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Abstract

Latent Dirichlet Allocation models a document by a mixture of topics, where
each topic itself is typically modeled by a unigram word distribution. Documents
however often have known structures, and the same topic can exhfeitedif
word distributions under different parts of the structure. We extendtlBieichlet
allocation model by replacing the unigram word distributions with a factaepe r
resentation conditioned on both the topic and the structure. In the resultbaiet m
each topic is equivalent to a set of unigrams, reflecting the structuredhisvon.
The proposed model is more flexible in modeling the corpus. The fattepre-
sentation prevents combinatorial explosion and leads to efficient peaapagion.
We derive the variational optimization algorithm for the new model. The inode
shows improved perplexity on text and image data, but not significantracy
improvement when used for classification.

1 Introduction

Latent Dirichlet Allocation (LDA) is a powerful topic mod¢l] [2]. LDA model is
completely data driven. But sometimes there are certairaitokmowledge one wishes



to incorporate into an LDA model. In this paper we considandim knowledge in the
form of tags on words. The tags can be quite general. For eeaimpext documents
each word can be tagged with its part-of-speech (POS),r@atdiom a POS tagger. In
HTML web pages each word can be tagged as whether it appeatsymerlink (anchor
text), or body text. For scholarly papers there is usuallyedfstructure (abstract, body,
references, etc.), and each word can be tagged by the sédsdn. We assume the
set of tags are pre-defined and known. We also assume for eadhimthe corpus, its
corresponding tag is given. Therefore the tags constitateaih knowledge. In this
paper we do not consider higher order tags that apply to apaigroup of words.

How should tags affect a topic model? Tags and topics candegtit of as or-
thogonal to each other. It is important to note that in LDA #a@ne unigram is used
throughout the document whenever a given topic is aboutnergee a word. But the
same topic can have different word distribution under déffe: tags. Knowing the tags
should allow us to build a better model than using the topidehalone.

However the interaction between tags and topics can bessuiii one hand, for the
same topic the word distributions under different tags magifferent. For instance
if the tags represent part-of-speech, ogpace topic the high probability words with
anoun tag might be “space, shuttle, mission, launch?, while those with averb tag
might be “ make, launch, plan, schedule,”. On the other hand, these distributions
may also be similar, depending on the nature of the tags. iGemthe case where
tags are section information in scholarly papers. Qmwaal network chip topic, the
high probability words with ambstract tag might be “neural, network, chip, system,
parallel,...”, and those with dody tag might be “network, neural, time, chip, system,

One naive way to incorporate tags is to treat different tegasately. If we were to
build a k-topic model without the tags, we can now build dréopic model for each
tag by ignoring all words in a document with other tags. Sergs it is, this approach
has several shortcomings: 1. It fragments the corpus seoahatags cannot be trained
well. 2. It ignores the similarity between tags ligbstract andbody. 3. It results in a
large number of parameters. Wikhtopics, V, different tag types and a vocabulary of
sizeV, the number of parametersis< N; x V.

In this paper we propogagL DA, a topic model which combines latent Dirichlet al-
location (LDA) and tag knowledge using a factored represéont. tagLDA addresses
all three shortcomings above at the same time.

2 Representation

tagLDA model assumes the following generative process #chelocumentv in a
corpusD, given the tags of the words:

1. Choos& ~ Dir(«). 6 is the topic multinomial withk outcomes for the docu-
ment. Dir{«) is a Dirichlet distribution with hyperparameter

2. For word positions = 1... N, with tagt,,:

(a) Choose a topie,, ~ Multinomial(6).
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Figure 1: Graphical model representation of tagLDA. Thesoptate represents docu-
ments, the inner plate represents words. The dark nodebseeved variables.

(b) Choose a woray,, ~ P(w,, |z, tn, T, 7), @ word multinomial withV out-
comes.

As in standard LDA, the dimensionalityof the Dirichlet distribution (i.e. the number
of topics) is assumed given and fixed.

The key difference between the standard LDA model and tHexAgnodel is how
words are generated. The word probabilities are parametehy a factored represen-
tation. 7 is ak x V topic-word matrix which corresponds to the logarithm of wwerd
multinomial parameterg in [1]. 7 is aN; x V tag-word matrix, wheréV, is the num-
ber of unique tags. Given that, is from topicz,, and has tag,,, the word probability
is

P(wn :U‘Zn7tn77—77r) X €xXp (Tzn,v +7Tt,,,v)' 1)

The factored representation has ofly+ N;) x V parameters.
Given the set ofV tagst and parameters, 7, w, the joint distribution of a topic
mixtured, a set of N topicsz, and a set ofV wordsw is given by:

N
p(0,z, wlt, o, 7, 7) = p(0]a) [ [ p(2nl0)p(wn|2n, tn, 7,7). 2)

n=1

The marginal probability of a document is

N &k
p(Wlt,a, 7, m) = /p(@\a) (H Z p(zn|9)p(wn|zn,tn,7',7r)> de. (3)

n=1z,=1

The marginal probability of a corpu’ with M documents is

M No K
p(Dlty,... ta, 0, 7,7) = H /p(9d|04) (H Z p(zdn|9d)p(wdn|zdn7tdnaTaﬂ')> dfy.
d=1 n=1zg4,=1
(4)



3 \Variational Inference and Parameter Learning

The inference problem is to compute the posterior distidioudf hidden variable8, z
givena single document and its tags:

p(97z|w7t7a77-77r) (5)

Unfortunately this distribution is intractable just as tarsdard LDA. Like [1] we use
variational inference to approximate the above posteviterfirst lower bound the doc-
ument marginal log likelihood with Jensen’s inequalityngsan auxiliary distribution

q(0, 2|y, 9):

logp(wlt, o, 7, 7) (6)
— tog [ 3 plw. 0,2t 0, m)ds @)
0 z
q(97z|7,qﬁ)p(w,&,z\t,a,T,ﬂ)
= 1 do 8
s [ 3 a0,217,9) ©
> /@ S 46, 71, 8) (log p(w, 6, 2lt, o, 7, 7) — log (6, 2}, 6)) b (9)
= L(y, b0, ). (10)

We choose a patrticular form for the auxiliary distribution

N

Q(ev Z|’Y7 ¢) = Q(GI’}/) H Q(Zn‘¢n)a (ll)

n=1

where~ is a Dirichlet parameter vector of lengkh and¢ is a N x k matrix whose
rows are topic multinomials.

3.1 The variational distribution

The lower bound (10) can be written as

L(v, ¢y, 7, m) (12)
= Eq [log p(w,0,zt, o, 7, 7)] — Eq [log q(0, z|7, ¢)] (13)
= Eqllogp(0])] + Eq[log p(2|0)] + Eq[log p(w|z, 7, 7)]

—Eq[log ¢(0)] — Eg[log ¢(2)], (14)



which is the same as eq (14) in [1] except the third term. Thd term is:

Eq [log p(W|Z, T, ’/T)} (15)

B N

= Eq |log H p(wn|zn, TZIL’Wtrz)] (16)
L n=1

= Eq Z 10 eXp Tzruwn + ﬂ-tn;’wn) (17)

v 1 exp(Tzn,v + 7Ttn,'u)

—N' 1%

= E, Z (szwn + e, w, — log Z exp(Ts, v + thv)>] (18)
Ln=1 v=1

N N
= Z Eq [Ten,wn + Tt w,] — Z E,
n=1 n=1

Because of the log-sum-exp in the second term of (19), paearfearning forr, 7 is
difficult. Following the technigue used in [3], we upper bduhe second term of (19)
with N more variational parametefs. We make use of the inequality

v
log Z exp(Ty, v + th’v)l . (19
v=1

log(z) < ("'a +log(¢) — 1,¥¢ > 0, (20)
which gives
N v
Z E, |log Z exp(7z, v + ﬂ'tmv)] (21)
n=1 v=1
N v
< Z Eq ! <Z exp(TZmU + Trtm’v)) + log Cn - 1] (22)
n=1 v=1

N 14
= Z lc;l (Z Eq(zn) [exp(Tzn,v + 7Tt,,“v)]> + IOg Cn - 1‘| (23)
n];1 v;l .
= > lcnl (ZZ% exp(Ti + 7, n) +1og Gy — 1] N X
n=1 v=11=1



Putting everything together, we obtain a lower bourdon the original lower bound
L:
L(v, ¢y, 7,7)
= Eqllogp(0|a)] + Eq[log p(2|0)]
+E,[log p(w|z, 7, 7))
—Eq[log q(6)] — Eq[log q(z)]
Eq[log p(6]a)] + Eq[log p(z]0)]

\%

n=1 v=1 =1

—Ey[log ¢(0)] — Eq[log ¢(2)]

k k k k
= log F(Z @) = 2 logTe) + (o = ¥ () — ¥ 7))
N "
+2 Z% %) Z%

n=11i:=1 n=1 v=1 =1

N N vV k
+ Z Eq [Tzn,wn + th,wn} - Z [C;l (Z Z (bnz eXp Tiv + th,v)) + log Cn - 1]
n=1

(25)

(26)

(27)

N k N \%4
+ (bni(Ti,w" + 7Ttn7w” - Z [ <Z Z (bnz GXP Tiv + 7Tt,L,v)> + log Cn - 1‘|

x>~

—logT nyj —+ Zlogf Vi) Z( D(¥(yi) - \I’(Z %5))
- Z Z¢nz log ¢ni

n=1 i=1
= L2(’Y7 ¢7 C’a7 T? Tr)'

The lower bound_.2 is a function of the variational parametersy, ¢ — one finds the
optimal ~, ¢, { to maximize it. The combined lower bourd® on the whole corpus
D is then viewed as a function of the model parameters, 7, which are optimized
holding the variational parameters fixed. Variational paeter learning and model
parameter learning proceed alternatively to imprége

We use the variational distributiof(#, z|v, ¢) to approximate the true posterior
distributionp(d, z|w, t, 7, ) for inference. Notice the variational distribution is wv.r.
the maximizing variational parameteyse, ¢ explicitly, and model parameters 7, ©
implicitly.

3.2 Variational parameter Learning

We maximizeL2 w.r.t. the variational parametets ¢, ( by coordinate ascend. First
we maximizeL?2 with respect ta:

v

k
887‘23 = C772 (Z Z ¢nz exp(Ti,v + ’/Ttn,v)> - C;l (30)

v=11i=1

(28)

(29)



Setting it to zero and we find

\
CAH - Z Z d)nz exp(Ti,v + '/Tt,,,v)v (31)

v=11i=1
which is the maximum by verifying the second derivative.

Second we maximizé2 with respect tap. With the constrainEf:1 ¢nj =1 we
form the Lagrangian, and take the derivative:

AL2 + A ((z?zl ¢nj) - 1)

32
k
= V() - )
j=1
+(Tiwn + Tt w,) = Z ¢t exp(Ti,o + T, )
v=1
- IOg ¢nz -1
+A. (33)
Setting it to zero, the maximizing value is
ql)nz X exp ‘I] '71 Z 'VJ T’L aw, T 7Ttn,wn) - Z C;l eXp(Ti,v + 7715,“1))
v=1
(34)

Finally we maximizeL2 with respect toy. It can be shown the maximum is at

N
;Yi =ao; + Z ¢ni (35)
n=1

Notice the maximizing values df, ¢, v depend on each other. Therefore we need
to iteratively optimize the three until2 converges.

3.3 Model parameter Learning

Fixing the variational paramete{s¢, v, the variational marginal likelihood of the cor-
pusD as a function ofy, 7, wis L2p = Y00, L2,.

First the maximizing model parametercan be found with the same linear-time
Newton-Raphson algorithm in [1] A.4.2.

Then we maximizd.2, with respect tar. The relevant terms i, are:

L2D[T )
M Ng

= Z Z Z den i\Ti,wqn + 7T-Ifdmwdn)

d=1n=1i=1

M Ng vV ok
- Z Z [C;: (Z Z ¢dn i eXP Tiw + Ty, )) + IOg Cdn - 1] . (36)

d=1n=1 v=1i=1



The derivative with respect tg ,, is:

8L2D M Ng M Ng
5 =D banid(wan,v —<Zch;%,iexp(mdn,y)) exp(7i), (37)

o d=1n=1 d=1n=1

whered(z,2’) = 1if x = 2/, and 0 otherwise. Far = 1...V, setting the derivative
to zero we find

M Ny M Ny
Tiw = log <Z Z ¢dn,i5(wdn,v)) — log (Z Z Colban,i exp(ﬂ'tdmv)> . (38)

d=1n=1 d=1n=1

Finally we maximizeL2p with respect tar. The derivative with respect tot, v

is:

L2 M Ng I Ny
D

Er Z Z Z d)d’n i tdn, wd?’l) <Z Z Z Cdn ¢dn i eXP Ti u) (tdn7 t)) exp(ﬂ't,v)- (39)
v d=1n=11i=1 d=1n=1i=1

Forv =1...V, setting the derivative to zero we find

M Ny M Ng
log <Z Z Z (bdn 7 td’ru (wdna ) log <Z Z Z Cdn ¢dn i eXP Ti, v) (td’ru )) . (40)

d=1n=1i=1 d=1n=1i=1

Notice 7 appears int’s maximum solution and vice versa. Therefore we iterate
(38) and (40) untilr and7 converge, which happens quickly in practice.

4 A Toy Example

To illustrate the benefit of tagLDA, we create a toy exampléolews. On a vocab-
ulary of 9 words, we specify 3 topic parametersvhich are the upper three rows in
Figure 2. We also specify 3 tag parametera/hich are the lower three rows in the
same figure. These parameters are smoothed and do not cogrtain

With these parameters, we generate a corpus of 300 docunddirdecuments are
40 words long. For each word position, a tag is chosen withgidity 0.6, 0.3, 0.1 for
tags 1, 2, 3 respectively. All words in a document share theedapic, which is chosen
uniformly from topics 1, 2, 3. Given tagand topici, a word is generated according
to the multinomial proportional texp(; + m;). Since there are three topics and three
tags, nine word multinomials are possible; They are platideigure 3.

For tagLDA, the input is the corpus and the tags. That is, &mheword in the
corpus we give the corresponding tag (1, 2, or 3) as domaiwleage to tagLDA.
Therefore there are three tag parametet® learn. We ask tagLDA to learn three
topics parameters. tagLDA optimizes the lower bound?2 (29), which converges
to -20816. We plot the learned parameterand« in Figure 4. tagLDA is able to
approximate the intended factored representation. Wiletirned parametersand,
the word posterior given a topicand tagt in tagLDA is the multinomial proportional
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exp(r)

Figure 2: The original parametersw used to generate the toy corpus
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Figure 3: The nine word multinomials out of the combinatién@ndx
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exp(7)
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Figure 4: The parameters 7 learned by tagLDA

word

Figure 5: The nine multinomial distributions of tagLDA.
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word

Figure 6: Topics learned by standard LDA

to exp(r; + m). We show the nine multinomials in Figure 5, which are simttar
Figure 3 as they should be.

We ran standard LDA on the toy example for comparison. We &3k to learn
three topics too. LDA optimizes a variational lower boundtoalog likelihood, which
converges to -23414. The log likelihood bound is worse tleyh DA. We plot the
topics learned by LDA in Figure 6. The topic probabilities aot uniform as those in
the upper panel of Figure 2. This is because LDA attempts pta@xthe asymmetry
introduced by uneven tag distributions.

5 A Small Text Corpus

We selected 45 documents from AP néwviis form a small corpus. 15 of the documents
are about politics, 15 about finance, and the remaining 1&Gtakar. We converted all
words into lower case, used a stop list of 300 words, and aifmrecy cutoff of 5 on the
whole AP data, to obtain a vocabulary of about 10,000 wordsofier preprocessing
was carried out. We then ran a link parser on the documentsthiBoexperiment, the
parser was used as a part-of-speech tagger. Each word edtaggnoun’ (n), ‘verb’
(v) or ‘other’ (0).

Given these three kinds of tags we ran tagLDA on the 45 doctsnesking for
three topics. The lower bound on log likelihoab2, converges to -43916. tagLDA
learned topic parametersg, 72, 73 and tag parameters,, 7, 7,, €ach is a vocabulary-
sized vector. Given topitand tagp the word probability isP (w| 1, m,) o< exp(Tey +
Tpw). We show the top 10 words with the largest probabilities ithear combination
in Figure 7. Not surprisingly, tagLDA learned to separatam® verbs and other words
according to the tag.

As a comparison we also ran standard LDA on the 45 documeskigafor three
topics. The lower bound on log likelihood converges to -51.2%/e show the top 10
words in each topic in Figure 8. The distinction of noun, vether is not present since
this information is not available to standard LDA. We coultyé trained a three-topic
LDA model separately for noun, verb and other words. This ld@chieve similar
word distributions as tagLDA, but the number of parametevslad be nine for LDA,
while tagLDA uses only six parameters.

1The same AP corpus in the LDA distribution at http://www.esKkeley.edutblei/lda-c/ap.tgz
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tag=n, topic=politics

tag=n, topic=finance

tag=n, topieew

0.020710 campaign
0.015500 state
0.015302 poll
0.014452 convention
0.014118 support
0.013945 primary
0.011902 sen
0.011052 delegates
0.010925 president
0.010201 voters

0.054672 market
0.035832 index
0.032898 trading
0.027564 prices
0.026186 volume
0.026184 stock
0.024808 shares
0.022024 stocks
0.017917 session
0.017917 average

0.018956 army
0.015796 hostages
0.014217 government
0.014217 gunmen
0.009478 attack
0.009478 soldiers
0.008760 forces
0.008688 miles
0.008688 troops
0.008688 israeli

tag=v, topic=politics

tag=v, topic=finance

tag=v, topicaw

0.027641 going
0.022763 think
0.014633 vote
0.011381 asked
0.011381 brokered
0.010295 made
0.009755 see
0.009755 got
0.009755 campaigning
0.008650 added

0.051953 rose
0.033524 came
0.031971 outnumbered
0.027975 fell
0.023978 listed
0.017555 reported
0.015986 totaled
0.015986 traded
0.011989 go
0.011989 led

0.048936 killed
0.016312 freed
0.014022 told
0.011845 fighting
0.011263 shot
0.010875 opened
0.010875 died
0.010875 wounded
0.009062 go
0.009062 kidnapped

tag=0, topic=politics

tag=o0, topic=finance

tag=o0, topieEw

0.030569 i

0.029899 dukakis
0.023104 south
0.021745 jackson
0.020386 percent
0.018133 bush
0.017667 gephardt
0.016988 dole
0.016308 democratic
0.016185 new

0.034266 million
0.029793 stock
0.026817 dow
0.026788 exchange
0.022347 unchanged
0.019368 jones
0.017878 big
0.017873 nyse
0.016658 new
0.016443 wall

0.025995 police
0.019496 two
0.018568 people

0.017639 south
0.013926 red
0.011141 thursday
0.010212 new
0.010212 15
0.008798 military
0.008355 i

Figure 7: The top 10 words and their probabilities in eachctdgag combination
learned by tagLDA on the small AP corpus.
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topic=politics topic=finance topic=war

0.013957 i 0.024101 market 0.009347 police
0.013922 dukakis 0.023651 stock 0.009347 army
0.012024 bush 0.015768 index 0.009013 Kkilled
0.010758 south 0.014531 trading 0.007891 two
0.010441 dole 0.013948 million 0.006677 people

0.010045 jackson 0.012129 prices 0.006677 hostages
0.009492 percent 0.012126 exchange 0.006343 south
0.009492 primary 0.011523 volume 0.006009 government
0.009475 gore 0.010916 shares 0.006009 gunmen
0.008752 campaign 0.010916 dow 0.005341 bank

Figure 8: The top 10 words learned by standard LDA on the sAfltorpus.

6 AP: A Larger Text Corpus

We ran tagLDA on 2243 AP news articlésAgain each word is tagged as noun, verb
or other. The corpus has 434979 words. The vocabulary siz@lig4. We asked for
50 topics. tagLDA converged in 25 iterations with log likedlod bound -2799598. We
show the top 10 words from selected topics learned with tagltDFigure 9.

We also ran standard LDA under the same settings. LDA coedeirg 30 itera-
tions with log likelihood bound -3158008. Figure 10 shows top 10 words in the
corresponding topics.

7 The WebKB Corpus

For the WebKB corpud we used two tags: b='body text’ for words in the body text of
an html page, and a='anchor text’ for words in a hyperlinke Borpus has 8099 html
pages. Each page is treated as a document. We kept word®tisits of more than
one letter, converted them into lower case, and used a stdpligb. The processed
corpus has 1.3 million words. The vocabulary size is 9898 witrequency cutoff. We
ran tagLDA with 30 topics. tagLDA converged in 30 iterationgth a lower bound of
-9674409 on log likelihood.

In Figure 11 we show the top 10 words in six selected topigsaisgely with the
two tags. For the anchor text tag, tagLDA learns the wordsfteguently appear on
hyperlinks, such apostscript, publications, resume, tar.gz, slide, solution, etc.

2The same AP corpus in the LDA distribution at http://www.esKkeley.edutblei/lda-c/ap.tgz
Shittp://iwww.cs.cmu.edu/afs/cs.cmu.edu/project/theav@@y/data/webkb-data.gtar.gz
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tag=o0, topic=health

tag=n, topic=health

tag=v, topicdtiea

0.016932
0.016657
0.016476
0.015216
0.010832
0.009916
0.009315
0.008834
0.008361
0.007884

fda
medical
dr

new

i

people
last
federal
two
year

0.017016
0.015987
0.011704
0.010520
0.009013
0.008909
0.008291
0.007752

patients
drug
heart
health
research
children
researchers
company

0.011801
0.010072
0.009529
0.009292
0.008741
0.008541

0.008359

0.007660

say
think
done
approved
treated
says
tested
take

0.007538 officials
0.007335 aspirin

0.006936 produce
0.006456 make

tag=o0, topic=space

tag=n, topic=space

tag=v, topic=space

0.025630
0.017886
0.014641
0.014353
0.013671
0.011961
0.010080
0.009874
0.009604
0.009204

nasa
earth

two
venus
spacecraft
magellan
first

mars
space
soviet

0.033668
0.030260
0.015557
0.012612
0.010747
0.009480
0.008723
0.008507
0.007826
0.007532

space
shuttle
mission
launch
time
rocket
planet
telescope
astronauts
system

0.018064 made

0.017410
0.014456
0.011008
0.009746
0.009159
0.008764
0.008667

0.008078

0.008002

make
launch
launched
planned
take
go
released
scheduled
manned

tag=o0, topic=iraq

tag=n, topic=iraq

tag=v, topic=iraq

0.053580
0.034202
0.028902
0.024496
0.020978
0.018748
0.018244
0.016660
0.015744
0.014341

iraq
kuwait
military
saudi
united
gulf
arabia
bush
saddam
persian

0.034619
0.021629
0.017273
0.015365
0.013507
0.012611
0.011997
0.011673
0.011476
0.011141

iraqi
troops
american
war
forces
president
invasion
oil
defense
officials

0.014466
0.012714
0.011458
0.011372
0.010901
0.008841
0.008632

0.008474

0.008038

0.007746

asked
sent

go
made
held
say
invaded

leave

told

take

Figure 9: The top 10 words and their probabilities in seléttpic / tag combinations
learned by tagLDA on the large AP corpus.

14



topic=health topic=iraq topic=space
0.008081 drug 0.024015 iraq 0.016574 space
0.007592 patients 0.015315 kuwait 0.011573 shuttle
0.006566 health 0.014820 iraqi 0.009906 nasa

0.005777 fda 0.014201 military 0.008528 earth
0.005624 heart 0.012394 saudi 0.007515 launch
0.005415 dr 0.011004 gulf 0.006466 mission
0.005250 medical 0.009460 united 0.006079 two
0.005168 new 0.009104 war 0.005547 venus

0.005025 research 0.008582 arabia 0.005283 spacecraft
0.004526 children 0.008456 bush 0.005123 time

Figure 10: The top 10 words (and their probabilities) in s&ld topics learned by
standard LDA on the large AP corpus.

8 The NIPS Corpus

We manually tagged 1602 papers from Neural Information &sing Systems (NIPS)
vol. 0 — 124, We tagged each word with the section it is in. There are stagtypes:

h header, anything before abstract: title, authors, addres

a the abstract

i theintroduction section of the paper
b main body of the paper
c
k
r

the conclusion / discussion / summary section of the paper

the acknowledgments

the references
We kept words that consists of more than one letters, caetvéhiem into lower case,
and used a stopword list. The processed corpus has 2.3milbiods. The vocabulary
size is 8100 with a frequency cutoff. We ran tagLDA with 30itsp tagLDA converged
in 20 iterations with a lower bound of -16099655 on log likelod. In Figure 12 we
show the top 10 words in three selected topics, with all taghinations.

It is interesting to see the interaction between the 30 tpaiameter vectors and

7 tag parameter vectorsin the factored representation. First of all, some tags seem
to be dominated by the topic parameter. This effect is eafiggirominent for tags a,
i, b, c. Intuitively it is what one would expect, as the abstrintroduction, body and
conclusion sections are about the same topic. Meanwhiletags have its distinct
word distribution that overwhelms the topic parameter, tnasiceably tag k. All top-
ics with tag k exhibits common acknowledgment words likeafgtr supported, thank’.
Finally the tags h and r are in the middle: their word distiid is roughly a half-half
combination of the topic and tag parameters. Tag h contaitistbpic-specific words
‘neural, networks, speech, recognition’ from the titles] &ag-specific words ‘univer-
sity, department’ from the affiliations. Tag r contains $amtopic-specific words, and
tag-specific words ‘journal, press, proc, vol'. We concltidat the factored represen-

4The un-tagged corpus comes from Sam Roweis at http://wwatosto.edui-roweis/data.html
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tag=b, topic 1 tag=a, topic 1 tag=b, topic 2 tag=a, topic 2
0.027352 pp 0.043408 postscript| 0.042366 file 0.360304 ps
0.025519 proceedings 0.023498 acm 0.033877 ps 0.031480 ftp
0.025408 conference 0.016093 ieee 0.032590 hello 0.028412 gz
0.022164 ieee 0.014476 real 0.028990 files 0.027834 tar
0.019816 acm 0.014272 report 0.020195 ftp 0.027094 pub
0.016230 international 0.013964 publication®.019446 directory 0.024495 file
0.014353 symposium  0.013829 conferen¢e0.011910 window 0.022174 directory
0.014010 vol 0.013779 computing 0.011171 public 0.018556 readme
0.013411 time 0.012498 abstract | 0.010971 seed 0.017426 latex
0.011079 th 0.012086 technical | 0.010481 version 0.015414 tex

tag=b, topic 3 tag=a, topic 3 tag=b, topic 4 tag=a, topic 4
0.038483 home 0.090302 cs 0.044209 lecture 0.110431 slide
0.034131 am 0.065067 edu 0.018009 logic 0.105939 lecture
0.028080 cs 0.059314 home 0.016922 tree 0.025189 format
0.020557 interests 0.014164 resume | 0.014621 data 0.024708 notes
0.018242 student 0.011802 columbia| 0.013322 structures 0.024291 slides
0.017917 edu 0.011165 student | 0.013154 notes 0.022500 gif
0.016436 phone 0.010680 homepage 0.011297 trees 0.016721 logic
0.014113 fax 0.010626 graduate | 0.010682 chapter 0.015202 c¢s
0.012872 office 0.009934 new 0.009741 format 0.014314 postscript
0.012539 last 0.009767 publicationd®.009087 functions 0.012711 tree

tag=b, topic 5 tag=a, topic 5 tag=b, topic 6 tag=a, topic 6
0.030285 due 0.080319 postscript| 0.047212 programming 0.050997 programming
0.026808 program 0.071853 assignmen.024635 languages 0.022725 languages
0.026076 assignment  0.071069 homework0.019574 language 0.020991 language
0.015785 homework 0.032510 solution | 0.015835 design 0.014813 software
0.011901 problem 0.026703 program | 0.015237 software 0.013375 program
0.011669 code 0.025780 solutions | 0.012700 program 0.012944 design
0.010428 project 0.023100 cs 0.010638 compiler 0.012457 ece
0.009513 class 0.018283 project 0.010404 programs 0.011931 compiler
0.009420 file 0.016141 due 0.010088 object 0.011874 object
0.009191 assignments 0.014712 problem| 0.009591 oriented 0.011028 cs

Figure 11: The top 10 words (and their probabilities) in stlested topics, with
b='body text’ and a=‘anchor text’ tags respectively, lezmdrby tagLDA on WebKB

corpus.

16



tation is appropriate for the corpus.

9 Perplexity

Both tagLDA and LDA models are trained unsupervised. Thenahimeasure of per-
formance is the log likelihood on some unseen held-out riquivalently we com-
pute theperplexity on the held-out set, a conventional measure in languagelingde
The perplexity is a monotonically decreasing function af thg likelihood, and can
be understood as the predicted number of equally likely s/éoda word position on
average. For a held-out sBtof M documents the perplexity is defined as

_ Sl 10gp(Wd|td)>

M
d=1 Naq

perplexity D) = exp ( (41)

whereN, is the number of words in documedit Note (41) computes the conditional
perplexity given the tags,. For LDA it reverts top(wq|ty) = p(wy) since the tag
information is not used. Also note we can only compute an uppend of the per-
plexity, because we lower-bound the log likelihood withiational methods for both
tagLDA and LDA.

We compute and compare the perplexity of tagLDA and LDA onAReWebKB
and NIPS corpora with aforementioned tags respectively. eBoh corpus we run 5
trials in which we randomly hold out 20% of the document fatt@and train on the
remaining 80%. We train tagLDA and LDA with the same stoppanderia. The
number of topics in both models is systematically varied.

We plot the average perplexity on held-out data in Figure BY. utilizing the
tag information tagLDA has lower perplexity on all three pora. That is, tagLDA
is a better model by assigning higher likelihood to held-datuments than LDA.
We also note that the reduction in perplexity strongly dejseon the type of tags.
Intuitively when different tags tend to mark distinctive me, perplexity reduction is
large. For example the part-of-speech tags in the AP cor@r& nouns, verbs etc.,
and tagLDA has a 50% perplexity reduction. On the other hahdnndifferent tags
mark similar words the perplexity reduction is small, ashia &anchor-text / body-text
tags for WebKB corpus.

10 Document Classification

The ‘topics’ learned by tagLDA and LDA can be viewed as a cemcepresentation
of the original document. Here the topics are representetidyariational posterior
vector P(y|w). One can perform document classification in a discrimireatrame-
work, by usingy as feature vectors in a support vector machine (SVM). It khba
emphasized that both tagLDA and LDA are trained with unsuiped learning, and
are therefore not geared towards classification.

We are interested in whether the topics learned with tagLDRAA perform dif-
ferently in classification. It is important to note that tlag information is what makes
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tag=h a i b c k r

university eye eye eye model supported neural
institute model head model system grant eye
department system model head cells acknowledgments  visual
edu abstract system system head research journal
salk head cells figure eye acknowledgements  brain
electrical visual visual cells direction thank press
science cells motor direction visual foundation motor
brain motor direction position motor project neuroscience
neurobiology vor neurons velocity neurons work movements
ca neurons sensory map target eye auditory
university abstract function function functions grant rau
department networks functions theorem networks supported networks
neural functions networks let function research pp
networks neural neural functions bounds acknowledgemernteory

edu function number bound theorem work ieee
engineering network network threshold bound gratefully mpatation
science bounds bounds number results afosr proc
computer show paper proof number thank vol

ca bound class case neural nsf bounds
australia paper threshold size complexity discussions ctioms
recognition recognition recognition training recognitio darpa recognition
speech speech speech hmm speech work speech
university system hmm word hmm acknowledgements neural
neural hmm system system system arpa morgan
street network training recognition  training research eiee
department abstract models network context thank systems
systems speaker context context models acknowledgmentstwornks
technology context network speech model steve pp

ca models neural probabilities  hybrid acknowledgement c pro
networks word model model network authors processing

Figure 12: The top 10 words in three selected topics (thengdle and bottom panel
respectively), and with all tag combinations (the columtegrned by tagL DA on NIPS

corpus.
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tagLDA different from LDA. The tags however may or may not dakrect correlation
with the classification goal.

For these experiments we used the WebKB corpus with 8106ntkects. We train
a tagLDA and a LDA model respectively, both with 60 topics.eThgs for tagLDA
are ‘anchor text’ vs. ‘body text’ as mentioned before. Eackuwment therefore is
represented by a 60-dimensionalector under tagLDA model, and a different 60-
dimensional vector under LDA. The classification goals hesset of natural categories
of WebKB data, namely whether the document isoarse, faculty, student, or other
web page. For simplicity we create four binary classificatiasks of one category
vs. the rest. We use theV M9t software [4] with exactly the same settings for
tagLDA and LDA. We vary the proportion of training data fro% to 70%. Figure 14
compares the classification accuracy. Each point is an gwera30 random trials (the
same random split is applied to both tagLDA and LDA). For ctetgness we also
include the accuracy where individual words are used as Saétufes.

The tag of anchor/body text is not directly related to anyhef¢lassification tasks.
Therefore it is interesting to note that in three out of foMperiments (a — c), the
tagLDA topic representation gives a small improvement ¢herLDA representation;
but on (d) tagLDA is worse than LDA.

11 Image Categorization

We use the image dataset from [5], which contains 13 categofinatural scenes and
a total of 3859 images. Each image is gray-scale. The avesiageof an image is
about250 x 300 pixels. Image patches are sampled at an evenly spaced gridof0
pixels. The patches have side lengths randomly between 30 pixels. Each patch is
then resized ta1 x 11 pixels. The histogram of each patch is stretched over théevho
range.

We randomly split the images into a training set and a tesEsth scene category
has 100 training images and the rest are test images. Inthata are 1300 training
images and 2559 test images.

We learn a codebook by randomly sampling 2% of the patches &#oandom half
of the training set. We run k-means algorithm on the sampédhes to generafé
clusters. We use the Euclidean distance between patchesV Thuster centers are
then used as codewords. In the experiments we Used200 and 1600 respectively.
With the codebook, all images are converted into a bag-tfip@presentation, where
each patch is quantized to its closest codeword.

For tagLDA we tag each patch by its vertical position in theg®a. This is moti-
vated by the intuition that many images show vertical inhgameity. Specifically we
divide an image evenly into four parts along its height. Acpds tagged by the part
its top-left corner falls into.

We note that both LDA and tagLDA are unsupervised learningleiso They are
used only to generate feature vectors. We separately tiaddizand a tagLDA model
on the 1300 training imagedgthout using thelabels. This is different from [5], who use
a supervised variant of the LDA model that incorporates déihels. In all experiments
we use 40 topics. We then perform inference on the test im3géée 1 lists the test set
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codebook/ | LDA  tagLDA
200 | 130.0 126.0
1600 | 575.1 555.5

Table 1: Perplexity on test images for LDA and tagLDA

codebook/ | kernel bag-of-patch LDA tagLDA~

200 | linear 58.8% 53.0% 53.0%
poly3 63.0% 57.3% 55.4%
1600 | linear 60.9% 56.2% 56.8%
poly3 66.1% 58.6% 58.0%

Table 2: Accuracies on test images usiig M 9"

perplexity. Similar to text tasks, tagLDA gives lower peaxxity (i.e. higher predicted
probability) on test images than LDA.

We use the inferred posterior variational Dirichlet parterey (a 40-vector) as a
reduced feature representation for each image. Note tg@aatibag-of-patch repre-
sentation ha¥” = 200 or 1600 features. Thus the representation achieves 80% and
97.5% feature reduction.

For classification, we compare the performancéBfA/'9"t under the three fea-
ture representations: bag-of-patch raw counts (200 or t@@ensions), LDAy vec-
tor (40 dimensions), and tagLDA vector (40 dimensions). We train the SVMs on
the training set and test them on the test set with one-viaall 3-class classifica-
tion. For each feature representation, we use a linear kandea cubic (poly3) kernel
K(z,y) = (x Ty + 1) respectively. Table 2 lists the test set accuracies. Werebse
that:

e Alarger codebook is better.

e Raw bag-of-patch features are better than the reduced LI0AaglDA ~ fea-
tures when using SVM. This is consistent with the text cfacsgion experiments
in the previous section.

e LDA and tagLDA~ features perform similarly for classification. This is gisa
pointing, but also consistent with previous text classiftoaexperiments.

e We achieve 66.1% accuracy with 1600 codewords, simple bagtch features,
and SVM poly3 kernel. This is comparable to the 64.0% acgurggorted in [5]
with a LDA-like theme model. We suspect the fact that SVM isszdminative
model while theme model is generative might have played @, mihce it is
known that discriminative models tend to yield better dfasstion accuracies.
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12 Discussions

We introduced tagLDA model, a factored representationriadels the structure of a
document. In experiments tagLDA is better than LDA in termgest set perplexity.
But there is no significant advantage when tagLDA is usedI&gsification.

TagLDA is only the first step towards incorporating domaimkiedge into topic
models. There are several future directions:

e Allowing unknown tags for some of the words.
e Allowing multiple tags per word.

e Extending tagLDA to express higher order domain knowledgbe tags de-
scribe knowledge on individual words. An obvious extensgto use links that
describe knowledge on pairs of words, for example thoseirmddeausing a link
parser.
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