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Please interrupt me.
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Let’s begin with the most perilous part of any talk

https://aravart.github.io/speech-games/

Live Demo

(Google Chrome only, probably)
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A simple language

Consider a simple language that can be used to control a “turtle”
program. We have three instructions:

I Move();

I TurnLeft();

I TurnRight();
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Program graph

Imagine the student traversing a state space of the possible
programs in an editor. Given a goal node v and a graph G , we can
model the task of programming as a search over G for v .
Breadth-first search would look like:
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Programming as graph search

Given a goal node v and a graph G , we can model the task of
programming as a search over G for v . Breadth-first search would
look like:
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Now imagine a perfect programmer...

A perfect programmer performs the operation above flawlessly,
terminating after finding the goal node (with probability 1).
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Now imagine a buggy programmer...

Some of the edges might be missing.
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And there is no path to the goal. Search comes up empty.
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Intuition

If we knock out each edge with some probability p, then for any
goal node v we have some (hard to compute) probability that v is
reachable from the root of G . Let’s call this probability of rv .
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Two ways to think about this

Here’s plain old breadth-first search...

Algorithm 1 Breadth-First Search
1: procedure BFS

Input: Program graph G , source node u, goal node v .
Output: Whether v was found.

2: Create a queue Q; Enqueue u onto Q
3: Create a set V ; Add u to V
4: while Q is not empty do
5: Dequeue an item from Q into n
6: If n is u then return True
7: for each edge e incident on n do
8: Let m be the other end of e
9: if m not in V then
10: Add m to V
11: Enqueue m onto Q

12: return False

13 / 31



Two ways to think about this

Here’s breadth-first search with-forgetting...

Algorithm 2 Breadth-First Search With Forgetting
1: procedure BFSWithForgetting

Input: Program graph G , source node u, goal node v , forgetting probability p.
Output: Whether v was found.

2: Create a queue Q; Enqueue u onto Q
3: Create a set V ; Add u to V
4: while Q is not empty do
5: Dequeue an item from Q into n
6: If n is u then return True
7: for each edge e incident on n do
8: Let m be the other end of e
9: if m not in V then
10: Add m to V
11: With probability 1− p, enqueue m onto Q

12: return False
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Two ways to think about this

Alternatively, we can remove the edges from G and then pass this
modified G into plain old breadth-first search.
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Estimating the probability of finding v

Algorithm 3 Monte Carlo Estimation of rv
1: procedure MonteCarloR

Input: Program graph G , goal node v , forgetting probability p, budget b.
Output: Estimate r̂v .

2: Set r to 0
3: for i in 1 to b do
4: Copy G into G ′

5: for each edge e in G ′ do
6: Remove e from G ′ with probability p

7: Call Procedure: BFS(G ′,∅,v) [Algorithm 1]
8: Increment r if BFS found v
9: Return: r/b
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A tangent: Plato was a computer scientist?

Meno: And how are you going to search for [the nature of virtue]
when you don’t know at all what it is, Socrates? Which of all the
things you don’t know will you set up as target for your search?
And even if you actually come across it, how will you know that it
is that thing which you don’t know?
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Making things more interesting: edge types

In our story so far, we have one probability p for forgetting an edge,
but different operations (edges) might be more difficult to follow:

∅
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Here we’ve colored the edges based on which instruction type was
inserted.

More generally:

p : SourceFeatures × InsertionFeatures × InsertionPosition→ [0, 1]
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Modularity

How can we express the idea that the student learns reusable
fragments or idioms?
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Think of these as composite edges.
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Modularity

Just where do we add edges? A couple of ideas.

I The most promiscuous construction would fix some basic
graph G and then add an edge between any pair of vertices
u, v where there is a path from u to v in G .

I More conservatively, fix some basic graph G and then add an
edge between any pair of vertices u, v where v is the result of
inserting some program w into u at a single position.
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Learning
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I So far we have a model of the student’s behavior given some
fixed (vector or function) p, but how does the student learn
how to improve?

I Consider a formal learning perspective...

I We have a learner A.

I We have some set of experiences (or training items)
S = {X1, . . . ,Xn} ∈ S.

I Let’s be notationally awkward and think of p as living in some
space Θ.

I So A is some function A : S → Θ.
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Experiences?

An experience Xi = {Xi1, . . . ,Xim} is a particular path through the
program graph.
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Learning

A learns by reducing its probability of forgetting in proportion to
the number of edges of that type it has seen in training.

Algorithm 4 Learn
1: procedure Learn

Input: Example programs X1,X2, . . . ,Xn, learning rate 0 ≤ γ ≤ 1.
Output: A learner characterized by p.

2: Initialize p(t) for each t in the domain of p to 1
3: for i in 1 to n do
4: for each subseqence l = {Xij , . . . ,Xik} of {Xi1, . . . ,Xim} do
5: if t(l) is defined then
6: p(t(l))← γp(t(l))

7: return p

Here t is a type function that takes an edge to its type.
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Teaching
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Teaching

I Let’s take the point of view that the performance of learner A
on some search problem defines testing.

I We then defined learning.

I So what’s teaching?
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Intuition

I Let’s say we wanted to increase the chance of the student
succeeding at reaching a particular program v . What would
we do?

I We would show that program (probably over and over again).

I Think of this as a cheating strategy of teaching.

27 / 31



Intuition

I Let’s say we wanted to increase the chance of the student
succeeding at reaching a particular program v . What would
we do?

I We would show that program (probably over and over again).

I Think of this as a cheating strategy of teaching.

27 / 31



Intuition

I Let’s say we wanted to increase the chance of the student
succeeding at reaching a particular program v . What would
we do?

I We would show that program (probably over and over again).

I Think of this as a cheating strategy of teaching.

27 / 31



Intuition

I But now let’s say there isn’t a single v state but a large set of
states v1, . . . , vn, all of which we want to teach reasonably
well and say we had a limited budget for the number of items
we could teach with. What would we do?

I Conjecture: we’d extract common, re-usable patterns and
teach those.

I Think of this as a curriculum strategy of teaching.
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Formalize this!

For a single v :

min
S∈S

ε(S)

st P(R(v ,A(S)) = 1) ≥ α.

But if V ∼ FV :

min
S∈S

ε(S)

st E[R(V ,A(S))] ≥ α.

I Here ε is a teacher’s effort function.

I And R is the Bernoulli random variable representing the
success of A(S) at finding V .
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Teacher’s effort

What’s that teacher’s effort ε(S)?

I We can take ε(S) =
∑

X∈S |X | to express a preference for the
smallest sequence of paths.

I Over a graph with no composite edges, this is equivalent to
the number of instructions in a program.

I But we can be creative here...
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Questions?
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