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Abstract
Latent Dirichlet Allocation models a document by a mixture of topics, where

each topic itself is typically modeled by a unigram word distribution. Documents
however often have known structures, and the same topic can exhibit different
word distributions under different parts of the structure. We extend latent Dirichlet
allocation model by replacing the unigram word distributions with a factored rep-
resentation conditioned on both the topic and the structure. In the resultant model
each topic is equivalent to a set of unigrams, reflecting the structure a word is in.
The proposed model is more flexible in modeling the corpus. The factored repre-
sentation prevents combinatorial explosion and leads to efficient parameterization.
We derive the variational optimization algorithm for the new model. The model
shows improved perplexity on text and image data, but not significant accuracy
improvement when used for classification.

1 Introduction

Latent Dirichlet Allocation (LDA) is a powerful topic model[1] [2]. LDA model is
completely data driven. But sometimes there are certain domain knowledge one wishes
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to incorporate into an LDA model. In this paper we consider domain knowledge in the
form of tags on words. The tags can be quite general. For example in text documents
each word can be tagged with its part-of-speech (POS), obtained from a POS tagger. In
HTML web pages each word can be tagged as whether it appears ona hyperlink (anchor
text), or body text. For scholarly papers there is usually a fixed structure (abstract, body,
references, etc.), and each word can be tagged by the sectionit is in. We assume the
set of tags are pre-defined and known. We also assume for each word in the corpus, its
corresponding tag is given. Therefore the tags constitute domain knowledge. In this
paper we do not consider higher order tags that apply to a pairor a group of words.

How should tags affect a topic model? Tags and topics can be thought of as or-
thogonal to each other. It is important to note that in LDA thesame unigram is used
throughout the document whenever a given topic is about to generate a word. But the
same topic can have different word distribution under different tags. Knowing the tags
should allow us to build a better model than using the topic model alone.

However the interaction between tags and topics can be subtle. On one hand, for the
same topic the word distributions under different tags may be different. For instance
if the tags represent part-of-speech, on aspace topic the high probability words with
a noun tag might be “space, shuttle, mission, launch,. . .”, while those with averb tag
might be “ make, launch, plan, schedule,. . .”. On the other hand, these distributions
may also be similar, depending on the nature of the tags. Consider the case where
tags are section information in scholarly papers. On aneural network chip topic, the
high probability words with anabstract tag might be “neural, network, chip, system,
parallel,. . .”, and those with abody tag might be “network, neural, time, chip, system,
. . .”.

One naive way to incorporate tags is to treat different tags separately. If we were to
build ak-topic model without the tags, we can now build onek-topic model for each
tag by ignoring all words in a document with other tags. Simple as it is, this approach
has several shortcomings: 1. It fragments the corpus so thatrare tags cannot be trained
well. 2. It ignores the similarity between tags likeabstract andbody. 3. It results in a
large number of parameters. Withk topics,Nt different tag types and a vocabulary of
sizeV , the number of parameters isk × Nt × V .

In this paper we proposetagLDA, a topic model which combines latent Dirichlet al-
location (LDA) and tag knowledge using a factored representation. tagLDA addresses
all three shortcomings above at the same time.

2 Representation

tagLDA model assumes the following generative process for each documentw in a
corpusD, given the tagst of the words:

1. Chooseθ ∼ Dir(α). θ is the topic multinomial withk outcomes for the docu-
ment. Dir(α) is a Dirichlet distribution with hyperparameterα.

2. For word positionsn = 1 . . . N , with tagtn:

(a) Choose a topiczn ∼ Multinomial(θ).
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Figure 1: Graphical model representation of tagLDA. The outer plate represents docu-
ments, the inner plate represents words. The dark nodes are observed variables.

(b) Choose a wordwn ∼ P (wn|zn, tn, τ, π), a word multinomial withV out-
comes.

As in standard LDA, the dimensionalityk of the Dirichlet distribution (i.e. the number
of topics) is assumed given and fixed.

The key difference between the standard LDA model and the tagLDA model is how
words are generated. The word probabilities are parameterized by a factored represen-
tation.τ is ak × V topic-word matrix which corresponds to the logarithm of theword
multinomial parametersβ in [1]. π is aNt ×V tag-word matrix, whereNt is the num-
ber of unique tags. Given thatwn is from topiczn and has tagtn, the word probability
is

P (wn = v|zn, tn, τ, π) ∝ exp (τzn,v + πtn,v) . (1)

The factored representation has only(k + Nt) × V parameters.
Given the set ofN tagst and parametersα, τ, π, the joint distribution of a topic

mixtureθ, a set ofN topicsz, and a set ofN wordsw is given by:

p(θ, z,w|t, α, τ, π) = p(θ|α)

N
∏

n=1

p(zn|θ)p(wn|zn, tn, τ, π). (2)

The marginal probability of a document is

p(w|t, α, τ, π) =

∫

p(θ|α)

(

N
∏

n=1

k
∑

zn=1

p(zn|θ)p(wn|zn, tn, τ, π)

)

dθ. (3)

The marginal probability of a corpusD with M documents is

p(D|t1, . . . , tM , α, τ, π) =
M
∏

d=1

∫

p(θd|α)

(

Nd
∏

n=1

k
∑

zdn=1

p(zdn|θd)p(wdn|zdn, tdn, τ, π)

)

dθd.

(4)
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3 Variational Inference and Parameter Learning

The inference problem is to compute the posterior distribution of hidden variablesθ, z
givena single document and its tags:

p(θ, z|w, t, α, τ, π). (5)

Unfortunately this distribution is intractable just as in standard LDA. Like [1] we use
variational inference to approximate the above posterior.We first lower bound the doc-
ument marginal log likelihood with Jensen’s inequality using an auxiliary distribution
q(θ, z|γ, φ):

log p(w|t, α, τ, π) (6)

= log

∫

θ

∑

z

p(w, θ, z|t, α, τ, π)dθ (7)

= log

∫

θ

∑

z

q(θ, z|γ, φ)p(w, θ, z|t, α, τ, π)

q(θ, z|γ, φ)
dθ (8)

≥

∫

θ

∑

z

q(θ, z|γ, φ) (log p(w, θ, z|t, α, τ, π) − log q(θ, z|γ, φ)) dθ (9)

≡ L(γ, φ;α, τ, π). (10)

We choose a particular form for the auxiliary distribution

q(θ, z|γ, φ) = q(θ|γ)
N
∏

n=1

q(zn|φn), (11)

whereγ is a Dirichlet parameter vector of lengthk, andφ is aN × k matrix whose
rows are topic multinomials.

3.1 The variational distribution

The lower bound (10) can be written as

L(γ, φ;α, τ, π) (12)

= Eq[log p(w, θ, z|t, α, τ, π)] − Eq[log q(θ, z|γ, φ)] (13)

= Eq[log p(θ|α)] + Eq[log p(z|θ)] + Eq[log p(w|z, τ, π)]

−Eq[log q(θ)] − Eq[log q(z)], (14)
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which is the same as eq (14) in [1] except the third term. The third term is:

Eq [log p(w|z, τ, π)] (15)

= Eq

[

log

N
∏

n=1

p(wn|zn, τzn
, πtn

)

]

(16)

= Eq

[

N
∑

n=1

log
exp(τzn,wn

+ πtn,wn
)

∑V

v=1 exp(τzn,v + πtn,v)

]

(17)

= Eq

[

N
∑

n=1

(

τzn,wn
+ πtn,wn

− log

V
∑

v=1

exp(τzn,v + πtn,v)

)]

(18)

=

N
∑

n=1

Eq [τzn,wn
+ πtn,wn

] −

N
∑

n=1

Eq

[

log

V
∑

v=1

exp(τzn,v + πtn,v)

]

. (19)

Because of the log-sum-exp in the second term of (19), parameter learning forτ, π is
difficult. Following the technique used in [3], we upper bound the second term of (19)
with N more variational parametersζn. We make use of the inequality

log(x) ≤ ζ−1x + log(ζ) − 1,∀ζ > 0, (20)

which gives

N
∑

n=1

Eq

[

log
V
∑

v=1

exp(τzn,v + πtn,v)

]

(21)

≤
N
∑

n=1

Eq

[

ζ−1
n

(

V
∑

v=1

exp(τzn,v + πtn,v)

)

+ log ζn − 1

]

(22)

=
N
∑

n=1

[

ζ−1
n

(

V
∑

v=1

Eq(zn) [exp(τzn,v + πtn,v)]

)

+ log ζn − 1

]

(23)

=

N
∑

n=1

[

ζ−1
n

(

V
∑

v=1

k
∑

i=1

φni exp(τi,v + πtn,v)

)

+ log ζn − 1

]

. (24)
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Putting everything together, we obtain a lower boundL2 on the original lower bound
L:

L(γ, φ;α, τ, π) (25)

= Eq[log p(θ|α)] + Eq[log p(z|θ)]

+Eq[log p(w|z, τ, π)]

−Eq[log q(θ)] − Eq[log q(z)] (26)

≥ Eq[log p(θ|α)] + Eq[log p(z|θ)]

+

N
∑

n=1

Eq [τzn,wn
+ πtn,wn

] −

N
∑

n=1

[

ζ−1
n

(

V
∑

v=1

k
∑

i=1

φni exp(τi,v + πtn,v)

)

+ log ζn − 1

]

−Eq[log q(θ)] − Eq[log q(z)] (27)

= log Γ(

k
∑

j=1

αj) −

k
∑

i=1

log Γ(αi) +

k
∑

i=1

(αi − 1)(Ψ(γi) − Ψ(

k
∑

j=1

γj))

+
N
∑

n=1

k
∑

i=1

φni(Ψ(γi) − Ψ(
k
∑

j=1

γj))

+

N
∑

n=1

k
∑

i=1

φni(τi,wn
+ πtn,wn

) −

N
∑

n=1

[

ζ−1
n

(

V
∑

v=1

k
∑

i=1

φni exp(τi,v + πtn,v)

)

+ log ζn − 1

]

− log Γ(

k
∑

j=1

γj) +

k
∑

i=1

log Γ(γi) −

k
∑

i=1

(γi − 1)(Ψ(γi) − Ψ(

k
∑

j=1

γj))

−

N
∑

n=1

k
∑

i=1

φni log φni (28)

≡ L2(γ, φ, ζ;α, τ, π). (29)

The lower boundL2 is a function of the variational parametersγ, φ, ζ – one finds the
optimal γ, φ, ζ to maximize it. The combined lower boundL2 on the whole corpus
D is then viewed as a function of the model parametersα, τ, π, which are optimized
holding the variational parameters fixed. Variational parameter learning and model
parameter learning proceed alternatively to improveL2.

We use the variational distributionq(θ, z|γ, φ) to approximate the true posterior
distributionp(θ, z|w, t, τ, π) for inference. Notice the variational distribution is w.r.t.
the maximizing variational parametersγ, φ, ζ explicitly, and model parametersα, τ, π

implicitly.

3.2 Variational parameter Learning

We maximizeL2 w.r.t. the variational parametersγ, φ, ζ by coordinate ascend. First
we maximizeL2 with respect toζ:

∂L2

∂ζn

= ζ−2
n

(

V
∑

v=1

k
∑

i=1

φni exp(τi,v + πtn,v)

)

− ζ−1
n . (30)
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Setting it to zero and we find

ζ̂n =
V
∑

v=1

k
∑

i=1

φni exp(τi,v + πtn,v), (31)

which is the maximum by verifying the second derivative.
Second we maximizeL2 with respect toφ. With the constraint

∑k

j=1 φnj = 1 we
form the Lagrangian, and take the derivative:

∂L2 + λ
((

∑k

j=1 φnj

)

− 1
)

∂φni

(32)

= Ψ(γi) − Ψ(

k
∑

j=1

γj)

+(τi,wn
+ πtn,wn

) −

V
∑

v=1

ζ−1
n exp(τi,v + πtn,v)

− log φni − 1

+λ. (33)

Setting it to zero, the maximizing value is

φ̂ni ∝ exp



Ψ(γi) − Ψ(
k
∑

j=1

γj) + (τi,wn
+ πtn,wn

) −
V
∑

v=1

ζ−1
n exp(τi,v + πtn,v)



 .

(34)
Finally we maximizeL2 with respect toγ. It can be shown the maximum is at

γ̂i = αi +

N
∑

n=1

φni (35)

Notice the maximizing values ofζ, φ, γ depend on each other. Therefore we need
to iteratively optimize the three untilL2 converges.

3.3 Model parameter Learning

Fixing the variational parametersζ, φ, γ, the variational marginal likelihood of the cor-
pusD as a function ofα, τ, π is L2D =

∑M

d=1 L2d.
First the maximizing model parameterα can be found with the same linear-time

Newton-Raphson algorithm in [1] A.4.2.
Then we maximizeL2D with respect toτ . The relevant terms inLD are:

L2D[τ,π]

=

M
∑

d=1

Nd
∑

n=1

k
∑

i=1

φdn,i(τi,wdn
+ πtdn,wdn

)

−

M
∑

d=1

Nd
∑

n=1

[

ζ−1
dn

(

V
∑

v=1

k
∑

i=1

φdn,i exp(τi,v + πtdn,v)

)

+ log ζdn − 1

]

. (36)
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The derivative with respect toτi,v is:

∂L2D

∂τi,v

=

M
∑

d=1

Nd
∑

n=1

φdn,iδ(wdn, v) −

(

M
∑

d=1

Nd
∑

n=1

ζ−1
dn φdn,i exp(πtdn,v)

)

exp(τi,v), (37)

whereδ(x, x′) = 1 if x = x′, and 0 otherwise. Forv = 1 . . . V , setting the derivative
to zero we find

τi,v = log

(

M
∑

d=1

Nd
∑

n=1

φdn,iδ(wdn, v)

)

− log

(

M
∑

d=1

Nd
∑

n=1

ζ−1
dn φdn,i exp(πtdn,v)

)

. (38)

Finally we maximizeL2D with respect toπ. The derivative with respect toπt, v

is:

∂L2D

∂πt,v

=

M
∑

d=1

Nd
∑

n=1

k
∑

i=1

φdn,iδ(tdn, t)δ(wdn, v) −

(

M
∑

d=1

Nd
∑

n=1

k
∑

i=1

ζ−1
dn φdn,i exp(τi,v)δ(tdn, t)

)

exp(πt,v). (39)

Forv = 1 . . . V , setting the derivative to zero we find

πt,v = log

(

M
∑

d=1

Nd
∑

n=1

k
∑

i=1

φdn,iδ(tdn, t)δ(wdn, v)

)

− log

(

M
∑

d=1

Nd
∑

n=1

k
∑

i=1

ζ−1
dn φdn,i exp(τi,v)δ(tdn, t)

)

. (40)

Notice τ appears inπ’s maximum solution and vice versa. Therefore we iterate
(38) and (40) untilτ andπ converge, which happens quickly in practice.

4 A Toy Example

To illustrate the benefit of tagLDA, we create a toy example asfollows. On a vocab-
ulary of 9 words, we specify 3 topic parametersτ which are the upper three rows in
Figure 2. We also specify 3 tag parametersπ which are the lower three rows in the
same figure. These parameters are smoothed and do not containzero.

With these parameters, we generate a corpus of 300 documents. All documents are
40 words long. For each word position, a tag is chosen with probability 0.6, 0.3, 0.1 for
tags 1, 2, 3 respectively. All words in a document share the same topic, which is chosen
uniformly from topics 1, 2, 3. Given tagt and topici, a word is generated according
to the multinomial proportional toexp(τi + πt). Since there are three topics and three
tags, nine word multinomials are possible; They are plottedin Figure 3.

For tagLDA, the input is the corpus and the tags. That is, for each word in the
corpus we give the corresponding tag (1, 2, or 3) as domain knowledge to tagLDA.
Therefore there are three tag parametersπ to learn. We ask tagLDA to learn three
topics parametersτ . tagLDA optimizes the lower boundL2 (29), which converges
to -20816. We plot the learned parametersτ andπ in Figure 4. tagLDA is able to
approximate the intended factored representation. With the learned parametersτ andπ,
the word posterior given a topici and tagt in tagLDA is the multinomial proportional
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Figure 2: The original parametersτ , π used to generate the toy corpus

word
1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9
0

0.05

0.1

0.15

0.2

0.25

Figure 3: The nine word multinomials out of the combination of τ andπ
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Figure 4: The parametersτ , π learned by tagLDA
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Figure 5: The nine multinomial distributions of tagLDA.
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Figure 6: Topics learned by standard LDA

to exp(τi + πt). We show the nine multinomials in Figure 5, which are similarto
Figure 3 as they should be.

We ran standard LDA on the toy example for comparison. We ask LDA to learn
three topics too. LDA optimizes a variational lower bound onthe log likelihood, which
converges to -23414. The log likelihood bound is worse than tagLDA. We plot the
topics learned by LDA in Figure 6. The topic probabilities are not uniform as those in
the upper panel of Figure 2. This is because LDA attempts to explain the asymmetry
introduced by uneven tag distributions.

5 A Small Text Corpus

We selected 45 documents from AP news1 to form a small corpus. 15 of the documents
are about politics, 15 about finance, and the remaining 15 about war. We converted all
words into lower case, used a stop list of 300 words, and a frequency cutoff of 5 on the
whole AP data, to obtain a vocabulary of about 10,000 words. No other preprocessing
was carried out. We then ran a link parser on the documents. For this experiment, the
parser was used as a part-of-speech tagger. Each word is tagged as ‘noun’ (n), ‘verb’
(v) or ‘other’ (o).

Given these three kinds of tags we ran tagLDA on the 45 documents, asking for
three topics. The lower bound on log likelihood,L2, converges to -43916. tagLDA
learned topic parametersτ1, τ2, τ3 and tag parametersπn, πv, πo, each is a vocabulary-
sized vector. Given topict and tagp the word probability isP (w|τt, πp) ∝ exp(τtw +
πpw). We show the top 10 words with the largest probabilities in eachτ, π combination
in Figure 7. Not surprisingly, tagLDA learned to separate nouns, verbs and other words
according to the tag.

As a comparison we also ran standard LDA on the 45 documents, asking for three
topics. The lower bound on log likelihood converges to -51264. We show the top 10
words in each topic in Figure 8. The distinction of noun, verb, other is not present since
this information is not available to standard LDA. We could have trained a three-topic
LDA model separately for noun, verb and other words. This would achieve similar
word distributions as tagLDA, but the number of parameters would be nine for LDA,
while tagLDA uses only six parameters.

1The same AP corpus in the LDA distribution at http://www.cs.berkeley.edu/∼blei/lda-c/ap.tgz
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tag=n, topic=politics tag=n, topic=finance tag=n, topic=war
0.020710 campaign 0.054672 market 0.018956 army
0.015500 state 0.035832 index 0.015796 hostages
0.015302 poll 0.032898 trading 0.014217 government
0.014452 convention 0.027564 prices 0.014217 gunmen
0.014118 support 0.026186 volume 0.009478 attack
0.013945 primary 0.026184 stock 0.009478 soldiers
0.011902 sen 0.024808 shares 0.008760 forces
0.011052 delegates 0.022024 stocks 0.008688 miles
0.010925 president 0.017917 session 0.008688 troops
0.010201 voters 0.017917 average 0.008688 israeli

tag=v, topic=politics tag=v, topic=finance tag=v, topic=war
0.027641 going 0.051953 rose 0.048936 killed
0.022763 think 0.033524 came 0.016312 freed
0.014633 vote 0.031971 outnumbered 0.014022 told
0.011381 asked 0.027975 fell 0.011845 fighting
0.011381 brokered 0.023978 listed 0.011263 shot
0.010295 made 0.017555 reported 0.010875 opened
0.009755 see 0.015986 totaled 0.010875 died
0.009755 got 0.015986 traded 0.010875 wounded
0.009755 campaigning 0.011989 go 0.009062 go
0.008650 added 0.011989 led 0.009062 kidnapped

tag=o, topic=politics tag=o, topic=finance tag=o, topic=war
0.030569 i 0.034266 million 0.025995 police
0.029899 dukakis 0.029793 stock 0.019496 two
0.023104 south 0.026817 dow 0.018568 people
0.021745 jackson 0.026788 exchange 0.017639 south
0.020386 percent 0.022347 unchanged 0.013926 red
0.018133 bush 0.019368 jones 0.011141 thursday
0.017667 gephardt 0.017878 big 0.010212 new
0.016988 dole 0.017873 nyse 0.010212 15
0.016308 democratic 0.016658 new 0.008798 military
0.016185 new 0.016443 wall 0.008355 i

Figure 7: The top 10 words and their probabilities in each topic / tag combination
learned by tagLDA on the small AP corpus.
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topic=politics topic=finance topic=war
0.013957 i 0.024101 market 0.009347 police
0.013922 dukakis 0.023651 stock 0.009347 army
0.012024 bush 0.015768 index 0.009013 killed
0.010758 south 0.014531 trading 0.007891 two
0.010441 dole 0.013948 million 0.006677 people
0.010045 jackson 0.012129 prices 0.006677 hostages
0.009492 percent 0.012126 exchange 0.006343 south
0.009492 primary 0.011523 volume 0.006009 government
0.009475 gore 0.010916 shares 0.006009 gunmen
0.008752 campaign 0.010916 dow 0.005341 bank

Figure 8: The top 10 words learned by standard LDA on the smallAP corpus.

6 AP: A Larger Text Corpus

We ran tagLDA on 2243 AP news articles2. Again each word is tagged as noun, verb
or other. The corpus has 434979 words. The vocabulary size is10174. We asked for
50 topics. tagLDA converged in 25 iterations with log likelihood bound -2799598. We
show the top 10 words from selected topics learned with tagLDA in Figure 9.

We also ran standard LDA under the same settings. LDA converged in 30 itera-
tions with log likelihood bound -3158008. Figure 10 shows the top 10 words in the
corresponding topics.

7 The WebKB Corpus

For the WebKB corpus3 we used two tags: b=‘body text’ for words in the body text of
an html page, and a=‘anchor text’ for words in a hyperlink. The corpus has 8099 html
pages. Each page is treated as a document. We kept words that consists of more than
one letter, converted them into lower case, and used a stopword list. The processed
corpus has 1.3 million words. The vocabulary size is 9898 with a frequency cutoff. We
ran tagLDA with 30 topics. tagLDA converged in 30 iterations, with a lower bound of
-9674409 on log likelihood.

In Figure 11 we show the top 10 words in six selected topics, separately with the
two tags. For the anchor text tag, tagLDA learns the words that frequently appear on
hyperlinks, such aspostscript, publications, resume, tar.gz, slide, solution, etc.

2The same AP corpus in the LDA distribution at http://www.cs.berkeley.edu/∼blei/lda-c/ap.tgz
3http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/webkb-data.gtar.gz
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tag=o, topic=health tag=n, topic=health tag=v, topic=health
0.016932 fda 0.017016 patients 0.011801 say
0.016657 medical 0.015987 drug 0.010072 think
0.016476 dr 0.011704 heart 0.009529 done
0.015216 new 0.010520 health 0.009292 approved
0.010832 i 0.009013 research 0.008741 treated
0.009916 people 0.008909 children 0.008541 says
0.009315 last 0.008291 researchers 0.008359 tested
0.008834 federal 0.007752 company 0.007660 take
0.008361 two 0.007538 officials 0.006936 produce
0.007884 year 0.007335 aspirin 0.006456 make

tag=o, topic=space tag=n, topic=space tag=v, topic=space
0.025630 nasa 0.033668 space 0.018064 made
0.017886 earth 0.030260 shuttle 0.017410 make
0.014641 two 0.015557 mission 0.014456 launch
0.014353 venus 0.012612 launch 0.011008 launched
0.013671 spacecraft 0.010747 time 0.009746 planned
0.011961 magellan 0.009480 rocket 0.009159 take
0.010080 first 0.008723 planet 0.008764 go
0.009874 mars 0.008507 telescope 0.008667 released
0.009604 space 0.007826 astronauts 0.008078 scheduled
0.009204 soviet 0.007532 system 0.008002 manned

tag=o, topic=iraq tag=n, topic=iraq tag=v, topic=iraq
0.053580 iraq 0.034619 iraqi 0.014466 asked
0.034202 kuwait 0.021629 troops 0.012714 sent
0.028902 military 0.017273 american 0.011458 go
0.024496 saudi 0.015365 war 0.011372 made
0.020978 united 0.013507 forces 0.010901 held
0.018748 gulf 0.012611 president 0.008841 say
0.018244 arabia 0.011997 invasion 0.008632 invaded
0.016660 bush 0.011673 oil 0.008474 leave
0.015744 saddam 0.011476 defense 0.008038 told
0.014341 persian 0.011141 officials 0.007746 take

Figure 9: The top 10 words and their probabilities in selected topic / tag combinations
learned by tagLDA on the large AP corpus.
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topic=health topic=iraq topic=space
0.008081 drug 0.024015 iraq 0.016574 space
0.007592 patients 0.015315 kuwait 0.011573 shuttle
0.006566 health 0.014820 iraqi 0.009906 nasa
0.005777 fda 0.014201 military 0.008528 earth
0.005624 heart 0.012394 saudi 0.007515 launch
0.005415 dr 0.011004 gulf 0.006466 mission
0.005250 medical 0.009460 united 0.006079 two
0.005168 new 0.009104 war 0.005547 venus
0.005025 research 0.008582 arabia 0.005283 spacecraft
0.004526 children 0.008456 bush 0.005123 time

Figure 10: The top 10 words (and their probabilities) in selected topics learned by
standard LDA on the large AP corpus.

8 The NIPS Corpus

We manually tagged 1602 papers from Neural Information Processing Systems (NIPS)
vol. 0 – 124. We tagged each word with the section it is in. There are seventag types:

h header, anything before abstract: title, authors, address
a the abstract
i the introduction section of the paper
b main body of the paper
c the conclusion / discussion / summary section of the paper
k the acknowledgments
r the references

We kept words that consists of more than one letters, converted them into lower case,
and used a stopword list. The processed corpus has 2.3 million words. The vocabulary
size is 8100 with a frequency cutoff. We ran tagLDA with 30 topics. tagLDA converged
in 20 iterations with a lower bound of -16099655 on log likelihood. In Figure 12 we
show the top 10 words in three selected topics, with all tag combinations.

It is interesting to see the interaction between the 30 topicparameter vectorsτ and
7 tag parameter vectorsπ in the factored representation. First of all, some tags seem
to be dominated by the topic parameter. This effect is especially prominent for tags a,
i, b, c. Intuitively it is what one would expect, as the abstract, introduction, body and
conclusion sections are about the same topic. Meanwhile some tags have its distinct
word distribution that overwhelms the topic parameter, most noticeably tag k. All top-
ics with tag k exhibits common acknowledgment words like ‘grant, supported, thank’.
Finally the tags h and r are in the middle: their word distribution is roughly a half-half
combination of the topic and tag parameters. Tag h contains both topic-specific words
‘neural, networks, speech, recognition’ from the titles, and tag-specific words ‘univer-
sity, department’ from the affiliations. Tag r contains similar topic-specific words, and
tag-specific words ‘journal, press, proc, vol’. We concludethat the factored represen-

4The un-tagged corpus comes from Sam Roweis at http://www.cs.toronto.edu/∼roweis/data.html
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tag=b, topic 1 tag=a, topic 1 tag=b, topic 2 tag=a, topic 2
0.027352 pp 0.043408 postscript 0.042366 file 0.360304 ps
0.025519 proceedings 0.023498 acm 0.033877 ps 0.031480 ftp
0.025408 conference 0.016093 ieee 0.032590 hello 0.028412 gz
0.022164 ieee 0.014476 real 0.028990 files 0.027834 tar
0.019816 acm 0.014272 report 0.020195 ftp 0.027094 pub
0.016230 international 0.013964 publications0.019446 directory 0.024495 file
0.014353 symposium 0.013829 conference0.011910 window 0.022174 directory
0.014010 vol 0.013779 computing 0.011171 public 0.018556 readme
0.013411 time 0.012498 abstract 0.010971 seed 0.017426 latex
0.011079 th 0.012086 technical 0.010481 version 0.015414 tex

tag=b, topic 3 tag=a, topic 3 tag=b, topic 4 tag=a, topic 4
0.038483 home 0.090302 cs 0.044209 lecture 0.110431 slide
0.034131 am 0.065067 edu 0.018009 logic 0.105939 lecture
0.028080 cs 0.059314 home 0.016922 tree 0.025189 format
0.020557 interests 0.014164 resume 0.014621 data 0.024708 notes
0.018242 student 0.011802 columbia 0.013322 structures 0.024291 slides
0.017917 edu 0.011165 student 0.013154 notes 0.022500 gif
0.016436 phone 0.010680 homepage 0.011297 trees 0.016721 logic
0.014113 fax 0.010626 graduate 0.010682 chapter 0.015202 cs
0.012872 office 0.009934 new 0.009741 format 0.014314 postscript
0.012539 last 0.009767 publications0.009087 functions 0.012711 tree

tag=b, topic 5 tag=a, topic 5 tag=b, topic 6 tag=a, topic 6
0.030285 due 0.080319 postscript 0.047212 programming 0.050997 programming
0.026808 program 0.071853 assignment0.024635 languages 0.022725 languages
0.026076 assignment 0.071069 homework0.019574 language 0.020991 language
0.015785 homework 0.032510 solution 0.015835 design 0.014813 software
0.011901 problem 0.026703 program 0.015237 software 0.013375 program
0.011669 code 0.025780 solutions 0.012700 program 0.012944 design
0.010428 project 0.023100 cs 0.010638 compiler 0.012457 ece
0.009513 class 0.018283 project 0.010404 programs 0.011931 compiler
0.009420 file 0.016141 due 0.010088 object 0.011874 object
0.009191 assignments 0.014712 problem 0.009591 oriented 0.011028 cs

Figure 11: The top 10 words (and their probabilities) in six selected topics, with
b=‘body text’ and a=‘anchor text’ tags respectively, learned by tagLDA on WebKB
corpus.
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tation is appropriate for the corpus.

9 Perplexity

Both tagLDA and LDA models are trained unsupervised. The natural measure of per-
formance is the log likelihood on some unseen held-out corpus. Equivalently we com-
pute theperplexity on the held-out set, a conventional measure in language modeling.
The perplexity is a monotonically decreasing function of the log likelihood, and can
be understood as the predicted number of equally likely words for a word position on
average. For a held-out setD of M documents the perplexity is defined as

perplexity(D) = exp

(

−

∑M

d=1 log p(wd|td)
∑M

d=1 Nd

)

, (41)

whereNd is the number of words in documentd. Note (41) computes the conditional
perplexity given the tagstd. For LDA it reverts top(wd|td) = p(wd) since the tag
information is not used. Also note we can only compute an upper bound of the per-
plexity, because we lower-bound the log likelihood with variational methods for both
tagLDA and LDA.

We compute and compare the perplexity of tagLDA and LDA on theAP, WebKB
and NIPS corpora with aforementioned tags respectively. For each corpus we run 5
trials in which we randomly hold out 20% of the document for test, and train on the
remaining 80%. We train tagLDA and LDA with the same stoppingcriteria. The
number of topics in both models is systematically varied.

We plot the average perplexity on held-out data in Figure 13.By utilizing the
tag information tagLDA has lower perplexity on all three corpora. That is, tagLDA
is a better model by assigning higher likelihood to held-outdocuments than LDA.
We also note that the reduction in perplexity strongly depends on the type of tags.
Intuitively when different tags tend to mark distinctive words, perplexity reduction is
large. For example the part-of-speech tags in the AP corpus mark nouns, verbs etc.,
and tagLDA has a 50% perplexity reduction. On the other hand when different tags
mark similar words the perplexity reduction is small, as in the anchor-text / body-text
tags for WebKB corpus.

10 Document Classification

The ‘topics’ learned by tagLDA and LDA can be viewed as a concise representation
of the original document. Here the topics are represented bythe variational posterior
vectorP (γ|w). One can perform document classification in a discriminative frame-
work, by usingγ as feature vectors in a support vector machine (SVM). It should be
emphasized that both tagLDA and LDA are trained with unsupervised learning, and
are therefore not geared towards classification.

We are interested in whether the topics learned with tagLDA or LDA perform dif-
ferently in classification. It is important to note that the tag information is what makes
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tag=h a i b c k r
university eye eye eye model supported neural
institute model head model system grant eye
department system model head cells acknowledgments visual
edu abstract system system head research journal
salk head cells figure eye acknowledgements brain
electrical visual visual cells direction thank press
science cells motor direction visual foundation motor
brain motor direction position motor project neuroscience
neurobiology vor neurons velocity neurons work movements
ca neurons sensory map target eye auditory
university abstract function function functions grant neural
department networks functions theorem networks supported networks
neural functions networks let function research pp
networks neural neural functions bounds acknowledgement theory
edu function number bound theorem work ieee
engineering network network threshold bound gratefully computation
science bounds bounds number results afosr proc
computer show paper proof number thank vol
ca bound class case neural nsf bounds
australia paper threshold size complexity discussions functions
recognition recognition recognition training recognition darpa recognition
speech speech speech hmm speech work speech
university system hmm word hmm acknowledgements neural
neural hmm system system system arpa morgan
street network training recognition training research ieee
department abstract models network context thank systems
systems speaker context context models acknowledgments networks
technology context network speech model steve pp
ca models neural probabilities hybrid acknowledgement proc
networks word model model network authors processing

Figure 12: The top 10 words in three selected topics (the top,middle and bottom panel
respectively), and with all tag combinations (the columns), learned by tagLDA on NIPS
corpus.
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Figure 13: Held-out set perplexity
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tagLDA different from LDA. The tags however may or may not have direct correlation
with the classification goal.

For these experiments we used the WebKB corpus with 8106 documents. We train
a tagLDA and a LDA model respectively, both with 60 topics. The tags for tagLDA
are ‘anchor text’ vs. ‘body text’ as mentioned before. Each document therefore is
represented by a 60-dimensionalγ vector under tagLDA model, and a different 60-
dimensional vector under LDA. The classification goals are the set of natural categories
of WebKB data, namely whether the document is acourse, faculty, student, or other
web page. For simplicity we create four binary classification tasks of one category
vs. the rest. We use theSV M light software [4] with exactly the same settings for
tagLDA and LDA. We vary the proportion of training data from 10% to 70%. Figure 14
compares the classification accuracy. Each point is an average of 30 random trials (the
same random split is applied to both tagLDA and LDA). For completeness we also
include the accuracy where individual words are used as SVM features.

The tag of anchor/body text is not directly related to any of the classification tasks.
Therefore it is interesting to note that in three out of four experiments (a – c), the
tagLDA topic representation gives a small improvement overthe LDA representation;
but on (d) tagLDA is worse than LDA.

11 Image Categorization

We use the image dataset from [5], which contains 13 categories of natural scenes and
a total of 3859 images. Each image is gray-scale. The averagesize of an image is
about250×300 pixels. Image patches are sampled at an evenly spaced grid of10×10
pixels. The patches have side lengths randomly between 10 to30 pixels. Each patch is
then resized to11× 11 pixels. The histogram of each patch is stretched over the whole
range.

We randomly split the images into a training set and a test set. Each scene category
has 100 training images and the rest are test images. In totalthere are 1300 training
images and 2559 test images.

We learn a codebook by randomly sampling 2% of the patches from a random half
of the training set. We run k-means algorithm on the sampled patches to generateV
clusters. We use the Euclidean distance between patches. The V cluster centers are
then used as codewords. In the experiments we usedV = 200 and 1600 respectively.
With the codebook, all images are converted into a bag-of-patch representation, where
each patch is quantized to its closest codeword.

For tagLDA we tag each patch by its vertical position in the image. This is moti-
vated by the intuition that many images show vertical inhomogeneity. Specifically we
divide an image evenly into four parts along its height. A patch is tagged by the part
its top-left corner falls into.

We note that both LDA and tagLDA are unsupervised learning models. They are
used only to generate feature vectors. We separately train aLDA and a tagLDA model
on the 1300 training imageswithout using the labels. This is different from [5], who use
a supervised variant of the LDA model that incorporates the labels. In all experiments
we use 40 topics. We then perform inference on the test images. Table 1 lists the test set
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Figure 14: Classification accuracy on WebKB data with different proportions of train-
ing data.
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codebookV LDA tagLDA
200 130.0 126.0

1600 575.1 555.5

Table 1: Perplexity on test images for LDA and tagLDA

codebookV kernel bag-of-patch LDAγ tagLDA γ

200 linear 58.8% 53.0% 53.0%
poly3 63.0% 57.3% 55.4%

1600 linear 60.9% 56.2% 56.8%
poly3 66.1% 58.6% 58.0%

Table 2: Accuracies on test images usingSV M light

perplexity. Similar to text tasks, tagLDA gives lower perplexity (i.e. higher predicted
probability) on test images than LDA.

We use the inferred posterior variational Dirichlet parametersγ (a 40-vector) as a
reduced feature representation for each image. Note the original bag-of-patch repre-
sentation hasV = 200 or 1600 features. Thus theγ representation achieves 80% and
97.5% feature reduction.

For classification, we compare the performance ofSV M light under the three fea-
ture representations: bag-of-patch raw counts (200 or 1600dimensions), LDAγ vec-
tor (40 dimensions), and tagLDAγ vector (40 dimensions). We train the SVMs on
the training set and test them on the test set with one-vs-allfor 13-class classifica-
tion. For each feature representation, we use a linear kernel and a cubic (poly3) kernel
K(x, y) = (x⊤y + 1)3 respectively. Table 2 lists the test set accuracies. We observe
that:

• A larger codebook is better.

• Raw bag-of-patch features are better than the reduced LDA and tagLDA γ fea-
tures when using SVM. This is consistent with the text classification experiments
in the previous section.

• LDA and tagLDAγ features perform similarly for classification. This is disap-
pointing, but also consistent with previous text classification experiments.

• We achieve 66.1% accuracy with 1600 codewords, simple bag-of-patch features,
and SVM poly3 kernel. This is comparable to the 64.0% accuracy reported in [5]
with a LDA-like theme model. We suspect the fact that SVM is a discriminative
model while theme model is generative might have played a role, since it is
known that discriminative models tend to yield better classification accuracies.
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12 Discussions

We introduced tagLDA model, a factored representation thatmodels the structure of a
document. In experiments tagLDA is better than LDA in terms of test set perplexity.
But there is no significant advantage when tagLDA is used for classification.

TagLDA is only the first step towards incorporating domain knowledge into topic
models. There are several future directions:

• Allowing unknown tags for some of the words.

• Allowing multiple tags per word.

• Extending tagLDA to express higher order domain knowledge.The tags de-
scribe knowledge on individual words. An obvious extensionis to use links that
describe knowledge on pairs of words, for example those obtained using a link
parser.
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