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1 FAQ

Q: What's in this Document?
A: We review the literature on semi-supervised learning, which is an area in ma-
chine learning and more generally, artificial intelligence. There has badmoke
spectrum of interesting ideas on how to learn from both labeled and urdidiestie,
i.e. semi-supervised learning. This document is a chapter excerpt feoauthor’s
doctoral thesis (Zhu, 2005). However the author plans to update theemeision
frequently to incorporate the latest development in the field. Please obtdatdbe
version at

http://lwww.cs.wisc.edujerryzhu/pub/sskurvey.pdf
Please cite the survey using the following bibtex entry:

@ echreport{zhuO5survey,

aut hor = "Xi aojin zZhu",
title = "Sem - Supervi sed Learning Literature Survey",
institution = "Conputer Sciences, University of Wsconsin-Madi son",

nunber = "1530",



year
not e

2005,
"http://ww. cs.w sc. edu/ $\ si n8j erryzhu/ pub/ ssl\ _survey. pdf "

}

The review is by no means comprehensive as the field of semi-supervisad le

ing is evolving rapidly. It is difficult for one person to summarize the fielde Th
author apologizes in advance for any missed papers and inaccuraciescirip-

tions. Corrections and comments are highly welcome. Please send them to jer-
ryzhu@cs.wisc.edu.

Q: What is semi-supervised learning?
A: In this survey we focus on semi-supervised classification. It is a sdecmlof
classification. Traditional classifiers use only labeled data (featurel/pabs) to
train. Labeled instances however are often difficult, expensive, or timguming
to obtain, as they require the efforts of experienced human annotatesnvhile
unlabeled data may be relatively easy to collect, but there has been fenauase
them. Semi-supervised learning addresses this problem by using largatashou
unlabeled data, together with the labeled data, to build better classifiersudgeca
semi-supervised learning requires less human effort and gives tagheracy, it
is of great interest both in theory and in practice.

Semi-supervised classification’s cousins, semi-supervised clusterihgean
gression, are briefly discussed in section 9.3 and 9.4.

Q: Can we really learn anything from unlabeled data? It sounds like magic
A: Yes we can — under certain assumptions. It's not magic, but good matching o
problem structure with model assumption.

Many semi-supervised learning papers, including this one, start with an intr
duction like: “labels are hard to obtain while unlabeled data are abundargfdahe
semi-supervised learning is a good idea to reduce human labor and impe a
racy”. Do not take it for granted. Even though you (or your domaineetjyo
not spend as much time in labeling the training data, you need to spend rel@sona
amount of effort to design good models / features / kernels / similaritytifume
for semi-supervised learning. In my opinion such effort is more criticah floa
supervised learning to make up for the lack of labeled training data.

Q: Does unlabeled data always help?

A: No, there’s no free lunch. Bad matching of problem structure with model as
sumption can lead to degradation in classifier performance. For examileaqu
few semi-supervised learning methods assume that the decision bouhdalg s
avoid regions with highy(z). These methods include transductive support vector



machines (TSVMs), information regularization, Gaussian processes wiitete-
gory noise model, graph-based methods if the graph weights is determipait-by
wise distance. Nonetheless if the data is generated from two heavily quiedap
Gaussian, the decision boundary would go right through the denggshyend
these methods would perform badly. On the other hand EM with generative mix
ture models, another semi-supervised learning method, would have edgdyd so
the problem. Detecting bad match in advance however is hard and remaipsran o
question.

Anecdotally, the fact that unlabeled data do not always help semi-sapdrv
learning has been observed by multiple researchers. For example pawvpli®ng
realized that training Hidden Markov Model with unlabeled data (the BaurstWe
algorithm, which by the way qualifies as semi-supervised learning on segglen
can reduce accuracy under certain initial conditions (Elworthy, 199é¢ (Coz-
man et al., 2003) for a more recent argument. Not much is in the literaturetthoug
presumably because of the publication bias.

Q: How many semi-supervised learning methods are there?

A: Many. Some often-used methods include: EM with generative mixture models,
self-training, co-training, transductive support vector machines,gaaph-based
methods. See the following sections for more methods.

Q: Which method should | use / is the best?

A: There is no direct answer to this question. Because labeled data is, semanie
supervised learning methods make strong model assumptions. Ideallyaurid sh
use a method whose assumptions fit the problem structure. This may beltdifficu
in reality. Nonetheless we can try the following checklist: Do the classesipeod
well clustered data? If yes, EM with generative mixture models may be a good
choice; Do the features naturally split into two sets? If yes, co-training reay b
appropriate; Is it true that two points with similar features tend to be in the same
class? If yes, graph-based methods can be used; Already using Bdh&uctive
SVM is a natural extension; Is the existing supervised classifier complieaied
hard to modify? Self-training is a practical wrapper method.

Q: How do semi-supervised learning methods use unlabeled data?

A: Semi-supervised learning methods use unlabeled data to either modify or re-
prioritize hypotheses obtained from labeled data alone. Although not albaeth
are probabilistic, it is easier to look at methods that represent hypotiwesésx),

and unlabeled data lpy(z). Generative models have common parameters for the
joint distributionp(x,y). It is easy to see thai(z) influencesp(y|x). Mixture
models with EM is in this category, and to some extent self-training. Many other
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methods are discriminative, including transductive SVM, Gaussian [gese-
formation regularization, and graph-based methods. Original discriméntasin-

ing cannot be used for semi-supervised learning, giiger) is estimated ignoring
p(zx). To solve the probleny(z) dependent terms are often brought into the ob-
jective function, which amounts to assumip@|z) andp(z) share parameters.

Q: What s the difference between ‘transductive learning’ and ‘seni-supervised
learning’?

A: Different authors use slightly different names. In this survey we will tihge
following convention:

e ‘Semi-supervised learning’ refers to the use of both labeled and unthbele
data for training. It contrasts supervised learning (data all labeled)sr-u
pervised learning (data all unlabeled). Other names are ‘learning from la
beled and unlabeled data’ or ‘learning from partially labeled/classified data
Notice semi-supervised learning can be either transductive or inductive.

e ‘Transductive learning’ will be used to contrast inductive learning. aner
is transductive if it only works on the labeled and unlabeled training data,
and cannot handle unseen data. The early graph-based methodteare o
transductive. Inductive learners can naturally handle unseen daiticeN
under this conventiofransductive support vector machin€ESVMs) are
in fact inductive learners, because the resulting classifiers are defire
the whole space. The name TSVM originates from the intention to work
only on the observed data (though people use them for induction anyway)
which according to (Vapnik, 1998) is solving a simpler problem. People
sometimes use the analogy that transductive learning is take-home exam,
while inductive learning is in-class exam.

e In this survey semi-supervised learning refers to ‘semi-supervisesifatas
tion’, where one has additional unlabeled data and the goal is classification
Its cousin ‘semi-supervised clustering’, where one has unlabeled dita w
some pairwise constraints and the goal is clustering, is only briefly distusse
later in the survey.

We will follow the above convention in the survey.

Q: Where can | learn more?
A: An existing survey can be found in (Seeger, 2001). A book on sengrsiged
learning is (Chapelle et al., 2006c).



2 Generative Models

Generative models are perhaps the oldest semi-supervised learningimié s
sumes a model(z,y) = p(y)p(x|y) wherep(z|y) is an identifiable mixture dis-
tribution, for example Gaussian mixture models. With large amount of unlabeled
data, the mixture components can be identified; then ideally we only need one
labeled example per component to fully determine the mixture distribution, see
Figure 1. One can think of the mixture components as ‘soft clusters’.

Nigam et al. (2000) apply the EM algorithm on mixture of multinomial for
the task of text classification. They showed the resulting classifiersrpetfetter
than those trained only fromh. Baluja (1998) uses the same algorithm on a face
orientation discrimination task. Fujino et al. (2005) extend generative mixture
models by including a ‘bias correction’ term and discriminative training usieg th
maximum entropy principle.

One has to pay attention to a few things:

2.1 Identifiability

The mixture model ideally should be identifiable. In genera{tet be a family of

distributions indexed by a parameter vedlo# is identifiable ifd; # 02 = py, #

Do, UP t0 @ permutation of mixture components. If the model family is identifiable,

in theory with infiniteU one can leard up to a permutation of component indices.
Here is an example showing the problem with unidentifiable models. The

modelp(z|y) is uniform fory € {+1,—1}. Assuming with large amount of un-

labeled datd/ we know p(z) is uniform in [0,1]. We also have 2 labeled data

points (0.1, +1), (0.9, —1). Can we determine the label far= 0.5? No. With

our assumptions we cannot distinguish the following two models:

p(y=1) =0.2, p(xzly = 1) = unif(0,0.2), p(zly = —1) = unif(0.2,1) (1)

p(y =1) = 0.6, p(x|y = 1) = unif(0,0.6), p(zly = —1) = unif(0.6,1) (2)
which give opposite labels at= 0.5, see Figure 2. It is known that a mixture of
Gaussian is identifiable. Mixture of multivariate Bernoulli (McCallum & Nigam,
1998a) is not identifiable. More discussions on identifiability and semi-gigeet

learning can be found in e.g. (Ratsaby & Venkatesh, 1995) and (Geathu &
Jaakkola, 2001).

2.2 Model Correctness

If the mixture model assumption is correct, unlabeled data is guaranteed tovénpro
accuracy (Castelli & Cover, 1995) (Castelli & Cover, 1996) (Ratsabgnkatesh,
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Figure 1: In a binary classification problem, if we assume each class hasssi@n
distribution, then we can use unlabeled data to help parameter estimation.
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Figure 2: An example of unidentifiable models. Even if we kngwm) (top)

is a mixture of two uniform distributions, we cannot uniquely identify the two
components. For instance, the mixtures on the second and third line giventiee s
p(x), but they classify: = 0.5 differently.
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case2

Figure 3: If the model is wrong, higher likelihood may lead to lower classifinatio
accuracy. For examplég) is clearly not generated from two Gaussian. If we insist
that each class is a single Gaussi@),will have higher probability thaiic). But

(b) has around 50% accuracy, wh{l®’s is much better.

1995). However if the model is wrong, unlabeled data may actually huaracy.
Figure 3 shows an example. This has been observed by multiple regsarChe-
man et al. (2003) give a formal derivation on how this might happen.

It is thus important to carefully construct the mixture model to reflect reality.
For example in text categorization a topic may contain several sub-topatsyitn
be better modeled by multiple multinomial instead of a single one (Nigam et al.,
2000). Some other examples are (Shahshahani & Landgrebe, 198y &
Uyar, 1997). Another solution is to down-weighing unlabeled data (Gedou &
Jaakkola, 2001), which is also used by Nigam et al. (2000), and by @alBsirch
et al. (2004) who estimate word alignment for machine translation.



2.3 EM Local Maxima

Even if the mixture model assumption is correct, in practice mixture components
are identified by the Expectation-Maximization (EM) algorithm (Dempster et al.,
1977). EM is prone to local maxima. If a local maximum is far from the global
maximum, unlabeled data may again hurt learning. Remedies include smart choice
of starting point by active learning (Nigam, 2001).

2.4 Cluster-and-Label

We shall also mention that instead of using an probabilistic generative mixture
model, some approaches employ various clustering algorithms to cluster thee who
dataset, then label each cluster with labeled data, e.g. (Demiriz et al., T289) (
etal., 2002). Although they can perform well if the particular clusteringritigms
match the true data distribution, these approaches are hard to analyzetideie to
algorithmic nature.

2.5 Fisher kernel for discriminative learning

Another approach for semi-supervised learning with generative mode<m-
vert data into a feature representation determined by the generative mbdalew
feature representation is then fed into a standard discriminative classifiérb

et al. (2005) used this approach for image categorization. First aajememix-
ture model is trained, one component per class. At this stage the unlabédechad
be incorporated via EM, which is the same as in previous subsections. vieiowe
instead of directly using the generative model for classification, eaclethlex-
ample is converted into a fixed-length Fisher score vector, i.e. the deeisati log
likelihood w.r.t. model parameters, for all component models (Jaakkola &Hau
sler, 1998). These Fisher score vectors are then used in a discririnssifier
like an SVM, which empirically has high accuracy.

3 Self-Training

Self-training is a commonly used technique for semi-supervised learnirgglfin
training a classifier is first trained with the small amount of labeled data. The
classifier is then used to classify the unlabeled data. Typically the most ennfid
unlabeled points, together with their predicted labels, are added to the training
set. The classifier is re-trained and the procedure repeated. Note $sdieta
uses its own predictions to teach itself. The procedure is also called sghiriga

or bootstrapping (not to be confused with the statistical procedure withathe s
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name). The generative model and EM approach of section 2 can bedvasve
special case of ‘soft’ self-training. One can imagine that a classificatiotakeis
can reinforce itself. Some algorithms try to avoid this by ‘unlearn’ unlabebéute

if the prediction confidence drops below a threshold.

Self-training has been applied to several natural language procedssikeg
Yarowsky (1995) uses self-training for word sense disambiguation,degding
whether the word ‘plant’ means a living organism or a factory in a givdesdn
Riloff et al. (2003) uses it to identify subjective nouns. Maeireizo et 2004)
classify dialogues as ‘emotional’ or ‘non-emotional’ with a procedure iriaglv
two classifiers.Self-training has also been applied to parsing and machiskatra
tion. Rosenberg et al. (2005) apply self-training to object detectionragsieom
images, and show the semi-supervised technique compares favorablystatie-a
of-the-art detector.

4 Co-Training

Co-training (Blum & Mitchell, 1998) (Mitchell, 1999) assumes that featuia@s c
be split into two sets; Each sub-feature set is sufficient to train a goosifeas
The two sets are conditionally independent given the class. Initially twaatpa
classifiers are trained with the labeled data, on the two sub-feature sestiesly.
Each classifier then classifies the unlabeled data, and ‘teaches’ thelabfier
with the few unlabeled examples (and the predicted labels) they feel mdst con
dent. Each classifier is retrained with the additional training examples gywtreb
other classifier, and the process repeats.

In co-training, unlabeled data helps by reducing the version spacdrsiather
words, the two classifiers (or hypotheses) must agree on the muchuatgbeled
data as well as the labeled data.

We need the assumption that sub-features are sufficiently good, sogltatrw
trust the labels by each learner &n We need the sub-features to be conditionally
independent so that one classifier’'s high confident data poinigdasamples for
the other classifier. Figure 4 visualizes the assumption.

Nigam and Ghani (2000) perform extensive empirical experiments to @m@mp
co-training with generative mixture models and EM. Their result showsaioitig
performs well if the conditional independence assumption indeed holdsddir
tion, it is better to probabilistically label the entitg instead of a few most con-
fident data points. They name this paradigm co-EM. Finally, if there is naalatu
feature split, the authors create artificial split by randomly break the feagitinto
two subsets. They show co-training with artificial feature split still helpsyugho
not as much as before. Jones (2005) used co-training, co-EM aad refhted
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(@) z! view (b) 22 view

Figure 4: Co-Training: Conditional independent assumption on feaplite \&/ith
this assumption the high confident data points:irview, represented by circled
labels, will be randomly scattered irf view. This is advantageous if they are to
be used to teach the classifierif view.

methods for information extraction from text.

Co-training makes strong assumptions on the splitting of features. One might
wonder if these conditions can be relaxed. Goldman and Zhou (200(ase
learners of different type but both takes the whole feature set, aedtesdly use
one learner’s high confidence data points, identified with a set of statite&tal in
U to teach the other learning and vice versa. Later Zhou and Goldman (2@04) p
pose a single-view multiple-learner Democratic Co-learning algorithm. Amense
ble of learners with different inductive bias are trained separately oodimplete
feature of the labeled data. They then make predictions on the unlabeledfdata
a majority of learners confidently agree on the class of an unlabeledpgittiat
classification is used as the labelxf. =, and its label is added to the training
data. All learners are retrained on the updated training set. The firditpoa is
made with a variant of a weighted majority vote among all the learners. Similarly
Zhou and Li (2005b) propose ‘tri-training’ which uses three learndfrswo of
them agree on the classification of an unlabeled point, the classificationdisaise
teach the third classifier. This approach thus avoids the need of explicityumea
ing label confidence of any learner. It can be applied to datasets witliféerent
views, or different types of classifiers.

Balcan et al. (2005b) relax the conditional independence assumption with a
much weaker expansion condition, and justify the iterative co-trainingegioe.

More generally, we can define learning paradigms that utilize the agreement
among different learners. Co-training can be viewed as a specialhgdsewvo
learners and a specific algorithm to enforce agreement. For instanceoitkef
Leskes (2005) is discussed in Section 7.
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5 Avoiding Changes in Dense Regions

5.1 Transductive SVMs (S3VMs)

Discriminative methods work op(y|x) directly. This brings up the danger of
leavingp(x) outside of the parameter estimation loopp(f:) andp(y|x) do not
share parameters. Notigéx) is usually all we can get from unlabeled data. It is
believed that ifp(z) andp(y|z) do not share parameters, semi-supervised learning
cannot help. This point is emphasized in (Seeger, 2001).

Transductive support vector machines (TSVMb)ilds the connection be-
tweenp(z) and the discriminative decision boundary by not putting the boundary
in high density regions. TSVM is an extension of standard support vetohines
with unlabeled data. In a standard SVM only the labeled data is used, andahe g
is to find a maximum margin linear boundary in the Reproducing Kernel Hilbert
Space. In a TSVM the unlabeled data is also used. The goal is to find a tabélin
the unlabeled data, so that a linear boundary has the maximum margin on both the
original labeled data and the (now labeled) unlabeled data. The decisima-bo
ary has the smallest generalization error bound on unlabeled data (Vapai).
Intuitively, unlabeled data guides the linear boundary away from degsens.

Figure 5: In TSVM,U helps to put the decision boundary in sparse regions. With
labeled data only, the maximum margin boundary is plotted with dotted lines. With
unlabeled data (black dots), the maximum margin boundary would be the one with
solid lines.

However finding the exact transductive SVM solution is NP-hard. Mdjorte
has focused on efficient approximation algorithms. Early algorithms (Be&ne
Demiriz, 1999) (Demirez & Bennett, 2000) (Fung & Mangasarian, 19%89ge
cannot handle more than a few hundred unlabeled examples, or did ot ido
experiments. The SVM-light TSVM implementation (Joachims, 1999) is the first
widely used software.

In recent papers, TSVMs are also callBdmi-Supervised Support Vector Machi(@&/M),
because the learned classifiers can in fact be used inductively totwadioseen data.
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Xu and Schuurmans (2005) present a training method based on senitiedefin
programming (SDP, which applies to the completely unsupervised SVMs as well)
In the simple binary classification case, the goal of finding a good labelingfa-
beled data is formulated as finding a positive semi-definite matrix\/ is meant
to be the continuous relaxation of the label outer product magrix and the SVM
objective is expressed as semi-definite programmingffoT here are effective (al-
though still expensive) SDP solvers. Importantly, the authors propo#ieciass
version of the SDP, which results in multi-class SVM for semi-superviseditegr
The computational cost of SDP is still high though.

TSVM can be viewed as SVM with an additional regularization term on un-
labeled data. Lef(x) = h(x) + b whereh € Hg. The optimization problem
is

l n
min} (1= yif ()4 + Mlbli +22 > A= [f@)hs @)
=1 i=l+1
where(z)+ = max(z,0). The last term arises from assigning label $ifx)) to
unlabeled point:. The margin on unlabeled pointis thus Sigtx)) f(x) = | f(z)|.
The loss functior{l — | f(z;)|)+ has a non-convex hat shape as shown in Figure 6,
which is the root of the optimization difficulty.

15
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Figure 6: The TSVM loss functiol — |f(x;)|)+

Chapelle and Zien (2005) propo8&SVM, which approximates the hat loss
(1—|f(z:)])+ with a Gaussian function, and perform gradient search in the primal
space. Sindhwani et al. (2006) use a deterministic annealing appneaah
starts from an ‘easy’ problem, and gradually deforms it to the TSVM objectn
a similar spirit, Chapelle et al. (2006a) use a continuation approach, wisich a
starts by minimizing an easy convex objective function, and gradually mhsfar
to the TSVM objective (with Gaussian instead of hat loss), using the solution o
previous iterations to initialize the next ones. Collobert et al. (2006) optimize
the hard TSVM directly, using an approximate optimization procedure kn@wn a
concave-convex procedure (CCCP). The key is to notice that thedsasla sum of
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a convex function and a concave function. By replacing the concaatifun with

a linear upper bound, one can perform convex minimization to produc@er u
bound of the loss function. This is repeated until a local minimum is reachesd. T
authors report significant speed up of TSVM training with CCCP. Sindihaad
Keerthi (2006) proposed a fast algorithm fimear S3VMs, suitable for large scale
text applications. Their implementation can be fountitat p: / / peopl e. cs.
uchi cago. edu/ ~vi kass/ svm in. htm .

With all the approximation solutions to TSVMs, it is interesting to understand
just how good a global optimum TSVM can be. With the Branch and Bourdisea
technique, Chapelle et al. (2006b) finds the global optimal solution for small
datasets. The results indicate excellent accuracy. Although BrancBaunud
will probably never be useful for large datasets, the results provioe gpound
truth, and points to the potentials of TSVMs with better approximation methods.

Weston et al. (2006) learn with a ‘universum’, which is a set of unlabeted
that is known to come fromeitherof the two classes. The decision boundary is
encouraged to pass through the universum. One interpretation is similanaxie
imum entropy principle: the classifier should be confident on labeled exanyge
maximally ignorant on unrelated examples.

Zhang and Oles (2000) argued against TSVMs.

The maximum entropy discrimination approach (Jaakkola et al., 1999) also
maximizes the margin, and is able to take into account unlabeled data, with SVM
as a special case.

5.2 Gaussian Processes

Lawrence and Jordan (2005) proposed a Gaussian processelppninich can be
viewed as the Gaussian process parallel of TSVM. The key diffefterecstandard
Gaussian process is in the noise model. A ‘null category noise model’ maps the
hidden continuous variablgéto three instead of two labels, specifically to the never
used label ‘0’ whery is around zero. On top of that, it is restricted that unlabeled
data points cannot take the label 0. This pushes the posterjfoawhy from zero

for the unlabeled points. It achieves the similar effect of TSVM where thrgima
avoids dense unlabeled data region. However nothing special is déne pirocess
model. Therefore all the benefit of unlabeled data comes from the noisel.n#od
very similar noise model is proposed in (Chu & Ghahramani, 2004) for ardin
regression.

Chu et al. (2006) develop Guassian process models that incorporatespa
label relations (e.g. two points tends to have similar or different labels). Note
such similar-label information is equivalent to those used in graph-basad s
supervised learning. Such models, using only similarity information, are applie
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to semi-supervised learning successfully. However dissimilarity is only ypdeft
cussed, with many questions remain open.

There is a finite form of a Gaussian process in (Zhu et al., 2003c), trafac
joint Gaussian distribution on the labeled and unlabeled points with the covarian
matrix derived from the graph Laplacian. Semi-supervised learninggmep the
process model, not the noise model.

5.3 Information Regularization

Szummer and Jaakkola (2002) propose the information regularizationvixake
to control the label conditionalgy|x) by p(x), wherep(x) may be estimated from
unlabeled data. The idea is that labels shouldn’t change too much in regiens
p(zx) is high. The authors use the mutual informatiqn;; y) betweenr andy as

a measure of label complexity(x; y) is small when the labels are homogeneous,
and large when labels vary. This motives the minimization of the produet:of
mass in a region witli (x; y) (hormalized by a variance term). The minimization
is carried out on multiple overlapping regions covering the data space.

The theory is developed further in (Corduneanu & Jaakkola, 2003)r- C
duneanu and Jaakkola (2005) extend the work by formulating semissger
learning as a communication problem. Regularization is expressed as thé rate o
information, which again discourages complex conditiopélgz) in regions with
high p(z). The problem becomes finding the unigu@|z) that minimizes a regu-
larized loss on labeled data. The authors give a local propagation afgorith

5.4 Entropy Minimization

The hyperparameter learning method in section 7.2 of (Zhu, 2005) usepen
minimization. Grandvalet and Bengio (2005) used the label entropy onelathb
data as aregularizer. By minimizing the entropy, the method assumes a pritr whic
prefers minimal class overlap.

Lee etal. (2006) apply the principle of entropy minimization for semi-supedvis
learning on 2-D conditional random fields for image pixel classificatiomalric-
ular, the training objective is to maximize the standard conditional loglikelihood,
and at the same time minimize the conditional entropy of label predictions on un-
labeled image pixels.

5.5 A Connection to Graph-based Methods?

Let p(x) be a probability distribution from which labeled and unlabeled data are
drawn. Narayanan et al. (2006) prove that the ‘weighted bounddmyne, i.e.
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the surface integraf, p(s)ds along a decision boundary, is approximated by
Ni\j{fTLf when the number of iid data poinf€ tends to infinity. Herel is the
normalized graph Laplacian aryfdis an indicator function of the cut, arids the
bandwidth of the edge weight Gaussian function, which must tend to zeao at
certain rate. This result suggests that S3VMs and related methods which see
decision boundary that passes through low density regions, and-gessgia semi-
supervised learning methods which approximately compute the graph cut, might
be more strongly connected that previously thought.

6 Graph-Based Methods

Graph-based semi-supervised methods define a graph where theanetiseled

and unlabeled examples in the dataset, and edges (may be weighted)theflect
similarity of examples. These methods usually assume label smoothness over the
graph. Graph methods are nonparametric, discriminative, and transdurcha-

ture.

6.1 Regularization by Graph

Many graph-based methods can be viewed as estimating a furfatiothe graph.
One wantsf to satisfy two things at the same time: 1) it should be close to the
given labelsy;, on the labeled nodes, and 2) it should be smooth on the whole
graph. This can be expressed in a regularization framework wheregheefim is
a loss function, and the second term is a regularizer.

Several graph-based methods listed here are similar to each other. iThey d
fer in the particular choice of the loss function and the regularizer. Weueelie
is more important to construct a good graph than to choose among the methods.
However graph construction, as we will see later, is not a well studied are

6.1.1 Mincut

Blum and Chawla (2001) pose semi-supervised learning as a graph riehsmt
known asst-cut) problem. In the binary case, positive labels act as sources and
negative labels act as sinks. The objective is to find a minimum set of edgeew
removal blocks all flow from the sources to the sinks. The nodes ctingdo the
sources are then labeled positive, and those to the sinks are label&dendeguiv-
alently mincut is thenodeof a Markov random field with binary labels (Boltzmann
machine). The loss function can be viewed as a quadratic loss with infinithtveig

00y ier (Wi — yi‘L)2, so that the values on labeled data are in fact fixed at their
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given labels. The regularizer is
1 1 )
§Zwij|yi_yj| :izwij(yi_yj) 4
1,3 2%

The equality holds because this take binary (0 and 1) labels. Putting the two
together, mincut can be viewed to minimize the function

OOZ(,%' _yi|L)2+%Zwij(yi —y;)? (%)
4,J

1€l

subject to the constraingt € {0, 1}, Vi.

One problem with mincut is that it only gives hard classification without con-
fidence (i.e. it computes the mode, not the marginal probabilities). Blum et al.
(2004) perturb the graph by adding random noise to the edge weighteutimn
applied to multiple perturbed graphs, and the labels are determined by a majority
vote. The procedure is similar to bagging, and creates a ‘soft’ mincut.

Pang and Lee (2004) use mincut to improve the classification of a sentémce in
either ‘objective’ or ‘subjective’, with the assumption that sentencesdmgach
other tend to have the same class.

6.1.2 Discrete Markov Random Fields: Boltzmann Machines

The proper but hard way is to compute the marginal probabilities of the thscre
Markov random fields. This is inherently a difficult inference problemu Anhd
Ghahramani (2002) attempted exactly this, but were limited by the MCMC sam-
pling techniques (they used global Metropolis and Swendsen-Wang sahplin
Getz et al. (2005) computes the marginal probabilities of the discrete Markov
random field at any temperature with the Multi-canonical Monte-Carlo method,
which seems to be able to overcome the energy trap faced by the standesgdde
lis or Swendsen-Wang method. The authors discuss the relationship habmee
peratures and phases in such systems. They also propose a heuristidype to
identify possible new classes.

6.1.3 Gaussian Random Fields and Harmonic Functions

The Gaussian random fields and harmonic function methods in (Zhu et@BaR0
is a continuous relaxation to the difficulty discrete Markov random fieldB¢tiz-
mann machines). It can be viewed as having a quadratic loss function witiyinfi
weight, so that the labeled data are clamped (fixed at given label vahresh
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regularizer based on the graph combinatorial Laplagian

0> (fi—ui) +1/2Zw” £i)? (6)
i€L ,J
= ooz +fTAf (7)

ieL

Notice f; € R, which is the key relaxation to Mincut. This allows for a simple
closed-form solution for the node marginal probabilities. The mean is krasan
harmonic function, which has many interesting properties (Zhu, 2005).

Recently Grady and Funka-Lea (2004) applied the harmonic function ohetho
to medical image segmentation tasks, where a user labels classes (e.gndiffer
organs) with a few strokes. Levin et al. (2004) use the equivalentwhbnic
functions for colorization of gray-scale images. Again the user spetifeesle-
sired color with only a few strokes on the image. The rest of the image is gsed a
unlabeled data, and the labels propagation through the image. Niu et &) &80
plied the label propagation algorithm (which is equivalent to harmonic fumgfio
to word sense disambiguation. Goldberg and Zhu (2006) applied the afgdath
sentiment analysis for movie rating prediction.

6.1.4 Local and Global Consistency

The local and global consistency method (Zhou et al., 2004a) uses #fehasion
S (fi—vi)?, and thenormalized LaplaciaD—'/2AD~1/2 = - D~1/2W D~1/2
in the regularizer,

/2 Jwij(fi//Di = f3/\/Dy;)* = fTD7V?ADf (8
o

6.1.5 Tikhonov Regularization

The Tikhonov regularization algorithm in (Belkin et al., 2004a) uses theflogs
tion and regularizer:

1/k§j 2+ yf7Sf ©)

whereS = A or AP for some integep.
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6.1.6 Manifold Regularization

The manifold regularization framework (Belkin et al., 2004b) (Belkin et 2053
employs two regularization terms:

l
1
YZV(xi,yz',f)+7A|!f||§<+71|\f||12r (10)
=1

whereV is an arbitrary loss functionk’ is a ‘base kernel’, e.g. a linear or RBF
kernel. I is a regularization term induced by the labeled and unlabeled data. For

example, one can use
1

(I +u)

wheref is the vector off evaluations o, U U.

Sindhwani et al. (2005a) give a semi-supervised kernel that is not lirtoted
the unlabeled points, but defined over all input space. The kernelstqports
induction. Essentially the kernel is a new interpretation of the manifold ragalar
tion framework above. Starting from a base kerRetlefined over the whole input
space (e.g. linear kernels, RBF kernels), the authors modify the RKH8dping
the same function space but changing the norm. Specifically a ‘point-clounf n
defined byL U U is added to the original norm. The point-cloud norm corresponds
to ||f|/2. Importantly this results in a new RKHS space, with a corresponding
new kernel that deforms the original one along a finite-dimensional sgbsgiven
by the data. The new kernel is defined over the whole space, yet itweltbe
manifold’. Standard supervised kernel machines with the new kernele¢rain
L only, are able to perform inductive semi-supervised learning. In fast éne
equivalent to LapSVM and LapRLS (Belkin et al., 2005) with a certainipatar.
Nonetheless finding the new kernel involves inverting & n matrix. Like many
other methods it can be costly. Also notice the new kernel depends ongbeset
L U U data, thus it is a random kernel.

17117 =

SfTAf (11)

6.1.7 Graph Kernels from the Spectrum of Laplacian

For kernel methods, the regularizer is a (typically monotonically increagimg)
tion of the RKHS norni| f||x = f7 K ! f with kernel K. Such kernels are derived
from the graph, e.g. the Laplacian.

Chapelle et al. (2002) and Smola and Kondor (2003) both show the apectr
transformation of a Laplacian results in kernels suitable for semi-supdnéam-
ing. The diffusion kernel (Kondor & Lafferty, 2002) correspondsatgpectrum

20



transform of the Laplacian with

0.2
r(A) = exp(—?)\) (12)

The regularized Gaussian process kerhel I /02 in (Zhu et al., 2003c) corre-

sponds to
1
\) =
) Ato

Similarly the order constrained graph kernels in (Zhu et al., 2005) are con
structed from the spectrum of the Laplacian, with non-parametric congéx o
mization. Learning the optimal eigenvalues for a graph kernel is in factyatova
(at least partially) improve an imperfect graph. In this sense it is relatechfihg
construction.

Kapoor et al. (2005) learn both the graph weight hyperparameterytier-h
parameter for Laplacian spectrum transformatigh) = X + §, and the noise
model hyperparameter with evidence maximization. Expectation Propagakyn (E
is used for approximation. The authors also propose a way to classienns
points. This spectrum transformation is relatively simple.

(13)

6.1.8 Spectral Graph Transducer

The spectral graph transducer (Joachims, 2003) can be viewed wih ffation
and regularizer

minc(f —v)"C(f —v) + f'Lf (14)
stf'l=0andf f=n (15)

where~; = /l_/l4 for positive labeled data;-+/l /I for negative data]_
being the number of negative data and so ércan be the combinatorial or nor-

malized graph Laplacian, with a transformed spectraia.a weighting factor, and
C'is a diagonal matrix for misclassification costs.

Pham et al. (2005) perform empirical experiments on word sense disaabig
tion, comparing variants of co-training and spectral graph transdutlee au-
thors notice spectral graph transducer with carefully constructechgréGT-
Cotraining’) produces good results.

6.1.9 Tree-Based Bayes

Kemp et al. (2003) define a probabilistic distributi®Y |T") on discrete (e.g. 0
and 1) labellingst” over an evolutionary tre&'. The treeT is constructed with
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the labeled and unlabeled data being the leaf nodes. The labeled data iscclampe
The authors assume a mutation process, where a label at the rootgiespdgwn

to the leaves. The label mutates with a constant rate as it moves down along the
edges. As aresult the tr@é(its structure and edge lengths) uniquely defines the
label prior P(Y'|T"). Under the prior if two leaf nodes are closer in the tree, they
have a higher probability of sharing the same label. One can also integeatallov

tree structures.

The tree-based Bayes approach can be viewed as an interesting wagrto in
porate structure of the domain. Notice the leaf nodes of the tree are thedainele
unlabeled data, while the internal nodes do not correspond to phyatzalThis is
in contrast with other graph-based methods where labeled and unlalagtedrd
all the nodes.

6.1.10 Some Other Methods

Szummer and Jaakkola (2001) performstep Markov random walk on the graph.
The influence of one example to another example is proportional to howtleasy
random walk goes from one to the other. It has certain resemblance tifftisgoch
kernel. The parametélis important.

Chapelle and Zien (2005) use a density-sensitive connectivity distatwedn
nodesi, j (a given path between j consists of several segments, one of them
is the longest; now consider all paths betwéghand find the shortest ‘longest
segment’). Exponentiating the negative distance gives a graph kernel.

Bousquet et al. (2004) propose ‘measure-based regularizatiengathtinu-
ous counterpart of graph-based regularization. The intuition is that dwadspare
similar if they are connected by high density regions. They define regafiniz
based on a known densityz) and provide interesting theoretical analysis. How-
ever it seems difficult in practice to apply the theoretical results to highes 2)
dimensional tasks.

6.2 Graph Construction

Although the graph is at the heart of graph-based semi-supervis@iniganeth-
ods, its construction has not been studied extensively. The issuedradibeussed
in (Zhu, 2005) Chapter 3 and Chapter 7. Balcan et al. (2005a) buifgthgror
video surveillance using strong domain knowledge, where the graph lufame
images consists of time edges, color edges and face edges. Such rgfaaisa
deep understanding of the problem structure and how unlabeled dapeistedt to
help. Carreira-Perpinan and Zemel (2005) build robust graphsfinattiple min-
imum spanning trees by perturbation and edge removal. Wang and Zz0g) (2
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perform an operation very similar to locally linear embedding (LLE) on the data
points first, but constraining the LLE weights to be non-negative. Theighis
are then used as graph weights.

Hein and Maier (2006) propose an algorithm to denoise points sampledifrom
manifold. That is, data points are assumed to be noisy samples of some tmknow
underlying manifold. They used the denoising algorithm as a preprogessimfor
graph-based semi-supervised learning, so that the graph can heuctedsfrom
better separated data points. Such preprocessing results in better pemisad
classification accuracy.

When using a Gaussian function as edge weights, the bandwidth of the Gaus
sian needs to be carefully chosen. Zhang and Lee (2006) derivess ealida-
tion approach to tune the bandwidth for each feature dimension, by minimizing
the leave-one-out mean squared error of predictions and given labédtbeled
points. By invoking the matrix inversion lemma and careful pre-computation, the
time complexity of LOO tuning is moderately reduced (but stilgt>)).

6.3 Fast Computation

Many semi-supervised learning methods scale as badlfa$) as they were orig-
inally proposed. Because semi-supervised learning is interesting wheiz¢hef
unlabeled data is large, this is clearly a problem. Many methods are alsoucansd
tive (section 6.4). In 2005 several papers start to address thedem

Fast computation of the harmonic function with conjugate gradient methods
is discussed in (Argyriou, 2004). A comparison of three iterative methiadie|
propagation, conjugate gradient and loopy belief propagation is gessen(Zhu,
2005) Appendix F. Recently numerical methods for fast N-body probleave
been applied talensegraphs in semi-supervised learning, reducing the computa-
tional cost fromO(n?) to O(n) (Mahdaviani et al., 2005). This is achieved with
Krylov subspace methods and the fast Gauss transform.

The harmonic mixture models (Zhu & Lafferty, 2005) convert the original
graph into a much smaller backbone graph, by using a mixture model to ‘carve
up’ the originalL U U dataset. Learning on the smaller graph is much faster. Sim-
ilar ideas have been used for e.g. dimensionality reduction (Teh & Rowi$ig) 2
The heuristics in (Delalleau et al., 2005) similarly create a small graph with-a sub
set of the unlabeled data. They enables fast approximate computatioduzyng
the problem size.

Garcke and Griebel (2005) propose the use of sparse grids forssgraivised
learning. The main advantages &) computation complexity for sparse graphs,
and the ability of induction. The authors start from the same regularizatain pr
lem of (Belkin et al., 2005). The key idea is to approximate the function space
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with a finite basis, with sparse grids. The minimizém this finite dimensional
subspace can be efficiently computed. As the authors point out, this method is
different from the general kernel methods which rely on the repteséimeorem

for finite representation. In practice the method is limited by data dimensionality
(around 20). A potential drawback is that the method employs a regularagid
cannot ‘zoom in’ to small interesting data regions with higher resolution.

Yu et al. (2005) solve the large scale semi-supervised learning probfem b
using a bipartite graph. The labeled and unlabeled points form one side of th
bipartite split, while a much smaller number of ‘block-level’ nodes form the other
side. The authors show that the harmonic function can be computed using the
block-level nodes. The computation involves inverting a much smaller matrix on
block-level nodes. Itis thus cheaper and more scalable than workexlglion the
LUU matrix. The authors propose two methods to construct the bipartite graph, so
that it approximates the given weight matiiX on L U U. One uses Nonnegative
Matrix Factorization, the other uses mixture models. The latter method has the
additional benefit of induction, and is similar to the harmonic mixtures (Zhu &
Lafferty, 2005). However in the latter method the mixture model is derivagdba
on the given weight matri¥/. But in harmonic mixture$l” and the mixture model
are independent, and the mixture model serves as a ‘second knowtadge’sn
addition tolV.

The original manifold regularization framework (Belkin et al., 2004b) sded
inverta(l+u) x (I+wu) matrix, and is not scalable. To speed up things, Sindhwani
et al. (2005c¢) considdinear manifold regularization Effectively this is a special
case when the base kernel is taken to be the linear kernel. The autborshstt
it is advantageous to work with the primal variables. The resulting optimization
problem can be much smaller if the data dimensionality is small, or sparse.

Tsang and Kwok (2006) scale manifold regularization up by adding ie-an
insensitive loss into the energy function, i.e. repladingu;; (f(x;) — f(z;))* by
Yo wij (| f () — f(xj)]E)Q, where|z|. = max(|z| — €,0). The intuition is that
most pairwise differencef(x;) — f(z;) are very small. By tolerating differences
smaller tharg, the solution becomes sparse. They were able to handle one million
unlabeled points in manifold regularization with this method.

6.4 Induction

Most graph-based semi-supervised learning algorithms are transguaivthey
cannot easily extend to new test points outsidé. of U. Recently induction has
received increasing attention. One common practice is to ‘freeze’ thén gnap

L U U. New points do not (although they should) alter the graph structure. This
avoids expensive graph computation every time one encounters new. points
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Zhu et al. (2003c) propose that new test point be classified by itsstasgigh-
borin LUU. Thisis sensible wheli is sufficiently large. In (Chapelle et al., 2002)
the authors approximate a hew point by a linear combination of labeled and unla
beled points. Similarly in (Delalleau et al., 2005) the authors proposes actioadu
scheme to classify a new pointby

ZieLuU wm’f(%')
> ieLoU Wai

This can be viewed as an application of the Ngstimethod (Fowlkes et al., 2004).

Yu et al. (2004) report an early attempt on semi-supervised inductiog usin
RBF basis functions in a regularization framework. In (Belkin et al., 2D0die
function f does not have to be restricted to the graph. The graph is merely used to
regularizef which can have a much larger support. It is necessarily a combination
of an inductive algorithm and graph regularization. The authors giveithgh-
regularized version of least squares and SVM. (Note such an SVMésetit from
the graph kernels in standard SVM in (Zhu et al., 2005). The former isctivdu
with both a graph regularizer and an inductive kernel. The latter is tratigdu
with only the graph regularizer.) Following the work, Krishnapuram et2006)
use graph regularization on logistic regression. Sindhwani et al. €Qfige a
semi-supervised kernel that is defined over the whole space, nohjtfs ¢raining
data points. These methods create inductive learners that naturally hamdiest
points.

The harmonic mixture model (Zhu & Lafferty, 2005) naturally handles new
points as well. The idea is to model the labeled and unlabeled data with a mixture
model, e.g. mixture of Gaussian. In standard mixture models, the class proba-
bility p(y|i) for each mixture componeritis optimized to maximize label like-
lihood. However in harmonic mixture models(y|:) is optimized differently to
minimize an underlying graph-based cost function. Under certain conglitiba
harmonic mixture model converts the original graph on unlabeled data in&zk-'b
bone graph’, with the components being ‘super nodes’. Harmonic mixtudelso
naturally handle induction just like standard mixture models.

Several other inductive methods have been discussed in section 6.3etogeth
with fast computation.

f(z) = (16)

6.5 Consistency

The consistency of graph-based semi-supervised learning algorithmsoigea
research area. By consistency we mean whether classification cesuerghe
right solution as the number of labeled and unlabeled data grows to infinity. Re
cently von Luxburg et al. (2005) (von Luxburg et al., 2004) study thesistency
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of spectral clustering method§ he authors find that the normalized Laplacian is
better than the unnormalized Laplacian for spectral clustering. The gmnee of
the eigenvectors of the unnormalized Laplacian is not clear, while the nogdaliz
Laplacian always converges under general conditions. Therexanepées where
the top eigenvectors of the unnormalized Laplacian do not yield a sensilste clu
tering. The corresponding problem in semi-supervised classificatiatsriegher
study. One reason is that in semi-supervised learning the whole Laplagan (
malized or not) is often used for regularization, not only the top eigenv&ctor

Zhang and Ando (2006) prove that semi-supervised learning basgdaph
kernels is well-behaved in that the solution converges as the size of ledatsa
approaches infinity. They also derived a generalization bound, whiads o a
way to optimizing kernel eigen-transformations.

6.6 Directed Graphs and Hypergraphs

For semi-supervised learning on directed graphs, Zhou et al. (2@8kdg) hub
- authority approach and essentially convert a directed graph into areatsdi
one. Two hub nodes are connected by an undirected edge with aippeopeight
if they co-link to authority nodes, and vice versa. Semi-supervised lgathan
proceeds on the undirected graph.

Zhou et al. (2005a) generalize the work further. The algorithm takesnaitr
tion matrix (with a unique stationary distribution) as input, and gives a closed fo
solution on unlabeled data. The solution parallels and generalizes the neunaliz
Laplacian solution for undirected graphs (Zhou et al., 2004a). Thequ®work
(Zhou et al., 2005b) is a special case with the 2-step random walk trarsigityix.

In the absence of labels, the algorithm is the generalization of the normalized c
(Shi & Malik, 2000) on directed graphs.

Lu and Getoor (2003) convert the link structure in a directed graph into pe
node features, and combines them with per-node object features in logigiis-
sion. They also use an EM-like iterative algorithm.

Zhou et al. (2006) propose to formulate relational objects using hyqengr
where an edge can connect more than two vertices, and extend spkrsttating,
classification and embedding to such hypergraphs.

6.7 Connection to Standard Graphical Models

The Gaussian random field formulation (Zhu et al., 2003a) is a standakd un
rected graphical model, with continuous random variables. Given lalbelées
(observed variables), the inference is used to obtain the mean (eqtliydte
mode)h; of the remaining variables, which is the harmonic function. However the
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interpretation of the harmonic function as parameters for Bernoulli distrifsiab
the nodes (i.e. each unlabeled node has label 1 with probahijlity otherwise) is
non-standard.

Burges and Platt (2005) proposdigectedgraphical model, called Conditional
Harmonic Mixing, that is somewhat between graph-based semi-supeteeed
ing and standard Bayes nets. In standard Bayes nets there is one catgitaba-
bility table on eacmode which looks at the values of all its parents and determines
the distribution of the node. However in Conditional Harmonic Mixing there & on
table on eachdirected edge On one hand it is simpler because each table deals
with only one parent node. On the other hand at the child node the estimated dis
tributions from the parents may not be consistent, and the child takes ttegaver
distribution in KL divergence. Importantly the directed graph can contaipdpo
and there is always a unique global solution. It can be shown that tineohar
function can be interpreted as a special case of Conditional Harmonicguixin

7 Computational Learning Theory

In this survey we have primarily focused on various semi-supervisedihepal-
gorithms. The theory of semi-supervised learning has been touchedogpan
sionally in the literature. However it was not until recently that the computdtiona
learning theory community began to pay more attention to this interesting problem.

Leskes (2005) presents a generalization error bound for semivisgubtearn-
ing with multiple learners, an extension to co-training. The author shows that
if multiple learning algorithms are forced to produce similar hypotheses (i.e. to
agree) given the same training set, and such hypotheses still have lowgrain
ror, then the generalization error bound is tighter. The unlabeled datadstas
assess the agreement among hypotheses. The author proposes greemext-
Boost algorithm to implement the procedure.

Kaariainen (2005) presents another generalization error bounerforsipervised
learning. The idea is that the target function is in the version space. |iathgsis
is in the version space (revealed by labeled data), and is close to all gfiahbk-
ses in the version space (revealed by unlabeled data), then it has tosbea@lo
the target function. Closeness is defined as classification agreemertamid
approximated using unlabeled data. This idea builds on metric-based mizael se
tion (Section 9.9).

Balcan and Blum (2005) propose a PAC-style model for semi-supenéaatt
ing. This is the first PAC model that explains when unlabeled data might help
(notice the classic PAC model cannot incorporate unlabeled data at albre Th
has been previougarticular analysis for explaining when unlabeled data helps,
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but they were all based on specific settings and assumptions. In cdhisaBAC
model is a general, unifying model. The authors define an interesting quantity
the compatibility of a hypothesis w.r.t. the unlabeled data distribution. For exam-
ple in SVM a hyperplane that cuts through high density regions would have lo
compatibility, while one that goes along gaps would have high compatibility. We
note that the compatibility function can be defined much more generally. The in-
tuition of the results is the following. Assuming a-priori that the target function
has high compatibility with unlabeled data. Then if a hypothesis has zero training
error (standard PAC stylgnd high compatibility, the theory gives the number of
labeled and unlabeled data to guarantee the hypothesis is good. The rafmber
labeled data needed can be quite small.

8 Semi-supervised Learning in Structured Output Spaces

In most of this paper we consider classification on individual instanceghis
section we discuss semi-supervised learning in structured output spagesor
sequences and trees.

8.1 Generative Models

One example of generative models for semi-supervised sequence ¢eirire
Hidden Markov Model (HMM), in particular the Baum-Welsh HMM training al-
gorithm (Rabiner, 1989). Itis essentially the sequence version of thalgdiithm

on mixture models as mentioned in section 2. Baum-Welsh algorithm has a long
history, well before the recent emergence of interest on semi-supdné@arning.

It has been successfully applied to many areas including speech itmogit is
usually not presented as a semi-supervised learning algorithm, but tegadhi-

fies as one. Some cautionary notes can be found in (Elworthy, 1994).

8.2 Graph-based Kernels

Many existing structured learning algorithms (e.g. conditional random fields-
imum margin Markov networks) can be endowed with a ‘semi-supervisedeke
Take the example of learning on sequences. One first creates a graghdn the
union of all elements in the sequences (i.e. ignoring the sequence struitate
ing the elements of a sequence as if they were individual instances). rapk g
kernel can be constructed with any of the above methods. Next one sifidie
graph kernel to a standard structured learning kernel machine. ®unblkna-
chines include the kernelized conditional random fields (Lafferty et @04pand
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maximum margin Markov networks (Taskar et al., 2003), which differ prigar
by the loss function they use.

With a graph kernel the kernel machine thus perform semi-supervised lea
ing on structured data. Lafferty et al. (2004) hinted this idea and testedat o
bioinformatics dataset. The graph kernel matrix they used is transductive- in
ture, which is defined only on elements in the training data. Altun et al. (2005)
defines a graph kernel over the whole space by linearly combining the radrms
a standard kernel and a graph regularization term, resulting in a nongnegain
kernel similar to Sindhwani et al. (2005a). They use the kernel with aimbsgs.
Brefeld and Scheffer (2006) extend structured SVM with a multi-view leetrer,
which penalizes disagreements between classifications on unlabeled Hata, w
the classifiers operate on different feature subsets.

9 Related Areas

The focus of the survey is on classification with semi-supervised methdase T
are some closely related areas with a rich literature.

9.1 Spectral Clustering

Spectral clustering is unsupervised. As such there is no labeled dataltha
process. Instead the clustering depends solely on the graph wéightan the
other hand semi-supervised learning for classification has to maintain aealan
between how good the ‘clustering’ is, and how well the labeled data camx-be e
plained by it. Such balance is expressed explicitly in the regularization frarkew

As we have seen in section 8.1 of (Zhu, 2005) and section 6.5 here, the top
eigenvectors of the graph Laplacian can unfold the data manifold to form-mea
ingful clusters. This is the intuition behind spectral clustering. There ereral
criteria on what constitutes a good clustering (Weiss, 1999).

The normalized cut (Shi & Malik, 2000) seeks to minimize

cut(A, B) n cut(A, B)

Ncut(A, B) =
cut(4, B) assoc(A,V) = assoc(B,V)

(17)

The continuous relaxatiomf the cluster indicator vector can be derived from the
normalized Laplacian. In fact it is derived from the second smallest egg¢or of
the normalized Laplacian. The continuous vector is then discretized to obéain th
clusters.

The data points are mapped into a hew space spanned by the diggnvec-
tors of the normalized Laplacian in (Ng et al., 2001), with special normalization
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Clustering is then performed with traditional methods (like k-means) in this new
space. This is very similar to kernel PCA.

Fowlkes et al. (2004) use the Ny&in method to reduce the computation cost
for large spectral clustering problems. This is related to the method in (ZB6) 20
Chapter 10.

Chung (1997) presents the mathematical details of spectral graph theory.

9.2 Learning with Positive and Unlabeled Data

In many real world applications, labeled data may be available from only bne o
the two classes. Then there is the unlabeled data, known to contain botksclass
There are two ways to formulate the problem: classification or ranking.

Classification Here one builds a classifier even though there is no negative
example. Itis important to note that with the positive training data one can estimate
the positive class conditional probabilityz|+), and with the unlabeled data one
can estimate(z). If the priorp(+) is known or estimated from other sources, one
can derive the negative class conditional as

p(x) — p(+)p(x|+)
1L —p(+) (18)

With p(z|—) one can then perform classification with Bayes rule. Denis et al.
(2002) use this fact for text classification with Naive Bayes models.

Another set of methods heuristically identify some ‘reliable’ negative exasnple
in the unlabeled set, and use EM on generative (Naive Bayes) modelst(hly
2002) or logistic regression (Lee & Liu, 2003).

Ranking Given a large collection of items, and a few ‘query’ items, ranking
orders the items according to their similarity to the queries. Information retrieval
is the standard technique under this setting, and we will not attempt to include the
extensive literatures on this mature field. It is worth pointing out that glesed
semi-supervised learning can be modified for such settings. Zhou etQfl4k{p
treat it as semi-supervised learning with positive data on a graph, wheeggaph
induces a similarity measure, and the queries are positive examples. Dat poin
are ranked according to their graph similarity to the positive training set.

p(z[—) =

9.3 Semi-supervised Clustering

Also known as clustering with side information, this is the cousin of semi-sigeatv
classification. The goal is clustering but there are some ‘labeled data’ fortime
of must-links(two points must in the same cluster) acahnot-links(two points
cannot in the same cluster). There is a tension between satisfying theteua
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and optimizing the original clustering criterion (e.g. minimizing the sum of squared
distances within clusters). Procedurally one can modify the distance metric to tr
to accommodate the constraints, or one can bias the search. We refasrend
recent short survey (Grira et al., 2004) for the literatures.

9.4 Semi-supervised Regression

In principle all graph-based semi-supervised classification methods in rséctio
are indeed function estimators. That is, they estimate ‘soft labels’ befdtmgna
a classification. The function tries to be close to the targetsthe labeled set,
and at the same time be smooth on the graph. Therefore these graptsbased
supervised methods can also naturally perform regression. Some of thedse
can be thought of as Gaussian processes with a special kernel toasitsucted
from unlabeled data.

Zhou and Li (2005a) proposed using co-training for semi-supervisgiks-
sion. The paper used two kNN regressors, each with a diffgrentm as distance
measure. Like in co-training, each regressor makes prediction on ledadeta,
and the most confident predictions are used to train the other regr@$socon-
fidence of a prediction on unlabeled point is measured by the MSE on labeled
set before and after adding this prediction as training data to the cuagrsr
sor. Similarly Sindhwani et al. (2005b); Brefeld et al. (2006) perfonoiti-view
regression, where a regularization term depends on the disagreemeand ae-
gressors on different views.

Cortes and Mohri (2006) propose a simple yet efficient transductyession
model. On top of a standard ridge regression model, an addition term is afplied
each unlabeled point,. This additional regularization term makes the prediction
f(z,,) close to a heuristic predictiayj;, which is computed by a weighted average
of the labels of labeled points in a neighborhoodrgf A generalization error
bound is also given.

9.5 Active Learning and Semi-supervised Learning

Active learning and semi-supervised learning face the same issue, i.&aktbkd
data is scarce and hard to obtain. It is quite natural to combine active lganmih
semi-supervised learning to address this issue from both ends.

McCallum and Nigam (1998b) use EM with unlabeled data integrated into the
active learning algorithm. Muslea et al. (2002) propose CO-EMT whichlioes
multi-view (e.g. co-training) learning with active learning. Zhou et al. (20)@p-
ply semi-supervised learning together with active learning to content-aseg:
retrieval.
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Many active learning algorithms naively select as query the point with max-
imum label ambiguity (entropy), or least confidence, or maximum disagrédemen
between multiple learners. Zhu et al. (2003b) show that these are rexsagity
the right things to do, if one is interested in classification error. They shatv th
one can select active learning queries that minimize the (estimated) gertemaliza
error, in a graph-based semi-supervised learning framework.

9.6 Nonlinear Dimensionality Reduction

The goal of nonlinear dimensionality reduction is to find a faithful low dimeradion
mapping of the high dimensional data. As such it belongs to unsupervisathiga
However the way it discovers low dimensional manifold within a high dimensional
space is closely related to spectral graph semi-supervised learningseeiative
methods include Isomap (Tenenbaum et al., 2000), locally linear embeddi&y (
(Roweis & Saul, 2000) (Saul & Roweis, 2003), Hessian LLE (DonohG@émes,
2003), Laplacian eigenmaps (Belkin & Niyogi, 2003), and semidefinite ethbgd
(SDE) (Weinberger & Saul, 2004) (Weinberger et al., 2004) (Wenpkreet al.,
2005).

9.7 Learning a Distance Metric

Many learning algorithms depend, either explicitly or implicitly, on a distance met-
ric on X. We use the term metric here loosely to mean a measure of distance or
(dis)similarity between two data points. The default distance in the featuoe spa
may not be optimal, especially when the data forms a lower dimensional manifold
in the feature vector space. With a large amourt/oft is possible to detect such
manifold structure and its associated metric. The graph-based methodsabov
based on this principle. We review some other methods next.

The simplest example in text classification might be Latent Semantic Indexing
(LSI, a.k.a. Latent Semantic Analysis LSA, Principal Component AnalyGi&,P
or sometimes Singular Value Decomposition SVD). This technique defines a lin-
ear subspace, such that the variance of the data, when projected tdhtpace,
is maximumly preserved. LSl is widely used in text classification, where the orig-
inal space forX is usually tens of thousands dimensional, while people believe
meaningful text documents reside in a much lower dimensional space. ddikov
and Hirsh (2001) and Cristianini et al. (2001) both @5ein this case unlabeled
documents, to augment the term-by-document matrix.of.Sl is performed on
the augmented matrix. This representation induces a new distance metric. By the
property of LSI, words that co-occur very often in the same documeatsarged
into a single dimension of the new space. In the extreme this allows two docu-
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ments with no common words to be ‘close’ to each other, via chains of ca-occu
word pairs in other documents.

Oliveira et al. (2005) propose a simple procedure for semi-superidaening:
First one runs PCA o U U (ignoring the labels). The result is a linear subspace
that is constructed with more data points if one uses d@nig PCA. In the next
step, onlyL is mapped onto the subspace, and an SVM is learned. The method is
useful when class separation is linear and along the principal compdinections,
and unlabeled helps by reducing the variance in estimating such directions.

Probabilistic Latent Semantic Analysis (PLSA) (Hofmann, 1999) is an impor-
tant improvement over LSI. Each word in a document is generated by ia’‘{ap
multinomial, i.e. unigram). Different words in the document may be generated by
different topics. Each document in turn has a fixed topic proportion (a roultin
mial on a higher level). However there is no link between the topic proporiions
different documents.

Latent Dirichlet Allocation (LDA) (Blei et al., 2003) is one step further. It
assumes the topic proportion of each document is drawn from a Dirichtebdis
tion. With variational approximation, each document is represented bytarjpos
Dirichlet over the topics. This is a much lower dimensional representatioifr. Gr
fiths et al. (2005) extend LDA model to ‘HMM-LDA which uses both shtatm
syntactic and long-term topical dependencies, as an effort to integratensics
and syntax. Li and McCallum (2005) apply the HMM-LDA model to obtain word
clusters, as a rudimentary way for semi-supervised learning on sespienc

Some algorithms derive a metric entirely from the densit{/ofThese are mo-
tivated by unsupervised clustering and based on the intuition that data jpaiinés
same high density ‘clump’ should be close in the new metric. For instan€g, if
is generated from a single Gaussian, then the Mahalanobis distancedrmjuite
covariance matrix is such a metric. Tipping (1999) generalizes the Maliaano
distance by fitting/ with a mixture of Gaussian, and define a Riemannian mani-
fold with metric atz being the weighted average of individual component inverse
covariance. The distance betwegnandz- is computed along the straight line (in
Euclidean space) between the two points. Rattray (2000) further diererthe
metric so that it only depends on the change in log probabilities of the density, n
on a particular Gaussian mixture assumption. And the distance is computed along
a curve that minimizes the distance. The new metric is invariant to linear transfor
mation of the features, and connected regions of relatively homogeneaosiyd
in U will be close to each other. Such metric is attractive, yet it depends on the
homogeneity of the initial Euclidean space. Their application in semi-supdrvise
learning needs further investigation. Sajama and Orlitsky (2005) analgZeviler
and upper bounds on estimating data-density-based distance. Thisve aoeirces
of error: one stems from the fact that the true deng(ty) is not known, the second
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is that for practical reasons one typically build a grid on the data pointsaihste
aregular grid inR?. The authors separate these two kinds of errors (computational
and estimation), and analyze them independently. It sheds light on the cemple
ity of density-based distance, independent of the specific method oseltiaiso
sheds some light on approximation errors when using neighborhoodsgoaph
data points, which is used widely in semi-supervised learning and non-liftear
mensionality reduction, etc. Understanding this dichotomy is helpful whergtryin
to improve methods for semi-supervised learning.

We caution the reader that the metrics proposed above are based pemrnsu
vised techniques. They all identify a lower dimensional manifold within which the
data reside. However the data manifold may or may not correlate with a particula
classification task. For example, in LS| the new metric emphasizes words with
prominent count variances, but ignores words with small variancebe I€lassi-
fication task is subtle and depends on a few words with small counts, LS| might
wipe out the salient words all together. Therefore the success of thegtwds
is hard to guarantee without putting some restrictions on the kind of classificatio
tasks. It would be interesting to includeinto the metric learning process.

In a separate line of work, Baxter (1997) proves that there is a unigiaal
metric for classification if we use 1-nearest-neighbor. The metric, namednGa
cal Distortion Measure (CDM), defines a distani¢e, , z2) as the expected loss if
we classifyx; with x5’s label. The distance measure proposed in (Yianilos, 1995)
can be viewed as a special case. Yianilos assume a Gaussian mixture a®del h
been learned fron/, such that a class correspond to a component, but the corre-
spondence is unknown. In this case COM: 1, z2) = p(z1, zofrom same component
and can be computed analytically. Now that a metric has been learned/frara
can find withinL the 1-nearest-neighbor of a new data pain@nd classifyr with
the nearest neighbor’s label. It will be interesting to compare this schemé&ith
based semi-supervised learning, wherns used to label mixture components.

Weston et al. (2004) propose the neighborhood mismatch kernel anaggedd
mismatch kernel. More precisely both &ernel transformatiorthat modifies an
input kernel. In the neighborhood method, one defines the neighbddi@opoint
as points close enough according to certain similarity measure (note that is
the measure induced by the input kernel). The output kernel betweaehippis
the average of pairwise kernel entries betwgégmeighbors ang’s neighbors. In
bagged method, if a clustering algorithm thinks they tend to be in the same cluster
(note again this is a different measure than the input kernel), the coneisy
entry in the input kernel is boosted.

34



9.8 Inferring Label Sampling Mechanisms

Most semi-supervised learning methods assunandU are bothi.i.d. from the
underlying distribution. However as (Rosset et al., 2005) points outishabt
always the case. For examplecan be the binary label whether a customer is
satisfied, obtained through a survey. It is conceivable survey patiicip (and
thus labeled data) depends on the satisfagfion

Let s; be the binary missing indicator fay;. The authors modeb(s|x,y)
with a parametric family. The goal is to estimagiés|x,y) which is the label
sampling mechanism. This is done by computing the expectation of an arbi-
trary functiong(x) in two ways: onL UU asl/n)_ . , g(x;), and onL only as
1/n) e 9(xi)/p(si = 1|5, y;). By equating the twe(s|x,y) can be estimated.
The intuition is that the expectation dnrequires weighting the labeled samples
inversely proportional to the labeling probability, to compensate for igndhieg
unlabeled data.

9.9 Metric-Based Model Selection

Metric-based model selection (Schuurmans & Southey, 2001) is a methetetd d
hypotheses inconsistency with unlabeled data. We may have two hypoittdashs
are consistent ofi, for example they all have zero training set error. However they
may be inconsistent on the much lardér If so we should reject at least one of
them, e.g. the more complex one if we employ Occam'’s razor.

The key observation is that a distance metric is defined in the hypotheses spac
H. One such metric is the number of different classifications two hypothedas ma
under the data distributiop(z): dp(h1,he) = Ep[hi(z) # he(z)]. Itis easy to
verify that the metric satisfies the three metric properties. Now consider the tru
classification functiorh* and two hypotheses,, ho. Since the metric satisfies the
triangle inequality (the third property), we have

dp(hl, hg) < dp(hl, h*) + dp(h*, hg)

Under the premise that labels Inis noiseless, let's assume we can approximate
dy(h1,h*) andd,(h*, he) by hy andhy’s training set error rategy, (hy, h*) and
dr(h2, h*), and approximatel,(hi, h2) by the differencer; and h, make on a
large amount of unlabeled data dy;(hi, he). We get

dU(hl, hz) < dL(hl, h*) + dL(h*, hg)
which can be verified directly. If the inequality does not hold, at leastafribe

assumptions is wrong. U] is large enough antf Y p(x), du(hi, ha) will be
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a good estimate af,(h1, he). This leaves us with the conclusion that at least one
of the training errors does not reflect its true error. If both trainingrerare close
to zero, we would know that at least one model is overfitting. An Occamatsrra
type of argument then can be used to select the model with less complexity. Suc
use of unlabeled data is very general and can be applied to almost anindear
algorithms. However it only selects among hypotheses; it does not gemaa
hypothesis based on unlabeled data.

The co-validation method (Madani et al., 2005) also uses unlabeled data fo
model selection and active learning. Kaariainen (2005) uses the metricve de
generalization error bound, see Section 7.

10 Scalability Issues of Semi-Supervised Learning Meth-
ods

Current semi-supervised learning methods have not yet handled laugens of
data. The complexity of many elegant graph-based methods is clagéntd.
Speed-up improvements have been proposed (Mahdaviani et al. Ré@Hgau et
al. 2005; Zhu and Lafferty 2005; Yu et al. 2005; Garcke and Griebéb; and
more), but their effectiveness has yet to be proven on real lardreons. Figure 7
compares the experimental dataset sizes in many representative semisaape
learning papers. The unlabeled dataset size in these papers ardlgvidetarge.
Ironically huge amount of unlabeled data should have been the optimaitmper
environment for semi-supervised learning. More research effoetsreeded to
address the scalability issue.

11 Do Humans do Semi-Supervised Learning?

Now let us turn our attention frommachinelearning tohumanlearning. It is pos-
sible that understanding of the human cognitive model will lead to novel machin
learning approaches (Langley, 2006; Mitchell, 2006). We ask thetignesDo
humans do semi-supervised learning? My hypothesis is yes. We humamsiacc
late ‘unlabeled’ input data, which we use (often unconsciously) to heldibg

the connection between ‘labels’ and input once labeled data is provigedsént
some evidence below.

11.1 Visual Object Recognition with Temporal Association

The appearance of an object usually changes greatly when vieweddffferent
angles. In the case of faces, the difference between the same facenfooview
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Figure 7: As recently as 2005, semi-supervised learning methods hawasnot
dressed large-scale problems. Shown above are the largest daadghlzled
and unlabeled portion respectively) used in representative semivisgubiearn-
ing papers. Each dot is a paper, with darkness indicating publicatior{gerdest:
2005, lightest: 1998). Most papers only used hundreds of labeletspanid tens
of thousands of unlabeled points. Also shown are some interesting langeens
for comparison. Note the log-log scale.
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Figure 8: Classify teapot images by its spout orientation. Some images within the
same class are quite different, while some images from different clagssisrliar.

points can be much larger than the difference between two faces fronaitie s
angle. Human observers nonetheless can connect the correct fabtes been
suggested that temporal correlation serves as the glue, as summariZeithhey (
etal., 2006) (Result 14). It seems when we observe an object witlyicitaangles,
we link the images as ‘containing the same object’ by the virtue that the images are
close in time. Wallis and &lthoff (2001) created artificial image sequences where
a frontal face is morphed into the profile face of a different personeWibservers
are shown such sequences during training, their ability to match frontgirafite
faces was impaired during test, due to the wrong links. The authors fuattyee
that the object has to have similar location in the images to establish the link.

The idea of spatio-temporal link is directly related to graph-based semngspe
learning. Consider the Teapot dataset used in (Zhu & Lafferty, 2@@)inally
from (Weinberger et al., 2004)), with images of a teapot viewed froneudifit
angles. Now suppose we want to classify an image by whether its spous poin
to the left or right. As Figure 8 shows there are large within-class distaamgs
small between-class distances. However the similarity between adjacentsimage
(which comes from temporal relation) allow a graph to be constructed foi- se
supervised learning. In another work, Balcan et al. (2005a) cartsirgraph on
webcam images using temporal links (as well as color, face similarity links) for
semi-supervised learning.

11.2 Infant Word-Meaning Mapping

17-month old infants were shown to be able to associate a word with a vigaat ob
better if they have heard the word many times before (Graf Estes et al.). 2006
the word was not heard before, the infant’s ability to associate it with thebbje
was weaker. If we view the sound of the word as unlabeled data, andjihet as
the label, we can propose a model where an infant builds up clustermiiafa
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sounding words, which are easily labeled as a whole. This is similar to semi-
supervised learning with mixture models (Nigam et al., 2000) or clustersa(Dar
et al., 2002; Demiriz et al., 1999).
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