tupleM= (S,A,P), where,
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1. S, A are finite state and action spaces.

2. P : S×A→ ∆(A) is a Markovian state transition.

As wewill see, theMDP transition constraints the teacher to only provide the demonstrations

on the states that are visited by the teacher in a trajectory rollout.

The Learner

We consider a behavior cloning agent that essentially does version space learning using

a finite tabular hypothesis class Π ⊆ AS
. On receiving a dataset D = {si,π

∗(si)}|
n
i=1

, the

agent maintains a version space,

V(D) = {π ∈ Π : π(si) = π
∗(si), ∀(si,π∗(si)) ∈D},

at the end of the training phase. In the test phase, it chooses one of the surviving policies in

the version space and acts according to it.

The Teacher

The teacher wants to teach the target policy π∗ ∈ S→ A to the agent. However, unlike

classical teaching setting, the teacher cannot construct arbitrary teaching dataset DT ⊆
(S×A)∗. Rather, it has to use a navigation policy π† to role out a trajectory,

τ= (s0,a0,s1,a1, · · · ,st,at, · · ·) ∼ Pπ
†

from the environment MDP until a “valid” teaching set of states have been collected. It then

provides the target action demonstration to the student on a subset of those states to teach

the target policy.

Remark 2.1. Note that we allow the teacher to teach any action to the student once a state
has been visited. This can be further restricted to only allow the teacher to teach the action that
it has taken in the trajectory by defining set cover over action edges rather than states.
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Teaching a target policy without transition constraints requires solving a set cover

problem, formally stated as,

D∗T ←≡ min

DT⊆{(s,π∗(s)):s∈S}
|DT | s.t.

⋃
s

Ws = Π\π∗

whereWs = {π ∈ Π\π∗ : π(s) ̸= π∗(s)} is the subset of inconsistent hypotheses eliminated

by teaching π∗(s) on state s, and U= Π\π∗ is the universe of all inconsistent hypotheses

that has to be eliminated to succeed in teaching.

Definition 2.2 (A Valid Teaching Set). A subset S⊆ S is called a valid teaching set if teaching
π∗ on them induces target policy in the learner, i.e., ∪s∈SWs = Π\{π

∗}.

The Teaching Objective

The goal of the teacher is to find an optimal policy π† : (S×A)∗→ ∆(A) that minimizes

the expected time required to teach π† to the agent stated as follows:

Online-Teach(S,A,P,Π,π∗) :

π†(s)← argmin

π:(S×A)∗→∆(A)

Eτ∼π [min{t⩾ 0 : teacher can teach π∗ using states s0:t]

≡ argmin

π:(S×A)∗→∆(A)

Eτ∼π
[
min{t⩾ 0 : ∪t ′⩽tWst ′ = Π\π

∗|s0 = s
]

(2.1)

where the universe U of all inconsistent hypotheses has to be covered by the subcollection

of {Ws1 ,Ws2 , · · · } drawn in a trajectory rollout. This problem is a stochastic version of set

cover problem called Stochastic Set Cover Problem that we study next.

Remark 2.3. The optimal teaching policy need not be Markovian in S. Unlike unconstrained
teaching, covering a teaching set with the smallest size might not be a good strategy as it can
be very difficult to reach them under MDP transition constraints. Refer to example 2.1.

2.3 Stochastic Set Cover Problem

The Stochastic Set Cover Problem (SSCP) is a set cover problem embedded in an MDP and

is defined by the tuple (S,A,P,U, {Ws}s∈S), where,
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1. S,A are finite state and action spaces.

2. P : S×A→ ∆(A) is a Markovian transition function.

3. U is a finite set of universe.

4. {Ws}|s∈S a collection of subset of universe indexed by states.

The agent (that aims to solve SSCP) starts with an initial state s0 = s and takes action

based on its navigation policy π† that stochastically leads it to the next state as governed

by the transition P. Whenever the agent reaches a state s, it gets to cover the associated

subsetWs ⊆U. The eventual objective is to find an optimal policy that takes the minimum

expected time to cover the universe starting from any initial state, given as follows,

SSCP(S,A,P,U, {Ws}) :

π†(s)← min

π:(S×A)∗→∆(A)
Eτ∼π

[
min{t⩾ 0 : ∪t⩽t ′Wst ′ =U|s0 = s

]
, ∀s ∈ S. (2.2)

We take a look at a simple example to appreciate this problem.

Example 2.4. Consider the example shown in Figure 2.1 of teaching a finite BC agent under
MDP constraints. In this example, there are three states {s1,s2,s3}, two actions {a1,a2} and a
finite policy class with three policies Π= {π1,π2,π3} as denoted in Figure 2.1(a). The teacher
wants to teach the target policy π3(s) = a1,∀s ∈ S to the learner.

In classical teaching (without MDP constraints), as depicted in Figure 2.1(b), the universe

set {π1,π2} has to be covered/eliminated to succeed in teaching. There are two “valid”

teaching sets {s2} or {s1,s3}. Without transition constraints, the teacher can simply choose

to teach (s2,a1) leading to TD= 1. However, with transitions (as shown in Figure 2.1(c)), the

teacher starts with initial state s1 and has to rollout a trajectory (as shown in Figure 2.1(d))

to reach one of the two “valid” teaching sets. The goal of the teacher is to find a policy that

covers any one of the valid teaching set in minimum time.

Lemma 2.5 (SSCP is NP-hard). SSCP contains two NP-hard problem, the set cover problem
and the Asymmetric Traveling Salesman Problem (ATSP) making it NP-hard.

1. A deterministic SSCP instance with a complete MDP graph is also an instance of a
standard finite set cover problem.
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s1 s2 s3
π1 a2 a2 a1
π2 a1 a2 a2
π3 a1 a1 a1

(a) A finite hypothesis class (b) Set cover structure (c) Set cover with transitions

(d) Random trajectory rolled out using navigation policy π†

Figure 2.1: From classical constructive teaching to online teaching under MDP transition

constraints. The bits in red denote which of the two inconsistent policies {π1,π2} is elimi-

nated by teaching in that state. The smallest teaching set is D1 = {s2,π
∗(s2)}. The expected

time to cover {s2} can be arbitrarily bad than covering another larger teaching set {s1,s3}.

2. A deterministic SSCP instance with a single optimal set cover is an instance of an subset
ATSP problem - find the shortest path that covers the given subset of states.

Hence, SSCP is NP-hard as well.

Limitations of Classical Algorithms for Optimal Teaching

Efficiently covering the universe of elements in minimum time presents a significant chal-

lenge. Using the example in Figure 2.1, we demonstrate that two intuitive methods for

solving the SSCP can perform arbitrarily poorly compared to the optimal solution:

Method 1: Identify the smallest cover first, then find a policy to reach them.

Method 2: Utilize the target policy itself to collect teaching states for the learner.

Consider two navigation policies that the teacher uses for teaching the target π3 to

the BC agent: 1.) the target policy π3 itself, and 2.) an alternative policy π ′ defined as

π ′(s) = a2,∀s.
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The expected time required to cover the universe {π1,π2} using these policies is:

E[T |π3] = 1+
1

p
, E[T |π ′] = 2.

We observe that π3 covers the minimal teaching set and would therefore be the solution

selected by both the methods. However, as p→ 0, the performance of π3 degrades arbitrarily

compared to the contender policy π ′, which is, in fact, time-optimal.

Remark 2.6. We remark that SSCP is an infinite-horizon problem and cannot be modeled by
a discounted MDP.

Next, we propose a planning algorithm that aims to solve SSCP by reducing it to a well

known optimal navigation problem in MDP called the Stochastic Shortest Path Problem

(SSPP). We first formalize the SSPP problem and then provide a reduction of SSCP to SSPP.

2.4 Stochastic Shortest Path Problem

The stochastic shortest path problem (SSPP) [10, 12] is a stochastic version of the shortest

path problem on a directed graph. Given a reward-free MDP M = (S,A,P) with finite

state and action space and a target state s† ∈ S, the goal is to find a policy that reaches the

target state in minimum expected time from any starting state s ∈ S. The target state is an

absorbing state s† satisfying P(s†|s†,a) = 1,∀a ∈A.

Since the transitions are stochastic, the interaction of an agent with the environment

using a policy generates a stochastic trajectory rollout τ= (s0,a0,s1,a1, · · ·) which may or

may not terminate at the target state. The objective of the agent is formalized as finding

a policy that can reach the target absorbing state s† from any initial state s ∈ S in the

minimum expected time,

π†(s)← argmin

π:(S×A)∗→∆(A)

Eτ∼π
[
min{t⩾ 0 : s† ∈ τt}|s0 = s

]
.

where τt = (s0,a0,s1, · · · ,st−1,at−1,st) is the partial trajectory experienced by agent till

time step t and we denote expected time to reach target state under policy π as Hπ which
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can be restated in form of undiscounted cost as follows:

Hπ(s) = lim

T→∞Eτ∼π

[
T∑
t=1

c(st,at) | s0 = s

]
where the cost c(st,at) = 1[st ̸= s†]

The goal of SSPP is reformulated as,

H∗(s) = min

π:(S×A)∗→∆(A)
Hπ(s)

We denote the optimal policy π†(s) = argminπ:(S×A)∗→∆(A)H
π(s), ∀s ∈ S. Similar to the

connectivity and non-negative cost cycle requirements in the deterministic shortest path

problem, SSPP requires the existence of a proper policy to ensure the target is reachable

from any initial state.

Definition 2.7 (Proper Policy). A proper policy is one that reaches the target state s† from
any initial state s ∈ S with probability one. A policy that is not proper is called improper.

Assumption 2.8. We assume that M admits a proper policy and for all improper policies
∃s ∈ S s.t. Tπ(s) =∞.

We have that for a proper policy, Tπ(s)<∞,∀s∈ S. Under these two assumptions, prior

works [11, 12] have shown that SSPP can be efficiently solved by a value/policy iteration

algorithms.

2.5 Solving SSCP using SSPP

We first provide an efficient reduction of SSCP to SSPP and then utilize the policy/value

iteration algorithms for SSPP to solve the SSCP problem.

2.5.1 Construction of Meta MDP.

The construction of meta–MDP
¯M= (¯S, ¯A,

¯P, c̄) from stochastic set cover MDP M is given

as follows:

• Meta State Space: ¯S= S× 2
U
. We write s̄= (s,u) meaning the agent is at environ-

ment state s and has already covered universe elements in u⊆ U.
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• Meta Action Space: ¯A(s̄) =A(s) =A.

• Goal/absorbing set: ¯G≜ {(s,U) : s ∈ S} is the meta absorbing state.

• Meta Transitions: The transition for taking action a ∈A in state (s,u) is given as,

¯P
(
(s ′,u ′) | (s,u),a

)
= P(s ′ | s,a) · 1{u ′ = u∪Ws ′ }

¯P( ¯G| ¯G,a) = 1, ∀a ∈A.

• Cost (time): Unit cost per step until U is covered, c̄
(
(s,u),a

)
= 1{u ̸=U}.

We note that goal state is constructed by joining all meta states where universe U

has already been covered and making it self absorbing. SSPP is a well studied problem in

stochastic control literature. Next, we adapt the Bellman value and optimality equations for

SSPP problem in meta MDP
¯M.

Solving SSPP in a meta MDP requires connectivity and non-negative cycle cost as-

sumption similar to that in deterministic shortest path problem. The is stated through the

existence of a proper policy in meta MDP as we state next.

Assumption 2.9 (Meta Properness). There exists a stationary policy on ¯M that reaches ¯G

almost surely from every s̄= (s,u); any policy that fails to reach ¯G has infinite expected cost
from at least one s̄.

Our next lemma proves the equivalence between finding optimal policy for solving SSCP

to that of SSCP.

Lemma 2.10 (Reduction Correctness). For any initial s0 ∈ S, and policy π : (S×A)∗→A,

Eπ
[
min{t⩾ 0 : ∪t ′⩽tWst ′ = Π\π

∗|s0 = s
]
= Eπ

[
min{t⩾ 0 : ∪t ′⩽ts̄t ′ ⊇ ¯G|s̄0 = (s,∅)

]
Proof. The proof follows directly from the equivalence between the SSCP trajectory and its

corresponding SSPP trajectory.
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2.5.2 Bellman Equations for Expected Time

LetH∗(s,u) be the optimal expected remaining time to cover all ofU from meta state (s,u),

and let Hπ denote the time under a fixed stationary meta–policy π. The Bellman optimality

and value equations in the meta MDP is given as follows:

Bellman Optimality equations.

H∗(s,U) = 0, ∀s ∈ S,

H∗(s,u) = 1+ min

a∈A(s)

∑
s ′∈S

P(s ′ | s,a)H∗(s ′, u∪Ws ′) (u⊊U).

Bellman operators. Define the minimum–time Bellman operator T and policy operator

Tπ on functions H : ¯S→ R⩾0 by

(TH)(s,U) = 0, (TH)(s,u) = 1+ min

a∈A(s)

∑
s ′

P(s ′|s,a)H(s ′,u∪Ws ′) (u⊊U),

(TπH)(s,U) = 0, (TπH)(s,u) = 1+
∑
s ′

P(s ′|s,π(s,u))H(s ′,u∪Ws ′) (u⊊U).

Then H∗ is the unique fixed point of T on the admissible set, and for every stationary π, Hπ

is the unique fixed point of Tπ.

Theorem 2.11 (Well Posedness). Under meta–properness assumption, the Bellman system
with operator T has a unique finite solution H∗ with boundary H∗(·,U) = 0, and there exists
an optimal stationary deterministic meta–policy π∗ attaining H∗.

2.6 Algorithms and Results

Next, we present the value iterationmethod that can find the optimal policy for the stochastic

shortest path problem in meta MDP, thereby equivalently solving the stochastic set cover

problem in the original MDP.
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Meta–Value Iteration (VI). Initialize H0 ≡ 0 and iterate

Hk+1
← THk, k= 0,1,2, . . .

with greedy extraction

πk+1
(s,u) ∈ arg min

a∈A(s)

∑
s ′

P(s ′|s,a)Hk(s
′
,u∪Ws ′).

Meta–Policy Iteration (PI). Start from any proper π0 on ¯M. For i= 0,1,2, . . .

(Evaluation)

Hπi ← solve H= TπiH, (2.3)

(Improvement)

πi+1
(s,u) ∈ argmin

a

∑
s ′

P(s ′|s,a)Hπi(s ′,u∪Ws ′). (2.4)

Stop when πi+1
= πi.

The value and policy iteration algorithms stated above comeswith following convergence

guarantees which follow directly from the convergence guarantee of VI/PI iteration in

SSPP [11, 12].

Theorem 2.12 (VI Convergence under T ). With H0 ≡ 0, the VI sequence Hk+1
= THk is

monotone increasing and converges pointwise to H∗. Moreover, there exist weights w(s̄)⩾ 1

and β ∈ (0,1) such that

∥TH−TH ′∥w ⩽ β∥H−H ′∥w for all H,H ′,

hence ∥Hk−H∗∥w ⩽ βk∥H∗∥w.

Theorem 2.13 (PI Convergence under T ). If π0 is proper, all iterates are proper, the values
satisfy Hπi+1 ⩽Hπi componentwise, and with consistent tie-breaking PI terminates in finitely
many improvements at an optimal π∗ with value H∗.

Remark 2.14 (Dependence on Universe Size). We note that the meta state size grows expo-
nentially in |U|, leading to an efficient solution only when U is constant or small. This happens
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in many realistic settings of linear behavior cloning learners wherethe extreme rays set can be
very small even though the number of states is huge.

2.7 Discussion and Open Problems

Conjecture: inapproximability even with deterministic transitions. We conjecture

that the SSCP,minimizing expected time to cover the universeU via meta–states s̄= (s,u)with
unit cost until u=U, is inapproximable even in the special case of deterministic transition
systems (i.e., a directed graph with actions determining a unique next state). In particular,

we conjecture that no polynomial-time algorithm can achieve PTAS unless P= NP.

Scope and limitations. Our algorithms (meta–VI with the Bellman operator T ) compute
optimal solutions on the meta–MDP but have worst-case state growth |¯S| = |S|2|U|. Thus,

the per-iteration work is exponential in |U| in the absence of exploitable structure. The

conjectured inapproximability hints that this exponential dependence may be unavoidable

in general.

Future directions. We leave a thorough hardness and approximability analysis to future

work, and highlight several promising avenues:

• Structural assumptions for efficient approximation. Identify graph/MDP classes

where coverage exhibits additional structure (e.g., bounded width or DAG topology,

small covering dimension, submodular gain with metric travel, bounded diameter), and

design algorithms with provable factors (e.g., O(log |U|) via greedy+reachability or

bicriteria time/coverage trade-offs).

• Learning under generative access/simulators. When P is unknown but a simulator

exists, investigate optimistic planning with coverage-aware bonuses; characterize

sample complexity in terms of the optimal time-to-cover U.

• Bicriteria and robust objectives. Allow small coverage slack (e.g., cover (1−α) frac-

tion of U) or introduce budgets/risk constraints, aiming for scalable approximations

with guarantees under uncertainty.
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Chapter 3

Optimal Teaching of RL Agent

3.1 Introduction

In recent years, reinforcement learning (RL) has seen applications in a wide variety of

domains, such as games [61, 80], robotics control [8, 46] and healthcare [47, 79]. One of the

fundamental questions in RL is to understand the sample complexity of learning, i.e. the

amount of training needed for an agent to learn to perform a task. In the most prevalent RL

setting, an agent learns through continuous interaction with the environment and learns

the optimal policy from natural reward signals. For standard algorithms such as Q-learning,

naive interaction with MDP suffers exp complexity [52]. In contrast, many real-world RL

scenarios involve a knowledgable (or even omniscient) teacher who aims at guiding the

agent to learn the policy faster. For example, in the educational domain, a human student

can be modeled as an RL agent, and a teacher will design a minimal curriculum to convey

knowledge (policy) to the student (agent) [21].

In the context of reinforcement learning, teaching has traditionally been studied exten-

sively under the scheme of teaching-by-demonstration (TbD), where the teacher provides
demonstrations of state/action trajectories under a good policy, and the agent aims to mimic

the teacher as closely as possible [36]. However, in many applications, it is inconvenient for

the teacher to demonstrate because the action space of the teacher is distinct from the action

space of the learner. In contrast, it is usually easier for the teacher to teach by reinforcements
(TbR), i.e. with rewards and punishments. For example, in dog training, the trainer can’t

always demonstrate the task to be learned, e.g. fetch the ball with its mouth, but instead
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would let the dog know whether it performs well by giving treats strategically [21]; In

personalizing virtual assistants, it’s easier for the user to tell the assistant whether it has

done a good job than to demonstrate how a task should be performed. Despite its many

applications, TbR has not been studied systematically.

In this chapter, we close this gap by presenting to our knowledge the first results on TbR.

Specifically, we focus on a family of RL algorithms called Q-learning. Our main contributions

are:

1. We formulate the optimal teaching problem in TbR.

2. We characterize the worst-case sample complexity of teaching, termed as "teaching

dimension" (TDim), for Q-learning under four different teachers, distinguished by their

power (or rather constraints) in constructing a teaching sequence. See Table 3.1 for a

summary of results.

3. For each level, we design an efficient teaching algorithm which matches the TDim.

4. We draw connections between our results and classic results on the sample complexity

of RL and of TbD.

Table 3.1: Our Main Results on Teaching Dimension of Q-Learning

Teacher Level 1 Level 2 Level 3 Level 4
Constraints none respect agent’s at st+1 : P(st+1|st,at)> 0 st+1 ∼ P(·|st,at)

TDim S S(A−1) O
(
SAH

(
1

1−ε

)D)
O

(
SAH

(
1

(1−ε)pmin

)D)

3.2 Related Work

Classic Machine Teaching Since computational teaching was first proposed in [29, 78],

the teaching dimension has been studied in various learning settings. The vast majority

focused on batch supervised learning. See [99] for a recent survey. Of particular interest to

us though is teaching online learners such as Online Gradient Descent (OGD) [51, 55], active

learners [31, 67], and sequential teaching for learners with internal learning state [20, 35, 58].

In contrast to OGD where the model update is fully determined given the teacher’s data, the

RL setting differs in that the teacher may not have full control over the agent’s behavior (e.g.

action selection) and the environment’s evolution (e.g. state transition), making efficient
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teaching more challenging. Several recent work also study data poisoning attacks against

sequential learners [39, 56, 57, 73, 91, 93, 95]. The goal of data poisoning is to force the

agent into learning some attacker-specified target policy, which is mathematically similar

to teaching.

Teaching by Demonstration Several recent works studied teaching by demonstrations,

particularly focusing on inverse reinforcement learning agents (IRL) [14, 17, 33, 40, 86, 89].

IRL is a sub-field of RL where the learners aim at recovering the reward function from a

set of teacher demonstrations to infer a near-optimal policy. Teaching in IRL boils down

to designing the most informative demonstrations to convey a target reward function to

the agent. Their main difference to our work lies in the teaching paradigm. IRL belongs

to TbD where the teacher can directly demonstrate the desired action in each state. The

problem of exploration virtually disappears, because the optimal policy will naturally visit

all important states. On the other hand, as we will see next, in the TbR paradigm, the teacher

must strategically design the reward signal to navigate the learner to each state before it

can be taught. In other words, the challenge of exploration remains in reinforcement-based

teaching, making it much more challenging than demonstration-based teaching. It is worth

mentioning that the NP-hardness in finding the optimal teaching strategy, similar to what we

establish in this chapter (see Appendix), has also been found under the TbD paradigm [89].

Empirical Study of Teaching-by-Reinforcement Empirically, teaching in RL has been

studied in various settings, such as reward shaping [63], where teacher speeds up learning

by designing the reward function, and action advising [6, 85], where the teacher can suggest

better actions to the learner during interaction with the environment. Little theoretical

understanding is available in how much these frameworks accelerate learning. As we will

see later, our teaching framework generalizes both approaches, by defining various levels of

teacher’s control power, and we provide order-optimal teaching strategies for each setting.

3.3 Problem Definitions

The machine teaching problem in RL is defined on a system with three entities: the un-

derlying MDP environment, the RL agent (student), and the teacher. The teaching process

is defined in algorithm 2. Whenever the boldface word “may” appears in the protocol, it
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depends on the level of the teacher and will be discussed later. In this chapter, we assume

that there is a clear separation between a training phase and a test phase, similar to the best

policy identification (BPI) framework [26] in classic RL. In the training phase, the agent

interacts with the MDP for a finite number of episodes and outputs a policy in the end. In the

test phase, the output policy is fixed and evaluated. In our teaching framework, the teacher

can decide when the training phase terminates, and so teaching is regarded as completed as

soon as the target policy is learned. Specifically, in the case of Q-learning, we do not require

that the estimated Q function converges to the true Q function w.r.t. the deployed policy,

which is similarly not required in the BPI or PAC-RL frameworks, but only require that the

deployed policy matches the target policy exactly.

Algorithm 2:Machine Teaching Protocol on Q-learning

Entities: MDP environment, learning agent with initial Q-table Q0, teacher with

target policy π†.

1: while πt ̸= π† do
2: MDP draws s0 ∼ µ0 after each episode reset. But the teachermay override s0.

3: for t= 0, . . .H−1 do
4: The agent picks an action at = πt(st) with its current behavior policy πt. But the

teachermay override at with a teacher-chosen action.

5: The MDP evolves from (st,at) to produce immediate reward rt and the next state

st+1. But the teacher may override rt or move the system to a different next state

st+1.

6: The agent updates Qt+1 = f(Qt,et) from experience et = (st,at,rt,st+1).
7: Once the agent learns π†, the teacher ends the teaching phase, and the learned policy is

fixed and deployed.

Environment M: We assume that the environment is an episodic Markov Decision

Process (MDP) parameterized byM= (S,A,R,P,µ0,H) where § is the state space of size S,

A is the action space of size A, R : S×A→ R is the reward function, P : S×A×S→ R is

the transition probability, µ0 : S→ R is the initial state distribution, and H is the episode

length. Next, we define two quantities of interest of an MDP that we will use in our analysis.

Definition 3.1. Let theminimum transition probability pmin of an MDP be defined as
pmin =mins,s ′∈S,a∈A,P(s ′|s,a)>0P(s

′|s,a).
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Definition 3.2. Let the diameter D of an MDP be defined as the minimum path length
to reach the hardest-to-get-to state in the underlying directed transition graph of the MDP.
Specifically,

D=max

s∈S
min

T ,(s0,a0,s1,a1,...,sT=s)
T (3.1)

s.t. µ0(s0)> 0,P(st+1|st,at)> 0,∀t

RL agent L: We focus on a family of Q-learning agents L∈Lwith the following properties:

1. Behavior policy: The agent behaves according to the ε-greedy policy for some ε ∈ [0,1],
i.e.

πt(s) :=

{
a∗← argmaxaQt(s,a) w.p. 1−ε

Unif(A\a∗), w.p. ε.

Note this definition is slightly different but equivalent to standard ε-greedy exploration,

where we merged the probability of choosing argmaxaQt(s,a) in the second branch

into the first. This simplifies our notation later.

2. Learning Update: Given experience et = (st,at,rt,st+1) at time step t, the learning

updateQt+1 = f(Qt,et) only modifies the (st,at) entry of the Q-table. Furthermore, the

Q-table is “controllable”: for any st,at,st+1, there exists a reward r such that the ranking

of at within Qt+1(st, ·) can be made first, last or unchanged, respectively.

This family includes common Q-learning algorithms such as the standard ε-greedy Q-

learning, as well as provably efficent variants like UCB-H and UCB-B [38].

Teacher: In this chapter, we study four levels of teachers from the strongest to the weakest:

1. Level 1: The teacher can generate arbitrary tuples (st,rt,st+1) ∈ S×R×S, and override

the agent chosen action at. None of these needs to obey the MDP (specifically µ0,R,P).

2. Level 2: The teacher can still generate arbitrary state st, reward rt and next state st+1,

but cannot override the agent’s action at. The agent has “free will” in choosing its action.

3. Level 3: The teacher can still generate arbitrary reward rt but can only generate MDP-

supported initial state and next state, i.e. µ0(s0)> 0, and P(st+1|st,at)> 0. However, it

does not matter what the actual nonzero MDP probabilities are.

4. Level 4: The teacher can still generate arbitrary reward rt but the initial state and next

state must be sampled from the MDPs dynamics, i.e. s0 ∼ µ0 and st+1 ∼ P(·|st,at).
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In all levels, the teacher observes the current Q-table Qt and knows the learning algorithm

Qt+1 = f(Qt,et).

In this work, we are interested in analyzing the teaching dimension, a quantity of

interest in the learning theory literature. We define an RL teaching problem instance by the

MDP environmentM, the student L with initial Q-table Q0, and the teacher’s target policy

π†. We remark that the target policy π† need not coincide with the optimal policy π∗ for

M. In any case, the teacher wants to control the experience sequence so that the student

arrives at π† quickly. Specifically,

Definition 3.3. Given an RL teaching problem instance (M,L,Q0,π
†), theminimum ex-

pected teaching length isMETaL(M,L,Q0,π
†) =minT ,(st,at,rt,st+1)0:T−1

E[T ], s.t. πT = π†,
where the expectation is taken over the randomness in the MDP (transition dynamics) and the
learner (stochastic behavior policy).

METal depends on nuisance parameters of the RL teaching problem instance. For

example, if Q0 is an initial Q-table that already induces the target policy π†, then trivially

METal=0. Following the classic definition of teaching dimension for supervised learning,

we define TDim by the hardest problem instance in an appropriate family of RL teaching

problems:

Definition 3.4. The teaching dimension of an RL learner L w.r.t. a family of MDPsM is
defined as the worst-case METal: TDim=maxπ†∈{π:S→A},Q0∈RS×A

,M∈MMETaL(M,L,π†).

Remark 3.5. In the previous chapter, we observed that minimizing instance dependent expected
time even for behavior cloning learner is a very challenging problem. So, here we instead consider
a ‘worst case’ notion of teaching dimension characterized by the worst instance in the instance
family and study algorithms to solve instead.

3.4 Teaching without MDP Constraints

We start our discussion with the strongest teachers. These teachers have the power of

producing arbitrary state transition experiences that do not need to obey the transition

dynamics of the underlying MDP. While the assumption on the teaching power may be

unrealistic in some cases, the analysis that we present here provides theoretical insights
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that will facilitate our analysis of the more realistic/less powerful teaching settings in the

next section.

3.4.1 Level 1: Teacher with Full Control

The level 1 teacher is the most powerful teacher we consider. In this setting, the teacher can

generate arbitrary experience et. The learner effectively becomes a “puppet” learner - one

who passively accepts any experiences handed down by the teacher.

Theorem 3.6. For a Level 1 Teacher, any learner L ∈ L, and an MDP family M with |S|= S

and a finite action space, the teaching dimension is TDim= S.

It is useful to illustrate the theorem with the standard Q-learning algorithm, which is

a member of L. The worst case happens when argmaxaQ0(s,a) ̸= π†(s),∀s. The teacher
can simply choose one un-taught s at each step, and construct the experience (st = s,at =

π†(s),rt,st+1 = s
′) where s ′ is another un-taught state (the end case is handled in the

algorithm in appendix). Importantly, the teacher chooses

rt ∈
{
maxQt(st, ·)+θ−(1−α)Qt(st,at)

α
−γmaxQt(s

′
, ·) : θ > 0

}
,

knowing that the standard Q-learning update rule f is Qt+1(st,at) = (1−α)Qt(st,at)+

α(rt+γmaxa∈AQt(s
′
,a)). This ensures that Qt+1(s,π

†(s)) =maxa̸=π†(s)Q0(s,a)+θ >

maxa̸=π†(s)Q0(s,a), and thus the target policy is realized at state s. Subsequent teaching

steps will not change the action ranking at state s. The same teaching principle applies to

other learners in L.

3.4.2 Level 2: Teacher with State and Reward Control

At level 2 the teacher can still generate arbitrary reward rt and next state st+1, but now

it cannot override the action at chosen by the learner. This immediately implies that the

teacher can no longer teach the desired action π†(s) in a single visit to s: for example, Q0

may be such thatQ0(s,π
†(s)) is ranked last among all actions. If the learner is always greedy

with ε = 0 in (1), the teacher will need to visit s for (A− 1) times, each time generating

a punishing rt to convince the learner that the top non-target action is worse than π†(s).

However, for a learner who randomly explores with ε > 0 it may perform π†(s) just by
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chance, and the teacher can immediately generate an overwhelmingly large reward to

promote this target action to complete teaching at s; it is also possible that the learner

performs a non-target action that has already been demoted and thus wasting the step.

Despite the randomness, interestingly our next lemma shows that for any ε it still takes in

expectation A−1 visits to a state s to teach a desired action in the worst case.

Lemma 3.7. For a Level 2 Teacher, any learner in L, and an MDP familyM with action space
size A, it takes at most A− 1 visits in expectation to a state s to teach the desired action π†(s)
on s.

Proof Sketch: Let us consider teaching the target action π†(s) for a particular state s.

Consider a general case where there are A−c actions above π†(s) in the current ordering

Qt(s, ·). In the worst case c = 1. We define the function T(x) as the expected number of

visits to s to teach the target action π†(s) to the learner when there are x higher-ranked

actions. For any learner in L, the teacher can always provide a suitable reward to either

move the action selected by the learner to the top of the ordering or the bottom. Using

dynamic programming we can recursively express T(A−c) as

T(A−c) = 1+(c−1)
ε

A−1

T(A−c)+

(1−ε+(A−c−1)
ε

A−1

)T(A−c−1).

Solving it gives T(A−c) = A−c
(1−(c−1) ε

A−1
) , which implies maxc T(A−c) = T(A−1) =A−

1. Lemma 3.7 suggests that the agent now needs to visit each state at most (A−1)

times to learn the target action, and thus teaching the target action on all states needs at

most S(A−1) steps:

Theorem 3.8. For a Level 2 Teacher, any learner in L, and an MDP familyM with state space
size S and action space size A, the teaching dimension is TDim= S(A−1).

We present a concrete level-2 teaching algorithm in the appendix. For both Level 1 and

Level 2 teachers, we can calculate the exact teaching dimension due to a lack of constraints

from the MDP. The next levels are more challenging, and we will be content with big O

notation.
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Figure 3.1: The “peacock" MDP for establishing lower bound on the Teaching Dimension.

3.5 Teaching subject to MDP Constraints

In this section, we study the TDim of RL under the more realistic setting where the teacher

must obey some notion of MDP transitions. In practice, such constraints may be unavoidable.

For example, if the transition dynamics represent physical rules in the real world, the teacher

may be physically unable to generate arbitrary st+1 given st,at (e.g. cannot teleport).

3.5.1 Level 3: Teacher with Control on Reward and Support States

In Level 3, the teacher can only generate a state transition to st+1 which is in the support

of the appropriate MDP transition probability, i.e. st+1 ∈ {s : P(s | st,at) > 0}. However,

the teacher can freely choose st+1 within this set regardless of how small P(st+1 | st,at) is,

as long as it is nonzero. Different from the previous result for Level 1 and Level 2 teacher,

in this case, we are no longer able to compute the exact TDim of RL. Instead, we provide

matching lower and upper-bounds on TDim.

Theorem 3.9. For Level 3 Teacher, any learner in L with ε probability of choosing non-greedy
actions at random, an MDP familyM with episode lengthH and diameterD⩽H, the teaching
dimension is lower-bounded by

TDim⩾Ω

(
(S−D)AH

(
1

1−ε

)D)
. (3.2)

proof. The proof uses a particularly hard RL teaching problem instance called the

“peacock MDP” in Figure 3.1 to produce a tight lower bound. The MDP has S states where
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the first D states form a linear chain (the “neck”), the next S−D− 1 states form a star (the

“tail”), and the last state s(⊥) is a special absorbing state. The absorbing state can only be

escaped when the agent resets after episode length H. The agent starts at s(0) after reset.

It is easy to verify that the peacock MDP has a diameter D. Each state has A actions. For

states along the neck, the a1 action (in black) has probability p > 0 of moving right, and

probability 1−p to go to the absorbing state s(⊥); all other actions (in red) have probability

1 of going to s(⊥). The a1 action of s(D−1)
has probability p to transit to each of the tail

states. In the tail states, however, all actions lead to the absorbing state with probability 1.

We consider a target policy π† where π†(s) is a red action a2 for all the tail states s. It does

not matter what π† specifies on other states. We defineQ0 such that a2 is argminaQ0(s,a)

for all the tail states.

The proof idea has three steps: (1) By Lemma 3.7 the agent must visit each tail node s

for A−1 times to teach the target action a2, which was initially at the bottom of Q0(s, ·).
(2) But the only way that the agent can visit a tail state s is to traverse the neck every time.

(3) The neck is difficult to traverse as any ε-exploration sends the agent to s(⊥) where it has

to wait for the episode to end.

We show that the expected number of steps to traverse the neck once is H( 1

1−ε)
D
even

in the best case, where the agent’s behavior policy (1) prefers a1 at all neck states. In this

best case, the agent will choose a1 with probability 1−ε at each neck state s. If a1 is indeed

chosen by the agent, by construction the support of MDP transition P(· | s,a1) contains
the state to the right of s or the desired tail state (via the transition with probability p > 0).

This enables the level 3 teacher to generate such a transition regardless of how small p is

(which is irrelevant to a level 3 teacher). In other words, in the best case, the agent can

move to the right once with probability 1−ε. A successful traversal requires moving right

D times consecutively, which has probability (1−ε)D. The expected number of trials (to

traverse) until success is ( 1

1−ε)
D
. A trial fails if any time during a traversal the agent picked

an exploration action a other than a1. Then the support of P(· | s,a) only contains the

absorbing state s(⊥), so the teacher has no choice but to send the agent to s(⊥). There the

agent must wait for the episode to complete until resetting back to s(0). Therefore, any

failed trial incurs exactly H steps of wasted teaching. Putting things together, the expected

number of teaching steps until a successful neck traversal is done is at least H( 1

1−ε)
D
.

There are S−D−1 tail states. Each needs an expected A−1 neck traversals to teach.

This leads to the lower bound (S−D−1)(A−1)H( 1

1−ε)
D =Ω

(
(S−D)AH

(
1

1−ε

)D)
.
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Our next result shows that this lower bound is nearly tight, by constructing a level-3

teaching algorithm that can teach any MDP with almost the same sample complexity as

above.

Theorem 3.10. Under the same conditions of Theorem 3.9, the level-3 teaching dimension is
upper-bounded by

TDim⩽O

(
SAH

(
1

1−ε

)D)
. (3.3)

proof. We analyze a level-3 teaching algorithm NavTeach (Navigation-then-Teach) which,

like any teaching algorithm, provides an upper bound on TDim. The complete NavTeach

algorithm is given in the appendix; we walk through the main steps on an example MDP in

Figure 3.2(a). For the clarity of illustration the example MDP has only two actions a1,a2 and

deterministic transitions (black and red for the two actions respectively), though NavTeach

can handle fully general MDPs. The initial state is s(0).

Let us say NavTeach needs to teach the “always take action a1” target policy: ∀s,π†(s) =
a1. In our example, these black transition edges happen to form a tour over all states, but

the path length is 3 while one can verify the diameter of the MDP is only D= 2. In general,

though, a target policy π† will not be a tour. It can be impossible or inefficient for the

teacher to directly teach π†. Instead, NavTeach splits the teaching of π† into subtasks for one

“target state” s at a time over the state space in a carefully chosen order. Importantly, before

teaching each π†(s) NavTeach will teach a different navigation policy πnav for that s. The

navigation policy πnav is a partial policy that creates a directed path from s(0) to s, which

is similar to the neck in the earlier peacock example. The goal of πnav is to quickly bring

the agent to s often enough so that the target policy π†(s) = a1 can be taught at s. That

completes the subtask at s. Critically, NavTeach can maintain this target policy at s forever,

while moving on to teach the next target state s ′. This is nontrivial because NavTeach

may need to establish a different navigation policy for s ′: the old navigation policy may be

partially reused, or demolished. Furthermore, all these need to be done in a small number

of steps. We now go through NavTeach on Figure 3.2(a). The first thing NavTeach does is

to carefully plan the subtasks. The key is to make sure that (i) each navigation path is at

mostD long; (ii) once a target state s has been taught: π†(s) = a1, it does not interfere with

later navigation. To do so, NavTeach first constructs a directed graph where the vertices are

the MDP states, and the edges are non-zero probability transitions of all actions. This is
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(a)MDP Instance (b) Breadth-First Tree (c) Depth-First Traversal (d) Navigation π†

Figure 3.2: NavTeach algorithm demo on a simple example.

the directed graph of Figure 3.2(a), disregarding color. NavTeach then constructs a breadth-

first-tree over the graph, rooted at s(0). This is shown in Figure 3.2(b). Breadth-first search

ensures that all states are at most depth D away from the root. Note that this tree may

uses edges that correspond to non-target actions, for example the red a2 edge from s
(0)

to

s(1). The ancestral paths from the root in the tree will form the navigation policy πnav for

each corresponding node s. Next, NavTeach orders the states to form subtasks. This is done

with a depth-first traversal on the tree: a depth-first search is performed, and the nodes are

ranked by the last time they are visited. This produces the order in Figure 3.2(c). The order

ensures that later navigation is “above” any nodes on which we already taught the target

policy, thus avoiding interference.

Now NavTeach starts the first subtask of teaching π†(s(3)) = a1, i.e. the black self-loop

at s(3). As mentioned before, NavTech begins by teaching the navigation policy πnav for

this subtask, which is the ancestral path of s(3) shown in Figure 3.2(d). How many teaching

steps does it take to establish this πnav? Let us look at the nodes along the ancestral path.

By Lemma 3.7 the agent needs to be at the root s(0) A− 1 times in expectation in order for

the teacher to teach πnav(s(0)) = a2; this is under the worst case scenario where the initial

agent state Q0 places a2 at the bottom in state s(0). We will assume that after a visit to s(0),

the remaining episode is simply wasted.
1
Therefore it takes at most H(A− 1) teaching

steps to establish πnav(s(0)) = a2. After that, it takes at most H(A− 1)( 1

1−ε) expected

1
It is important to note that the teacher always has a choice of rt so that the teaching experience does not

change the agent’s Qt state. For example, if the agent’s learning algorithm f is a standard Q-update, then

there is an rt that keeps the Q-table unchanged. So while in wasted steps the agent may be traversing the

MDP randomly, the teacher can make these steps “no-op” to ensure that they do not damage any already

taught subtasks or the current navigation policy.
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number of teaching steps to teach πnav(s(1)) = a1. This is the same argument we used

in Theorem 3.9: the teacher needs to make the agent traverse the partially-constructed

ancestral path (“neck”) to arrive at s(1). The worst case is if the agent performs a random

exploration action anywhere along the neck; it falls off the neck and wastes the full episode.

In general to establish a nagivation policy πnav with path length d, NavTeach needs to

teach each navigation edge at depth i = 1 . . .d with at most H(A− 1)( 1

1−ε)
i−1

teaching

steps, respectively. After establishing this πnav for s(3), NavTeach needs to go down the

neck frequently to ensure that it visits s(3) (A−1) times and actually teach the target policy

π†(s(3)) = a1. This takes an additional at most H(A−1)( 1

1−ε)
d
teaching steps.

When the s(3) subtask is done, according to our ordering in Figure 3.2(c) NavTeach will

tackle the subtask of teaching π† at s(1). Our example is lucky because this new subtask is

already done as part of the previous navigation policy. The third subtask is for s(2), where

NavTeach will have to establish a new navigation policy, namely πnav(s(0)) = a1. And so

on. How many total teaching steps are needed? A key insight is NavTeach only needs
to teach any navigation edge in the breadth-first tree exactly once. This is a direct
consequence of the depth-first ordering: there can be a lot of sharing among navigation

policies; a new navigation policy can often re-use most of the ancestral path from the

previous navigation policy. Because there are exactly S−1 edges in the breadth-first tree of

S nodes, the total teaching steps spent on building navigation policies is the sum of S−1

terms of the form H(A− 1)( 1

1−ε)
i−1

where i is the depth of those navigation edges. We

can upperbound the sum simply as (S− 1)H(A− 1)( 1

1−ε)
D
. On the other hand, the total

teaching steps spent on building the target policy π† at all target states is the sum of S terms

of the formH(A−1)( 1

1−ε)
d
where d is the depth of the target state. We can upperbound the

sum similarly as SH(A− 1)( 1

1−ε)
D
. Putting navigation teaching and target policy teaching

together, we need at most (2S−1)H(A−1)( 1

1−ε)
D =O

(
SAH

(
1

1−ε

)D)
teaching steps.

We remark that more careful analysis can in fact provide matching lower and upper

bounds up to a constant factor, in the form ofΘ
(
(S−D)AH(1−ε)−D+H1−ε

ε [(1−ε)−D−1]
)
.

We omit this analysis for the sake of a cleaner presentation. However, the matching bounds

imply that a deterministic learner, with ε = 0 in the ε-greedy behavior policy, has the

smallest teaching dimension. This observation aligns with the common knowledge in the

standard RL setting that algorithms exploring with stochastic behavior policies are provably

sample-inefficient [52].
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Corollary 3.11. For Level 3 Teacher, any learner in L with ε= 0, and any MDPM within
the MDP family M with |S| = S, |A| = A, episode length H and diameter D ⩽ H, we have
TDim=Θ(SAH) .

3.5.2 Level 4: Teacher with Only Reward Control

In Level 4, the teacher no longer has control over state transitions. The next state will be

sampled according to the transition dynamics of the underlying MDP, i.e. st+1 ∼ P(·|st,at).
As a result, the only control power left for the teacher is the control of reward, coinciding

with the reward shaping framework. Therefore, our results below can be viewed as a sample

complexity analysis of RL under optimal reward shaping. Similar to Level 3, we provide

near-matching lower and upper-bounds on TDim.

Theorem 3.12. For Level 4 Teacher, and any learner in L, and an MDP familyM with |S|= S,
|A|=A⩾ 2, episode lengthH, diameterD⩽H and minimum transition probability pmin, the

teaching dimension is lower-bounded by TDim⩾Ω

(
(S−D)AH

(
1

pmin(1−ε)

)D)
.

Theorem 3.13. For Level 4 Teacher, any learner in L, and any MDP M within the MDP
familyM with |S|= S, |A|=A, episode length H, diameter D⩽H and minimum transition
probability pmin, the Nav-Teach algorithm in the appendix can teach any target policy π† in a

expected number of steps at most TDim⩽O

(
SAH

(
1

pmin(1−ε)

)D)
.

The proofs for Theorem 3.12 and 3.13 are similar to those for Theorem 3.9 and 3.10, with

the only difference that under a level 4 teacher the expected time to traverse a length D

path is at most H(1/pmin(1−ε))
D
in the worst case. The pmin factor accounts for sampling

from P(· | st,at). Similar to Level 3 teaching, we observe that a deterministic learner incurs

the smallest TDim, but due to the stochastic transition, an exponential dependency on D is

unavoidable in the worst case.

Corollary 3.14. For Level 4 Teacher, any learner in A with ε= 0, and any MDPM within
the MDP familyM with |S|= S, |A|=A, episode length H, diameter D⩽H and minimum

transition probability pmin, we have TDim⩽O

(
SAH

(
1

pmin

)D)
.
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3.6 Sample efficiencies of standard RL, TbD and TbR

In the standard RL setting, some learners in the learner family L, such as UCB-B, are

provably efficient and can learn a δ-optimal policy in O(H3SA/δ2) iterations [38], where

δ-optimal means that the cumulative rewards achieved by the output policy is only δ-worse

than the optimal policy, i.e. V∗(µ0)−V
π(µ0)⩽ δ. One direct implication of such a measure

is that the remote states that are unreachable also hardly affect the policy’s performance, so

quantities like the diameter of the MDP does not appear in the bound.

In contrast, in our TbR work, we aim at learning the exact optimal policy, and will thus

suffer exponentially if some states are nearly unreachable. However, if we assume that all

states have reasonable visiting probabilities, then even the weakest teacher (Level 3 and

4) can teach the optimal policy in O(HSA) iterations, which is of H2
factor better than

the best achievable rate without a teacher. More interestingly, even the learners with a

not as good learning algorithm, e.g. standard greedy Q-learning, which can never learn

the optimal policy on their own, can now learn just as efficiently under the guidance of an

optimal teacher.

Teaching-by-demonstration is the most sample efficient paradigm among the three,

because the teacher can directly demonstrate the optimal behavior π†(s) on any state s, and

effectively eliminate the need for exploration and navigation. If the teacher can generate

arbitrary (s,a) pairs, then he can teach any target policy with only S iterations, similar to

our Level 1 teacher. If he is also constrained to obey the MDP, then it has been shown that

he can teach a δ-optimal policy inO(SH2/δ) iterations [72, 82], which completely drops the

dependency on the action space sizeA compared to both RL and TbR paradigms. Intuitively,

this is due to the teacher being able to directly demonstrate the optimal action, whereas, in

both RL and TbR paradigms, the learner must try all actions before knowing which one is

better. In summary, in terms of sample complexity, we have

RL > TbR > TbD. (3.4)

Contribution Statement: This work has been done jointly with Xuezhou Zhang as

leading author. Shubham formulated the problem statement, worked on theoretical results

for level 1 and 2 teachers while Xuezhou led the efforts for level 3 and 4 teachers. This work

was published at AAAI’21.
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Chapter 4

Nurture-then-Nature Teaching

4.1 Introduction

The problem of designing an optimal dataset to teach a target concept h∗ : X→ Y to a

learner, also known as Machine Teaching, has been a long-studied problem [30, 53, 94]. Prior

works on Optimal Teaching have mainly focused on a single-phase learning setting where

the student learner solely learns under the guidance of the teacher, who has an unlimited

teaching budget [30, 49, 53, 94]. However, in many practical scenarios, the teacher may only

have a limited budget of teaching lessons that it can provide to the learner. For example,

consider a university curriculum setting where a teacher has to teach a concept, say how to

identify a disease from an MRI scan to a student(see Figure 4.1) but it can only teach a limited

number of lessons (datasetDT = {(xi,yi)}|
n
i=1

s.t. n⩽ B) to them before they graduate from

the program. This first phase of learning, which takes place under the guidance of the

teacher, is called the “Nurture" phase. Since “Teaching Dimension” (TD) [30] is the smallest

possible dataset to teach a concept, the teacher will not be able to teach completely if the

budget is less than TD [30].

However, from the student’s perspective, learning does not stop after graduating from

the university. Rather, they transition to a “Nature" learning phase and continue to learn

about the target concept by receiving an i.i.d. dataset DE drawn from the joint distribution

of the nature/environment P ∈ ∆(X×Y). For example, in Figure 4.1, the student keeps

learning about disease identification from i.i.d. MRI scans drawn from a digital library

with the hope of mastering the concept over time. We call this two-phase learning setting
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Figure 4.1: An illustrative example of Nurture-then-Nature learning in the medical teaching

domain. In the ‘nurture’ phase, the student learns to identify a brain disease from MRI scans

under the guidance of a teacher. This is followed by the ‘nature’ phase, where the student

continues learning using an i.i.d. sample from a digital database.

“Nurture-then-Nature”(NtN) learning. The goal of a good teacher is to design an “optimal"

dataset D∗T to minimize students’ error at the end of the nature phase in NtN learning. To

study this further, we ask the following question:

What is an optimal teaching demonstration to minimize the error in the NtN setting?

We study this problem and make the following contributions: 1.) We propose a novel

mathematical framework of “Nurture-then-Nature” learning for studying budget-constrained

teaching where the goal of the teacher is to minimize the final error of the student. 2.) We

study the problem under two levels of knowledge by the teacher and propose teaching

algorithms for each of them:

1. In Instance Agnostic setting, we consider a teacher who does not know the envi-

ronment distribution P and is required to teach instances with any P. Our efficient

teacher constructs an optimal teaching set to simplify the complexity of the learner’s

version space at the end of the ‘Nature’ phase, thereby making it easy for them to

learn from i.i.d. sample in ‘Nature’ phase.

2. In Instance Aware setting, the teacher knows P and is required to be competitive with

the instance optimal teaching set. We propose an algorithm using datamodels [37] to

exactly solve this problem under the linear assumption. Unlike (a), this method works
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for any learner that satisfies the linear risk assumption and extends to non-linear

datamodels as well.

We present both theoretical and experimental results to validate the effectiveness of our

algorithms in both settings and compare their performance to a simulated baseline algo-

rithm.

4.2 Related Works

Machine Teaching has been a well-studied problem in the literature [30, 78, 97]. Past

works have studied optimal teaching in various learning settings ranging from supervised

learning [13, 30, 49, 53] to online/active learning [68, 94] to sequential decision making

and reinforcement learning [15, 87, 92]. However, most of these works have focused on

unconstrained teaching setting where the teacher is free to design and teach a dataset of any

arbitrary size which may not be possible under real-world constraints. Our work studies

budget-constrained teaching in a two-phase supervised learning setting where the teacher

can only provide a dataset up to a fixed size.

Some recent works have considered other forms of constraints that are distinct from

our budget constraints, like time constraint [27], preference constraint [87]. The most

relevant work to ours is the budget-constrained teaching problem examined by [45]. How-

ever, the authors have only considered a single-phase teaching setting of [30] where the

goal is to minimize the learner’s error at the end of the teaching phase. Moreover, their

algorithm and analysis is very specialized to distribution-independent teaching of a class of

monomials [41]. On the other hand, our framework is much more general with a clearly

different goal. Furthermore, our teaching algorithms can handle infinite hypothesis classes

like linear/polynomial classifiers through VC reduction and linear datamodel connections.

Optimal teaching has been shown to be a hard bilevel optimization problem [30, 100],

which limits its practical utility. The main difficulty often lies in estimating the risk of the

learner as a function of the dataset. Naive methods require simulating a learner to estimate

the risk on different independent datasets, making it a challenging task. However, recent

works like linear datamodels [37] have taken a function approximation approach and have

shown that risk can be well approximated by a linear function of the dataset in many real-

world problems. Prior works have utilized this connection to detect backdoor attacks [42],
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forget training data using machine unlearning [28], and to select good datasets for training

large models [25], which aligns closely with the objective of a single-phase machine teaching

setting, which is clearly different from our budget-constrained Nature-then-Nature teaching.

4.3 Problem Formulation

4.3.1 The Learner and The Environment

Consider a predictive modeling task from an input space X to an output space Y defined

by a joint distribution P over X×Y. During learning, a learner receives a dataset D =

{(xi,yi)}|i∈[n] ⊆ (X×Y)n and tries to learn a good predictive model that does well on future

data from P.

An Empirical RiskMinimization (ERM) [62, 76] learner/studentA starts with a hypothesis

class H and minimizes empirical risk with respect to a loss ℓ : Y×Y→ R⩾0 on the training

dataset D,

A(D;H) = argmin

h∈H

1

n

∑
(xi,yi)∈D

ℓ(h(xi),yi) (4.1)

where ℓ is the loss function. It eventually aims to learn a hypothesis with the smallest

risk RP(h) = E(x,y)∼P [ℓ(h(x),y)]. We make the following simplifying assumption on the

realizability of the environment, which has been well used in literature [30, 53].

Definition 4.1 (Realizability &Version Space Learner). An environment is said to be realizable
if ∃h∗ ∈H such that P = PX ·PY|X and PY|X(Y = h∗(X)) = 1. Under realizability, an ERM
learner that minimizes the risk w.r.t. 0− 1 loss and maintains the entire subset of ERM
hypotheses is called a version space(VS) learner.

Remark 4.2. We note that the output of learning A(D;H) can be a single hypothesis or a
subset of them, depending on the learner.

4.3.2 The Teacher

There is a helpful teacher who is required to teach a target hypothesis h∗ ∈H to the learner.

The teacher knows h∗ but can only provide a dataset of size up to budget B ∈ Z+
to the
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learner before they graduate. The teacher will not be able to teach h∗ completely if B is less

than the TD. However, after graduating, the learner keeps learning about h∗ using an i.i.d.

sample from the environment P.

We consider two teaching settings based on different levels of knowledge of the teacher:

1. Instance agnostic setting: In this setting, the teacher does not know the underlying

PX and has to teach a learner in instance instance-agnostic way, i.e., the teaching

should work for any PX.

2. Instance aware setting: In this setting, the teacher knows the underlying distribution
of the environment PX and has to be competitive wrt to instance optimal solution.

Next, we define the interaction of the learner with the teacher and the environment.

4.3.3 The Nurture-then-Nature Setting

The learning process of the version space learner in the NtN setting is split into two phases:

Phase I - The Nurture Phase: In this phase, the learner learns under the guidance

of the teacher. It receives a dataset DT from the teacher and learns a version space of

hypothesis V(DT ;H) consistent with DT given as,

V1 := V(DT ;H) = {h ∈H | h(xi) = yi, ∀(xi,yi) ∈DT }. (4.2)

Phase II - The Nature Phase: The nurture phase is followed by the nature/i.i.d. learning
phase where the learner starts with the surviving version space V1 from previous phase

and continues to learn about h∗ by receiving a i.i.d. dataset DE∼P
n
of size n from the

environment distribution P. It then learns a version space V(DE;V1) consistent withDE on

V1, i.e.,

V2 := V(DE;V1) = {h ∈ V1 : h(xi) = yi, ∀(xi,yi) ∈DE}.

At the end of this phase, the learner hopes to have learned h∗ with as small a risk as possible.

Remark 4.3. We make the following remarks on the two phases:

1. With budget B ⩾ TD, this phase captures the standard unconstrained teaching prob-
lem [30]. However, with a budget B < TD, the teacher can only teach h∗ partially to the
learner, leading to a very different teaching problem.
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2. We note that in the Nature phase, the learner learns using a hypothesis class V1 that has
been simplified from H by the teaching set DT provided by the teacher. In effect, the
teacher controls the complexity of learning from Nature by simplifying V1 using DT .

4.4 Instance Agnostic Teaching Setting

In an instance agnostic setting, the teacher does not know the environment distribution PX

and aims to minimize a high probability instance agnostic objective defined as follows:

Teaching objective: Given an instance (X,Y,PX,h
∗
,H,δ,n,B), the instance agnostic

teaching objective is defined as,

D∗T ← argmin

ε,DT :|DT |⩽B
ε

s.t. ∀P, PDE∼P
n

(
max

h∈V(DE;V(DT ;H))
RP(h)⩽ ε

)
⩾ 1−δ (4.3)

Remark 4.4. We make the following remarks: 1.) The teacher does not know PX, they have
to ensure thatthe learner succeeds in any P. 2.) The teacher influences learners’ performance
through a budget-constrained dataset DT : |DT |⩽ B that reducesH to V(DT ;H).

Note that the feasibility constraint in 4.3 requires satisfying (n,δ) PAC guarantee for

any P. Prior works in PAC-learning [34, 88] provide the following instance agnostic bound

on error of the version space learner that helps to simplify the problem objective.

(PAC-guarantee) : ∀P, ∀n ∈ N,δ ∈ (0,1), if D
iid
∼ Pn,

w.p.⩾ 1−δ, max

h∈R(V(D;H))
R(h)⩽ ε(n,δ,H) (4.4)

where, R(h) is the risk with respect to the 0−1 loss. For a hypothesis classH and a fixed

(n,δ), PAC-guarantee satisfies 4.4 with ε(n,δ,H) =O( 1n · (d(H)+ log( 1δ))) where d(H) is

the VC dimension of H. Later, [32] also proved that this guarantee is optimal with respect

to d(V(H)).

Note that the feasibility constraints of Equation 4.3 are nothing but a PAC-guarantee

with surviving version space V1 = V(DT ,H) as the hypothesis space. This reduces our



60

teaching objective in 4.3 to:

D∗T ← argmin

DT :|DT |⩽B

1

n

(
d(V(DT ;H))+ log

(
1

δ

))
. (4.5)

Since (n,δ) are fixed, we essentially need to minimize the VC of the version space

V(DT ;H) maximally under the budget constraint B, leading to the following theorem on

the teaching algorithm.

Theorem 4.5. A teaching algorithm that optimally reduces the VC dimension of the version
space V(DT ;H) surviving at the end of the Nurture phase solves the instance-agnostic NtN
teaching problem optimally.

Computing VC is tractable for hypothesis classes like axis-aligned rectangles, linear

classifiers, and polynomial classifiers [62, 76]; however, in general, this is an NP-hard

problem [59, 60, 77]. Since optimally reducing VC is at least as hard as computing it, we

cannot hope to reduce the VC of general hypothesis classes efficiently. Instead, we focus on

optimally reducing the VC dimension for tractable hypothesis classes under fa inite teaching

budget.

We begin with one of the simplest hypothesis classes, a finite binary hypothesis class [30],

and then extend our analysis to several other hypothesis classes.

4.4.1 Finite Binary Hypothesis Class.

A finite binary hypothesis class consists of a set of hypotheses, each mapping a finite

input space X to binary labels {0,1}, i.e.,H ⊆ 2
X
. We know that computing VC ofH takes

Θ(nlog(n)) time [60, 66] and is NP-hard. This eventually makes optimizing for VC an NP-

hard problem as well. Hence, we further upper-bound VC by the size of the hypothesis class

and aim to minimize that instead.

Given a budget B, the teacher aims to find teaching set DT ⊆ X, |DT |⩽ B, that reduces

the size of version space V(DT ;H) maximally as follows:

D∗T ← arg min

DT :|DT |⩽B
|V(DT ;H)|. (4.6)
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It turns out that even this problem is NP-hard since it’s equivalent to another NP-hard

problem called Budgeted Maximum Coverage Problem [43]. However, there exists an efficient

algorithm to solve this problem approximately, leading to the following theorem.

Theorem 4.6. There exists an efficient algorithm that reduces the version space size of a finite
hypothesis class up to an approximation ratio of 1− 1

e .

The algorithm and the proof of the theorem can be found in the appendix. Next, we

study another classic hypothesis class considered in literature, the axis-aligned rectangle

hypothesis class [30].

4.4.2 Axis-aligned Rectangles on Z2 grid

This class consists of all axis-aligned rectangles in Z2
space. A hypothesis h ∈H is defined

by the two opposite corners (xmin,ymin),(xmax,ymax) ∈ Z2
and it produces the following

classifier:

h((x,y)) = 2 ·1[xmin ⩽ x⩽ xmax∧ymin ⩽ y⩽ ymax]−1.

We recall that VC of this class dVC(H) = 4 [62], and, the TD for teaching any h ∈H is

6 [30]. For our NtN setting, we focus on non-trivial cases with B < TD.

Theorem 4.7 (Optimal VC reduction for axis-aligned rectangles.). The VC dimension of
axis-aligned rectangles in Z2 can be optimally reduced as follows:

Budget B 1 2 3 4 5 ⩾ 6

min VC 4 3 2 2 1 0

Table 4.1: Minimum VC achievable by B-budgeted teaching on axis-aligned rectangle class

in Z2
.

We refer the readers to the appendix for a complete proof. Next, we consider two popular

hypothesis classes, a homogeneous linear and a polynomial class.
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4.4.3 Linear Hypothesis Classifiers in Rd

Consider teaching a family of homogeneous linear binary classifiers in H = Rd. Given a

w ∈ Rd, it induces a linear classifier of form,

hw(x) = 2 ·1[w⊤x⩾ 0]−1.

Prior works have studied optimal teaching of linear decision boundaries in an uncon-

strained setting and have shown that TD= d+1 for the perceptron learner [49] and TD= 2

for the max-margin learner [53]. We also know that the VC-dimension of linear class H is

d [62] and address the following question:

“How to optimally reduce the VC-dimension V(DT ;H) using a constrained teaching set
|DT |⩽ B?”.

Figure 4.2: Teaching dataset produced by our optimal VC reduction algorithm for teaching

w∗ ∈ R3
with B= 2 and B= 3 kills a one and two-dimensional subspace of (w∗)⊥, respec-

tively.

To do so, we characterize the version space in terms of a polyhedral cone and prove

that minimizing VC eventually requires reducing the ambient dimensionality of the version

space as stated in Lemma C.7,C.8 of the appendix. We then provide an algorithm to compute

the optimal dataset that essentially works by killing the B−1 orthogonal subspace of w∗

on a budget B, leading to the theorem stated next.
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Theorem 4.8. There exists an algorithm that ∀B⩽ d+1, optimally reduces VC of the linear
class tod−B+1 and optimal teaching set is given asDBT = {(v1,+1), . . . ,(vB−1

,+1),(−
∑
i∈[B−1] vi,+1)},

where, {v1, . . . ,vB−1
} is a B-basis of w∗⊥ subspace.

Our analysis involves a novel way of characterizing VC of linear version spaces, and

we utilize it to provide guarantees on optimally reducing VC using a teaching dataset. The

complete proof is deferred to the appendix. Next, we consider a polynomial hypothesis class

in Rd.

4.4.4 Polynomial Hypothesis Classifiers in Rd

LetH be hypothesis class of k-degree polynomial classifiers in Rd, given by,

H = {h | h(x) = 1[
∑
|α|⩽k

wαxα ⩾ 0], α ∈ Nd}

and let ϕ :Rd→Rl denote the feature mapping for the corresponding Kernel Hilbert space.

We know that l=
(
d+k−1

k

)
and the bases feature functions is given by,

B=

xα = xα1
1
xα2
2
. . .x

αd
d

∣∣∣∣∣∣ |α|⩽ k,
∑
j

αj = k, α ∈ Nd
 .

Furthermore, any hypothesis h ∈H can be represented by a parameterw∗ ∈Rl in the basis

of the Hilbert space.

The polynomial classifier is linear in the ϕ feature space, and the teacher aims to

minimize the VC of the corresponding version space. However, unlike the linear model,

each of the teaching input vectors in feature space must be realizable under the feature

function ϕ on some x ∈ Rd.
Assuming the feature function is rich, i.e., the preimages of feature vectors exist, the

optimal reduction in VC of polynomial classifiers is given by the following theorem,

Theorem 4.9. For any target polynomial h∗ ∈H, the optimal teaching set that reduces the
VC dimension of the polynomial version space by B−1 is given as DBT = {(xi,+1) : ϕ(xi)⊥
w∗, i ∈ [B−1],∀i ̸= j,ϕ(xi)⊥ ϕ(xj)}∪ {(ϕ(xB) = −

∑B−1

i=1
ϕ(xi),+1)}.
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We defer the proof to the appendix. Note that the above algorithm relies on computing

preimage feature vectors, and we also propose an algorithm to compute them in the appendix.

4.5 Instance Aware Teaching Setting

In this section, we will study the instance-aware setting where the teacher knows the envi-

ronment distribution P ∈ ∆(X×Y) and is required to construct a teaching set competitive

w.r.t. to the instance optimal solution.

We first study this problem on classical finite version space learners and provide a prov-

ably efficient approximation algorithm and a mixed integer non-linear program optimization

formulation to solve this problem.

4.5.1 Teaching Finite Hypothesis Class

In a finite hypothesis setting, we have a domain X= [m], a hypothesis classH =⊆ 2
X
s.t.

|H|= n and a target hypothesis h∗ ∈H. The environment distribution is defined by a join

distribution PX,Y = PX ·PY|X.

Assumption 4.10 (Realizability). There exists a realizable distribution PX,Y, s.t.,

PX,Y(x,y) = PX(x) ·1[y= h∗(x)]

We assume that the environment is realizable w.r.t. h∗ and denote the joint distribution as
PX,h∗ .

The PX induces a subset of hypotheses that is equivalent to h∗ in terms of risk,

{h∗}PX := {h ∈H : RPX,h∗ (h) = 0}= {h ∈H :
∑

x:h(x) ̸=h∗(x)
px = 0}. (4.7)

From the learner’s point of view, learning is complete if it learns any non-empty subset of

{h∗}PX .
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Teaching Objective: The goal of the teacher is to design an optimal teaching dataset

that minimizes the expected nature time of the learner, stated as follows:

D∗T ←min

DT

EDE∼P
∞
X,h∗[min{t⩾ 0 : ϕ⊊ V(DT ∪D

(t)
E )⊆ {h∗}PX}]

subject to |DT |⩽ B (4.8)

where DE = {(xj,yj)}|
∞
j=1

denotes a infinite sequence of sample drawn from PX,h∗ in the

nature phase and D
(t)
E = {(xj,yj)}|

t
j=1

.

Recall that teaching (x,h∗(x)) to the learner eliminates/covers a subset of hypotheses,

Wx = {h ∈H : h(x) ̸= h∗(x)}⊆H.

We denote the collection of these subsets asW = {Wx : x ∈ X}. To completely learn h∗

(up to an equivalence class of zero risk), the learner should be able to eliminate the universe

of all inconsistent hypotheses, U=H\{h∗}PX by the end of the nature phase.

Given a nurture teaching dataset DT , the set of (bad) inconsistent hypothesis surviving

after being taught by DT at the end of nurture phase is given as,

J(DT ) := V(DT )\{h
∗}PX = {h ∈H\{h∗}PX : ∀(x,h∗(x)) ∈DT ,h(x) = h∗(x)}.

J(DT ) is also the hypothesis set that has to be eliminated in the nature phase using an i.i.d.

dataset DE so that the learner succeeds in learning h∗. The corresponding elimination time

by a nature dataset DE is expressed as,

T(DE,J(DT )) =min{t⩾ 0 : ∪j⩽tWxj ⊇ J(DT )}.

Expected Time Objective: The objective of minimizing the expected nature time through

teaching in the nurture phase is restated as follows:

DT (A
∗
;B)← min

DT⊆(X×Y)∗
EDE∼P

∞
X,h∗ [T(DE,J(DT ))]︸ ︷︷ ︸

f(DT )

subject to |DT |⩽ B (4.9)
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We want an algorithm A∗ that minimizes this exact expected time. Next, we characterize

this expected time metric and prove that it is EXP-TIME to evaluate it.

Lemma 4.11 (Expected Time to Cover Inconsistent Version Space). The expected time to
cover J(DT ) = V(DT )\{h

∗}PX using a nature sample, is given as,

f(DT ) =
∑

∅̸=I⊆J(DT )

(−1)|I|−1
1

qI
,

where qI is the probability that a single random drawWx ∼W contains at least one element
in the set I, meaningWx∩ I ̸= ∅, and qI =

∑
x:Wx∩I̸=∅px.

Theorem 4.12 (Hardness of Expected Time). Computing and hence optimizing expected time
in the nature phase for a teaching dataset DT takes exponential time and hence is inefficient.

We note that one needs to enumerate over all possible subsets of inconsistent hypotheses

in J(DT ), thereby requiring an exponential time. Trying to optimize this objective would

hence be an even harder problem.

To avoid this bottleneck, we bound the expected time by a closely matching lower and

upper bound as below, and then minimize the upper bound to find a ‘good’ teaching dataset.

Lemma 4.13 (Bound on Expected Time). The expected time objective f(DT ) is bounded as,

1

minh∈J(DT )ph
⩽ f(DT )⩽

ln(|J(DT )|)+1

minh∈J(DT )ph
.

4.5.1.1 Optimizing Relaxed Upper Bound

For simplicity, we will first relax the upper bound further and provide an efficient algorithm

to optimize that relaxed upper bound that achieves a bi-criteria approximation guarantee

on the exact expected time objective. The relaxed upper bound in given as,

f(DT )⩽
ln(|J(DT )|)+1

minh∈J(DT )ph
⩽

ln(|H|)+1

minh∈J(DT )ph
. (4.10)
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SinceH in Equation 4.10 is fixed, the optimization problem with relaxed upper bound

metric is stated as follows:

D
(RU)
T ← argmin

DT :|DT |⩽B

ln(|H|)

minh∈J(DT )ph

≡ argmax

DT :|DT |⩽B
min

h∈J(DT )
ph (4.11)

Remark 4.14. 1.) For a fixed nurture dataset DT , the objective value minh∈J(DT )ph is the
smallest probability of a “bad” hypothesis in the surviving version space V(DT ). 2.) By
equation 4.10, this probability approximately characterizes the nature time to cover the entire
“bad” hypothesis set J(DT ). 3.) In other words, to optimize nature cover time, the teacher needs
to cover as many low probability hypotheses as possible under the budget B.

The optimization problem in 4.11 can be reduced to a version of the maximal coverage

problem [43], but with a fixed ordering defined over the universe elements, and an objective

to cover as long a suffix as possible under a finite budget B as described next.

Ordered Maximal Suffix Coverage (OMC) Problem The ordered maximal suffix cover-

age problem is defined by a tuple (U,W) where,

1. U= {1,2, . . . ,n} is a finite ordered universe set.

2. W = {Wi ⊆U : i ∈ [m]} is a finite collection of subsets of U.

Any sub-collection of D⊆W covers a subset of U and correspondingly a suffix in U.

The objective of OMC is to select a sub-collection D ⊆W : |D| ⩽ B, that maximizes the

length of the covered suffix. Formally, the optimization objective is given as:

D∗ = argmax

D⊆W,|D|⩽B
p(D) (4.12)

where p(D) is the suffix length function for any sub-collection D defined as:

p(D) =max

k⩾ 0 | {un−k+1
, · · · ,un}⊆

⋃
Wi∈D

Wi

 .
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This problem is NP-hard, as it contains the set cover problem as a sub-problem. Furthermore,

due to ordering, the objective is non-submodular.

Reduction to OMC Problem To reduce the optimization problem in equation 4.11 to

an OMC problem instance, we compute ph,∀h ∈H\{h∗}PX and reorder the universe of

hypotheses based on it as,

U= {h1,h2, · · · ,h|H\{h∗}PX |} s.t. ∀i,phi ⩾ phi+1
,

and the cover subsets are defined by W = {Wx : x ∈ X} where Wx = {h ∈ H : h(x) ̸=
h∗(x)}. The equivalence of the objectives follows from the fact that maximizing the smallest

probability of an uncovered h is the same as maximizing the covered h suffix.

We first take a look at an example below, and then propose an algorithm to solve this

problem that achieves a bi-criteria approximation guarantee.

Example 4.15 (An example instance). We explain the effect of the teaching dataset on the
inconsistent hypothesis universe U=H\{h∗}PX and its corresponding impact on the expected
time in the nature phase through the following illustrative example:

Let’s say there are 15 inconsistent hypotheses in U and we order them in increasing order
(∀i,phi ⩾ phi+1

) of expected time required to cover them from i.i.d. samples E[Th] = 1

ph
as

defined above. The smaller the ph, the harder it is for it to eliminate in the nature learning
phase by equation (4.10).

Figure 4.3: An example of the ordered set cover problem for near-optimal NtN teaching of

a finite hypothesis class.

Consider a teaching dataset that eliminates 7 of the hypotheses so that there are 8 hypotheses
remaining in J(DT ) that have to be eliminated/covered in the i.i.d. nature phase. The expected
time to cover J is dominated by the 1

ph
10

, which corresponds to the lowest probability hypoth-
esis in J. An optimal teaching dataset under budget B can cover as many small probability
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hypotheses, i.e. largest suffix, as possible, leading to the following ordered maximal coverage
problem.

Guarantee with Ordered Maximal Coverage(OMC) Oracle Suppose that we can solve

the ordered maximal coverage problem exactly. This gives the following bound on the exact

expected time NtN objective,

Theorem 4.16. The algorithm AO with OMC oracle achieves the following approximation
bound on the exact expected time NtN objective, i.e.,

f(DT (AO;B))⩽ log(|H|) · f(DT (A∗;B)),

where DT (A;B) represent the dataset constructed by algorithm A on budget B.

Proof. Let DT (A∗;B) and DT (AO;B) be the teaching dataset produces by the algorithm

A∗ (that minimizes equation 4.9) and the algorithm AO (that minimizes the relaxed upper

bound in equation 4.11) using budget B respectively.

We have that,

f(DT (AO;B))
(1)
⩽

log(|H|)

pmin(J(DT (AO;B)))

(2)
⩽

log(|H|)

pmin(J(DT (A∗;B)))

(3)
⩽ log(|H|) · f(DT (A∗;B))

where pmin(J(DT )) =minh∈J(DT )pj, (1) and (3) follows from upper bound definition, (2)

follows from optimality of DT (AO;B) on loose upper bound objective, i.e.,

pmin(J(DT (AO;B)))⩾ pmin(J(DT (A
∗
;B))).

Solving the OMC problem is NP-hard as it contains the set cover. So, we propose

an iterative greedy algorithm that achieves a bi-criteria approximation guarantee on the

objective.

Iterative Greedy Set Cover Algorithm We propose a greedy algorithm to solve the

ordered maximal coverage problem, which yields an approximate bi-criteria optimality.
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To achieve the objective of covering as long a suffix as possible under budget B, we

enumerate over the order hypothesis suffix hj: from j =M, · · · , 1 and try to cover them

by using the greedy set cover algorithm. We enumerate over all j until we can no longer

cover all hj: under budget B. At that point, we return the previous cover set as the optimal

teaching set, refer to algorithm 3 for more details.

Algorithm 3: Greedy Algorithm for Optimizing Relaxed Upper Bound

Input: Input space X, hypothesis classH, target hypothesis h∗, and budget B

Output: A teaching set of size B

1: Compute set cover U=H\{h∗},W = {Wx : x ∈ X}.

2: SortH\{h∗}PX in decreasing order of ph as U= {h1,h2, · · · ,hn}.
3: for k in {1, · · · , |H\{h∗}PX |} do
4: # construct a set cover Ck for the suffix universe Uk = {hn−k+1

, . . . ,hn}.

5: Initialize the set of chosen subsets: Ck = ∅.
6: Initialize the set of uncovered elements: Uunc =Uk.
7: while Uunc ̸= ∅ do
8: SelectW∗ = argmaxW∈W |W∩Uunc| with maximum uncovered elements and it

to the solution: Ck = Ck∪ {W∗}.
9: Update the uncovered elements: Uunc =Uunc \W

∗
.

10: if |Ck|> B then
11: break
12: return {(x,h∗(x)) :Wx ∈ Ck−1

}.

Theorem4.17. Our iterative greedy algorithm achieves the following bi-criteria approximation
bound on the NtN objective,

f(DT (AG;B))⩽ log(|H|) · f(DT (A∗;B/ log(|H|)))).

The front log(|H|) factor is due to minimizing the upper bound on expected nature time, and
the B/ log(|H|) is due to using the greedy algorithm for solving the OMC subproblem.

Proof. Consider the maximum suffix s∗ covered by the OMC oracle AO under budget B, i.e.,

the number of subsets required to cover s∗, n∗(s∗) = B.

To cover the same suffix using greedy algorithm AG, one would need at most

nAG
⩽ log(|s∗|) ·n∗(s∗)⩽ log(|H|) ·n∗(s∗) = log(|H|) ·B
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subsets, i.e. if we have a budget of log(|H|) ·B, we should be able to obtain the optimal

solution of OMC problem on an instance with budget B by running AG with budget B ·
log(|H|). This would achieve the corresponding optimal expected time guarantee for B for

the optimal NtN problem, given as,

f(DT (AG;B · log(|H|)))⩽ log(|H|) · f(DT (A∗;B)).

Substituting B with
B

log(|H|) , we obtain the result.

Remark 4.18. We note that we can only guarantee approximation competitiveness with respect
to a weaker budget B/ log(|H|). We further conjecture that due non-submodularity of the OMC
objective, finding an efficient approximation algorithm that is competitive w.r.t. budget B is
likely an NP-hard problem.

4.5.1.2 Optimizing the Tight Upper Bound

In this section, we present a Mixed Integer Non Linear Program that directly optimizes

the tight upper bound on the expected time objective, thereby achieving a better teaching

guarantee. We start with a generic formulation of the Budgeted Cover Ratio problem that

directly models the upper bound objective and provides the MINLP formulation.

Budgeted Cover Ratio Minimization We consider the following budgeted coverage

problem. Let U= {uj | j= 1,2, . . . ,n} denote a finite universe of items. Each item uj has an

associated nonnegative value pj ∈ R⩾0. We are given a family of subsets,

W= {Wi ⊆U | i= 1,2, . . . ,m},

and a budget B ∈ N that limits the number of subsets we may select: we must choose a

subcollectionW ⊆W satisfying |W|⩽ B.

Given a chosen subcollectionW ⊆W, we denote by

⋃
Wi∈WWi the set of covered items

and by {uj ∈ U : uj /∈ ∪Wi∈WWi} the uncovered items. Our objective is to minimize the

ratio

min

W:|W|⩽B

log

(
n− |∪Wi∈WWi|

)
min

j:uj /∈∪Wi∈WWi

pj
, (4.13)
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where we assume that there is at least one uncovered item (so the numerator is well-defined)

and that the corresponding min in the denominator exists and is strictly positive.

Remark 4.19. Note that choosing U=H\h∗ and W= {Wx : x ∈ X} leads to the tight upper
bound optimization problem.

Theorem 4.20. An algorithm that solves 4.13 exactly achieves the following bound on the NtN
objective,

f(DT (A;B))⩽ log(|V(DT (A
∗))|) · f(DT (A∗;B)).

Proof. The proof follows the same structure as the proof of algorithm 4.16.

Remark 4.21. Compared to the OMC method for optimizing relaxed upper bound, this
algorithm can perform significantly better when V(DT (A

∗)) is very small compared to H.
However, solving this problem is very challenging as it entails a complex non-submodular
objective. We propose a practical MINLP program to practically solve it without any theoretical
guarantee.

Mixed-Integer Nonlinear Reformulation We now derive a mixed-integer nonlinear

program (MINLP) that encodes the objective (4.13). For convenience, we introduce the

indicators ϕij ∈ {0,1} for i ∈ [m], j ∈ [n], and binary decision variables bi ∈ {0,1} for

i ∈ [m]:

ϕij =

1, if uj ∈Wi,

0, otherwise,

bi =

1, ifWi ∈W,

0, otherwise.

We introduce coverage variables cj ∈ [0,1], j = 1, . . . ,n, indicating whether item uj is

covered by at least one selected subset. The variables cj are linked to the selection variables

bi through the standard “OR” linearization:

cj ⩽
m∑
i=1

ϕijbi, ∀j ∈ [n], cj ⩾ ϕijbi, ∀i ∈ [m], j ∈ [n].

Thus cj = 1 if and only if at least one chosen subsetWi with bi = 1 contains uj; otherwise
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cj = 0. The budget constraint on the number of selected subsets is

m∑
i=1

bi ⩽ B, and define e= log

(
n−

n∑
j=1

cj

)
.

so that n−
∑
j cj is the number of uncovered items and e is its logarithm. We enforce

this relationship and its domain explicitly by n−
∑n
j=1
cj > 0. Finally, for a candidate ratio

θ, we require that θ be at least e/pj for every uncovered item uj (those with cj = 0). This

can be encoded compactly as

(1−cj)e⩽ θpj, ∀j ∈ [n],

since the left-hand side equals ewhen cj = 0 and 0 when cj = 1. This motivates the following

feasibility problem for a fixed parameter θ:

MINLP(θ)

min

b,c,e
0 (4.14a)

s.t. bi ∈ {0,1}, ∀i ∈ [m], (4.14b)

cj ∈ [0,1], ∀j ∈ [n], (4.14c)

cj ⩽
m∑
i=1

ϕijbi, ∀j ∈ [n], (4.14d)

cj ⩾ ϕijbi, ∀i ∈ [m], j ∈ [n], (4.14e)

m∑
i=1

bi ⩽ B, (4.14f)

e = log

(
n−

n∑
j=1

cj

)
, (4.14g)

n−

n∑
j=1

cj > 0, (4.14h)

(1−cj)e ⩽ θpj, ∀j ∈ [n]. (4.14i)
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This is amixed-integer nonlinear program (MINLP) in the variables (b,c,e), parametrized

by θ. We denote this feasibility problem by MINLP(θ).

Proposition 4.22. Let θ⋆ denote the optimal value of (4.13). Then:

• If θ⩾ θ⋆, the feasibility problem MINLP(θ) admits at least one feasible solution.

• If θ < θ⋆, the feasibility problem MINLP(θ) is infeasible.

Thus, θ⋆ is characterized as the smallest value of θ for which MINLP(θ) is feasible.

We can exploit themonotonicity of feasibility in θ to compute θ⋆ using a bisection (binary

search) scheme. We assume we are given initial lower and upper bounds 0⩽ θL < θU such

that MINLP(θU) is feasible and MINLP(θL) is infeasible. One natural choice is to take θL = 0

and construct a conservative upper bound θU from problem data (e.g., using worst-case

coverage patterns).

At each iteration, we solve the feasibility problem MINLP(θ) for the midpoint θ =

(θL+θU)/2. If MINLP(θ) is feasible, we can safely decrease the upper bound to θU← θ;

otherwise, we increase the lower bound to θL ← θ. This process is repeated until the

interval [θL,θU] is smaller than a prescribed tolerance ε > 0. The corresponding algorithm

is summarized in Algorithm 4.

In practice, any off-the-shelf MINLP solver can be used in the inner loop to solve

MINLP(θ) as a pure feasibility problem. Once
ˆθ has been computed to the desired tolerance,

the corresponding selectionW can be deployed as the solution to the original problem (4.13).

4.5.2 NtN Teaching Through Function Approximation of Risk

Unlike the version space learner on a finite hypothesis setting, characterizing the expected

time or the risk of training a complex learner on a dataset DT , and further optimizing it

over the nurture dataset DT is a very challenging problem. To avoid this issue, we take a

function approximation approach where we first approximate the risk of a learner using

datamodels and then use the datamodel approximator to find the optimal teaching dataset

for optimal NtN teaching.

The beauty of this algorithm is that one can utilize it to teach any learner as long as a

good approximator of its risk is available. In this section, we consider the risk-based NtN

objective - teaching of learners to minimize their expected risk at the end of the nature

phase as stated below.
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Algorithm 4: Bisection Algorithm for Budgeted Coverage Ratio Minimization

Require: Universal set U, subsetsW, values pj, budget B, initial bounds θL < θU,

tolerance ε > 0.

Ensure: Approximate optimal ratio
ˆθ and selectionW.

1: Set k← 0.

2: while θU−θL > ε do
3: θ← (θL+θU)/2.
4: Solve the feasibility problem MINLP(θ) in variables (b,c,e), given by

constraints (4.14b)–(4.14i).

5: if MINLP(θ) is feasible then
6: θU← θ.

7: Store the corresponding solution (b(k),c(k),e(k)).
8: else
9: θL← θ.

10: k← k+1.

11: Set
ˆθ← θU.

12: Recover the final selectionW← {Wi ∈W : b
(k)
i = 1} from the last feasible solution.

13: return ( ˆθ,W).

4.5.2.1 Problem Formulation

The Learner: We consider any predictive modeling algorithm that does ERM w.r.t. a

hypothesis class H, i.e., on receiving a dataset D= {(xi,yi)}|
K
i=1

, it minimizes the empirical

risk defined by a loss function as follows,

ˆh← argmin

1

K

K∑
i=1

ℓ(h(xi),yi)+λ ·Rreg(h).

The empirical test risk of the learned on a seperate test set
ˆD= {(xj,yj)}|

m
j=1

is computed as

ˆR(A(D)) = 1

m

∑m
i=1
ℓ( ˆh(xj),yj).

The Environment and the Teacher: The environment is specified by a realizable dis-

tribution PX,h
∗
. In the nature phase, the learner receives a dataset of size n from the

environment. The teacher can construct any dataset of size up to B and is required to

minimize the expected risk of the learner at the end of the nature phase.

Expected Risk Objective: Given an instance (X,Y,P,h∗,H,n,B), the expected risk
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objective of NtN is defined as follows:

D∗T ← argmin

DT :|DT |⩽B
EDE∼P

n [R(A(DT ∪DE)] . (4.15)

Remark 4.23. Unlike the instance-agnostic setting 4.3, the objective 4.15 requires the teacher
to produce a teaching set that is competitive w.r.t. the instance-specific P.

As alluded to before, computing the closed form of the risk of training an algorithm is a

challenging problem. To handle this, we take a function approximation approach by first

approximating the risk using a datamodel [37] and then using this risk approximator to

solve NtN. For simplicity, we first start with a linear approximator called a linear datamodel,

which allows us to obtain a closed-form solution to NtN teaching.

4.5.2.2 Teaching using Linear Datamodel

Linear datamodel proposed by [37] aims to approximate the risk R(A(D)) of training an

algorithm A on a dataset D as a linear function of the dataset.

More formally, given a pool of input universe X, the test risk of training an algorithm

A on dataset D is modeled as a linear function in the indicator feature representation of

dataset D, i.e., 1D ∈ {0,1}X as,

ˆR(A(D))≈w⊤P 1D. (4.16)

The parameterwP is estimated directly by solving a meta-learning problem on meta-dataset

D= {1Di
,R(A(Di))}|

m
i=1

sampled from a distribution defined over data subsets P
2
X ,

wP← argmin

w

1

m

m∑
i=1

ℓ2(w
⊤
1Di

,
ˆR(A(Di))+λ∥w∥1. (4.17)

Remark 4.24. Note that this method can be applied for any learner A and hypothesis class
H, as long as one can efficiently train the base learner A on a collection of datasets D.

Once we have wP, the function w
⊤
P 1D serves as a surrogate for test risk, which is then

used to solve the original NtN problem under the following realizability assumption.
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Assumption 4.25 (Realizability of Linear Datamodel). The risk function of learning algorithm
A is realizable under linear datamodel iff R(A(D)) =w⊤P 1D, ∀D.

Algorithm using Linear Datamodel: Using linear datamodel under assumption 4.25,

the risk in 4.15 can be expressed as R(A(D∪DT )) = w⊤P ·1D∪DT
, which simplifies NtN

objective to:

D∗T ← min

DT :|DT |⩽B
w⊤P ·ED[1D∪DT

]. (4.18)

Expanding ED
[
1D∪DT

]
x
= (1−(1−Px)

n)+1x∈DT
· (1−Px)n, we note that the first term

is independent of DT and thus can be ignored. This reduces equation 4.18 to the following,

D∗T ← arg min

DT :|DT |⩽B

∑
x∈X

1x∈DT
·wP,x(1−Px)n. (4.19)

This is a Unit Profit Knapsack problem where every item x has a unit cost and weight

wP,x(1− Px)
n
. It is efficiently solvable by choosing B items with the smallest weight,

leading to the following theorem.

Theorem 4.26. Under assumption 4.25, the instance-aware NtN problem is efficiently solvable,
and the optimal solution is given by,

D∗T ← argmin

B

{wP,x(1−Px)
n : x ∈ X}. (4.20)

Remark 4.27. We remark that in contrast to the solution of [25], which can be interpreted as
single-phase teaching, our algorithm also utilizes P to be instance-aware in the nature phase.

4.5.2.3 Teaching using Neural Datamodel

The linearity assumption in the linear datamodel can be very strict, even for simpler models,

risk is non-linear and non-additive as a function of the dataset. So, we propose to use more

complex models like neural networks to estimate the risk and use it for the purpose of

teaching. We call such a neural network trained to estimate the risk of a learning algorithm

a neural datamodel.
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Similar to a linear datamodel, a neural datamodel can be trained through backpropagation

on a neural network architecture using the meta-dataset defined above; however, the

challenge is that we have to account for risk in the nature phase of NtN while training it.

More formally, given a pool of input universe X, the NtN risk of training an algorithm

A on dataset D is modeled as a neural function in the indicator feature representation of

dataset D, i.e., 1D ∈ {0,1}X,

EDE∼P
n [R(A(D∪DE))]≈ fθP(1D). (4.21)

As before, the parameter θP is estimated by solving meta-learning problem on meta-

dataset D= {1Di
,
1

K

∑
k∈KR(A(Di∪Dk))}|mi=1

sampled from a distribution defined over

possible data subsets P
2
X , and k i.i.d. samples from environment distribution PX

θP← argmin

w

1

m

m∑
i=1

ℓ2(fθ(1Di
),EDE

[R(A(D∪DE))]+λ∥w∥1. (4.22)

Once we have θP, the function fθP(1D) serves as a surrogate for true NtN risk, which is

utilized to solve the original NtN problem using projected gradient descent on the input

space using the algorithm below.

Algorithm 5: Regularized Projected Gradient Descent

Input: model family: fθ : x→ R, target: y∗ = 0, sparsity: B, learning rate: η

Output: x∗ ∈ {0,1}d s.t. ∥x∥1 ⩽ B

1: initialize x ∼ {0,1}d randomly.

2: while until convergence do
3: gradient step: x= x−η∇xlθ(x)
4: projection step: x← ProjB(x) {set B top entries of x to 1, others to 0.}

5: return x

While neural datamodels offer superior representation of the NtN risk compared to

linear baselines, they incur higher training costs. Additionally, although the projected

gradient descent solver is efficient to implement, it lacks theoretical guarantees for global

convergence. We leave the resolution of these trade-offs and the exploration of more robust

optimization strategies to future work.
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4.6 Experiments

We evaluate our teaching algorithms for teaching learners with diverse hypothesis classes

(in both NtN settings) and compare their performance against relevant baselines, as outlined

below:

1. Performance of the algorithm: 1.) Teach vs no-teach: Given a fixed teaching budget,

do our teaching algorithms produce significant gains compared to no teaching? 2.)

Role of budget: Does higher budget lead to better teaching performance?

2. Comparison with simulated teaching: In simulated teaching (Sim-Teach), the

teacher simulates K learners(we choose a moderate K for fair comparison based on

computation cost), each with a random teaching set of size B, and then selects the

best-performing teaching set among them for final teaching.

Our experiments, designed for conceptual clarity, serve as clear proof of concept to

corroborate our theory. A natural extension of our work would involve more complex

benchmarks and datamodels. This represents a promising direction for future work, and we

outline a path for it in the appendix.

4.6.1 Instance Agnostic Teaching by Optimal VC Reduction

We apply our optimal VC reduction algorithm(OPT-VC) to a version space learner with a

linear and an axis-aligned rectangle class to demonstrate its effectiveness in an instance-

agnostic setting.

4.6.1.1 Homogeneous Linear Classifiers

We consider teaching a w∗ ∈ R4
to a homogeneous linear version space classifier. The

nature’s P is a uniform distribution over the sphere S4. We discretize the weight space and

do exact version space learning, as specified in equation [4.2]. The error is computed by

evaluating the worst classifier in the version space V(D) on a held-out test set.

Our results: We tested our algorithm 4.4 for teaching this learner on various budget

B ∈ {0, . . . ,d+ 1} and plot its NtN performance
ˆR(A(DT ∪DE)) as a function of niid as

shown in Figure 4.4.
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Figure 4.4: Performance of our OPT-VC algorithm on a linear learner.
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Figure 4.5: Comparing our optimal VC reduction algorithm to a simulated baseline for

teaching a linear learner.

The blue curve B= 0 denotes no-teaching, i.e., the learner only learns from niid points,

while other curves represent teaching with respective budget B. Figure 4.4, we observe that

OPT-VC outperforms no-teaching for all B. Moreover, a higher B consistently leads to lower

test risk, reaching to zero for all niid once B ⩾ TD = 5. We also compare our algorithm

against the Sim-Teach with B = 3 and K = 4,100 simulations as shown in Figure 4.5. We

observe that Sim-Teach with K = 4 performs a bit better than i.i.d. teaching but is still

outperformed by OPT-VC. Even with K = 100, which is computationally expensive, Sim-

Teach could barely compete with our OPT-VC algorithm.

4.6.1.2 Axis Aligned Rectangle Class

We consider axis-aligned rectangle class defined on space X= {−n, · · · ,n}2 and choose a

target rectangle h∗ and PX =U(X). As before, the version space learner maintains a version
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space V(D;H) and is evaluated by the worst hypothesis in V(D).

Our results: Figure 4.6 shows the NtN performance of our OPT-VC algorithm on various

budget sizes 4.1 as a function of niid on the x-axis.

As before, the blue curve corresponds to no teaching, while others represent budgeted

teaching with various B. We see from Figure 4.6 that our OPT-VC consistently outperforms

no-teaching and leads to lower error with a higher budget. Again, once B⩾ TD= 6, nurture

alone leads to a zero risk.

We also compare OPT-VC to Sim-Teach and show the results in Figure 4.7. Sim-Teach

simulates K = 4,100 learners with a random B = 3 teaching set and picks the best one it

finds. Unlike the linear case, Sim-Teach significantly underperforms w.r.t. our OPT-VC

algorithm on both K’s.

Figure 4.6: Performance of our optimal VC reduction algorithm on the learner.

Figure 4.7: Comparing our optimal VC reduction algorithm to the simulated baseline in

teaching axis-aligned rectangle class.
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4.6.2 Instance Aware Teaching through Linear Datamodel

In this section, we demonstrate the effectiveness of our linear datamodel algorithm to teach

a linear perceptron learner in the instance-aware setting of section [4.5].

For simplicity, we choose a finite-size universe, X⊂ R2
, consisting of equally-spaced

points on the unit circle, a w∗ ∈ R2
and PX =U(X) as shown in Figure 4.9. We first train a

linear datamodelwP that represents the risk of a linear perceptron(refer to the appendix for

more details). Once we obtain ŵP, we select the bottom B input X’s as the teaching dataset

based on the value ŵP,x(1−Px)
n
.

Our results: We evaluate the NtN risk of perceptron on the teaching dataset produced by

the datamodel method(OPT-DM) and report it in Figure 4.8. We observe that OPT-DM with

budget B= 2,3 significantly outperforms no-teaching (B= 0). It is also worth noting that

D∗T generated by OPT-DM differs somewhat from those produced by OPT-VC, as illustrated

in Figure 4.9. Nevertheless, both approaches reduce the learner’s risk compared to just using

an i.i.d. dataset, as shown in Figure 4.8.

Figure 4.8: Comparing the teaching set (constructed with linear datamodel) with the case

of no teaching.
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Figure 4.9: Teaching sets as constructed by linear datamodel method on a perceptron

learner in R2
.
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Appendix A

Optimal Teaching for Linear BC Agents

A.1 Proofs of Theorems and Lemmas

Lemma A.1 (Proof of Lemma 1). Optimally teaching the family of consistent linear BC
learners is equivalent to optimally teaching the linear version space BC learner.

Proof. Consider any learner L ∈ C. Given a consistent dataset D, the learner maintains a

subset of consistent hypotheses Lℓ(D) ⊆ V(D). We note that since Lℓ(D) ⊆ V(D), any

teaching set for the linear version space(LVS) learner is also a valid teaching set for other

learners in the family. Hence, it is sufficient to teach the LVS learner. Secondly, since the

LVS learner is also a consistent learner, it is necessary to teach LVS as well. Hence, teaching

LVS is both necessary and sufficient to teach the entire family.

We introduce some definitions before proceeding further. Given a finite set of vectors

X= {xi ∈ Rd : i ∈ [n]}, we define the primal cone generated by this set as

cone(X) =

{∑
i∈X
λixi, λi ⩾ 0, ∀i ∈ X

}
. (A.1)

Given any set U, we define the dual cone as

cone
∗(U) := {y |yTx > 0, ∀x ∈U,x ̸= 0}. (A.2)
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In particular, if the finite set X has xi ̸= 0 for all i ∈ [n], we have

cone
∗(X) := {y |yTxi > 0, i= 1,2, . . . ,n}. (A.3)

We prove some basic properties about cones in Rd.

Proposition A.2. For any finite sets U,V s.t. U⊆ V ⊂ Rd, we have that,

1. cone∗(U) = cone
∗(cone(U)).

2. cone∗(U)⊇ cone
∗(V).

3. cone(U) = cone(V) =⇒ cone
∗(U) = cone

∗(V).

Proof. 1 For anyw∈ cone∗(U),⟨w,ui⟩> 0, ∀ui ∈U =⇒ ∀i,λi⩾ 0,

∑
iλiui ̸= 0, ⟨w,

∑
iλiui⟩>

0 =⇒ w∈ cone∗(cone(U)). For the opposite direction, let∀λi⩾ 0,

∑
iλiui ̸= 0, ⟨w,

∑
iλiui⟩>

0. For a fixed i, choose λi = 1 and λj = 0, ∀j ̸= i. Then, we have ⟨w,ui⟩> 0,∀ui ∈U, thus,
w ∈ cone

∗(U).

2 Now, for second part of the proposition, let x ∈ cone
∗(V) i.e. ⟨x,v⟩> 0, ∀v ∈ V . Since,

U⊆ V , this implies ⟨w,ui⟩> 0,∀ui ∈U. Thus, x ∈ cone
∗(U), thus proving the statement.

3 Finally, for the third part, we have that cone
∗(U)= cone

∗(cone(U))= cone
∗(cone(V))=

cone
∗(V), where the first and third equality follows from part 1 of this proposition and

second equality follows from the premise.

A.1.1 Finding extreme rays of primal cone

In the remainder, we assume that the finite set X= {xi ∈ Rd : i ∈ [n]} contains all nonzero

vectors such that cone
∗(X) is nonempty. Our problem is to find a set X∗ ⊂ X of minimum

cardinality such that cone
∗(X∗) = cone

∗(X).

Recall that cone
∗(X) = {y |yTxi > 0, i ∈ [n]}. We can define cone

∗(X) alternatively as

follows:

cone
∗(X) = {αz |α > 0, z ∈ P(X)}

where P(X) := {z |zTxi ⩾ 1, i ∈ X}.
(A.4)
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Proof. Anyαz satisfying (A.4) clearly has zTxi> 0 for all i∈X, so z∈ cone∗(X). Conversely,
given any y with yTxi > 0 for all i ∈ [n], we set α=mini∈[n] y

Txi > 0 and z= y/α to get

α and z satisfying (A.4).

The key element of the algorithm is an LP of the following form, for some x ∈ X:

LP(x,X/{x}) : min

w
wTx

subject towTxi ⩾ 1 ∀i ∈ X/{x}.
(A.5)

Note that this problem can be written alternatively, using the notation of (A.4), as

min

w
wTx subject to w ∈ P(X/{x}). (A.6)

The dual of (A.5) will also be useful in motivating and understanding the approach:

LP-Dual(x,X/{x}) : max

{λi:xi∈X/{x}}

∑
xi∈X/{x}

λi

s.t.

∑
xi∈X/{x}

λixi = x, λi ⩾ 0 for all xi ∈ X/{x}.
(A.7)

We prove a lemma with several observations.

Lemma A.3 (Proof of Lemma 3). For a non-empty set X and an x ∈ X, we have the following
results.

(i) When (A.5) is unbounded, (A.7) is infeasible, so x /∈ cone(X/{x}). Furthermore, ∃w∈Rd

s.t. w ∈ cone
∗(X/{x}) but w /∈ cone

∗(X).

(ii) if (A.5) has a solution, the optimal objective value must be positive.

(iii) When (A.5) has a solution with a positive optimal objective, then x ∈ cone(X/{x}).

Furthermore, we can iterate over all candidate elements in X to find a unique representative set
X∗ which contains on vector for each supporting halfspace of cone∗(X) and equivalently each
extreme ray of cone(X).

Proof. (i) From LP duality, when (A.5) is unbounded, then (A.7) is infeasible, giving the

first part of the result. For the second part, we note by the feasibility condition of



96

A.5 that the optimal solutionw∗ ∈ cone
∗(X/{x}) but since solution is unbounded, i.e.,

w∗Tx→−∞< 0, we have that, w∗ /∈ cone
∗(X). Such an x represents a supporting

halfspace of cone
∗(X) or, equivalently, an extreme ray of cone(X).

(ii) If (A.5) were to have a solution with optimal objective 0, then by LP duality, the

optimal objective of (A.7) would also be zero, so the only possible value for λ is λi = 0

for all xi ∈ X/{x}. The constraint of (A.7) then implies that x= 0, which cannot be

the case, since we assume that all vectors in X are nonzero.

Note that (A.5) cannot have a solution with a finite negative optimal objective value,

because by LP duality, (A.7) would also have a solution with negative objective value.

However, the value of the objective for (A.7) is non-negative at all feasible points,

leading to a contradiction.

(iii) When (A.5) has a solution with positive optimal objective, then LP duality implies

that (A.7) has a solution with the same objective. Thus, there are nonnegative λi,

xi ∈ X/{x}, not all 0, such that the constraint in (A.7) is satisfied, giving the result.

The above lemma completely characterizes the set of supporting halfspaces that define

cone
∗(X). To find all the supporting halfspaces we iterate over all x∈X and remove the ones

that are not necessary, i.e., cone
∗(X\{x}) = cone

∗(X), and keep the ones that are necessary

to preserve cone
∗(X), i.e., cone∗(X\{x})⊊ cone

∗(X).

By the lemma, the former happens when LP(x,X\{x})> 0 while the later happens when

LP(x,X\{x})→ −∞. This iterative procedure outputs a set X∗ whose vectors uniquely

represent a collection of supporting halfspaces of cone
∗(X) in dual space and equivalently

a collection of extreme rays of cone(X) in primal space.

Lemma A.4. Let U and V be finite sets with U⊆ V ⊆ Rd and cone∗(V) is non-empty. Then
cone(U) = cone(V) and cone∗(U) = cone

∗(V) if and only if U contains at least one vector
on each of the extreme rays of cone(V).

Proof. For the sufficiency direction, we note that for a set U ⊆ V , if U contains at least

one vector on each of the extreme rays of cone(V) then cone(U) = cone(V) (by definition

all vectors in a cone can be expressed as a conic combination of all extreme vectors).

Furthermore, by Proposition 3, we have cone
∗(U) = cone

∗(V).
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For necessary direction, assume that U does not contain a vector x ∈ V that uniquely

represents an extreme ray cx ∈ cone(V), then by Lemma A.3 point (i), cone(U)⊊ cone(V)

and correspondingly cone
∗(U)⊋ cone

∗(V).

Lemma A.5 (Proof of Lemma 2). A subset T ⊆ S is a valid teaching set if and only if it induces
a representative vector on each extreme ray of the primal cone(Ψ(DS)).

Proof Sketch. Recall that teaching is successful if the teacher can induce a non-empty subset

of consistent version space V(DS) on the learner using a subset of states T ⊆ S, i.e., {} ̸=
V(DT )⊆ V(DS). Since DT ⊆DS, we have that V(DT )⊇ V(DS) 1.1. Hence, for successful

teaching, the teacher has to induce complete V(DS) on the learner. Using Lemma A.4 with

V = Ψ(DS), we observe that teaching is successful, i.e., cone
∗(Ψ(DT )) = cone

∗(Ψ(DS)) if

and only if Ψ(DT ) cover each extreme ray of cone(Ψ(DS)).

TheoremA.6 (Proof of Theorem 4). Given an optimal teaching problem instance (M,ϕ,π∗) 1.2,
our teaching algorithm TIE 1 correctly finds the optimal teaching set D∗ and achieves the
Teaching Dimension TD(π∗;C).

Proof. Lemma A.5 tells us that for valid teaching, the teacher must induce at least one

feature difference vector on each of the extreme rays of cone(Ψ(DS)). Since S,A is finite,

there are only a finite number of extreme rays possible. The iterative elimination procedure

in MinimalExtreme in Algorithm 1 first finds unique representatives for each extreme

ray of cone(Ψ(DS)). This follows from Lemma A.3. Let X be the surviving set of vectors at

the start of an iteration where x is considered. We have that if x ∈ cone(X/{x}), it will get

eliminated by the extreme ray test 1.8. On the other hand, if x is a unique representative for

an extreme ray in X, we have x /∈ cone(X/{x}), and thus x will not get eliminated. At every

iteration, we either eliminate a vector in Ψ(DS) or that vector is a unique representative for

an extreme ray of cone(Ψ(DS)) and cannot be eliminated. Thus, at the end of the iterative

elimination procedure, we recover a set of unique representative vectorsΨ∗ for each extreme

ray of cone(Ψ(DS)).

The next step involves finding the smallest subset of states T ⊆ S that can cover all the

extreme rays. This is done by a set cover problem defined on lines 4-7 of the OptimalTeach
procedure in Algorithm 1. The set of unique representatives of extreme rays forms the

universe to be covered, and each state defines a subset of representatives for extreme rays
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that it can cover. The minimum number of subsets that can cover the entire universe is the

minimum number of states that covers all the extreme rays, giving us T∗ ⊆ S as an optimal

solution for the teaching problem. For instance, with |A| = 2, every state can induce at

most one extreme ray, so picking one state for each extreme ray gives the optimal teaching

set.

Theorem A.7 (Proof of Theorem 5). Finding an optimal teaching set for teaching a linear
version space BC learner is NP-hard in general for instances with action space size |A|> 2.

Proof. We provide a poly-time reduction from the set cover problem to the optimal teaching

version space BC learner problem 1.3. Since the set cover is an NP-hard problem, this implies

that optimal teaching is NP-hard to solve as well. Let P = (U, {Vi}i∈[n]) be an instance of

set cover problem where U is the universe and {Vi}i∈[n] is a collection of subsets of U. We

transform P into an instance of optimal teaching problem Q= (M,ϕ,π∗).

Construction: For each subset Vi of P, we create a state si of Q. For each element k in

the universe U of P, we create an extreme ray vector ψk of feature difference vectors in Q.

The complete construction is given as follows :

1. S= [n],A= [A] where A=maxi∈[n] |Vi|+1.

2. The target policy is π∗(s) =A, ∀s ∈ S.

3. Ψ= {ψk = (cos(2πkn ), sin(2πkn ), 10) : k ∈ [|U|]}.

4. for each s ∈ S we construct feature vectors {ϕ(s,a) : a ∈A} such that the feature dif-

ferences map to extreme raysψ’s. Enumerating over element of Vs := {Vs1, · · · ,Vs|Vs|},
we define the induced feature difference vectors as,

ψsAb =ψVsb , ∀b < |Vs|−1 (A.8)

ψsAb =ψVs|Vs|
, ∀|Vs|−1⩽ b⩽A−1 (A.9)
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Figure A.1: A reduction example from a set cover problem to othe ptimal teaching LBC

problem

Claim A.8. A solution of optimal teaching LBC instance (S,A,π∗,ϕ) gives a solution to the
set cover problem (U, {Vi}i∈[n]) and vice versa.

Finding a collection of subsets {Vi}i∈[n] of smallest size that covers all elements in the

universe U is equivalent to selecting a subset of states S of smallest size that covers all the

extreme rays defined by Ψ.

For a solution {Vj}j∈T∗ s.t. T
∗ ⊆ [n] to the set cover instance (U, {Vi}i∈[n]), the set of

states indexed by T∗ ⊆ S is a solution to the optimal teaching instance (S,A,π∗,ϕ) and

vice versa. The argument follows from a direct translation between two instances. See

Figure A.1.

Theorem A.9 (Proof of Corollary 7). Consider our optimal teaching problem with infinite
state space S. Under the assumption that cone(Ψ(DS)) is a closed and convex set with finite
extreme rays and the teacher knows the extreme rays to state mapping, our algorithm Greedy-
TIE 1 correctly finds an approximately optimal teaching set.

Proof. Since the convex cone cone(Ψ(DS)) is closed, we know that extreme rays must be

contained in it. Furthermore, an extreme ray must be induced by one of the states. The

teacher knows the states that induce each extreme ray or a subset of it, and can construct a

set cover problem over a finite extreme ray set to solve the optimal teaching problem.
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(a)

s=6
s=5
s=4
s=3
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(b)

Figure A.2: Polygon Tower. a) All feature difference vectors for n= 6. b) Top-down view

of the extreme vectors of the primal cone for n= 6.

A.2 More Experimental Results

A.2.1 Polygon Tower

Let the state space be S= {2, . . . ,n}, the action space be A= [n+ 1], the feature function be

ϕ : S×A→ R3
given by

ϕ(s,a) =

[0,0,s] if a= n+1[
−s · cos(2πas ),−s · sin(2πas ), 0

]
otherwise

(A.10)

We note that for a fixed state s, the feature vectors for actions 1 . . .n lie on a polygon of

radius s centered around the origin on the xy plane.

Target Policy The teacher wants to teach the target policy π† where ∀s∈ S, π†(s) =n+1.

The policy is realizable: for example, w= [0,0,1] induces this policy. The feature difference

vectors induced byπ† on S is given asΨ(DS) = {[s ·cos(2πas ),s ·sin(2πas ),s] : s∈ S,a ̸=n+1}.

These difference vectors lie on elevated polygons as shown in Figure A.2(a). In particular,

state s induces a s-gon of radius s centered at (0,0,s). Figure A.2(b) shows the top view of

the extreme rays of the primal cone cone(Ψ(DS)). The extreme rays are shown as dots, and

the states that cover each extreme ray are labeled.



101

5 10 15 20 30 40 50

0.1

1

10

100

1000

largest state (n)

ru
nn

in
g 

ti
m

e 
(i

n 
se

c)

(a)

0 10 20 30 40

5

10

15

20

optimal
TIE

largest state (n)

te
ac

hi
ng

 s
iz

e

(b)

Figure A.3: Polygon Tower. a) TIE running time on the polygon tower with increasing

n. b) The teaching dimension (optimal) vs. the demonstration set size found by TIE. They

overlap. In fact, TIE finds the exact correct optimal teaching sets on the polygon tower.

Optimal Teaching The polygon tower problem has an interesting structure that allows

us to characterize the minimum demonstration set.

Proposition A.10. The optimal teaching set T∗ of the polygon tower consists of all states in S

that are not divisible by any other states in S.

Proof. For any pair of states s,s ′ such that s ′ > s and s ′ mod s= 0, then s ′ fully covers the

induced difference vectors of the characteristic of s so teaching state s is not required if

s ′ is taught. For example, state 6 in Figure A.2(b) covers all the extreme rays induced by

states 2, and 3. Conversely, if a state s is not a factor of any other states in S then it must be

taught because s induces the extreme ray [s · cos(2πs ),s · sin(
2π
s ),s] that can only be covered

by s.

We run TIEwith greedy set cover on a family of polygon towerswithn∈ {3,4,5,6,7,8,12,16,20,24,32,44}.
We verify TIE’s solution to the ground truth minimum demonstration set established in

Proposition A.10.

We observe that TIE always recovers the correct minimum demonstration set. This can

be observed from the overlap curve of the optimal size of the teaching set (shown in orange)

and the size of the teaching set found by TIE (shown in green) in Figure A.2(d).

We also observe that TIE runs quickly. We plot the running time of TIE over instance

size n in a log-log plot in Figure A.3(c). For each n, we average the running time over

3 independent trial runs. The straight line of this log-log plot shows that our algorithm
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indeed runs in polynomial time. The empirical estimate of the slope of the linear curve

(after omitting the first three outlier points for small n) turns out to be 4.67, implying a

running time of order O(n5) on this family of instances. Our algorithm has a worst-case

running time of order O((|S||A|)3) and for |S|= |A|= n as in this example, it is O(n6).

A.2.2 Pick the Right Diamond

The MDPM= (S,A,R,P,γ,µ) that describes the Block Programming problem is defined as

follows :

1. A state s ∈ S is specified by an n size board where the cells are indexed {1, · · · ,n}.
Each cell contains one of the four diamonds or is empty, leading to a total of 5

n−1

states of non-empty boards.

2. The action space is given as A= {1, · · · ,n} where each action a represents picking an

object at location a and removing it from board.

3. The learner receives a reward of −1 for picking the rightmost diamond with the

largest edge and −2 for all other actions on a non-empty board. Once the board is

empty, it receives a reward of 0. The discount factor γ is 0.9.

4. The environment transitions deterministically to update the board if the agent picked

the right object, i.e., the rightmost object with the largest edge otherwise, it remains

the same. The initial state distribution µ is uniform on S.

The optimal policy defined by the reward structure above is to pick the diamond in order of

decreasing the number of edges. In the case of ties, the rightmost diamond should be picked.

A.2.3 Visual Block Programming in Maze with Repeat Loop

The MDPM= (S,A,R,P,γ,µ) that describes the Block Programming problem is defined as

follows :

1. A state s∈ S is specified by ann×n board with a turtle cell and a goal cell∈ [n2]× [n2]

and a turtle orientation ∈ {L,R,U,D} denoting whether the turtle is facing left, right,

up and down, refer to figure 1.6 for an example state. There is also a partial code of

up to a constant size c, giving us a total of 4c(n4−n2) states.
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Figure A.4: Performance of TIE compared to other baselines on the visual programming

task with local(on the left) and global features(on the right).

2. The abstract action space is given as A= {TL, TR, MV}∪ {Rk-MV : k ∈ {3, · · · ,n−1}}

where TL, TR, MV represent simple code block that when executed allows the turtle

to turn left, right and move forward actions respectively and Rk-MV represents a

complex block of repeat loop that allows the turtle to move forward by k-step. In

total, we have n actions where taking an action means adding the corresponding code

block to the partial code in the state.

3. The learner receives a reward of −1 for using a simple code block action i.e. action

a ∈ {TL, TR, MV} and −2 for taking complex action Rk-MV. The disocunt factor γ is

0.9.

4. The environment transitions deterministically to update the orientation/position of

the agent based on its chosen action. The initial state distribution µ is uniform on S.

The goal of the teacher is to teach the optimal policy to write a succinct piece of code which,

when executed, helps to lead the learner to the goal cell. The teacher has to do this by

showing the smallest size of the (state, action) demonstration dataset.



104

A.3 Feature Representation for Visual Programming

A.3.1 Local Feature Representation

This feature representation effectively captures the spatial relationship between the turtle

and the goal, as well as the impact of different actions.

A.3.1.1 State and Action description

• board: A 2D array representing the game board with cells indicating the agent’s

orientation (U for up, D for down, L for left, R for right).

• agent_pos: A tuple (x,y) represents the agent’s current position on the board.

• goal_pos: A tuple (x,y) representing the goal’s position on the board.

• action: A string representing the specific action taken by the agent (e.g., ’TL’, ’TR’,
’MV’, ’Rk-MV’ etc.).

A.3.1.2 Feature Vector Construction

1. Relative Quadrant of Goal: Compute the relative quadrant of the goal from the

agent’s orientation.

2. Forward Distance: Compute the distance from the agent to the goal in the direction

the agent is facing.

We refer interested readers to the supplementary material of the published paper for the

code.
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Appendix B

Optimal Teaching of RL Agents

B.1 The Computational Complexity of Finding METaL

In this section, we discuss another aspect of teaching, namely the computational complexity

of finding the exact minimum expected teaching length of a particular teaching problem

instance, i.e.METal(M,L,Q0,π
†). Note this differs from TDim in that it is instance-specific.

For Level 1 and Level 2 teachers, the exact METaL can be found with polynomial-time

algorithms Alg. 6 and Alg. 7. Now, we show that for the less powerful Level 3 teacher, finding

METaL of a particular instance is NP-hard. In particular, it is as hard as the Asymmetric

TSP problem.

Definition B.1. An Asymmetric TSP problem [83], characterized by a directed graph G =

(V ,E) and a starting vertex v ∈ V , is defined as finding the minimum length path that starts
from v and visits all vertices v ′ ∈ V at least once.

Theorem B.2. Finding the METaL of a Level 3 teaching problem instance is at least as hard
as the Asymmetric Traveling Salesman Problem(ATSP), which is NP-hard; This also means
that the best polynomial-time approximation algorithm can only achieve a constant-factor
approximation.

Proof. We show a polynomial-time reduction from the ATSP problem to a Level 3 METaL

problem. Specifically, we show that for every ATSP problem instance G = (V ,E), there

exists a Level 3 METaL problem instance (M,L,Q0,π
†) such that the ATSP problem instance

has a solution l if and only if the corresponding METaL instance has a solution l.
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The reduction is as follows. Given anATSP problem instance {Graph G=(V ,E), start vertex = s0},

we provide a construction to a level 3 METal problem instance (M,L,Q0,π
†). We start by

constructing the MDP first. The vertex set V forms the state space of the MDP. Each state s

has exactly two actions a(0) and a(1). The support of the transition probability distributions

P(· | s,a(0)) and P(· | s,a(1)) are the same: they are the outgoing edges of s in the graph G.

The exact value of these probabilities and the reward function does not matter, since a level

3 teacher has the power to override them. The initial state distribution µ0 is concentrated on

s0. We construct aQ0 that favors action a
(0)

in each state, and the target policy π†(s) = a(1)

for each state s ∈ §. The horizon is H=D2
, where D is the diameter of the graph G. The

learner is in L.

Claim 1: If an ATSP problem instance {G= (V ,E),s0} has a solution l, then the level 3

METaL problem instance (M,L,Q0,π
†) has a solution l.

To verify Claim 1, note the teacher needs to make the learner visit every state exactly

once to teach the target action a(1) in that state. This is because initially every state is

untaught (by construction Q0 prefers a
(0)). Further, each state s has exactly two actions

and no matter which action the learner takes, the teacher can provide a suitable reward

to push the target action a(1) to the top of Q-value ordering. If the ATSP problem has a

solution si0 = s0→ si1→·· ·sil−1
, it is possible for the teacher to provide the state transitions

si0 = s0→ si1 → ·· ·sil−1
that visit all the states in the least number of time steps and thus

teach the target policy optimally. This is because for every edge si→ sj in the graph, the

transition P(· | si,a) supports sj for both actions.

Claim 2: If the level 3 METaL problem instance (M,L,Q0,π
†) has a solution l, then the

ATSP problem instance {G= (V ,E),s0} has a solution l.

We prove this by contradiction. Let say the METal problem instance (M,L,Q0,π
†) has

a solution l. Clearly, all states must have been visited in this optimal teaching length l at

least once. So, the corresponding ATSP problem instance must have a solution ⩽ l. But if

ATSP has a solutionm< l, by Claim 1, the METaL problem instance will have a solution

m< l, thus a contradiction. Hence, the ATSP problem has a solution l.

By establishing this reduction, we prove that the METaL problem for a level 3 teacher is

at least as hard as the ATSP problem, which is itself NP-hard.
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B.2 Level 1: Algorithm and Proof

Algorithm 6: Optimal Level 1 Teaching Algorithm

def Teach(M,L,Q0,π
†):

1: A state s needs to be taught if Q0(s,π
†(s))⩽maxa̸=π†(s)Q0(s,a). Terminate if the

MDP has no state to be taught. Otherwise, arbitrarily order all MDP states that need to

be taught as s(0),s(1), · · · ,s(n) where 0⩽ n⩽ S−1.

2: The teacher provides the state s0← s(0).

3: for t= 0,1, · · · ,n do
4: The agent performs an action according to its current behavior policy at← πt(st).
5: The teacher replaces the chosen action with target action at← π†(st).
6: The teacher provides the reward rt, and next state st+1

7: where st+1← s(min(t+1,n))

8: rt :Qt+1(st,at)>maxa̸=atQt+1(st,a).
9: The agent performs an update Qt+1← f(Qt,et) using experience

et = (st,at,rt,st+1)

Proof of Theorem 3.6. For a level 1 teacher, the worst-case teaching problem instance is

the one in which for all states s ∈ §, the target action π†(s) is not the top action in the

Q0(s, ·). In that case, the teacher would need to make the learner visit each state s at least

once so that the learner has a chance to learn π† as s, i.e. to produce and maintain the

eventual condition QT (s,π
†(s)) > maxa̸=π†(s)QT (s, ·). Thus, TDim ⩾ S. On the other

hand, a level-1 teacher can teach a state in just a single visit to it by replacing the agent

chosen action with the target action and rewarding it with a sufficiently high reward (step

8 in the algorithm). Further, at any time step, it can also make the agent transition to an

untaught state to teach the target action in that state. Thus, for the worst teaching problem

instance, the level-1 teacher can teach the target policy in S steps and hence TDim= S.
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B.3 Level 2: Algorithm and Proof

Algorithm 7: Optimal Level 2 Teaching Algorithm

def Teach(M,L,Q0,π
†):

1: A state s needs to be taught if Q0(s,π
†(s))⩽maxa̸=π†(s)Q0(s,a). Terminate if the

MDP has no state to be taught. Otherwise, arbitrarily order all MDP states that need to

be taught as s(0),s(1), · · · ,s(n) where 0⩽ n⩽ S−1.

2: t← 0, i← 0, the teacher provides initial state s0← s(0)

3: while i⩽ n do
4: The agent picks a randomized action at← πt(st).

5: if at = π†(st) then
6: st+1← s(min(i+1,n))

7: i← i+1 // move on to the next state

8: rt :Qt+1(st,at)>maxa̸=atQt+1(st,a) //promote action π†(st) to top

9: else
10: if {a: Qt(st,a)⩾Qt(st,π†(st))}= {at,π

†(st)} then
11: st+1← s(min(i+1,n))

12: i← i+1 // move on to the next state

13: else
14: st+1← s(i) // stay at this state

15: rt :Qt+1(st,at)<mina̸=atQt+1(st,a) // demote action at to bottom

16: The agent performs an update Qt+1← f(Qt,et) with experience

et = (st,at,rt,st+1)

17: t← t+1

Remark: Line 10 checks whether at is the only no-worse action than π†(st): if it is, its

demotion also completes teaching at st.

Proof of Lemma 3.7. We focus on teaching the target action π†(s) at a particular state

s. In general let there be n ∈ {1, . . . ,A− 1} other actions better than π†(s) in Q(s, ·). For
simplicity, we assume no action is tied with π†(s), namely

Q(s,ai1)⩾ · · ·⩾Q(s,ain)>Q(s,ain+1
= π†(s))>Q(s,ain+2

)⩾ · · ·⩾Q(s,aiA). (B.1)
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Define the upper action set U := {ai1 · · ·ain} and the lower action set U := {ain+2
· · ·aiA}.

Define T(n) to be the expected number of visits to s to teach the target action π†(s) at state

s, given that initially there are n other actions better than π†(s). By “teach” we mean move

the n actions from U to L. When the agent visits s it takes a randomized action according

to at← πt(s), which can be any of the A actions. We consider three cases:

Case 1: at ∈ U, which happens with probability 1− ε+(n− 1) ε
A−1

. The teacher provides

a reward to demote this action to the bottom of Q(s, ·). Therefore, U has one less

action after this one teaching step, and recursively needs T(n−1) expected steps in

the future.

Case 2: at=π
†(s), which happens with probability ε

A−1
. The teacher provides a reward to pro-

mote at to the top of Q(s, ·) and terminates after this one teaching step (equivalently,

T(0) = 0).

Case 3: at ∈ L, which happens with probability (A−n− 1) ε
A−1

. The teacher can do nothing

to promote the target action π†(s) because at is already below π
†(s). Thus, the teacher

provides a reward that keeps it that way. In the future, it still needs T(n) steps.

Collecting the 3 cases together we obtain

T(n) = 1+

[(
1−ε+(n−1)

ε

A−1

)
T(n−1)+

ε

A−1

T(0)+(A−n−1)
ε

A−1

T(n)

]
.

(B.2)

Rearranging, (
1−

A−n−1

A−1

ε

)
T(n) = 1+

(
1−

A−n

A−1

ε

)
T(n−1). (B.3)

This can be written as(
1−

A−1−n

A−1

ε

)
T(n) = 1+

(
1−

A−1−(n−1)

A−1

ε

)
T(n−1). (B.4)

This allows us to introduce

B(n) :=

(
1−

A−1−n

A−1

ε

)
T(n) (B.5)
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with the relation

B(n) = 1+B(n−1). (B.6)

Since T(0) = 0, B(0) = 0. Therefore, B(n) = n and

T(n) =
n

1− A−1−n
A−1

ε
. (B.7)

It is easy to show that the worst case is n=A−1, where T(A−1) =A−1 regardless of the

value of ε. This happens when the target action is originally at the bottom of Q(s, ·).

Proof of Theorem 3.8. We construct a worst-case RL teaching problem instance. We design

Q0 so that for each state s ∈ § the target action π†(s) is at the bottom of Q0(s, ·). By

Lemma 3.7 the teacher needs to make the agent visits each state A− 1 times in expectation.

Thus a total S(A−1) expected number of steps will be required to teach the target policy

to the learner.

B.4 Level 3 and 4: Algorithm and Proofs

Algorithm 8: The NavTeach Algorithm: Initialization

def Init(M):

1: D←∞. // select the initial state with the shortest tree

2: for s in {s | µ0(s)> 0} do
3: Construct a minimum depth directed tree T(s) from s to all states in the underlying

directed graph ofM, via breadth first search from s. Denote its depth as D(s).

4: if D(s)<D then
5: depth D←D(s); root sS← s.

6: Let s1, . . . ,sS−1
,sS correspond to a post-order depth-first traversal on the tree T(sS).

Proof of Tighter Lower and Upper bound for Level 3 Teacher. Wehereby prove the claimed

matching Θ
(
(S−D)AH(1−ε)−D+H1−ε

ε [(1−ε)−D−1]
)
lower and upper bounds for

Level 3 Teacher. The key observation is that for an MDP with state space size S and

diameter D, there must exist D states whose distance to the starting state is 0,1, . . . ,D−1,



111

Algorithm 9: The NavTeach Algorithm: Complete Algorithm

def NavTeach(M,L,Q0,π
†
,δ):

1: t← 0,st← sS, ask for randomized agent action at← πt(st)
2: for i= 1, . . . ,S do
3: // subtask i: teach target state si with the help of navigation path pi

4: Let pi← [si0 = s
S
,si1 , ...,sid = si] be the ancestral path from root sS to si in tree

T(sS)
5: while argmaxaQt(s

i
,a) ̸= {π†(si)} do

6: if st = si then
7: // st = s

i
: the current subtask, establish the target policy.

8: Randomly pick st+1 ∈ {s ′ : P(s ′ | st,at)> 0}.

9: if at = π†(st) then
10: rt← CarrotStick(‘promote’,at,st,st+1,Qt,δ)
11: else
12: rt← CarrotStick(‘demote’,at,st,st+1,Qt,δ)
13: else if st ∈ pi then
14: // build navigation if MDP allows

15: if P(pi.next(st) | st,at)> 0 then
16: st+1← pi.next(st).
17: rt← CarrotStick(‘promote’,at,st,st+1,Qt,δ).
18: else
19: Randomly pick st+1 ∈ {s ′ : P(s ′ | st,at)> 0}.

20: rt← CarrotStick(‘demote’,at,st,st+1,Qt,δ).
21: else
22: // st is off subtask i or an already taught state, maintain the Q(st,at)
23: Randomly pick st+1 ∈ {s ′ : P(s ′ | st,at)> 0}.

24: rt← CarrotStick(‘maintain’,at,st,st+1,Qt,δ).
25: Give experience et← (st,at,rt,st+1) to the agent.

26: t← t+1

27: if t%H=H−1 then
28: st← sS. // episode reset

29: Ask for randomized agent action at← πt(st)
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Algorithm 10: The NavTeach Algorithm: Carrot Stick Procedure

def CarrotStick(g,a,s,s ′,Q,δ):

1: // make a unambiguously the worst action or the best action (with margin δ)or keep it

as it is.

2: if g= ‘promote’ then
3: Return r⩾ 0 such that Qt+1(s,a) = argmax

b ̸=a
Qt+1(s,b)+δ after

Qt+1 = f(Qt,(s,a,r,s
′)).

4: else if g= ‘demote’ then
5: Return r⩽ 0 such that Qt+1(s,a) = argmin

b ̸=a
Qt+1(s,b)−δ after

Qt+1 = f(Qt,(s,a,r,s
′)).

6: else
7: Return r such that Qt+1(s,a) =Qt(s,a) after Qt+1 = f(Qt,(s,a,r,s

′)).

respectively. As a result, the total time to travel to these states is at most

D−1∑
d=0

H(
1

1−ε
)d =H

1−ε

ε
[(

1

1−ε
)D−1] (B.8)

In the lower bound proof of Theorem 3.9, we only count the number of teaching steps

required to teach the tail states. Now, if we assume in addition that the neck states also

need to be taught, and the target actions are similarly at the bottom of the Q0(s,a), then it

requires precisely an additional H1−ε
ε [( 1

1−ε)
D−1] steps to teach, which in the end gives a

total of

(S−D−1)(A−1)H(
1

1−ε
)D+H

1−ε

ε
[(

1

1−ε
)D−1] (B.9)

steps.

In the upper bound proof of Theorem 3.10 we upper bound the distance from s0 to

any state by D. However, based on the observation above, at most S−D states can have

distanceD from s0, and the restD states must have distance 0,1, ...,D−1. This allows us to

upperbound the total number of teaching steps by

(2S−1−2D)(A−1)H(
1

1−ε
)D+H

1−ε

ε
[(

1

1−ε
)D−1] (B.10)

These two boundsmatches up to a constant of 2, and thus gives amatchingΘ
(
(S−D)AH(1−ε)−D+H1−ε

ε [(1−ε)−D−1]
)
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lower and upper bound. Setting ε= 0 (requires taking the limit of ε→ 0) induces Corollary

3.11.

...s(0) s(1) s(D-d-1)

s(⊥)

s'(0)

s'(1)

s'(2)

s'(2
d+1-1)

s'(2d)

pmin ...

...

...

...pmin pmin pmin

pmin

pmin

1-pmin

a2

a1

1-pmin

pmin

pmin

1-pmin

to s(⊥)

1-pmin

1-pmin

Figure B.1: The “peacock tree" MDP

Proof of Theorem 3.12. We construct a hard level 4 teaching problem instance, very similar

to “peacock MDP” and call it “peacock tree MDP”. We then show that this MDP admits the

given lower bound. The “peacock tree MDP” has a linear chain of length D−d− 1(the

“neck”) and a d depth binary tree(the “tail”) attached to the end of the neck. For a given

(S,D), we can always find d such that 2
d+(D−d+ 1)⩽ S⩽ 2

d+1+(D−d). Note that

the depth of this MDP is D. To simplify the analysis of the proof, from now on, we will

assume that the binary tree is complete and full, i.e., S= 2
d+1+(D−d).

As in the case of “peacock MDP”, every state has A actions. The action a1 in the

chain transits to the next state with probability pmin and to the absorbing state s(⊥) with

probability 1−pmin. The action a1 in the non-leaf states of the binary tree transits to its

top child with probability pmin and to s(⊥) with probability 1−pmin, the action a2 there

transits to the bottom child with probability pmin and to s(⊥) with probability 1−pmin. All

other A−1 actions in the non-leaf states and the chain states lead to s(⊥) with probability

1. Further, all A actions in the leaf states lead to s(⊥) with probability 1. The target policy is

to select a1 at every state. We consider an initial Q0 which favors the target policy at all

non-leaf and chain states. For all the leaf states s, the target action a1 is argminaQ0(s,a),

namely at the bottom, and needs to be taught.
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For the lower bound analysis, we consider teaching each leaf state when the traversal

path to it is already optimal (Note that in reality, the path has to be taught for each leaf

state, but that will eventually add to the lower bound, so we omit it for this analysis). For a

leaf state s, there exists a path from the root to it. This requires the teacher to provide the

correct transition to the next state along the path, and the learner to choose actions a1 all

along the chain and then a combination of a1 and a2 actions to reach that leaf s. Given that

the traversal path to the leaf is already optimal, a successful episode consists of the learner

choosing the greedy action at each step and the teacher transitioning the learner to the

correct next state on the path to the leaf, which happens with a probability of (pmin(1−ε))
D
.

Thus, the expected number of episodes required to make the learner visit the leaf and teach

it once there is ( 1

pmin(1−ε)
)D. Note that in a successful episode, the learner takes D steps

to reach the leaf and the rest of the steps in that episode is wasted, thus accounting for a

total of H steps. Similarly, any failed episode wastes a total of H steps. Hence, the expected

number of steps required to visit and teach a leaf state once is at least H( 1

pmin(1−ε)
)D. The

teacher has to make the learner visit all 2
d
leaf states A−1 times in expectation (since by

our construction, the target action of each leaf is at the bottom of the Q-value ordering).

Collectively, this would require at least 2
d(A− 1)H( 1

(pmin(1−ε)
)D steps. We note that,

S= 2
d+1+(D−d)⩽ 2

d+1+D= 2 ·2d+D =⇒ 2
d⩾ 1

2
(S−D). Thus, the expected number

of steps to teach the target policy is ⩾ 1

2
(S−D)(A− 1)H( 1

pmin(1−ε))D
) =⇒ TDim ⩾

Ω((S−D)AH( 1

pmin(1−ε))D
)).

Proof of Theorem 3.13. The proof follows similarly to the upper bound proof for the teach-

ing dimension of a level 3 teacher and uses the NavTeach algorithm algorithm 9. For a given

MDP, the teacher first creates a breadth-first tree and then starts teaching the states in a

post-order depth-first traversal. Note that the breadth-first tree is still constructed using

the transition edges that are supported by the underlying MDP. A level 4 teacher, while

transitioning out from a particular state, can only choose a desired transition-edge with a

probability⩾ pmin. Thus, the probability that the teacher can make the learner transit from

one state to another using a greedy action chosen by the learner is at least pmin(1−ε).

The teaching goal is broken into S subtasks, one for each state. The sub-task for a state

further consists of teaching a navigation path to reach that state and then teaching the

target action in that state. Because of the post-order depth-first teaching strategy, a large

part of the navigation path is shared between two subtasks. Also, this strategy requires a
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navigation action at each non-leaf state to be taught just once. We further note that in the

depth-first teaching strategy, a navigation action from a parent state si to a child state sj is

taught only after a navigation path to the parent si is laid. Similarly, the target action at

a state sj is taught only after a navigation path to it is laid. Thus, the expected number of

steps required to reach a state at depth i and teach once there is at most ( 1

pmin(1−ε)
)i. For

a simpler analysis, we assume that once the agent falls off the path leading to the target

state, the remaining steps in that episode are wasted. Similarly, once an agent reaches a

target state and is taught by the teacher, the remaining episode steps are wasted. Thus, the

expected number of steps required to visit a state at depth i and teach the navigation action

there is (A− 1)H( 1

pmin(1−ε)
)i ⩽ (A− 1)H( 1

pmin(1−ε)
)D. Noting the fact that there are at

most S−1 non-leaf states and the teacher needs to teach the navigation action at each of

them exactly once, the expected number of steps required to teach all the navigation actions

is at most

(S−1)(A−1)H
(

1

pmin(1−ε)

)D
. (B.11)

Similarly, the expected number of steps required to visit a state at depth i and teach the

target action there is (A− 1)H( 1

pmin(1−ε)
)i ⩽ (A− 1)H( 1

pmin(1−ε)
)D. Adding it up, the

expected number of steps required to teach the target action at all states is at most

S(A−1)H
(

1

pmin(1−ε)

)D
. (B.12)

Combining B.11 and B.12, we conclude that the expected number of steps required to teach

the target policy using algorithm 9 is at most

(2S−1)(A−1)H(
1

pmin(1−ε)
)D =⇒ TDim⩽O(SAH

(
1

pmin(1−ε)

)D
). (B.13)

Remark: A more careful analysis that leads to a tight lower and upper bound is also

possible for the level 4 teacher, but the calculation and the eventual bound one gets become

much more complicated, and thus we defer it to future works.

B.5 Generalization to SARSA
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Algorithm 11:Machine Teaching Protocol for SARSA

Entities: MDP environment, learning agent with initial Q-table Q0, teacher.

1: MDP draws s0 ∼ µ0 after each episode reset. But the teachermay override s0.

2: for t= 0, ...,H−1 do
3: The agent picks an action at = πt(st) with its current behavior policy πt. But the

teachermay override at with a teacher-chosen action.

4: if t= 0 then
5: The agent updates Qt+1 =Qt.
6: else
7: The agent updates Qt+1 = f(Qt,et) from experience et = (st−1,at−1,rt−1,st,at).
8: The MDP evolves from (st,at) to produce immediate reward rt and the next state

st+1. But the teachermay override rt or move the system to a different state st+1.

SARSA is different from standard Q-learning in that its update is delayed by one step. In

time step t, the agent is updating the (st−1,at−1) entry of the Q table, using experience et =

(st−1,at−1,rt−1,st,at). This delayed update makes the student learn slowly. In particular,

we show that it can take twice as many visits to a state to enforce the target action compared

to Q-learning.

Lemma B.3. For a Level 2 Teacher, any SARSA learner, and an MDP familyM with action
space size A, it takes at most 2A−2 visits in expectation to a state s to teach the desired action
π†(s) on s.

Proof Sketch: The key in proving Lemma B.3 is to see that if the agent visits the same state

two times in a row, then the lesson provided by the teacher during the first visit has not been

absorbed by the learner, and as a result, during the second visit, the learner will still prefer

the same (undesirable) action. This, in the worst case (ε= 0), will be a completely wasted

time step, which implies that the total number of visits required will double compared to

Q-learning, giving us 2A−2.

The wasted time step in Lemma B.3 will only occur when the agent visits one state twice

in a roll. This can be avoided in Level 1 and 2 teachers as long as S ⩾ 2. Therefore, the

teaching dimension for level 1 and 2 teachers will only increase by 1 due to the delayed

update of the learner. For Level 3 and Level 4 teachers, the new Lemma B.3 only results in
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at most two times increase in the teaching dimension, which does not change the order of

our results. Therefore, Level 3 and Level 4 results still hold for SARSA agents.
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Appendix C

Nurture-then-Nature Teaching

C.1 Proofs of Theorems and Lemmas

C.1.1 Finite Binary Hypothesis Class

Budgeted Maximum Coverage Problem: Given a finite universe of items U and a finite

collection of subsets of the universeV = {Vx⊆U : x∈X}, whereX is a finite set, the goal is to

find a subcollection of V of size upto B, that covers maximum number of elements ofU. This

problem is known to be NP-hard [43]. However, a greedy algorithm that greedily chooses a

subset to reduce U maximally is approximately optimal, and achieves an approximation

ratio of 1− 1

e . This leads to the following guarantee on the optimal reduction of the version

space size.

Theorem C.1 (Theorem 2 of main text). There exists an algorithm that reduces the version
space size of a finite hypothesis class up to an approximation ratio of 1− 1

e .

Proof. We note that each demonstration (x,h∗(x)) eliminates a subset of hypothesis, Vx =

{h ∈H : h(x) ̸= h∗(s)} from H. Maximally reducing the size of the version space requires

eliminating as many hypotheses fromH\{h∗}PX as possible under budget B. This is nothing

but budgeted maximum coverage problem with U = H\{h∗}PX , {Vx : x ∈ X} as defined

above and the result follows from [43].
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C.1.2 Axis-aligned rectangles on Z2−grid

Definition C.2 (Extending h to h ′). A rectangle h ′ is said to extend h if {x : h(x) = 1} ⊊
{x : h ′(x) = 1}. An extension can occur along one or more of the four sides1 of the rectangle —
namely, top, bottom, left, or right.

Definition C.3 (Fixing sides and degrees of freedom). Given a version space V that contains
h∗, we define the degrees of freedom of V w.r.t. h∗ as the number of sides along which h∗ can
be extended to another rectangle h ′, such that h ′ ∈ V. If no such extension is possible along a
particular side, we say that that side is fixed in V.

Remark C.4 (Reducing degrees of freedom). The original hypothesis class has four degrees
of freedom corresponding to the four sides along which h∗ can be independently extended while
still remaining within the version space V. When k ∈ {1,2,3,4} sides of h∗ are fixed in V, the
degrees of freedom of the version space reduce by k.

Lemma C.5. Let H be the class of axis-aligned rectangles on Z2-grid. For any rectangle,
h ∈H, fixing one (two) of its sides requires two (three) labelled examples.

Proof. (Fixing one side). Without loss of generality, consider fixing y∗
min

, corresponding to

the bottom side of the target rectangle h∗. This can be done using exactly two labelled ex-

amples: {((x,y∗
min

),+),((x,y∗
min

−1),−)} where xmin ⩽ x⩽ xmax. The ‘+’ and ‘−’ examples

force every consistent hypothesis h to satisfy ymin ⩽ y∗min
and ymin > y

∗
min

−1, respectively,

thereby enforcing ymin = y
∗
min

. Thus, no extensions are possible along the bottom side,

thereby fixing this side. With only one labelled example there is always an extension h
of h∗ possible along the bottom side such that h is consistent with the labelled example —

enlarge downward (shrink upward) given a single positive (negative) example. Hence, two

examples are necessary.

(Fixing two sides). Naively, by the reasoning above, we can use four examples to fix two

sides. But we can do better by using just three examples: labeling a corner point of the

rectangle as ‘+’ and two adjacent points just outside the rectangle as ‘−’. For e.g., if the corner

is (xmax,ymin), then the following set suffices as a teaching set: {((xmax,ymin),+), ((xmax+

1
By a side of a rectangle, we mean one of the 4-tuple values that defines any rectangle h =

{xmin,xmax,ymin,ymax} ∈ H. For e.g., xmin refers to the bottom side of the rectangle h ∈ H. We follow

this convention in the subsection C.1.2 for readability of the proofs.
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1,ymin),−), ((xmax,ymin− 1),−)}. The necessity of three labelled examples is apparent,

given the need for two labelled examples to fix a single side (as seen above).

Theorem C.6 (Theorem 3 of main text). The VC dimension of axis-aligned rectangles in Z2

can be optimally reduced as shown below:

Budget B 1 2 3 4 5 ⩾ 6

min VC 4 3 2 2 1 0

Minimum VC achievable by B-budgeted teaching on axis-aligned rectangle class in Z2
.

Proof. We will proceed by starting with the case of B= 2 and ending with the case B= 5 in

that increasing order. The case B⩾ 6 follows from classical Teaching Dimension [30] as

TD= 6.

Case B= 1: We cannot fix any side of the target h∗ with B= 1 (Lemma C.5) and, hence,

VC-dimension remains 4.

Case B = 2: We can fix exactly one of the sides of the target h∗ with two examples

as per Lemma C.5. This means the reduced version space H ′ has 3 degrees of freedom

(Remark C.4) and VC(H ′) = 3: Consider the rightmost side (i.e. xmax) is fixed and take

four points in general position. If one point lies within the convex hull of the other three,

fixing xmax prevents labeling the outer three points as ‘+’ and the interior point as ‘−’.

Otherwise, if no point is inside the convex hull of the remaining three points, label the two

points farthest apart (along the axis of the fixed side) as ‘+’ and the remaining two as ‘−’.

In both cases, at least one labeling is impossible, implying VC(H ′)< 4. However, the set

{(x,y),(x+1,y+1),(x+1,y−1)}, where x < xmax, can be shattered.

CaseB∈ {3,4}: Fix two opposite sides (e.g., xmin and xmax) via four examples (LemmaC.5).

Thus, the reduced version spaceH ′ has 2 degrees of freedom (Remark C.4) and VC(H ′) = 2:

Any three collinear points lying between these sides cannot all be labelled arbitrarily (one

of them becomes the ‘middle’ point). Alternatively, for a triplet in general position, if one of

the points falls outside these sides, we cannot flip its label without contradiction. Hence, no

triple is shattered, but pairs are.

Alternatively, by Lemma C.5, use three labelled examples to fix two sides that meet at a

corner of the target rectangle (e.g., (xmax,ymin)). Again, we have reducedthe version space

H ′ with 2 degrees of freedom (Remark C.4). This reduction ensures no set of three points
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can be shattered: if they are collinear, the ‘middle’ point cannot be labelled differently from

the other two; if they are in general position, at least one labelling is impossible (e.g. two

points that are closest to one of the sides to be fixed are labelled as ‘+’ and the remaining

point as ‘−’). However, two points remain shatterable (for instance, by choosing a suitable

(x,y) for the top-right corner). Hence, VC(H ′) = 2.

Case B= 5: With three sides fixed by, for instance, fixing a corner and one of the sides

corresponding to the opposite corner (Lemma C.5) using three and two labelled examples,

respectively, the version space reduces toH ′ with 1 degree of freedom (Remark C.4) and

VC(H ′) = 1: No two-point set can be shattered as one labeling always becomes impossible

depending on which three of the 4-tuple values have been taught. However, we can construct

a single point set that can be labeled in any way.

Case B = 6: Since TD(h∗;H) = 6, we can simply use a teaching set of size six so that

the version space is reduced fromH toH ′ = {h∗}. Thus, VC(H ′) = 0.

C.1.3 Homogenous Linear Classifiers

Let D be a dataset of size m with p negative labels generated by a target hypothesis

w∗ ∈Hlinear, given as follows,

D :=D−∪D+ := {(xi,−1) : i ∈ [p]}∪ {(xi,+1) : i ∈ {p+1, · · · ,m}}. (C.1)

Note that D induces a polyhedral cone as a version space,

V(D) = {w :w⊤xi < 0,∀xi ∈D−
,wtxi ⩾ 0,∀xi ∈D+}.

Since a cone lies in the subspace spanned by its vectors, we have that VC(V(D)) ⩽

d(V(D)), where d denotes dimensionality. The next lemma shows that VC(V(D)) is also

lower bounded by d(V(D))−1.

Lemma C.7. For a dataset D containing all positive labels, i.e., D = D+, we have that
VC(V(D))⩾ d(V(D)). Otherwise, VC(V(D))⩾ d(V(D))−1.

Proof. Let V(S) = {w ∈ RD :w⊤xi ⩾ 0,∀i ∈ [n]} be a closed polyhedral cone formed by an

all-positive dataset S and let l be its dimensionality. We show that VC(S) = l.
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We construct a set V consisting of l points in Rd and show that it can be shattered by

S. For each labeling s ∈ {0,1}l, we construct a labeling vector ws ∈ S that achieves label s
on V . Consider a set of l orthogonal vectors in S and arrange them as columns of matrix

A= [v1,v2, · · · ,vl]∈Rd×l. Since S is l-dimensional, we can always find such a set of vectors.

Now, we show that the set of l points, V = {−A−⊤e1,−A
−⊤e2, · · · ,−A−⊤el} can be

shattered by S. We use pthe seudo-inverse if l < d.

Let s ∈ {0,1}l be a labeling vector. We will show that ws =
(∑

i:si=0
Aei

)
achieves the

labeling s on V . First, note that since S is a convex cone, ws =
∑
i:si=0

vi ∈ S.
We have that, (−A−⊤ej)

⊤ws =
∑
i:si=0

−e⊤j A
−1Aei =

∑
i:si=0

−e⊤j ei = −1[sj = 0].

Thus, hws(−A
−⊤ej) = 1[(A−⊤ej)

⊤ws ⩾ 0] = 1[sj = 1] and so ws realizes the labeling s.

Since, dim(S) = l,S⊆ Rl, and we have that VC(S)⩽ VC(Rl) = l. Thus, VC(S) = l.
Now, if S has an open halfspace, i.e., the corresponding dataset contains a negative

labeled point, then all the labeling except all positive ones can be realized, i.e., w⊮ = 0

does not lie in S, while rest of all ws still lie in S and the above proof proceeds. Thus,

l−1⩽ VC(S)⩽ l.

Next, we characterize the dimensionality of the version space and assert that maximal

dimensionality reduction can be achieved by B positively labeled demonstrations as stated

in point 3 below.

Lemma C.8. The following statement hold true for a consistent dataset D generated by
w∗ ∈ RD :

1. Negative points do not help in reducing dimensionality, i.e., d(V(D)) = d(V(D+)).

2. ∀D : |D|⩽ B, we have that d(V(D))⩾ d− |D|+1.

3. ∀B⩽ d, the dataset DBT achieves optimal reduction in VC by B−1, thus, d(V(DBT )) =
d−B+1.

DBT = {(v1,+1), . . . ,(vB−1
,+1),(−

∑
i∈[B−1]

vi,+1)}

where {v1, . . . ,vB−1
} is a B-basis of w∗⊥ subspace.

Proof. To prove 1, we start with a basis set of V(D+) and a feasible x0 ∈ V(D). Translating

the basis set by x0 yields a basis set for V(D). To prove 2, we can construct a dataset with

|D| points that kills |D|− 1 vectors in the orthogonal subspace of w∗. For prove 3, it is easy
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to see that a classifier w is consistent on DBT if and only if w ̸∈ span(v1, · · · ,vB−1
). Thus,

the dimensionality of the version space V(DBT ) reduces from d(Rd) = d to d(V(DBT )) =

d−B+1.

Theorem C.9 (Theorem 4 of main text). There exists an algorithm that ∀B ⩽ d+ 1, opti-
mally reduces the VC of the linear class to d−B+1 and the optimal teaching set is given as
DBT = {(v1,+1), . . . ,(vB−1

,+1),(−
∑
i∈[B−1] vi,+1)}, where, {v1, . . . ,vB−1

} is a B-basis of w∗⊥

subspace.

Proof. We make the following observations:

1. For a dataset with all positive demonstrations, we have that VC(V(D))⩾ d(V(D))⩾

d−B+1 and the lower bound is achieved by DBT in Lemma C.8.

2. For a dataset with at least one negative demonstration, VC(V(D))⩾ d(V(D))− 1=

d(V(D+))−1⩾ d− |D+|⩾ d−B+1. The first inequality follows from Lemma C.7

while others follow from Lemma C.8.

Thus, for B⩽ d, the optimal strategy is to teach dataset DBT to kill off B− 1 dimensional

subspace. We refer to Figure [4.2] for an illustrative teaching example in w∗ ∈ R3
and

B = 2,3. For B ⩾ d+ 1, our optimal teaching dataset matches with the unconstrained

teaching dataset proposed by [49].

C.1.4 Polynomial Hypothesis Class

Theorem C.10 (Theorem 5 of main text). For any target polynomial h∗ ∈ H, the opti-
mal teaching set that reduces the VC dimension of the polynomial version space by B− 1

is given as DBT = {(xi,+1) : ϕ(xi) ⊥ w∗, i ∈ [B− 1],∀i ̸= j,ϕ(xi) ⊥ ϕ(xj)}∪ {(ϕ(xB) =
−
∑B−1

i=1
ϕ(xi),+1)}

Proof. The teacher can computes B−1 orthonormal bases functions to θ∗ and their negative

summand represented by vectors v1, · · · ,vB−1
,−

∑
i∈[B−1] vi in the standard bases. However,

to be a valid teaching set, these vectors must be induced by the feature function ϕ on a

certain input set (preimages under ϕ) {xi ∈ Rd : i⩽ [B]}. Assuming that there exists a set

of such inputs, the teacher can construct the optimal teaching set given by the dataset

DTB = {(xi, 1) : i ∈ [B−1]}∪ {(−
∑
i∈[B−1]xi, 1)}.
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Computing the preimages for teaching vectors: We propose an iterative algorithm

that can compute the orthogonal preimages efficiently, assuming they exist. At the start of

iteration k ∈ [B], say we have already computed the k− 1 orthogonal bases vectors in w∗⊥,

the optimization problem to find the next orthobasis vector vk is as follows:

xk,vk←min

x,v
∥v−ϕ(x)∥2

s.t. α⊤v= 0,∀α ∈ {vi : i⩽ k−1}∪ {w∗}

Once all {vi}|i⩽B−1
vectors have been computed, we compute the preimage of their negative

summand by solving

xB,vB←min

x,v
∥v−(−

∑
j⩽B−1

ϕ(xj))∥2+λ∥v−ϕ(x)∥2.

Remark C.11. This method extends to any finite-dimensional kernel. However, not all kernel
mappings may admit a pre-image set, thereby limiting this approach.

C.2 Experiments for Instance-Aware Teaching using

Datamodels

Overview: We first train a datamodel using meta datasetDM := (Di,R(A(Di))) computed

by training perceptron algorithms on various data subsetDi sampled from PD ∈ ∆(2X) and
tested on a held out test set to get the meta label R(A(Di)). We use a uniform distribution

PD over all subsets of size ⩽ α · |X| where X is a finite set of points in R2
.

Once we have the meta dataset, we train the datamodel parameter ŵP using sparse

linear regression on DM. We then compute the optimal teaching set as B points in X with

minimum weights ŵP,x(1−Px)
n
.

We then evaluate the NtN performance on this dataset for various values of niid. The

teaching code for VC reduction teaching for linear and axis-aligned rectangles can also be

found in the supplementary materials (data_models.ipynb).

Now we describe our setup and pseudo-code along with hyperparameter configura-

tions for estimating linear datamodels, computing the teaching sets, and evaluating NtN

performance.
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C.2.1 Setup, Data Generation and Evaluation

We consider teaching a homogeneous linear classifier in R2
. The learner is trained via an

ERM procedure using a perceptron loss (as a computationally convenient surrogate to 0–1

loss) on a finite universe X⊂ R2
.

We letX be a set of 16 uniformly-spaced points on the unit circle inR2
. Each point x∈X

is labeled via a target linear separatorwtrue

2
. In the nature phase, the learner receives n i.i.d.

draws from the uniform distribution PX. Since we have access to all of X and we know that

PX is uniform, we evaluate the test performance of a linear classifier as the average 0-1 loss

on the entire feature space X.

C.2.2 Teaching through Linear Datamodels (OPT-DM)

As discussed in Section 4.5, we use linear datamodels to approximate the learner’s risk as a

linear function of the dataset. We then use these estimated data models’ weights to find the

budgeted teaching set, which is to be used for teaching the learner under the prescribed

teaching budget.

C.2.2.1 Estimating Linear Datamodels

• Meta-Dataset Construction: We sample Nsubsets subsets Si ⊂ X of size α · |X| via
a distribution Psubsets. For each subset Si, we train a perceptron on Si using the

perceptron loss and measure its 0–1 test loss yi on the entire spaceX. We use α= 0.25

and Psubsets to be a uniform distribution in our experiments.

• Sparse Linear Fit (ℓ1-regularization): We collect pairs (1Si , yi) and solve

θ = argmin

θ ′

1

Nsubsets

N
subsets∑
i=1

(
θ ′⊤1Si − yi

)
2

+ λ∥θ ′∥1.

We use scikit-learn’s LassoLarsCV solver with 4-fold cross-validation to auto-

matically select λ and perform the ℓ1-regression. Here, θx measures how strongly

point x ∈ X influences the overall risk. The pseudo-code for estimating datamodels is

outlined in Algorithm 12.

2
For simplicity, we have chosen wtrue to be one of these 16 points in our simulations.
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Algorithm 12: EstimateDataModel

Require: Universe X⊆ R3
, subsampling fraction α ∈ (0,1), test-set sizem, number of

subsets Nsubsets, distribution over subsets Psubsets
1: T ← [] ▷ Initialize datamodel training set

2: S= {(x,y) | x ∈ X,y= 2 · sign(wtrue ·x)−1}

3: for i= 1 to Nsubsets do
4: Sample subset Si ⊂ S as per Psubsets with |Si|= α ·d
5: Train A on Si
6: Sample Dtest ∼ P

m
X

7: yi← 1

m

∑
(x,y)∈Dtest

ℓ0−1(A(x;Si),y)

8: Define 1Si ∈ {0,1}d where (1Si)j = 1 if xj ∈ Si else 0
9: T ← T ∪ {(1Si ,yi)}
10: θ← RunRegression(T )

11: return θ

C.2.2.2 Computing the teaching set

Having estimated the linear datamodel using Algorithm 12 above, we use its weights θ

along with the given teaching budget B, a nature budget n, and underlying data distribution

PX, we can compute the limited-budget teaching set by finding B points that minimize the

following ∑
x∈D

θx
(
1−PX,x

)n
.

We thus pick the B smallest values of θx(1−PX,x)
n
as proved in Theorem 4.26. This is

outlined below as Algorithm 13.

Algorithm 13: ComputeTeachingSet

Require: Teaching budget B, weight vector θ, distribution PX, nature budget n

1: DT ← argminB {θx · (1−(PX,x)
n)}

2: return DT

C.2.2.3 NtN Evaluation

Given that we have estimated the datamodel and computed the limited-budget teaching set

DT , we now measure performance (RNtN(DT ,niid)) of the learnt classifier as a function of
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the nature budget niid. In particular, by sampling K= 50 distinct i.i.d. subsets of size niid,

training a perceptron on DT ∪Dnk for each k ∈ [K], and computing average test-set error

RNtN(DT ,niid) as averaging their 0–1 loss on the entire space X (Equation (C.2) below).

We repeat this for nature budgets niid = 1, . . . ,N for N= 16. Note that K= 50 subsets are

sampled for each niid so that we can compute the 95% confidence intervals (shaded regions)

as seen in Figure 4.8.

RNtN(DT ,niid) =
1

K

K∑
k=1

1

|X|

∑
x∈X

ℓ0−1(A
niid
k (x),yx) (C.2)

where {Ank } denotes trained models using the kth subset of i.i.d. training set with niid nature

budget and yx denotes the true label of any point x ∈ X as per wtrue.

C.2.2.4 Combining everything: Training a linear classifier through NtN

The OPT-DM procedure as outlined above in B.2.1 – B.2.3 can be collectively expressed as

Algorithm 14 below.

Algorithm 14: TrackNtNPerformance

Require: X⊂ R2
, |X|= d, uniform PX, teaching budget B, max nature budget N, α,

Nsubsets, Psubsets, test-set sizem, number of models K

1: θ← EstimateDataModel(X, α,m, Nsubsets, Psubsets)

2: for niid = 1 to N do
3: DT ← ComputeTeachingSet(B, θ, PX, n)

4: for k= 1 to K do
5: Sample D

niid
k ∼ P

niid
X

6: Train A
niid
k =A(DT ∪Dniidk )

7: Evaluate RNtN(DT ,niid) as per Equation (C.2)

C.2.3 Extending to Neural Datamodel in Instance-Aware Setting

Our Instance-Aware method based on the datamodel is very generic and in fact it can be

extended to any datamodel that can be optimized over input space and that includes deep

neural networks as well.

We briefly outline the procedure for using a neural datamodel for NtN teaching. For

teaching purposes, we assume that we already have access to a neural datamodel (one can
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easily train one similar to how we trained a linear datamodel using the same underlying

meta-dataset, just by substituting the linear function class with a neural network function

class).

θ∗← argmin

θ

1

m

m∑
i=1

ℓ2(fθ(1Di
),R(A(Di)))+λ∥θ∥22.

Once we have a trained neural datamodels parameterized by θ∗, we use the follow-

ing projected gradient descent algorithm to find the best NtN teaching set under budget

constraints.

Algorithm 15: ProGrad-NtN : Projected Gradient for Nurture-then-Nature

Require: Model function fθ : x→ R, Target y∗ = 0, Budget B, Learning rate η

Ensure: Optimized dataset D∗ ∈ {0,1}d with |D∗|0 ⩽ B.
1: Initialize D ∈ {0,1}d randomly.

2: while not converged do
3: Compute gradient: ∇←∇Dℓ(fθ(D),y∗)
4: Perform gradient step: D←D−η∇
5: Project D onto ℓ0 ⩽ B ball: Keep the top-B entries of D and set others to 0.

6: return D

We tested this method on a simple threshold classification problem with input space

X= {−4,−3,−2,−1,0,1,2,3}. The ground truth classifier is h(x) = 1[x⩾ 0].

We apply our algorithm ProGrad-Ntn using Adam optimizer with a regularization

coefficient of 0.1 and learning rate of 0.01 for 10K iterations or until iterates converge to a

local minima. The resulting x∗ so obtained is x∗ = [−0., 0.01,0.37,0.23,0., 0.01,0.]. Projecting

on l0(x
∗) = 2, yields the dataset x= [−0.33,0] as a teaching set, which indeed is an optimal

teaching set for the problem.

We would like to emphasize that the aim of this and the main experiments in the chapter

is to serve as an empirical proof of concept for the usefulness of the datamodel. A complete

treatment of these methods on complex problems is beyond the scope of this paper, and we

hope that future works could build on our work to solve more real-world NtN problems

using our algorithm.


	Acknowledgments
	Contents
	List of Tables
	List of Figures
	Abstract
	Optimal Teaching for Linear BC Agents
	Motivation
	Related Work
	Problem Formulation
	The Learner Family
	The Teacher

	Teaching Algorithm and Analysis
	Optimal Teaching as an Infinite Set Cover Problem in w Space
	Teaching Via Covering of Extreme Rays of Primal Cone
	Theoretical Results

	Experiments
	Pick the Right Diamond
	Visual Block Programming in Maze with Repeat Loop


	Teaching BC Agents under MDP Constraints
	Motivation
	Problem Formulation
	Stochastic Set Cover Problem
	Stochastic Shortest Path Problem
	Solving SSCP using SSPP
	Construction of Meta MDP.
	Bellman Equations for Expected Time

	Algorithms and Results
	Discussion and Open Problems

	Optimal Teaching of RL Agent
	Introduction
	Related Work
	Problem Definitions
	Teaching without MDP Constraints
	Level 1: Teacher with Full Control
	Level 2: Teacher with State and Reward Control

	Teaching subject to MDP Constraints
	Level 3: Teacher with Control on Reward and Support States
	Level 4: Teacher with Only Reward Control

	Sample efficiencies of standard RL, TbD and TbR

	Nurture-then-Nature Teaching
	Introduction
	Related Works
	Problem Formulation
	The Learner and The Environment
	The Teacher
	The Nurture-then-Nature Setting

	Instance Agnostic Teaching Setting
	Finite Binary Hypothesis Class.
	Axis-aligned Rectangles on Z2 grid
	Linear Hypothesis Classifiers in Rd
	Polynomial Hypothesis Classifiers in Rd

	Instance Aware Teaching Setting
	Teaching Finite Hypothesis Class
	Optimizing Relaxed Upper Bound
	Optimizing the Tight Upper Bound

	NtN Teaching Through Function Approximation of Risk
	Problem Formulation
	Teaching using Linear Datamodel
	Teaching using Neural Datamodel


	Experiments
	Instance Agnostic Teaching by Optimal VC Reduction
	Homogeneous Linear Classifiers
	Axis Aligned Rectangle Class

	Instance Aware Teaching through Linear Datamodel


	Bibliography
	Optimal Teaching for Linear BC Agents
	Proofs of Theorems and Lemmas
	Finding extreme rays of primal cone

	More Experimental Results
	Polygon Tower
	Pick the Right Diamond
	Visual Block Programming in Maze with Repeat Loop

	Feature Representation for Visual Programming
	Local Feature Representation
	State and Action description
	Feature Vector Construction



	Optimal Teaching of RL Agents
	The Computational Complexity of Finding METaL
	Level 1: Algorithm and Proof
	Level 2: Algorithm and Proof
	Level 3 and 4: Algorithm and Proofs
	Generalization to SARSA

	Nurture-then-Nature Teaching
	Proofs of Theorems and Lemmas
	Finite Binary Hypothesis Class
	Axis-aligned rectangles on Z2-grid
	Homogenous Linear Classifiers
	Polynomial Hypothesis Class

	Experiments for Instance-Aware Teaching using Datamodels
	Setup, Data Generation and Evaluation
	Teaching through Linear Datamodels (OPT-DM)
	Estimating Linear Datamodels
	Computing the teaching set
	NtN Evaluation
	Combining everything: Training a linear classifier through NtN

	Extending to Neural Datamodel in Instance-Aware Setting



