
Tutorial on Semi-Supervised Learning

Xiaojin Zhu

Department of Computer Sciences
University of Wisconsin, Madison, USA

Theory and Practice of Computational Learning
Chicago, 2009

Xiaojin Zhu (Univ. Wisconsin, Madison) Tutorial on Semi-Supervised Learning Chicago 2009 1 / 99



New book

Xiaojin Zhu and Andrew B. Goldberg. Introduction to Semi-Supervised
Learning. Morgan & Claypool, 2009.
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Part I What is SSL?

What is Semi-Supervised Learning?

Learning from both labeled and unlabeled data. Examples:

Semi-supervised classification: training data l labeled instances
{(xi, yi)}l

i=1 and u unlabeled instances {xj}l+u
j=l+1, often u � l.

Goal: better classifier f than from labeled data alone.

Constrained clustering: unlabeled instances {xi}n
j=1, and “supervised

information”, e.g., must-links, cannot-links. Goal: better clustering
than from unlabeled data alone.

We will mainly discuss semi-supervised classification.
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Part I What is SSL?

Motivations

Machine learning

Promise: better performance for free...

labeled data can be hard to get
I labels may require human experts
I labels may require special devices

unlabeled data is often cheap in large quantity

Cognitive science

Computational model of how humans learn from labeled and unlabeled
data.

concept learning in children: x=animal, y=concept (e.g., dog)

Daddy points to a brown animal and says “dog!”

Children also observe animals by themselves
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Part I What is SSL?

Example of hard-to-get labels

Task: speech analysis

Switchboard dataset

telephone conversation transcription

400 hours annotation time for each hour of speech

film ⇒ f ih n uh gl n m
be all ⇒ bcl b iy iy tr ao tr ao l dl
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Part I What is SSL?

Another example of hard-to-get labels

Task: natural language parsing

Penn Chinese Treebank

2 years for 4000 sentences

“The National Track and Field Championship has finished.”
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Part I What is SSL?

Notations

instance x, label y

learner f : X 7→ Y
labeled data (Xl, Yl) = {(x1:l, y1:l)}
unlabeled data Xu = {xl+1:l+u}, available during training. Usually
l � u. Let n = l + u

test data {(xn+1..., yn+1...)}, not available during training
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Part I What is SSL?

Semi-supervised vs. transductive learning

Inductive semi-supervised learning: Given {(xi, yi)}l
i=1, {xj}l+u

j=l+1,
learn f : X 7→ Y so that f is expected to be a good predictor on
future data, beyond {xj}l+u

j=l+1.

Transductive learning: Given {(xi, yi)}l
i=1, {xj}l+u

j=l+1, learn

f : X l+u 7→ Y l+u so that f is expected to be a good predictor on the
unlabeled data {xj}l+u

j=l+1. Note f is defined only on the given
training sample, and is not required to make predictions outside them.
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Part I What is SSL?

How can unlabeled data ever help?

−1.5 −1 −0.5 0 0.5 1 1.5 2
x

 

 

Supervised decision boundary Semi−supervised decision boundary

Positive labeled data
Negative labeled data
Unlabeled data

assuming each class is a coherent group (e.g. Gaussian)

with and without unlabeled data: decision boundary shift

This is only one of many ways to use unlabeled data.
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Part I What is SSL?

Self-training algorithm

Our first SSL algorithm:

Input: labeled data {(xi, yi)}l
i=1, unlabeled data {xj}l+u

j=l+1.

1. Initially, let L = {(xi, yi)}l
i=1 and U = {xj}l+u

j=l+1.

2. Repeat:
3. Train f from L using supervised learning.
4. Apply f to the unlabeled instances in U .
5. Remove a subset S from U ; add {(x, f(x))|x ∈ S} to L.

Self-training is a wrapper method

the choice of learner for f in step 3 is left completely open

good for many real world tasks like natural language processing

but mistake by f can reinforce itself
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Part I What is SSL?

Self-training example: Propagating 1-Nearest-Neighbor

An instance of self-training.

Input: labeled data {(xi, yi)}l
i=1, unlabeled data {xj}l+u

j=l+1,

distance function d().
1. Initially, let L = {(xi, yi)}l

i=1 and U = {xj}l+u
j=l+1.

2. Repeat until U is empty:
3. Select x = argminx∈U minx′∈L d(x,x′).
4. Set f(x) to the label of x’s nearest instance in L.

Break ties randomly.
5. Remove x from U ; add (x, f(x)) to L.
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Part I What is SSL?

Propagating 1-Nearest-Neighbor: now it works
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(a) Iteration 1 (b) Iteration 25
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(c) Iteration 74 (d) Final labeling of all instances
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Part I What is SSL?

Propagating 1-Nearest-Neighbor: now it doesn’t
But with a single outlier...
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Part I Mixture Models
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Part I Mixture Models

A simple example of generative models

Labeled data (Xl, Yl):
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Assuming each class has a Gaussian distribution, what is the decision
boundary?
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Part I Mixture Models

A simple example of generative models

Model parameters: θ = {w1, w2, µ1, µ2,Σ1,Σ2}
The GMM:

p(x, y|θ) = p(y|θ)p(x|y, θ)
= wyN (x;µy,Σy)

Classification: p(y|x, θ) = p(x,y|θ)P
y′ p(x,y′|θ)
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Part I Mixture Models

A simple example of generative models
The most likely model, and its decision boundary:
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Part I Mixture Models

A simple example of generative models

Adding unlabeled data:
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Part I Mixture Models

A simple example of generative models

With unlabeled data, the most likely model and its decision boundary:
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Part I Mixture Models

A simple example of generative models

They are different because they maximize different quantities.

p(Xl, Yl|θ) p(Xl, Yl, Xu|θ)
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Part I Mixture Models

Generative model for semi-supervised learning

Assumption

knowledge of the model form p(X, Y |θ).

joint and marginal likelihood

p(Xl, Yl, Xu|θ) =
∑
Yu

p(Xl, Yl, Xu, Yu|θ)

find the maximum likelihood estimate (MLE) of θ, the maximum a
posteriori (MAP) estimate, or be Bayesian
common mixture models used in semi-supervised learning:

I Mixture of Gaussian distributions (GMM) – image classification
I Mixture of multinomial distributions (Näıve Bayes) – text

categorization
I Hidden Markov Models (HMM) – speech recognition

Learning via the Expectation-Maximization (EM) algorithm
(Baum-Welch)
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categorization
I Hidden Markov Models (HMM) – speech recognition

Learning via the Expectation-Maximization (EM) algorithm
(Baum-Welch)

Xiaojin Zhu (Univ. Wisconsin, Madison) Tutorial on Semi-Supervised Learning Chicago 2009 24 / 99



Part I Mixture Models

Case study: GMM

Binary classification with GMM using MLE.

with only labeled data
I log p(Xl, Yl|θ) =

∑l
i=1 log p(yi|θ)p(xi|yi, θ)

I MLE for θ trivial (sample mean and covariance)

with both labeled and unlabeled data
log p(Xl, Yl, Xu|θ) =

∑l
i=1 log p(yi|θ)p(xi|yi, θ)

+
∑l+u

i=l+1 log
(∑2

y=1 p(y|θ)p(xi|y, θ)
)

I MLE harder (hidden variables): EM
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Part I Mixture Models

The EM algorithm for GMM

1 Start from MLE θ = {w, µ,Σ}1:2 on (Xl, Yl),
I wc=proportion of class c
I µc=sample mean of class c
I Σc=sample cov of class c

repeat:

2 The E-step: compute the expected label p(y|x, θ) = p(x,y|θ)P
y′ p(x,y′|θ) for

all x ∈ Xu

I label p(y = 1|x, θ)-fraction of x with class 1
I label p(y = 2|x, θ)-fraction of x with class 2

3 The M-step: update MLE θ with (now labeled) Xu

Can be viewed as a special form of self-training.
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Part I Mixture Models

The assumption of mixture models
Assumption: the data actually comes from the mixture model, where
the number of components, prior p(y), and conditional p(x|y) are all
correct.

When the assumption is wrong:
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For example, classifying text by topic vs. by genre.
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Part I Mixture Models

The assumption of mixture models
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correct model, lower log likelihood (−921.143)

Heuristics to lessen the danger

Carefully construct the generative model, e.g., multiple Gaussian
distributions per class
Down-weight the unlabeled data (λ < 1)

log p(Xl, Yl, Xu|θ) =
∑l

i=1 log p(yi|θ)p(xi|yi, θ)

+ λ
∑l+u

i=l+1 log
(∑2

y=1 p(y|θ)p(xi|y, θ)
)

Other

dangers: identifiability, EM local optima
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dangers: identifiability, EM local optima
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Part I Mixture Models

Related: cluster-and-label

Input: (x1, y1), . . . , (xl, yl), xl+1, . . . ,xl+u,
a clustering algorithm A, a supervised learning algorithm L

1. Cluster x1, . . . ,xl+u using A.
2. For each cluster, let S be the labeled instances in it:
3. Learn a supervised predictor from S: fS = L(S).
4. Apply fS to all unlabeled instances in this cluster.
Output: labels on unlabeled data yl+1, . . . , yl+u.

But again: SSL sensitive to assumptions—in this case, that the clusters
coincide with decision boundaries. If this assumption is incorrect, the
results can be poor.
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Part I Mixture Models

Cluster-and-label: now it works, now it doesn’t
Example: A=Hierarchical Clustering, L=majority vote.
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Part I Co-training and Multiview Algorithms

Outline

1 Part I
What is SSL?
Mixture Models
Co-training and Multiview Algorithms
Manifold Regularization and Graph-Based Algorithms
S3VMs and Entropy Regularization

2 Part II
Theory of SSL
Online SSL
Multimanifold SSL
Human SSL
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Part I Co-training and Multiview Algorithms

Two Views of an Instance

Example: named entity classification Person (Mr. Washington) or
Location (Washington State)

instance 1: . . . headquartered in (Washington State) . . .

instance 2: . . . (Mr. Washington), the vice president of . . .

a named entity has two views (subset of features) x = [x(1),x(2)]
the words of the entity is x(1)

the context is x(2)
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Part I Co-training and Multiview Algorithms

Quiz

instance 1: . . . headquartered in (Washington State)L . . .

instance 2: . . . (Mr. Washington)P , the vice president of . . .

test: . . . (Robert Jordan), a partner at . . .

test: . . . flew to (China) . . .

Xiaojin Zhu (Univ. Wisconsin, Madison) Tutorial on Semi-Supervised Learning Chicago 2009 33 / 99



Part I Co-training and Multiview Algorithms

Quiz

With more unlabeled data
instance 1: . . . headquartered in (Washington State)L . . .

instance 2: . . . (Mr. Washington)P , the vice president of . . .

instance 3: . . . headquartered in (Kazakhstan) . . .

instance 4: . . . flew to (Kazakhstan) . . .
instance 5: . . . (Mr. Smith), a partner at Steptoe & Johnson . . .

test: . . . (Robert Jordan), a partner at . . .

test: . . . flew to (China) . . .
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Part I Co-training and Multiview Algorithms

Co-training algorithm

Input: labeled data {(xi, yi)}l
i=1, unlabeled data {xj}l+u

j=l+1

each instance has two views xi = [x(1)
i ,x(2)

i ],
and a learning speed k.

1. let L1 = L2 = {(x1, y1), . . . , (xl, yl)}.
2. Repeat until unlabeled data is used up:

3. Train view-1 f (1) from L1, view-2 f (2) from L2.

4. Classify unlabeled data with f (1) and f (2) separately.

5. Add f (1)’s top k most-confident predictions (x, f (1)(x)) to L2.

Add f (2)’s top k most-confident predictions (x, f (2)(x)) to L1.
Remove these from the unlabeled data.

Like self-training, but with two classifiers teaching each other.
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Part I Co-training and Multiview Algorithms

Co-training assumptions

Assumptions

feature split x = [x(1);x(2)] exists

x(1) or x(2) alone is sufficient to train a good classifier

x(1) and x(2) are conditionally independent given the class

X1 view X2 view

+
+

++

+
+

+

++

+

−

− −
−

−

−
−

−
+

−
++

++

+
+

+
++

++
+

+

+

+
+

− −

− −

−

−

−
−

−

−−

−

+

+

+

+
+

+

+

+

+
+

+

−

−−

−
−

−

−
−

−

++
+

+

+

+

+ +

+

+

+

+

+

+
+

+

−

−

−

−
−

−
−

−

−

−

−

−

Xiaojin Zhu (Univ. Wisconsin, Madison) Tutorial on Semi-Supervised Learning Chicago 2009 36 / 99



Part I Co-training and Multiview Algorithms

Co-training assumptions

Assumptions

feature split x = [x(1);x(2)] exists

x(1) or x(2) alone is sufficient to train a good classifier

x(1) and x(2) are conditionally independent given the class

X1 view X2 view

+
+

++

+
+

+

++

+

−

− −
−

−

−
−

−
+

−
++

++

+
+

+
++

++
+

+

+

+
+

− −

− −

−

−

−
−

−

−−

−

+

+

+

+
+

+

+

+

+
+

+

−

−−

−
−

−

−
−

−

++
+

+

+

+

+ +

+

+

+

+

+

+
+

+

−

−

−

−
−

−
−

−

−

−

−

−

Xiaojin Zhu (Univ. Wisconsin, Madison) Tutorial on Semi-Supervised Learning Chicago 2009 36 / 99



Part I Co-training and Multiview Algorithms

Co-training assumptions

Assumptions

feature split x = [x(1);x(2)] exists

x(1) or x(2) alone is sufficient to train a good classifier

x(1) and x(2) are conditionally independent given the class

X1 view X2 view

+
+

++

+
+

+

++

+

−

− −
−

−

−
−

−
+

−
++

++

+
+

+
++

++
+

+

+

+
+

− −

− −

−

−

−
−

−

−−

−

+

+

+

+
+

+

+

+

+
+

+

−

−−

−
−

−

−
−

−

++
+

+

+

+

+ +

+

+

+

+

+

+
+

+

−

−

−

−
−

−
−

−

−

−

−

−

Xiaojin Zhu (Univ. Wisconsin, Madison) Tutorial on Semi-Supervised Learning Chicago 2009 36 / 99



Part I Co-training and Multiview Algorithms

Multiview learning

Extends co-training.

Loss Function: c(x, y, f(x)) ∈ [0,∞). For example,
I squared loss c(x, y, f(x)) = (y − f(x))2
I 0/1 loss c(x, y, f(x)) = 1 if y 6= f(x), and 0 otherwise.

Empirical risk: R̂(f) = 1
l

∑l
i=1 c(xi, yi, f(xi))

Regularizer: Ω(f), e.g., ‖f‖2

Regularized Risk Minimization f∗ = argminf∈F R̂(f) + λΩ(f)
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Part I Co-training and Multiview Algorithms

Multiview learning

A special regularizer Ω(f) defined on unlabeled data, to encourage
agreement among multiple learners:

argmin
f1,...,fk

k∑
v=1

(
l∑

i=1

c(xi, yi, fv(xi)) + λ1ΩSL(fv)

)

+λ2

k∑
u,v=1

l+u∑
i=l+1

c(xi, fu(xi), fv(xi))
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Part I Manifold Regularization and Graph-Based Algorithms

Outline

1 Part I
What is SSL?
Mixture Models
Co-training and Multiview Algorithms
Manifold Regularization and Graph-Based Algorithms
S3VMs and Entropy Regularization

2 Part II
Theory of SSL
Online SSL
Multimanifold SSL
Human SSL

Xiaojin Zhu (Univ. Wisconsin, Madison) Tutorial on Semi-Supervised Learning Chicago 2009 39 / 99



Part I Manifold Regularization and Graph-Based Algorithms

Example: text classification

Classify astronomy vs. travel articles

Similarity measured by content word overlap

d1 d3 d4 d2
asteroid • •

bright • •
comet •

year
zodiac

.

.

.
airport

bike
camp •

yellowstone • •
zion •
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Part I Manifold Regularization and Graph-Based Algorithms

When labeled data alone fails

No overlapping words!

d1 d3 d4 d2
asteroid •

bright •
comet

year
zodiac •

.

.

.
airport •

bike •
camp

yellowstone •
zion •
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Part I Manifold Regularization and Graph-Based Algorithms

Unlabeled data as stepping stones

Labels “propagate” via similar unlabeled articles.

d1 d5 d6 d7 d3 d4 d8 d9 d2
asteroid •

bright • •
comet • •

year • •
zodiac • •

.

.

.
airport •

bike • •
camp • •

yellowstone • •
zion •
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Part I Manifold Regularization and Graph-Based Algorithms

Another example

Handwritten digits recognition with pixel-wise Euclidean distance

not similar ‘indirectly’ similar
with stepping stones
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Part I Manifold Regularization and Graph-Based Algorithms

Graph-based semi-supervised learning

Nodes: Xl ∪Xu

Edges: similarity weights computed from features, e.g.,

I k-nearest-neighbor graph, unweighted (0, 1 weights)
I fully connected graph, weight decays with distance

w = exp
(
−‖xi − xj‖2/σ2

)
I ε-radius graph

Assumption Instances connected by heavy edge tend to have the
same label.

x2

x3

x1
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Part I Manifold Regularization and Graph-Based Algorithms

The mincut algorithm

Fix Yl, find Yu ∈ {0, 1}n−l to minimize
∑

ij wij |yi − yj |.

Equivalently, solves the optimization problem

min
Y ∈{0,1}n

∞
l∑

i=1

(yi − Yli)
2 +

∑
ij

wij(yi − yj)2

Combinatorial problem, but has polynomial time solution.

Mincut computes the modes of a discrete Markov random field, but
there might be multiple modes

+ −
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Part I Manifold Regularization and Graph-Based Algorithms

The harmonic function

Relaxing discrete labels to continuous values in R, the harmonic function f
satisfies

f(xi) = yi for i = 1 . . . l

f minimizes the energy∑
i∼j

wij(f(xi)− f(xj))2

the mean of a Gaussian random field

average of neighbors f(xi) =
P

j∼i wijf(xj)P
j∼i wij

,∀xi ∈ Xu
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Part I Manifold Regularization and Graph-Based Algorithms

An electric network interpretation

Edges are resistors with conductance wij

1 volt battery connects to labeled points y = 0, 1
The voltage at the nodes is the harmonic function f

Implied similarity: similar voltage if many paths exist

+1 volt

wij
R  =ij

1

1

0
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Part I Manifold Regularization and Graph-Based Algorithms

A random walk interpretation

Randomly walk from node i to j with probability
wijP
k wik

Stop if we hit a labeled node

The harmonic function f = Pr(hit label 1|start from i)

1

0

i
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Part I Manifold Regularization and Graph-Based Algorithms

An algorithm to compute harmonic function

One iterative way to compute the harmonic function:

1 Initially, set f(xi) = yi for i = 1 . . . l, and f(xj) arbitrarily (e.g., 0)
for xj ∈ Xu.

2 Repeat until convergence: Set f(xi) =
P

j∼i wijf(xj)P
j∼i wij

,∀xi ∈ Xu, i.e.,

the average of neighbors. Note f(Xl) is fixed.
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Part I Manifold Regularization and Graph-Based Algorithms

The graph Laplacian

We can also compute f in closed form using the graph Laplacian.

n× n weight matrix W on Xl ∪Xu

I symmetric, non-negative

Diagonal degree matrix D: Dii =
∑n

j=1 Wij

Graph Laplacian matrix ∆

∆ = D −W

The energy can be rewritten as∑
i∼j

wij(f(xi)− f(xj))2 = f>∆f
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Part I Manifold Regularization and Graph-Based Algorithms

Harmonic solution with Laplacian

The harmonic solution minimizes energy subject to the given labels

min
f

∞
l∑

i=1

(f(xi)− yi)2 + f>∆f

Partition the Laplacian matrix ∆ =
[

∆ll ∆lu

∆ul ∆uu

]
Harmonic solution

fu = −∆uu
−1∆ulYl

The normalized Laplacian L = D−1/2∆D−1/2 = I −D−1/2WD−1/2, or
∆p,Lp are often used too (p > 0).
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Part I Manifold Regularization and Graph-Based Algorithms

Local and Global consistency

Allow f(Xl) to be different from Yl, but penalize it

min
f

l∑
i=1

(f(xi)− yi)2 + λf>∆f
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Part I Manifold Regularization and Graph-Based Algorithms

Manifold regularization

The graph-based algorithms so far are transductive. Manifold
regularization is inductive.

defines function in a RKHS: f(x) = h(x) + b, h(x) ∈ HK

views the graph as a random sample of an underlying manifold

regularizer prefers low energy f>1:n∆f1:n

min
f

l∑
i=1

(1− yif(xi))+ + λ1‖h‖2HK
+ λ2f

>
1:n∆f1:n
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Part I Manifold Regularization and Graph-Based Algorithms

Graph spectrum and SSL

Assumption: labels are “smooth” on the graph, characterized by the graph
spectrum (eigen-values/vectors {(λi, φi)}l+u

i=1 of the Laplacian L):

L =
∑l+u

i=1 λiφiφi
>

a graph has k connected components if and only if λ1 = . . . = λk = 0.

the corresponding eigenvectors are constant on individual connected
components, and zero elsewhere.

any f on the graph can be represented as f =
∑l+u

i=1 aiφi

graph regularizer f>Lf =
∑l+u

i=1 a2
i λi

smooth function f uses smooth basis (those with small λi)
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Part I Manifold Regularization and Graph-Based Algorithms

Example graph spectrum

The graph

Eigenvalues and eigenvectors of the graph Laplacian

λ
1
=0.00 λ

2
=0.00 λ

3
=0.04 λ

4
=0.17 λ

5
=0.38

λ
6
=0.38 λ

7
=0.66 λ

8
=1.00 λ

9
=1.38 λ

10
=1.38

λ
11

=1.79 λ
12

=2.21 λ
13

=2.62 λ
14

=2.62 λ
15

=3.00

λ
16

=3.34 λ
17

=3.62 λ
18

=3.62 λ
19

=3.83 λ
20

=3.96
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Part I Manifold Regularization and Graph-Based Algorithms

When the graph assumption is wrong

“colliding two moons”
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Part I S3VMs and Entropy Regularization

Outline

1 Part I
What is SSL?
Mixture Models
Co-training and Multiview Algorithms
Manifold Regularization and Graph-Based Algorithms
S3VMs and Entropy Regularization

2 Part II
Theory of SSL
Online SSL
Multimanifold SSL
Human SSL
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Part I S3VMs and Entropy Regularization

Semi-supervised Support Vector Machines

SVMs

−

+
+

−
+

−

Semi-supervised SVMs (S3VMs) = Transductive SVMs (TSVMs)

−

+
+

−
+

−

Assumption: Unlabeled data from different classes are separated with large
margin.

Xiaojin Zhu (Univ. Wisconsin, Madison) Tutorial on Semi-Supervised Learning Chicago 2009 58 / 99



Part I S3VMs and Entropy Regularization

Semi-supervised Support Vector Machines

SVMs

−

+
+

−
+

−

Semi-supervised SVMs (S3VMs) = Transductive SVMs (TSVMs)

−

+
+

−
+

−

Assumption: Unlabeled data from different classes are separated with large
margin.

Xiaojin Zhu (Univ. Wisconsin, Madison) Tutorial on Semi-Supervised Learning Chicago 2009 58 / 99



Part I S3VMs and Entropy Regularization

Standard soft margin SVMs

Try to keep labeled points outside the margin, while maximizing the
margin:

min
h,b,ξ

l∑
i=1

ξi + λ‖h‖2HK

subject to yi(h(xi) + b) ≥ 1− ξi ,∀i = 1 . . . l

ξi ≥ 0

Equivalent to

min
f

l∑
i=1

(1− yif(xi))+ + λ‖h‖2HK

yif(xi) known as the margin, (1− yif(xi))+ the hinge loss
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Part I S3VMs and Entropy Regularization

The S3VM objective function

To incorporate unlabeled points,

assign putative labels sign(f(x)) to x ∈ Xu

the hinge loss on unlabeled points becomes

(1− sign(f(x))f(xi))+ = (1− |f(xi)|)+

S3VM objective:

min
f

l∑
i=1

(1− yif(xi))+ + λ1‖h‖2HK
+ λ2

n∑
i=l+1

(1− |f(xi)|)+
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Part I S3VMs and Entropy Regularization

The hat loss on unlabeled data

hinge loss (1− yif(xi))+ hat loss (1− |f(xi)|)+

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

1

2

3

4

5

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

1

2

3

4

5

yif(xi) f(xi)

Prefers f(x) ≥ 1 or f(x) ≤ −1, i.e., unlabeled instance away from decision
boundary f(x) = 0.

The class balancing constraint

often unbalanced – most points classified into one class.

Heuristic class balance: 1
n−l

∑n
i=l+1 yi = 1

l

∑l
i=1 yi.

Relaxed: 1
n−l

∑n
i=l+1 f(xi) = 1

l

∑l
i=1 yi.
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Part I S3VMs and Entropy Regularization

The S3VM algorithm

min
f

∑l
i=1(1− yif(xi))+ + λ1‖h‖2HK

+ λ2
∑n

i=l+1(1− |f(xi)|)+

s.t. 1
n−l

∑n
i=l+1 f(xi) = 1

l

∑l
i=1 yi

Computational difficulty

SVM objective is convex

Semi-supervised SVM objective is non-convex

Optimization approaches: SVMlight, ∇S3VM, continuation S3VM,
deterministic annealing, CCCP, Branch and Bound, SDP convex
relaxation, etc.
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Part I S3VMs and Entropy Regularization

Logistic regression

The probabilistic counter part of SVMs.

p(y|x) = 1/ (1 + exp(−yf(x))) where f(x) = w>x + b

(conditional) log likelihood
∑l

i=1 log p(yi|xi,w, b)
prior w ∼ N (0, I/(2λ))
MAP training maxw,b

∑l
i=1 log (1/ (1 + exp(−yif(xi))))− λ‖w‖2

logistic loss c(x, y, f(x)) = log (1 + exp(−yf(x)))
Logistic regression does not use unlabeled data.
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Part I S3VMs and Entropy Regularization

Entropy regularization

Assumption: if the two classes are well-separated, then p(y|x) on any
unlabeled instance should be close to 0 or 1.

Entropy H(p) = −p log p− (1− p) log(1− p) should be small

entropy regularizer Ω(f) =
∑l+u

j=l+1 H(p(y = 1|xj ,w, b))
semi-supervised logistic regression

min
w,b

l∑
i=1

log (1 + exp(−yif(xi))) + λ1‖w‖2

+λ2

l+u∑
j=l+1

H(1/ (1 + exp(−f(xj))))

The probabilistic counter part of S3VMs.
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Part I S3VMs and Entropy Regularization

Entropy regularization
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yf(x) f(x)
(a) the logistic loss (b) the entropy regularizer
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Part I S3VMs and Entropy Regularization

When the large margin assumption is wrong
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Unlabeled data
Positive data
Negative data
True boundary
SVM boundary
S3VM boundary

S3VM in local minimum S3VM in wrong gap

SVM error: 0.26± 0.13
S3VM error: 0.34± 0.19
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Part II

Outline

1 Part I
What is SSL?
Mixture Models
Co-training and Multiview Algorithms
Manifold Regularization and Graph-Based Algorithms
S3VMs and Entropy Regularization

2 Part II
Theory of SSL
Online SSL
Multimanifold SSL
Human SSL
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Part II Theory of SSL

SSL does not always help

 

 
Negative distribution
Positive distribution
Unlabeled instance
Negative instance
Positive instance

 

 
Optimal
Supervised
Generative model
S3VM
Graph−based

Training set 1

Training set 2

Training set 3

Training set 4

Training set 5

True
distribution

Wrong SSL assumption can make SSL worse than SL!
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Part II Theory of SSL

A computational theory for SSL

(Theoretic guarantee of Balcan & Blum)
Recall in supervised learning

labeled data D = {(xi, yi)}l
i=1

i.i.d.∼ P (x, y), where P unknown

function family F
assume zero training sample error ê(f) = 1

l

∑l
i=1(f(xi) 6= yi)

can we say anything about its true error
e(fD) = E(x,y)∼P [fD(x) 6= y]?
it turns out we can bound e(fD) without the knowledge of P .

Xiaojin Zhu (Univ. Wisconsin, Madison) Tutorial on Semi-Supervised Learning Chicago 2009 70 / 99



Part II Theory of SSL

A computational theory for SSL

(Theoretic guarantee of Balcan & Blum)
Recall in supervised learning

labeled data D = {(xi, yi)}l
i=1

i.i.d.∼ P (x, y), where P unknown

function family F

assume zero training sample error ê(f) = 1
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Part II Theory of SSL

PAC bound for SL

training error minimizer fD is a random variable (of D)

{e(fD) > ε} is a random Boolean event

the probability of this event is PrD∼P ({e(fD) > ε}). Goal: show
that this probability is small

PrD∼P ({e(fD) > ε}) ≤ PrD∼P

(
∪{f∈F :ê(f)=0}{e(f) > ε}

)
= PrD∼P

(
∪{f∈F}{ê(f) = 0, e(f) > ε}

)
= PrD∼P

(
∪{f∈F :e(f)>ε}{ê(f) = 0}

)
≤

∑
{f∈F :e(f)>ε}

PrD∼P ({ê(f) = 0})

last step is union bound Pr(A ∪B) ≤ Pr(A) + Pr(B)
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∪{f∈F :ê(f)=0}{e(f) > ε}

)
= PrD∼P

(
∪{f∈F}{ê(f) = 0, e(f) > ε}

)
= PrD∼P

(
∪{f∈F :e(f)>ε}{ê(f) = 0}
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∪{f∈F}{ê(f) = 0, e(f) > ε}

)
= PrD∼P

(
∪{f∈F :e(f)>ε}{ê(f) = 0}
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Part II Theory of SSL

PAC bound for SL

A biased coin with P (heads) = ε producing l tails∑
{f∈F :e(f)>ε}

PrD∼P ({ê(f) = 0}) ≤
∑

{f∈F :e(f)>ε}

(1− ε)l

if F is finite,
∑

{f∈F :e(f)>ε}(1− ε)l ≤ |F|(1− ε)l

by 1− x ≤ e−x, |F|(1− ε)l ≤ |F|e−εl

putting things together, PrD∼P ({e(fD) ≤ ε}) ≥ 1− |F|e−εl

Probably (i.e., on at least 1− |F|e−εl fraction of random draws of the
training sample), the function fD, picked because ê(fD) = 0, is
approximately correct (i.e., has true error e(fD) ≤ ε).
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Part II Theory of SSL

Simple sample complexity for SL

Theorem Assume F is finite. Given any ε > 0, δ > 0, if we see l training
instances where

l =
1
ε

(
log |F|+ log

1
δ

)
then with probability at least 1− δ, all f ∈ F with zero training error
ê(f) = 0 have e(f) ≤ ε.

ε controls the error of the learned function

δ controls the confidence of the bound

proof: setting δ = |F|e−εl

Xiaojin Zhu (Univ. Wisconsin, Madison) Tutorial on Semi-Supervised Learning Chicago 2009 73 / 99



Part II Theory of SSL

A Finite, Doubly Realizable PAC bound for SSL

Plan: make |F| smaller

incompatibility Ξ(f,x) : F × X 7→ [0, 1] between a function f and an
unlabeled instance x

example: S3VM wants |f(x)| ≥ γ. Define

ΞS3VM(f,x) =
{

1, if |f(x)| < γ
0, otherwise.

true unlabeled data error eU (f) = Ex∼PX
[Ξ(f,x)]

sample unlabeled data error êU (f) = 1
u

∑l+u
i=l+1 Ξ(f,xi)
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u

∑l+u
i=l+1 Ξ(f,xi)

Xiaojin Zhu (Univ. Wisconsin, Madison) Tutorial on Semi-Supervised Learning Chicago 2009 74 / 99



Part II Theory of SSL

A Finite, Doubly Realizable PAC bound for SSL

Plan: make |F| smaller

incompatibility Ξ(f,x) : F × X 7→ [0, 1] between a function f and an
unlabeled instance x

example: S3VM wants |f(x)| ≥ γ. Define

ΞS3VM(f,x) =
{

1, if |f(x)| < γ
0, otherwise.

true unlabeled data error eU (f) = Ex∼PX
[Ξ(f,x)]

sample unlabeled data error êU (f) = 1
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Part II Theory of SSL

A Finite, Doubly Realizable PAC bound for SSL

by a similar argument, after u = 1
ε

(
log |F|+ log 2

δ

)
unlabeled data,

with probability at least 1− δ/2, all f ∈ F with êU (f) = 0 have
eU (f) ≤ ε.

i.e., if êU (f) = 0, then f ∈ F(ε) ≡ {f ∈ F : eU (f) ≤ ε}
apply the SL PAC bound on the (much smaller) F(ε)

Theorem (finite, doubly realizable) Assume F is finite. Given any
ε > 0, δ > 0, if we see l labeled and u unlabeled training instances where

l =
1
ε

(
log |F(ε)|+ log

2
δ

)
and u =

1
ε

(
log |F|+ log

2
δ

)
,

then with probability at least 1− δ, all f ∈ F with ê(f) = 0 and
êU (f) = 0 have e(f) ≤ ε.
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i.e., if êU (f) = 0, then f ∈ F(ε) ≡ {f ∈ F : eU (f) ≤ ε}
apply the SL PAC bound on the (much smaller) F(ε)

Theorem (finite, doubly realizable) Assume F is finite. Given any
ε > 0, δ > 0, if we see l labeled and u unlabeled training instances where

l =
1
ε

(
log |F(ε)|+ log

2
δ

)
and u =

1
ε

(
log |F|+ log

2
δ

)
,

then with probability at least 1− δ, all f ∈ F with ê(f) = 0 and
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Part II Theory of SSL

Discussions on the PAC bound for SSL

Good news: can require less labeled data than SL

This particular theorem requires finite F , and doubly realizable f with
ê(f) = 0 and êU (f) = 0
More general theorems in (Balcan & Blum 2008):

I infinite F is OK: extensions of the VC-dimension
I agnostic, does not require either realizability: both e(f) and eU (f)

may be non-zero and unknown
I also tighter ε-cover based bounds

Most SSL algorithms (e.g. S3VMs) empirically minimize
ê(f) + êU (f): not necessarily justified in theory

Incompatibility functions arbitrary. Serves as regularization. There are
good and bad incompatibility functions. Example: “inverse S3VM”
prefers to cut through dense unlabeled data

Ξinv(f,x) = 1− ΞS3VM(f,x)
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ê(f) = 0 and êU (f) = 0
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Part II Online SSL

Outline

1 Part I
What is SSL?
Mixture Models
Co-training and Multiview Algorithms
Manifold Regularization and Graph-Based Algorithms
S3VMs and Entropy Regularization

2 Part II
Theory of SSL
Online SSL
Multimanifold SSL
Human SSL
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Part II Online SSL

Life-long learning

x1 x2 . . . x1000 . . . x1000000 . . .

. . . . . . . . .
y1 = 0 - - y1000 = 1 . . . y1000000 = 0 . . .

n →∞ examples arrive sequentially, cannot store them all

most examples unlabeled

no iid assumption, p(x, y) can change over time
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Part II Online SSL

This is how children learn, too

x1 x2 . . . x1000 . . . x1000000 . . .

. . . . . . . . .
y1 = 0 - - y1000 = 1 . . . y1000000 = 0 . . .
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Part II Online SSL

New paradigm: online semi-supervised learning

1 At time t, adversary picks xt ∈ X , yt ∈ Y not necessarily iid, shows xt

2 Learner has classifier ft : X 7→ R, predicts ft(xt)
3 With small probability, adversary reveals yt; otherwise it abstains

(unlabeled)

4 Learner updates to ft+1 based on xt and yt (if given). Repeat.
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Part II Online SSL

Online manifold regularization

Recall (batch) manifold regularization risk:

J(f) =
1
l

T∑
t=1

δ(yt)c(f(xt), yt) +
λ1

2
‖f‖2K

+
λ2

2T

T∑
s,t=1

(f(xs)− f(xt))2wst

c(f(x), y) convex loss function, e.g., the hinge loss.

Instantaneous risk:

Jt(f) =
T

l
δ(yt)c(f(xt), yt) +

λ1

2
‖f‖2K + λ2

t∑
i=1

(f(xi)− f(xt))2wit

(involves graph edges between xt and all previous examples)

batch risk = average instantaneous risks J(f) = 1
T

∑T
t=1 Jt(f)
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Part II Online SSL

Online convex programming

Instead of minimizing convex J(f), reduce convex Jt(f) at each step

t: ft+1 = ft − ηt
∂Jt(f)

∂f

∣∣∣
ft

Step size ηt decays, e.g., ηt = 1/
√

t

Accuracy can be arbitrarily bad if adversary flips target often. If so,
no batch learner in hindsight can do well either

regret ≡ 1
T

T∑
t=1

Jt(ft)− J(f∗)

no-regret guarantee against adversary [Zinkevich ICML03]:
lim supT→∞

1
T

∑T
t=1 Jt(ft)− J(f∗) ≤ 0.

If no adversary (iid), the average classifier f̄ = 1/T
∑T

t=1 ft is good:
J(f̄) → J(f∗).
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Part II Online SSL

Sparse approximation by buffering

The algorithm is impractical as T →∞:

space O(T ): stores all previous examples

time O(T 2): each new instance connects to all previous ones

Keep a size τ buffer

approximate representers: ft =
∑t−1

i=t−τ α
(t)
i K(xi, ·)

approximate instantaneous risk

Jt(f) =
T

l
δ(yt)c(f(xt), yt) +

λ1

2
‖f‖2K

+λ2
t

τ

t∑
i=t−τ

(f(xi)− f(xt))2wit

dynamic graph on instances in the buffer
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Part II Multimanifold SSL

Outline

1 Part I
What is SSL?
Mixture Models
Co-training and Multiview Algorithms
Manifold Regularization and Graph-Based Algorithms
S3VMs and Entropy Regularization

2 Part II
Theory of SSL
Online SSL
Multimanifold SSL
Human SSL
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Part II Multimanifold SSL

Multiple, intersecting manifolds

Xiaojin Zhu (Univ. Wisconsin, Madison) Tutorial on Semi-Supervised Learning Chicago 2009 85 / 99



Part II Multimanifold SSL

Building Blocks: Local Covariance Matrix
For a sparse subset of points x, the local covariance matrix of the
neighbors

Σx =
1

m− 1

∑
j

(xj − µx)(xj − µx)>

captures local geometry.
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Part II Multimanifold SSL

A Distance on Covariance Matrices

Hellinger distance

H2(p, q) =
1
2

∫ (√
p(x)−

√
q(x)

)2
dx

H(p, q) symmetric, in [0, 1]
Let p = N(0,Σ1), q = N(0,Σ2). We define

H(Σ1,Σ2) ≡ H(p, q) =

√√√√1− 2
d
2
|Σ1|

1
4 |Σ2|

1
4

|Σ1 + Σ2|
1
2

(computed in common subspace)
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A Distance on Covariance Matrices

Hellinger distance
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dx
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Part II Multimanifold SSL

Hellinger Distance

Comment H(Σ1,Σ2)

similar 0.02

density 0.28

dimension 1

orientation∗ 1

* smoothed version: Σ + εI
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Part II Multimanifold SSL

A Sparse Graph
KNN graph use Mahalanobis distance to trace the manifold
d2(x, y) = (x− y)>Σ−1

x (x− y)

Gaussian edge weight on edges wij = e−
H2(Σxi ,Σxj )

2σ2

Combines locality and shape. Red=large w, yellow=small w

Manifold Regularization on the graph
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Part II Human SSL

Outline

1 Part I
What is SSL?
Mixture Models
Co-training and Multiview Algorithms
Manifold Regularization and Graph-Based Algorithms
S3VMs and Entropy Regularization

2 Part II
Theory of SSL
Online SSL
Multimanifold SSL
Human SSL
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Part II Human SSL

Do we learn from both labeled and unlabeled data?

Learning exists long before machine learning. Do humans perform
semi-supervised learning?

We discuss two human experiments:
1 One-class classification [Zaki & Nosofsky 2007]
2 Binary classification [Zhu et al. 2007]
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Part II Human SSL

Zaki & Nosofsky 2007: self training?

participants shown training sample {(xi, yi = 1)}l
i=1, all from one

class.

shown u unlabeled instances {xi}l+u
i=l+1, decide if yi = 1

density level-set problem: learn X1 = {x ∈ X | p(x|y = 1) ≥ ε},
classify y = 1 if x ∈ X1

if X1 is fixed after training, then test data won’t affect classification.

Zaki & Nosofsky showed this is not true.
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Part II Human SSL

The Zaki & Nosofsky 2007 experiment

40

µ

(a) a stimulus (b) training distribution

20

µ

20

40

4

19

µ

40

1

µ

20

4

new

2

(c) condition 1 test distribution (d) condition 2 test distribution
p̂(y = 1|µ) > p̂(y = 1|low) p̂(y = 1|µnew) > p̂(y = 1|lownew)

> p̂(y = 1|high) � p̂(y = 1|random) > p̂(y = 1|µ) ≈ p̂(y = 1|low)
≈ p̂(y = 1|high) � p̂(y = 1|random)
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Part II Human SSL

Zhu et al. 2007: mixture model?
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Gaussian mixture

range examples

test examples

x

blocks
1 20 labeled points at x = −1, 1

2 test 1: 21 test examples in grid
[−1, 1]

3 690 examples ∼ bimodal
distribution, plus 63 range
examples in [−2.5, 2.5]

4 test 2: same as test 1

12 participants left-offset, 10 right-offset. Record their decisions and
response times.
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Part II Human SSL

Visual stimuli

Stimuli parametrized by a continuous scalar x. Some examples:

−2.5 −2 −1.5 −1

−0.5 0 0.5 1

1.5 2 2.5
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Part II Human SSL

Observation 1: unlabeled data affects decision boundary
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test−1, all
test−2, L−subjects
test−2, R−subjects

average decision boundary

after seeing labeled data: x = 0.11

after seeing labeled and unlabeled data: L-subjects x = −0.10,
R-subjects x = 0.48
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Part II Human SSL

Observation 2: unlabeled data affects reaction time
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longer reaction time → harder example → closer to decision boundary.
Reaction times too suggest decision boundary shift.
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Part II Human SSL

Model fitting

We can fit human behavior with a GMM.
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boundary shift reaction time t = aH(x) + b

Humans and machines both perform semi-supervised learning.

Understanding natural learning may lead to new machine learning
algorithms.
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Part II Human SSL
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