Tutorial on Semi-Supervised Learning

Xiaojin Zhu

Department of Computer Sciences University of Wisconsin, Madison, USA

Theory and Practice of Computational Learning Chicago, 2009

★ 3 → < 3</p>

Xiaojin Zhu and Andrew B. Goldberg. *Introduction to Semi-Supervised Learning*. Morgan & Claypool, 2009.

< 回 ト < 三 ト < 三 ト

Outline

🕨 Part I

- What is SSL?
- Mixture Models
- Co-training and Multiview Algorithms
- Manifold Regularization and Graph-Based Algorithms
- S3VMs and Entropy Regularization

2 Part II

- Theory of SSL
- Online SSL
- Multimanifold SSL
- Human SSL

Part I

Outline

Part I

- What is SSL?
- Mixture Models
- Co-training and Multiview Algorithms
- Manifold Regularization and Graph-Based Algorithms
- S3VMs and Entropy Regularization

2 Part I

- Theory of SSL
- Online SSL
- Multimanifold SSL
- Human SSL

- - E

Outline

1 Part I

What is SSL?

- Mixture Models
- Co-training and Multiview Algorithms
- Manifold Regularization and Graph-Based Algorithms
- S3VMs and Entropy Regularization

2 Part I

- Theory of SSL
- Online SSL
- Multimanifold SSL
- Human SSL

- A 🖃

What is Semi-Supervised Learning?

Learning from both labeled and unlabeled data. Examples:

• Semi-supervised classification: training data l labeled instances $\{(\mathbf{x}_i, y_i)\}_{i=1}^l$ and u unlabeled instances $\{\mathbf{x}_j\}_{j=l+1}^{l+u}$, often $u \gg l$. Goal: better classifier f than from labeled data alone.

What is Semi-Supervised Learning?

Learning from both labeled and unlabeled data. Examples:

- Semi-supervised classification: training data l labeled instances $\{(\mathbf{x}_i, y_i)\}_{i=1}^l$ and u unlabeled instances $\{\mathbf{x}_j\}_{j=l+1}^{l+u}$, often $u \gg l$. Goal: better classifier f than from labeled data alone.
- Constrained clustering: unlabeled instances $\{x_i\}_{j=1}^n$, and "supervised information", e.g., must-links, cannot-links. **Goal**: better clustering than from unlabeled data alone.

What is Semi-Supervised Learning?

Learning from both labeled and unlabeled data. Examples:

- Semi-supervised classification: training data l labeled instances $\{(\mathbf{x}_i, y_i)\}_{i=1}^l$ and u unlabeled instances $\{\mathbf{x}_j\}_{j=l+1}^{l+u}$, often $u \gg l$. Goal: better classifier f than from labeled data alone.
- Constrained clustering: unlabeled instances $\{x_i\}_{j=1}^n$, and "supervised information", e.g., must-links, cannot-links. **Goal**: better clustering than from unlabeled data alone.

We will mainly discuss semi-supervised classification.

Motivations

Machine learning

Promise: better performance for free...

- labeled data can be hard to get
 - labels may require human experts
 - labels may require special devices
- unlabeled data is often cheap in large quantity

Motivations

Machine learning

Promise: better performance for free...

- labeled data can be hard to get
 - labels may require human experts
 - labels may require special devices
- unlabeled data is often cheap in large quantity

Cognitive science

Computational model of how humans learn from labeled and unlabeled data.

- concept learning in children: x=animal, y=concept (e.g., dog)
- Daddy points to a brown animal and says "dog!"
- Children also observe animals by themselves

• • • • • • • • • • • •

Example of hard-to-get labels

Task: speech analysis

- Switchboard dataset
- telephone conversation transcription
- 400 hours annotation time for each hour of speech

 $\begin{array}{l} \mbox{film} \Rightarrow \mbox{f ih_n uh_gl_n m} \\ \mbox{be all} \Rightarrow \mbox{bcl b iy iy_tr ao_tr ao l_dl} \end{array}$

Another example of hard-to-get labels

Task: natural language parsing

- Penn Chinese Treebank
- 2 years for 4000 sentences

"The National Track and Field Championship has finished."

Notations

- instance x, label y
- learner $f: \mathcal{X} \mapsto \mathcal{Y}$
- labeled data $(X_l,Y_l)=\{(x_{1:l},y_{1:l})\}$
- unlabeled data $X_u = \{\mathbf{x}_{l+1:l+u}\}$, available during training. Usually $l \ll u$. Let n = l + u
- test data $\{(x_{n+1\dots},y_{n+1\dots})\}$, not available during training

Semi-supervised vs. transductive learning

• Inductive semi-supervised learning: Given $\{(\mathbf{x}_i, y_i)\}_{i=1}^l$, $\{\mathbf{x}_j\}_{j=l+1}^{l+u}$, learn $f : \mathcal{X} \mapsto \mathcal{Y}$ so that f is expected to be a good predictor on future data, beyond $\{\mathbf{x}_j\}_{i=l+1}^{l+u}$.

Semi-supervised vs. transductive learning

- Inductive semi-supervised learning: Given $\{(\mathbf{x}_i, y_i)\}_{i=1}^l$, $\{\mathbf{x}_j\}_{j=l+1}^{l+u}$, learn $f : \mathcal{X} \mapsto \mathcal{Y}$ so that f is expected to be a good predictor on future data, beyond $\{\mathbf{x}_j\}_{i=l+1}^{l+u}$.
- Transductive learning: Given $\{(\mathbf{x}_i, y_i)\}_{i=1}^l$, $\{\mathbf{x}_j\}_{j=l+1}^{l+u}$, learn $f: \mathcal{X}^{l+u} \mapsto \mathcal{Y}^{l+u}$ so that f is expected to be a good predictor on the unlabeled data $\{\mathbf{x}_j\}_{j=l+1}^{l+u}$. Note f is defined only on the given training sample, and is not required to make predictions outside them.

How can unlabeled data ever help?

- assuming each class is a coherent group (e.g. Gaussian)
- with and without unlabeled data: decision boundary shift

How can unlabeled data ever help?

- assuming each class is a coherent group (e.g. Gaussian)
- with and without unlabeled data: decision boundary shift

This is only one of many ways to use unlabeled data.

Self-training algorithm

Our first SSL algorithm:

Input: labeled data $\{(\mathbf{x}_i, y_i)\}_{i=1}^l$, unlabeled data $\{\mathbf{x}_j\}_{j=l+1}^{l+u}$. 1. Initially, let $L = \{(\mathbf{x}_i, y_i)\}_{i=1}^l$ and $U = \{\mathbf{x}_j\}_{j=l+1}^{l+u}$.

Self-training algorithm

Our first SSL algorithm:

Input: labeled data $\{(\mathbf{x}_i, y_i)\}_{i=1}^l$, unlabeled data $\{\mathbf{x}_j\}_{j=l+1}^{l+u}$. 1. Initially, let $L = \{(\mathbf{x}_i, y_i)\}_{i=1}^l$ and $U = \{\mathbf{x}_j\}_{j=l+1}^{l+u}$. 2. Repeat:

- 3. Train f from L using supervised learning.
- 4. Apply f to the unlabeled instances in U.
- 5. Remove a subset S from U; add $\{(\mathbf{x}, f(\mathbf{x})) | \mathbf{x} \in S\}$ to L.

Self-training algorithm

Our first SSL algorithm:

Input: labeled data $\{(\mathbf{x}_i, y_i)\}_{i=1}^l$, unlabeled data $\{\mathbf{x}_j\}_{j=l+1}^{l+u}$. 1. Initially, let $L = \{(\mathbf{x}_i, y_i)\}_{i=1}^l$ and $U = \{\mathbf{x}_j\}_{j=l+1}^{l+u}$. 2. Repeat:

- 3. Train f from L using supervised learning.
- 4. Apply f to the unlabeled instances in U.
- 5. Remove a subset S from U; add $\{(\mathbf{x}, f(\mathbf{x})) | \mathbf{x} \in S\}$ to L.

Self-training is a wrapper method

- the choice of learner for f in step 3 is left completely open
- good for many real world tasks like natural language processing
- but mistake by f can reinforce itself

くほと くほと くほと

Self-training example: Propagating 1-Nearest-Neighbor

An instance of self-training.

Input: labeled data $\{(\mathbf{x}_i,y_i)\}_{i=1}^l$, unlabeled data $\{\mathbf{x}_j\}_{j=l+1}^{l+u}$, distance function d().

- 1. Initially, let $L = \{(\mathbf{x}_i, y_i)\}_{i=1}^l$ and $U = \{\mathbf{x}_j\}_{j=l+1}^{l+u}$.
- 2. Repeat until U is empty:
- 3. Select $\mathbf{x} = \operatorname{argmin}_{\mathbf{x} \in U} \min_{\mathbf{x}' \in L} d(\mathbf{x}, \mathbf{x}')$.
- 4. Set $f(\mathbf{x})$ to the label of \mathbf{x} 's nearest instance in L. Break ties randomly.
- 5. Remove x from U; add (x, f(x)) to L.

Propagating 1-Nearest-Neighbor: now it works

Propagating 1-Nearest-Neighbor: now it doesn't But with a single outlier...

Outline

• What is SSL?

Mixture Models

- Co-training and Multiview Algorithms
- Manifold Regularization and Graph-Based Algorithms
- S3VMs and Entropy Regularization

2 Part I

- Theory of SSL
- Online SSL
- Multimanifold SSL
- Human SSL

Labeled data (X_l, Y_l) : o 0 -2 -1 0 3

Assuming each class has a Gaussian distribution, what is the decision boundary?

Model parameters: $\theta = \{w_1, w_2, \mu_1, \mu_2, \Sigma_1, \Sigma_2\}$ The GMM:

$$p(x, y|\theta) = p(y|\theta)p(x|y, \theta)$$

= $w_y \mathcal{N}(x; \mu_y, \Sigma_y)$

Classification: $p(y|x, \theta) = \frac{p(x,y|\theta)}{\sum_{n'} p(x,y'|\theta)}$

過 ト イヨト イヨト

The most likely model, and its decision boundary:

Adding unlabeled data:

With unlabeled data, the most likely model and its decision boundary:

They are different because they maximize different quantities.

Generative model for semi-supervised learning

Assumption

knowledge of the model form $p(X, Y|\theta)$.

• joint and marginal likelihood

$$p(X_l, Y_l, X_u | \theta) = \sum_{Y_u} p(X_l, Y_l, X_u, Y_u | \theta)$$

Generative model for semi-supervised learning

Assumption

knowledge of the model form $p(X, Y|\theta)$.

• joint and marginal likelihood

$$p(X_l, Y_l, X_u | \theta) = \sum_{Y_u} p(X_l, Y_l, X_u, Y_u | \theta)$$

 find the maximum likelihood estimate (MLE) of θ, the maximum a posteriori (MAP) estimate, or be Bayesian

Generative model for semi-supervised learning

Assumption

knowledge of the model form $p(X, Y|\theta)$.

• joint and marginal likelihood

$$p(X_l, Y_l, X_u | \theta) = \sum_{Y_u} p(X_l, Y_l, X_u, Y_u | \theta)$$

- find the maximum likelihood estimate (MLE) of θ, the maximum a posteriori (MAP) estimate, or be Bayesian
- common mixture models used in semi-supervised learning:
 - Mixture of Gaussian distributions (GMM) image classification
 - Mixture of multinomial distributions (Naïve Bayes) text categorization
 - Hidden Markov Models (HMM) speech recognition
- Learning via the Expectation-Maximization (EM) algorithm (Baum-Welch)

Case study: GMM

Binary classification with GMM using MLE.

- with only labeled data
 - $\log p(X_l, Y_l|\theta) = \sum_{i=1}^l \log p(y_i|\theta) p(x_i|y_i, \theta)$
 - MLE for θ trivial (sample mean and covariance)

Case study: GMM

Binary classification with GMM using MLE.

- with only labeled data
 - $\log p(X_l, Y_l|\theta) = \sum_{i=1}^l \log p(y_i|\theta) p(x_i|y_i, \theta)$
 - MLE for θ trivial (sample mean and covariance)
- with both labeled and unlabeled data $\log p(X_l, Y_l, X_u | \theta) = \sum_{i=1}^{l} \log p(y_i | \theta) p(x_i | y_i, \theta) \\ + \sum_{i=l+1}^{l+u} \log \left(\sum_{y=1}^{2} p(y | \theta) p(x_i | y, \theta) \right)$

• MLE harder (hidden variables): EM

The EM algorithm for GMM

• Start from MLE $\theta = \{w, \mu, \Sigma\}_{1:2}$ on (X_l, Y_l) ,

- w_c =proportion of class c
- μ_c =sample mean of class c
- Σ_c =sample cov of class c

repeat:

- - E - N

Image: A test in te
The EM algorithm for GMM

• Start from MLE
$$\theta = \{w, \mu, \Sigma\}_{1:2}$$
 on (X_l, Y_l) ,

- w_c =proportion of class c
- μ_c =sample mean of class c
- Σ_c =sample cov of class c

repeat:

② The E-step: compute the expected label $p(y|x, \theta) = \frac{p(x,y|\theta)}{\sum_{y'} p(x,y'|\theta)}$ for all x ∈ X_u

- ▶ label $p(y = 1 | x, \theta)$ -fraction of x with class 1
- ▶ label $p(y = 2|x, \theta)$ -fraction of x with class 2

The EM algorithm for GMM

• Start from MLE
$$\theta = \{w, \mu, \Sigma\}_{1:2}$$
 on (X_l, Y_l) ,

- w_c =proportion of class c
- μ_c =sample mean of class c
- Σ_c =sample cov of class c

repeat:

② The E-step: compute the expected label $p(y|x, \theta) = \frac{p(x,y|\theta)}{\sum_{y'} p(x,y'|\theta)}$ for all *x* ∈ *X*_{*u*}

- ▶ label $p(y = 1 | x, \theta)$ -fraction of x with class 1
- ▶ label $p(y = 2|x, \theta)$ -fraction of x with class 2
- **③** The M-step: update MLE θ with (now labeled) X_u

The EM algorithm for GMM

• Start from MLE
$$\theta = \{w, \mu, \Sigma\}_{1:2}$$
 on (X_l, Y_l) ,

- w_c =proportion of class c
- μ_c =sample mean of class c
- Σ_c =sample cov of class c

repeat:

② The E-step: compute the expected label $p(y|x, \theta) = \frac{p(x,y|\theta)}{\sum_{y'} p(x,y'|\theta)}$ for all *x* ∈ *X*_{*u*}

- $\blacktriangleright \text{ label } p(y=1|x,\theta) \text{-fraction of } x \text{ with class } 1$
- ▶ label $p(y = 2|x, \theta)$ -fraction of x with class 2
- **③** The M-step: update MLE θ with (now labeled) X_u

Can be viewed as a special form of self-training.

• Assumption: the data actually comes from the mixture model, where the number of components, prior p(y), and conditional $p(\mathbf{x}|y)$ are all correct.

- Assumption: the data actually comes from the mixture model, where the number of components, prior p(y), and conditional $p(\mathbf{x}|y)$ are all correct.
- When the assumption is wrong:

For example, classifying text by topic vs. by genre.

- E - N

Heuristics to lessen the danger

• Carefully construct the generative model, e.g., multiple Gaussian distributions per class

Heuristics to lessen the danger

- Carefully construct the generative model, e.g., multiple Gaussian distributions per class
- Down-weight the unlabeled data ($\lambda < 1$)

$$\log p(X_l, Y_l, X_u | \theta) = \sum_{i=1}^{l} \log p(y_i | \theta) p(x_i | y_i, \theta) + \lambda \sum_{i=l+1}^{l+u} \log \left(\sum_{y=1}^{2} p(y | \theta) p(x_i | y, \theta) \right)$$

Heuristics to lessen the danger

- Carefully construct the generative model, e.g., multiple Gaussian distributions per class
- Down-weight the unlabeled data ($\lambda < 1$)

$$\begin{split} \log p(X_l, Y_l, X_u | \theta) &= \sum_{i=1}^l \log p(y_i | \theta) p(x_i | y_i, \theta) \\ &+ \lambda \sum_{i=l+1}^{l+u} \log \left(\sum_{y=1}^2 p(y | \theta) p(x_i | y, \theta) \right) \text{ Other} \\ \text{dangers: identifiability, EM local optima} \end{split}$$

Xiaojin Zhu (Univ. Wisconsin, Madison)

Chicago 2009 28 / 99

4 E b

Input: $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_l, y_l), \mathbf{x}_{l+1}, \dots, \mathbf{x}_{l+u},$

a clustering algorithm \mathcal{A} , a supervised learning algorithm \mathcal{L} 1. Cluster $\mathbf{x}_1, \ldots, \mathbf{x}_{l+u}$ using \mathcal{A} .

・ 同 ト ・ ヨ ト ・ ヨ ト

Input: $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_l, y_l), \mathbf{x}_{l+1}, \dots, \mathbf{x}_{l+u},$

a clustering algorithm $\mathcal A,$ a supervised learning algorithm $\mathcal L$

- 1. Cluster $\mathbf{x}_1, \ldots, \mathbf{x}_{l+u}$ using \mathcal{A} .
- 2. For each cluster, let S be the labeled instances in it:

Input: $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_l, y_l), \mathbf{x}_{l+1}, \dots, \mathbf{x}_{l+u},$

a clustering algorithm $\mathcal A,$ a supervised learning algorithm $\mathcal L$

- 1. Cluster $\mathbf{x}_1, \ldots, \mathbf{x}_{l+u}$ using \mathcal{A} .
- 2. For each cluster, let S be the labeled instances in it:
- 3. Learn a supervised predictor from S: $f_S = \mathcal{L}(S)$.

Input: $(x_1, y_1), \dots, (x_l, y_l), x_{l+1}, \dots, x_{l+u}$,

a clustering algorithm \mathcal{A} , a supervised learning algorithm \mathcal{L}

- 1. Cluster $\mathbf{x}_1, \ldots, \mathbf{x}_{l+u}$ using \mathcal{A} .
- 2. For each cluster, let S be the labeled instances in it:
- 3. Learn a supervised predictor from S: $f_S = \mathcal{L}(S)$.

4. Apply f_S to all unlabeled instances in this cluster.

Output: labels on unlabeled data y_{l+1}, \ldots, y_{l+u} .

Input: $(x_1, y_1), ..., (x_l, y_l), x_{l+1}, ..., x_{l+u}$,

a clustering algorithm \mathcal{A} , a supervised learning algorithm \mathcal{L}

- 1. Cluster $\mathbf{x}_1, \ldots, \mathbf{x}_{l+u}$ using \mathcal{A} .
- 2. For each cluster, let S be the labeled instances in it:
- 3. Learn a supervised predictor from S: $f_S = \mathcal{L}(S)$.

4. Apply f_S to all unlabeled instances in this cluster.

Output: labels on unlabeled data y_{l+1}, \ldots, y_{l+u} .

But again: **SSL sensitive to assumptions**—in this case, that the clusters coincide with decision boundaries. If this assumption is incorrect, the results can be poor.

くほと くほと くほと

Cluster-and-label: now it works, now it doesn't Example: A=Hierarchical Clustering, L=majority vote. single linkage

Cluster-and-label: now it works, now it doesn't Example: A=Hierarchical Clustering, L=majority vote.

Cluster-and-label: now it works, now it doesn't Example: A=Hierarchical Clustering, L=majority vote.

Cluster-and-label: now it works, now it doesn't Example: A=Hierarchical Clustering, L=majority vote.

Outline

Part I

- What is SSL?
- Mixture Models

Co-training and Multiview Algorithms

- Manifold Regularization and Graph-Based Algorithms
- S3VMs and Entropy Regularization

2 Part I

- Theory of SSL
- Online SSL
- Multimanifold SSL
- Human SSL

Two Views of an Instance

Example: named entity classification Person (Mr. Washington) or Location (Washington State)

< E

Two Views of an Instance

Example: named entity classification Person (Mr. Washington) or Location (Washington State)

instance 1: ... headquartered in (Washington State) ... instance 2: ... (Mr. Washington), the vice president of ...

- a named entity has two views (subset of features) $\mathbf{x} = [\mathbf{x}^{(1)}, \mathbf{x}^{(2)}]$
- the words of the entity is $\mathbf{x}^{(1)}$
- the context is $\mathbf{x}^{(2)}$

Quiz

\ldots headquartered in (Washington State) L \ldots
\dots (Mr. Washington) ^P , the vice president of \dots
(Robert Jordan), a partner at
<u>flew to</u> (China)

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Quiz

With more unlabeled data

- instance 1: ... headquartered in (Washington State)^L ...
- instance 2: ... (Mr. Washington)^P, the <u>vice president</u> of ...
- instance 3: ... headquartered in (Kazakhstan) ...
- instance 4: ... <u>flew to</u> (Kazakhstan) ...
- instance 5: ... (Mr. Smith), a partner at Steptoe & Johnson ...
- test: ... (Robert Jordan), a partner at ...
- test: ... <u>flew to</u> (China) ...

Input: labeled data $\{(\mathbf{x}_i, y_i)\}_{i=1}^l$, unlabeled data $\{\mathbf{x}_j\}_{j=l+1}^{l+u}$ each instance has two views $\mathbf{x}_i = [\mathbf{x}_i^{(1)}, \mathbf{x}_i^{(2)}]$, and a learning speed k.

Input: labeled data $\{(\mathbf{x}_i, y_i)\}_{i=1}^l$, unlabeled data $\{\mathbf{x}_j\}_{j=l+1}^{l+u}$ each instance has two views $\mathbf{x}_i = [\mathbf{x}_i^{(1)}, \mathbf{x}_i^{(2)}]$, and a learning speed k.

1. let
$$L_1 = L_2 = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_l, y_l)\}.$$

2. Repeat until unlabeled data is used up:

Input: labeled data $\{(\mathbf{x}_i, y_i)\}_{i=1}^l$, unlabeled data $\{\mathbf{x}_j\}_{j=l+1}^{l+u}$ each instance has two views $\mathbf{x}_i = [\mathbf{x}_i^{(1)}, \mathbf{x}_i^{(2)}]$, and a learning speed k.

1. let
$$L_1 = L_2 = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_l, y_l)\}.$$

- 2. Repeat until unlabeled data is used up:
- 3. Train view-1 $f^{(1)}$ from L_1 , view-2 $f^{(2)}$ from L_2 .

Input: labeled data $\{(\mathbf{x}_i, y_i)\}_{i=1}^l$, unlabeled data $\{\mathbf{x}_j\}_{j=l+1}^{l+u}$ each instance has two views $\mathbf{x}_i = [\mathbf{x}_i^{(1)}, \mathbf{x}_i^{(2)}]$, and a learning speed k.

1. let
$$L_1 = L_2 = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_l, y_l)\}.$$

- 2. Repeat until unlabeled data is used up:
- 3. Train view-1 $f^{(1)}$ from L_1 , view-2 $f^{(2)}$ from L_2 .
- 4. Classify unlabeled data with $f^{(1)}$ and $f^{(2)}$ separately.

Input: labeled data $\{(\mathbf{x}_i, y_i)\}_{i=1}^l$, unlabeled data $\{\mathbf{x}_j\}_{j=l+1}^{l+u}$ each instance has two views $\mathbf{x}_i = [\mathbf{x}_i^{(1)}, \mathbf{x}_i^{(2)}]$, and a learning speed k.

1. let
$$L_1 = L_2 = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_l, y_l)\}.$$

2. Repeat until unlabeled data is used up:

- 3. Train view-1 $f^{(1)}$ from L_1 , view-2 $f^{(2)}$ from L_2 .
- 4. Classify unlabeled data with $f^{(1)}$ and $f^{(2)}$ separately.
- 5. Add $f^{(1)}$'s top k most-confident predictions $(\mathbf{x}, f^{(1)}(\mathbf{x}))$ to L_2 . Add $f^{(2)}$'s top k most-confident predictions $(\mathbf{x}, f^{(2)}(\mathbf{x}))$ to L_1 . Remove these from the unlabeled data.

Like self-training, but with two classifiers teaching each other.

(人間) とうきょうきょう

Co-training assumptions

Assumptions

• feature split $x = [x^{(1)}; x^{(2)}]$ exists

-

- A 🖃

Co-training assumptions

Assumptions

- feature split $x = [x^{(1)}; x^{(2)}]$ exists
- $x^{(1)}$ or $x^{(2)}$ alone is sufficient to train a good classifier

Co-training assumptions

Assumptions

- feature split $x = [x^{(1)}; x^{(2)}]$ exists
- $x^{(1)}$ or $x^{(2)}$ alone is sufficient to train a good classifier
- $\bullet \ x^{(1)}$ and $x^{(2)}$ are conditionally independent given the class

Extends co-training.

- Loss Function: $c(\mathbf{x}, y, f(\mathbf{x})) \in [0, \infty)$. For example,
 - squared loss $c(\mathbf{x}, y, f(\mathbf{x})) = (y f(\mathbf{x}))^2$
 - ▶ 0/1 loss $c(\mathbf{x}, y, f(\mathbf{x})) = 1$ if $y \neq f(\mathbf{x})$, and 0 otherwise.

• • = • • = •

Extends co-training.

- Loss Function: $c(\mathbf{x}, y, f(\mathbf{x})) \in [0, \infty)$. For example,
 - squared loss $c(\mathbf{x}, y, f(\mathbf{x})) = (y f(\mathbf{x}))^2$
 - ▶ 0/1 loss $c(\mathbf{x}, y, f(\mathbf{x})) = 1$ if $y \neq f(\mathbf{x})$, and 0 otherwise.
- Empirical risk: $\hat{R}(f) = \frac{1}{l} \sum_{i=1}^{l} c(\mathbf{x}_i, y_i, f(\mathbf{x}_i))$

• • = • • = •

Extends co-training.

- Loss Function: $c(\mathbf{x}, y, f(\mathbf{x})) \in [0, \infty)$. For example,
 - squared loss $c(\mathbf{x}, y, f(\mathbf{x})) = (y f(\mathbf{x}))^2$
 - ▶ 0/1 loss $c(\mathbf{x}, y, f(\mathbf{x})) = 1$ if $y \neq f(\mathbf{x})$, and 0 otherwise.
- Empirical risk: $\hat{R}(f) = \frac{1}{l} \sum_{i=1}^{l} c(\mathbf{x}_i, y_i, f(\mathbf{x}_i))$
- Regularizer: $\Omega(f)$, e.g., $\|f\|^2$

Extends co-training.

- Loss Function: $c(\mathbf{x}, y, f(\mathbf{x})) \in [0, \infty)$. For example,
 - squared loss $c(\mathbf{x}, y, f(\mathbf{x})) = (y f(\mathbf{x}))^2$
 - ▶ 0/1 loss $c(\mathbf{x}, y, f(\mathbf{x})) = 1$ if $y \neq f(\mathbf{x})$, and 0 otherwise.
- Empirical risk: $\hat{R}(f) = \frac{1}{l} \sum_{i=1}^{l} c(\mathbf{x}_i, y_i, f(\mathbf{x}_i))$
- Regularizer: $\Omega(f)$, e.g., $\|f\|^2$
- Regularized Risk Minimization $f^* = \operatorname{argmin}_{f \in \mathcal{F}} \hat{R}(f) + \lambda \Omega(f)$
Multiview learning

A special regularizer $\Omega(f)$ defined on unlabeled data, to encourage agreement among multiple learners:

$$\underset{f_{1},\ldots,f_{k}}{\operatorname{argmin}} \qquad \sum_{v=1}^{k} \left(\sum_{i=1}^{l} c(\mathbf{x}_{i}, y_{i}, f_{v}(\mathbf{x}_{i})) + \lambda_{1} \Omega_{SL}(f_{v}) \right) \\ + \lambda_{2} \sum_{u,v=1}^{k} \sum_{i=l+1}^{l+u} c(\mathbf{x}_{i}, f_{u}(\mathbf{x}_{i}), f_{v}(\mathbf{x}_{i}))$$

Outline

Part I

- What is SSL?
- Mixture Models
- Co-training and Multiview Algorithms
- Manifold Regularization and Graph-Based Algorithms
- S3VMs and Entropy Regularization

2 Part I

- Theory of SSL
- Online SSL
- Multimanifold SSL
- Human SSL

Example: text classification

- Classify astronomy vs. travel articles
- Similarity measured by content word overlap

Part I

When labeled data alone fails

No overlapping words!

- 本間を 本語を 本語を

Unlabeled data as stepping stones

Labels "propagate" via similar unlabeled articles.

	d_1	d_5	d_6	d_7	d_3	d_4	d_8	d_9	d_2
asteroid	•								
bright	•	•							
comet		•	•						
year			•	•					
zodiac				•	•				
· ·									
airport						•			
bike						•	•		
camp							•	•	
vellowstone								•	•
zion									•

▶ < ∃ >

Another example

Handwritten digits recognition with pixel-wise Euclidean distance

22	08222						
not similar	'indirectly' similar with stepping stones						

- Nodes: $X_l \cup X_u$
- Edges: similarity weights computed from features, e.g.,

- Nodes: $X_l \cup X_u$
- Edges: similarity weights computed from features, e.g.,
 - k-nearest-neighbor graph, unweighted (0, 1 weights)

- Nodes: $X_l \cup X_u$
- Edges: similarity weights computed from features, e.g.,
 - k-nearest-neighbor graph, unweighted (0, 1 weights)
 - fully connected graph, weight decays with distance

 $w = \exp\left(-\|x_i - x_j\|^2 / \sigma^2\right)$

- Nodes: $X_l \cup X_u$
- Edges: similarity weights computed from features, e.g.,
 - k-nearest-neighbor graph, unweighted (0, 1 weights)
 - fully connected graph, weight decays with distance

$$w = \exp\left(-\|x_i - x_j\|^2/\sigma^2\right)$$

ε-radius graph

- Nodes: $X_l \cup X_u$
- Edges: similarity weights computed from features, e.g.,
 - k-nearest-neighbor graph, unweighted (0, 1 weights)
 - fully connected graph, weight decays with distance

$$w = \exp\left(-\|x_i - x_j\|^2/\sigma^2\right)$$

- ε-radius graph
- Assumption Instances connected by heavy edge tend to have the same label.

• Fix Y_l , find $Y_u \in \{0,1\}^{n-l}$ to minimize $\sum_{ij} w_{ij} |y_i - y_j|$.

A⊒ ▶ < ∃

- Fix Y_l , find $Y_u \in \{0,1\}^{n-l}$ to minimize $\sum_{ij} w_{ij} |y_i y_j|$.
- Equivalently, solves the optimization problem

$$\min_{Y \in \{0,1\}^n} \infty \sum_{i=1}^l (y_i - Y_{li})^2 + \sum_{ij} w_{ij} (y_i - y_j)^2$$

- Fix Y_l , find $Y_u \in \{0,1\}^{n-l}$ to minimize $\sum_{ij} w_{ij} |y_i y_j|$.
- Equivalently, solves the optimization problem

$$\min_{Y \in \{0,1\}^n} \infty \sum_{i=1}^l (y_i - Y_{li})^2 + \sum_{ij} w_{ij} (y_i - y_j)^2$$

• Combinatorial problem, but has polynomial time solution.

- Fix Y_l , find $Y_u \in \{0,1\}^{n-l}$ to minimize $\sum_{ij} w_{ij} |y_i y_j|$.
- Equivalently, solves the optimization problem

$$\min_{Y \in \{0,1\}^n} \infty \sum_{i=1}^l (y_i - Y_{li})^2 + \sum_{ij} w_{ij} (y_i - y_j)^2$$

- Combinatorial problem, but has polynomial time solution.
- Mincut computes the modes of a discrete Markov random field, but there might be multiple modes

Relaxing discrete labels to continuous values in $\mathbb R,$ the harmonic function f satisfies

•
$$f(x_i) = y_i$$
 for $i = 1 \dots l$

Relaxing discrete labels to continuous values in \mathbb{R} , the harmonic function f satisfies

•
$$f(x_i) = y_i$$
 for $i = 1 \dots l$

• *f* minimizes the energy

$$\sum_{i \sim j} w_{ij} (f(x_i) - f(x_j))^2$$

Relaxing discrete labels to continuous values in \mathbb{R} , the harmonic function f satisfies

•
$$f(x_i) = y_i$$
 for $i = 1 \dots l$

• *f* minimizes the energy

$$\sum_{i \sim j} w_{ij} (f(x_i) - f(x_j))^2$$

• the mean of a Gaussian random field

Relaxing discrete labels to continuous values in \mathbb{R} , the harmonic function f satisfies

•
$$f(x_i) = y_i$$
 for $i = 1 \dots l$

• *f* minimizes the energy

$$\sum_{i \sim j} w_{ij} (f(x_i) - f(x_j))^2$$

• the mean of a Gaussian random field • average of neighbors $f(x_i) = \frac{\sum_{j \sim i} w_{ij} f(x_j)}{\sum_{j \sim i} w_{ij}}, \forall x_i \in X_u$

An electric network interpretation

- Edges are resistors with conductance w_{ij}
- 1 volt battery connects to labeled points y = 0, 1
- The voltage at the nodes is the harmonic function f

Implied similarity: similar voltage if many paths exist

A random walk interpretation

- Randomly walk from node *i* to *j* with probability $\frac{w_{ij}}{\sum_k w_{ik}}$
- Stop if we hit a labeled node
- The harmonic function f = Pr(hit label 1|start from i)

An algorithm to compute harmonic function

One iterative way to compute the harmonic function:

Initially, set $f(x_i) = y_i$ for $i = 1 \dots l$, and $f(x_j)$ arbitrarily (e.g., 0) for $x_j \in X_u$.

An algorithm to compute harmonic function

One iterative way to compute the harmonic function:

- Initially, set $f(x_i) = y_i$ for $i = 1 \dots l$, and $f(x_j)$ arbitrarily (e.g., 0) for $x_j \in X_u$.
- 2 Repeat until convergence: Set $f(x_i) = \frac{\sum_{j \sim i} w_{ij} f(x_j)}{\sum_{j \sim i} w_{ij}}, \forall x_i \in X_u$, i.e., the average of neighbors. Note $f(X_l)$ is fixed.

The graph Laplacian

We can also compute f in closed form using the graph Laplacian.

- $n \times n$ weight matrix W on $X_l \cup X_u$
 - symmetric, non-negative
- Diagonal degree matrix $D: D_{ii} = \sum_{j=1}^{n} W_{ij}$
- Graph Laplacian matrix Δ

$$\Delta = D - W$$

• The energy can be rewritten as

$$\sum_{i \sim j} w_{ij} (f(x_i) - f(x_j))^2 = f^{\top} \Delta f$$

The harmonic solution minimizes energy subject to the given labels

$$\min_{f} \infty \sum_{i=1}^{l} (f(x_i) - y_i)^2 + f^{\top} \Delta f$$

The harmonic solution minimizes energy subject to the given labels

$$\min_{f} \infty \sum_{i=1}^{l} (f(x_i) - y_i)^2 + f^{\top} \Delta f$$

Partition the Laplacian matrix
$$\Delta = \left[egin{array}{cc} \Delta_{ll} & \Delta_{lu} \ \Delta_{ul} & \Delta_{uu} \end{array}
ight]$$

(日) (同) (三) (三)

The harmonic solution minimizes energy subject to the given labels

$$\min_{f} \infty \sum_{i=1}^{l} (f(x_i) - y_i)^2 + f^{\top} \Delta f$$

Partition the Laplacian matrix
$$\Delta = \begin{bmatrix} \Delta_{ll} & \Delta_{lu} \\ \Delta_{ul} & \Delta_{uu} \end{bmatrix}$$
Harmonic solution

$$f_u = -\Delta_{uu}^{-1} \Delta_{ul} Y_l$$

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The harmonic solution minimizes energy subject to the given labels

$$\min_{f} \infty \sum_{i=1}^{l} (f(x_i) - y_i)^2 + f^{\top} \Delta f$$

Partition the Laplacian matrix $\Delta = \begin{bmatrix} \Delta_{ll} & \Delta_{lu} \\ \Delta_{ul} & \Delta_{uu} \end{bmatrix}$ Harmonic solution

$$f_u = -\Delta_{uu}^{-1} \Delta_{ul} Y_l$$

The normalized Laplacian $\mathcal{L} = D^{-1/2} \Delta D^{-1/2} = I - D^{-1/2} W D^{-1/2}$, or Δ^p, \mathcal{L}^p are often used too (p > 0).

イロト 不得下 イヨト イヨト 二日

Local and Global consistency

• Allow $f(X_l)$ to be different from Y_l , but penalize it

$$\min_{f} \sum_{i=1}^{l} (f(x_i) - y_i)^2 + \lambda f^{\top} \Delta f$$

Part I

Manifold regularization

The graph-based algorithms so far are transductive. Manifold regularization is inductive.

- defines function in a RKHS: $f(x) = h(x) + b, h(x) \in \mathcal{H}_K$
- views the graph as a random sample of an underlying manifold
- regularizer prefers low energy $f_{1:n}^{\top} \Delta f_{1:n}$

$$\min_{f} \sum_{i=1}^{l} (1 - y_i f(x_i))_+ + \lambda_1 \|h\|_{\mathcal{H}_K}^2 + \lambda_2 f_{1:n}^\top \Delta f_{1:n}$$

Assumption: labels are "smooth" on the graph, characterized by the graph spectrum (eigen-values/vectors $\{(\lambda_i, \phi_i)\}_{i=1}^{l+u}$ of the Laplacian L):

•
$$L = \sum_{i=1}^{l+u} \lambda_i \phi_i \phi_i$$

Assumption: labels are "smooth" on the graph, characterized by the graph spectrum (eigen-values/vectors $\{(\lambda_i, \phi_i)\}_{i=1}^{l+u}$ of the Laplacian L):

- $L = \sum_{i=1}^{l+u} \lambda_i \phi_i \phi_i^\top$
- a graph has k connected components if and only if $\lambda_1 = \ldots = \lambda_k = 0$.

Assumption: labels are "smooth" on the graph, characterized by the graph spectrum (eigen-values/vectors $\{(\lambda_i, \phi_i)\}_{i=1}^{l+u}$ of the Laplacian L):

- $L = \sum_{i=1}^{l+u} \lambda_i \phi_i \phi_i^\top$
- a graph has k connected components if and only if $\lambda_1 = \ldots = \lambda_k = 0$.
- the corresponding eigenvectors are constant on individual connected components, and zero elsewhere.

Assumption: labels are "smooth" on the graph, characterized by the graph spectrum (eigen-values/vectors $\{(\lambda_i, \phi_i)\}_{i=1}^{l+u}$ of the Laplacian L):

- $L = \sum_{i=1}^{l+u} \lambda_i \phi_i \phi_i^\top$
- a graph has k connected components if and only if $\lambda_1 = \ldots = \lambda_k = 0$.
- the corresponding eigenvectors are constant on individual connected components, and zero elsewhere.
- any ${f f}$ on the graph can be represented as ${f f} = \sum_{i=1}^{l+u} a_i \phi_i$

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Assumption: labels are "smooth" on the graph, characterized by the graph spectrum (eigen-values/vectors $\{(\lambda_i, \phi_i)\}_{i=1}^{l+u}$ of the Laplacian L):

- $L = \sum_{i=1}^{l+u} \lambda_i \phi_i \phi_i^\top$
- a graph has k connected components if and only if $\lambda_1 = \ldots = \lambda_k = 0$.
- the corresponding eigenvectors are constant on individual connected components, and zero elsewhere.
- any ${f f}$ on the graph can be represented as ${f f} = \sum_{i=1}^{l+u} a_i \phi_i$
- graph regularizer $\mathbf{f}^{\top} L \mathbf{f} = \sum_{i=1}^{l+u} a_i^2 \lambda_i$

- 本間 と えき と えき とうき

Assumption: labels are "smooth" on the graph, characterized by the graph spectrum (eigen-values/vectors $\{(\lambda_i, \phi_i)\}_{i=1}^{l+u}$ of the Laplacian L):

- $L = \sum_{i=1}^{l+u} \lambda_i \phi_i \phi_i^\top$
- a graph has k connected components if and only if $\lambda_1 = \ldots = \lambda_k = 0$.
- the corresponding eigenvectors are constant on individual connected components, and zero elsewhere.
- any ${f f}$ on the graph can be represented as ${f f} = \sum_{i=1}^{l+u} a_i \phi_i$
- graph regularizer $\mathbf{f}^{\top} L \mathbf{f} = \sum_{i=1}^{l+u} a_i^2 \lambda_i$
- smooth function f uses smooth basis (those with small λ_i)

- 4回 ト 4 ヨ ト - 4 ヨ ト - - ヨ
Example graph spectrum

When the graph assumption is wrong

"colliding two moons"

Part

When the graph assumption is wrong

"colliding two moons"

Outline

Part I

- What is SSL?
- Mixture Models
- Co-training and Multiview Algorithms
- Manifold Regularization and Graph-Based Algorithms
- S3VMs and Entropy Regularization

2 Part I

- Theory of SSL
- Online SSL
- Multimanifold SSL
- Human SSL

Semi-supervised Support Vector Machines

SVMs

Semi-supervised Support Vector Machines

Assumption: Unlabeled data from different classes are separated with large margin.

Standard soft margin SVMs

Try to keep labeled points outside the margin, while maximizing the margin:

$$\begin{split} \min_{h,b,\xi} \sum_{i=1}^{l} \xi_i + \lambda \|h\|_{\mathcal{H}_K}^2 \\ \text{subject to } y_i(h(x_i) + b) \geq 1 - \xi_i \quad , \forall i = 1 \dots l \\ \xi_i \geq 0 \end{split}$$

一日、

Standard soft margin SVMs

Try to keep labeled points outside the margin, while maximizing the margin:

$$\begin{split} \min_{h,b,\xi} \sum_{i=1}^{l} \xi_i + \lambda \|h\|_{\mathcal{H}_K}^2 \\ \text{subject to } y_i(h(x_i) + b) \geq 1 - \xi_i \quad , \forall i = 1 \dots l \\ \xi_i \geq 0 \end{split}$$

Equivalent to

$$\min_{f} \sum_{i=1}^{l} (1 - y_i f(x_i))_+ + \lambda \|h\|_{\mathcal{H}_K}^2$$

 $y_i f(x_i)$ known as the margin, $(1-y_i f(x_i))_+$ the hinge loss

(日) (周) (三) (三)

The S3VM objective function

To incorporate unlabeled points,

• assign putative labels $\operatorname{sign}(f(x))$ to $x \in X_u$

The S3VM objective function

To incorporate unlabeled points,

- assign putative labels $\operatorname{sign}(f(x))$ to $x \in X_u$
- the hinge loss on unlabeled points becomes

$$(1 - \operatorname{sign}(f(x))f(x_i))_+ = (1 - |f(x_i)|)_+$$

The S3VM objective function

To incorporate unlabeled points,

- assign putative labels sign(f(x)) to $x \in X_u$
- the hinge loss on unlabeled points becomes

$$(1 - \mathsf{sign}(f(x))f(x_i))_+ = (1 - |f(x_i)|)_+$$

S3VM objective:

$$\min_{f} \sum_{i=1}^{l} (1 - y_i f(x_i))_+ + \lambda_1 \|h\|_{\mathcal{H}_K}^2 + \lambda_2 \sum_{i=l+1}^{n} (1 - |f(x_i)|)_+$$

Prefers $f(x) \ge 1$ or $f(x) \le -1$, i.e., unlabeled instance away from decision boundary f(x) = 0.

Prefers $f(x) \ge 1$ or $f(x) \le -1$, i.e., unlabeled instance away from decision boundary f(x) = 0. The class balancing constraint

The class balancing constraint

• often unbalanced - most points classified into one class.

Prefers $f(x) \ge 1$ or $f(x) \le -1$, i.e., unlabeled instance away from decision boundary f(x) = 0.

The class balancing constraint

- often unbalanced most points classified into one class.
- Heuristic class balance: $\frac{1}{n-l}\sum_{i=l+1}^{n} y_i = \frac{1}{l}\sum_{i=1}^{l} y_i$.

Prefers $f(x) \ge 1$ or $f(x) \le -1$, i.e., unlabeled instance away from decision boundary f(x) = 0.

The class balancing constraint

- often unbalanced most points classified into one class.
- Heuristic class balance: $\frac{1}{n-l}\sum_{i=l+1}^{n} y_i = \frac{1}{l}\sum_{i=1}^{l} y_i$.

• Relaxed:
$$\frac{1}{n-l}\sum_{i=l+1}^n f(x_i) = \frac{1}{l}\sum_{i=1}^l y_i$$
.

The S3VM algorithm

$$\begin{split} \min_{f} \quad & \sum_{i=1}^{l} (1 - y_i f(x_i))_+ + \lambda_1 \|h\|_{\mathcal{H}_K}^2 + \lambda_2 \sum_{i=l+1}^{n} (1 - |f(x_i)|)_+ \\ \text{s.t.} \quad & \frac{1}{n-l} \sum_{i=l+1}^{n} f(x_i) = \frac{1}{l} \sum_{i=1}^{l} y_i \end{split}$$

(日) (同) (三) (三)

The S3VM algorithm

$$\min_{f} \quad \sum_{i=1}^{l} (1 - y_i f(x_i))_+ + \lambda_1 \|h\|_{\mathcal{H}_K}^2 + \lambda_2 \sum_{i=l+1}^{n} (1 - |f(x_i)|)_+$$

s.t.
$$\frac{1}{n-l} \sum_{i=l+1}^{n} f(x_i) = \frac{1}{l} \sum_{i=1}^{l} y_i$$

Computational difficulty

- SVM objective is convex
- Semi-supervised SVM objective is non-convex

The S3VM algorithm

$$\min_{f} \quad \sum_{i=1}^{l} (1 - y_i f(x_i))_+ + \lambda_1 \|h\|_{\mathcal{H}_K}^2 + \lambda_2 \sum_{i=l+1}^{n} (1 - |f(x_i)|)_+$$

s.t.
$$\frac{1}{n-l} \sum_{i=l+1}^{n} f(x_i) = \frac{1}{l} \sum_{i=1}^{l} y_i$$

Computational difficulty

- SVM objective is convex
- Semi-supervised SVM objective is non-convex
- Optimization approaches: SVM^{*light*}, ∇S3VM, continuation S3VM, deterministic annealing, CCCP, Branch and Bound, SDP convex relaxation, etc.

The probabilistic counter part of SVMs.

• $p(y|\mathbf{x}) = 1/(1 + \exp(-yf(\mathbf{x})))$ where $f(\mathbf{x}) = \mathbf{w}^{\top}\mathbf{x} + b$

- - E - N

- $p(y|\mathbf{x}) = 1/(1 + \exp(-yf(\mathbf{x})))$ where $f(\mathbf{x}) = \mathbf{w}^{\top}\mathbf{x} + b$
- (conditional) log likelihood $\sum_{i=1}^{l} \log p(y_i | \mathbf{x}_i, \mathbf{w}, b)$

- $p(y|\mathbf{x}) = 1/(1 + \exp(-yf(\mathbf{x})))$ where $f(\mathbf{x}) = \mathbf{w}^{\top}\mathbf{x} + b$
- (conditional) log likelihood $\sum_{i=1}^{l} \log p(y_i | \mathbf{x}_i, \mathbf{w}, b)$
- prior $\mathbf{w} \sim \mathcal{N}(0, I/(2\lambda))$

- $p(y|\mathbf{x}) = 1/(1 + \exp(-yf(\mathbf{x})))$ where $f(\mathbf{x}) = \mathbf{w}^{\top}\mathbf{x} + b$
- (conditional) log likelihood $\sum_{i=1}^l \log p(y_i | \mathbf{x}_i, \mathbf{w}, b)$
- prior $\mathbf{w} \sim \mathcal{N}(0, I/(2\lambda))$
- MAP training $\max_{\mathbf{w},b} \sum_{i=1}^{l} \log \left(1 / \left(1 + \exp(-y_i f(\mathbf{x}_i)) \right) \right) \lambda \|\mathbf{w}\|^2$

- $p(y|\mathbf{x}) = 1/(1 + \exp(-yf(\mathbf{x})))$ where $f(\mathbf{x}) = \mathbf{w}^{\top}\mathbf{x} + b$
- (conditional) log likelihood $\sum_{i=1}^{l} \log p(y_i | \mathbf{x}_i, \mathbf{w}, b)$
- prior $\mathbf{w} \sim \mathcal{N}(0, I/(2\lambda))$
- MAP training $\max_{\mathbf{w},b} \sum_{i=1}^{l} \log \left(1 / \left(1 + \exp(-y_i f(\mathbf{x}_i)) \right) \right) \lambda \|\mathbf{w}\|^2$
- logistic loss $c(\mathbf{x}, y, f(\mathbf{x})) = \log (1 + \exp(-yf(\mathbf{x})))$

The probabilistic counter part of SVMs.

- $p(y|\mathbf{x}) = 1/(1 + \exp(-yf(\mathbf{x})))$ where $f(\mathbf{x}) = \mathbf{w}^{\top}\mathbf{x} + b$
- (conditional) log likelihood $\sum_{i=1}^{l} \log p(y_i | \mathbf{x}_i, \mathbf{w}, b)$
- prior $\mathbf{w} \sim \mathcal{N}(0, I/(2\lambda))$
- MAP training $\max_{\mathbf{w},b} \sum_{i=1}^{l} \log \left(1 / \left(1 + \exp(-y_i f(\mathbf{x}_i)) \right) \right) \lambda \|\mathbf{w}\|^2$
- logistic loss $c(\mathbf{x}, y, f(\mathbf{x})) = \log (1 + \exp(-yf(\mathbf{x})))$

Logistic regression does not use unlabeled data.

• Assumption: if the two classes are well-separated, then p(y|x) on any unlabeled instance should be close to 0 or 1.

- Assumption: if the two classes are well-separated, then p(y|x) on any unlabeled instance should be close to 0 or 1.
- Entropy $H(p) = -p\log p (1-p)\log(1-p)$ should be small

< 回 ト < 三 ト < 三 ト

- Assumption: if the two classes are well-separated, then p(y|x) on any unlabeled instance should be close to 0 or 1.
- Entropy $H(p) = -p\log p (1-p)\log(1-p)$ should be small
- entropy regularizer $\Omega(f) = \sum_{j=l+1}^{l+u} H(p(y=1|\mathbf{x}_j,\mathbf{w},b))$

< 回 ト < 三 ト < 三 ト

- Assumption: if the two classes are well-separated, then p(y|x) on any unlabeled instance should be close to 0 or 1.
- Entropy $H(p) = -p \log p (1-p) \log(1-p)$ should be small
- entropy regularizer $\Omega(f) = \sum_{j=l+1}^{l+u} H(p(y=1|\mathbf{x}_j,\mathbf{w},b))$
- semi-supervised logistic regression

$$\min_{\mathbf{w},b} \qquad \sum_{i=1}^{l} \log \left(1 + \exp(-y_i f(\mathbf{x}_i)) \right) + \lambda_1 \|\mathbf{w}\|^2 \\ + \lambda_2 \sum_{j=l+1}^{l+u} H(1/(1 + \exp(-f(\mathbf{x}_j))))$$

When the large margin assumption is wrong

S3VM error: 0.34 ± 0.19

∃ →

Part II

Outline

Part

- What is SSL?
- Mixture Models
- Co-training and Multiview Algorithms
- Manifold Regularization and Graph-Based Algorithms
- S3VMs and Entropy Regularization

2 Part II

- Theory of SSL
- Online SSL
- Multimanifold SSL
- Human SSL

Outline

Part

- What is SSL?
- Mixture Models
- Co-training and Multiview Algorithms
- Manifold Regularization and Graph-Based Algorithms
- S3VMs and Entropy Regularization

2 Part II

Theory of SSL

- Online SSL
- Multimanifold SSL
- Human SSL

SSL does not always help

Wrong SSL assumption can make SSL worse than SL!

- ∢ ≣ →

A computational theory for SSL

(Theoretic guarantee of Balcan & Blum) Recall in supervised learning

• labeled data $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^l \overset{\text{i.i.d.}}{\sim} P(\mathbf{x}, y)$, where P unknown

A computational theory for SSL

(Theoretic guarantee of Balcan & Blum) Recall in supervised learning

- labeled data $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^l \overset{\text{i.i.d.}}{\sim} P(\mathbf{x}, y)$, where P unknown
- function family ${\cal F}$

A computational theory for SSL

(Theoretic guarantee of Balcan & Blum) Recall in supervised learning

- labeled data $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^l \overset{\text{i.i.d.}}{\sim} P(\mathbf{x}, y)$, where P unknown
- \bullet function family ${\cal F}$
- assume zero training sample error $\hat{e}(f) = \frac{1}{l} \sum_{i=1}^{l} (f(\mathbf{x}_i) \neq y_i)$
A computational theory for SSL

(Theoretic guarantee of Balcan & Blum) Recall in supervised learning

- labeled data $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^l \overset{\text{i.i.d.}}{\sim} P(\mathbf{x}, y)$, where P unknown
- \bullet function family ${\cal F}$
- assume zero training sample error $\hat{e}(f) = \frac{1}{l} \sum_{i=1}^{l} (f(\mathbf{x}_i) \neq y_i)$
- can we say anything about its true error $e(f_{\mathcal{D}}) = \mathbb{E}_{(\mathbf{x},y)\sim P} [f_D(\mathbf{x}) \neq y]$?

A computational theory for SSL

(Theoretic guarantee of Balcan & Blum) Recall in supervised learning

- labeled data $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^l \overset{\text{i.i.d.}}{\sim} P(\mathbf{x}, y)$, where P unknown
- \bullet function family ${\cal F}$
- assume zero training sample error $\hat{e}(f) = \frac{1}{l} \sum_{i=1}^{l} (f(\mathbf{x}_i) \neq y_i)$
- can we say anything about its true error $e(f_{\mathcal{D}}) = \mathbb{E}_{(\mathbf{x},y)\sim P} [f_D(\mathbf{x}) \neq y]$?
- it turns out we can bound $e(f_{\mathcal{D}})$ without the knowledge of P.

• training error minimizer $f_{\mathcal{D}}$ is a random variable (of D)

(4 個) トイヨト イヨト

- training error minimizer $f_{\mathcal{D}}$ is a random variable (of D)
- $\{e(f_{\mathcal{D}}) > \epsilon\}$ is a random Boolean event

< 回 > < 三 > < 三 >

- training error minimizer $f_{\mathcal{D}}$ is a random variable (of D)
- $\{e(f_{\mathcal{D}}) > \epsilon\}$ is a random Boolean event
- the probability of this event is $Pr_{\mathcal{D}\sim P}(\{e(f_{\mathcal{D}}) > \epsilon\})$. Goal: show that this probability is small

- training error minimizer $f_{\mathcal{D}}$ is a random variable (of D)
- $\{e(f_{\mathcal{D}}) > \epsilon\}$ is a random Boolean event
- the probability of this event is $Pr_{\mathcal{D}\sim P}(\{e(f_{\mathcal{D}}) > \epsilon\})$. Goal: show that this probability is small

$$Pr_{\mathcal{D}\sim P}\left(\{e(f_{\mathcal{D}}) > \epsilon\}\right) \leq Pr_{\mathcal{D}\sim P}\left(\bigcup_{\{f \in \mathcal{F}: \hat{e}(f) = 0\}} \{e(f) > \epsilon\}\right)$$

- training error minimizer $f_{\mathcal{D}}$ is a random variable (of D)
- $\{e(f_{\mathcal{D}}) > \epsilon\}$ is a random Boolean event
- the probability of this event is $Pr_{\mathcal{D}\sim P}\left(\{e(f_{\mathcal{D}})>\epsilon\}\right)$. Goal: show that this probability is small

$$\begin{aligned} \Pr_{\mathcal{D}\sim P}\left(\{e(f_{\mathcal{D}}) > \epsilon\}\right) &\leq \Pr_{\mathcal{D}\sim P}\left(\cup_{\{f \in \mathcal{F}: \hat{e}(f) = 0\}}\{e(f) > \epsilon\}\right) \\ &= \Pr_{\mathcal{D}\sim P}\left(\cup_{\{f \in \mathcal{F}\}}\{\hat{e}(f) = 0, e(f) > \epsilon\}\right) \\ &= \Pr_{\mathcal{D}\sim P}\left(\cup_{\{f \in \mathcal{F}: e(f) > \epsilon\}}\{\hat{e}(f) = 0\}\right) \end{aligned}$$

- training error minimizer $f_{\mathcal{D}}$ is a random variable (of D)
- $\{e(f_{\mathcal{D}}) > \epsilon\}$ is a random Boolean event
- the probability of this event is $Pr_{\mathcal{D}\sim P}\left(\{e(f_{\mathcal{D}})>\epsilon\}\right)$. Goal: show that this probability is small

$$\begin{aligned} \Pr_{\mathcal{D}\sim P}\left(\{e(f_{\mathcal{D}}) > \epsilon\}\right) &\leq \Pr_{\mathcal{D}\sim P}\left(\cup_{\{f \in \mathcal{F}: \hat{e}(f) = 0\}}\{e(f) > \epsilon\}\right) \\ &= \Pr_{\mathcal{D}\sim P}\left(\cup_{\{f \in \mathcal{F}\}}\{\hat{e}(f) = 0, e(f) > \epsilon\}\right) \\ &= \Pr_{\mathcal{D}\sim P}\left(\cup_{\{f \in \mathcal{F}: e(f) > \epsilon\}}\{\hat{e}(f) = 0\}\right) \\ &\leq \sum_{\{f \in \mathcal{F}: e(f) > \epsilon\}}\Pr_{\mathcal{D}\sim P}\left(\{\hat{e}(f) = 0\}\right) \end{aligned}$$

• last step is union bound $Pr(A \cup B) \leq Pr(A) + Pr(B)$

• A biased coin with $P(\text{heads}) = \epsilon$ producing l tails

$$\sum_{\{f \in \mathcal{F}: e(f) > \epsilon\}} \Pr_{\mathcal{D} \sim P} \left(\{ \hat{e}(f) = 0 \} \right) \le \sum_{\{f \in \mathcal{F}: e(f) > \epsilon\}} (1 - \epsilon)^l$$

-

< A > < 3

• A biased coin with $P(\text{heads}) = \epsilon$ producing l tails

$$\sum_{\{f \in \mathcal{F}: e(f) > \epsilon\}} \Pr_{\mathcal{D} \sim P} \left(\{ \hat{e}(f) = 0 \} \right) \le \sum_{\{f \in \mathcal{F}: e(f) > \epsilon\}} (1 - \epsilon)^l$$

• if
$$\mathcal{F}$$
 is finite, $\sum_{\{f \in \mathcal{F}: e(f) > \epsilon\}} (1 - \epsilon)^l \le |\mathcal{F}| (1 - \epsilon)^l$

-

< A > < 3

• A biased coin with $P(\text{heads}) = \epsilon$ producing l tails

$$\sum_{\{f \in \mathcal{F}: e(f) > \epsilon\}} \Pr_{\mathcal{D} \sim P} \left(\{ \hat{e}(f) = 0 \} \right) \le \sum_{\{f \in \mathcal{F}: e(f) > \epsilon\}} (1 - \epsilon)^l$$

• if
$$\mathcal{F}$$
 is finite, $\sum_{\{f \in \mathcal{F}: e(f) > \epsilon\}} (1-\epsilon)^l \leq |\mathcal{F}|(1-\epsilon)^l$
• by $1-x \leq e^{-x}$, $|\mathcal{F}|(1-\epsilon)^l \leq |\mathcal{F}|e^{-\epsilon l}$

-

< A > < 3

• A biased coin with $P(\text{heads}) = \epsilon$ producing l tails

$$\sum_{\{f \in \mathcal{F}: e(f) > \epsilon\}} \Pr_{\mathcal{D} \sim P} \left(\{ \hat{e}(f) = 0 \} \right) \le \sum_{\{f \in \mathcal{F}: e(f) > \epsilon\}} (1 - \epsilon)^l$$

• if
$$\mathcal{F}$$
 is finite, $\sum_{\{f \in \mathcal{F}: e(f) > \epsilon\}} (1-\epsilon)^l \le |\mathcal{F}| (1-\epsilon)^l$

• by
$$1-x \leq e^{-x}$$
, $|\mathcal{F}|(1-\epsilon)^l \leq |\mathcal{F}|e^{-\epsilon l}$

• putting things together, $Pr_{\mathcal{D}\sim P}\left(\{e(f_{\mathcal{D}}) \leq \epsilon\}\right) \geq 1 - |\mathcal{F}|e^{-\epsilon l}$

• A biased coin with $P(\text{heads}) = \epsilon$ producing l tails

$$\sum_{\{f \in \mathcal{F}: e(f) > \epsilon\}} \Pr_{\mathcal{D} \sim P} \left(\{ \hat{e}(f) = 0 \} \right) \le \sum_{\{f \in \mathcal{F}: e(f) > \epsilon\}} (1 - \epsilon)^l$$

• if
$$\mathcal{F}$$
 is finite, $\sum_{\{f \in \mathcal{F}: e(f) > \epsilon\}} (1-\epsilon)^l \le |\mathcal{F}| (1-\epsilon)^l$

• by
$$1-x \leq e^{-x}$$
, $|\mathcal{F}|(1-\epsilon)^l \leq |\mathcal{F}|e^{-\epsilon l}$

• putting things together, $Pr_{\mathcal{D}\sim P}\left(\{e(f_{\mathcal{D}}) \leq \epsilon\}\right) \geq 1 - |\mathcal{F}|e^{-\epsilon l}$

Probably (i.e., on at least $1 - |\mathcal{F}|e^{-\epsilon l}$ fraction of random draws of the training sample), the function $f_{\mathcal{D}}$, picked because $\hat{e}(f_{\mathcal{D}}) = 0$, is approximately correct (i.e., has true error $e(f_{\mathcal{D}}) \leq \epsilon$).

Simple sample complexity for SL

Theorem Assume \mathcal{F} is finite. Given any $\epsilon > 0, \delta > 0$, if we see l training instances where

$$l = \frac{1}{\epsilon} \left(\log |\mathcal{F}| + \log \frac{1}{\delta} \right)$$

then with probability at least $1 - \delta$, all $f \in \mathcal{F}$ with zero training error $\hat{e}(f) = 0$ have $e(f) \leq \epsilon$.

- ϵ controls the error of the learned function
- $\bullet~\delta$ controls the confidence of the bound
- \bullet proof: setting $\delta = |\mathcal{F}| e^{-\epsilon l}$

Plan: make $|\mathcal{F}|$ smaller

(日) (同) (三) (三)

Plan: make $|\mathcal{F}|$ smaller

• incompatibility $\Xi(f, \mathbf{x}) : \mathcal{F} \times \mathcal{X} \mapsto [0, 1]$ between a function f and an unlabeled instance \mathbf{x}

Plan: make $|\mathcal{F}|$ smaller

- incompatibility $\Xi(f, \mathbf{x}) : \mathcal{F} \times \mathcal{X} \mapsto [0, 1]$ between a function f and an unlabeled instance \mathbf{x}
- example: S3VM wants $|f(\mathbf{x})| \geq \gamma$. Define

$$\Xi_{\mathsf{S3VM}}(f,\mathbf{x}) = \left\{ \begin{array}{ll} 1, & \text{if } |f(\mathbf{x})| < \gamma \\ 0, & \text{otherwise.} \end{array} \right.$$

Plan: make $|\mathcal{F}|$ smaller

- incompatibility $\Xi(f, \mathbf{x}) : \mathcal{F} \times \mathcal{X} \mapsto [0, 1]$ between a function f and an unlabeled instance \mathbf{x}
- example: S3VM wants $|f(\mathbf{x})| \geq \gamma$. Define

$$\Xi_{\mbox{S3VM}}(f, \mathbf{x}) = \left\{ \begin{array}{ll} 1, & \mbox{if } |f(\mathbf{x})| < \gamma \\ 0, & \mbox{otherwise.} \end{array} \right.$$

• true unlabeled data error $e_U(f) = \mathbb{E}_{\mathbf{x} \sim P_X} \left[\Xi(f, \mathbf{x}) \right]$

Plan: make $|\mathcal{F}|$ smaller

- incompatibility $\Xi(f, \mathbf{x}) : \mathcal{F} \times \mathcal{X} \mapsto [0, 1]$ between a function f and an unlabeled instance \mathbf{x}
- example: S3VM wants $|f(\mathbf{x})| \geq \gamma$. Define

$$\Xi_{\mbox{S3VM}}(f, \mathbf{x}) = \left\{ \begin{array}{ll} 1, & \mbox{if } |f(\mathbf{x})| < \gamma \\ 0, & \mbox{otherwise.} \end{array} \right.$$

• true unlabeled data error $e_U(f) = \mathbb{E}_{\mathbf{x} \sim P_X} \left[\Xi(f, \mathbf{x}) \right]$

• sample unlabeled data error $\hat{e}_U(f) = \frac{1}{u}\sum_{i=l+1}^{l+u} \Xi(f,\mathbf{x}_i)$

過 ト イヨト イヨト

• by a similar argument, after $u = \frac{1}{\epsilon} \left(\log |\mathcal{F}| + \log \frac{2}{\delta} \right)$ unlabeled data, with probability at least $1 - \delta/2$, all $f \in \mathcal{F}$ with $\hat{e}_U(f) = 0$ have $e_U(f) \le \epsilon$.

- by a similar argument, after $u = \frac{1}{\epsilon} \left(\log |\mathcal{F}| + \log \frac{2}{\delta} \right)$ unlabeled data, with probability at least $1 \delta/2$, all $f \in \mathcal{F}$ with $\hat{e}_U(f) = 0$ have $e_U(f) \le \epsilon$.
- i.e., if $\hat{e}_U(f) = 0$, then $f \in \mathcal{F}(\epsilon) \equiv \{f \in \mathcal{F} : e_U(f) \le \epsilon\}$

・ 同 ト ・ ヨ ト ・ ヨ ト

- by a similar argument, after $u = \frac{1}{\epsilon} \left(\log |\mathcal{F}| + \log \frac{2}{\delta} \right)$ unlabeled data, with probability at least $1 \delta/2$, all $f \in \mathcal{F}$ with $\hat{e}_U(f) = 0$ have $e_U(f) \le \epsilon$.
- i.e., if $\hat{e}_U(f) = 0$, then $f \in \mathcal{F}(\epsilon) \equiv \{f \in \mathcal{F} : e_U(f) \le \epsilon\}$
- \bullet apply the SL PAC bound on the (much smaller) $\mathcal{F}(\epsilon)$

過 ト イヨト イヨト

- by a similar argument, after $u = \frac{1}{\epsilon} \left(\log |\mathcal{F}| + \log \frac{2}{\delta} \right)$ unlabeled data, with probability at least $1 \delta/2$, all $f \in \mathcal{F}$ with $\hat{e}_U(f) = 0$ have $e_U(f) \le \epsilon$.
- i.e., if $\hat{e}_U(f) = 0$, then $f \in \mathcal{F}(\epsilon) \equiv \{f \in \mathcal{F} : e_U(f) \le \epsilon\}$
- \bullet apply the SL PAC bound on the (much smaller) $\mathcal{F}(\epsilon)$

Theorem (finite, doubly realizable) Assume \mathcal{F} is finite. Given any $\epsilon > 0, \delta > 0$, if we see l labeled and u unlabeled training instances where

$$l = \frac{1}{\epsilon} \left(\log |\mathcal{F}(\epsilon)| + \log \frac{2}{\delta} \right) \ \text{ and } \ u = \frac{1}{\epsilon} \left(\log |\mathcal{F}| + \log \frac{2}{\delta} \right),$$

then with probability at least $1 - \delta$, all $f \in \mathcal{F}$ with $\hat{e}(f) = 0$ and $\hat{e}_U(f) = 0$ have $e(f) \leq \epsilon$.

イロト 不得下 イヨト イヨト 二日

• Good news: can require less labeled data than SL

-

- Good news: can require less labeled data than SL
- This particular theorem requires finite \mathcal{F} , and doubly realizable f with $\hat{e}(f) = 0$ and $\hat{e}_U(f) = 0$

► < ∃ ►</p>

- Good news: can require less labeled data than SL
- This particular theorem requires finite \mathcal{F} , and doubly realizable f with $\hat{e}(f) = 0$ and $\hat{e}_U(f) = 0$
- More general theorems in (Balcan & Blum 2008):
 - infinite \mathcal{F} is OK: extensions of the VC-dimension
 - ► agnostic, does not require either realizability: both e(f) and e_U(f) may be non-zero and unknown
 - also tighter ϵ -cover based bounds

- Good news: can require less labeled data than SL
- This particular theorem requires finite \mathcal{F} , and doubly realizable f with $\hat{e}(f) = 0$ and $\hat{e}_U(f) = 0$
- More general theorems in (Balcan & Blum 2008):
 - infinite \mathcal{F} is OK: extensions of the VC-dimension
 - ► agnostic, does not require either realizability: both e(f) and e_U(f) may be non-zero and unknown
 - also tighter ϵ -cover based bounds
- Most SSL algorithms (e.g. S3VMs) empirically minimize $\hat{e}(f) + \hat{e}_U(f)$: not necessarily justified in theory

- Good news: can require less labeled data than SL
- This particular theorem requires finite \mathcal{F} , and doubly realizable f with $\hat{e}(f) = 0$ and $\hat{e}_U(f) = 0$
- More general theorems in (Balcan & Blum 2008):
 - infinite \mathcal{F} is OK: extensions of the VC-dimension
 - ► agnostic, does not require either realizability: both e(f) and e_U(f) may be non-zero and unknown
 - also tighter ϵ -cover based bounds
- Most SSL algorithms (e.g. S3VMs) empirically minimize $\hat{e}(f) + \hat{e}_U(f)$: not necessarily justified in theory
- Incompatibility functions arbitrary. Serves as regularization. There are good and bad incompatibility functions. Example: "inverse S3VM" prefers to cut through dense unlabeled data

$$\Xi_{\mathsf{inv}}(f, \mathbf{x}) = 1 - \Xi_{\mathsf{S3VM}}(f, \mathbf{x})$$

- 4 同 6 4 日 6 4 日 6

Outline

Part

- What is SSL?
- Mixture Models
- Co-training and Multiview Algorithms
- Manifold Regularization and Graph-Based Algorithms
- S3VMs and Entropy Regularization

2 Part II

• Theory of SSL

Online SSL

- Multimanifold SSL
- Human SSL

Life-long learning

- $n
 ightarrow \infty$ examples arrive sequentially, cannot store them all
- most examples unlabeled
- $\bullet\,$ no iid assumption, p(x,y) can change over time

This is how children learn, too

(日) (周) (三) (三)

() At time t, adversary picks $x_t \in \mathcal{X}, y_t \in \mathcal{Y}$ not necessarily iid, shows x_t

- **()** At time t, adversary picks $x_t \in \mathcal{X}, y_t \in \mathcal{Y}$ not necessarily iid, shows x_t
- **2** Learner has classifier $f_t : \mathcal{X} \mapsto \mathbb{R}$, predicts $f_t(x_t)$

- **()** At time t, adversary picks $x_t \in \mathcal{X}, y_t \in \mathcal{Y}$ not necessarily iid, shows x_t
- 2 Learner has classifier $f_t : \mathcal{X} \mapsto \mathbb{R}$, predicts $f_t(x_t)$
- With small probability, adversary reveals y_t; otherwise it abstains (unlabeled)

- **()** At time t, adversary picks $x_t \in \mathcal{X}, y_t \in \mathcal{Y}$ not necessarily iid, shows x_t
- **2** Learner has classifier $f_t : \mathcal{X} \mapsto \mathbb{R}$, predicts $f_t(x_t)$
- With small probability, adversary reveals y_t; otherwise it abstains (unlabeled)
- Learner updates to f_{t+1} based on x_t and y_t (if given). Repeat.

Online manifold regularization

• Recall (batch) manifold regularization risk:

$$J(f) = \frac{1}{l} \sum_{t=1}^{T} \delta(y_t) c(f(x_t), y_t) + \frac{\lambda_1}{2} \|f\|_K^2 + \frac{\lambda_2}{2T} \sum_{s,t=1}^{T} (f(x_s) - f(x_t))^2 w_{st}$$

 $c(f(\boldsymbol{x}),\boldsymbol{y})$ convex loss function, e.g., the hinge loss.
Online manifold regularization

• Recall (batch) manifold regularization risk:

$$J(f) = \frac{1}{l} \sum_{t=1}^{T} \delta(y_t) c(f(x_t), y_t) + \frac{\lambda_1}{2} \|f\|_K^2 + \frac{\lambda_2}{2T} \sum_{s,t=1}^{T} (f(x_s) - f(x_t))^2 w_{st}$$

c(f(x),y) convex loss function, e.g., the hinge loss. • Instantaneous risk:

$$J_t(f) = \frac{T}{l}\delta(y_t)c(f(x_t), y_t) + \frac{\lambda_1}{2} \|f\|_K^2 + \lambda_2 \sum_{i=1}^t (f(x_i) - f(x_t))^2 w_{it}$$

(involves graph edges between x_t and all previous examples)

周 ト イ ヨ ト イ ヨ ト

Online manifold regularization

• Recall (batch) manifold regularization risk:

$$J(f) = \frac{1}{l} \sum_{t=1}^{T} \delta(y_t) c(f(x_t), y_t) + \frac{\lambda_1}{2} \|f\|_K^2 + \frac{\lambda_2}{2T} \sum_{s,t=1}^{T} (f(x_s) - f(x_t))^2 w_{st}$$

c(f(x),y) convex loss function, e.g., the hinge loss. • Instantaneous risk:

$$J_t(f) = \frac{T}{l}\delta(y_t)c(f(x_t), y_t) + \frac{\lambda_1}{2} \|f\|_K^2 + \lambda_2 \sum_{i=1}^t (f(x_i) - f(x_t))^2 w_{it}$$

(involves graph edges between x_t and all previous examples) • batch risk = average instantaneous risks $J(f) = \frac{1}{T} \sum_{t=1}^{T} J_t(f)$

• Instead of minimizing convex J(f), reduce convex $J_t(f)$ at each step

t:
$$f_{t+1} = f_t - \eta_t \left. \frac{\partial J_t(f)}{\partial f} \right|_{f_t}$$

・ 何 ト ・ ヨ ト ・ ヨ ト

- Instead of minimizing convex J(f), reduce convex $J_t(f)$ at each step t: $f_{t+1} = f_t - \eta_t \left. \frac{\partial J_t(f)}{\partial f} \right|_{f_t}$
- Step size η_t decays, e.g., $\eta_t = 1/\sqrt{t}$

A⊒ ▶ < ∃

- Instead of minimizing convex J(f), reduce convex $J_t(f)$ at each step t: $f_{t+1} = f_t - \eta_t \left. \frac{\partial J_t(f)}{\partial f} \right|_{f_t}$
- Step size η_t decays, e.g., $\eta_t = 1/\sqrt{t}$
- Accuracy can be arbitrarily bad if adversary flips target often. If so, no batch learner in hindsight can do well either

$$\mathsf{regret} \equiv \frac{1}{T} \sum_{t=1}^{T} J_t(f_t) - J(f^*)$$

- Instead of minimizing convex J(f), reduce convex $J_t(f)$ at each step t: $f_{t+1} = f_t - \eta_t \left. \frac{\partial J_t(f)}{\partial f} \right|_{f_t}$
- Step size η_t decays, e.g., $\eta_t = 1/\sqrt{t}$
- Accuracy can be arbitrarily bad if adversary flips target often. If so, no batch learner in hindsight can do well either

$$\text{regret} \equiv \frac{1}{T}\sum_{t=1}^{T}J_t(f_t) - J(f^*)$$

• no-regret guarantee against adversary [Zinkevich ICML03]: $\limsup_{T\to\infty} \frac{1}{T} \sum_{t=1}^{T} J_t(f_t) - J(f^*) \leq 0.$

- Instead of minimizing convex J(f), reduce convex $J_t(f)$ at each step t: $f_{t+1} = f_t - \eta_t \left. \frac{\partial J_t(f)}{\partial f} \right|_{f_t}$
- Step size η_t decays, e.g., $\eta_t = 1/\sqrt{t}$
- Accuracy can be arbitrarily bad if adversary flips target often. If so, no batch learner in hindsight can do well either

$$\text{regret} \equiv \frac{1}{T}\sum_{t=1}^{T}J_t(f_t) - J(f^*)$$

- no-regret guarantee against adversary [Zinkevich ICML03]: $\limsup_{T\to\infty} \frac{1}{T} \sum_{t=1}^{T} J_t(f_t) - J(f^*) \leq 0.$
- If no adversary (iid), the average classifier $\bar{f} = 1/T \sum_{t=1}^{T} f_t$ is good: $J(\bar{f}) \to J(f^*)$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

The algorithm is impractical as $T \to \infty$:

- space O(T): stores all previous examples
- time $O(T^2)$: each new instance connects to all previous ones

The algorithm is impractical as $T \to \infty$:

- space O(T): stores all previous examples
- $\bullet\,\, {\rm time}\,\, O(T^2):$ each new instance connects to all previous ones

Keep a size τ buffer

• approximate representers: $f_t = \sum_{i=t-\tau}^{t-1} \alpha_i^{(t)} K(x_i, \cdot)$

The algorithm is impractical as $T \to \infty$:

- space O(T): stores all previous examples
- time $O(T^2)$: each new instance connects to all previous ones

Keep a size τ buffer

- approximate representers: $f_t = \sum_{i=t-\tau}^{t-1} \alpha_i^{(t)} K(x_i, \cdot)$
- approximate instantaneous risk

$$J_{t}(f) = \frac{T}{l} \delta(y_{t}) c(f(x_{t}), y_{t}) + \frac{\lambda_{1}}{2} \|f\|_{K}^{2} \\ + \lambda_{2} \frac{t}{\tau} \sum_{i=t-\tau}^{t} (f(x_{i}) - f(x_{t}))^{2} w_{it}$$

The algorithm is impractical as $T \to \infty$:

- space O(T): stores all previous examples
- $\bullet\,\, {\rm time}\,\, O(T^2):$ each new instance connects to all previous ones

Keep a size τ buffer

- approximate representers: $f_t = \sum_{i=t-\tau}^{t-1} \alpha_i^{(t)} K(x_i, \cdot)$
- approximate instantaneous risk

$$J_{t}(f) = \frac{T}{l} \delta(y_{t}) c(f(x_{t}), y_{t}) + \frac{\lambda_{1}}{2} \|f\|_{K}^{2} \\ + \lambda_{2} \frac{t}{\tau} \sum_{i=t-\tau}^{t} (f(x_{i}) - f(x_{t}))^{2} w_{it}$$

dynamic graph on instances in the buffer

Outline

Part

- What is SSL?
- Mixture Models
- Co-training and Multiview Algorithms
- Manifold Regularization and Graph-Based Algorithms
- S3VMs and Entropy Regularization

2 Part II

- Theory of SSL
- Online SSL
- Multimanifold SSL
- Human SSL

Xiaojin Zhu (Univ. Wisconsin, Madison)

Futorial on Semi-Supervised Learning

Chicago 2009 85 / 99

Building Blocks: Local Covariance Matrix

For a sparse subset of points x, the local covariance matrix of the neighbors

$$\Sigma_x = \frac{1}{m-1} \sum_j (x_j - \mu_x) (x_j - \mu_x)^\top$$

captures local geometry.

A Distance on Covariance Matrices

• Hellinger distance

$$H^{2}(p,q) = \frac{1}{2} \int \left(\sqrt{p(x)} - \sqrt{q(x)}\right)^{2} dx$$

< E

< A > < 3

A Distance on Covariance Matrices

• Hellinger distance

$$H^{2}(p,q) = \frac{1}{2} \int \left(\sqrt{p(x)} - \sqrt{q(x)}\right)^{2} dx$$

• H(p,q) symmetric, in [0,1]

A Distance on Covariance Matrices

Hellinger distance

$$H^{2}(p,q) = \frac{1}{2} \int \left(\sqrt{p(x)} - \sqrt{q(x)}\right)^{2} dx$$

•
$$H(p,q)$$
 symmetric, in $[0,1]$

• Let $p = N(0, \Sigma_1), q = N(0, \Sigma_2)$. We define

$$H(\Sigma_1, \Sigma_2) \equiv H(p, q) = \sqrt{1 - 2^{\frac{d}{2}} \frac{|\Sigma_1|^{\frac{1}{4}} |\Sigma_2|^{\frac{1}{4}}}{|\Sigma_1 + \Sigma_2|^{\frac{1}{2}}}}$$

(computed in common subspace)

• • = • • = •

Hellinger Distance

イロト イポト イヨト イヨト

Hellinger Distance

Multimanifold SSL

Hellinger Distance

3

イロト イポト イヨト イヨト

Multimanifold SSL

Hellinger Distance

* smoothed version: $\Sigma + \epsilon I$

- 4 同 6 4 日 6 4 日 6

A Sparse Graph

• KNN graph use Mahalanobis distance to trace the manifold $d^2(x,y) = (x-y)^\top \Sigma_x^{-1} (x-y)$

(日) (周) (三) (三)

A Sparse Graph

- KNN graph use Mahalanobis distance to trace the manifold $d^2(x,y) = (x-y)^\top \Sigma_x^{-1} (x-y)$
- \bullet Gaussian edge weight on edges $w_{ij}=e^{-\frac{H^2(\Sigma x_i,\Sigma x_j)}{2\sigma^2}}$

通 ト イヨ ト イヨト

A Sparse Graph

- KNN graph use Mahalanobis distance to trace the manifold $d^2(x,y) = (x-y)^\top \Sigma_x^{-1} (x-y)$
- Gaussian edge weight on edges $w_{ij} = e^{-\frac{H^2(\Sigma_{x_i}, \Sigma_{x_j})}{2\sigma^2}}$
- Combines locality and shape. Red=large w, yellow=small w

• Manifold Regularization on the graph

Outline

Part

- What is SSL?
- Mixture Models
- Co-training and Multiview Algorithms
- Manifold Regularization and Graph-Based Algorithms
- S3VMs and Entropy Regularization

2 Part II

- Theory of SSL
- Online SSL
- Multimanifold SSL
- Human SSL

Do we learn from both labeled and unlabeled data?

Learning exists long before machine learning. Do humans perform semi-supervised learning?

4 E b

Image: A marked bit is a second se

Do we learn from both labeled and unlabeled data?

Learning exists long before machine learning. Do humans perform semi-supervised learning?

- We discuss two human experiments:
 - One-class classification [Zaki & Nosofsky 2007]
 - Ø Binary classification [Zhu et al. 2007]

• participants shown training sample $\{(\mathbf{x}_i, y_i = 1)\}_{i=1}^l$, all from one class.

- participants shown training sample $\{(\mathbf{x}_i, y_i = 1)\}_{i=1}^l$, all from one class.
- shown u unlabeled instances $\{\mathbf{x}_i\}_{i=l+1}^{l+u}$, decide if $y_i = 1$

- participants shown training sample $\{(\mathbf{x}_i, y_i = 1)\}_{i=1}^l$, all from one class.
- shown u unlabeled instances $\{\mathbf{x}_i\}_{i=l+1}^{l+u}$, decide if $y_i = 1$
- density level-set problem: learn $\mathcal{X}_1 = \{ \mathbf{x} \in \mathcal{X} \mid p(\mathbf{x}|y=1) \ge \epsilon \}$, classify y = 1 if $\mathbf{x} \in \mathcal{X}_1$

- participants shown training sample $\{(\mathbf{x}_i, y_i = 1)\}_{i=1}^l$, all from one class.
- shown u unlabeled instances $\{\mathbf{x}_i\}_{i=l+1}^{l+u}$, decide if $y_i = 1$
- density level-set problem: learn $\mathcal{X}_1 = \{ \mathbf{x} \in \mathcal{X} \mid p(\mathbf{x}|y=1) \ge \epsilon \}$, classify y = 1 if $\mathbf{x} \in \mathcal{X}_1$
- if \mathcal{X}_1 is fixed after training, then test data won't affect classification.

- participants shown training sample $\{(\mathbf{x}_i, y_i = 1)\}_{i=1}^l$, all from one class.
- shown u unlabeled instances $\{\mathbf{x}_i\}_{i=l+1}^{l+u}$, decide if $y_i = 1$
- density level-set problem: learn $\mathcal{X}_1 = \{ \mathbf{x} \in \mathcal{X} \mid p(\mathbf{x}|y=1) \ge \epsilon \}$, classify y = 1 if $\mathbf{x} \in \mathcal{X}_1$
- if \mathcal{X}_1 is fixed after training, then test data won't affect classification.
- Zaki & Nosofsky showed this is not true.

The Zaki & Nosofsky 2007 experiment

(b) training distribution

The Zaki & Nosofsky 2007 experiment

The Zaki & Nosofsky 2007 experiment

Human SSL

Zhu et al. 2007: mixture model?

(日) (同) (三) (三)
Zhu et al. 2007: mixture model?

Zhu et al. 2007: mixture model?

blocks

- **1** 20 labeled points at x = -1, 1
- 2 test 1: 21 test examples in grid [-1,1]
- \bigcirc 690 examples \sim bimodal distribution, plus 63 range examples in $\left[-2.5, 2.5\right]$

-

- ∢ ∃ ▶

Zhu et al. 2007: mixture model?

blocks

- **1** 20 labeled points at x = -1, 1
- 2 test 1: 21 test examples in grid [-1,1]
- \bigcirc 690 examples \sim bimodal distribution, plus 63 range examples in $\left[-2.5, 2.5\right]$
- test 2: same as test 1

- ∢ ∃ ▶

Zhu et al. 2007: mixture model?

blocks

- **1** 20 labeled points at x = -1, 1
- 2 test 1: 21 test examples in grid [-1,1]
- \bigcirc 690 examples \sim bimodal distribution, plus 63 range examples in $\left[-2.5, 2.5\right]$
- test 2: same as test 1

- ∢ ∃ ▶

Human SSI

Zhu et al. 2007: mixture model?

12 participants left-offset, 10 right-offset. Record their decisions and response times.

• • = • • = •

Visual stimuli

Stimuli parametrized by a continuous scalar x. Some examples:

→ Ξ →

▲ @ ▶ < ∃ ▶</p>

Observation 1: unlabeled data affects decision boundary

average decision boundary

• after seeing labeled data: x = 0.11

Observation 1: unlabeled data affects decision boundary

average decision boundary

- after seeing labeled data: x = 0.11
- after seeing labeled and unlabeled data: L-subjects x = -0.10, R-subjects x = 0.48

Observation 2: unlabeled data affects reaction time

longer reaction time \rightarrow harder example \rightarrow closer to decision boundary. Reaction times too suggest decision boundary shift.

Model fitting

We can fit human behavior with a GMM.

- Humans and machines both perform semi-supervised learning.
- Understanding natural learning may lead to new machine learning algorithms.

See the references in

Xiaojin Zhu and Andrew B. Goldberg. *Introduction to Semi-Supervised Learning*. Morgan & Claypool, 2009.

→ 3 → 4 3