
Semi-Supervised Learning with Graphs

Xiaojin Zhu
May 2005

CMU-LTI-05-192

Language Technologies Institute

School of Computer Science

Carnegie Mellon University

zhuxj@cs.cmu.edu

DOCTORAL THESIS

THESISCOMMITTEE

John Lafferty, Co-chair
Ronald Rosenfeld, Co-chair

Zoubin Ghahramani
Tommi Jaakkola, MIT

ii

Abstract

In traditional machine learning approaches to classification, one uses onlya labeled
set to train the classifier. Labeled instances however are often difficult, expensive,
or time consuming to obtain, as they require the efforts of experienced human
annotators. Meanwhile unlabeled data may be relatively easy to collect, but there
has been few ways to use them. Semi-supervised learning addresses this problem
by using large amount of unlabeled data, together with the labeled data, to build
better classifiers. Because semi-supervised learning requires less human effort and
gives higher accuracy, it is of great interest both in theory and in practice.

We present a series of novel semi-supervised learning approaches arising from
a graph representation, where labeled and unlabeled instances are represented as
vertices, and edges encode the similarity between instances. They address the fol-
lowing questions: How to use unlabeled data? (label propagation); What isthe
probabilistic interpretation? (Gaussian fields and harmonic functions); What if
we can choose labeled data? (active learning); How to construct good graphs?
(hyperparameter learning); How to work with kernel machines like SVM? (graph
kernels); How to handle complex data like sequences? (kernel conditional ran-
dom fields); How to handle scalability and induction? (harmonic mixtures). An
extensive literature review is included at the end.

iii

iv

Acknowledgments

First I would like to thank my thesis committee members. Roni Rosenfeld brought
me into the wonderful world of research. He not only gave me valuable advices
in academics, but also helped my transition into a different culture. John Lafferty
guided me further into machine learning. I am always impressed by his mathe-
matical vigor and sharp thinking. Zoubin Ghahramani has been a great mentor
and collaborator, energetic and full of ideas. I wish he could stay in Pittsburgh
more! Tommi Jaakkola helped me by asking insightful questions, and giving me
thoughtful comments on the thesis. I enjoyed working with them, and benefited
enormously from the interactions with them.

I spent nearly seven years in Carnegie Mellon University. I thank the fol-
lowing collaborators, faculties, staffs, fellow students and friends, whomade my
graduate life a very memorable experience: Maria Florina Balcan, Paul Bennett,
Adam Berger, Michael Bett, Alan Black, Avrim Blum, Dan Bohus, Sharon Burks,
Can Cai, Jamie Callan, Rich Caruana, Arthur Chan, Peng Chang, ShuchiChawla,
Lifei Cheng, Stanley Chen, Tao Chen, Pak Yan Choi, Ananlada Chotimongicol,
Tianjiao Chu, Debbie Clement, William Cohen, Catherine Copetas, Derek Dreyer,
Dannie Durand, Maxine Eskenazi, Christos Faloutsos, Li Fan, Zhaohui Fan, Marc
Fasnacht, Stephen Fienberg, Robert Frederking, Rayid Ghani, AnnaGoldenberg,
Evandro Gouvea, Alexander Gray, Ralph Gross, Benjamin Han, ThomasHarris,
Alexander Hauptmann, Rose Hoberman, Fei Huang, Pu Huang, Xiaoqiu Huang,
Yi-Fen Huang, Jianing Hu, Changhao Jiang, Qin Jin, Rong Jin, Rosie Jones, Szu-
Chen Jou, Jaz Kandola, Chris Koch, John Kominek, Leonid Kontorovich, Chad
Langley, Guy Lebanon, Lillian Lee, Kevin Lenzo, Hongliang Liu, Yan Liu,Xi-
ang Li, Ariadna Font Llitjos, Si Luo, Yong Lu, Matt Mason, Iain Matthews,An-
drew McCallum, Uwe Meier, Tom Minka, Tom Mitchell, Andrew W Moore, Jack
Mostow, Ravishankar Mosur, Jon Nedel, Kamal Nigam, Eric Nyberg, AliceOh,
Chris Paciorek, Brian Pantano, Yue Pan, Vasco Calais Pedro, Francisco Pereira,
Yanjun Qi, Bhiksha Raj, Radha Rao, Pradeep Ravikumar, Nadine Reaves, Max
Ritter, Chuck Rosenberg, Steven Rudich, Alex Rudnicky, Mugizi Robert Rweban-
gira, Kenji Sagae, Barbara Sandling, Henry Schneiderman, Tanja Schultz, Teddy

v

vi

Seidenfeld, Michael Seltzer, Kristie Seymore, Minglong Shao, Chen Shimin, Rita
Singh, Jim Skees, Richard Stern, Diane Stidle, Yong Sun, Sebastian Thrun, Ste-
fanie Tomko, Laura Mayfield Tomokiyo, Arthur Toth, Yanghai Tsin, Alex Waibel,
Lisha Wang, Mengzhi Wang, Larry Wasserman, Jeannette Wing, Weng-Keen Wong,
Sharon Woodside, Hao Xu, Mingxin Xu, Wei Xu, Jie Yang, Jun Yang, KeYang,
Wei Yang, Yiming Yang, Rong Yan, Rong Yan, Stacey Young, Hua Yu, Klaus
Zechner, Jian Zhang, Jieyuan Zhang, Li Zhang, Rong Zhang, Ying Zhang, Yi
Zhang, Bing Zhao, Pei Zheng, Jie Zhu. I spent some serious effort finding ev-
eryone from archival emails. My apologies if I left your name out. In particular, I
thank you if you are reading this thesis.

Finally I thank my family. My parents Yu and Jingquan endowed me with the
curiosity about the natural world. My dear wife Jing brings to life so much love
and happiness, making thesis writing an enjoyable endeavor. Last but not least, my
ten-month-old daughter Amanda helped me ty pe the ,manuscr ihpt .

Contents

1 Introduction 1
1.1 What is Semi-Supervised Learning? 1
1.2 A Short History . 2
1.3 Structure of the Thesis . 4

2 Label Propagation 5
2.1 Problem Setup . 5
2.2 The Algorithm . 6
2.3 Convergence . 6
2.4 Illustrative Examples . 7

3 What is a Good Graph? 9
3.1 Example One: Handwritten Digits 9
3.2 Example Two: Document Categorization 12
3.3 Example Three: The FreeFoodCam 12
3.4 Common Ways to Create Graphs 16

4 Gaussian Random Fields 21
4.1 Gaussian Random Fields . 21
4.2 The Graph Laplacian . 22
4.3 Harmonic Functions . 22
4.4 Interpretation and Connections 23

4.4.1 Random Walks . 23
4.4.2 Electric Networks . 24
4.4.3 Graph Mincut . 24

4.5 Incorporating Class Proportion Knowledge 25
4.6 Incorporating Vertex Potentials on Unlabeled Instances 26
4.7 Experimental Results . 26

vii

viii CONTENTS

5 Active Learning 35
5.1 Combining Semi-Supervised and Active Learning 35
5.2 Why not Entropy Minimization 38
5.3 Experiments . 39

6 Connection to Gaussian Processes 45
6.1 A Finite Set Gaussian Process Model 45
6.2 Incorporating a Noise Model . 47
6.3 Experiments . 47
6.4 Extending to Unseen Data . 50

7 Graph Hyperparameter Learning 51
7.1 Evidence Maximization . 51
7.2 Entropy Minimization . 53
7.3 Minimum Spanning Tree . 56
7.4 Discussion . 56

8 Kernels from the Spectrum of Laplacians 57
8.1 The Spectrum of Laplacians . 57
8.2 From Laplacians to Kernels . 58
8.3 Convex Optimization using QCQP 60
8.4 Semi-Supervised Kernels with Order Constraints 61
8.5 Experiments . 64

9 Sequences and Beyond 69
9.1 Cliques and Two Graphs . 70
9.2 Representer Theorem for KCRFs 71
9.3 Sparse Training: Clique Selection 73
9.4 Synthetic Data Experiments . 74

10 Harmonic Mixtures 79
10.1 Review of Mixture Models and the EM Algorithm 80
10.2 Label Smoothness on the Graph 82
10.3 Combining Mixture Model and Graph 83

10.3.1 The Special Case withα = 0 83
10.3.2 The General Case withα > 0 86

10.4 Experiments . 89
10.4.1 Synthetic Data . 89
10.4.2 Image Recognition: Handwritten Digits 91
10.4.3 Text Categorization: PC vs. Mac 92

CONTENTS ix

10.5 Related Work . 92
10.6 Discussion . 94

11 Literature Review 97
11.1 Q&A . 97
11.2 Generative Mixture Models and EM 99

11.2.1 Identifiability . 99
11.2.2 Model Correctness . 100
11.2.3 EM Local Maxima . 101
11.2.4 Cluster and Label . 101

11.3 Self-Training . 101
11.4 Co-Training . 102
11.5 Maximizing Separation . 103

11.5.1 Transductive SVM . 103
11.5.2 Gaussian Processes . 104
11.5.3 Information Regularization 104
11.5.4 Entropy Minimization 105

11.6 Graph-Based Methods . 105
11.6.1 Regularization by Graph 105
11.6.2 Graph Construction . 109
11.6.3 Induction . 109
11.6.4 Consistency . 110
11.6.5 Ranking . 110
11.6.6 Directed Graphs . 110
11.6.7 Fast Computation . 111

11.7 Metric-Based Model Selection 111
11.8 Related Areas . 112

11.8.1 Spectral Clustering . 112
11.8.2 Clustering with Side Information 112
11.8.3 Nonlinear Dimensionality Reduction 113
11.8.4 Learning a Distance Metric 113
11.8.5 Inferring Label Sampling Mechanisms 115

12 Discussions 117

A Update Harmonic Function 121

B Matrix Inverse 123

C Laplace Approximation for Gaussian Processes 125

x CONTENTS

D Evidence Maximization 129

E Mean Field Approximation 135

F Comparing Iterative Algorithms 139
F.1 Label Propagation . 140
F.2 Conjugate Gradient . 140
F.3 Loopy belief propagation on Gaussian fields 140
F.4 Empirical Results . 144

Notation 161

Chapter 1

Introduction

1.1 What is Semi-Supervised Learning?

The field of machine learning has traditionally been divided into three sub-fields:

• unsupervised learning. The learning system observes an unlabeled set of
items, represented by their features{x1, . . . ,xn}. The goal is to organize
the items. Typical unsupervised learning tasks include clustering that groups
items into clusters; outlier detection which determines if a new itemx is sig-
nificantly different from items seen so far; dimensionality reduction which
mapsx into a low dimensional space, while preserving certain properties of
the dataset.

• supervised learning. The learning system observes a labeled training set
consisting of (feature, label) pairs, denoted by{(x1, y1), . . . , (xn, yn)}. The
goal is to predict the labely for any new input with featurex. A supervised
learning task is called regression wheny ∈ R, and classification wheny
takes a set of discrete values.

• reinforcement learning. The learning system repeatedly observes the envi-
ronmentx, performs an actiona, and receives a rewardr. The goal is to
choose the actions that maximize the future rewards.

This thesis focuses on classification, which is traditionally a supervised learn-
ing task. To train a classifier one needs the labeled training set{(x1, y1), . . . , (xn, yn)}.
However the labelsy are often hard, expensive, and slow to obtain, because it may
require experienced human annotators. For instance,

• Speech recognition. Accurate transcription of speech utterance at phonetic
level is extremely time consuming (as slow as 400×RT, i.e. 400 times longer

1

2 CHAPTER 1. INTRODUCTION

than the utterance duration), and requires linguistic expertise. Transcription
at word level is still time consuming (about 10×RT), especially for conver-
sational or spontaneous speech. This problem is more prominent for foreign
languages or dialects with less speakers, when linguistic experts of that lan-
guage are hard to find.

• Text categorization. Filtering out spam emails, categorizing user messages,
recommending Internet articles – many such tasks need the user to label
text document as ‘interesting’ or not. Having to read and label thousandsof
documents is daunting for average users.

• Parsing. To train a good parser one needs sentence / parse tree pairs, known
as treebanks. Treebanks are very time consuming to construct by linguists.
It took the experts several years to create parse trees for only a few thousand
sentences.

• Video surveillance. Manually labeling people in large amount of surveil-
lance camera images can be time consuming.

• Protein structure prediction. It may take months of expensive lab work by
expert crystallographers to identify the 3D structure of a single protein.

On the other hand, unlabeled datax, without labels, is usually available in large
quantity and costs little to collect. Utterances can be recorded from radio broad-
cast; Text documents can be crawled from the Internet; Sentences are everywhere;
Surveillance cameras run 24 hours a day; DNA sequences of proteins are readily
available from gene databases. The problem with traditional classification methods
is: they cannot use unlabeled data to train classifiers.

The questionsemi-supervised learningaddresses is: given a relatively small
labeled dataset{(x, y)} and a large unlabeled dataset{x}, can one devise ways
to learn from both for classification? The name “semi-supervised learning”comes
from the fact that the data used is between supervised and unsupervised learning.
Semi-supervised learning promises higher accuracies with less annotating effort.
It is therefore of great theoretic and practical interest. A broader definition of
semi-supervised learning includes regression and clustering as well, butwe will
not pursued that direction here.

1.2 A Short History of Semi-Supervised Learning

There has been a whole spectrum of interesting ideas on how to learn fromboth
labeled and unlabeled data. We give a highly simplified history of semi-supervised

1.2. A SHORT HISTORY 3

learning in this section. Interested readers can skip to Chapter 11 for an extended
literature review. It should be pointed out that semi-supervised learning isa rapidly
evolving field, and the review is necessarily incomplete.

Early work in semi-supervised learning assumes there are two classes, and each
class has a Gaussian distribution. This amounts to assuming the complete data
comes from a mixture model . With large amount of unlabeled data, the mixture
components can be identified with the expectation-maximization (EM) algorithm.
One needs only a single labeled example per component to fully determine the
mixture model. This model has been successfully applied to text categorization.

A variant is self-training : A classifier is first trained with the labeled data. It
is then used to classify the unlabeled data. The most confident unlabeled points,
together with their predicted labels, are added to the training set. The classifier is
re-trained and the procedure repeated. Note the classifier uses its own predictions
to teach itself. This is a ‘hard’ version of the mixture model and EM algorithm.
The procedure is also called self-teaching , or bootstrapping1 in some research
communities. One can imagine that a classification mistake can reinforce itself.

Both methods have been used since long time ago. They remain popular be-
cause of their conceptual and algorithmic simplicity.

Co-training reduces the mistake-reinforcing danger of self-training. This recent
method assumes that the features of an item can be split into two subsets. Eachsub-
feature set is sufficient to train a good classifier; and the two sets are conditionally
independent given the class. Initially two classifiers are trained with the labeled
data, one on each sub-feature set. Each classifier then iteratively classifies the
unlabeled data, and teaches the other classifier with its predictions.

With the rising popularity of support vector machines (SVMs), transductive
SVMs emerge as an extension to standard SVMs for semi-supervised learning.
Transductive SVMs find a labeling for all the unlabeled data, and a separating
hyperplane, such that maximum margin is achieved on both the labeled data and
the (now labeled) unlabeled data. Intuitively unlabeled data guides the decision
boundary away from dense regions.

Recently graph-based semi-supervised learning methods have attracted great
attention. Graph-based methods start with a graph where the nodes are thelabeled
and unlabeled data points, and (weighted) edges reflect the similarity of nodes.
The assumption is that nodes connected by a large-weight edge tend to have the
same label, and labels can propagation throughout the graph. Graph-based meth-
ods enjoy nice properties from spectral graph theory. This thesis mainly discusses
graph-based semi-supervised methods.

We summarize a few representative semi-supervised methods in Table 1.1.

1Not to be confused with the resample procedure with the same name in statistics.

4 CHAPTER 1. INTRODUCTION

Method Assumptions
mixture model, EM generative mixture model
transductive SVM low density region between classes

co-training conditionally independent and redundant features splits
graph methods labels smooth on graph

Table 1.1: Some representative semi-supervised learning methods

1.3 Structure of the Thesis

The rest of the thesis is organized as follows:
Chapter 2 starts with the simplelabel propagationalgorithm, which propagates

class labels on a graph. This is the first semi-supervised learning algorithmwe will
encounter. It is also the basis for many variations later.

Chapter 3 discusses how one constructs a graph. The emphasis is on the intu-
ition – what graphs make sense for semi-supervised learning? We will giveseveral
examples on various datasets.

Chapter 4 formalizes label propagation in a probabilistic framework with Gaus-
sian random fields. Concepts like graph Laplacian and harmonic function are intro-
duced. We will explore interesting connections to electric networks, random walk,
and spectral clustering. Issues like the balance between classes, and inclusion of
external classifiers are also discussed here.

Chapter 5 assumes that one can choose a data point and ask an oracle for the
label. This is the standard active learning scheme. We show that active learning
and semi-supervised learning can be naturally combined.

Chapter 6 establishes the link to Gaussian processes. The kernel matricesare
shown to be the smoothed inverse graph Laplacian.

Chapter 7 no longer assumes the graph is given and fixed. Instead, we pa-
rameterize the graph weights, and learn the optimal hyperparameters. We will
discuss several methods: evidence maximization, entropy minimization, and mini-
mum spanning tree.

Chapter 8 turns semi-supervised learning problem into kernel learning. We
show a natural family of kernels derived from the graph Laplacian, andfind the
best kernel via convex optimization.

Chapter 9 discusses kernel conditional random fields, and its potential applica-
tion in semi-supervised learning, for sequences and other complex structures.

Chapter 10 explores scalability and induction for semi-supervised learning.
Chapter 11 reviews the literatures on semi-supervised learning.

Chapter 2

Label Propagation

In this chapter we introduce our first semi-supervised learning algorithm: Label
Propagation. We formulate the problem as a form of propagation on a graph, where
a node’s label propagates to neighboring nodes according to their proximity. In this
process we fix the labels on the labeled data. Thus labeled data act like sources that
push out labels through unlabeled data.

2.1 Problem Setup

Let {(x1, y1) . . . (xl, yl)} be the labeled data,y ∈ {1 . . . C}, and{xl+1 . . . xl+u}
the unlabeled data, usuallyl � u. Let n = l + u. We will often useL andU to
denote labeled and unlabeled data respectively. We assume the number of classes
C is known, and all classes are present in the labeled data. In most of the thesis we
study thetransductiveproblem of finding the labels forU . The inductive problem
of finding labels for points outside ofL ∪ U will be discussed in Chapter 10.

Intuitively we want data points that are similar to have the same label. We
create a graph where the nodes are all the data points, both labeled and unlabeled.
The edge between nodesi, j represents their similarity. For the time being let us
assume the graph is fully connected with the following weights:

wij = exp

(
−‖xi − xj‖2

α2

)
(2.1)

whereα is a bandwidth hyperparameter. The construction of graphs will be dis-
cussed in later Chapters.

5

6 CHAPTER 2. LABEL PROPAGATION

2.2 The Algorithm

We propagate the labels through the edges. Larger edge weights allow labels to
travel through more easily. Define an× n probabilistic transition matrixP

Pij = P (i→ j) =
wij∑n

k=1wik
(2.2)

wherePij is the probability of transit from nodei to j. Also define al × C label
matrix YL, whoseith row is an indicator vector foryi, i ∈ L: Yic = δ(yi, c). We
will compute soft labelsf for the nodes.f is an × C matrix, the rows can be
interpreted as the probability distributions over labels. The initialization off is not
important. We are now ready to present the algorithm.

The label propagation algorithm is as follows:

1. Propagatef ← Pf

2. Clamp the labeled datafL = YL.

3. Repeat from step 1 untilf converges.

In step 1, all nodes propagate their labels to their neighbors for one step.Step 2
is critical: we want persistent label sources from labeled data. So insteadof letting
the initially labels fade away, we clamp them atYL. With this constant ‘push’ from
labeled nodes, the class boundaries will be pushed through high density regions
and settle in low density gaps. If this structure of data fits the classification goal,
then the algorithm can use unlabeled data to help learning.

2.3 Convergence

We now show the algorithm converges to a simple solution. Letf =

(
fL

fU

)
.

SincefL is clamped toYL, we are solely interested infU . We splitP into labeled
and unlabeled sub-matrices

P =

[
PLL PLU

PUL PUU

]
(2.3)

It can be shown that our algorithm is

fU ← PUUfU + PULYL (2.4)

2.4. ILLUSTRATIVE EXAMPLES 7

which leads to

fU = lim
n→∞

(PUU)nf0
U +

(
n∑

i=1

(PUU)(i−1)

)
PULYL (2.5)

wheref0
U is the initial value forfU . We need to show(PUU)nf0

U → 0. SinceP is
row normalized, andPUU is a sub-matrix ofP , it follows

∃γ < 1,
u∑

j=1

(PUU)ij ≤ γ,∀i = 1 . . . u (2.6)

Therefore
∑

j

(PUU)n
ij =

∑

j

∑

k

(PUU)
(n−1)

ik(PUU)kj (2.7)

=
∑

k

(PUU)
(n−1)

ik

∑

j

(PUU)kj (2.8)

≤
∑

k

(PUU)
(n−1)

ikγ (2.9)

≤ γn (2.10)

Therefore the row sums of(PUU)n converges to zero, which means(PUU)nf0
U →

0. Thus the initial valuef0
U is inconsequential. Obviously

fU = (I − PUU)−1PULYL (2.11)

is a fixed point. Therefore it is the unique fixed point and the solution to our
iterative algorithm. This gives us a way to solve the label propagation problem
directly without iterative propagation.

Note the solution is valid only whenI − PUU is invertible. The condition is
satisfied, intuitively, when every connected component in the graph has at least one
labeled point in it.

2.4 Illustrative Examples

We demonstrate the properties of the Label Propagation algorithm on two synthetic
datasets. Figure 2.1(a) shows a synthetic dataset with three classes, each being a
narrow horizontal band. Data points are uniformly drawn from the bands. There
are 3 labeled points and 178 unlabeled points. 1-nearest-neighbor algorithm, one of
the standard supervised learning methods, ignores the unlabeled data andthus the

8 CHAPTER 2. LABEL PROPAGATION

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

3.5

(a) The data
0 0.5 1 1.5 2 2.5 3 3.5

0

0.5

1

1.5

2

2.5

3

3.5

(b) 1NN
0 0.5 1 1.5 2 2.5 3 3.5

0

0.5

1

1.5

2

2.5

3

3.5

(c) Label Propagation

Figure 2.1: The Three Bands dataset. Labeled data are marked with color symbols,
and unlabeled data are black dots in (a). 1NN ignores unlabeled data structure (b),
while Label Propagation takes advantage of it (c).

band structure (b). On the other hand, the Label Propagation algorithm takes into
account the unlabeled data (c). It propagates labels along the bands. In this exam-
ple, we usedα = 0.22 from the minimum spanning tree heuristic (see Chapter 7).

Figure 2.2 shows a synthetic dataset with two classes as intertwined three-
dimensional spirals. There are 2 labeled points and 184 unlabeled points. Again,
1NN fails to notice the structure of unlabeled data, while Label Propagation finds
the spirals. We usedα = 0.43.

−2

−1

0

1

2

−2

−1

0

1

2
0

0.5

1

1.5

2

2.5

3

3.5

(a) The data
−2

−1

0

1

2

−2

−1

0

1

2
0

0.5

1

1.5

2

2.5

3

3.5

(b) 1NN
−2

−1

0

1

2

−2

−1

0

1

2
0

0.5

1

1.5

2

2.5

3

3.5

(c) Label Propagation

Figure 2.2: The Springs dataset. Again 1NN ignores unlabeled data structure,
while Label Propagation takes advantage of it.

Chapter 3

What is a Good Graph?

In Label Propagation we need a graph , represented by the weight matrixW . How
does one construct a graph? What is a good graph? In this chapter we give several
examples on different datasets. The goal is not to rigorously define ‘good’ graphs,
but to illustrate the assumptions behind graph based semi-supervised learning.

A good graph should reflect our prior knowledge about the domain. At the
present time, its design is more of an art than science. It is the practitioner’srespon-
sibility to feed a good graph to graph-based semi-supervised learning algorithms,
in order to expect useful output. The algorithms in this thesis do not deal directly
with the design of graphs (with the exception of Chapter 7).

3.1 Example One: Handwritten Digits

Our first example is optical character recognition (OCR) for handwritten digits.
The handwritten digits dataset originates from the Cedar Buffalo binary digits
database (Hull, 1994). The digits were initially preprocessed to reduce thesize
of each image down to a16× 16 grid by down-sampling and Gaussian smoothing,
with pixel values in 0 to 255 (Le Cun et al., 1990). Figure 3.1 shows a random sam-
ple of the digits. In some of the experiments below they are further scaled down to
8× 8 by averaging2× 2 pixel bins.

We show why graphs based on pixel-wise Euclidean distance make sense for
digits semi-supervised learning. Euclidean distance by itself is a bad similarity
measure. For example the two images in Figure 3.2(a) have a large Euclidean
distance although they are in the same class. However Euclidean distance is a
good ‘local’ similarity measure. If it is small, we can expect the two images to
be in the same class. Consider ak-nearest-neighbor graph based on Euclidean
distance. Neighboring images have small Euclidean distance. With large amount

9

10 CHAPTER 3. WHAT IS A GOOD GRAPH?

Figure 3.1: some random samples of the handwritten digits dataset

(a) two images of ‘2’ with large Euclidean distance

(b) a path in an Euclidean distance kNN graph between them

Figure 3.2: Locally similar images propagate labels to globally dissimilar ones.

of unlabeled images of 2s, there will be manypathsconnecting the two images in
(a). One such path is shown in Figure 3.2(b). Note adjacent pairs are similar to
each other. Although the two images in (a) are not directly connected (not similar
in Euclidean distance), Label Propagation can propagate along the paths, marking
them with the same label.

Figure 3.3 shows a symmetrized1 2NN graph based on Euclidean distance.
The small dataset has only a few 1s and 2s for clarity. The actual graphsused in
the OCR experiments are too large to show.

It should be mentioned that our focus is on semi-supervised learning methods,
not OCR handwriting recognizers. We could have normalized the image intensity,
or used edge detection or other invariant features instead of Euclidean distance.
These should be used for any real applications, as the graph should represent do-
main knowledge. The same is true for all other tasks described below.

1Symmetrization means we connect nodesi, j if i is in j’s kNN or vice versa, and therefore a
node can have more thank edges.

3.1. EXAMPLE ONE: HANDWRITTEN DIGITS 11

Figure 3.3: A symmetrized Euclidean 2NN graph on some 1s and 2s. Label Prop-
agation on this graph works well.

12 CHAPTER 3. WHAT IS A GOOD GRAPH?

3.2 Example Two: Document Categorization

Our second example is document categorization on 20 newsgroups dataset 2 . Each
document has no header except ‘From’ and ‘Subject’ lines. Each document is
minimally processed into atf.idf vector, without frequency cutoff, stemming, or
a stopword list. The ‘From’ and ‘Subject’ lines are included. We measure the
similarity between two documentsu, v with the cosine similaritycs(u, v) = u>v

|u||v| .
Like Euclidean distance, cosine similarity is not a good ‘global’ measure: two
documents from the same class can have few common words. However it is a good
‘local’ measure.

A graph based on cosine similarity in this domain makes good sense. Docu-
ments from the same thread (class) tend to quote one another, giving them high
cosine similarities. Many paths in the graph are quotations. Even though the first
and last documents in a thread share few common words, them can be classified in
the same class via the graph.

The full graphs are again too large to visualize. We show the few nearestneigh-
bors of document 60532 in comp.sys.ibm.pc.hardware vs. comp.sys.mac.hardware
sub-dataset in Figure 3.4. The example is typical in the whole graph. Nevertheless
we note that not all edges are due to quotation.

3.3 Example Three: The FreeFoodCam

The Carnegie Mellon University School of Computer Science has a lounge, where
leftover pizza from various meetings converge, to the delight of students.In fact
a webcam (the FreeFoodCam3) was set up in the lounge, so that people can see
whether food is available. The FreeFoodCam provides interesting research oppor-
tunities. We collect webcam images of 10 people over a period of several months.
The data is used for 10-way people recognition, i.e. identify the name of person in
FreeFoodCam images. The dataset consists of 5254 images with one and only one
person in it. Figure 3.5 shows some random images in the dataset. The task is not
trivial:

1. The images of each person were captured on multiple days during a four
month period. People changed clothes, had hair cut, one person even grew a
beard. We simulate a video surveillance scenario where a person is manually
labeled at first, and needs to be recognized on later days. Therefore we
choose labeled data within the first day of a person’s appearance, andtest on

2http://www.ai.mit.edu/people/jrennie/20Newsgroups/, ‘18828 version’
3http://www-2.cs.cmu.edu/∼coke/, Carnegie Mellon internal access.

3.3. EXAMPLE THREE: THE FREEFOODCAM 13

From: rash@access.digex.com (Wayne Rash)
Subject: Re: 17" Monitors
mikey@sgi.com (Mike Yang) writes:
>In article <1qslfs$bm1@access.digex.net> rash@access. digex.com (Wayne Rash) writes:
>>I also reviewed a new Nanao, the F550iW, which has just
>>been released.
>What’s the difference between the F550i and the new F550iW? I’m
>about to buy a Gateway system and was going to take the F550i
>upgrade. Should I get the F550iW instead?
>-- ---------------------
> Mike Yang Silicon Graphics, Inc.
> mikey@sgi.com 415/390-1786
The F550iW is optimized for Windows. It powers down when the s creen
blanker appears, it powers down with you turn your computer o ff, and it
meets all of the Swedish standards. It’s also protected agai nst EMI from
adjacent monitors.
Personally, I think the F550i is more bang for the buck right n ow.

(a) document 60532. Its nearest neighbors are shown below.

From: mikey@eukanuba.wpd.sgi.com (Mike Yang)
Subject: Re: 17" Monitors
In article <1qulqa$hp2@access.digex.net>, rash@access. digex.com (Wayne Rash) writes:
|> The F550iW is optimized for Windows. It powers down when th e screen
|> blanker appears, it powers down with you turn your compute r off, and it
|> meets all of the Swedish standards. It’s also protected ag ainst EMI from
|> adjacent monitors.
Thanks for the info.
|> Personally, I think the F550i is more bang for the buck righ t now.
How much more does the F550iW cost?
--- --------------------

Mike Yang Silicon Graphics, Inc.
mikey@sgi.com 415/390-1786

(b) The nearest neighbor 60538. It quotes a large portion of 60532.

From: rash@access.digex.com (Wayne Rash)
Subject: Re: 17" Monitors
mikey@eukanuba.wpd.sgi.com (Mike Yang) writes:
>In article <1qulqa$hp2@access.digex.net>, rash@access .digex.com (Wayne Rash) writes:
>|> The F550iW is optimized for Windows. It powers down when t he screen
>|> blanker appears, it powers down with you turn your comput er off, and it
>|> meets all of the Swedish standards. It’s also protected a gainst EMI from
>|> adjacent monitors.
>Thanks for the info.
>|> Personally, I think the F550i is more bang for the buck rig ht now.
>How much more does the F550iW cost?
>-- ---------------------
> Mike Yang Silicon Graphics, Inc.
> mikey@sgi.com 415/390-1786
I think the difference is about 400 dollars, but I could be wro ng. These
things change between press time and publication.

(c) The 2nd nearest neighbor 60574. It also quotes 60532.

Figure 3.4: (continued on next page)

14 CHAPTER 3. WHAT IS A GOOD GRAPH?

From: mikey@sgi.com (Mike Yang)
Subject: Re: 17" Monitors
In article <1qslfs$bm1@access.digex.net> rash@access.d igex.com (Wayne Rash) writes:
>I also reviewed a new Nanao, the F550iW, which has just
>been released.
What’s the difference between the F550i and the new F550iW? I ’m
about to buy a Gateway system and was going to take the F550i
upgrade. Should I get the F550iW instead?
--- --------------------

Mike Yang Silicon Graphics, Inc.
mikey@sgi.com 415/390-1786

(d) The 3rd nearest neighbor 60445, quoted by 60532.

From: goyal@utdallas.edu (MOHIT K GOYAL)
Subject: Re: 17" Monitors
>the Mitsubishi. I also reviewed a new Nanao, the F550iW, whi ch has just
>been released. Last year for the May ’92 issue of Windows, I r eviewed
Do you have the specs for this monitor? What have they changed from the
F550i?
Do you know if their is going to be a new T560i soon? (a T560iW?)
Thanks.

(e) The 4th nearest neighbor 60463. It and 60532 quote the same source.

From: mikey@eukanuba.wpd.sgi.com (Mike Yang)
Subject: Gateway 4DX2-66V update
I just ordered my 4DX2-66V system from Gateway. Thanks for al l the net
discussions which helped me decide among all the vendors and options.
Right now, the 4DX2-66V system includes 16MB of RAM. The 8MB u pgrade
used to cost an additional $340.
--- --------------------

Mike Yang Silicon Graphics, Inc.
mikey@sgi.com 415/390-1786

(f) The 5th nearest neighbor 61165. It has a different subject than60532, but the
same author signature appears in both.

Figure 3.4: The nearest neighbors of document 60532 in the 20newsgroups dataset,
as measured by cosine similarity. Notice many neighbors either quote or are quoted
by the document. Many also share the same subject line.

3.3. EXAMPLE THREE: THE FREEFOODCAM 15

Figure 3.5: A few FreeFoodCam image examples

the remaining images of the day and all other days. It is harder than testing
only on the same day, or allowing labeled data to come from all days.

2. The FreeFoodCam is a low quality webcam. Each frame is640 × 480 so
faces of far away people are small; The frame rate is a little over 0.5 frame
per second; Lighting in the lounge is complex and changing.

3. The person could turn the back to the camera. About one third of the images
have no face.

Since only a few images are labeled, and we have all the test images, it is a
natural task to apply semi-supervised learning techniques. As computer vision is
not the focus of the paper, we use only primitive image processing methods to
extract the following features:

Time. Each image has a time stamp.

Foreground color histogram. A simple background subtraction algorithm is ap-
plied to each image to find the foreground area. The foreground area is
assumed to be the person (head and body). We compute the color histogram
(hue, saturation and brightness) of the foreground pixels. The histogram is a
100 dimensional vector.

16 CHAPTER 3. WHAT IS A GOOD GRAPH?

Face image.We apply a face detector (Schneiderman, 2004b) (Schneiderman,
2004a) to each image. Note it isnot a face recognizer (we do not use a
face recognizer for this task). It simply detects the presence of frontalor
profile faces. The output is the estimated center and radius of the detected
face. We take a square area around the center as the face image. If no face is
detected, the face image is empty.

One theme throughout the thesis is that the graph should reflect domain knowl-
edge of similarity. The FreeFoodCam is a good example. The nodes in the graph
are all the images. An edge is put between two images by the following criteria:

1. Time edgesPeople normally move around in the lounge in moderate speed,
thus adjacent frames are likely to contain the same person. We represent
this belief in the graph by putting an edge between imagesi, j whose time
difference is less than a thresholdt1 (usually a few seconds).

2. Color edgesThe color histogram is largely determined by a person’s clothes.
We assume people change clothes on different days, so color histogramis
unusable across multiple days. However it is an informative feature duringa
shorter time period (t2) like half a day. In the graph for every imagei, we find
the set of images having a time difference between(t1, t2) to i, and connect
i with its kc-nearest-neighbors (in terms of cosine similarity on histograms)
in the set.kc is a small number, e.g. 3.

3. Face edgesWe resort to face similarity over longer time spans. For every
imagei with a face, we find the set of images more thant2 apart fromi,
and connecti with its kf -nearest-neighbor in the set. We use pixel-wise
Euclidean distance between face images (the pair of face images are scaled
to the same size).

The final graph is the union of the three kinds of edges. The edges are unweighted
in the experiments (one could also learn different weights for different kinds of
edges. For example it might be advantageous to give time edges higher weights).
We usedt1 = 2 second,t2 = 12 hours,kc = 3 andkf = 1 below. Incidentally
these parameters give a connected graph. It is impossible to visualize the whole
graph. Instead we show the neighbors of a random node in Figure 3.6.

3.4 Common Ways to Create Graphs

Sometimes one faces a dataset with limited domain knowledge. This section dis-
cusses some common ways to create a graph as a starting point.

3.4. COMMON WAYS TO CREATE GRAPHS 17

image 4005 neighbor 1: time edge

neighbor 2: color edge neighbor 3: color edge

neighbor 4: color edge neighbor 5: face edge

Figure 3.6: A random image and its neighbors in the graph

18 CHAPTER 3. WHAT IS A GOOD GRAPH?

Fully connected graphs One can create a fully connected graph with an edge be-
tween all pairs of nodes. The graph needs to be weighted so that similar
nodes have large edge weight between them. The advantage of a fully con-
nected graph is in weight learning – with a differentiable weight function,
one can easily take the derivatives of the graph w.r.t. weight hyperparam-
eters. The disadvantage is in computational cost as the graph is dense (al-
though sometimes one can apply fast approximate algorithms likeN -body
problems). Furthermore we have observed that empirically fully connect
graphs performs worse than sparse graphs.

Sparse graphsOne can createkNN or εNN graphs as shown below, where each
node connects to only a few nodes. Such sparse graphs are computationally
fast. They also tend to enjoy good empirical performance. We surmise it
is because spurious connections between dissimilar nodes (which tend to be
in different classes) are removed. With sparse graphs, the edges canbe un-
weighted or weighted. One disadvantage is weight learning – a change in
weight hyperparameters will likely change the neighborhood, making opti-
mization awkward.

kNN graphs Nodesi, j are connected by an edge ifi is in j’s k-nearest-neighborhood
or vice versa.k is a hyperparameter that controls the density of the graph.
kNN has the nice property of “adaptive scales,” because the neighborhood
radius is different in low and high data density regions. Smallk may re-
sult in disconnected graphs. For Label Propagation this is not a problemif
each connected component has some labeled points. For other algorithms
introduced later in the thesis, one can smooth the Laplacian.

εNN graphs Nodesi, j are connected by an edge, if the distanced(i, j) ≤ ε. The
hyperparameterε controls neighborhood radius. Althoughε is continuous,
the search for the optimal value is discrete, with at mostO(n2) values (the
edge lengths in the graph).

tanh-weighted graphs wij = (tanh(α1(d(i, j) − α2)) + 1)/2. The hyperbolic
tangent function is a ‘soft step’ function that simulatesεNN in that when
d(i, j)� α2, wij ≈ 0; d(i, j)� α2, wij ≈ 1. The hyperparametersα1, α2

controls the slope and cutoff value respectively. The intuition is to create a
soft cutoff around distanceα2, so that close examples (presumably from the
same class) are connected and examples from different classes (presumably
with large distance) are nearly disconnected. UnlikeεNN, tanh-weighted
graph is continuous with respect toα1, α2 and is amenable to learning with
gradient methods.

3.4. COMMON WAYS TO CREATE GRAPHS 19

exp-weighted graphs wij = exp(−d(i, j)2/α2). Again this is a continuous weight-
ing scheme, but the cutoff is not as clear astanh(). Hyperparameterα
controls the decay rate. Ifd is e.g. Euclidean distance, one can have one
hyperparameter per feature dimension.

These weight functions are all potentially useful when we do not have enough do-
main knowledge. However we observed that weightedkNN graphs with a smallk
tend to perform well empirically. All the graph construction methods have hyper-
parameters. We will discuss graph hyperparameter learning in Chapter 7.

A graph is represented by then × n weight matrixW , wij = 0 if there is
no edge between nodei, j. We point out thatW does not have to be positive
semi-definite. Nor need it satisfy metric conditions. As long asW ’s entries are
non-negative and symmetric, the graph Laplacian, an important quantity defined in
the next chapter, will be well defined and positive semi-definite.

20 CHAPTER 3. WHAT IS A GOOD GRAPH?

Chapter 4

Gaussian Random Fields and
Harmonic Functions

In this chapter we formalize label propagation with a probabilistic framework.
Without loss of generality we assume binary classificationy ∈ {0, 1}. We as-
sume then × n weight matrixW is given, which defines the graph.W has to be
symmetric with non-negative entries, but otherwise need not to be positive semi-
definite. IntuitivelyW specifies the ‘local similarity’ between points. Our task is
to assign labels to unlabeled nodes.

4.1 Gaussian Random Fields

Our strategy is to define a continuous random field on the graph. First we define
a real function over the nodesf : L ∪ U −→ R. Notice f can be negative or
larger than 1. Intuitively, we want unlabeled points that are similar (as determined
by edge weights) to have similar labels. This motivates the choice of the quadratic
energyfunction

E(f) =
1

2

∑

i,j

wij (f(i)− f(j))2 (4.1)

ObviouslyE is minimized by constant functions. But since we have observed some
labeled data, we constrainf to take valuesf(i) = yi, i ∈ L on the labeled data.
We assign a probability distribution to functionsf by aGaussian random field

p(f) =
1

Z
e−βE(f) (4.2)

21

22 CHAPTER 4. GAUSSIAN RANDOM FIELDS

whereβ is an “inverse temperature” parameter, andZ is the partition function

Z =

∫

fL=YL

exp (−βE(f)) df (4.3)

which normalizes over functions constrained toYL on the labeled data. We are in-
terested in the inference problemp(fi|YL), i ∈ U , or the mean

∫∞
−∞ fip(fi|YL) dfi.

The distributionp(f) is very similar to a standard Markov Random field with
discrete states (the Ising model, or Boltzmann machines (Zhu & Ghahramani,
2002b)). In fact the only difference is the relaxation to real-valued states. However
this relaxation greatly simplify the inference problem. Because of the quadratic
energy,p(f) andp(fU |YL) are both multivariate Gaussian distributions. This is
why p is called aGaussianrandom field. The marginalsp(fi|YL) are univariate
Gaussian too, and have closed form solutions.

4.2 The Graph Laplacian

We now introduce an important quantity: thecombinatorial Laplacian∆. LetD
be the diagonal degree matrix, whereDii =

∑
j Wij is the degree of nodei. The

Laplacian is defined as
∆ ≡ D −W (4.4)

For the time being the Laplacian is useful shorthand for the energy function: One
can verify that

E(f) =
1

2

∑

i,j

wij (f(i)− f(j))2 = f>∆f (4.5)

The Gaussian random field can be written as

p(f) =
1

Z
e−βf>∆f (4.6)

where the quadratic form becomes obvious.∆ plays the role of the precision (in-
verse covariance) matrix in a multivariate Gaussian distribution. It is alwayspos-
itive semi-definite ifW is symmetric and non-negative. The Laplacian will be
further explored in later chapters.

4.3 Harmonic Functions

It is not difficult to show that the minimum energy functionf = arg minfL=YL
E(f)

is harmonic; namely, it satisfies∆f = 0 on unlabeled data pointsU , and is equal
to YL on the labeled data pointsL. We useh to represent this harmonic function.

4.4. INTERPRETATION AND CONNECTIONS 23

The harmonic property means that the value ofh(i) at each unlabeled data
point i is the average of its neighbors in the graph:

h(i) =
1

Dii

∑

j∼i

wijh(j), for i ∈ U (4.7)

which is consistent with our prior notion of smoothness with respect to the graph.
Because of the maximum principle of harmonic functions (Doyle & Snell, 1984),
h is unique and satisfies0 ≤ h(i) ≤ 1 for i ∈ U (rememberh(i) = 0 or 1 for
i ∈ L).

To compute the harmonic solution, we partition the weight matrixW (and
similarlyD,∆, etc.) into 4 blocks forL andU :

W =

[
WLL WLU

WUL WUU

]
(4.8)

The harmonic solution∆h = 0 subject tohL = YL is given by

hU = (DUU −WUU)−1WULYL (4.9)

= −(∆UU)−1∆ULYL (4.10)

= (I − PUU)−1PULYL (4.11)

The last representation is the same as equation (2.11), whereP = D−1W is the
transition matrix on the graph. The Label Propagation algorithm in Chapter 2 in
fact computes the harmonic function.

The harmonic function minimizes the energy and is thus the mode of (4.2).
Since (4.2) defines a Gaussian distribution which is symmetric and unimodal, the
mode is also the mean.

4.4 Interpretation and Connections

The harmonic function can be viewed in several fundamentally different ways, and
these different viewpoints provide a rich and complementary set of techniques for
reasoning about this approach to the semi-supervised learning problem.

4.4.1 Random Walks

Imagine a random walk on the graph. Starting from an unlabeled nodei, we move
to a nodej with probability Pij after one step. The walk stops when we hit a
labeled node. Thenh(i) is the probability that the random walk, starting from
nodei, hits a labeled node with label 1. Here the labeled data is viewed as an
“absorbing boundary” for the random walk. The random walk interpretation is
shown in Figure 4.1.

24 CHAPTER 4. GAUSSIAN RANDOM FIELDS

1

0

i

Figure 4.1: Harmonic function as random walk on the graph

+1 volt

wij
R =ij

1

1

0

Figure 4.2: Harmonic function as electric network graph

4.4.2 Electric Networks

We can also view the framework as electrical networks. Imagine the edges of the
graph to be resistors with conductanceW . Equivalently the resistance between
nodesi, j is 1/wij . We connect positive labeled nodes to a+1 volt source, and
negative labeled nodes to the ground. ThenhU is the voltage in the resulting elec-
tric network on each of the unlabeled nodes (Figure 4.2). FurthermorehU min-
imizes the energy dissipation, in the form of heat, of the electric network. The
energy dissipation is exactlyE(h) as in (4.1). The harmonic property here follows
from Kirchoff’s and Ohm’s laws, and the maximum principle then shows that this
is precisely the same solution obtained in (4.11).

4.4.3 Graph Mincut

The harmonic function can be viewed as a soft version of the graph mincutap-
proach by Blum and Chawla (2001). In graph mincut the problem is cast as one

4.5. INCORPORATING CLASS PROPORTION KNOWLEDGE 25

of finding a minimumst-cut. The minimumst-cuts minimize the same energy
function (4.1) but with discrete labels 0,1. Therefore they are the modes ofa stan-
dard Boltzmann machine. It is difficult to compute the mean. One often has to use
Monte Carlo Markov Chain or use approximation methods. Furthermore, the min-
imum st-cut is not necessarily unique. For example, consider a linear chain graph
with n nodes. Letwi,i+1 = 1 and other edges zero. Let node 1 be labeled positive,
noden negative. Then a cut on any one edge is a minimumst-cut. In contrast, the
harmonic solution has a closed form, unique solution for the mean, which is also
the mode.

The Gaussian random fields and harmonic functions also have connectionto
graph spectral clustering, and kernel regularization. These will be discussed later.

4.5 Incorporating Class Proportion Knowledge

To go fromf to class labels, the obvious decision rule is to assign label 1 to node
i if h(i) > 0.5, and label 0 otherwise. We call this rule0.5-threshold. In terms
of the random walk interpretation ifh(i) > 0.5, then starting ati, the random
walk is more likely to reach a positively labeled point before a negatively labeled
point. This decision rule works well when the classes are well separated. However
in practice, 0.5-threshold tends to produce unbalanced classification (most points
in one of the classes). The problem stems from the fact thatW , which specifies
the data manifold, is often poorly estimated in practice and does not reflect the
classification goal. In other words, we should not “fully trust” the graph structure.

Often we have the knowledge of class proportions, i.e. how many unlabeled
data are from class 0 and 1 respectively. This can either be estimated fromthe
labeled set, or given by domain experts. This is a valuable piece of complementary
information.

We propose a heuristic method calledclass mass normalization(CMN) to in-
corporate the information as follows. Let’s assume the desirable proportions for
classes 1 and 0 areq and1 − q respectively. Define the mass of class 1 to be∑

i hU (i), and the mass of class 0 to be
∑

i(1− hU (i)). Class mass normalization
scales these masses to matchq and1 − q. In particular an unlabeled pointi is
classified as class 1 iff

q
hU (i)∑
i hU (i)

> (1− q) 1− hU (i)∑
i(1− hU (i))

(4.12)

CMN extends naturally to the general multi-label case. It is interesting to note
CMN’s potential connection to the procedures in (Belkin et al., 2004a). Further
research is needed to study whether the heuristic (or its variation) can be justified
in theory.

26 CHAPTER 4. GAUSSIAN RANDOM FIELDS

4.6 Incorporating Vertex Potentials on Unlabeled Instances

We can incorporate the knowledge on individual class label of unlabeledinstances
too. This is similar to using a “assignment cost” for each unlabeled instance. For
example, the external knowledge may come from an external classifier which is
constructed on labeled data alone (It could come from domain expert too).The
external classifier produces labelsgU on the unlabeled data;g can be 0/1 or soft
labels in[0, 1]. We combineg with the harmonic functionh by a simple modifi-
cation of the graph. For each unlabeled nodei in the original graph, we attach a
“dongle” node which is a labeled node with valuegi. Let the transition probabil-
ity from i to its dongle beη, and discount other transitions fromi by 1 − η. We
then compute the harmonic function on this augmented graph. Thus, the external
classifier introduces assignment costs to the energy function, which play the role
of vertex potentials in the random field. It is not difficult to show that the harmonic
solution on the augmented graph is, in the random walk view,

hU = (I − (1− η)PUU)−1 ((1− η)PULYL + ηgU) (4.13)

We note that up to now we have assumed the labeled data to be noise free, and
so clamping their values makes sense. If there is reason to doubt this assumption,
it would be reasonable to attach dongles to labeled nodes as well, and to move the
labels to these dongles. An alternative is to use Gaussian process classifiers with a
noise model, which will be discussed in Chapter 6.

4.7 Experimental Results

We evaluate harmonic functions on the following tasks. For each task, we gradually
increase the labeled set size systematically. For each labeled set size, we perform
30 random trials. In each trial we randomly sample a labeled set with the specific
size (except for the Freefoodcam task where we sample labeled set from the first
day only). However if a class is missing from the sampled labeled set, we redothe
random sampling. We use the remaining data as the unlabeled set and reportthe
classification accuracy with harmonic functions on them.

To compare the harmonic function solution against a standard supervised learn-
ing method, we use a Matlab implementation of SVM (Gunn, 1997) as the baseline.
Notice the SVMs are not semi-supervised: the unlabeled data are merely used as
test data. Forc-class multiclass problems, we use a one-against-all scheme which
createsc binary subproblems, one for each class against the rest classes, andselect
the class with the largest margin. We use 3 standard kernels for each task:linear
K(i, j) = 〈xi, xj〉, quadraticK(i, j) = (〈xi, xj〉 + 1)2, and radial basis function

4.7. EXPERIMENTAL RESULTS 27

(RBF)K(i, j) = exp
(
−‖xi − xj‖2/2σ2

)
. The slack variable upper bound (usu-

ally denoted byC) for each kernel, as well as the bandwidthσ for RBF, are tuned
by 5 fold cross validation for each task.

1. 1 vs. 2. Binary classification for OCR handwritten digits “1” vs. “2”. This
is a subset of the handwritten digits dataset. There are 2200 images, half are
“1”s and the other half are “2”s.

The graph (or equivalently the weight matrixW) is the single most important
input to the harmonic algorithm. To demonstrate its importance, we show the
results of not one but six related graphs:

(a) 16 × 16 full. Each digit image is16 × 16 gray scale with pixel values
between 0 and 255. The graph is fully connected, and the weights
decrease exponentially with Euclidean distance:

wij = exp

(
−

256∑

d=1

(xi,d − xj,d)
2

3802

)
(4.14)

The parameter 380 is chosen by evidence maximization (see Section
7.1). This was the graph used in (Zhu et al., 2003a).

(b) 16× 16 10NN weighted. Same as ‘16× 16 full’, but i, j are connected
only if i is in j’s 10-nearest-neighbor or vice versa. Other edges are re-
moved. The weights on the surviving edges are unchanged. Therefore
this is a much sparser graph. The number 10 is chosen arbitrarily and
not tuned for semi-supervised learning.

(c) 16× 16 10NN unweighted. Same as ‘16× 16 10NN weighted’ except
that the weights on the surviving edges are all set to 1. This represents
a further simplification of prior knowledge.

(d) 8 × 8 full. All images are down sampled to8 × 8 by averaging2 × 2
pixel bins. Lowering resolution helps to make Euclidean distance less
sensitive to small spatial variations. The graph is fully connected with
weights

wij = exp

(
−

64∑

d=1

(x′i,d − x′j,d)2
1402

)
(4.15)

(e) 8× 8 10NN weighted. Similar to ‘16× 16 10NN weighted’.

(f) 8× 8 10NN unweighted. Ditto.

28 CHAPTER 4. GAUSSIAN RANDOM FIELDS

The classification accuracy with these graphs are shown in Figure 4.3(a).
Different graphs give very different accuracies. This should be areminder
that the quality of the graph determines the performance of harmonic func-
tion (as well as semi-supervised learning methods based on graphs in gen-
eral). 8 × 8 seems to be better than16 × 16. Sparser graphs are better than
fully connected graphs. The better graphs outperform SVM baselines when
labeled set size is not too small.

2. ten digits. 10-class classification for 4000 OCR handwritten digit images.
The class proportions are intentionally chosen to be skewed, with 213, 129,
100, 754, 970, 275, 585, 166, 353, and 455 images for digits “1,2,3,4,5,6,7,8,9,0”
respectively. We use 6 graphs constructed similarly as in1 vs. 2. Figure
4.3(b) shows the result, which is similar to1 vs. 2except the overall accu-
racy is lower.

3. odd vs. even. Binary classification for OCR handwritten digits “1,3,5,7,9”
vs. “0,2,4,6,8”. Each digit has 400 images, i.e. 2000 per class and 4000 total.
We show only the8 × 8 graphs in Figure 4.3(c), which do not outperform
the baseline.

4. baseball vs. hockeyBinary document classification for rec.sport.baseball
vs. rec.sport.hockey in the 20newsgroups dataset (18828 version).The pro-
cessing of documents into tf.idf vectors has been described in section 3.2.
The classes have 994 and 999 documents respectively. We report the results
of three graphs in Figure 4.3(d):

(a) full. A fully connected graph with weights

wij = exp

(
− 1

0.03

(
1− 〈di, dj〉
|di||dj |

))
(4.16)

so that the weights decreases with the cosine similarity between docu-
mentdi, dj .

(b) 10NN weighted. Only symmetrized 10-nearest-neighbor edges are kept
in the graph, with the same weights above. This was the graph in (Zhu
et al., 2003a).

(c) 10NN unweighted. Same as above except all weights are set to 1.

5. PC vs. MAC Binary classification on comp.sys.ibm.pc.hardware (number
of documents 982) vs. comp.sys.mac.hardware (961) in the 20 newsgroups
dataset. The three graphs are constructed in the same way asbaseball vs.
hockey. See Figure 4.3(e).

4.7. EXPERIMENTAL RESULTS 29

6. religion vs. atheismBinary classification on talk.religion.misc (628) vs.
alt.atheism (799). See Figure 4.3(f). The three 20newsgroups tasks have
increasing difficulty.

7. isolet This is the ISOLET dataset from the UCI data repository (Blake &
Merz, 1998). It is a 26-class classification problem for isolated spokenEn-
glish letter recognition. There are 7797 instances. We use the Euclidean
distance on raw features, and create a 100NN unweighted graph. The result
is in Figure 4.3(g).

8. freefoodcamThe details of the dataset and graph construction are discussed
in section 3.3. The experiments need special treatment compared to other
datasets. Since we want to recognize people across multiple days, we only
sample the labeled set from the first days of a person’s appearance. This is
harder and more realistic than sampling labeled set from the whole dataset.
We show two graphs in Figure 4.3(h), one witht1 = 2 seconds,t2 = 12
hours,kc = 3, kf = 1, the other the same exceptkc = 1.

The kernel for SVM baseline is optimized differently as well. We use an
interpolated linear kernelK(i, j) = wtKt(i, j) +wcKc(i, j) +wfKf (i, j),
whereKt,Kc,Kf are linear kernels (inner products) on time stamp, color
histogram, and face sub-image (normalized to50 × 50 pixels) respectively.
If an imagei contains no face, we defineKf (i, ·) = 0. The interpolation
weightswt, wc, wf are optimized with cross validation.

The experiments demonstrate that the performance of harmonic function varies
considerably depending on the graphs. With certain graphs, the semi-supervised
learning method outperforms SVM, a standard supervised learning method. In par-
ticular sparse nearest-neighbor graphs, even unweighted, tend to outperform fully
connected graphs. We believe the reason is that in fully connected graphs the edges
between different classes, even with relatively small weights, create unwarrantedly
strong connections across the classes. This highlights the sensitivity to the graph
in graph-based semi-supervised learning methods.

It is also apparent from the results that the benefit of semi-supervised learn-
ing deminishes as the labeled set size grows. This suggests that semi-supervised
learning is most helpful when the cost of getting labels is prohibitive.

CMN: Incorporating Class Proportion Knowledge

The harmonic function accuracy can be significantly improved, if we incorporate
class proportion knowledge with the simple CMN heuristic. The class proportion is
estimated from labeled data with Laplace (add one) smoothing. All the graphs and

30 CHAPTER 4. GAUSSIAN RANDOM FIELDS

0 5 10 15 20 25 30 35 40 45 50
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

labeled set size

un
la

be
le

d
se

t a
cc

ur
ac

y

1 vs. 2, harmonic function

8x8 10NN weighted
8x8 10NN unweighted
16x16 10NN unweighted
8x8 full
16x16 10NN weighted
16x16 full
SVM RBF
SVM linear
SVM quadratic

0 10 20 30 40 50 60 70 80 90 100
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

labeled set size

un
la

be
le

d
se

t a
cc

ur
ac

y

ten digits, harmonic function

8x8 10NN weighted
8x8 10NN unweighted
16x16 10NN unweighted
8x8 full
16x16 10NN weighted
16x16 full
SVM RBF
SVM linear
SVM quadratic

(a) 1 vs. 2 (b) ten digits

0 10 20 30 40 50 60 70 80 90 100
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

labeled set size

un
la

be
le

d
se

t a
cc

ur
ac

y

ten digits, harmonic function

8x8 10NN weighted
8x8 10NN unweighted
8x8 full
SVM RBF
SVM linear
SVM quadratic

0 5 10 15 20 25 30 35 40 45 50
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

labeled set size

un
la

be
le

d
se

t a
cc

ur
ac

y

baseball vs. hockey, harmonic function

10NN weighted
10NN unweighted
full
SVM RBF
SVM linear
SVM quadratic

(c) odd vs. even (d) baseball vs. hockey

Figure 4.3: harmonic function accuracy

4.7. EXPERIMENTAL RESULTS 31

0 5 10 15 20 25 30 35 40 45 50
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

labeled set size

un
la

be
le

d
se

t a
cc

ur
ac

y

PC vs. MAC, harmonic function

10NN weighted
10NN unweighted
full
SVM RBF
SVM linear
SVM quadratic

0 5 10 15 20 25 30 35 40 45 50
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

labeled set size

un
la

be
le

d
se

t a
cc

ur
ac

y

religion vs. atheism, harmonic function

10NN weighted
10NN unweighted
full
SVM RBF
SVM linear
SVM quadratic

(e) PC vs. MAC (f) religion vs. atheism

60 70 80 90 100 110 120 130 140 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

labeled set size

un
la

be
le

d
se

t a
cc

ur
ac

y

isolet, harmonic function

100NN unweighted
SVM RBF
SVM linear
SVM quadratic

20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

labeled set size

un
la

be
le

d
se

t a
cc

ur
ac

y

freefoodcam, harmonic function

t
1
=2sec,t

2
=12hr,k

c
=3,k

f
=1

t
1
=2sec,t

2
=12hr,k

c
=1,k

f
=1

SVM linear

(g) isolet (h) freefoodcam

Figure 4.3: harmonic function accuracy (continued)

32 CHAPTER 4. GAUSSIAN RANDOM FIELDS

other settings are the same as in section 4.7. The CMN results are shown in Figure
4.4. Compared to Figure 4.3 we see that in most cases CMN helps to improve
accuracy.

For several tasks, CMN gives a huge improvement for the smallest labeledset
size. The improvement is so large that the curves become ‘V’ shaped at theleft
hand side. This is an artifact: we often use the number of classes as the smallest
labeled set size. Because of our sampling method, there will be one instancefrom
each class in the labeled set. The CMN class proportion estimation is thus uniform.
Incidentally, many datasets have close to uniform class proportions. Therefore the
CMN class proportion estimation is close to the truth for the smallest labeled set
size, and produces large improvement. On the other hand, intermediate labeled set
size tends to give the worst class proportion estimates and hence little improve-
ment.

In conclusion, it is important to incorporate class proportion knowledge to as-
sist semi-supervised learning. However for clarity, CMN is not used in theremain-
ing experiments.

Dongles: Incorporating External Classifier

We use theodd vs. eventask, where the RBF SVM baseline is sometimes better
than the harmonic function with a 10NN unweighted graph. We augment the graph
with a dongle on each unlabeled node. We use the hard (0/1) labels from theRBF
SVM (Figure 4.3) on the dongles. The dongle transition probabilityη is set to
0.1 by cross validation. As before, we experiment on different labeled set sizes,
and 30 random trials per size. In Figure 4.5, we compare the average accuracy of
incorporating the external classifier (dongle) to the external classifier (SVM) or the
harmonic function (harmonic) alone. The combination results in higher accuracy
than either method alone, suggesting there is complementary information used by
each.

4.7. EXPERIMENTAL RESULTS 33

0 5 10 15 20 25 30 35 40 45 50
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

labeled set size

un
la

be
le

d
se

t a
cc

ur
ac

y

1 vs. 2, harmonic function + CMN

8x8 10NN weighted
8x8 10NN unweighted
16x16 10NN unweighted
8x8 full
16x16 10NN weighted
16x16 full
SVM RBF
SVM linear
SVM quadratic

0 10 20 30 40 50 60 70 80 90 100
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

labeled set size

un
la

be
le

d
se

t a
cc

ur
ac

y

ten digits, harmonic function + CMN

8x8 10NN weighted
8x8 10NN unweighted
16x16 10NN unweighted
8x8 full
16x16 10NN weighted
16x16 full
SVM RBF
SVM linear
SVM quadratic

(a) 1 vs. 2 (b) ten digits

0 10 20 30 40 50 60 70 80 90 100
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

labeled set size

un
la

be
le

d
se

t a
cc

ur
ac

y

ten digits, harmonic function + CMN

8x8 10NN weighted
8x8 10NN unweighted
8x8 full
SVM RBF
SVM linear
SVM quadratic

0 5 10 15 20 25 30 35 40 45 50
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

labeled set size

un
la

be
le

d
se

t a
cc

ur
ac

y

baseball vs. hockey, harmonic function + CMN

10NN weighted
10NN unweighted
full
SVM RBF
SVM linear
SVM quadratic

(c) odd vs. even (d) baseball vs. hockey

Figure 4.4: CMN accuracy

34 CHAPTER 4. GAUSSIAN RANDOM FIELDS

0 5 10 15 20 25 30 35 40 45 50
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

labeled set size

un
la

be
le

d
se

t a
cc

ur
ac

y

PC vs. MAC, harmonic function + CMN

10NN weighted
10NN unweighted
full
SVM RBF
SVM linear
SVM quadratic

0 5 10 15 20 25 30 35 40 45 50
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

labeled set size

un
la

be
le

d
se

t a
cc

ur
ac

y

religion vs. atheism, harmonic function + CMN

10NN weighted
10NN unweighted
full
SVM RBF
SVM linear
SVM quadratic

(e) PC vs. MAC (f) religion vs. atheism

60 70 80 90 100 110 120 130 140 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

labeled set size

un
la

be
le

d
se

t a
cc

ur
ac

y

isolet, harmonic function + CMN

100NN unweighted
SVM RBF
SVM linear
SVM quadratic

20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

labeled set size

un
la

be
le

d
se

t a
cc

ur
ac

y

freefoodcam, harmonic function + CMN

t
1
=2sec,t

2
=12hr,k

c
=3,k

f
=1

t
1
=2sec,t

2
=12hr,k

c
=1,k

f
=1

SVM linear

(g) isolet (h) freefoodcam

Figure 4.4: CMN accuracy (continued)

0 10 20 30 40 50 60 70 80 90 100
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

labeled set size

un
la

be
le

d
se

t a
cc

ur
ac

y

dongle
SVM
harmonic

Figure 4.5: Incorporating external classifier with dongles

Chapter 5

Active Learning

In this chapter, we take a brief detour to look at the active learning problem.We
combine semi-supervised learning and active learning naturally and efficiently.

5.1 Combining Semi-Supervised and Active Learning

So far, we assumed the labeled data set is given and fixed. In practice, itmay make
sense to utilizeactive learningin conjunction with semi-supervised learning. That
is, we might allow the learning algorithm to pick unlabeled instances to be labeled
by a domain expert. The expert returns the label, which will then be used as(or to
augment) the labeled data set. In other words, if we have to label a few instances
for semi-supervised learning, it may be attractive to let the learning algorithmtell
us which instances to label, rather than selecting them randomly. We will limit the
range of query selection to the unlabeled data set, a practice known as pool-based
active learning or selective sampling.

There has been a great deal of research in active learning. For example, Tong
and Koller (2000) select queries to minimize the version space size for support
vector machines; Cohn et al. (1996) minimize the variance component of the esti-
mated generalization error; Freund et al. (1997) employ a committee of classifiers,
and query a point whenever the committee members disagree. Most of the active
learning methods do not take further advantage of the large amount of unlabeled
data once the queries are selected. The work by McCallum and Nigam (1998b)
is an exception, where EM with unlabeled data is integrated into active learning.
Another exception is (Muslea et al., 2002), which uses a semi-supervisedlearning
method during training. In addition to this body of work from the machine learning
community, there is a large literature on the closely related topic of experimental
design in statistics; Chaloner and Verdinelli (1995) give a survey of experimental

35

36 CHAPTER 5. ACTIVE LEARNING

design from a Bayesian perspective.
The Gaussian random fields and harmonic functions framework allows a nat-

ural combination of active learning and semi-supervised learning. In brief, the
framework allows one to efficiently estimate the expected generalization erroraf-
ter querying a point, which leads to a better query selection criterion than naively
selecting the point with maximum label ambiguity. Then, once the queries are se-
lected and added to the labeled data set, the classifier can be trained using both the
labeled and remaining unlabeled data. Minimizing the estimated generalization er-
ror was first proposed by Roy and McCallum (2001). We independentlydiscovered
the same idea (Zhu et al., 2003b), and the effective combination of semi-supervised
learning and active learning is novel.

We perform active learning with the Gaussian random field model by greedily
selecting queries from the unlabeled data to minimize therisk of the harmonic
energy minimization function. The risk is the estimated generalization error of the
Bayes classifier, and can be computed with matrix methods. We define thetrue
riskR(h) of the Bayes classifier based on the harmonic functionh to be

R(h) =
n∑

i=1

∑

yi=0,1

[sgn(hi) 6= yi] p
∗(yi)

where sgn(hi) is the Bayes decision rule with threshold 0.5, such that (with a slight
abuse of notation) sgn(hi) = 1 if hi > 0.5 and sgn(hi) = 0 otherwise. Herep∗(yi)
is the unknown true label distribution at nodei, given the labeled data. Because of
this,R(h) is not computable. In order to proceed, it is necessary to make assump-
tions. We begin by assuming that we can estimate the unknown distributionp∗(yi)
with the mean of the Gaussian field model:

p∗(yi = 1) ≈ hi

Intuitively, recallinghi is the probability of reaching 1 in a random walk on the
graph, our assumption is that we can approximate the distribution using a biased
coin at each node, whose probability of heads ishi. With this assumption, we can
compute theestimated riskR̂(h) as

R̂(h) =
n∑

i=1

[sgn(hi) 6= 0] (1− hi) + [sgn(hi) 6= 1]hi

=
n∑

i=1

min(hi, 1− hi) (5.1)

If we perform active learning and query an unlabeled nodek, we will receive an
answeryk (0 or 1). Adding this point to the training set and retraining, the Gaussian

5.1. COMBINING SEMI-SUPERVISED AND ACTIVE LEARNING 37

field and its mean function will of course change. We denote the new harmonic
function byh+(xk,yk). The estimated risk will also change:

R̂(h+(xk,yk)) =
n∑

i=1

min(h
+(xk,yk)
i , 1− h+(xk,yk)

i)

Since we do not know what answeryk we will receive, we again assume the proba-
bility of receiving answerp∗(yk = 1) is approximatelyhk. Theexpectedestimated
risk after querying nodek is therefore

R̂(h+xk) = (1− hk) R̂(h+(xk,0)) + hk R̂(h+(xk,1))

The active learning criterion we use in this paper is the greedy procedureof choos-
ing the next queryk that minimizes the expected estimated risk:

k = arg mink′R̂(h+xk′) (5.2)

To carry out this procedure, we need to compute the harmonic functionh+(xk,yk)

after adding(xk, yk) to the current labeled training set. This is the retraining prob-
lem and is computationally intensive in general. However for Gaussian fieldsand
harmonic functions, there is an efficient way to retrain. Recall that the harmonic
function solution is

hU = −∆−1
UU∆ULYL

What is the solution if we fix the valueyk for nodek? This is the same as finding
the conditional distribution of all unlabeled nodes, given the value ofyk. In Gaus-
sian fields the conditional on unlabeled data is multivariate Normal distributions
N (hU ,∆

−1
UU). A standard result (a derivation is given in Appendix A) gives the

mean of the conditional once we fixyk:

h
+(xk,yk)
U = hU + (yk − hk)

(∆−1
UU)·k

(∆−1
UU)kk

where(∆−1
UU)·k is the k-th column of the inverse Laplacian on unlabeled data,

and(∆−1
UU)kk is thek-th diagonal element of the same matrix. Both are already

computed when we compute the harmonic functionh. This is a linear computation
and therefore can be carried out efficiently.

To summarize, the active learning algorithm is shown in Figure 5.1. The time
complexity to find the best query isO(n2). As a final word on computational
efficiency, we note that after adding queryxk and its answer toL, in the next
iteration we will need to compute((∆UU)¬k)

−1, the inverse of the Laplacian on
unlabeled data, with the row/column forxk removed. Instead of naively taking the
inverse, there are efficient algorithms to compute it from(∆UU)−1; a derivation is
given in Appendix B.

38 CHAPTER 5. ACTIVE LEARNING

Input: L,U , weight matrixW
While more labeled data required:

Compute harmonich using (4.11)
Find best queryk using (5.2)
Query pointxk, receive answeryk

Add (xk, yk) toL, removexk fromU
end
Output: L and classifierh.

Figure 5.1: The active learning algorithm

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

2

2.5

1 0

a

B

Figure 5.2: Entropy Minimization selects the most uncertain pointa as the next
query. Our method will select a point inB, a better choice.

5.2 Why not Entropy Minimization

We used the estimated generalization error to select queries. A different query
selection criterion,entropy minimization(or selecting the most uncertain instance),
has been suggested in some papers. We next show why it is inappropriatewhen
the loss function is based on individual instances. Such loss functions include the
widely usedaccuracyfor classification andmean squared errorfor regression.

To illustrate the idea, Figure 5.2 shows a synthetic dataset with two labeled
data (marked ‘1’, ‘0’), an unlabeled point ‘a’ in the center above and acluster of 9
unlabeled points ‘B’ below. ‘B’ is slighted shifted to the right. The graph is fully
connected with weightswij = exp(−d2

ij), wheredij is the Euclidean distance be-
tweeni, j. In this configuration, we have the most uncertainty in ‘a’: the harmonic
function at node ‘a’ ish(a) = 0.43. Points in ‘B’ have their harmonic func-

5.3. EXPERIMENTS 39

tion values around 0.32. Therefore entropy minimization will pick ’a’ as the query.
However, the risk minimization criterion picks the upper center point (marked with
a star) in ‘B’ to query, instead of ‘a’. In fact the estimated risk isR̂(a) = 2.9, and
R̂(b ∈ B) ≈ 1.1. Intuitively knowing the label of one point inB let us know the
label of all points inB, which is a larger gain. Entropy minimization is worse than
risk minimization in this example.

The root of the problem is that entropy does not account for the loss ofmak-
ing a large number ofcorrelated mistakes. In a pool-based incremental active
learning setting, given the current unlabeled setU , entropy minimization finds the
query q ∈ U such that the conditional entropyH(U \ q|q) is minimized. As
H(U \ q|q) = H(U) − H(q), it amounts to selectingq with the largest entropy,
or the most ambiguous unlabeled point as the query. Consider another example
whereU = {a, b1, . . . , b100}. Let P (a = +) = P (a = −) = 0.5 andP (bi =
+) = 0.51, P (bi = −) = 0.49 for i = 1 . . . 100. Furthermore letb1 . . . b100 be
perfectly correlated so they always take the same value; Leta andbi’s be inde-
pendent. Entropy minimization will selecta as the next query sinceH(a) = 1 >
H(bi) = 0.9997. If our goal were to reduce uncertainty aboutU , such query selec-
tion is good:H(b1 . . . b100|a) = 0.9997 < H(a, b1, . . . , bi−1, bi+1, . . . , b100|bi) =
H(a|bi) = 1. However if our loss function is the accuracy on the remaining
instances inU , the picture is quite different. After queryinga, P (bi = +) re-
mains at 0.51, so that eachbi incurs a Bayes error of 0.49 by always predict
bi = +. The problem is that the individual error adds up, and the overall accuracy
is 0.51 ∗ 100/100 = 0.51. On the other hand if we queryb1, we know the labels of
b2 . . . b100 too because of their perfect correlation. The only error we might make is
ona with Bayes error of 0.5. The overall accuracy is(0.5 + 1 ∗ 99)/100 = 0.995.
The situation is analogous to speech recognition in which one can measure the
‘word level accuracy’ or ‘sentence level accuracy’ where a sentence is correct if all
words in it are correct. The sentence corresponds to the wholeU in our example.
Entropy minimization is more aligned with sentence level accuracy. Nevertheless
since most active learning systems use instance level loss function, it can leads to
suboptimal query choices as we show above.

5.3 Experiments

Figure 5.3 shows a check-board synthetic dataset with 400 points. We expect active
learning to discover the pattern and query a small number of representatives from
each cluster. On the other hand, we expect a much larger number of queries if
queries are randomly selected. We use a fully connected graph with weightwij =
exp(−d2

ij/4). We perform 20 random trials. At the beginning of each trial we

40 CHAPTER 5. ACTIVE LEARNING

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

1
11
1
1
1
1

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

5 10 15 20

0

20

40

60

80

100

Labeled set size

R
is

k

Active Learning
Random Query
Most Uncertain Query

5 10 15 20
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Labeled set size

A
cc

ur
ac

y

Active Learning
Random Query
Most Uncertain Query

Figure 5.3: A check-board example. Left: dataset and true labels; Center: esti-
mated risk; Right: classification accuracy.

randomly select a positive example and a negative example as the initial training
set. We then run active learning and compare it to two baselines: (1) “Random
Query”: randomly selecting the next query fromU ; (2) “Most Uncertain Query”:
selecting the most uncertain instance inU , i.e. the one withh closest to 0.5. In each
case, we run for 20 iterations (queries). At each iteration, we plot the estimated risk
(5.1) of the selected query (center), and the classification accuracy onU (right).
The error bars are±1 standard deviation, averaged over the random trials. As
expected, with risk minimization active learning we reduce the risk more quickly
than random queries or the most uncertain queries. In fact, risk minimization active
learning with about 15 queries (plus 2 initial random points) learns the correct
concept, which is nearly optimal given that there are 16 clusters. Lookingat the
queries, we find that active learning mostly selects the central points within the
clusters.

Next, we ran the risk minimization active learning method on several tasks
(markedactive learning in the plots). We compare it with several alternative ways
of picking queries:

• random query. Randomly select the next query from the unlabeled set.
Classification on the unlabeled set is based on the harmonic function. There-
fore, this method consists of no active learning, but only semi-supervised
learning.

• most uncertain. Pick the most ambiguous point (h closest to 0.5 for binary
problems) as the query. Classification is based on the harmonic function.

• SVM random query. Randomly select the next query from the unlabeled
set. Classification with SVM. This is neither active nor semi-supervised
learning.

• SVM most uncertain. Pick the query closest to the SVM decision boundary.

5.3. EXPERIMENTS 41

0 5 10 15 20 25 30 35 40 45 50
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
one vs. two, active learning

labeled set size

un
la

be
le

d
se

t a
cc

ur
ac

y

active learning
most uncertain
random query
svm most uncertain
svm random query

0 10 20 30 40 50 60 70 80 90 100
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
active learning

labeled set size

un
la

be
le

d
se

t a
cc

ur
ac

y

active learning
most uncertain
random query
svm most uncertain
svm random query

(a) 1 vs. 2 (b) ten digits

0 10 20 30 40 50 60 70 80 90 100
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
active learning

labeled set size

un
la

be
le

d
se

t a
cc

ur
ac

y

active learning
most uncertain
random query
svm most uncertain
svm random query

0 5 10 15 20 25 30 35 40 45 50
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
active learning

labeled set size

un
la

be
le

d
se

t a
cc

ur
ac

y

active learning
most uncertain
random query
svm most uncertain
svm random query

(c) odd vs. even (d) baseball vs. hockey

Figure 5.4: Active learning accuracy

Classification with SVM.

For each task, we use the best graph for harmonic functions, and the best kernel
for SVM, as in section 4.7. We run 30 trials and the plots are the average. In
each trial, we start from a randomly selected labeled set, so that each classhas
exactly one labeled example. The query selection methods mentioned above are
used independently to grow the labeled set until a predetermined size. We plot
the classification accuracy on the remaining unlabeled data in Figure 5.4. Forthe
FreeFoodCamtask, there are two experiments: 1. We allow the queries to come
from all days; 2. From only the first days of a person’s first appearance.

It is interesting to see what queries are selected by different methods. Figures
5.5 and 5.6 compare the first few queries for the1 vs. 2and ten digits tasks. In
each case, the initial labeled set is the same.

The combined semi-supervised learning and risk minimization active learning
method performs well on the tasks. Compared to the results reported in (Roy &

42 CHAPTER 5. ACTIVE LEARNING

0 5 10 15 20 25 30 35 40 45 50
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
active learning

labeled set size

un
la

be
le

d
se

t a
cc

ur
ac

y

active learning
most uncertain
random query
svm most uncertain
svm random query

0 5 10 15 20 25 30 35 40 45 50
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
active learning

labeled set size

un
la

be
le

d
se

t a
cc

ur
ac

y

active learning
most uncertain
random query
svm most uncertain
svm random query

(e) PC vs. MAC (f) religion vs. atheism

0 10 20 30 40 50 60 70 80 90 100 110
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
active learning, queries from all U

labeled set size

un
la

be
le

d
se

t a
cc

ur
ac

y

active learning
most uncertain
random query
svm most uncertain
svm random query

0 10 20 30 40 50 60 70 80 90 100 110
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
active learning, queries from first days only

labeled set size

un
la

be
le

d
se

t a
cc

ur
ac

y

active learning
most uncertain
random query

(g) freefoodcam, query from all days (h) freefoodcam, query from the first days

Figure 5.4: Active learning accuracy (continued)

initial labeled set
active learning
most uncertain
random query

SVM most uncertain

Figure 5.5: The first few queries selected by different active learningmethods on
the1 vs. 2task. All methods start with the same initial labeled set.

5.3. EXPERIMENTS 43

initial labeled set
active learning
most uncertain
random query

SVM most uncertain

Figure 5.6: The first few queries selected by different active learningmethods on
theten digits task. All methods start with the same initial labeled set.

McCallum, 2001), we think that good semi-supervised learning algorithm is a key
to the success of the active learning scheme.

44 CHAPTER 5. ACTIVE LEARNING

Chapter 6

Connection to Gaussian Processes

A Gaussian process define a priorp(f(x)) over function valuesf(x), wherex
ranges over an infinite input space. It is an extension to ann-dimensional Gaus-
sian distribution asn goes to infinity. A Gaussian process is defined by its mean
function µ(x) (usually taken to be zero everywhere), and a covariance function
C(x, x′). For any finite set of pointsx1, . . . , xm, the Gaussian process on the
set reduces to anm-dimensional Gaussian distribution with a covariance matrix
Cij = C(xi, xj), for i, j = 1 . . .m. More information can be found in Chapter 45
of (MacKay, 2003).

Gaussian random fields are equivalent to Gaussian processes that are restricted
to a finite set of points. Thus, the standard machineries for Gaussian processes can
be used for semi-supervised learning. Through this connection, we establish the
link between the graph Laplacian and kernel methods in general.

6.1 A Finite Set Gaussian Process Model

Recall for any real-valued functionf on the graph, the energy is defined as

E(f) =
1

2

∑

i,j

wij (f(i)− f(j))2 = f>∆f (6.1)

the corresponding Gaussian random field is

p(f) =
1

Z
e−βE(f) =

1

Z
e−βf>∆f (6.2)

The Gaussian random field is nothing but a multivariate Gaussian distribution on
the nodes. Meanwhile a Gaussian process restricted to finite data is a multivariate
Gaussian distribution too (MacKay, 1998). This indicates a connection between

45

46 CHAPTER 6. CONNECTION TO GAUSSIAN PROCESSES

Gaussian random fields and finite set Gaussian processes. Notice the ‘finite set
Gaussian processes’ are not real Gaussian processes, since the kernel matrix is
only defined onL ∪ U , not the whole input spaceX.

Equation (6.2) can be viewed as a Gaussian process restricted toL ∪ U with
covariance matrix(2β∆)−1. However the covariance matrix is an improper prior.
The Laplacian∆ by definition has a zero eigenvalue with constant eigenvector1.
To see this note that the degree matrixD is the row sum ofW . This makes∆
singular: we cannot invert∆ to get the covariance matrix. To make a proper prior
out of the Laplacian, we can smooth its spectrum to remove the zero eigenvalues,
as suggested in (Smola & Kondor, 2003). In particular, we choose to transform the
eigenvaluesλ according to the functionr(λ) = λ + 1/σ2 where1/σ2 is a small
smoothing parameter. This gives theregularized Laplacian

∆ + I/σ2 (6.3)

Using the regularized Laplacian, we define a zero mean prior as

p(f) ∝ exp

(
−1

2
f>∆̃f

)
(6.4)

which corresponds to a kernel with Gram matrix (i.e. covariance matrix)

K = ∆̃−1 =
(
2β(∆ + I/σ2)

)−1
(6.5)

We note several important aspects of the resulting finite set Gaussian process:

• f ∼ N
(
0, ∆̃−1

)
;

• Unlike ∆, ∆̃ gives a proper covariance matrix.

• The parameterβ controls the overall sharpness of the distribution; largeβ
meansp(f) is more peaked around its mean.

• The parameterσ2 controls the amount of spectral smoothing; largeσ smoothes
less.

• The kernel (covariance) matrixK = ∆̃−1 is the inverse of a function of the
Laplacian∆. Therefore the covariance between any two pointi, j in general
depends onall the points. This is how unlabeled data influences the prior.

The last point warrants further explanation. In many standard kernels,the entries
are ‘local’. For example, in a radial basis function (RBF) kernelK, the matrix entry

kij = exp
(
−d2

ij/α
2
)

only depends on the distance betweeni, j andnot any other

6.2. INCORPORATING A NOISE MODEL 47

points. In this case unlabeled data is useless because the influence of unlabeled
data inK is marginalized out. In contrast, the entries in kernel (6.4) depends on all
entries in∆, which in turn depends on all edge weightsW . Thus, unlabeled data
will influence the kernel, which is desirable for semi-supervised learning.Another
way to view the difference is that in RBF (and many other) kernels we parameterize
the covariance matrix directly, while with graph Laplacians we parameterize the
inverse covariance matrix.

6.2 Incorporating a Noise Model

In moving from Gaussian fields to finite set Gaussian processes, we no longer
assume that the soft labelsfL for the labeled data are fixed at the observed labels
YL. Instead we now assume the data generation process isx → f → y, where
f → y is a noisy label generation process. We use a sigmoid noise model between
the hidden soft labelsfi and observed labelsyi:

P (yi|fi) =
eγfiyi

eγfiyi + e−γfiyi
=

1

1 + e−2γfiyi
(6.6)

whereγ is a hyperparameter which controls the steepness of the sigmoid. This
assumption allows us to handle noise in training labels, and is a common practice
in Gaussian process classification.

We are interested inp(YU |YL), the labels for unlabeled data. We first need to
compute the posterior distributionp(fL, fU |YL). By Bayes’ theorem,

p(fL, fU |YL) =

∏l
i=1 P (yi|fi)p(fL, fU)

P (YL)
(6.7)

Because of the noise model, the posterior is not Gaussian and has no closed form
solution. There are several ways to approximate the posterior. For simplicitywe
use the Laplace approximation to find the approximatep(fL, fU |YL). A deriva-
tion can be found in Appendix C, which largely follows (Herbrich, 2002) (B.7).
Bayesian classification is based on the posterior distributionp(YU |YL). Since un-
der the Laplace approximation this distribution is also Gaussian, the classification
rule depends only on the sign of the mean (which is also the mode) offU .

6.3 Experiments

We compare the accuracy of Gaussian process classification with the 0.5-threshold
harmonic function (without CMN). To simplify the plots, we use the same graphs

48 CHAPTER 6. CONNECTION TO GAUSSIAN PROCESSES

0 5 10 15 20 25 30 35 40 45 50
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

labeled set size

un
la

be
le

d
se

t a
cc

ur
ac

y

1 vs. 2, Gaussian field

Gaussian field, 8x8 10NN weighted
harmonic, 8x8 10NN weighted
SVM RBF

0 10 20 30 40 50 60 70 80 90 100
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

labeled set size

un
la

be
le

d
se

t a
cc

ur
ac

y

ten digits, Gaussian field

Gaussian field, 8x8 10NN weighted
harmonic, 8x8 10NN weighted
SVM linear

(a) 1 vs. 2 (b) ten digits

0 10 20 30 40 50 60 70 80 90 100
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

labeled set size

un
la

be
le

d
se

t a
cc

ur
ac

y

ten digits, Gaussian field

Gaussian field, 8x8 10NN weighted
harmonic, 8x8 10NN weighted
SVM RBF

0 5 10 15 20 25 30 35 40 45 50
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

labeled set size

un
la

be
le

d
se

t a
cc

ur
ac

y

baseball vs. hockey, Gaussian field

Gaussian field, 10NN weighted
harmonic, 10NN weighted
SVM RBF

(c) odd vs. even (d) baseball vs. hockey

Figure 6.1: Gaussian process accuracy

that give the best harmonic function accuracy (exceptFreeFoodCam). To aid com-
parison we also show SVMs with the best kernel among linear, quadratic or RBF.
In the experiments, the inverse temperature parameterβ, smoothing parameterσ
and noise model parameterγ are tuned with cross validation for each task. The
results are in Figure 6.1.

For FreeFoodCamwe also use two other graphs with no face edges at all
(kf = 0). The first one limits color edges to within 12 hours (t2 = 12 hour), thus
the first days that contain the labeled data is disconnected from the rest. The second
one allows color edges on far away images (t2 = ∞). Neither has good accuracy,
indicating that face is an important feature to use.

6.3. EXPERIMENTS 49

0 5 10 15 20 25 30 35 40 45 50
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

labeled set size

un
la

be
le

d
se

t a
cc

ur
ac

y

PC vs. MAC, Gaussian field

Gaussian field, 10NN weighted
harmonic, 10NN weighted
SVM RBF

0 5 10 15 20 25 30 35 40 45 50
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

labeled set size

un
la

be
le

d
se

t a
cc

ur
ac

y

religion vs. atheism, Gaussian field

Gaussian field, 10NN weighted
harmonic, 10NN weighted
SVM RBF

(e) PC vs. MAC (f) religion vs. atheism

60 70 80 90 100 110 120 130 140 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

labeled set size

un
la

be
le

d
se

t a
cc

ur
ac

y

isolet, Gaussian process

Gaussian process, 100NN unweighted
harmonic, 100NN unweighted
SVM linear

20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

labeled set size

un
la

be
le

d
se

t a
cc

ur
ac

y

freefoodcam, Gaussian field

Gaussian field, t
1
=2sec,t

2
=12hr,k

c
=3,k

f
=1

Gaussian field, t
1
=2sec,t

2
=12hr,k

c
=3,k

f
=0

Gaussian field, t
1
=2sec,t

2
=inf,k

c
=3,k

f
=0

harmonic, t
1
=2sec,t

2
=12hr,k

c
=3,k

f
=1

SVM linear

(g) isolet (h) freefoodcam

Figure 6.1: Gaussian process accuracy (continued)

50 CHAPTER 6. CONNECTION TO GAUSSIAN PROCESSES

6.4 Extending to Unseen Data

We have so far restricted ourselves to theL ∪ U nodes in the graph. In this finite
case Gaussian processes are nothing butn-dimensional multivariate normal distri-
butions, and are equivalent to Gaussian random fields. However Gaussian fields,
by definition, cannot handle unseen instances. Any new data points needto be-
come additional nodes in the graph. The Laplacian and kernel matrices need to
be re-computed, which is expensive. We would like to extend the frameworkto
allow arbitrary new points. Equivalently, this is the problem of induction instead
of transduction.

The simplest strategy is to divide the input space into Voronoi cells. The
Voronoi cells are centered on instances inL ∪ U . We classify any new instance
x by the Voronoi cell it falls into. Letx∗ ∈ L ∪ U be the point closest tox:

x∗ = arg maxz∈L∪Uwxz (6.8)

where closeness is measured by weightswxz. From an algorithmic point of view,
we classifyx by its 1-nearest-neighborx∗. When the unlabeled data size is large,
the approximation is reasonable.

We will discuss more inductive methods in Chapter 10.

Chapter 7

Graph Hyperparameter Learning

Previously we assumed that the weight matrixW is given and fixed. In this chapter
we investigatelearning the weights from both labeled and unlabeled data. We
present three methods. The first one is evidence maximization in the context of
Gaussian processes. The second is entropy minimization, and the third one isbased
on minimum spanning trees. The latter ones are heuristic but also practical.

7.1 Evidence Maximization

We assume the edge weights are parameterized with hyperparametersΘ. For in-
stance the edge weights can be

wij = exp

(
−

D∑

d=1

(xi,d − xj,d)
2

α2
d

)

andΘ = {α1, . . . , αD}. To learn the weight hyperparameters in a Gaussian pro-
cess, one can choose the hyperparameters that maximize the log likelihood:Θ∗ =
arg maxΘ log p(yL|Θ). log p(yL|Θ) is known as the evidence and the procedure is
also called evidence maximization . One can also assume a prior onΘ and find the
maximum a posteriori (MAP) estimateΘ∗ = arg maxΘ log p(yL|Θ) + log p(Θ).
The evidence can be multimodal and usually gradient methods are used to finda
mode in hyperparameter space. This requires the derivatives∂ log p(yL|Θ)/∂Θ. A
complete derivation is given in Appendix D.

In a full Bayesian setup, one would average over all hyperparameter values
(weighted by the posteriorp(Θ|yL)) instead of using a point estimateΘ∗. This
usually involves Markov Chain Monte Carlo techniques, and is not pursued in this
paper.

51

52 CHAPTER 7. GRAPH HYPERPARAMETER LEARNING

regularized evidence accuracy
task before after before after

1 vs. 2 -24.6 -23.9 0.973 0.982
7 vs. 9 -40.5 -39.9 0.737 0.756

Table 7.1: the regularized evidence and classification before and after learningα’s
for the two digits recognition tasks

We use binary OCR handwritten digits recognition tasks as our example, since
the results are more interpretable. We choose two tasks: “1 vs. 2” which has been
presented previously, and “ 7 vs. 9” which are the two most confusing digits in
terms of Euclidean distance. We use fully connected graphs with weights

wij = exp

(
−

64∑

d=1

(xi,d − xj,d)
2

α2
d

)
(7.1)

The hyperparameters are the 64 length scalesαd for each pixel dimension on8× 8
images. Intuitively they determine which pixel positions are salient for the classifi-
cation task: ifαd is close to zero, a difference at pixel positiond will be magnified;
if it is large, pixel positiond will be essentially ignored. The weight function
is an extension to eq (4.15) by giving each dimension its own length scale. For
each task there are 2200 images, and we run 10 trials, in each trial we randomly
pick 50 images as the labeled set. The rest is used as unlabeled set. For each
trial we start atαi = 140, i = 1 . . . 64, which is the same as in eq (4.15). We
compute the gradients forαi for evidence maximization. However since there are
64 hyperparameters and only 50 labeled points, regularization is important. We
use a Normal prior on the hyperparameters which is centered at the initial value:
p(αi) ∼ N (140, 302), i = 1 . . . 64. We use a line search algorithm to find a (pos-
sibly local) optimum for theα’s.

Table 7.1 shows the regularized evidence and classification before and after
learningα’s for the two tasks. Figure 7.1 compares the learned hyperparameters
with the mean images of the tasks. Smaller (darker)α’s correspond to feature
dimensions in which the learning algorithm pays more attention. It is obvious, for
instance in the7 vs. 9task, that the learned hyperparameters focus on the ‘gap on
the neck of the image’, which is the distinguishing feature between 7’s and 9’s.

7.2. ENTROPY MINIMIZATION 53

60

80

100

120

140

160

180

200

220

240

120

140

160

180

200

220

240

139

139.2

139.4

139.6

139.8

140

140.2

140.4

140.6

140.8

141

126

128

130

132

134

136

138

140

142

144

146

100

150

200

250

100

150

200

250

139

139.2

139.4

139.6

139.8

140

140.2

140.4

140.6

140.8

141

126

128

130

132

134

136

138

140

142

144

a b c d

Figure 7.1: Graph hyperparameter learning. The upper row is for the1 vs. 2task,
and the lower row for7 vs. 9. The four images are: (a,b) Averaged digit images
for the two classes; (c) The 64 initial length scale hyperparametersα, shown as an
8× 8 array; (d) Learned hyperparameters.

7.2 Entropy Minimization

Alternatively, we can useaverage label entropyas a heuristic criterion for parame-
ter learning1. This heuristic uses only the harmonic function and does not depend
on the Gaussian process setup.

The average label entropyH(h) of the harmonic functionh is defined as

H(h) =
1

u

l+u∑

i=l+1

Hi(h(i)) (7.2)

whereHi(h(i)) = −h(i) log h(i)−(1−h(i)) log(1−h(i)) is the Shannon entropy
of individual unlabeled data pointi. Here we use the random walk interpretation
of h, relying on the maximum principle of harmonic functions which guarantees
that0 ≤ h(i) ≤ 1 for i ∈ U . Small entropy implies thath(i) is close to 0 or 1; this
captures the intuition that a goodW (equivalently, a good set of hyperparameters
Θ) should result in aconfidentlabeling. There are of course many arbitrary label-
ings of the data that have low entropy, which might suggest that this criterionwill
not work. However, it is important to point out that we are constrainingh on the
labeled data—most of these arbitrary low entropy labelings are inconsistentwith
this constraint. In fact, we find that the space of low entropy labelings achievable
by harmonic function is small and lends itself well to tuning the hyperparameters.

1We could have used the estimated risk, cf. Chapter 5. The gradient will bemore difficult because
of themin function.

54 CHAPTER 7. GRAPH HYPERPARAMETER LEARNING

As an example, let us consider the case where weights are parameterized as
(7.1). We can apply entropy minimization but there is a complication, namelyH
has a minimum at 0 asαd → 0. As the length scale approaches zero, the tail of the
weight function (7.1) is increasingly sensitive to the distance. In the end, the label
predicted for an unlabeled example is dominated by its nearest neighbor’s label,
which results in the following equivalent labeling procedure: (1) starting from the
labeled data set, find the unlabeled pointxu that is closest to some labeled point
xl; (2) labelxu with xl’s label, putxu in the labeled set and repeat. Since these are
hard labels, the entropy is zero. This solution is desirable only when the classes
are well separated, and is inferior otherwise. This complication can be avoided by
smoothing the transition matrix. Inspired by analysis of the PageRank algorithm
in (Ng et al., 2001b), we smooth the transition matrixP with the uniform matrix
U : Uij = 1/n. The smoothed transition matrix is̃P = εU + (1− ε)P .

We use gradient descent to find the hyperparametersαd that minimizeH. The
gradient is computed as

∂H

∂αd
=

1

u

l+u∑

i=l+1

log

(
1− h(i)
h(i)

)
∂h(i)

∂αd
(7.3)

where the values∂h(i)/∂αd can be read off the vector∂hU/∂αd, which is given
by

∂hU

∂αd
= (I − P̃UU)−1

(
∂P̃UU

∂αd
hU +

∂P̃UL

∂αd
YL

)
(7.4)

using the fact thatdX−1 = −X−1(dX)X−1. Both ∂P̃UU/∂αd and∂P̃UL/∂αd

are sub-matrices of∂P̃/∂αd = (1− ε) ∂P
∂αd

. Since the original transition matrixP
is obtained by normalizing the weight matrixW , we have that

∂pij

∂αd
=

∂wij

∂αd
− pij

∑l+u
n=1

∂win

∂αd∑l+u
n=1win

(7.5)

Finally, ∂wij

∂αd
= 2wij(xdi − xdj)

2/α3
d.

In the above derivation we usehU as label probabilities directly; that is,p(yi =
1) = hU (i). If we incorporate class proportion information, or combine the har-
monic function with other classifiers, it makes sense to minimize entropy on the
combined probabilities. For instance, if we incorporate class proportions using
CMN, the probability is given by

h′(i) =
q(u−∑hU)hU (i)

q(u−∑hU)hU (i) + (1− q)∑hU (1− hU (j))
(7.6)

7.2. ENTROPY MINIMIZATION 55

−4 −2 0 2 4
−3

−2

−1

0

1

2

3

4

5

−4 −2 0 2 4
−3

−2

−1

0

1

2

3

4

5

0.2 0.4 0.6 0.8 1 1.2 1.4
0.7

0.75

0.8

0.85

0.9

0.95

1

σ

en
tr

op
y

ε=0.1
ε=0.01
ε=0.001
ε=0.0001
unsmoothed

(a) (b) (c)

Figure 7.2: The effect of parameterα on the harmonic function. (a) If not
smoothed,H → 0 asα → 0, and the algorithm performs poorly. (b) Result at
optimalα = 0.67, smoothed withε = 0.01 (c) Smoothing helps to remove the
entropy minimum.

and we use this probability in place ofh(i) in (7.2). The derivation of the gradient
descent rule is a straightforward extension of the above analysis.

We use a toy dataset in Figure 7.2 as an example for Entropy Minimization.
The upper grid is slightly tighter than the lower grid, and they are connected by a
few data points. There are two labeled examples, marked with large symbols. We
learn the optimal length scales for this dataset by minimizing entropy on unlabeled
data.

To simplify the problem, we first tie the length scales in the two dimensions,
so there is only a single parameterα to learn. As noted earlier, without smoothing,
the entropy approaches the minimum at 0 asα → 0. Under such conditions,
the harmonic function is usually undesirable, and for this dataset the tighter grid
“invades” the sparser one as shown in Figure 7.2(a). With smoothing, the “nuisance
minimum” at 0 gradually disappears as the smoothing factorε grows, as shown
in Figure 7.2(c). When we setε = 0.01, the minimum entropy is 0.898 bits at
α = 0.67. The harmonic function under this length scale is shown in Figure 7.2(b),
which is able to distinguish the structure of the two grids.

If we allow separateα’s for each dimension, parameter learning is more dra-
matic. With the same smoothing ofε = 0.01, αx keeps growing toward infinity
(we useαx = 1016 for computation) whileαy stabilizes at 0.65, and we reach a
minimum entropy of 0.619 bits. In this caseαx → ∞ is legitimate; it means that
the learning algorithm has identified thex-direction as irrelevant, based on both the
labeled and unlabeled data. The harmonic function under these hyperparameters
gives the same classification as shown in Figure 7.2(b).

56 CHAPTER 7. GRAPH HYPERPARAMETER LEARNING

7.3 Minimum Spanning Tree

If the graph edges areexp-weighted with a single hyperparameterα (Section 3.4),
we can set the hyperparameterα with the following heuristic. We construct a
minimum spanning tree over all data points with Kruskal’s algorithm (Kruskal,
1956). In the beginning no node is connected. During tree growth, the edges are
examined one by one from short to long. An edge is added to the tree if it connects
two separate components. The process repeats until the whole graph is connected.
We find the first tree edge that connects two components with different labeled
points in them. We regard the length of this edged0 as a heuristic to the minimum
distance between different class regions. We then setα = d0/3 following the3σ
rule of Normal distribution, so that the weight of this edge is close to 0, with the
hope that local propagation is then mostly within classes.

7.4 Discussion

Other ways to learn the weight hyperparameters are possible. For exampleone can
try to maximize the kernel alignment to labeled data. This criterion will be used to
learn a spectral transformation from the Laplacian to a graph kernel in Chapter 8.
There the graph weights are fixed, and the hyperparameters are the eigenvalues of
the graph kernel. It is possible that one can instead fix a spectral transformation but
learn the weight hyperparameters, or better yet jointly learn both. The hope is the
problem can be formulated as convex optimization. This remains future research.

Chapter 8

Kernels from the Spectrum of
Laplacians

We used the inverse of a smoothed Laplacian as kernel matrix in Chapter 6. In
fact, one can construct a whole family of graph kernels from the spectral decom-
position of graph Laplacians. These kernels combine labeled and unlabeled data in
a systematic fashion. In this chapter we devise the best one (in a certain sense) for
semi-supervised learning.

8.1 The Spectrum of Laplacians

Let us denote the Laplacian∆’s eigen-decomposition by{λi, φi}, so that∆ =∑n
i=1 λiφiφ

>
i . We assume the eigenvalues are sorted in non-decreasing order. The

Laplacian∆ has many interesting properties (Chung, 1997); For example∆ has
exactlyk zero eigenvaluesλ1 = · · · = λk = 0, wherek is the number of con-
nected subgraphs. The corresponding eigenvectorsφ1, . . . , φk are constant over
the individual subgraphs and zero elsewhere. Perhaps the most important property
of the Laplacian related to semi-supervised learning is the following: a smaller
eigenvalueλ corresponds to a smoother eigenvectorφ over the graph; that is, the
value

∑
ij wij(φ(i) − φ(j))2 is small. Informally, a smooth eigenvector has the

property that two elements of the vector have similar values if there are many large
weight paths between the nodes in the graph. In a physical system, the smoother
eigenvectors correspond to the major vibration modes. Figure 8.1(top) shows a
simple graph consisting of two linear segments. The edges have the same weight
1. Its Laplacian spectral decomposition is shown below, where the eigenvalues are
sorted from small to large. The first two eigenvalues should be zero – there are
numerical errors in Matlab eigen computation. As the eigenvalues increase,the

57

58 CHAPTER 8. KERNELS FROM THE SPECTRUM OF LAPLACIANS

−4.5874e−17 3.7245e−16 0.043705 0.17291 0.38197

0.38197 0.66174 1 1.382 1.382

1.7909 2.2091 2.618 2.618 3

3.3383 3.618 3.618 3.8271 3.9563

Figure 8.1: A simple graph with two segments, and its Laplacian spectral decom-
position. The numbers are the eigenvalues, and the zigzag shapes are thecorre-
sponding eigenvectors.

corresponding eigenvectors become less and less smooth.

8.2 From Laplacians to Kernels

Kernel-based methods are increasingly being used for data modeling and predic-
tion because of their conceptual simplicity and good performance on many tasks.
A promising family of semi-supervised learning methods can be viewed as con-
structing kernels by transforming the spectrum (i.e. eigen-decomposition) of the
graph Laplacian. These kernels, when viewed as regularizers, penalize functions
that are not smooth over the graph (Smola & Kondor, 2003).

Assuming the graph structure is correct, from a regularization perspective we

8.2. FROM LAPLACIANS TO KERNELS 59

want to encourage smooth functions, to reflect our belief that labels should vary
slowly over the graph. Specifically, Chapelle et al. (2002) and Smola and Kondor
(2003) suggest a general principle for creating a family of semi-supervised kernels
K from the graph Laplacian∆: transform the eigenvaluesλ into r(λ), where the
spectral transformationr is a non-negative and usually decreasing function1

K =
n∑

i=1

r(λi)φiφ
>
i (8.1)

Note it may be thatr reverses the order of the eigenvalues, so that smoothφi’s have
larger eigenvalues inK. With such a kernel, a “soft labeling” functionf =

∑
ciφi

in a kernel machine has a penalty term in the RKHS norm given byΩ(||f ||2K) =
Ω(
∑
c2i /r(λi)). If r is decreasing, a greater penalty is incurred for those terms of

f corresponding to eigenfunctions that are less smooth.
In previous workr has often been chosen from a parametric family. For exam-

ple, the diffusion kernel (Kondor & Lafferty, 2002) corresponds to

r(λ) = exp(−σ
2

2
λ) (8.2)

The regularized Gaussian process kernel in Chapter 6 correspondsto

r(λ) =
1

λ+ σ
(8.3)

Figure 8.2 shows such a regularized Gaussian process kernel, constructed from
the Laplacian in Figure 8.1 withσ = 0.05. Cross validation has been used to
find the hyperparameterσ for these spectral transformations. Although the general
principle of equation (8.1) is appealing, it does not address the question ofwhich
parametric familyto use forr. Moreover, the degree of freedom (or the number of
hyperparameters) may not suit the task, resulting in overly constrained kernels.

We address these limitations with a nonparametric method. Instead of using
a parametric transformationr(λ), we allow the transformed eigenvaluesµi =
r(λi), i = 1 . . . n to be almost independent. The only additional condition is that
µi’s have to be non-increasing, to encourage smooth functions over the graph. Un-
der this condition, we find the set of optimal spectral transformationµ that maxi-
mizes the kernel alignment to the labeled data. The main advantage of using kernel
alignment is that it gives us a convex optimization problem, and does not suf-
fer from poor convergence to local minima. The optimization problem in general
is solved using semi-definite programming (SDP) (Boyd & Vandenberge, 2004);

1We use a slightly different notation wherer is the inverse of that in (Smola & Kondor, 2003).

60 CHAPTER 8. KERNELS FROM THE SPECTRUM OF LAPLACIANS

2
4

6
8

10
12

14
16

18
20

2

4

6

8

10

12

14

16

18

20

0

1

2

3

4

5

6

Figure 8.2: The kernel constructed from the Laplacian in Figure 8.1, with spectrum
transformationr(λ) = 1/(λ+ 0.05).

however, in our approach the problem can be formulated in terms of quadratically
constrained quadratic programming (QCQP), which can be solved more efficiently
than a general SDP. We review QCQP next.

8.3 Convex Optimization using QCQP

LetKi = φiφ
>
i , i = 1 · · ·n be the outer product matrices of the Laplacian’s eigen-

vectors. Our kernelK is a linear combination

K =

n∑

i=1

µiKi (8.4)

whereµi ≥ 0. We formulate the problem of finding the optimal spectral transfor-
mation as one that finds the interpolation coefficients{r(λi) = µi} by optimizing
some convex objective function onK. To maintain the positive semi-definiteness
constraint onK, one in general needs to invoke SDPs (Boyd & Vandenberge,
2004). Semi-definite optimization can be described as the problem of optimizing
a linear function of a symmetric matrix subject to linear equality constraints and
the condition that the matrix be positive semi-definite. The well known linear pro-
gramming problem can be generalized to a semi-definite optimization by replacing
the vector of variables with a symmetric matrix, and replacing the non-negativity
constraints with a positive semi-definite constraints. This generalization inherits
several properties: it is convex, has a rich duality theory and allows theoretically
efficient solution algorithms based on iterating interior point methods to either fol-
low a central path or decrease a potential function. However, a limitation of SDPs is
their computational complexity (Boyd & Vandenberge, 2004), which has restricted
their application to small-scale problems (Lanckriet et al., 2004). However,an
important special case of SDPs arequadratically constrained quadratic programs

8.4. SEMI-SUPERVISED KERNELS WITH ORDER CONSTRAINTS 61

(QCQP) which are computationally more efficient. Here both the objective func-
tion and the constraints are quadratic as illustrated below,

minimize
1

2
x>P0x+ q>0 x+ r0 (8.5)

subject to
1

2
x>Pix+ q>i x+ ri ≤ 0 i = 1 · · ·m (8.6)

Ax = b (8.7)

wherePi ∈ Sn
+, i = 1, . . . ,m, whereSn

+ defines the set of square symmetric
positive semi-definite matrices. In a QCQP, we minimize a convex quadratic func-
tion over a feasible region that is the intersection of ellipsoids. The number of
iterations required to reach the solution is comparable to the number required for
linear programs, making the approach feasible for large datasets. However, as ob-
served in (Boyd & Vandenberge, 2004), not all SDPs can be relaxedto QCQPs.
For the semi-supervised kernel learning task presented here solving anSDP would
be computationally infeasible.

Recent work (Cristianini et al., 2001a; Lanckriet et al., 2004) has proposedker-
nel target alignmentthat can be used not only to assess the relationship between
the feature spaces generated by two different kernels, but also to assess the similar-
ity between spaces induced by a kernel and that induced by the labels themselves.
Desirable properties of the alignment measure can be found in (Cristianini et al.,
2001a). The crucial aspect of alignment for our purposes is that its optimization can
be formulated as a QCQP. The objective function is the empirical kernel alignment
score:

Â(Ktr, T) =
〈Ktr, T 〉F√

〈Ktr,Ktr〉F 〈T, T 〉F
(8.8)

whereKtr is the kernel matrix restricted to the training points,〈M,N〉F denotes
the Frobenius product between two square matrices〈M,N〉F =

∑
ij mijnij =

trace(MN>), andT is the target matrix on training data, with entryTij set to+1
if yi = yj and−1 otherwise. Note for binary{+1,−1} training labelsYL this
is simply the rank one matrixT = YLY

>
L . K is guaranteed to be positive semi-

definite by constrainingµi ≥ 0. Our kernel alignment problem is special in that
theKi’s were derived from the graph Laplacian with the goal of semi-supervised
learning. We require smoother eigenvectors to receive larger coefficients, as shown
in the next section.

8.4 Semi-Supervised Kernels with Order Constraints

As stated above, we would like to maintain a decreasing order on the spectral
transformationµi = r(λi) to encourage smooth functions over the graph. This

62 CHAPTER 8. KERNELS FROM THE SPECTRUM OF LAPLACIANS

motivates the set oforder constraints

µi ≥ µi+1, i = 1 · · ·n− 1 (8.9)

We can specify the desired semi-supervised kernel as follows.

Definition 1 An order constrained semi-supervised kernelK is the solution to the
following convex optimization problem:

maxK Â(Ktr, T) (8.10)

subject to K =
∑n

i=1 µiKi (8.11)

µi ≥ 0 (8.12)

trace(K) = 1 (8.13)

µi ≥ µi+1, i = 1 · · ·n− 1 (8.14)

whereT is the training target matrix,Ki = φiφ
>
i andφi’s are the eigenvectors of

the graph Laplacian.

The formulation is an extension to (Lanckriet et al., 2004) with order constraints,
and with special componentsKi’s from the graph Laplacian. Sinceµi ≥ 0 and
Ki’s are outer products,K will automatically be positive semi-definite and hence
a valid kernel matrix. The trace constraint is needed to fix the scale invariance of
kernel alignment. It is important to notice the order constraints are convex,and as
such the whole problem is convex. This problem is equivalent to:

maxK 〈Ktr, T 〉F (8.15)

subject to 〈Ktr,Ktr〉F ≤ 1 (8.16)

K =
∑n

i=1 µiKi (8.17)

µi ≥ 0 (8.18)

µi ≥ µi+1, ∀i (8.19)

Let vec(A) be the column vectorization of a matrixA. Defining al2 ×m matrix

M =
[
vec(K1,tr) · · · vec(Km,tr)

]
(8.20)

it is not hard to show that the problem can then be expressed as

maxµ vec(T)>Mµ (8.21)

subject to ||Mµ|| ≤ 1 (8.22)

µi ≥ 0 (8.23)

µi ≥ µi+1, i = 1 · · ·n− 1 (8.24)

8.4. SEMI-SUPERVISED KERNELS WITH ORDER CONSTRAINTS 63

The objective function is linear inµ, and there is a simple cone constraint, making
it a quadratically constrained quadratic program (QCQP)2.

An improvement of the above order constrained semi-supervised kernelcan be
obtained by taking a closer look at the Laplacian eigenvectors with zero eigenval-
ues. As stated earlier, for a graph Laplacian there will bek zero eigenvalues if the
graph hask connected subgraphs. Thek eigenvectors are piecewise constant over
individual subgraphs, and zero elsewhere. This is desirable whenk > 1, with the
hope that subgraphs correspond to different classes. However ifk = 1, the graph is
connected. The first eigenvectorφ1 is a constant vector over all nodes. The corre-
spondingK1 is a constant matrix, and acts as a bias term in (8.1). In this situation
we do not want to impose the order constraintµ1 ≥ µ2 on the constant bias term,
rather we letµ1 vary freely during optimization:

Definition 2 An improved order constrained semi-supervised kernelK is the so-
lution to the same problem in Definition 1, but the order constraints (8.14) apply
only to non-constant eigenvectors:

µi ≥ µi+1, i = 1 · · ·n− 1, andφi not constant (8.25)

In practice we do not need alln eigenvectors of the graph Laplacian, or equiva-
lently all n Ki’s. The firstm < n eigenvectors with the smallest eigenvalues work
well empirically. Also note we could have used the fact thatKi’s are from orthog-
onal eigenvectorsφi to further simplify the expression. However we neglect this
observation, making it easier to incorporate other kernel components if necessary.

It is illustrative to compare and contrast the order constrained semi-supervised
kernels to other semi-supervised kernels with different spectral transformation. We
call the original kernel alignment solution in (Lanckriet et al., 2004) amaximal-
alignmentkernel. It is the solution to Definition 1 without the order constraints
(8.14). Because it does not have the additional constraints, it maximizes kernel
alignment among all spectral transformation. The hyperparametersσ of the Diffu-
sion kernel and Gaussian fields kernel (described earlier) can be learned by max-
imizing the alignment score too, although the optimization problem is not neces-
sarily convex. These kernels use different information in the original Laplacian
eigenvaluesλi. The maximal-alignment kernels ignoreλi altogether. The order
constrained semi-supervised kernels only use theorder of λi and ignore their ac-
tual values. The diffusion and Gaussian field kernels use the actual values. In
terms of the degree of freedom in choosing the spectral transformationµi’s, the
maximal-alignment kernels are completely free. The diffusion and Gaussian field

2An alternative formulation results in a quadratic program (QP), which is faster than QCQP.
Details can be found athttp://www.cs.cmu.edu/˜zhuxj/pub/QP.pdf

64 CHAPTER 8. KERNELS FROM THE SPECTRUM OF LAPLACIANS

kernels are restrictive since they have an implicit parametric form and only one free
parameter. The order constrained semi-supervised kernels incorporates desirable
features from both approaches.

8.5 Experiments

We evaluate the order constrained kernels on seven datasets.baseball-hockey
(1993 instances / 2 classes),pc-mac (1943/2) andreligion-atheism (1427/2) are
document categorization tasks taken from the 20-newsgroups dataset. The distance
measure is the standard cosine similarity between tf.idf vectors.one-two(2200/2),
odd-even (4000/2) andten digits (4000/10) are handwritten digits recognition
tasks. one-two is digits “1” vs. “2”; odd-even is the artificial task of classify-
ing odd “1, 3, 5, 7, 9” vs. even “0, 2, 4, 6, 8” digits, such that each class has several
well defined internal clusters;ten digits is 10-way classification.isolet (7797/26)
is isolated spoken English alphabet recognition from the UCI repository. For these
datasets we use Euclidean distance on raw features. We use 10NN unweighted
graphs on all datasets except isolet which is 100NN. For all datasets, weuse the
smallestm = 200 eigenvalue and eigenvector pairs from the graph Laplacian.
These values are set arbitrarily without optimizing and do not create a unfair ad-
vantage to the proposed kernels. For each dataset we test on five different labeled
set sizes. For a given labeled set size, we perform 30 random trials in which a la-
beled set is randomly sampled from the whole dataset. All classes must be present
in the labeled set. The rest is used as unlabeled (test) set in that trial. We compare
5 semi-supervised kernels (improved order constrained kernel, orderconstrained
kernel, Gaussian field kernel, diffusion kernel3 and maximal-alignment kernel),
and 3 standard supervised kernels (RBF (bandwidth learned using 5-fold cross val-
idation),linear and quadratic). We compute the spectral transformation for order
constrained kernels and maximal-alignment kernels by solving the QCQP using
standard solvers (SeDuMi/YALMIP). To compute accuracy we use thesekernels in
a standard SVM. We choose the bound on slack variablesC with cross validation
for all tasks and kernels. For multiclass classification we perform one-against-all
and pick the class with the largest margin.

Table 8.1 through Table 8.7 list the results. There are two rows for each cell:
The upper row is the averagetest set accuracywith one standard deviation; The
lower row is the averagetraining set kernel alignment, and in parenthesis the av-
eragerun time in secondsfor QCQP on a 2.4GHz Linux computer. Each number
is averaged over 30 random trials. To assess the statistical significance of the re-

3The hyperparametersσ are learned with thefminbnd() function in Matlab to maximize kernel
alignment.

8.5. EXPERIMENTS 65

semi-supervised kernels standard kernels
Training Improved Order Gaussian Diffusion Max-align RBF Linear Quadratic
set size Order Field σ = 200

10 95.7± 8.9 93.9±12.0 63.1±15.8 65.8±22.8 93.2± 6.8 53.6± 5.5 68.1± 7.6 68.1± 7.6
0.90 (2) 0.69 (1) 0.35 0.44 0.95 (1) 0.11 0.29 0.23

30 98.0± 0.2 97.3± 2.1 91.8± 9.3 59.1±17.9 96.6± 2.2 69.3±11.2 78.5± 8.5 77.8±10.6
0.91 (9) 0.67 (9) 0.25 0.39 0.93 (6) 0.03 0.17 0.11

50 97.9± 0.5 97.8± 0.6 96.7± 0.6 93.7± 6.8 97.0± 1.1 77.7± 8.3 84.1± 7.8 75.6±14.2
0.89 (29) 0.63 (29) 0.22 0.36 0.90 (27) 0.02 0.15 0.09

70 97.9± 0.3 97.9± 0.3 96.8± 0.6 97.5± 1.4 97.2± 0.8 83.9± 7.2 87.5± 6.5 76.1±14.9
0.90 (68) 0.64 (64) 0.22 0.37 0.90 (46) 0.01 0.13 0.07

90 98.0± 0.5 98.0± 0.2 97.0± 0.4 97.8± 0.2 97.6± 0.3 88.5± 5.1 89.3± 4.4 73.3±16.8
0.89 (103) 0.63 (101) 0.21 0.36 0.89 (90) 0.01 0.12 0.06

Table 8.1: Baseball vs. Hockey

semi-supervised kernels standard kernels
Training Improved Order Gaussian Diffusion Max-align RBF Linear Quadratic
set size Order Field σ = 100

10 87.0± 5.0 84.9± 7.2 56.4± 6.2 57.8±11.5 71.1± 9.7 51.6± 3.4 63.0± 5.1 62.3± 4.2
0.71 (1) 0.57 (1) 0.32 0.35 0.90 (1) 0.11 0.30 0.25

30 90.3± 1.3 89.6± 2.3 76.4± 6.1 79.6±11.2 85.4± 3.9 62.6± 9.6 71.8± 5.5 71.2± 5.3
0.68 (8) 0.49 (8) 0.19 0.23 0.74 (6) 0.03 0.18 0.13

50 91.3± 0.9 90.5± 1.7 81.1± 4.6 87.5± 2.8 88.4± 2.1 67.8± 9.0 77.6± 4.8 75.7± 5.4
0.64 (31) 0.46 (31) 0.16 0.20 0.68 (25) 0.02 0.14 0.10

70 91.5± 0.6 90.8± 1.3 84.6± 2.1 90.5± 1.2 89.6± 1.6 74.7± 7.4 80.2± 4.6 74.3± 8.7
0.63 (70) 0.46 (56) 0.14 0.19 0.66 (59) 0.01 0.12 0.08

90 91.5± 0.6 91.3± 1.3 86.3± 2.3 91.3± 1.1 90.3± 1.0 79.0± 6.4 82.5± 4.2 79.1± 7.3
0.63 (108) 0.45 (98) 0.13 0.18 0.65 (84) 0.01 0.11 0.08

Table 8.2: PC vs. MAC

semi-supervised kernels standard kernels
Training Improved Order Gaussian Diffusion Max-align RBF Linear Quadratic
set size Order Field σ = 130

10 72.8±11.2 70.9±10.9 55.2± 5.8 60.9±10.7 60.7± 7.5 55.8± 5.8 60.1± 7.0 61.2± 4.8
0.50 (1) 0.42 (1) 0.31 0.31 0.85 (1) 0.13 0.30 0.26

30 84.2± 2.4 83.0± 2.9 71.2± 6.3 80.3± 5.1 74.4± 5.4 63.4± 6.5 63.7± 8.3 70.1± 6.3
0.38 (8) 0.31 (6) 0.20 0.22 0.60 (7) 0.05 0.18 0.15

50 84.5± 2.3 83.5± 2.5 80.4± 4.1 83.5± 2.7 77.4± 6.1 69.3± 6.5 69.4± 7.0 70.7± 8.5
0.31 (28) 0.26 (23) 0.17 0.20 0.48 (27) 0.04 0.15 0.11

70 85.7± 1.4 85.3± 1.6 83.0± 2.9 85.4± 1.8 82.3± 3.0 73.1± 5.8 75.7± 6.0 71.0±10.0
0.29 (55) 0.25 (42) 0.16 0.19 0.43 (51) 0.03 0.13 0.10

90 86.6± 1.3 86.4± 1.5 84.5± 2.1 86.2± 1.6 82.8± 2.6 77.7± 5.1 74.6± 7.6 70.0±11.5
0.27 (86) 0.24 (92) 0.15 0.18 0.40 (85) 0.02 0.12 0.09

Table 8.3: Religion vs. Atheism

semi-supervised kernels standard kernels
Training Improved Order Gaussian Diffusion Max-align RBF Linear Quadratic
set size Order Field σ = 1000

10 96.2± 2.7 90.6±14.0 58.2±17.6 59.4±18.9 85.4±11.5 78.7±14.3 85.1± 5.7 85.7± 4.8
0.87 (2) 0.66 (1) 0.43 0.53 0.95 (1) 0.38 0.26 0.30

20 96.4± 2.8 93.9± 8.7 87.0±16.0 83.2±19.8 94.5± 1.6 90.4± 4.6 86.0± 9.4 90.9± 3.7
0.87 (3) 0.64 (4) 0.38 0.50 0.90 (3) 0.33 0.22 0.25

30 98.2± 2.1 97.2± 2.5 98.1± 2.2 98.1± 2.7 96.4± 2.1 93.6± 3.1 89.6± 5.9 92.9± 2.8
0.84 (8) 0.61 (7) 0.35 0.47 0.86 (6) 0.30 0.17 0.24

40 98.3± 1.9 96.5± 2.4 98.9± 1.8 99.1± 1.4 96.3± 2.3 94.0± 2.7 91.6± 6.3 94.9± 2.0
0.84 (13) 0.61 (15) 0.36 0.48 0.86 (11) 0.29 0.18 0.21

50 98.4± 1.9 95.6± 9.0 99.4± 0.5 99.6± 0.3 96.6± 2.3 96.1± 2.4 93.0± 3.6 95.8± 2.3
0.83 (31) 0.60 (37) 0.35 0.46 0.84 (25) 0.28 0.17 0.20

Table 8.4: One vs. Two

66 CHAPTER 8. KERNELS FROM THE SPECTRUM OF LAPLACIANS

semi-supervised kernels standard kernels
Training Improved Order Gaussian Diffusion Max-align RBF Linear Quadratic
set size Order Field σ = 1500

10 69.6± 6.5 68.8± 6.1 65.5± 8.9 68.4± 8.5 55.7± 4.4 65.0± 7.0 63.1± 6.9 65.4± 6.5
0.45 (1) 0.41 (1) 0.32 0.34 0.86 (1) 0.23 0.25 0.27

30 82.4± 4.1 82.0± 4.0 79.6± 4.1 83.0± 4.2 67.2± 5.0 77.7± 3.5 72.4± 6.1 76.5± 5.1
0.32 (6) 0.28 (6) 0.21 0.23 0.56 (6) 0.10 0.11 0.16

50 87.6± 3.5 87.5± 3.4 85.9± 3.8 89.1± 2.7 76.0± 5.3 81.8± 2.7 74.4± 9.2 81.3± 3.1
0.29 (24) 0.26 (25) 0.19 0.21 0.45 (26) 0.07 0.09 0.12

70 89.2± 2.6 89.0± 2.7 89.0± 1.9 90.3± 2.8 80.9± 4.4 84.4± 2.0 73.6±10.0 83.8± 2.8
0.27 (65) 0.24 (50) 0.17 0.20 0.39 (51) 0.06 0.07 0.12

90 91.5± 1.5 91.4± 1.6 90.5± 1.4 91.9± 1.7 85.4± 3.1 86.1± 1.8 66.1±14.8 85.5± 1.6
0.26 (94) 0.23 (97) 0.16 0.19 0.36 (88) 0.05 0.07 0.11

Table 8.5: Odd vs. Even

semi-supervised kernels standard kernels
Training Improved Order Gaussian Diffusion Max-align RBF Linear Quadratic
set size Order Field σ = 2000

50 76.6± 4.3 71.5± 5.0 41.4± 6.8 49.8± 6.3 70.3± 5.2 57.0± 4.0 50.2± 9.0 66.3± 3.7
0.47 (26) 0.21 (26) 0.15 0.16 0.51 (25) -0.62 -0.50 -0.25

100 84.8± 2.6 83.4± 2.6 63.7± 3.5 72.5± 3.3 80.7± 2.6 69.4± 1.9 56.0± 7.8 77.2± 2.3
0.47 (124) 0.17 (98) 0.12 0.13 0.49 (100) -0.64 -0.52 -0.29

150 86.5± 1.7 86.4± 1.3 75.1± 3.0 80.4± 2.1 84.5± 1.9 75.2± 1.4 56.2± 7.2 81.4± 2.2
0.48 (310) 0.18 (255) 0.11 0.13 0.50 (244) -0.66 -0.53 -0.31

200 88.1± 1.3 88.0± 1.3 80.4± 2.5 84.4± 1.6 86.0± 1.5 78.3± 1.3 60.8± 7.3 84.3± 1.7
0.47 (708) 0.16 (477) 0.10 0.11 0.49 (523) -0.65 -0.54 -0.33

250 89.1± 1.1 89.3± 1.0 84.6± 1.4 87.2± 1.3 87.2± 1.3 80.4± 1.4 61.3± 7.6 85.7± 1.3
0.47 (942) 0.16 (873) 0.10 0.11 0.49 (706) -0.65 -0.54 -0.33

Table 8.6: Ten Digits (10 classes)

semi-supervised kernels standard kernels
Training Improved Order Gaussian Diffusion Max-align RBF Linear Quadratic
set size Order Field σ = 30

50 56.0± 3.5 42.0± 5.2 41.2± 2.9 29.0± 2.7 50.1± 3.7 28.7± 2.0 30.0± 2.7 23.7± 2.4
0.27 (26) 0.13 (25) 0.03 0.11 0.31 (24) -0.89 -0.80 -0.65

100 64.6± 2.1 59.0± 3.6 58.5± 2.9 47.4± 2.7 63.2± 1.9 46.3± 2.4 46.6± 2.7 42.0± 2.9
0.26 (105) 0.10 (127) -0.02 0.08 0.29 (102) -0.90 -0.82 -0.69

150 67.6± 2.6 65.2± 3.0 65.4± 2.6 57.2± 2.7 67.9± 2.5 57.6± 1.5 57.3± 1.8 53.8± 2.2
0.26 (249) 0.09 (280) -0.05 0.07 0.27 (221) -0.90 -0.83 -0.70

200 71.0± 1.8 70.9± 2.3 70.6± 1.9 64.8± 2.1 72.3± 1.7 63.9± 1.6 64.2± 2.0 60.5± 1.6
0.26 (441) 0.08 (570) -0.07 0.06 0.27 (423) -0.91 -0.83 -0.72

250 71.8± 2.3 73.6± 1.5 73.7± 1.2 69.8± 1.5 74.2± 1.5 68.8± 1.5 69.5± 1.7 66.2± 1.4
0.26 (709) 0.08 (836) -0.07 0.06 0.27 (665) -0.91 -0.84 -0.72

Table 8.7: ISOLET (26 classes)

8.5. EXPERIMENTS 67

sults, we perform pairedt-test on test accuracy. We highlight the best accuracy
in each row, and those that cannot be determined as different from the best, with
pairedt-test at significance level 0.05. The semi-supervised kernels tend to out-
perform standard supervised kernels. The improved order constrained kernels are
consistently among the best. Figure 8.3 shows the spectral transformationµi of
the semi-supervised kernels for different tasks. These are for the 30trials with the
largest labeled set size in each task. Thex-axis is in increasing order ofλi (the
original eigenvalues of the Laplacian). The mean (thick lines) and±1 standard de-
viation (dotted lines) of only the top 50µi’s are plotted for clarity. Theµi values are
scaled vertically for easy comparison among kernels. As expected the maximal-
alignment kernels’ spectral transformation is zigzagged, diffusion and Gaussian
field’s are very smooth, while order constrained kernels’ are in between. The or-
der constrained kernels (green) have largeµ1 because of the order constraint. This
seems to be disadvantageous — the spectral transformation tries to balance itout
by increasing the value of otherµi’s so that the constantK1’s relative influence is
smaller. On the other hand the improved order constrained kernels (black)allow
µ1 to be small. As a result the restµi’s decay fast, which is desirable.

In conclusion, the method is both computationally feasible and results in im-
provements to classification performance when used with support vector machines.

68 CHAPTER 8. KERNELS FROM THE SPECTRUM OF LAPLACIANS

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rank

µ
sc

al
ed

Baseball vs. Hockey

Improved order
Order
Max−align
Gaussian field
Diffusion

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rank

µ
sc

al
ed

PC vs. MAC

Improved order
Order
Max−align
Gaussian field
Diffusion

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rank

µ
sc

al
ed

Religion vs. Atheism

Improved order
Order
Max−align
Gaussian field
Diffusion

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rank

µ
sc

al
ed

One vs. Two

Improved order
Order
Max−align
Gaussian field
Diffusion

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rank

µ
sc

al
ed

Odd vs. Even

Improved order
Order
Max−align
Gaussian field
Diffusion

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rank

µ
sc

al
ed

Ten Digits (10 classes)

Improved order
Order
Max−align
Gaussian field
Diffusion

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rank

µ
sc

al
ed

ISOLET (26 classes)

Improved order
Order
Max−align
Gaussian field
Diffusion

Figure 8.3: Spectral transformation of the 5 semi-supervised kernels.

Chapter 9

Sequences and Beyond

So far, we have treated each data point individually. However in many problems
the data has complex structures. For example in speech recognition the data isse-
quential. Most semi-supervised learning methods have not addressed thisproblem.
We use sequential data as an example in the following discussion because it issim-
ple. Nevertheless the discussion applies to other complex data structures likegrids,
trees etc.

It is important to clarify the setting. By sequential data we do not mean each
data itemx is a sequence and we give asingle labely to the whole sequence.
Instead we want to give individual labels to the constituent data points in the se-
quence.

There are generative and discriminative methods that can be used for semi-
supervised learning on sequences.

The Hidden Markov Model (HMM) is such a generative methods. Specifi-
cally the standard EM training with forward-backward algorithm (also known as
Baum-Welch (Rabiner, 1989)) is a sequence semi-supervised learning algorithm,
although it is usually not presented that way. The training data typically consists
of a small labeled set withl labeled sequences{XL, YL} = {(x1,y1) . . . (xl,yl)},
and a much larger unlabeled set of sequencesXU = {xl+1 . . .xl+u}. We use
bold font xi to represent thei-th sequence with lengthmi, whose elements are
xi1 . . . ximi

. Similarly yi is a sequence of labelsyi1 . . . yimi
. The labeled set is

used to estimate initial HMM parameters. The unlabeled data is then used to run
the EM algorithm on, to improve the HMM likelihoodP (XU) to a local maxi-
mum. The trained HMM parameters thus are determined by both the labeled and
unlabeled sequences. This parallels the mixture models and EM algorithm in the
i.i.d. case. We will not discuss it further in the thesis.

For discriminative methods one strategy is to use a kernel machine for se-

69

70 CHAPTER 9. SEQUENCES AND BEYOND

quences, and introduce semi-supervised dependency via the kernels inChapter 8.
Recent kernel machines for sequences and other complex structures include Ker-
nel Conditional Random Fields (KCRFs) (Lafferty et al., 2004) and Max-Margin
Markov Networks (Taskar et al., 2003), which are generalization of logistic re-
gression and support vector machines respectively to structured data.These kernel
machines by themselves are not designed specifically for semi-supervisedlearn-
ing. However we can use a semi-supervised kernel, for example the graph kernels
in Chapter 8, with the kernel machines. This results in semi-supervised learning
methods on sequential data.

The idea is straightforward. The remainder of the chapter focuses on KCRFs,
describing the formalism and training issues, with a synthetic example on semi-
supervised learning.

9.1 Cliques and Two Graphs

Before we start, it is useful to distinguish two kinds of graphs in KCRF for semi-
supervised learning. The first graph (gs) represents the conditional random field
structure, for example a linear chain graph for sequences. In this case the size of
gs is the length of the sequence. In general letx be the features ongs’s nodes and
y the labels. Aclique c is a subset of the nodes which is fully connected, with
any pair of nodes joined by an edge. Letyc be the labels on the clique. We want
Mercer kernelsK to compare cliques in different graphs,

K((gs,x, c,yc), (g
′
s,x

′, c′,y′
c′)) ∈ R (9.1)

Intuitively, this assigns a measure of similarity between a labeled clique in one
graph and a labeled clique in a (possibly) different graph. We denote byHK the
associated reproducing kernel Hilbert space, and by‖·‖K the associated norm.

In the context of semi-supervised learning, we are interested in kernels with
the special form:

K((gs,x, c,yc), (g
′
s,x

′, c′,y′
c′)) = ψ

(
K ′(xc,x

′
c),gs,yc,g

′
s,y

′
c′
)

(9.2)

i.e. some functionψ of a kernelK ′, whereK ′ depends only on the features, not
the labels. This is where the second graph (denotedgk) comes in.gk is the semi-
supervised graph discussed in previous chapters. Its nodes are the cliquesxc in
both labeled and unlabeled data, and edges represent similarity between thecliques.
The size ofgk is the total number of cliques in the whole dataset. It however
does not represent the sequence structure.gk is used to derive the Laplacian and
ultimately the kernel matrixK ′(xc,x

′
c), as in Chapter 8.

9.2. REPRESENTER THEOREM FOR KCRFS 71

9.2 Representer Theorem for KCRFs

We start from a functionf which, looking at a clique (c) in graph (gs,x) and an
arbitrary labeling of the clique (yc), computes a ‘compatibility’ score. That is,
f(gs,x, c,yc)→ R. We define a conditional random field

p(y|gs,x) = Z−1(gs,x, f) exp

(
∑

c

f(gs,x, c,yc)

)
(9.3)

The normalization factor is

Z(gs,x, f) =
∑

y′

exp

(
∑

c

f(gs,x, c,y
′
c)

)
(9.4)

Notice we sum over all possible labelings of all cliques. The conditional random
field induces a loss function, thenegative log loss

φ(y|gs,x, f) (9.5)

= − log p(y|gs,x) (9.6)

= −
∑

c

f(gs,x, c,yc) + log
∑

y′

exp

(
∑

c

f(gs,x, c,y
′
c)

)
(9.7)

We now extend the standard “representer theorem” of kernel machines (Kimel-
dorf & Wahba, 1971) to conditional graphical models. Consider a regularized loss
function (i.e. risk) of the form

Rφ(f) =
l∑

i=1

φ
(
y(i)|g(i)

s ,x(i), f
)

+ Ω(‖f‖K) (9.8)

on a labeled training set of sizel. Ω is a strictly increasing function. It is important
to note that the risk depends on all possible assignmentsyc of labels to each clique,
not just those observed in the labeled datay(i). This is due to the normalization
factor in the negative log loss. We have the following representer theoremfor
KCRFs:

Proposition (Representer theorem for CRFs). The minimizerf? of the risk
(9.8), if it exists, has the form

f?(gs,x, c,yc) =
l∑

i=1

∑

c′

∑

y′

α
(i)
c′ (y′)K((g(i)

s ,x(i), c′,y′), (gs,x, c,yc)) (9.9)

72 CHAPTER 9. SEQUENCES AND BEYOND

where the sumy′ is over all labelings of cliquec′. The key property distinguish-
ing this result from the standard representer theorem is that the “dual parameters”
α

(i)
c′ (y′) now depend onall assignments of labels. That is, for each training graph
i, and each cliquec′ within the graph, andeach labelingy′ of the clique, not just
the labeling in the training data, there is a dual parameterα.

The difference between KCRFs and the earlier non-kernel version ofCRFs is
the representation off . In a standard non-kernel CRF,f is represented as a sum of
weights times feature functions

f(gs,x, c,yc) = Λ>Φ(gs,x, c,yc) (9.10)

whereΛ is a vector of weights (the “primal parameters”), andΦ is a set of fixed
feature functions. Standard CRF learning finds the optimalΛ. Therefore one ad-
vantage of KCRFs is the use of kernels which can correspond to infinite features.
In addition if we plug in a semi-supervised learning kernel to KCRFs, we obtain a
semi-supervised learning algorithm on structured data.

Let us look at two special cases of KCRF. In the first case let the cliquesbe the
verticesv, and with a special kernel

K((gs,x, v,yv), (g
′
s,x

′, v′,y′
v′)) = K ′(xv, x

′
v′)δ(yv, y

′
v′) (9.11)

The representer theorem states that

f?(x, y) =

l∑

i=1

∑

v∈g
(i)
s

α(i)
v (y)K ′(x, x(i)

v) (9.12)

Under the probabilistic model 9.3, this is simply kernel logistic regression. It has
no ability to model sequences.

In the second case let the cliques be edges connecting two verticesv1, v2. Let
the kernel be

K((gs,x, v1v2, yv1yv2), (g
′
s,x

′, v′1v
′
2, y

′
v1
y′v2

)) (9.13)

= K ′(xv1 , x
′
v1

)δ(yv1 , y
′
v1

) + δ(yv1 , y
′
v1

)δ(yv2 , y
′
v2

) (9.14)

and we have

f?(xv1 , yv1yv2) =
l∑

i=1

∑

u∈g
(i)
s

α(i)
u (yv1)K

′(xv1 , x
(i)
u) + α(yv1 , yv2) (9.15)

which is a simple type of semiparametric CRF. It has rudimentary ability to model
sequences withα(yv1 , yv2), similar to a transition matrix between states. In both
cases, we can use a graph kernelK ′ on both labeled and unlabeled data for semi-
supervised learning.

9.3. SPARSE TRAINING: CLIQUE SELECTION 73

9.3 Sparse Training: Clique Selection

The representer theorem shows that the minimizing functionf is supported by la-
beled cliques over the training examples; however, this may result in an extremely
large number of parameters. We therefore pursue a strategy of incrementally select-
ing cliques in order to greedily reduce the risk. The resulting procedure isparallel
to forward stepwise logistic regression, and to related methods for kernellogistic
regression (Zhu & Hastie, 2001).

Our algorithm will maintain anactive set
{

(g
(i)
s ,x(i), c,yc)

}
, each item uniquely

specifies a labeled clique. Again notice the labelingsyc are not necessarily those
appearing in the training data. Each labeled clique can be represented by aba-
sis functionh(·) = K((g

(i)
s ,x(i), c,yc), ·) ∈ HK , and is assigned a parameter

αh = α
(i)
c (yc). We work with the regularized risk

Rφ(f) =
l∑

i=1

φ
(
y(i)|g(i)

s ,x(i), f
)

+
λ

2
‖f‖2K (9.16)

whereφ is the negative log loss of equation (9.5). To evaluate a candidateh, one
strategy is to compute thegain supαRφ(f) − Rφ(f + αh), and to choose the
candidateh having the largest gain. This presents an apparent difficulty, since the
optimal parameterα cannot be computed in closed form, and must be evaluated nu-
merically. For sequence models this would involve forward-backward calculations
for each candidateh, the cost of which is prohibitive.

As an alternative, we adopt the functional gradient descent approach, which
evaluates a small change to the current function. For a given candidateh, consider
addingh to the current model with small weightε; thus f 7→ f + εh. Then
Rφ(f + εh) = Rφ(f) + εdRφ(f, h) + O(ε2), where the functional derivative of
Rφ atf in the directionh is computed as

dRφ(f, h) = Ef [h]− Ẽ[h] + λ〈f, h〉K (9.17)

whereẼ[h] =
∑

i

∑
c h(g

(i)
s ,x(i), c,y

(i)
c) is the empirical expectation andEf [h] =∑

i

∑
y

∑
c p(y|x(i), f)h(g

(i)
s ,x(i), c,yc) is the model expectation conditioned on

x. The idea is that in directionsh where the functional gradientdRφ(f, h) is large,
the model is mismatched with the labeled data; this direction should be added to the
model to make a correction. This results in the greedy clique selection algorithm,
as summarized in Figure 9.1.

An alternative to the functional gradient descent algorithm above is to estimate
parametersαh for each candidate. When each candidate clique is a vertex, the

74 CHAPTER 9. SEQUENCES AND BEYOND

Initialize with f = 0, and iterate:

1. For each candidateh ∈ HK , supported by a single labeled
clique, calculate the functional derivativedRφ(f, h).

2. Select the candidateh = arg maxh|dRφ(f, h)| having the largest
gradient direction. Setf 7→ f + αhh.

3. Estimate parametersαf for each activef by minimizingRφ(f).

Figure 9.1: Greedy Clique Selection. Labeled cliques encode basis functions h
which are greedily added to the model, using a form of functional gradientdescent.

0 50 100 150 200 250 300 350 400
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Training set size

T
es

t e
rr

or
 r

at
e

semi−supervised
RBF

0 2 4 6 8 10 12 14 16 18 20
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Training set size

T
es

t e
rr

or
 r

at
e

semi−supervised
RBF

Figure 9.2: Left: The galaxy data is comprised of two interlocking spirals together
with a “dense core” of samples from both classes. Center: Kernel logisticregres-
sion comparing two kernels, RBF and a graph kernel using the unlabeled data.
Right: Kernel conditional random fields, which take into account the sequential
structure of the data.

gain can be efficiently approximated using a mean field approximation. Under this
approximation, a candidate is evaluated according to the approximate gain

Rφ(f)−Rφ(f + αh) (9.18)

≈
∑

i

∑

v

Z(f,x(i))−1p(y(i)
v |x(i), f) exp(αh(x(i),y(i)

v)) + λ〈f, h〉(9.19)

which is a logistic approximation. Details can be found in Appendix E.

9.4 Synthetic Data Experiments

In the experiments reported below for sequences, the marginal probabilitiesp(yv =
1|x) and expected counts for the state transitions are required; these are computed

9.4. SYNTHETIC DATA EXPERIMENTS 75

using the forward-backward algorithm, with log domain arithmetic to avoid un-
derflow. A quasi-Newton method (BFGS, cubic-polynomial line search) is used to
estimate the parameters in step 3 of Figure 9.1.

To work with a data set that will distinguish a semi-supervised graph kernel
from a standard kernel, and a sequence model from a non-sequencemodel, we
prepared a synthetic data set (“galaxy”) that is a variant of spirals, see Figure 9.2
(left). Note data in the dense core come from both classes.

We sample 100 sequences of length 20 according to an HMM with two states,
where each state emits instances uniformly from one of the classes. There isa 90%
chance of staying in the same state, and the initial state is uniformly chosen. The
idea is that under a sequence model we should be able to use the context to deter-
mine the class of an example at the core. However, under a non-sequence model
without the context, the core region will be indistinguishable, and the datasetas a
whole will have about 20% Bayes error rate. Note the choice of semi-supervised
vs. standard kernels and sequence vs. non-sequence models are orthogonal; the
four combinations are all tested on.

We construct the semi-supervised graph kernel by first building an unweighted
10-nearest neighbor graph. We compute the associated graph Laplacian ∆, and
then the graph kernelK = 10

(
∆ + 10−6I

)−1
. The standard kernel is the radial

basis function (RBF) kernel with an optimal bandwidthσ = 0.35.

First we apply both kernels to a non-sequence model: kernel logistic regression
(9.12), see Figure 9.2 (center). The sequence structure is ignored. Ten random
trials were performed with each training set size, which ranges from 20 to 400
points. The error intervals are one standard error. As expected, when the labeled
set size is small, the RBF kernel results in significantly larger test error thanthe
graph kernel. Furthermore, both kernels saturate at the 20% Bayes error rate.

Next we apply both kernels to a KCRF sequence model 9.15. Experimental
results are shown in Figure 9.2 (right). Note thex-axis is the number of train-
ing sequences: Since each sequence has 20 instances, the range is thesame as
Figure 9.2 (center). The kernel CRF is capable of getting below the 20% Bayes
error rate of the non-sequence model, with both kernels and sufficient labeled data.
However the graph kernel is able to learn the structure much faster than theRBF
kernel. Evidently the high error rate for small label data sizes prevents theRBF
model from effectively using the context.

Finally we examine clique selection in KCRFs. For this experiment we use 50
training sequences. We use the mean field approximation and only select vertex
cliques. At each iteration the selection is based on the estimated change in risk for
each candidate vertex (training position). We plot the estimated change in riskfor
the first four iterations of clique selection, with the graph kernel and RBF kernel re-

76 CHAPTER 9. SEQUENCES AND BEYOND

spectively in Figure 9.3. Smaller values (lower onz-axis) indicate good candidates
with potentially large reduction in risk if selected. For the graph kernel, the first
two selected vertices are sufficient to reduce the risk essentially to the minimum
(note in the third iteration thez-axis scale is already10−6). Such reduction does
not happen with the RBF kernel.

9.4. SYNTHETIC DATA EXPERIMENTS 77

−2
0

2

−2

0

2

−0.4

−0.2

0

1st position candidates

−2
0

2

−2

0

2
−1

−0.5

0

2nd position candidates

−2
0

2

−2

0

2
−3

−2

−1

0

x 10
−6

3rd position candidates

−2
0

2

−2

0

2

−4

−2

0

x 10
−6

4th position candidates

graph kernel

−2
0

2

−2

0

2
−20

−10

0

1st position candidates

−2
0

2

−2

0

2
−20

−10

0

2nd position candidates

−2
0

2

−2

0

2
−20

−10

0

3rd position candidates

−2
0

2

−2

0

2
−20

−10

0

4th position candidates

RBF kernel

Figure 9.3: Mean field estimate of the change in loss function with the graph kernel
(top) and the RBF kernel (bottom) for the first four iterations of clique selection on
the galaxy dataset. For the graph kernel the endpoints of the spirals are chosen as
the first two cliques.

78 CHAPTER 9. SEQUENCES AND BEYOND

Chapter 10

Harmonic Mixtures: Handling
Unseen Data and Reducing
Computation

There are two important questions to graph based semi-supervised learning meth-
ods:

1. The graph is constructed only on the labeled and unlabeled data. Many such
methods are transductive in nature. How can we handle unseen new data
points?

2. They often involve expensive manipulation on large matrices, for example
matrix inversion, which can beO(n3). Because unlabeled data is relatively
easy to obtain in large quantity, the matrix could be too big to handle. How
can we reduce computation when the unlabeled dataset is large?

In this chapter we address these questions by combining graph method with a mix-
ture model.

Mixture model has long been used for semi-supervised learning, e.g. Gaussian
mixture model (GMM) (Castelli & Cover, 1996) (Ratsaby & Venkatesh, 1995), and
mixture of multinomial (Nigam et al., 2000). Training is typically done with the
EM algorithm. It has several advantages: The model is inductive and handles un-
seen points naturally; It is a parametric model with a small number of parameters.
However when there is underlying manifold structure in the data, EM may have
difficulty making thelabels follow the manifold: An example is given in Figure
10.1. The desired behavior is shown in Figure 10.2, which can be achieved by the
harmonic mixturemethod discussed in this Chapter.

79

80 CHAPTER 10. HARMONIC MIXTURES

Mixture models and graph based semi-supervised learning methods make dif-
ferent assumptions about the relation between unlabeled data and labels. Neverthe-
less, they are not mutually exclusive. It is possible that the data fits the component
model (e.g. Gaussian)locally, while the manifold structure appearsglobally. We
combine the best from both. From a graph method point of view, the resulting
model is a much smaller (thus computationally less expensive) ‘backbone graph’
with ‘supernodes’ induced by the mixture components; From a mixture model
point of view, it is still inductive and naturally handles new points, but also has the
ability for labels to follow the data manifold. Our approach is related to graph reg-
ularization in (Belkin et al., 2004b), and is an alternative to the induction methodin
(Delalleau et al., 2005). It should be noted that we are interested in mixture models
with a large number (possibly more than the number of labeled points) of compo-
nents, so that the manifold structure can appear, which is different fromprevious
works.

10.1 Review of Mixture Models and the EM Algorithm

In typical mixture models for classification, the generative process is the follow-
ing. One first picks a classy, then chooses a mixture componentm ∈ {1 . . .M}
by p(m|y), and finally generates a pointx according top(x|m). Thusp(x, y) =∑M

m=1 p(y)p(m|y)p(x|m). In this paper we take a different but equivalent param-
eterization,

p(x, y) =
M∑

m=1

p(m)p(y|m)p(x|m) (10.1)

We allowp(y|m) > 0 for all y, enabling classes to share a mixture component.

The standard EM algorithm learns these parameters to maximize the log like-
lihood of observed data:

L(Θ) = log p(xL, xU , yL|Θ) (10.2)

=
∑

i∈L

log p(xi, yi|Θ) +
∑

i∈U

log p(xi|Θ)

=
∑

i∈L

log
M∑

m=1

p(m)p(yi|m)p(xi|m) +
∑

i∈U

log
M∑

m=1

p(m)p(xi|m)

We introduce arbitrary distributionsqi(m|i) on mixture membership, one for each

10.1. REVIEW OF MIXTURE MODELS AND THE EM ALGORITHM 81

i. By Jensen’s inequality

L(Θ) =
∑

i∈L

log
M∑

m=1

qi(m|xi, yi)
p(m)p(yi|m)p(xi|m)

qi(m|xi, yi)
(10.3)

+
∑

i∈U

log
M∑

m=1

qi(m|xi)
p(m)p(xi|m)

qi(m|xi)

≥
∑

i∈L

M∑

m=1

qi(m|xi, yi) log
p(m)p(yi|m)p(xi|m)

qi(m|xi, yi)
(10.4)

+
∑

i∈U

M∑

m=1

qi(m|xi) log
p(m)p(xi|m)

qi(m|xi)

≡ F(q,Θ) (10.5)

The EM algorithm works by iterating coordinate-wise ascend onq andΘ to max-
imizeF(q,Θ). The E step fixesΘ and finds theq that maximizesF(q,Θ). We
denote the fixedΘ at iterationt by p(m)(t), p(y|m)(t) andp(x|m)(t). Since the
terms ofF has the form of KL divergence, it is easy to see that the optimalq are
the posterior onm:

q
(t)
i (m|xi, yi) = p(m|xi, yi) =

p(m)(t)p(yi|m)(t)p(xi|m)(t)
∑M

k=1 p(k)
(t)p(yi|k)(t)p(xi|k)(t)

, i ∈ L

q
(t)
i (m|xi) = p(m|xi) =

p(m)(t)p(xi|m)(t)
∑M

k=1 p(k)
(t)p(xi|k)(t)

, i ∈ U (10.6)

The M step fixesq(t) and findsΘ(t+1) to maximizeF . Taking the partial deriva-
tives and set to zero, we find

p(m)(t+1) ∝
∑

i∈L∪U

qi(m)(t) (10.7)

θ(t+1)
m ≡ p(y = 1|m)(t+1) =

∑
i∈L, yi=1 qi(m)(t)
∑

i∈L qi(m)(t)
(10.8)

∑

i∈L∪U

qi(m)(t)
1

p(xi|m)

∂p(xi|m)

∂Θx
= 0 (10.9)

The last equation needs to be reduced further with the specific generative model

82 CHAPTER 10. HARMONIC MIXTURES

for x, e.g. Gaussian or multinomial. For Gaussian, we have

µ(t+1)
m =

∑
i∈L∪U qi(m)(t)xi∑
i∈L∪U qi(m)(t)

(10.10)

Σ(t+1)
m =

∑
i∈L∪U qi(m)(t)(xi − µ(t)

m)(xi − µ(t)
m)>∑

i∈L∪U qi(m)(t)
(10.11)

In practice one can smooth the ML estimate of covariance to avoid degeneracy:

Σ(t+1)
m =

εI +
∑

i∈L∪U qi(m)(t)(xi − µ(t)
m)(xi − µ(t)

m)>

ε+
∑

i∈L∪U qi(m)(t)
(10.12)

After EM converges, the classification of a new pointx is done by

p(y = 1|x) =
M∑

m=1

p(y = 1|m)p(m|x)

=

∑M
m=1 p(y = 1|m)p(x|m)p(m)
∑M

m=1 p(x|m)p(m)
(10.13)

10.2 Label Smoothness on the Graph

Graph-based semi-supervised learning methods enforce label smoothness over a
graph, so that neighboring labels tend to have the same label. The graph has n
nodesL ∪ U . Two nodes are connected by an edge with higher weights if they
are more likely to be in the same class. The graph is represented by then × n
symmetric weight matrixW , and is assumed given.

Label smoothness can be expressed in different ways. We use the energy of the
label posterior as the measure,

E(f) =
1

2

n∑

i,j=1

wij (fi − fj)
2 = f>∆f (10.14)

wheref is the label posterior vector, defined as

fi =

{
δ(yi, 1) i ∈ L

p(yi = 1|xi,Θ) i ∈ U (10.15)

That is,fi is the probability that pointi having label 1 under the mixture model
Θ. The energy is small whenf varies smoothly on the graph.∆ = D − W
is the combinatorial Laplacian matrix, andD is the diagonal degree matrix with
Dii =

∑
j wij . See Chapter 4 for more details. Other smoothness measures are

possible too, for example those derived from the normalized Laplacian (Zhou et al.,
2004a) or spectral transforms (Zhu et al., 2005).

10.3. COMBINING MIXTURE MODEL AND GRAPH 83

10.3 Combining Mixture Model and Graph

We want to train a mixture model that maximizes the data log likelihood (10.3) and
minimizes the graph energy (10.14) at the same time. One way of doing so is to
learn the parametersp(m), p(x|m), p(y|m) to maximize the objective

O = αL − (1− α)E (10.16)

whereα ∈ [0, 1] is a coefficient that controls the relative strength of the two terms.
TheE term may look like a priore−f>∆f on the parameters. But it involves the
observed labelsyL, and is best described as a discriminative objective, whileL
is a generative objective. This is closely related to, but different from, the graph
regularization framework of (Belkin et al., 2004b). Learning all the parameters
together however is difficult. Because of theE term, it is similar to conditional
EM training which is more complicated than the standard EM algorithm. Instead
we take a two-step approach:

• Step 1: Train all parametersp(m), p(x|m), p(y|m) with standard EM, which
maximizesL only;

• Step 2: Fixp(m) andp(x|m), and only learnp(y|m) to maximize (10.16).

It is suboptimal in terms of optimizing the objective function. However it has two
advantages: We created a concave optimization problem in the second step (see
section 10.3.2); Moreover, we can use standard EM without modification. We call
the solutionharmonic mixtures.

We focus on step 2. The free parameters arep(y|m) for m = 1 . . .M . To sim-
plify the notation, we use the shorthandθm ≡ p(y = 1|m), andθ ≡ (θ1, . . . , θM)>.
We first look at the special case withα = 0 in the objective function (10.16), as it
has a particularly simple closed form solution and interpretation. Notice although
α = 0, the generative objectiveL still influencesθ throughp(m) and p(x|m)
learned in step 1.

10.3.1 The Special Case withα = 0

We need to find the parametersθ that minimizeE. θ are constrained in[0, 1]M .
However let us look at theunconstrainedoptimization problem first. Applying the
chain rule:

∂E

∂θm
= 〈 ∂E

∂fU
,
∂fU

∂θm
〉 (10.17)

84 CHAPTER 10. HARMONIC MIXTURES

The first term is

∂E

∂fU
=

∂

∂fU
(f>∆f) (10.18)

=
∂

∂fU
(f>

L ∆LLfL + 2f>
L ∆LUfU + f>

U ∆UUfU) (10.19)

= 2∆LUfL + 2∆UUfU (10.20)

where we partitioned the Laplacian matrix into labeled and unlabeled parts respec-
tively. The second term is

∂fU

∂θm
= (p(m|xl+1), . . . , p(m|xl+u))> ≡ Rm (10.21)

where we defined au×M responsibility matrixR such thatRim = p(m|xi), and
Rm is itsm-th column. We used the fact that fori ∈ U ,

fi = p(yi = 1|xi,Θ) (10.22)

=

∑
m p(m)p(yi = 1|m)p(xi|m)∑

m p(m)p(xi|m)
(10.23)

=
∑

m

p(m|xi)p(yi = 1|m) (10.24)

=
∑

m

p(m|xi)θm (10.25)

Notice we can writefU = Rθ. Therefore

∂E

∂θm
= R>

m (2∆UUfU + 2∆ULfL) (10.26)

= R>
m (2∆UURθ + 2∆ULfL) (10.27)

When we put allM partial derivatives in a vector and set them to zero, we find

∂E

∂θ
= R> (2∆UURθ + 2∆ULfL) = 0 (10.28)

where0 is the zero vector of lengthM . This is a linear system and the solution is

θ = − (R>∆UUR)
−1

R>∆ULfL (10.29)

Notice this is the solution to the unconstrained problem, where someθ might be
out of the bound[0, 1]. If it happens, we set out-of-boundθ’s to their corresponding
boundary values of 0 or 1, and use them as starting point in a constrainedconvex

10.3. COMBINING MIXTURE MODEL AND GRAPH 85

optimization (the problem is convex, as shown in the next section) to find the global
solution. In practice however we found most of the time the closed form solution
for the unconstrained problem is already within bounds. Even when some compo-
nents are out of bounds, the solution is close enough to the constrained optimum
to allow quick convergence.

With the component class membershipθ, the soft labels for the unlabeled data
are given by

fU = −Rθ (10.30)

Unseen new points can be classified similarly.
We can compare (10.29) with the (completely graph based) harmonic function

solution (Zhu et al., 2003a). The former isfU = −R (R>∆UUR)−1
R>∆ULfL;

The latter isfU = −∆−1
UU∆ULfL. Computationally the former only needs to invert

aM ×M matrix, which is much cheaper than the latter ofu× u because typically
the number of mixture components is much smaller than the number of unlabeled
points. This reduction is possible becausefU are now tied together by the mixture
model.

In the special case whereR corresponds to hard clustering, we just created a
much smallerbackbone graphwith supernodesinduced by the mixture compo-
nents. In this caseRim = 1 for clusterm to which pointi belongs, and 0 for all
otherM − 1 clusters. The backbone graph has the sameL labeled nodes as in the
original graph, but onlyM unlabeled supernodes. Letwij be the weight between
nodesi, j in the original graph. By rearranging the terms it is not hard to show that
in the backbone graph, the equivalent weight between supernodess, t ∈ {1 . . .M}
is

w̃st =
∑

i,j∈U

RisRjtwij (10.31)

and the equivalent weight between a supernodes and a labeled nodel ∈ L is

w̃sl =
∑

i∈U

Riswil (10.32)

θ is simply the harmonic function on the supernodes in the backbone graph. For
this reasonθ ∈ [0, 1]M is guaranteed. Letc(m) = {i|Rim = 1} be the clusterm.
The equivalent weight between supernodess, t reduces to

w̃st =
∑

i∈c(s), j∈c(t)

wij (10.33)

The supernodes are the clusters themselves. The equivalent weights are the sum
of edges between the clusters (or the cluster and a labeled node). One can easily

86 CHAPTER 10. HARMONIC MIXTURES

Input : initial mixture modelp(m), p(x|m), p(y|m),m = 1 . . .M
dataxL, yL, xU

graph Laplacian∆
1. Run standard EM on data and get converged modelp(m), p(x|m), p(y|m)

2. Fix p(m), p(x|m). Computeθm ≡ p(y = 1|m) = − (R>∆UUR)−1
R>∆ULfL

3. Set out-of-boundθ’s to 0 or 1, run constrained convex optimization
Output : mixture modelp(m), p(x|m), p(y|m),m = 1 . . .M

Table 10.1: The harmonic mixture algorithm for the special caseα = 0

create such a backbone graph by e.g. k-means clustering. In the general case when
R is soft, the solution deviates from that of the backbone graph.

The above algorithm is listed in Table 10.1. In practice some mixture compo-
nents may have little or no responsibility (p(m) ≈ 0). They should be excluded
from (10.29) to avoid numerical problems. In addition, ifR is rank deficient we
use the pseudo inverse in (10.29).

10.3.2 The General Case withα > 0

The objective (10.16) is concave inθ. To see this, we first writeL as

L(Θ) =
∑

i∈L

log
M∑

m=1

p(m)p(yi|m)p(xi|m) + const (10.34)

=
∑

i∈L

yi=1

log
M∑

m=1

p(m)p(xi|m)θm +
∑

i∈L

yi=−1

log
M∑

m=1

p(m)p(xi|m)(1− θm) + const

Since we fixp(m) andp(x|m), the term within the first sum has the formlog
∑

m amθm.
We can directly verify the Hessian

H =

[
∂ log

∑
m amθm

∂θi∂θj

]
= − 1

(
∑

m amθm)2
aa> � 0 (10.35)

is negative semi-definite. Therefore the first term (i ∈ L andyi = 1) is concave.
Similarly the Hessian for the second term is

H =

[
∂ log

∑
m am(1− θm)

∂θi∂θj

]
= − aa>

(
∑

m am(1− θm))2
� 0 (10.36)

10.4. EXPERIMENTS 87

L is the non-negative sum of concave terms and is concave. RecallfU = Rθ, the
graph energy can be written as

E = f>∆f (10.37)

= f>
L ∆LLfL + 2f>

L ∆LUfU + f>
U ∆UUfU (10.38)

= f>
L ∆LLfL + 2f>

L ∆LURθ + θ>R>∆UURθ (10.39)

The Hessian is2R>∆UUR � 0 because∆UU � 0. ThereforeE is convex inθ.
Putting them together,O is concave inθ.

As θm is in [0, 1], we perform constrained convex optimization in the general
case withα > 0. The gradient of the objective is easily computed:

∂O
∂θm

= α
∂L
∂θm

− (1− α)
∂E

∂θm
(10.40)

∂L
∂θm

(10.41)

=
∑

i∈L

yi=1

p(m)p(xi|m)
∑M

k=1 p(k)p(xi|k)θk

−
∑

i∈L

yi=−1

p(m)p(xi|m)
∑M

k=1 p(k)p(xi|k)(1− θk)
(10.42)

and∂E/∂θ was given in (10.28). One can also use the sigmoid function to trans-
form it into an unconstrained optimization problem with

θm = σ(γm) =
1

e−γm + 1
(10.43)

and optimize theγ’s.
Although the objective is concave, a good starting point forθ is still important

to reduce the computation time until convergence. We find a good initial value for
θ by solving an one-dimensional concave optimization problem first. We have two
parameters at hand:θem is the solution from the standard EM algorithm in step
1, andθspecial is the special case solution in section 10.3.1. We find the optimal
interpolated coefficientε ∈ [0, 1]

θinit = εθem + (1− ε)θspecial (10.44)

that maximizes the objective (the optimalε in general will not beα). Then we start
from θinit and use a quasi-Newton algorithm to find the global optimum forθ.

88 CHAPTER 10. HARMONIC MIXTURES

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Initial random GMM settings

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

After EM converges
(a)M = 2 Gaussian components (b)M = 36 Gaussian components

Figure 10.1: Gaussian mixture models learned with the standard EM algorithm
cannot make labels follow the manifold structure in an artificial dataset. Small dots
are unlabeled data. The two labeled points are marked with red+ and green�.
The left panel hasM = 2 and rightM = 36 mixture components. Top plots show
the initial settings of the GMM. Bottom plots show the GMM after EM converges.
The ellipses are the contours of covariance matrices. The colored central dots
have sizes proportional to the component weightp(m). Components with very
small p(m) are not plotted. The color stands for component class membership
θm ≡ p(y = 1|m): red forθ = 1, green forθ = 0, and intermediate yellow for
values in between – which did not occur in the converged solutions. Notice inthe
bottom-right plot, although the densityp(x) is estimated well by EM,θ does not
follow the manifold.

10.4. EXPERIMENTS 89

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Figure 10.2: The GMM with the component class membershipθ learned as in the
special caseα = 0. θ, color coded from red to yellow and green, now follow the
structure of the unlabeled data.

10.4 Experiments

We test harmonic mixture on synthetic data, image and text classification. The
emphases are on how harmonic mixtures perform on unlabeled data compared to
EM or the harmonic function; how they handle unseen data; and whether they
can reduce the problem size. Unless otherwise noted, the harmonic mixturesare
computed withα = 0.

10.4.1 Synthetic Data

First we look at a synthetic dataset in Figure 10.1. It has a Swiss roll structure,
and we hope the labels can follow the spiral arms. There is one positive andone
negative labeled point, at roughly the opposite ends. We useu = 766 unlabeled
points and an additional 384 points as unseen test data.
The mixture model and standard EM. We start with Figure 10.1(a, top), the
initial setting for a Gaussian mixture model withM = 2 components. The initial
means are set by running a k-means algorithm. The initial covariances are identity,
thus the circles. The initialθ are all set to 0.5, represented by the yellow color. (a,
bottom) shows the GMM after EM converges. Obviously it is a bad model because
M is too small.

Next we consider a Gaussian mixture model (GMM) withM = 36 compo-

90 CHAPTER 10. HARMONIC MIXTURES

nents, each with full covariance. Figure 10.1(b, top) shows the initial GMMand
(b, bottom) the converged GMM after running EM. The GMM models the manifold
densityp(x) well. However the component class membershipθm ≡ p(y = 1|m)
(red and green colors) does not follow the manifold. In factθ takes the extreme
values of 0 or 1 along a somewhat linear boundary instead of following the spiral
arms, which is undesirable. The classification of data points will not follow the
manifold either.
The graph and harmonic mixtures. Next we combine the mixture model with
a graph to compute the harmonic mixtures, as in the special caseα = 0. We
construct a fully connected graph on theL ∪ U data points with weighted edges
wij = exp

(
−||xi − xj ||2/0.01

)
. We then reestimateθ, which are shown in Figure

10.2. Noteθ now follow the manifold as it changes from 0 (green) to approximately
0.5 (yellow) and finally 1 (red). This is the desired behavior.

The particular graph-based method we use needs extra care. The harmonic
function solutionf is known to sometimes skew toward 0 or 1. This problem is
easily corrected if we know or have an estimate of the proportion of positiveand
negative points, with the Class Mass Normalization heuristic (Zhu et al., 2003a).
In this paper we use a similar but simpler heuristic. Assuming the two classes are
about equal in size, we simply set the decision boundary at the median. That is, let
f(l + 1), . . . , f(n) be the soft label values on the unlabeled nodes. Letm(f) =
median(f(l + 1), . . . , f(n)). We classify pointi as positive iff(i) > m(f), and
negative otherwise.
Sensitivity toM . If the number of mixture componentsM is too small, the GMM
is unable to modelp(x) well, let aloneθ. In other words, the harmonic mixture
is sensitive toM . M has to be larger than a certain threshold so that the man-
ifold structure can appear. In factM may need to be larger than the number of
labeled pointsl, which is unusual in traditional mixture model methods for semi-
supervised learning. However onceM is over the threshold, further increase should
not dramatically change the solution. In the end the harmonic mixture may ap-
proach the harmonic function solution whenM = u.

Figure 10.3(a) shows the classification accuracy onU as we changeM . We
find that the threshold for harmonic mixtures isM = 35, at which point the ac-
curacy (‘HM’) jumps up and stabilizes thereafter. This is the number of mixture
components needed for harmonic mixture to capture the manifold structure. The
harmonic function on the complete graph (‘graph’) is not a mixture model and
appears flat. The EM algorithm (‘EM’) fails to discover the manifold structure
regardless of the number of mixturesM .
Computational savings. The harmonic mixtures perform almost as well as the
harmonic function on the complete graph, but with a much smaller problem size.
As Figure 10.3(a) shows, we only need to invert a35 × 35 matrix instead of a

10.4. EXPERIMENTS 91

766 × 766 one as required by the harmonic function solution. The difference can
be significant if the unlabeled set size is even larger. There is of coursethe overhead
of EM training.
Handling unseen data. Because the harmonic mixture model is a mixture model,
it naturally handles unseen points. On 384 new test points harmonic mixtures
perform similarly to Figure 10.3(a), with accuracies around 95.3% afterM ≥ 35.

10.4.2 Image Recognition: Handwritten Digits

We use the ‘1vs2’ dataset which contains equal number of images of handwritten
digit of 1s and 2s. Each gray scale image is8 × 8, which is represented by a 64
dimensional vector of pixel values. We usel+u = 1600 images as the labeled and
unlabeled set, and 600 additional images as unseen new data to test induction.
The mixture model. We use Gaussian mixture models. To avoid data sparse-
ness problem, we model each Gaussian component with a spherical covariance,
i.e. diagonal covariance matrix with the same variance in all dimensions. Different
components may have different variances. We set the initial means and variances
of the GMM with k-means algorithm before running EM.
The graph. We use a symmetrized 10-nearest-neighbor weighted graph on the
1600 images. That is, imagesi, j are connected ifi is within j’s 10NN or vice
versa, as measured by Euclidean distance. The weights arewij = exp

(
−||xi − xj ||2/1402

)
.

Sensitivity toM . As illustrated in the synthetic data, the number of mixture com-
ponentsM needs to be large enough for harmonic mixture to work. We varyM
and observe the classification accuracies on the unlabeled data with different meth-
ods. For eachM we perform 20 trials with randomL/U split and plot the mean
and standard deviation of classification accuracies in Figure 10.3(b). The exper-
iments were performed with labeled set size fixed atl = 10. We conclude that
harmonic mixtures need onlyM ≈ 100 components to match the performance of
the harmonic function method.
Computational savings. In terms of graph method computation, we invert a100×
100 matrix instead of the original1590× 1590 matrix for harmonic function. This
is good saving with little sacrifice in accuracy. We fixM = 100 in the experiments
that follow.
Handling unseen data. We systematically vary labeled set sizel. For eachl we
run 20 random trials. The classification accuracy onU (with 1600-l points) and
unseen data (600 points) are listed in Table 10.2. OnU , harmonic mixtures (‘HM’)
achieve the same accuracy as harmonic function (‘graph’). Both are not sensitive to
l. The GMM trained with EM (‘EM’) also performs well whenl is not too small,
but suffers otherwise. On the unseen test data, the harmonic mixtures maintain
high accuracy.

92 CHAPTER 10. HARMONIC MIXTURES

The general caseα > 0. We also vary the parameterα between 0 and 1, which
balances the generative and discriminative objectives. In our experiments α = 0
always gives the best accuracies.

10.4.3 Text Categorization: PC vs. Mac

We perform binary text classification on the two groups comp.sys.ibm.pc.hardware
vs. comp.sys.mac.hardware (982 and 961 documents respectively) in the 18828
version of the 20-newsgroups data. We use rainbow (McCallum, 1996) toprepro-
cess the data, with the default stopword list, no stemming, and keep words that
occur at least 5 times. We represent documents bytf.idf vectors with the Okapi
TF formula (Zhai, 2001), which was also used in (Zhu et al., 2003a). Of the 1943
documents, we use 1600 asL ∪ U and the rest as unseen test data.
The mixture model. We use multinomial mixture models (bag-of-words naive
Bayes model), treatingtf.idf as ‘pseudo word counts’ of the documents. We found
this works better than using the raw word counts. We use k-means to initialize the
models.
The graph. We use a symmetrized 10NN weighted graph on the 1600 docu-
ments. The weight between documentsu, v is wuv = exp (−(1− cuv)/0.03),
wherecuv = 〈u, v〉/ (||u|| · ||v||) is the cosine between thetf.idf vectorsu, v.
Sensitivity to M . The accuracy onU with different number of componentsM
is shown in Figure 10.3(c).l is fixed at 10. Qualitatively the performance of
harmonic mixtures increases whenM > 400. From the plot it may look like the
‘graph’ curve varies withM , but this is an artifact as we used different randomly
sampledL,U splits for differentM . The error bars on harmonic mixtures are large.
We suspect the particular mixture model is bad for the task.
Computational savings. Unlike the previous tasks, we need a much largerM
around 600. We still have a smaller problem than the originalu = 1590, but the
saving is limited.
Handling unseen data. We fixM = 600 and vary labeled set sizel. For eachl we
run 20 random trials. The classification accuracy onU (with 1600-l documents)
and unseen data (343 documents) are listed in Table 10.3. The harmonic mixture
model has lower accuracies than the harmonic function on theL ∪ U graph. The
harmonic mixture model performs similarly onU and on unseen data.

10.5 Related Work

Recently Delalleau et al. (2005) use a small random subset of the unlabeled data to
create a small graph. This is related to the Nyström method in spectral clustering

10.5. RELATED WORK 93

l HM EM graph
onU :

2 98.7± 0.0 86.7± 5.7 98.7± 0.0
5 98.7± 0.0 90.1± 4.1 98.7± 0.1
10 98.7± 0.1 93.6± 2.4 98.7± 0.1
20 98.7± 0.2 96.0± 3.2 98.7± 0.2
30 98.7± 0.2 97.1± 1.9 98.8± 0.2

on unseen:
2 96.1± 0.1 87.1± 5.4 -
5 96.1± 0.1 89.8± 3.8 -
10 96.1± 0.1 93.2± 2.3 -
20 96.1± 0.1 95.1± 3.2 -
30 96.1± 0.1 96.8± 1.7 -

Table 10.2: Image classification 1 vs. 2: Accuracy onU and unseen data.M =
100. Each number is the mean and standard deviation of 20 trials.

l HM EM graph
onU :

2 75.9± 14.3 54.5± 6.2 84.6± 10.9
5 74.5± 16.6 53.7± 5.2 87.9± 3.9
10 84.5± 2.1 55.7± 6.5 89.5± 1.0
20 83.3± 7.1 59.5± 6.4 90.1± 1.0
40 85.7± 2.3 61.8± 6.1 90.3± 0.6

on unseen:
2 73.6± 13.0 53.5± 6.0 -
5 73.2± 15.2 52.3± 5.9 -
10 82.9± 2.9 55.7± 5.7 -
20 82.0± 6.5 58.9± 6.1 -
40 84.7± 3.3 60.4± 5.9 -

Table 10.3: Text classification PC vs. Mac: Accuracy onU and unseen data.
M = 600. Each number is the mean and standard deviation of 20 trials.

94 CHAPTER 10. HARMONIC MIXTURES

(Fowlkes et al., 2004), and to the random ‘landmarks’ in dimensionality reduction
(Weinberger et al., 2005). Our method is different in that

• It incorporates a generative mixture model, which is a second knowledge
source besides the graph;

• The backbone graph is not built on randomly selected points, but on mean-
ingful mixture components;

• When classifying an unseen pointx, it does not need graph edges from land-
mark points tox. This is less demanding on the graph because the burden
is transferred to the mixture component models. For example one can now
usekNN graphs. In the other works one needs edges betweenx and the
landmarks, which are non-existent or awkward forkNN graphs.

In terms of handling unseen data, our approach is closely related to the regu-
larization framework of (Belkin et al., 2004b; Krishnapuram et al., 2005)as graph
regularization on mixture models. However instead of a regularization term we
used a discriminative term, which allows for the closed form solution in the special
case.

10.6 Discussion

To summarize, the proposed harmonic mixture method reduces the graph prob-
lem size, and handles unseen test points. It achieves comparable accuracy as the
harmonic function for semi-supervised learning.

There are several questions for further research. First, the component model
affects the performance of the harmonic mixtures. For example the Gaussianin the
synthetic task and 1 vs. 2 task seem to be more amenable to harmonic mixtures
than the multinomial in PC vs. Mac task. How to quantify the influence remains a
question. A second question is whenα > 0 is useful in practice. Finally, we want
to find a way to automatically select the appropriate number of mixture components
M .

The backbone graph is certainly not the only way to speed up computation.
We list some other methods in literature review in Chapter 11. In addition, we
also performed an empirical study to compare several iterative methods, including
Label Propagation, loopy belief propagation, and conjugate gradient, which all
converge to the harmonic function. The study is presented in Appendix F.

10.6. DISCUSSION 95

0 5 10 15 20 25 30 35 40 45 50
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

M

A
cc

ur
ac

y
on

 U

graph
HM
EM

(a) synthetic data

0 20 40 60 80 100 120 140 160 180 200
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

M

A
cc

ur
ac

y
on

 U

graph
HM
EM

(b) 1 vs. 2

100 200 300 400 500 600 700 800
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

M

A
cc

ur
ac

y
on

 U

graph
HM
EM

(c) PC vs. Mac

Figure 10.3: Sensitivity toM in three datasets. Shown are the classification accu-
racies onU asM changes. ‘graph’ is the harmonic function on the completeL∪U
graph; ‘HM’ is the harmonic mixture, and ‘EM’ is the standard EM algorithm. The
intervals are±1 standard deviation with 20 random trials when applicable.

96 CHAPTER 10. HARMONIC MIXTURES

Chapter 11

Literature Review

We review some of the literature on semi-supervised learning. There has been a
whole spectrum of interesting ideas on how to learn from both labeled and un-
labeled data. The review is by no means comprehensive and the field of semi-
supervised learning is evolving rapidly. The author apologizes in advance for any
inaccuracies in the descriptions, and welcomes corrections and comments. Please
send corrections and suggest papers to zhuxj@cs.cmu.edu. To make the review
more useful, we maintain an online version at
http://www.cs.cmu.edu/˜zhuxj/pub/semireview.html
which will be updated indefinitely.

11.1 Q&A

Q: What is semi-supervised learning?
A: It’s a special form of classification. Traditional classifiers need labeleddata
(feature / label pairs) to train. Labeled instances however are often difficult, ex-
pensive, or time consuming to obtain, as they require the efforts of experienced
human annotators. Meanwhile unlabeled data may be relatively easy to collect,
but there has been few ways to use them. Semi-supervised learning addresses this
problem by using large amount of unlabeled data, together with the labeled data,
to build better classifiers. Because semi-supervised learning requires less human
effort and gives higher accuracy, it is of great interest both in theory and in practice.

Q: Can we really learn anything from unlabeled data? It looks like magic.
A: Yes we can – under certain assumptions. It’s not magic, but good matching of
problem structure with model assumption.

97

98 CHAPTER 11. LITERATURE REVIEW

Q: Does unlabeled data always help?
A: No, there’s no free lunch. Bad matching of problem structure with model as-
sumption can lead to degradation in classifier performance. For example, quite a
few semi-supervised learning methods assume that the decision boundary should
avoid regions with highp(x). These methods include transductive support vector
machines (SVMs), information regularization, Gaussian processes with null cate-
gory noise model, graph-based methods if the graph weights is determined bypair-
wise distance. Nonetheless if the data is generated from two heavily overlapping
Gaussian, the decision boundary would go right through the densest region, and
these methods would perform badly. On the other hand EM with generative mix-
ture models, another semi-supervised learning method, would have easily solved
the problem. Detecting bad match in advance however is hard and remains an open
question.

Q: How many semi-supervised learning methods are there?
A: Many. Some often-used methods include: EM with generative mixture models,
self-training, co-training, transductive support vector machines, andgraph-based
methods. See the following sections for more methods.

Q: Which method should I use / is the best?
A: There is no direct answer to this question. Because labeled data is scarce, semi-
supervised learning methods make strong model assumptions. Ideally one should
use a method whose assumptions fit the problem structure. This may be difficult
in reality. Nonetheless we can try the following checklist: Do the classes produce
well clustered data? If yes, EM with generative mixture models may be a good
choice; Do the features naturally split into two sets? If yes, co-training may be
appropriate; Is it true that two points with similar features tend to be in the same
class? If yes, graph-based methods can be used; Already using SVM?Transductive
SVM is a natural extension; Is the existing supervised classifier complicatedand
hard to modify? Self-training is a practical wrapper method.

Q: How do semi-supervised learning methods use unlabeled data?
A: Semi-supervised learning methods use unlabeled data to either modify or re-
prioritize hypotheses obtained from labeled data alone. Although not all methods
are probabilistic, it is easier to look at methods that represent hypothesesbyp(y|x),
and unlabeled data byp(x). Generative models have common parameters for the
joint distributionp(x, y). It is easy to see thatp(x) influencesp(y|x). Mixture
models with EM is in this category, and to some extent self-training. Many other
methods are discriminative, including transductive SVM, Gaussian processes, in-
formation regularization, and graph-based methods. Original discriminative train-

11.2. GENERATIVE MIXTURE MODELS AND EM 99

ing cannot be used for semi-supervised learning, sincep(y|x) is estimated ignoring
p(x). To solve the problem,p(x) dependent terms are often brought into the ob-
jective function, which amounts to assumingp(y|x) andp(x) share parameters.

Q: Where can I learn more?
A: An existing survey can be found in (Seeger, 2001).

11.2 Generative Mixture Models and EM

This is perhaps the oldest semi-supervised learning method. It assumes a genera-
tive modelp(x, y) = p(y)p(x|y) wherep(x|y) is an identifiable mixture distribu-
tion, for example Gaussian mixture models. With large amount of unlabeled data,
the mixture components can be identified; then ideally we only need one labeled
example per component to fully determine the mixture distribution. One can think
of the mixture components as ‘soft clusters’.

Nigam et al. (2000) apply the EM algorithm on mixture of multinomial for
the task of text classification. They showed the resulting classifiers perform better
than those trained only fromL. Baluja (1998) uses the same algorithm on a face
orientation discrimination task.

One has to pay attention to a few things:

11.2.1 Identifiability

The mixture model ideally should be identifiable. In general let{pθ} be a family of
distributions indexed by a parameter vectorθ. θ is identifiable ifθ1 6= θ2 ⇒ pθ1 6=
pθ2 , up to a permutation of mixture components. If the model family is identifiable,
in theory with infiniteU one can learnθ up to a permutation of component indices.

Here is an example showing the problem with unidentifiable models. The
modelp(x|y) is uniform fory ∈ {+1,−1}. Assuming with large amount of un-
labeled dataU we knowp(x) is uniform in [0, 1]. We also have 2 labeled data
points(0.1,+1), (0.9,−1). Can we determine the label forx = 0.5? No. With
our assumptions we cannot distinguish the following two models:

p(y = 1) = 0.2, p(x|y = 1) = unif(0, 0.2), p(x|y = −1) = unif(0.2, 1) (11.1)

p(y = 1) = 0.6, p(x|y = 1) = unif(0, 0.6), p(x|y = −1) = unif(0.6, 1) (11.2)

which give opposite labels atx = 0.5, see Figure 11.1. It is known that a mixture of
Gaussian is identifiable. Mixture of multivariate Bernoulli (McCallum & Nigam,
1998a) is not identifiable. More discussions on identifiability and semi-supervised
learning can be found in e.g. (Ratsaby & Venkatesh, 1995) and (Corduneanu &
Jaakkola, 2001).

100 CHAPTER 11. LITERATURE REVIEW

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������

0 1

p(x)=1

0 0.2 1
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������

0 0.2 1

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

= 0.6 *
p(x|y=1)=1.67

0 10.6

p(x|y=−1)=2.5

+ 0.4 *

0 0.6 1

p(x|y=1)=5

p(x|y=−1)=1.25

+ 0.8 *= 0.2 *

Figure 11.1: An example of unidentifiable models. Even if we knownp(x) (top)
is a mixture of two uniform distributions, we cannot uniquely identify the two
components. For instance, the mixtures on the second and third line give the same
p(x), but they classifyx = 0.5 differently.

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Class 1

Class 2

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

(a) Horizontal class separation (b) High probability (c) Low probability

Figure 11.2: If the model is wrong, higher likelihood may lead to lower classifica-
tion accuracy. For example,(a) is clearly not generated from two Gaussian. If we
insist that each class is a single Gaussian,(b) will have higher probability than(c).
But (b) has around 50% accuracy, while(c)’s is much better.

11.2.2 Model Correctness

If the mixture model assumption is correct, unlabeled data is guaranteed to improve
accuracy (Castelli & Cover, 1995) (Castelli & Cover, 1996) (Ratsaby& Venkatesh,
1995). However if the model is wrong, unlabeled data may actually hurt accuracy.
Figure 11.2 shows an example. This has been observed by multiple researchers.
Cozman et al. (2003) give a formal derivation on how this might happen.

It is thus important to carefully construct the mixture model to reflect reality.
For example in text categorization a topic may contain several sub-topics, and will
be better modeled by multiple multinomial instead of a single one (Nigam et al.,
2000). Some other examples are (Shahshahani & Landgrebe, 1994) (Miller &
Uyar, 1997). Another solution is to down-weighing unlabeled data (Corduneanu &

11.3. SELF-TRAINING 101

Jaakkola, 2001), which is also used by Nigam et al. (2000), and by Callison-Burch
et al. (2004) who estimate word alignment for machine translation.

11.2.3 EM Local Maxima

Even if the mixture model assumption is correct, in practice mixture components
are identified by the Expectation-Maximization (EM) algorithm (Dempster et al.,
1977). EM is prone to local maxima. If a local maximum is far from the global
maximum, unlabeled data may again hurt learning. Remedies include smart choice
of starting point by active learning (Nigam, 2001).

11.2.4 Cluster and Label

We shall also mention that instead of using an probabilistic generative mixture
model, some approaches employ various clustering algorithms to cluster the whole
dataset, then label each cluster with labeled data, e.g. (Demiriz et al., 1999) (Dara
et al., 2000). Although they may perform well if the particular clustering algo-
rithms match the true data distribution, these approaches are hard to analyze due to
their algorithmic nature.

11.3 Self-Training

Self-training is a commonly used technique for semi-supervised learning. Inself-
training a classifier is first trained with the small amount of labeled data. The
classifier is then used to classify the unlabeled data. Typically the most confident
unlabeled points, together with their predicted labels, are added to the training
set. The classifier is re-trained and the procedure repeated. Note the classifier
uses its own predictions to teach itself. The procedure is also called self-teaching
or bootstrapping (not to be confused with the statistical procedure with the same
name). The generative model and EM approach of section 11.2 can be viewed as
a special case of ‘soft’ self-training. One can imagine that a classificationmistake
can reinforce itself. Some algorithms try to avoid this by ‘unlearn’ unlabeled points
if the prediction confidence drops below a threshold.

Self-training has been applied to several natural language processingtasks.
Yarowsky (1995) uses self-training for word sense disambiguation, e.g. deciding
whether the word ‘plant’ means a living organism or a factory in a give context.
Riloff et al. (2003) uses it to identify subjective nouns. Maeireizo et al. (2004)
classify dialogues as ‘emotional’ or ‘non-emotional’ with a procedure involving
two classifiers.Self-training has also been applied to parsing and machine transla-
tion. Rosenberg et al. (2005) apply self-training to object detection systems from

102 CHAPTER 11. LITERATURE REVIEW

+
+

+
+

+
+

+

++

+

−

− −

−
−

−
−

−
+

−

++

++

+
+

+

++

++
+

+

+

+
+

− −

−
−

−

−

−
−

−

−−

−

+

+

+

+
+

+

+

+

+
+

+

−

−−

−
−

−

−
−

−

++
+

+

+

+

+ +

+

+

+

+

+

+
+

+

−

−

−

−
−

−

−

−

−

−

−

−

(a)x1 view (b)x2 view

Figure 11.3: Co-Training: Conditional independent assumption on feature split.
With this assumption the high confident data points inx1 view, represented by
circled labels, will be randomly scattered inx2 view. This is advantageous if they
are to be used to teach the classifier inx2 view.

images, and show the semi-supervised technique compares favorably with astate-
of-the-art detector.

11.4 Co-Training

Co-training (Blum & Mitchell, 1998) (Mitchell, 1999) assumes that features can
be split into two sets; Each sub-feature set is sufficient to train a good classifier;
The two sets are conditionally independent given the class. Initially two separate
classifiers are trained with the labeled data, on the two sub-feature sets respectively.
Each classifier then classifies the unlabeled data, and ‘teaches’ the other classifier
with the few unlabeled examples (and the predicted labels) they feel most confi-
dent. Each classifier is retrained with the additional training examples given by the
other classifier, and the process repeats.

In co-training, unlabeled data helps by reducing the version space size.In other
words, the two classifiers (or hypotheses) must agree on the much largerunlabeled
data as well as the labeled data.

We need the assumption that sub-features are sufficiently good, so that we can
trust the labels by each learner onU . We need the sub-features to be conditionally
independent so that one classifier’s high confident data points areiid samples for
the other classifier. Figure 11.3 visualizes the assumption.

Nigam and Ghani (2000) perform extensive empirical experiments to compare
co-training with generative mixture models and EM. Their result shows co-training
performs well if the conditional independence assumption indeed holds. Inaddi-
tion, it is better to probabilistically label the entireU , instead of a few most con-
fident data points. They name this paradigm co-EM. Finally, if there is no natural
feature split, the authors create artificial split by randomly break the feature set into

11.5. MAXIMIZING SEPARATION 103

two subsets. They show co-training with artificial feature split still helps, though
not as much as before. Jones (2005) used co-training, co-EM and other related
methods for information extraction from text.

Co-training makes strong assumptions on the splitting of features. One might
wonder if these conditions can be relaxed. Goldman and Zhou (2000) usetwo
learners of different type but both takes the whole feature set, and essentially use
one learner’s high confidence data points, identified with a set of statisticaltests, in
U to teach the other learning and vice versa. Recently Balcan et al. (2005) relax
the conditional independence assumption with a much weaker expansion condition,
and justify the iterative co-training procedure.

11.5 Maximizing Separation

11.5.1 Transductive SVM

Discriminative methods work onp(y|x) directly. This brings up the danger of
leavingp(x) outside of the parameter estimation loop, ifp(x) andp(y|x) do not
share parameters. Noticep(x) is usually all we can get from unlabeled data. It is
believed that ifp(x) andp(y|x) do not share parameters, semi-supervised learning
cannot help. This point is emphasized in (Seeger, 2001). Zhang and Oles (2000)
give both theoretical and experimental evidence of the same point specifically on
transductive support vector machines (TSVM). However this is controversial as
empirically TSVMs seem beneficial.

TSVM is an extension of standard support vector machines with unlabeled
data. In a standard SVM only the labeled data is used, and the goal is to find a
maximum margin linear boundary in the Reproducing Kernel Hilbert Space. In a
TSVM the unlabeled data is also used. The goal is to find a labeling of the unla-
beled data, so that a linear boundary has the maximum margin on both the original
labeled data and the (now labeled) unlabeled data. The decision boundary has the
smallest generalization error bound on unlabeled data (Vapnik, 1998). Intuitively,
unlabeled data guides the linear boundary away from dense regions. However
finding the exact transductive SVM solution is NP-hard. Several approximation al-
gorithms have been proposed and show positive results, see e.g. (Joachims, 1999)
(Bennett & Demiriz, 1999) (Demirez & Bennettt, 2000) (Fung & Mangasarian,
1999) (Chapelle & Zien, 2005).

The maximum entropy discrimination approach (Jaakkola et al., 1999) also
maximizes the margin, and is able to take into account unlabeled data, with SVM
as a special case.

The application of graph kernels (Zhu et al., 2005) to SVMs differs from
TSVM. The graph kernels are special semi-supervised kernels appliedto a stan-

104 CHAPTER 11. LITERATURE REVIEW

+

+

+

+

+

−

−

−

−

Figure 11.4: In TSVM,U helps to put the decision boundary in sparse regions.
With labeled data only, the maximum margin boundary is plotted with dotted lines.
With unlabeled data (black dots), the maximum margin boundary would be the one
with solid lines.

dard SVM; TSVM is a special optimization criterion regardless of the kernelbeing
used.

11.5.2 Gaussian Processes

Lawrence and Jordan (2005) proposed a Gaussian process approach, which can be
viewed as the Gaussian process parallel of TSVM. The key differenceto a standard
Gaussian process is in the noise model. A ‘null category noise model’ maps the
hidden continuous variablef to three instead of two labels, specifically to the never
used label ‘0’ whenf is around zero. On top of that, it is restricted that unlabeled
data points cannot take the label 0. This pushes the posterior off away from zero
for the unlabeled points. It achieves the similar effect of TSVM where the margin
avoids dense unlabeled data region. However nothing special is done onthe process
model. Therefore all the benefit of unlabeled data comes from the noise model. A
very similar noise model is proposed in (Chu & Ghahramani, 2004) for ordinal
regression.

This is different from the Gaussian processes in (Zhu et al., 2003c), where we
have a semi-supervised Gram matrix, and semi-supervised learning originates from
the process model, not the noise model.

11.5.3 Information Regularization

Szummer and Jaakkola (2002) propose the information regularization framework
to control the label conditionalsp(y|x) by p(x), wherep(x) may be estimated from
unlabeled data. The idea is that labels shouldn’t change too much in regionswhere
p(x) is high. The authors use the mutual informationI(x; y) betweenx andy as
a measure of label complexity.I(x; y) is small when the labels are homogeneous,

11.6. GRAPH-BASED METHODS 105

and large when labels vary. This motives the minimization of the product ofp(x)
mass in a region withI(x; y) (normalized by a variance term). The minimization
is carried out on multiple overlapping regions covering the data space.

The theory is developed further in (Corduneanu & Jaakkola, 2003). Cor-
duneanu and Jaakkola (2005) extend the work by formulating semi-supervised
learning as a communication problem. Regularization is expressed as the rate of
information, which again discourages complex conditionalsp(y|x) in regions with
highp(x). The problem becomes finding the uniquep(y|x) that minimizes a regu-
larized loss on labeled data. The authors give a local propagation algorithm.

11.5.4 Entropy Minimization

The hyperparameter learning method in section 7.2 uses entropy minimization.
Grandvalet and Bengio (2005) used the label entropy on unlabeled dataas a reg-
ularizer. By minimizing the entropy, the method assumes a prior which prefers
minimal class overlap.

11.6 Graph-Based Methods

Graph-based semi-supervised methods define a graph where the nodesare labeled
and unlabeled examples in the dataset, and edges (may be weighted) reflectthe
similarity of examples. These methods usually assume label smoothness over the
graph. Graph methods are nonparametric, discriminative, and transductive in na-
ture. This thesis largely focuses on graph-based semi-supervised learning algo-
rithms.

11.6.1 Regularization by Graph

Many graph-based methods can be viewed as estimating a functionf on the graph.
One wantsf to satisfy two things at the same time: 1) it should be close to the
given labelsyL on the labeled nodes, and 2) it should be smooth on the whole
graph. This can be expressed in a regularization framework where the first term is
a loss function, and the second term is a regularizer.

Several graph-based methods listed here are similar to each other. They differ
in the particular choice of the loss function and the regularizer. Are these differ-
ences crucial? Probably not. We believe it is much more important to construct
a good graph than to choose among the methods. However graph construction, as
we will see later, is not a well studied area.

106 CHAPTER 11. LITERATURE REVIEW

Mincut

Blum and Chawla (2001) pose semi-supervised learning as a graph mincut(also
known asst-cut) problem. In the binary case, positive labels act as sources and
negative labels act as sinks. The objective is to find a minimum set of edges whose
removal blocks all flow from the sources to the sinks. The nodes connecting to the
sources are then labeled positive, and those to the sinks are labeled negative. Equiv-
alently mincut is themodeof a Markov random field with binary labels (Boltzmann
machine). The loss function can be viewed as a quadratic loss with infinity weight:
∞∑i∈L(yi − yi|L)2, so that the values on labeled data are in fact clamped. The
labelingy minimizes

1

2

∑

i,j

wij |yi − yj | =
1

2

∑

i,j

wij(yi − yj)
2 (11.3)

which can be thought of as a regularizer on binary (0 and 1) labels.
One problem with mincut is that it only gives hard classification without con-

fidence. Blum et al. (2004) perturb the graph by adding random noise tothe edge
weights. Mincut is applied to multiple perturbed graphs, and the labels are deter-
mined by a majority vote. The procedure is similar to bagging, and creates a ‘soft’
mincut.

Pang and Lee (2004) use mincut to improve the classification of a sentence into
either ‘objective’ or ‘subjective’, with the assumption that sentences close to each
other tend to have the same class.

Gaussian Random Fields and Harmonic Functions

The Gaussian random fields and harmonic function methods in (Zhu et al., 2003a)
can be viewed as having a quadratic loss function with infinity weight, so that
the labeled data are clamped, and a regularizer based on the graph combinatorial
Laplacian∆:

∞
∑

i∈L

(fi − yi)
2 + 1/2

∑

i,j

wij(fi − fj)
2 (11.4)

= ∞
∑

i∈L

(fi − yi)
2 + f>∆f (11.5)

Recently Grady and Funka-Lea (2004) applied the harmonic function method to
medical image segmentation tasks, where a user labels classes (e.g. different or-
gans) with a few strokes. Levin et al. (2004) use essentially harmonic functions for
colorization of gray-scale images. Again the user specifies the desired color with

11.6. GRAPH-BASED METHODS 107

only a few strokes on the image. The rest of the image is used as unlabeled data,
and the labels propagation through the image. Niu et al. (2005) applied the label
propagation algorithm (which is equivalent to harmonic functions) to word sense
disambiguation.

Local and Global Consistency

The local and global consistency method (Zhou et al., 2004a) uses the loss function∑n
i=1(fi−yi)

2, and thenormalized LaplacianD−1/2∆D−1/2 = I−D−1/2WD−1/2

in the regularizer,

1/2
∑

i,j

wij(fi/
√
Dii − fj/

√
Djj)

2 = f>D−1/2∆D−1/2f (11.6)

Tikhonov Regularization

The Tikhonov regularization algorithm in (Belkin et al., 2004a) uses the lossfunc-
tion and regularizer:

1/k
∑

i

(fi − yi)
2 + γf>Sf (11.7)

whereS = ∆ or ∆p for some integerp.

Graph Kernels

For kernel methods, the regularizer is a (typically monotonically increasing)func-
tion of the RKHS norm||f ||K = f>K−1f with kernelK. Such kernels are derived
from the graph, e.g. the Laplacian.

Chapelle et al. (2002) and Smola and Kondor (2003) both show the spectral
transformation of a Laplacian results in kernels suitable for semi-supervised learn-
ing. The diffusion kernel (Kondor & Lafferty, 2002) correspondsto a spectrum
transform of the Laplacian with

r(λ) = exp(−σ
2

2
λ) (11.8)

The regularized Gaussian process kernel∆ + I/σ2 in (Zhu et al., 2003c) corre-
sponds to

r(λ) =
1

λ+ σ
(11.9)

Similarly the order constrained graph kernels in (Zhu et al., 2005) are con-
structed from the spectrum of the Laplacian, with non-parametric convex opti-
mization. Learning the optimal eigenvalues for a graph kernel is in fact a way to

108 CHAPTER 11. LITERATURE REVIEW

(at least partially) correct an imprecise graph. In this sense it is related tograph
construction.

Spectral Graph Transducer

The spectral graph transducer (Joachims, 2003) can be viewed with a loss function
and regularizer

c(f − γ)>C(f − γ) + f>Lf (11.10)

whereγi =
√
l−/l+ for positive labeled data,−

√
l+/l− for negative data,l−

being the number of negative data and so on.L can be the combinatorial or nor-
malized graph Laplacian, with a transformed spectrum.

Tree-Based Bayes

Kemp et al. (2003) define a probabilistic distributionP (Y |T) on discrete (e.g. 0
and 1) labelingsY over an evolutionary treeT . The treeT is constructed with
the labeled and unlabeled data being the leaf nodes. The labeled data is clamped.
The authors assume a mutation process, where a label at the root propagates down
to the leaves. The label mutates with a constant rate as it moves down along the
edges. As a result the treeT (its structure and edge lengths) uniquely defines the
label priorP (Y |T). Under the prior if two leaf nodes are closer in the tree, they
have a higher probability of sharing the same label. One can also integrate over all
tree structures.

The tree-based Bayes approach can be viewed as an interesting way to incor-
porate structure of the domain. Notice the leaf nodes of the tree are the labeled and
unlabeled data, while the internal nodes do not correspond to physical data. This is
in contrast with other graph-based methods where labeled and unlabeled data are
all the nodes.

Some Other Methods

Szummer and Jaakkola (2001) perform at-step Markov random walk on the graph.
The influence of one example to another example is proportional to how easythe
random walk goes from one to the other. It has certain resemblance to the diffusion
kernel. The parametert is important.

Chapelle and Zien (2005) use a density-sensitive connectivity distance between
nodesi, j (a given path betweeni, j consists of several segments, one of them
is the longest; now consider all paths betweeni, j and find the shortest ‘longest
segment’). Exponentiating the negative distance gives a graph kernel.

11.6. GRAPH-BASED METHODS 109

Bousquet et al. (2004) consider the continuous counterpart of graph-based
regularization. They define regularization based on a knownp(x) and provide
interesting theoretical analysis. However there seem to be problems in applying
the theoretical results to higher (D > 2) dimensional tasks.

11.6.2 Graph Construction

Although the graph is the heart and soul of graph-based semi-supervised learning
methods, its construction has not been studied carefully. The issue has been dis-
cussed informally in Chapter 3, and graph hyperparameter learning discussed in
Chapter 7. There are relatively few literatures on graph construction. For example
Carreira-Perpinan and Zemel (2005) build robust graphs from multiple minimum
spanning trees by perturbation and edge removal. It is possible that graph construc-
tion is domain specific because it encodes prior knowledge, and has thus far been
treated on an individual basis.

11.6.3 Induction

Most graph-based semi-supervised learning algorithms are transductive, i.e. they
cannot easily extend to new test points outside ofL ∪ U . Recently induction has
received increasing attention. One common practice is to ‘freeze’ the graph on
L ∪ U . New points do not (although they should) alter the graph structure. This
avoids expensive graph computation every time one encounters new points.

Zhu et al. (2003c) propose that new test point be classified by its nearest neigh-
bor inL∪U . This is sensible whenU is sufficiently large. In (Chapelle et al., 2002)
the authors approximate a new point by a linear combination of labeled and unla-
beled points. Similarly in (Delalleau et al., 2005) the authors proposes an induction
scheme to classify a new pointx by

f(x) =

∑
i∈L∪U wxif(xi)∑

i∈L∪U wxi
(11.11)

This can be viewed as an application of the Nyström method (Fowlkes et al., 2004).
In the regularization framework of (Belkin et al., 2004b), the functionf does

not have to be restricted to the graph. The graph is merely used to regularize f
which can have a much larger support. It is necessarily a combination of anin-
ductive algorithm and graph regularization. The authors give the graph-regularized
version of least squares and SVM. Note such an SVM is different fromthe graph
kernels in standard SVM in (Zhu et al., 2005). The former is inductive with both
a graph regularizer and an inductive kernel. The latter is transductive with only
the graph regularizer. Following the work, Krishnapuram et al. (2005)use graph

110 CHAPTER 11. LITERATURE REVIEW

regularization on logistic regression. These methods create inductive learners that
naturally handle new test points.

The harmonic mixture model in Chapter 10 naturally handles new points with
the help of a mixture model.

11.6.4 Consistency

The consistency of graph-based semi-supervised learning algorithms has not been
studied extensively according to the author’s knowledge. By consistency we mean
whether the classification converges to the right solution as the number of labeled
and unlabeled data grows to infinity. Recently von Luxburg et al. (2005) (von
Luxburg et al., 2004) study the consistency of spectral clustering methods. The au-
thors find that the normalized Laplacian is better than the unnormalized Laplacian
for spectral clustering. The convergence of the eigenvectors of the unnormalized
Laplacian is not clear, while the normalized Laplacian always converges under
general conditions. There are examples where the top eigenvectors of the unnor-
malized Laplacian do not yield a sensible clustering. Although these are valuable
results, we feel the parallel problems in semi-supervised learning needs further
study. One reason is that in semi-supervised learning the whole Laplacian (nor-
malized or not) is often used for regularization, not only the top eigenvectors.

11.6.5 Ranking

Given a large collection of items, and a few ‘query’ items, ranking orders the items
according to their similarity to the queries. It can be formulated as semi-supervised
learning with positive data only (Zhou et al., 2004b), with the graph inducedsimi-
larity measure.

11.6.6 Directed Graphs

Zhou et al. (2005) take a hub/authority approach, and essentially convert a directed
graph into an undirected one. Two hub nodes are connected by an undirected edge
with appropriate weight if they co-link to authority nodes, and vice versa. Semi-
supervised learning then proceeds on the undirected graph.

Lu and Getoor (2003) convert the link structure in a directed graph into per-
node features, and combines them with per-node object features in logisticregres-
sion. They also use an EM-like iterative algorithm.

11.7. METRIC-BASED MODEL SELECTION 111

11.6.7 Fast Computation

Fast computation with sparse graphs and iterative methods has been brieflydis-
cussed in Chapter 10. Recently numerical methods for fast N-body problems have
been applied todensegraphs in semi-supervised learning, reducing the computa-
tional cost fromO(n3) to O(n) (Mahdaviani et al., 2005). This is achieved with
Krylov subspace methods and the fast Gauss transform.

11.7 Metric-Based Model Selection

Metric-based model selection (Schuurmans & Southey, 2001) is a method to detect
hypotheses inconsistency with unlabeled data. We may have two hypotheses which
are consistent onL, for example they all have zero training set error. However they
may be inconsistent on the much largerU . If so we should reject at least one of
them, e.g. the more complex one if we employ Occam’s razor.

The key observation is that a distance metric is defined in the hypothesis space
H. One such metric is the number of different classifications two hypotheses make
under the data distributionp(x): dp(h1, h2) = Ep[h1(x) 6= h2(x)]. It is easy to
verify that the metric satisfies the three metric properties. Now consider the true
classification functionh∗ and two hypothesesh1, h2. Since the metric satisfies the
triangle inequality (the third property), we have

dp(h1, h2) ≤ dp(h1, h
∗) + dp(h

∗, h2)

Under the premise that labels inL is noiseless, let’s assume we can approximate
dp(h1, h

∗) anddp(h
∗, h2) by h1 andh2’s training set error ratesdL(h1, h

∗) and
dL(h2, h

∗), and approximatedp(h1, h2) by the differenceh1 andh2 make on a
large amount of unlabeled dataU : dU (h1, h2). We get

dU (h1, h2) ≤ dL(h1, h
∗) + dL(h∗, h2)

which can be verified directly. If the inequality does not hold, at least oneof the

assumptions is wrong. If|U | is large enough andU
iid∼ p(x), dU (h1, h2) will be

a good estimate ofdp(h1, h2). This leaves us with the conclusion that at least one
of the training errors does not reflect its true error. If both training errors are close
to zero, we would know that at least one model is overfitting. An Occam’s razor
type of argument then can be used to select the model with less complexity. Such
use of unlabeled data is very general and can be applied to almost any learning
algorithms. However it only selects among hypotheses; it does not generate new
hypothesis based on unlabeled data.

The co-validation method (Madani et al., 2005) also uses unlabeled data for
model selection and active learning.

112 CHAPTER 11. LITERATURE REVIEW

11.8 Related Areas

The focus of the thesis is on classification with semi-supervised methods. There
are some closely related areas with a rich literature.

11.8.1 Spectral Clustering

Spectral clustering is unsupervised. As such there is no labeled data to guide the
process. Instead the clustering depends solely on the graph weightsW . On the
other hand semi-supervised learning for classification has to maintain a balance
between how good the ‘clustering’ is, and how well the labeled data can be ex-
plained by it. Such balance is expressed explicitly in the regularization framework.

As we have seen in section 8.1 and 11.6.4, the top eigenvectors of the graph
Laplacian can unfold the data manifold to form meaningful clusters. This is the
intuition behind spectral clustering. There are several criteria on what constitutes
a good clustering (Weiss, 1999).

The normalized cut (Shi & Malik, 2000) seeks to minimize

Ncut(A,B) =
cut(A,B)

assoc(A, V)
+

cut(A,B)

assoc(B, V)
(11.12)

Thecontinuous relaxationof the cluster indicator vector can be derived from the
normalized Laplacian. In fact it is derived from the second smallest eigenvector of
the normalized Laplacian. The continuous vector is then discretized to obtain the
clusters.

The data points are mapped into a new space spanned by the firstk eigenvec-
tors of the normalized Laplacian in (Ng et al., 2001a), with special normalization.
Clustering is then performed with traditional methods (like k-means) in this new
space. This is very similar to kernel PCA.

Fowlkes et al. (2004) use the Nyström method to reduce the computation cost
for large spectral clustering problems. This is related to our method in Chapter 10.

Chung (1997) presents the mathematical details of spectral graph theory.

11.8.2 Clustering with Side Information

This is the ‘opposite’ of semi-supervised classification. The goal is clustering but
there are some ‘labeled data’ in the form ofmust-links(two points must in the same
cluster) andcannot-links(two points cannot in the same cluster). There is a tension
between satisfying these constraints and optimizing the original clustering criterion
(e.g. minimizing the sum of squared distances within clusters). Procedurally one
can modify the distance metric to try to accommodate the constraints, or one can

11.8. RELATED AREAS 113

bias the search. We refer readers to a recent short survey (Grira et al., 2004) for the
literatures.

11.8.3 Nonlinear Dimensionality Reduction

The goal of nonlinear dimensionality reduction is to find a faithful low dimensional
mapping of the high dimensional data. As such it belongs to unsupervised learning.
However the way it discovers low dimensional manifold within a high dimensional
space is closely related to spectral graph semi-supervised learning. Representative
methods include Isomap (Tenenbaum et al., 2000), locally linear embedding (LLE)
(Roweis & Saul, 2000) (Saul & Roweis, 2003), Hessian LLE (Donoho &Grimes,
2003), Laplacian eigenmaps (Belkin & Niyogi, 2003), and semidefinite embedding
(SDE) (Weinberger & Saul, 2004) (Weinberger et al., 2004) (Weinberger et al.,
2005).

11.8.4 Learning a Distance Metric

Many learning algorithms depend, either explicitly or implicitly, on a distance met-
ric onX. We use the term metric here loosely to mean a measure of distance or
(dis)similarity between two data points. The default distance in the feature space
may not be optimal, especially when the data forms a lower dimensional manifold
in the feature vector space. With a large amount ofU , it is possible to detect such
manifold structure and its associated metric. The graph-based methods aboveare
based on this principle. We review some other methods next.

The simplest example in text classification might be Latent Semantic Indexing
(LSI, a.k.a. Latent Semantic Analysis LSA, Principal Component Analysis PCA,
or sometimes Singular Value Decomposition SVD). This technique defines a lin-
ear subspace, such that the variance of the data, when projected to the subspace,
is maximumly preserved. LSI is widely used in text classification, where the orig-
inal space forX is usually tens of thousands dimensional, while people believe
meaningful text documents reside in a much lower dimensional space. Zelikovitz
and Hirsh (2001) and Cristianini et al. (2001b) both useU , in this case unlabeled
documents, to augment the term-by-document matrix ofL. LSI is performed on
the augmented matrix. This representation induces a new distance metric. By the
property of LSI, words that co-occur very often in the same documents are merged
into a single dimension of the new space. In the extreme this allows two docu-
ments with no common words to be ‘close’ to each other, via chains of co-occur
word pairs in other documents.

Probabilistic Latent Semantic Analysis (PLSA) (Hofmann, 1999) is an impor-
tant improvement over LSI. Each word in a document is generated by a ‘topic’ (a

114 CHAPTER 11. LITERATURE REVIEW

multinomial, i.e. unigram). Different words in the document may be generated by
different topics. Each document in turn has a fixed topic proportion (a multino-
mial on a higher level). However there is no link between the topic proportionsin
different documents.

Latent Dirichlet Allocation (LDA) (Blei et al., 2003) is one step further. It
assumes the topic proportion of each document is drawn from a Dirichlet distribu-
tion. With variational approximation, each document is represented by a posterior
Dirichlet over the topics. This is a much lower dimensional representation.

Some algorithms derive a metric entirely from the density ofU . These are mo-
tivated by unsupervised clustering and based on the intuition that data pointsin the
same high density ‘clump’ should be close in the new metric. For instance, ifU
is generated from a single Gaussian, then the Mahalanobis distance induced by the
covariance matrix is such a metric. Tipping (1999) generalizes the Mahalanobis
distance by fittingU with a mixture of Gaussian, and define a Riemannian mani-
fold with metric atx being the weighted average of individual component inverse
covariance. The distance betweenx1 andx2 is computed along the straight line (in
Euclidean space) between the two points. Rattray (2000) further generalizes the
metric so that it only depends on the change in log probabilities of the density, not
on a particular Gaussian mixture assumption. And the distance is computed along
a curve that minimizes the distance. The new metric is invariate to linear transfor-
mation of the features, and connected regions of relatively homogeneousdensity
in U will be close to each other. Such metric is attractive, yet it depends on the
homogeneity of the initial Euclidean space. Their application in semi-supervised
learning needs further investigation.

We caution the reader that the metrics proposed above are based on unsuper-
vised techniques. They all identify a lower dimensional manifold within which the
data reside. However the data manifold may or may not correlate with a particular
classification task. For example, in LSI the new metric emphasizes words with
prominent count variances, but ignores words with small variances. Ifthe classi-
fication task is subtle and depends on a few words with small counts, LSI might
wipe out the salient words all together. Therefore the success of thesemethods
is hard to guarantee without putting some restrictions on the kind of classification
tasks. It would be interesting to includeL into the metric learning process.

In a separate line of work, Baxter (1997) proves that there is a unique optimal
metric for classification if we use 1-nearest-neighbor. The metric, named Canoni-
cal Distortion Measure (CDM), defines a distanced(x1, x2) as the expected loss if
we classifyx1 with x2’s label. The distance measure proposed in (Yianilos, 1995)
can be viewed as a special case. Yianilos assume a Gaussian mixture model has
been learned fromU , such that a class correspond to a component, but the corre-
spondence is unknown. In this case CDMd(x1, x2) = p(x1, x2from same component)

11.8. RELATED AREAS 115

and can be computed analytically. Now that a metric has been learned fromU , we
can find withinL the 1-nearest-neighbor of a new data pointx, and classifyx with
the nearest neighbor’s label. It will be interesting to compare this scheme withEM
based semi-supervised learning, whereL is used to label mixture components.

Weston et al. (2004) propose the neighborhood mismatch kernel and the bagged
mismatch kernel. More precisely both arekernel transformationthat modifies an
input kernel. In the neighborhood method, one defines the neighborhoodof a point
as points close enough according to certain similarity measure (note this isnot
the measure induced by the input kernel). The output kernel between point i, j is
the average of pairwise kernel entries betweeni’s neighbors andj’s neighbors. In
bagged method, if a clustering algorithm thinks they tend to be in the same cluster
(note again this is a different measure than the input kernel), the corresponding
entry in the input kernel is boosted.

11.8.5 Inferring Label Sampling Mechanisms

Most semi-supervised learning methods assumeL andU are bothi.i.d. from the
underlying distribution. However as (Rosset et al., 2005) points out thatis not
always the case. For exampley can be the binary label whether a customer is
satisfied, obtained through a survey. It is conceivable survey participation (and
thus labeled data) depends on the satisfactiony.

Let si be the binary missing indicator foryi. The authors modelp(s|x, y)
with a parametric family. The goal is to estimatep(s|x, y) which is the label
sampling mechanism. This is done by computing the expectation of an arbi-
trary functiong(x) in two ways: onL ∪ U as1/n

∑n
i=1 g(xi), and onL only as

1/n
∑

i∈L g(xi)/p(si = 1|xi, yi). By equating the twop(s|x, y) can be estimated.
The intuition is that the expectation onL requires weighting the labeled samples
inversely proportional to the labeling probability, to compensate for ignoringthe
unlabeled data.

116 CHAPTER 11. LITERATURE REVIEW

Chapter 12

Discussions

We have presented a series of semi-supervised learning algorithms, based on a
graph representation of the data. Experiments show that they are able to take ad-
vantage of the unlabeled data to improve classification. Contributions of the thesis
include:

• We proposed a harmonic function and Gaussian field formulations for semi-
supervised problems. This is not the first graph-based semi-supervised method.
The first one was graph mincut. However our formulation is a continuous
relaxation to the discrete labels, resulting in a more benign problem. Sev-
eral variations of the formulation were proposed independently by different
groups shortly after.

• We addressed the problem of graph construction, by setting up parametric
edge weights and performing edge hyperparameter learning. Since the graph
is the input to all graph-based semi-supervised algorithms, it is important that
we construct graphs that best suit the task.

• We combined an active learning scheme that reduces expected error instead
of ambiguity, with graph-based semi-supervised learning. We believe that
active learning and semi-supervised learning will be used together for prac-
tical problems, because limited human annotation resources should be spent
wisely.

• We defined optimal semi-supervised kernels by spectral transformation of
the graph Laplacian. Such optimal kernels can be found with convex opti-
mization. We can use the kernels with any kernel machine, e.g. support vec-
tor machines, for semi-supervised learning. The kernel machines in general
can handle noisy labeled data, which is an improvement over the harmonic
function solution.

117

118 CHAPTER 12. DISCUSSIONS

• We kernelized conditional random fields. CRFs were traditionally feature
based. We derived the dual problem and presented an algorithm for fast
sparse kernel CRF training. With kernel CRFs, it is possible to use a semi-
supervised kernel on instances for semi-supervised learning on sequences
and other structures.

• We proposed to solve large-scale problems with harmonic mixtures. Har-
monic mixtures reduce computation cost significantly by grouping unlabeled
data into soft clusters, then carrying out semi-supervised learning on the
coarser data representation. Harmonic mixtures also handle new data points
naturally, making the semi-supervised learning method inductive.

Semi-supervised learning is a relatively new research area. There aremany
open questions and research opportunities:

• The graph is the single most important quantity for graph-based semi-supervised
learning. Parameterizing graph edge weights, and learning weight hyperpa-
rameters, should be the first step of any graph-based semi-supervisedlearn-
ing methods. Current methods in Chapter 7 are not efficient enough. Canwe
find better ways to learn the graph structure and parameters?

• Real problems can have millions of unlabeled data points. Anecdotal sto-
ries and experiments in Appendix F indicate that conjugate gradient with a
suitable pre-conditioner is one of the fastest algorithms in solving harmonic
functions. Harmonic mixture works along an orthogonal direction by reduc-
ing the problem size. How large a dataset can we process if we combine
conjugate gradient and harmonic mixture? What can we do to handle even
larger datasets?

• Semi-supervised learning on structured data, e.g. sequences and trees, is
largely unexplored. We have proposed the use of kernel conditional ran-
dom fields plus semi-supervised kernels. Much more work is needed in this
direction.

• In this thesis we focused on classification problems. The spirit of combining
some human effort with large amount of data should be applicable to other
problems. Examples include: regression with both labeled and unlabeled
data; ranking with ordered pairs and unlabeled data; clustering with cluster
membership knowledge. What can we do beyond classification?

• Because labeled data is scarce, semi-supervised learning methods depend
more heavily on their assumptions (see e.g. Table 1.1). Can we develop
novel semi-supervised learning algorithms with new assumptions?

119

• Applications of semi-supervised learning are emerging rapidly. These in-
clude text categorization, natural language processing, bioinformatics,im-
age processing, and computer vision. Many others are sure to come. Appli-
cations are attractive because they solve important practical problems, and
provide fertile test bed for new ideas in machine learning. What problems
can we apply semi-supervised learning? What applications were too hard
but are now feasible with semi-supervised learning?

• The theory of semi-supervised learning is almost absent in both the ma-
chine learning literature and the statistics literature. Is graph-based semi-
supervised learning consistent? How many labeled and unlabeled points are
needed to learn a concept with confidence?

We expect advances in research will address these questions. We hope semi-
supervised learning become a fruitful area for both machine learning theory and
practical applications.

120 CHAPTER 12. DISCUSSIONS

Appendix A

The Harmonic Function after
Knowing One More Label

Construct the graph as usual. We usef to denote the harmonic function. The
random walk solution isfu = −∆−1

uu∆ulfl = ∆−1
uuWulfl. There areu unlabeled

nodes. We ask the question: what is the solution if we add a node with valuef0 to
the graph, and connect the new node to unlabeled nodei with weightw0? The new
node is a “dongle” attached to nodei. Besides the usage here, dongle nodes can
be useful for handling noisy labels where one would put the observed labels on the
dongles, and infer the hidden true labels for the nodes attached to dongles. Note
that whenw0 →∞, we effectively assign labelf0 to nodei.

Since the dongle is a labeled node in the augmented graph,

f+
u = ∆+

uu
−1
W+

ulf
+
l = (D+

uu −Wuu)−1W+
ulf

+
l

= (w0ee
> +Duu −Wuu)−1(w0f0e+Wulfl)

= (w0ee
> + ∆uu)−1(w0f0e+Wulfl)

wheree is a column vector of lengthu with 1 in positioni and 0 elsewhere. Note
that we can use the matrix inversion lemma here, to obtain

(w0ee
> + ∆uu)−1 = ∆−1

uu −
∆−1

uu (
√
w0e)(

√
w0e)

>∆−1
uu

1 + (
√
w0e)>∆−1

uu (
√
w0e)

= G− 1

1 + w0Gii
w0G|iG

where we use the shorthandG = ∆−1
uu (the Green’s function);Gii is thei-th row,

i-th column element inG; G|i is a square matrix withG’s i-th column and 0 else-

121

122 APPENDIX A. UPDATE HARMONIC FUNCTION

where. Some calculation gives

f+
u = fu +

w0f0 − w0fi

1 + w0Gii
G·i

wherefi is the unlabeled node’s original solution, andG·i is thei-th column vector
in G. If we want to pin down the unlabeled node to valuef0, we can letw0 → ∞
to obtain

f+
u = fu +

f0 − fi

Gii
G·i

Appendix B

The Inverse of a Matrix with One
Row/Column Removed

LetA be ann×n non-singular matrix. GivenA−1, we would like a fast algorithm
to computeA−1

¬i , whereA¬i is the(n− 1)× (n− 1) matrix obtained by removing
thei-th row and column fromA.

Let B = perm(A, i) be the matrix created by moving thei-th row in front of
the 1st row, and thei-th column in front of the 1st column ofA. Then

A−1
¬i = (perm(A, i)¬1)

−1 = (B¬1)
−1

Also noteB−1 = perm(A−1, i). So we only need to consider the special case of

removing the first row/column of a matrix. WriteB out asB =

[
b11 B1∗

B∗1 B¬1

]
,

whereB1∗ = (b12 . . . b1n) andB∗1 = (b21 . . . bn1)
>. We will transformB into a

block diagonal form in two steps. First, letB′ =

[
1 0
B∗1 B¬1

]
= B+uv> where

u = (−1, 0, . . . , 0)> andv = (b11 − 1, B1∗)
>. We are interested in(B′)−1 which

will be used in the next step. By the matrix inversion lemma (Sherman-Morrison-
Woodbury formula),

(B′)−1 = (B + uv>)−1 = B−1 − B−1uv>B−1

1 + v>B−1u

Next letB′′ =

[
1 0
0 B¬1

]
= B′ + wu> wherew = (0, B∗1)

>. Applying the

matrix inversion lemma again,

(B′′)−1 = (B′ + wu>)−1 = (B′)−1 − (B′)−1wu>(B′)−1

1 + u>(B′)−1w

123

124 APPENDIX B. MATRIX INVERSE

But sinceB′′ is block diagonal, we know(B′′)−1 =

[
1 0
0 (B¬1)

−1

]
. Therefore

(B¬1)
−1 = ((B′′)−1)¬1.

Appendix C

Laplace Approximation for
Gaussian Processes

This derivation largely follows (Herbrich, 2002) (B.7). The Gaussian process
model, restricted to the labeled and unlabeled data, is

f ∼ N
(
µ, ∆̃−1

)
(C.1)

We will useG = ∆̃−1 to denote the covariance matrix (i.e. the Gram matrix). Let
y ∈ {−1,+1} be the observed discrete class labels. The hidden variablef and
labelsy are connected via a sigmoid noise model

P (yi|fi) =
eγfiyi

eγfiyi + e−γfiyi
=

1

1 + e−2γfiyi
(C.2)

whereγ is a hyperparameter which controls the steepness of the sigmoid. Given
the prior and the noise model, we are interested in the posteriorp(fL, fU |yL). By
Bayes theorem,

p(fL, fU |yL) =

∏l
i=1 P (yi|fi)p(fL, fU)

P (yL)
(C.3)

Because of the noise model, the posterior is not Gaussian and has no closed form
solution. We use the Laplace approximation.

First, we find the mode of the posterior (6.7):

(f̂L, f̂U) = arg maxfL,fU

∏l
i=1 P (yi|fi)p(fL, fU)

P (yL)
(C.4)

= arg maxfL,fU

l∑

i=1

lnP (yi|fi) + ln p(fL, fU) (C.5)

= arg maxfL,fU
Q1 +Q2 (C.6)

125

126APPENDIX C. LAPLACE APPROXIMATION FOR GAUSSIAN PROCESSES

NotefU only appears inQ2, and we can maximizêfU independently given̂fL. Q2

is the log likelihood of the Gaussian (C.1). Therefore givenf̂L, fU follows the
conditional distribution of Gaussian:

p(fU |f̂L) = N
(
GULG

−1
LLf̂L, GUU −GULG

−1
LLGLU

)
(C.7)

Moreover, the mode is the conditional mean

f̂U = GULG
−1
LLf̂L (C.8)

It’s easy to see (C.8) has the same form as the solution for Gaussian Fields (4.11):
RecallG = ∆̃−1. From partitioned matrix inversion theorem,

∆̃UU = S−1
A

∆̃UL = −S−1
A GULG

−1
LL

whereSA = GUU − GUL(GLL)−1GLU is the Schur complement ofGLL. This
gives us

−(∆̃UU)−1∆̃UL = SAS
−1
A GULG

−1
LL = GULG

−1
LL

Thus we have

f̂U = −∆̃−1
UU∆̃ULf̂L (C.9)

= ∆̃−1
UUWULf̂L (C.10)

which has the same form as the harmonic energy minimizing function in (Zhu et al.,
2003a). In fact the latter is the limiting case whenσ2 → ∞ and there is no noise
model.

Substitute (C.8) back toQ2, using partitioned inverse of a matrix, it can be
shown that (not surprisingly)

Q2 = −1

2
f>
LG

−1
LLfL + c (C.11)

Now go back toQ1. The noise model can be written as

P (yi|fi) =
eγfiyi

eγfiyi + e−γfiyi
(C.12)

=

(
eγfi

eγfi + e−γfi

) yi+1

2
(

1− eγfi

eγfi + e−γfi

) 1−yi
2

(C.13)

= π(fi)
yi+1

2 (1− π(fi))
1−yi

2 (C.14)

127

therefore

Q1 =
l∑

i=1

lnP (yi|fi) (C.15)

=
l∑

i=1

yi + 1

2
lnπ(fi) +

1− yi

2
ln(1− π(fi)) (C.16)

= γ(yL − 1)>fL −
l∑

i=1

ln(1 + e−2γfi) (C.17)

Put it together,

f̂L = arg maxQ1 +Q2 (C.18)

= arg maxγ(yL − 1)>fL −
l∑

i=1

ln(1 + e−2γfi)− 1

2
f>
LG

−1
LLfL (C.19)

To find the mode, we take the derivative,

∂(Q1 +Q2)

∂fL
= γ(yL − 1) + 2γ(1− π(fL))−G−1

LLfL (C.20)

Because of the termπ(fL) it is not possible to find the root directly. We solve it
with Newton-Raphson algorithm,

f
(t+1)
L ← f

(t)
L − H−1∂(Q1 +Q2)

∂fL

∣∣∣∣
fL

(t)

(C.21)

whereH is the Hessian matrix,

H =

[
∂2(Q1 +Q2)

∂fi∂fj

∣∣∣∣
fL

]
(C.22)

Note d
dfi
π(fi) = 2γπ(fi)(1− π(fi)), we can writeH as

H = −G−1
LL − P (C.23)

whereP is a diagonal matrix with elementsPii = 4γ2π(fi)(1− π(fi)).
Once Newton-Raphson converges we computef̂U from f̂L with (C.8). Classifi-

cation can be done with sgn(f̂U) noting this is the Bayesian classification rule with
Gaussian distribution and sigmoid noise model.

128APPENDIX C. LAPLACE APPROXIMATION FOR GAUSSIAN PROCESSES

To compute the covariance matrix of the Laplace approximation, note by defi-
nition the inverse covariance matrix of the Laplace approximation is

Σ−1 =

[
∂2 − ln p(f |y)

∂fi∂fj

∣∣∣∣
f̂L,f̂U

]
(C.24)

From (6.7) it is straightforward to confirm

Σ−1 =

[
P 0

0 0

]
+G−1 =

[
P 0

0 0

]
+ ∆̃ (C.25)

Therefore the covariance matrix is

Σ =

([
P 0

0 0

]
+ ∆̃

)−1

(C.26)

whereP is evaluated at the modêfL.

Appendix D

Hyperparameter Learning by
Evidence Maximization

This derivation largely follows (Williams & Barber, 1998). We want to find the
MAP hyperparametersΘ which maximize the posterior

p(Θ|yL) ∝ p(yL|Θ)p(Θ)

The prior p(Θ) is usually chosen to be simple, and so we focus on the term
p(yL|Θ), known as theevidence. The definition

p(yL|Θ) =

∫
p(yL|fL)p(fL|Θ) dfL

is hard to compute analytically. However notice

p(yL|Θ) =
p(yL|fL)p(fL|Θ)

p(fL|yL,Θ)
,∀fL (D.1)

Since it holds for allfL, it holds for the mode of the Laplace approximationf̂L:

p(yL|Θ) =
p(yL|f̂L)p(f̂L|Θ)

p(f̂L|yL,Θ)

The terms on the numerator are straightforward to compute; the denominator is
tricky. However we can use the Laplace approximation, i.e. the probability density
at the mode:p(f̂L|yL,Θ) ≈ N (f̂L|f̂L,ΣLL). Recall

Σ =

([
P 0

0 0

]
+

[
GLL GLU

GUL GUU

]−1
)−1

(D.2)

129

130 APPENDIX D. EVIDENCE MAXIMIZATION

By applying Schur complement in block matrix decomposition twice, we find

ΣLL = (P +G−1
LL)−1 (D.3)

Therefore the evidence is

p(yL|Θ) ≈ p(yL|f̂L)p(f̂L|Θ)

N (f̂L|f̂L,ΣLL)
(D.4)

=
p(yL|f̂L)p(f̂L|Θ)

(2π)−
n
2 |ΣLL|−

1
2

(D.5)

=
p(yL|f̂L)p(f̂L|Θ)

(2π)−
n
2 |(P +G−1

LL)−1|− 1
2

(D.6)

Switching tolog domain, we have

log p(yL|Θ) ≈ Ψ(f̂L) +
n

2
log 2π +

1

2
log |ΣLL| (D.7)

= Ψ(f̂L) +
n

2
log 2π − 1

2
log |P +G−1

LL| (D.8)

whereΨ(fL) = log p(yL|fL) + log p(fL|Θ). Sincef ∼ N
(
µ, ∆̃−1

)
= N (µ,G),

we havefL ∼ N (µL, GLL). Therefore

Ψ(f̂L) = log p(yL|f̂L) + log p(f̂L|Θ) (D.9)

= −
L∑

i=1

log(1 + exp(−2γf̂iyi))

−n
2

log 2π − 1

2
log |GLL| −

1

2
(f̂L − µL)>G−1

LL(f̂L − µL)(D.10)

Put it together,

log p(yL|Θ) ≈ −
L∑

i=1

log(1 + exp(−2γf̂iyi))

−1

2
log |GLL| −

1

2
(f̂L − µL)>G−1

LL(f̂L − µL)− 1

2
log |P +G−1

LL|

= −
L∑

i=1

log(1 + exp(−2γf̂iyi))

−1

2
(f̂L − µL)>G−1

LL(f̂L − µL)− 1

2
log |GLLP + I| (D.11)

131

This gives us a way to (approximately) compute the evidence.

To find the MAP estimate ofΘ (which can have multiple local maxima), we use
gradient methods. This involves the derivatives of the evidence∂ log p(yL|Θ)/∂θ,
whereθ is the hyperparameterβ, σ, γ or the ones controllingW .

We start from

∂

∂θ
π(f̂i) =

∂

∂θ

1

1 + e−2γf̂i

(D.12)

= 2π(f̂i)(1− π(f̂i))(f̂i
∂γ

∂θ
+ γ

∂f̂i

∂θ
) (D.13)

To compute∂ f̂L/∂θ, note the Laplace approximation modef̂L satisfies

∂Ψ(fL)

∂fL

∣∣∣∣
f̂L

= γ(yL + 1− 2π(f̂L))−G−1
LL(f̂L − µL) = 0 (D.14)

which means

f̂L = γGLL(yL + 1− 2π(f̂L)) + µL (D.15)

Taking derivatives on both sides,

∂ f̂L
∂θ

=
∂

∂θ
γGLL(yL + 1− 2π(f̂L)) (D.16)

=
∂γGLL

∂θ
(yL + 1− 2π(f̂L))− 2γGLL

∂π(f̂L)

∂θ
(D.17)

=
∂γGLL

∂θ
(yL + 1− 2π(f̂L))− 1

γ
GLLP f̂L

∂γ

∂θ
−GLLP

∂ f̂L
∂θ

(D.18)

which gives

∂ f̂L
∂θ

= (I +GLLP)−1

[
∂γGLL

∂θ
(yL + 1− 2π(f̂L))− 1

γ
GLLP f̂L

∂γ

∂θ

]
(D.19)

132 APPENDIX D. EVIDENCE MAXIMIZATION

Now it is straightforward to compute the gradient with (D.11):

∂

∂θ
log p(yL|Θ)

≈ ∂

∂θ

[
−

L∑

i=1

log(1 + exp(−2γf̂iyi))−
1

2
(f̂L − µL)>G−1

LL(f̂L − µL)− 1

2
log |GLLP + I|

]

= −
L∑

i=1

exp(−2γf̂iyi)(−2yi)

1 + exp(−2γf̂iyi)
(f̂i
∂γ

∂θ
+ γ

∂f̂i

∂θ
)

−1

2

[
2(G−1

LL(f̂L − µL))>
∂ f̂L
∂θ

+ (f̂L − µL)>
∂G−1

LL

∂θ
(f̂L − µL)

]

−1

2
tr

(
(GLLP + I)−1∂GLLP

∂θ

)
(D.20)

where we used the fact

∂ log |A|
∂θ

= tr

(
A−1∂A

∂θ

)
(D.21)

For example, ifθ = γ, the gradient can be computed by noting∂γGLL

∂γ = GLL,
∂γ
∂γ = 1,

∂G−1
LL

∂γ = 0, and ∂GLLP
∂γ = GLL

∂P
∂γ where∂Pii

∂γ = 8γπ(f̂i)(1 − π(f̂i)) +

4γ2(1− 2π(f̂i))
∂π(f̂i)

∂γ .

For θ = β, we have∂γGLL

∂β = γ(−1/β)GLL, ∂γ
∂β = 0,

∂G−1
LL

∂β = G−1
LL/β, and

∂GLLP
∂β = −GLLP/β+GLL

∂P
∂β where∂Pii

∂β = 8γ3π(f̂i)(1−π(f̂i))(1−2π(f̂i))
∂f̂i

∂β .
For θ = σ, the computation is more intensive because the complex depen-

dency betweenG andσ. We start from∂GLL

∂σ =
[

∂G
∂σ

]
LL

. Using the fact∂A−1

∂θ =

−A−1 ∂A
∂θ A

−1 andG = ∆̃−1, we get ∂G
∂σ = β/σ3G2. Note the computation in-

volves the multiplication of thefull matrixG and is thus more demanding. Once
∂GLL

∂σ is computed the rest is easy.
If we parameterize the weightsW in Gaussian Fields with radial basis func-

tions (for simplicity we assume a single length scale parameterα for all dimen-
sions. Extension to multiple length scales is simple),

wij = exp

(
−
d2

ij

α2

)
(D.22)

wheredij is the Euclidean distance betweenxi, xj in the original feature space, we

can similarly learn the hyperparameterα. Note ∂wij

∂α = wij
d2

ij

α3 , ∂∆
∂α = ∂D

∂α − ∂W
∂α ,

∂∆̃
∂α = β ∂∆

∂α . The rest is the same as forσ above.

133

Similarly with a tanh()-weighted weight functionwij = (tanh(α1(dij −
α2)) + 1)/2, we have∂wij

∂α1
= (1− tanh2(α1(dij −α2)))(dij −α2)/2 and ∂wij

∂α2
=

−(1− tanh2(α1(dij − α2)))α1/2, and the rest follows.

134 APPENDIX D. EVIDENCE MAXIMIZATION

Appendix E

Mean Field Approximation for
Kernel CRF Training

In the basic kernel CRF model, each cliquec is associated with|y||c| parameters
αc

j(yc). Even if we only consider vertex cliques, there would be hundreds of thou-
sands of parameters for a typical protein dataset. This seriously affectsthe training
efficiency.

To solve the problem, we adopt the notion of “import vector machines” by Zhu
and Hastie (2001). That is, we use a subset of the training examples instead of all
of them. The subset is constructed by greedily selecting training examples one at a
time to minimize the loss function:

arg minkR(fA∪{k}, λ)−R(fA, λ) (E.1)

where
fA(x,y) =

∑

j∈A

αj(y)K(xj ,x) (E.2)

andA is the currentactive import vector set.
(E.1) is hard to compute: we need to update all the parameters forfA∪{k}.

Even if we keep old parameters infA fixed, we still need to use expensive forward-
backward algorithm to train the new parametersαk(y) and compute the loss. Fol-
lowing McCallum (2003), we make a set of speed up approximations.

Approximation 1: Mean field approximation. With the oldfA we have an
old distributionP (y|x) = 1/Z exp(

∑
c f

c
A(x,y)) over a label sequencey. We

approximateP (y|x) by the mean field

Po(y|x) =
∏

i

Po(yi|xi) (E.3)

135

136 APPENDIX E. MEAN FIELD APPROXIMATION

i.e. the mean field approximation is the independent product of marginal distribu-
tions at each positioni. It can be computed with the Forward-Backward algorithm
onP (y|x).

Approximation 2: Consider only the vertex kernel. In conjunction with the
mean field approximation, we only consider the vertex kernelK(xi, xj) and ignore
edge or other higher order kernels. The loss function becomes

R(fA, λ) = −
∑

i∈T

logPo(yi|xi) +
λ

2

∑

i,j∈A

∑

y

αi(y)αj(y)K(xi, xj) (E.4)

whereT = {1, . . . ,M} is the set of training positions on which to evaluate the
loss function. Once we add a candidate import vectorxk to the active set, the new
model is

Pn(yi|xi) =
Po(yi|xi) exp(αk(yi)K(xi, xk))∑

y Po(y|xi) exp(αk(y)K(xi, xk))
(E.5)

The new loss function is

R(fA∪{k}, λ) = −
∑

i∈T

logPn(yi|xi) +
λ

2

∑

i,j∈A∪{k}

∑

y

αi(y)αj(y)K(xi, xj)

(E.6)
And (E.1) can be written as

R(fA∪{k}, λ)−R(fA, λ) = −
∑

i∈T

αk(yi)K(xi, xk) (E.7)

+
∑

i∈T

log
∑

y

Po(y|xi) exp(αk(y)K(xi, xk))

+λ
∑

j∈A

∑

y

αj(y)αk(y)K(xj , xk) +
λ

2

∑

y

α2
k(y)K(xk, xk)

This change of loss is a convex function of the|y| parametersαk(y). We can find
the best parameters with Newton’s method. The first order derivatives are

∂R(fA∪{k}, λ)−R(fA, λ)

∂αk(y)
= −

∑

i∈T

K(xi, xk)δ(yi, y) (E.8)

+
∑

i∈T

Pn(y|xi)K(xi, xk) (E.9)

+λ
∑

j∈A∪{k}

αj(y)K(xj , xk) (E.10)

137

And the second order derivatives are

∂2R(fA∪{k}, λ)−R(fA, λ)

∂αk(y)∂αk(y′)
=

∑

i∈T

[
Pn(y|xi)K

2(xi, xk)δ(y, y
′)− Pn(y|xi)K

2(xi, xk)Pn(y′|xi)
]

+λK(xk, xk)δ(y, y
′) (E.11)

Approximation 1 and 2 allow us to estimate the change in loss function inde-
pendently for each position inT . This avoids the need of dynamic programming.
Although the time complexity to evaluate each candidatexk is still linear in |T |,
we save by a (potentially large) constant factor. Further more, they allow amore
dramatic approximation as shown next.

Approximation 3: Sparse evaluation of likelihood.A typical protein database
has around 500 sequences, with hundreds of amino acid residuals per sequence.
ThereforeM , the total number of training positions, can easily be around 100,000.
Normally T = {1, . . . ,M}, i.e. we need to sum over all training positions to
evaluate the log-likelihood. However we can speed up by reducingT . There are
several possibilities:

1. Focus on errors:T = {i|yi 6= arg maxyPo(y|xi)}

2. Focus on low confidence:T = {i|Po(yi|xi) < p0}

3. Skip positions:T = {ai|ai ≤M ; a, i ∈ N}

4. Random sample:T = {i|i ∼ uniform(1,M)}

5. Error/confidence guided sample: errors / low confidence positions have higher
probability to be sampled.

We need to scale the log likelihood term to maintain the balance between it and the
regularization term:

R(fA, λ) = −M|T |
∑

i∈T

logPo(yi|xi) +
λ

2

∑

i,j∈A

∑

y

αi(y)αj(y)K(xi, xj) (E.12)

and scale the derivatives accordingly.
Other approximations: We may want to add more than one candidate import

vector toA at a time. However we need to eliminate redundant vectors, possibly
by the kernel distance. We may not want to fully trainfA∪{k} once we selectedk.

138 APPENDIX E. MEAN FIELD APPROXIMATION

Appendix F

An Empirical Comparison of
Iterative Algorithms

The single most significant bottleneck in computing the harmonic function is to
invert au × u matrix, as infu = −∆−1

uu∆ulfl. Done naively the cost is close
to O(n3), which is prohibitive for practical problems. For example Matlab inv()
function can only handlen in the range of several thousand. Clearly, we need to
find ways to avoid the expensive inversion. One can go several directions:

1. One can approximate the inversion of a matrix by its top few eigenvalues
and eigenvectors. If an×n invertible matrixA has spectrum decomposition
A =

∑n
i=1 λiφiφ

>
i , thenA−1 =

∑n
i=1 1/λiφiφ

>
i ≈

∑m
i=1 1/λiφiφ

>
i . The

topm < n eigenvectorsφi with the smallest eigenvaluesλi is less expensive
to compute than inverting the matrix. This has been used in non-parametric
transforms of graph kernels for semi-supervised learning in Chapter 8.A
similar approximation is used in (Joachims, 2003). We will not pursue it
further here.

2. One can reduced the problem size. Instead of using all of the unlabeled
data, we can use a subset (or clusters) to construct the graph. The harmonic
solution on the remaining data can be approximated with a computationally
cheap method. The backbone graph in Chapter 10 is an example.

3. One can use iterative methods. The hope is that each iteration isO(n) and
convergence can be reached in relatively few iterations. There is a richset of
iterative methods applicable. We will compare the simple ‘label propagation’
algorithm, loopy belief propagation and conjugate gradient next.

139

140 APPENDIX F. COMPARING ITERATIVE ALGORITHMS

F.1 Label Propagation

The original label propagation algorithm was proposed in (Zhu & Ghahramani,
2002a). A slightly modified version is presented here. LetP = D−1W be the
transition matrix. Letfl be the vector for labeled set (for multiclass problems it
can be anl × c matrix). The label propagation algorithm consists of two steps:

1.

(
f

(t+1)
l

f
(t+1)
u

)
= P

(
f

(t)
l

f
(t)
u

)

2. Clamp the labeled dataf (t+1)
l = fl

It can be shownfu converges to the harmonic solution regardless of initialization.
Each iteration needs a matrix-vector multiplication, which can beO(n) for sparse
graphs. However the convergence may be slow.

F.2 Conjugate Gradient

The harmonic function is the solution to the linear system

∆uufu = −∆ulfl (F.1)

Standard conjugate gradient methods have been shown to perform well (Argyriou,
2004). In particular, the use of Jacobi preconditioner was shown to improve con-
vergence. The Jacobi preconditioner is simply the diagonal of∆uu, and the pre-
conditioned linear system is

diag(∆uu)−1∆uufu = −diag(∆uu)−1∆ulfl (F.2)

We note this is exactly
(I − Puu)fu = −Pulfl (F.3)

i.e. the alternative definition of harmonic functionfu = −(I−Puu)−1Pulfl, where
P = D−1W is the transition matrix.

F.3 Loopy belief propagation on Gaussian fields

The harmonic solution
fu = −∆−1

uu∆ulfl (F.4)

computes the mean of the marginals on unlabeled nodesu. ∆ is the graph Lapla-
cian. The computation involves inverting au× u matrix and is expensive for large

F.3. LOOPY BELIEF PROPAGATION ON GAUSSIAN FIELDS 141

datasets. We hope to use loopy belief propagation instead, as each iterationisO(n)
if the graph is sparse, and loopy BP has a reputation of converging fast(Weiss &
Freeman, 2001) (Sudderth et al., 2003). It has been proved that if loopy BP con-
verges, the mean values are correct (i.e. the harmonic solution).

The Gaussian field is defined as

p(y) ∝ exp(−1

2
y∆y>) (F.5)

And fu = Ep[yu]. Note the corresponding pairwise clique representation is

p(y) ∝
∏

i,j

ψij(yi, yj) (F.6)

=
∏

i,j

exp

(
−1

2
wij(yi − yj)

2

)
(F.7)

=
∏

i,j

exp

(
−1

2
(yiyj)

(
a b
c d

)(
yi

yj

))
(F.8)

wherea = d = wij , b = c = −wij , andwij is the weight of edgeij. Notice in
this simple model we don’t haven nodes for hidden variables and anothern for
observed ones; we only haven nodes with some of them observed. In other words,
there is no ’noise model’.

The standard belief propagation messages are

mij(yj) = α

∫

yi

ψij(yi, yj)
∏

k∈N(i)\j

mki(yi)dyi (F.9)

wheremij is the message fromi to j, N(i)\j is the neighbors ofi exceptj, and
α a normalization factor. Initially the messages are arbitrary (e.g. uniform) except
for observed nodesyl = fl, whose messages to their neighbors are

mlj(yj) = αψij(yl, yj) (F.10)

After the messages converge, the marginals (belief) is computed as

b(yi) = α
∏

k∈N(i)

mki(yi) (F.11)

For Gaussian fields with scalar-valued nodes, each messagemij can be param-
eterized similar to a Gaussian distribution by its meanµij and inverse variance
(precision)Pij = 1/σ2

ij parameters. That is,

mij(xj) ∝ exp

(
−1

2
(xj − µij)

2Pij

)
(F.12)

142 APPENDIX F. COMPARING ITERATIVE ALGORITHMS

We derive the belief propagation iterations for this special case next.

mij(yj)

= α

∫

yi

ψij(yi, yj)
∏

k∈N(i)\j

mki(yi)dyi

= α

∫

yi

exp

(
−1

2
(yiyj)

(
a b
c d

)(
yi

yj

)) ∏

k∈N(i)\j

mki(yi)dyi

= α2

∫

yi

exp


−1

2


(yiyj)

(
a b
c d

)(
yi

yj

)
+

∑

k∈N(i)\j

(xi − µki)
2Pki




 dyi

= α3 exp

(
−1

2
dy2

j

)

∫

yi

exp


−1

2




a+

∑

k∈N(i)\j

Pki


 y2

i + 2


byj −

∑

k∈N(i)\j

Pkiµki


 yi




 dyi

where we use the factb = c. LetA = a+
∑

k∈N(i)\j Pki,B = byj−
∑

k∈N(i)\j Pkiµki,

mij(yj) (F.13)

= α3 exp

(
−1

2
dy2

j

)∫

yi

exp

[
−1

2

(
Ay2

i + 2Byi

)]
dyi

= α3 exp

(
−1

2
dy2

j

)∫

yi

exp

[
−1

2

(
(
√
Ayi +B/

√
A)2 −B2/A

)]
dyi

= α3 exp

[
−1

2

(
dy2

j −B2/A
)] ∫

yi

exp

[
−1

2

(
(
√
Ayi +B/

√
A)2
)]
dyi

Note the integral is Gaussian whose value depends onA, notB. However sinceA
is constant w.r.t.yj , the integral can be absorbed into the normalization factor,

mij(yj) (F.14)

= α4 exp

[
−1

2

(
dy2

j −B2/A
)]

= α4 exp

[
−1

2

(
dy2

j −
b2y2

j − 2b
∑

k∈N(i)\j Pkiµkiyj + (
∑

k∈N(i)\j Pkiµki)
2

a+
∑

k∈N(i)\j Pki

)]

= α5 exp

[
−1

2

((
d− b2

a+
∑

k∈N(i)\j Pki

)
y2

j + 2
b
∑

k∈N(i)\j Pkiµki

a+
∑

k∈N(i)\j Pki
yj

)]

F.3. LOOPY BELIEF PROPAGATION ON GAUSSIAN FIELDS 143

LetC = d− b2

a+
∑

k∈N(i)\j Pki
,D =

b
∑

k∈N(i)\j Pkiµki

a+
∑

k∈N(i)\j Pki
,

mij(yj) (F.15)

= α5 exp

[
−1

2

(
Cy2

j + 2Dyj

)]
(F.16)

= α5 exp

[
−1

2

((√
Cyj +D/

√
C
)2
−D2/C

)]
(F.17)

= α6 exp

[
−1

2

((√
Cyj +D/

√
C
)2
)]

(F.18)

= α6 exp

[
−1

2

(
(yj − (−D/C))2C

)]
(F.19)

Thus we see the messagemij has the form of a Gaussian density with sufficient
statistics

Pij = C (F.20)

= d− b2

a+
∑

k∈N(i)\j Pki
(F.21)

µij = −D/C (F.22)

= −
b
∑

k∈N(i)\j Pkiµki

a+
∑

k∈N(i)\j Pki
P−1

ij (F.23)

For our special case ofa = d = wij , b = c = −wij , we get

Pij = wij −
w2

ij

wij +
∑

k∈N(i)\j Pki
(F.24)

µij = −D/C (F.25)

=
wij
∑

k∈N(i)\j Pkiµki

wij +
∑

k∈N(i)\j Pki
P−1

ij (F.26)

For observed nodesyl = fl, they ignore any messages sent to them, while sending
out the following messages to their neighborsj:

µlj = fl (F.27)

Plj = wlj (F.28)

144 APPENDIX F. COMPARING ITERATIVE ALGORITHMS

The belief at nodei is

bi(yi) (F.29)

= α
∏

k∈N(i)

mki(yi) (F.30)

= α exp


−1

2



∑

k∈N(i)

(yi − µki)
2Pki




 (F.31)

= α2 exp


−1

2



∑

k∈N(i)

Pkiy
2
i − 2

∑

k∈N(i)

Pkiµkiyi




 (F.32)

= α3 exp


−1

2



(
yi −

∑
k∈N(i) Pkiµki∑

k∈N(i) Pki

)2

·



∑

k∈N(i)

Pki






 (F.33)

This is a Gaussian distribution with mean and inverse variance

µi =

∑
k∈N(i) Pkiµki∑

k∈N(i) Pki
(F.34)

Pi =
∑

k∈N(i)

Pki (F.35)

F.4 Empirical Results

We compare label propagation (LP), loopy belief propagation (loopy BP), conju-
gate gradient (CG) and preconditioned conjugate gradient (CG(p)) oneight tasks.
The tasks are small because we want to be able to compute the closed form solution
fu with matrix inversion. LP is coded in Matlab with sparse matrix. Loopy BP is
implemented in C. CG and CG(p) use Matlabcgs() function.

Figure F.1 compares the mean squared error
∑

i∈U

(
f (t)(i)− fu(i)

)2
with dif-

ferent methods at iterationt. We assume that with good implementation, the cost
per iteration for different methods is similar. For multiclass tasks, it shows the
binary sub-task of the first class vs. the rest. Note they-axis is inlog scale. We
observe that loopy BP always converges reasonably fast; CG(p) can catch up and
come closest to the closed form solution quickly, however sometimes it does not
converge (d,e,f); CG is always worse than CG(p); LP converges very slowly.

For classification purpose we do not need to wait forf
(t)
u to converge. Another

quantity of interest is when doesf (t)
u give the same classification as the closed

form solutionfu. For the binary case this meansf (t)
u andfu are on the same side

F.4. EMPIRICAL RESULTS 145

0 200 400 600 800 1000 1200 1400 1600 1800
10

−20

10
−15

10
−10

10
−5

10
0

10
5

iteration

f u m
ea

n
sq

ua
re

d
er

ro
r

loopy BP
CG
CG(p)
LP

0 500 1000 1500 2000 2500 3000
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

iteration

f u m
ea

n
sq

ua
re

d
er

ro
r

loopy BP
CG
CG(p)
LP

(a) 1 vs. 2 (b) ten digits

0 500 1000 1500 2000 2500 3000
10

−20

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

iteration

f u m
ea

n
sq

ua
re

d
er

ro
r

loopy BP
CG
CG(p)
LP

0 200 400 600 800 1000 1200 1400 1600 1800
10

−3

10
−2

10
−1

10
0

iteration

f u m
ea

n
sq

ua
re

d
er

ro
r

loopy BP
CG
CG(p)
LP

(c) odd vs. even (d) baseball vs. hockey

0 200 400 600 800 1000 1200 1400 1600 1800
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

iteration

f u m
ea

n
sq

ua
re

d
er

ro
r

loopy BP
CG
CG(p)
LP

0 200 400 600 800 1000 1200 1400
10

−2

10
−1

10
0

10
1

10
2

10
3

iteration

f u m
ea

n
sq

ua
re

d
er

ro
r

loopy BP
CG
CG(p)
LP

(e) PC vs. MAC (f) religion vs. atheism

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

−30

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

iteration

f u m
ea

n
sq

ua
re

d
er

ro
r

loopy BP
CG
CG(p)
LP

0 500 1000 1500 2000 2500 3000 3500 4000
10

−35

10
−30

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

iteration

f u m
ea

n
sq

ua
re

d
er

ro
r

loopy BP
CG
CG(p)
LP

(g) isolet (h) freefoodcam

Figure F.1: Mean squared error to the harmonic solution with various iterative
methods: loopy belief propagation (loopy BP), conjugate gradient (CG),conjugate
gradient with Jacobi preconditioner (CG(p)), and label propagation (LP). Note the
log-scaley-axis.

146 APPENDIX F. COMPARING ITERATIVE ALGORITHMS

task nodes edges loopy BP CG CG(p) LP closed form
one vs. two 2200 17000 0.02 0.002 0.001 0.0008 2e+01
odd vs. even 4000 31626 0.03 0.003 0.0007 0.001 1e+02

baseball vs. hockey 1993 13930 0.02 0.001 0.002 0.0007 2e+01
pc vs. mac 1943 14288 0.02 0.002 0.002 0.0007 2e+01

religion vs. atheism 1427 10201 0.01 0.001 0.001 0.0005 7
ten digits 4000 31595 0.03 0.003 0.004 0.008 9e+01

isolet 7797 550297 5 0.0005 0.0003 1 2e+03
freefoodcam 5254 23098 0.02 0.0001 7e-05 0.008 1e+02

Table F.1: Average run time per iteration for loopy belief propagation (loopyBP),
conjugate gradient (CG), conjugate gradient with Jacobi preconditioner (CG(p)),
and label propagation (LP). Also listed is the run time for closed form solution.
Time is in seconds. Loopy BP is implemented in C, others in Matlab.

of 0.5, if labels are 0 and 1. We define classification agreement as the percentage of
unlabeled data whosef (t)

u andfu have the same label. Note this is not classification
accuracy. Ideally agreement should reach 100% long beforef

(t)
u converges. Figure

F.2 compares the agreement. Notex-axis is in log scale. All methods quickly
reach classification agreement with the closed form solution, except CG and CG(p)
sometimes do not converge; Task (f) has only 80% agreement.

Since loopy BP code is implemented in C and others in Matlab, their speed
may not be directly comparable. Nonetheless we list the average per-iteration run
time of different iterative methods in Table F.1. Also listed are the run time of the
closed form solution with Matlabinv().

F.4. EMPIRICAL RESULTS 147

10
2

10
3

0.4

0.5

0.6

0.7

0.8

0.9

1

iteration

f u c
la

ss
ifi

ca
tio

n
ag

re
em

en
t

loopy BP
CG
CG(p)
LP

10
2

10
3

0.94

0.95

0.96

0.97

0.98

0.99

1

iteration

f u c
la

ss
ifi

ca
tio

n
ag

re
em

en
t

loopy BP
CG
CG(p)
LP

(a) 1 vs. 2 (b) ten digits

10
2

10
3

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

iteration

f u c
la

ss
ifi

ca
tio

n
ag

re
em

en
t

loopy BP
CG
CG(p)
LP

10
2

10
3

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

iteration

f u c
la

ss
ifi

ca
tio

n
ag

re
em

en
t

loopy BP
CG
CG(p)
LP

(c) odd vs. even (d) baseball vs. hockey

10
2

10
3

0.4

0.5

0.6

0.7

0.8

0.9

1

iteration

f u c
la

ss
ifi

ca
tio

n
ag

re
em

en
t

loopy BP
CG
CG(p)
LP

10
2

10
3

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

iteration

f u c
la

ss
ifi

ca
tio

n
ag

re
em

en
t

loopy BP
CG
CG(p)
LP

(e) PC vs. MAC (f) religion vs. atheism

10
2

10
3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

iteration

f u c
la

ss
ifi

ca
tio

n
ag

re
em

en
t

loopy BP
CG
CG(p)
LP

10
2

10
3

0.9955

0.996

0.9965

0.997

0.9975

0.998

0.9985

0.999

0.9995

1

iteration

f u c
la

ss
ifi

ca
tio

n
ag

re
em

en
t

loopy BP
CG
CG(p)
LP

(g) isolet (h) freefoodcam

Figure F.2: Classification agreement to the closed form harmonic solution with
various iterative methods: loopy belief propagation (loopy BP), conjugategradient
(CG), conjugate gradient with Jacobi preconditioner (CG(p)), and label propaga-
tion (LP). Note thelog-scalex-axis.

148 APPENDIX F. COMPARING ITERATIVE ALGORITHMS

Bibliography

Argyriou, A. (2004). Efficient approximation methods for harmonic semi-
supervised learning. Master’s thesis, University College London.

Balcan, M.-F., Blum, A., & Yang, K. (2005). Co-training and expansion: Towards
bridging theory and practice. In L. K. Saul, Y. Weiss and L. Bottou (Eds.),
Advances in neural information processing systems 17. Cambridge, MA: MIT
Press.

Baluja, S. (1998). Probabilistic modeling for face orientation discrimination:
Learning from labeled and unlabeled data.Neural Information Processing Sys-
tems.

Baxter, J. (1997). The canonical distortion measure for vector quantization and
function approximation.Proc. 14th International Conference on Machine Learn-
ing (pp. 39–47). Morgan Kaufmann.

Belkin, M., Matveeva, I., & Niyogi, P. (2004a). Regularization and semi-
supervised learning on large graphs.COLT.

Belkin, M., & Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction
and data representation.Neural Computation, 15, 1373–1396.

Belkin, M., Niyogi, P., & Sindhwani, V. (2004b).Manifold regularization: A
geometric framework for learning from examples(Technical Report TR-2004-
06). University of Chicago.

Bennett, K., & Demiriz, A. (1999). Semi-supervised support vector machines.
Advances in Neural Information Processing Systems, 11, 368–374.

Blake, C., & Merz, C. (1998). UCI repository of machine learning databases.

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation.Journal
of Machine Learning Research, 3, 993–1022.

149

150 BIBLIOGRAPHY

Blum, A., & Chawla, S. (2001). Learning from labeled and unlabeled data using
graph mincuts.Proc. 18th International Conf. on Machine Learning.

Blum, A., Lafferty, J., Rwebangira, M., & Reddy, R. (2004). Semi-supervised
learning using randomized mincuts.ICML-04, 21th International Conference
on Machine Learning.

Blum, A., & Mitchell, T. (1998). Combining labeled and unlabeled data with
co-training. COLT: Proceedings of the Workshop on Computational Learning
Theory.

Bousquet, O., Chapelle, O., & Hein, M. (2004). Measure based regularization.
Advances in Neural Information Processing Systems 16..

Boyd, S., & Vandenberge, L. (2004).Convex optimization. Cambridge UK: Cam-
bridge University Press.

Callison-Burch, C., Talbot, D., & Osborne, M. (2004). Statistical machine transla-
tion with word- and sentence-aligned parallel corpora.Proceedings of the ACL.

Carreira-Perpinan, M. A., & Zemel, R. S. (2005). Proximity graphs for clustering
and manifold learning. In L. K. Saul, Y. Weiss and L. Bottou (Eds.),Advances
in neural information processing systems 17. Cambridge, MA: MIT Press.

Castelli, V., & Cover, T. (1995). The exponential value of labeled samples. Pattern
Recognition Letters, 16, 105–111.

Castelli, V., & Cover, T. (1996). The relative value of labeled and unlabeled sam-
ples in pattern recognition with an unknown mixing parameter.IEEE Transac-
tions on Information Theory, 42, 2101–2117.

Chaloner, K., & Verdinelli, I. (1995). Bayesian experimental design: A review.
Statistical Science, 10, 237–304.

Chapelle, O., Weston, J., & Schölkopf, B. (2002). Cluster kernels for semi-
supervised learning.Advances in Neural Information Processing Systems, 15.

Chapelle, O., & Zien, A. (2005). Semi-supervised classification by low density
separation.Proceedings of the Tenth International Workshop on Artificial Intel-
ligence and Statistics (AISTAT 2005).

Chu, W., & Ghahramani, Z. (2004).Gaussian processes for ordinal regression
(Technical Report). University College London.

BIBLIOGRAPHY 151

Chung, F. R. K. (1997).Spectral graph theory, regional conference series in math-
ematics, no. 92. American Mathematical Society.

Cohn, D. A., Ghahramani, Z., & Jordan, M. I. (1996). Active learning with statis-
tical models.Journal of Artificial Intelligence Research, 4, 129–145.

Corduneanu, A., & Jaakkola, T. (2001).Stable mixing of complete and incomplete
information(Technical Report AIM-2001-030). MIT AI Memo.

Corduneanu, A., & Jaakkola, T. (2003). On information regularization.Nineteenth
Conference on Uncertainty in Artificial Intelligence (UAI03).

Corduneanu, A., & Jaakkola, T. S. (2005). Distributed information regularization
on graphs. In L. K. Saul, Y. Weiss and L. Bottou (Eds.),Advances in neural
information processing systems 17. Cambridge, MA: MIT Press.

Cozman, F., Cohen, I., & Cirelo, M. (2003). Semi-supervised learning ofmixture
models.ICML-03, 20th International Conference on Machine Learning.

Cristianini, N., Shawe-Taylor, J., Elisseeff, A., & Kandola, J. (2001a).On kernel-
target alignment.Advances in NIPS.

Cristianini, N., Shawe-Taylor, J., & Lodhi, H. (2001b). Latent semantic kernels.
Proc. 18th International Conf. on Machine Learning.

Dara, R., Kremer, S., & Stacey, D. (2000). Clsutering unlabeled data with SOMs
improves classification of labeled real-world data. submitted.

Delalleau, O., Bengio, Y., & Roux, N. L. (2005). Efficient non-parametric function
induction in semi-supervised learning.Proceedings of the Tenth International
Workshop on Artificial Intelligence and Statistics (AISTAT 2005).

Demirez, A., & Bennettt, K. (2000). Optimization approaches to semisupervised
learning. In M. Ferris, O. Mangasarian and J. Pang (Eds.),Applications and
algorithms of complementarity. Boston: Kluwer Academic Publishers.

Demiriz, A., Bennett, K., & Embrechts, M. (1999). Semi-supervised clustering
using genetic algorithms.Proceedings of Artificial Neural Networks in Engi-
neering.

Dempster, A., Laird, N., & Rubin, D. (1977). Maximum likelihood from incom-
plete data via the EM algorithm.Journal of the Royal Statistical Society, Series
B.

152 BIBLIOGRAPHY

Donoho, D. L., & Grimes, C. E. (2003). Hessian eigenmaps: locally linear em-
bedding techniques for high-dimensional data.Proceedings of the National
Academy of Arts and Sciences, 100, 5591–5596.

Doyle, P., & Snell, J. (1984).Random walks and electric networks. Mathematical
Assoc. of America.

Fowlkes, C., Belongie, S., Chung, F., & Malik, J. (2004). Spectral grouping us-
ing the Nystr̈om method.IEEE Transactions on Pattern Analysis and Machine
Intelligence, 26, 214–225.

Freund, Y., Seung, H. S., Shamir, E., & Tishby, N. (1997). Selective sampling
using the query by committee algorithm.Machine Learning, 28, 133–168.

Fung, G., & Mangasarian, O. (1999).Semi-supervised support vector machines for
unlabeled data classification(Technical Report 99-05). Data Mining Institute,
University of Wisconsin Madison.

Goldman, S., & Zhou, Y. (2000). Enhancing supervised learning with unlabeled
data.Proc. 17th International Conf. on Machine Learning(pp. 327–334). Mor-
gan Kaufmann, San Francisco, CA.

Grady, L., & Funka-Lea, G. (2004). Multi-label image segmentation for medical
applications based on graph-theoretic electrical potentials.ECCV 2004 work-
shop.

Grandvalet, Y., & Bengio, Y. (2005). Semi-supervised learning by entropy min-
imization. In L. K. Saul, Y. Weiss and L. Bottou (Eds.),Advances in neural
information processing systems 17. Cambridge, MA: MIT Press.

Grira, N., Crucianu, M., & Boujemaa, N. (2004). Unsupervised and semi-
supervised clustering: a brief survey. in ‘A Review of Machine Learning Tech-
niques for Processing Multimedia Content’, Report of the MUSCLE European
Network of Excellence (FP6).

Gunn, S. R. (1997).Support vector machines for classification and regression
(Technical Report). Image Speech and Intelligent Systems Research Group, Uni-
versity of Southampton.

Herbrich, R. (2002).Learning kernel classifiers. The MIT press.

Hofmann, T. (1999). Probabilistic latent semantic analysis.Proc. of Uncertainty
in Artificial Intelligence, UAI’99. Stockholm.

BIBLIOGRAPHY 153

Hull, J. J. (1994). A database for handwritten text recognition research. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 16.

Jaakkola, T., Meila, M., & Jebara, T. (1999). Maximum entropy discrimination.
Neural Information Processing Systems, 12, 12.

Joachims, T. (1999). Transductive inference for text classification using support
vector machines.Proc. 16th International Conf. on Machine Learning(pp. 200–
209). Morgan Kaufmann, San Francisco, CA.

Joachims, T. (2003). Transductive learning via spectral graph partitioning. Pro-
ceedings of ICML-03, 20th International Conference on Machine Learning.

Jones, R. (2005).Learning to extract entities from labeled and unlabeled text
(Technical Report CMU-LTI-05-191). Carnegie Mellon University.Doctoral
Dissertation.

Kemp, C., Griffiths, T., Stromsten, S., & Tenenbaum, J. (2003). Semi-supervised
learning with trees.Advances in Neural Information Processing System 16.

Kimeldorf, G., & Wahba, G. (1971). Some results on Tchebychean spline func-
tions. J. Math. Anal. Applic., 33, 82–95.

Kondor, R. I., & Lafferty, J. (2002). Diffusion kernels on graphs and other discrete
input spaces.Proc. 19th International Conf. on Machine Learning.

Krishnapuram, B., Williams, D., Xue, Y., Hartemink, A., Carin, L., & Figueiredo,
M. (2005). On semi-supervised classification. In L. K. Saul, Y. Weiss and L. Bot-
tou (Eds.),Advances in neural information processing systems 17. Cambridge,
MA: MIT Press.

Kruskal, J. B. (1956). On the shortest spanning subtree of a graph and the traveling
salesman problem.Proceedings of the American Mathematical Society(pp. 48–
50).

Lafferty, J., Zhu, X., & Liu, Y. (2004). Kernel conditional random fields: Rep-
resentation and clique selection.Proceedings of ICML-04, 21st International
Conference on Machine Learning.

Lanckriet, G., Cristianini, N., Bartlett, P., Ghaoui, L. E., & Jordan, M. (2004).
Learning the kernel matrix with semidefinite programming.Journal of Machine
Learning Research, 5, 27–72.

154 BIBLIOGRAPHY

Lawrence, N. D., & Jordan, M. I. (2005). Semi-supervised learning via Gaussian
processes. In L. K. Saul, Y. Weiss and L. Bottou (Eds.),Advances in neural
information processing systems 17. Cambridge, MA: MIT Press.

Le Cun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Howard, W.,
& Jackel, L. D. (1990). Handwritten digit recognition with a back-propagation
network.Advances in Neural Information Processing Systems, 2.

Levin, A., Lischinski, D., & Weiss, Y. (2004). Colorization using optimization.
ACM Transactions on Graphics.

Lu, Q., & Getoor, L. (2003). Link-based classification using labeled andunlabeled
data.ICML 2003 workshop on The Continuum from Labeled to Unlabeled Data
in Machine Learning and Data Mining.

MacKay, D. J. C. (1998). Introduction to Gaussian processes. In C.M. Bishop
(Ed.), Neural networks and machine learning, NATO ASI Series, 133–166.
Kluwer Academic Press.

MacKay, D. J. C. (2003).Information theory, inference, and learning algorithms.
Cambridge.

Madani, O., Pennock, D. M., & Flake, G. W. (2005). Co-validation: Usingmodel
disagreement to validate classification algorithms. In L. K. Saul, Y. Weiss and
L. Bottou (Eds.),Advances in neural information processing systems 17. Cam-
bridge, MA: MIT Press.

Maeireizo, B., Litman, D., & Hwa, R. (2004). Co-training for predicting emotions
with spoken dialogue data.The Companion Proceedings of the 42nd Annual
Meeting of the Association for Computational Linguistics (ACL).

Mahdaviani, M., de Freitas, N., Fraser, B., & Hamze, F. (2005). Fast computa-
tional methods for visually guided robots.The 2005 International Conference
on Robotics and Automation (ICRA).

McCallum, A. (2003). Efficiently inducing features of conditional randomfields.
Nineteenth Conference on Uncertainty in Artificial Intelligence (UAI03).

McCallum, A., & Nigam, K. (1998a). A comparison of event models for naive
bayes text classification.AAAI-98 Workshop on Learning for Text Categoriza-
tion.

McCallum, A. K. (1996). Bow: A toolkit for statistical language modeling, text
retrieval, classification and clustering. http://www.cs.cmu.edu/ mccallum/bow.

BIBLIOGRAPHY 155

McCallum, A. K., & Nigam, K. (1998b). Employing EM in pool-based active
learning for text classification.Proceedings of ICML-98, 15th International Con-
ference on Machine Learning(pp. 350–358). Madison, US: Morgan Kaufmann
Publishers, San Francisco, US.

Miller, D., & Uyar, H. (1997). A mixture of experts classifier with learning based
on both labelled and unlabelled data.Advances in NIPS 9(pp. 571–577).

Mitchell, T. (1999). The role of unlabeled data in supervised learning.Proceed-
ings of the Sixth International Colloquium on Cognitive Science. San Sebastian,
Spain.

Muslea, I., Minton, S., & Knoblock, C. (2002). Active + semi-supervisedlearn-
ing = robust multi-view learning.Proceedings of ICML-02, 19th International
Conference on Machine Learning(pp. 435–442).

Ng, A., Jordan, M., & Weiss, Y. (2001a). On spectral clustering: Analysis and an
algorithm.Advances in Neural Information Processing Systems, 14.

Ng, A. Y., Zheng, A. X., & Jordan, M. I. (2001b). Link analysis, eigenvectors and
stability. International Joint Conference on Artificial Intelligence (IJCAI).

Nigam, K. (2001).Using unlabeled data to improve text classification(Technical
Report CMU-CS-01-126). Carnegie Mellon University. Doctoral Dissertation.

Nigam, K., & Ghani, R. (2000). Analyzing the effectiveness and applicability
of co-training. Ninth International Conference on Information and Knowledge
Management(pp. 86–93).

Nigam, K., McCallum, A. K., Thrun, S., & Mitchell, T. (2000). Text classification
from labeled and unlabeled documents using EM.Machine Learning, 39, 103–
134.

Niu, Z.-Y., Ji, D.-H., & Tan, C.-L. (2005). Word sense disambiguation usinglabel
propagation based semi-supervised learning.Proceedings of the ACL.

Pang, B., & Lee, L. (2004). A sentimental education: Sentiment analysis using
subjectivity summarization based on minimum cuts.Proceedings of the ACL
(pp. 271–278).

Rabiner, L. (1989). A tutorial on Hidden Markov Models and selected applications
in speech recognition.Proceedings of the IEEE, 77, 257–285.

156 BIBLIOGRAPHY

Ratsaby, J., & Venkatesh, S. (1995). Learning from a mixture of labeledand un-
labeled examples with parametric side information.Proceedings of the Eighth
Annual Conference on Computational Learning Theory, 412–417.

Rattray, M. (2000). A model-based distance for clustering.Proc. of International
Joint Conference on Neural Networks.

Riloff, E., Wiebe, J., & Wilson, T. (2003). Learning subjective nouns using extrac-
tion pattern bootstrapping.Proceedings of the Seventh Conference on Natural
Language Learning (CoNLL-2003).

Rosenberg, C., Hebert, M., & Schneiderman, H. (2005). Semi-supervised self-
training of object detection models.Seventh IEEE Workshop on Applications of
Computer Vision.

Rosset, S., Zhu, J., Zou, H., & Hastie, T. (2005). A method for inferring label
sampling mechanisms in semi-supervised learning. In L. K. Saul, Y. Weiss and
L. Bottou (Eds.),Advances in neural information processing systems 17. Cam-
bridge, MA: MIT Press.

Roweis, S. T., & Saul, L. K. (2000). Nonlinear dimensionality reduction by locally
linear embedding.Science, 290, 2323–2326.

Roy, N., & McCallum, A. (2001). Toward optimal active learning through sam-
pling estimation of error reduction.Proc. 18th International Conf. on Machine
Learning(pp. 441–448). Morgan Kaufmann, San Francisco, CA.

Saul, L. K., & Roweis, S. T. (2003). Think globally, fit locally: unsupervised
learning of low dimensional manifolds.Journal of Machine Learning Research,
4, 119–155.

Schneiderman, H. (2004a). Feature-centric evaluation for efficient cascaded ob-
ject detection.IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

Schneiderman, H. (2004b). Learning a restricted Bayesian network for object de-
tection.IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Schuurmans, D., & Southey, F. (2001). Metric-based methods for adaptive model
selection and regularization.Machine Learning, Special Issue on New Methods
for Model Selection and Model Combination, 48, 51–84.

Seeger, M. (2001).Learning with labeled and unlabeled data(Technical Report).
University of Edinburgh.

BIBLIOGRAPHY 157

Shahshahani, B., & Landgrebe, D. (1994). The effect of unlabeledsamples in
reducing the small sample size problem and mitigating the Hughes phenomenon.
IEEE Trans. On Geoscience and Remote Sensing, 32, 1087–1095.

Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation.IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 22, 888–905.

Smola, A., & Kondor, R. (2003). Kernels and regularization on graphs.Conference
on Learning Theory, COLT/KW.

Sudderth, E., Wainwright, M., & Willsky, A. (2003).Embedded trees: Estimation
of Gaussian processes on graphs with cycles(Technical Report 2562). MIT
LIDS.

Szummer, M., & Jaakkola, T. (2001). Partially labeled classification with Markov
random walks.Advances in Neural Information Processing Systems, 14.

Szummer, M., & Jaakkola, T. (2002). Information regularization with partially
labeled data.Advances in Neural Information Processing Systems, 15.

Taskar, B., Guestrin, C., & Koller, D. (2003). Max-margin Markov networks.
NIPS’03.

Tenenbaum, J. B., de Silva, V., , & Langford, J. C. (2000). A global geometric
framework for nonlinear dimensionality reduction.Science, 290, 2319–2323.

Tipping, M. (1999). Deriving cluster analytic distance functions from Gaussian
mixture models.

Tong, S., & Koller, D. (2000). Support vector machine active learning with appli-
cations to text classification.Proceedings of ICML-00, 17th International Con-
ference on Machine Learning(pp. 999–1006). Stanford, US: Morgan Kaufmann
Publishers, San Francisco, US.

Vapnik, V. (1998).Statistical learning theory. Springer.

von Luxburg, U., Belkin, M., & Bousquet, O. (2004).Consistency of spectral
clustering(Technical Report TR-134). Max Planck Institute for Biological Cy-
bernetics.

von Luxburg, U., Bousquet, O., & Belkin, M. (2005). Limits of spectral clustering.
In L. K. Saul, Y. Weiss and L. Bottou (Eds.),Advances in neural information
processing systems 17. Cambridge, MA: MIT Press.

158 BIBLIOGRAPHY

Weinberger, K. Q., Packer, B. D., & Saul, L. K. (2005). Nonlinear dimension-
ality reduction by semidefinite programming and kernel matrix factorization.
Proceedings of the Tenth International Workshop on Artificial Intelligence and
Statistics (AISTAT 2005).

Weinberger, K. Q., & Saul, L. K. (2004). Unsupervised learning of image mani-
folds by semidefinite programming.IEEE Conference on Computer Vision and
Pattern Recognition (CVPR)(pp. 988–995).

Weinberger, K. Q., Sha, F., & Saul, L. K. (2004). Learning a kernel matrix for
nonlinear dimensionality reduction.Proceedings of ICML-05(pp. 839–846).

Weiss, Y. (1999). Segmentation using eigenvectors: A unifying view.ICCV (2)
(pp. 975–982).

Weiss, Y., & Freeman, W. T. (2001). Correctness of belief propagationin Gaussian
graphical models of arbitrary topology.Neural Computation, 13, 2173–2200.

Weston, J., Leslie, C., Zhou, D., Elisseeff, A., & Noble, W. S. (2004). Semi-
supervised protein classification using cluster kernels. In S. Thrun, L.Saul
and B. Scḧolkopf (Eds.),Advances in neural information processing systems
16. Cambridge, MA: MIT Press.

Williams, C. K. I., & Barber, D. (1998). Bayesian classification with Gaussian
processes.IEEE Transactions on Pattern Analysis and Machine Intelligence,
20, 1342–1351.

Yarowsky, D. (1995). Unsupervised word sense disambiguation rivaling super-
vised methods.Proceedings of the 33rd Annual Meeting of the Association for
Computational Linguistics(pp. 189–196).

Yianilos, P. (1995).Metric learning via normal mixtures(Technical Report). NEC
Research Institute.

Zelikovitz, S., & Hirsh, H. (2001). Improving text classification with LSI using
background knowledge.IJCAI01 Workshop Notes on Text Learning: Beyond
Supervision.

Zhai, C. (2001). Notes on the Lemur TFIDF model.
http://www.cs.cmu.edu/∼lemur/3.1/tfidf.ps.

Zhang, T., & Oles, F. J. (2000). A probability analysis on the value of unlabeled
data for classification problems.Proc. 17th International Conf. on Machine
Learning(pp. 1191–1198). Morgan Kaufmann, San Francisco, CA.

BIBLIOGRAPHY 159

Zhou, D., Bousquet, O., Lal, T., Weston, J., & Schlkopf, B. (2004a). Learning
with local and global consistency.Advances in Neural Information Processing
System 16.

Zhou, D., Scḧolkopf, B., & Hofmann, T. (2005). Semi-supervised learning on
directed graphs. In L. K. Saul, Y. Weiss and L. Bottou (Eds.),Advances in
neural information processing systems 17. Cambridge, MA: MIT Press.

Zhou, D., Weston, J., Gretton, A., Bousquet, O., & Schlkopf, B. (2004b). Ranking
on data manifolds.Advances in Neural Information Processing System 16.

Zhu, J., & Hastie, T. (2001). Kernel logistic regression and the import vector
machine.NIPS 2001.

Zhu, X., & Ghahramani, Z. (2002a).Learning from labeled and unlabeled data
with label propagation(Technical Report CMU-CALD-02-107). Carnegie Mel-
lon University.

Zhu, X., & Ghahramani, Z. (2002b).Towards semi-supervised classification with
Markov random fields(Technical Report CMU-CALD-02-106). Carnegie Mel-
lon University.

Zhu, X., Ghahramani, Z., & Lafferty, J. (2003a). Semi-supervised learning using
Gaussian fields and harmonic functions.ICML-03, 20th International Confer-
ence on Machine Learning.

Zhu, X., Kandola, J., Ghahramani, Z., & Lafferty, J. (2005). Nonparametric trans-
forms of graph kernels for semi-supervised learning. In L. K. Saul, Y.Weiss
and L. Bottou (Eds.),Advances in neural information processing systems 17.
Cambridge, MA: MIT Press.

Zhu, X., Lafferty, J., & Ghahramani, Z. (2003b). Combining active learning and
semi-supervised learning using Gaussian fields and harmonic functions.ICML
2003 workshop on The Continuum from Labeled to Unlabeled Data in Machine
Learning and Data Mining.

Zhu, X., Lafferty, J., & Ghahramani, Z. (2003c).Semi-supervised learning: From
Gaussian fields to Gaussian processes(Technical Report CMU-CS-03-175).
Carnegie Mellon University.

160 BIBLIOGRAPHY

161

162 NOTATION

Notation

∆ combinatorial graph Laplacian
∆̃ smoothed Laplacian
α length scale hyperparameter for edge weights
β inverse temperature parameter for Gaussian random fields
γ steepness parameter for the Gaussian process noise model
η transition probability to the dongle node
θm component class membershipP (y = 1|m) for mixture models
λ eigenvalues of the Laplacian
µ optimal spectrum transformation of the Laplacian
σ smoothing parameter for the graph Laplacian kernel
φ eigenvectors of the Laplacian
D diagonal degree matrix of a graph
E energy function on a graph
K kernel
L labeled data
L log likelihood of mixture models
O combined log likelihood and graph energy objective
P transition matrix of a graph
R responsibility of mixture components,Rim = P (m|i)
R risk, the estimated generalization error of the Bayes classifier
U unlabeled data
W weight matrix of a graph
f arbitrary real functions on the graph
gk the graph for semi-supervised learning
gs the graph encoding sequence structure in KCRFs
h harmonic function
l labeled data size
m length of a sequence
n total size of labeled and unlabeled data
r spectral transformation function to turn Laplacian into a kernel
u unlabeled data size
w edge weight in a graph
x Features of a data point
y Target value. In classification it is the (discrete) class label

Index

εNN graphs, 18
exp-weighted graphs, 19
tanh-weighted graphs, 18
kNN graphs, 18

active learning, 35

backbone graph, 85
bandwidth, 5
Baum-Welch algorithm, 69
bootstrapping, 3

class mass normalization, 25
clique, 70
co-training, 3

dongle, 26

edge, 5
eigen decomposition, 57
electric networks, 24
EM, 80
energy, 21
entropy minimization, 53
evidence maximization, 51

forward-backward algorithm, 69
fully connected graphs, 18

Gaussian process, 45
Gaussian random field, 21
graph, 5, 9

harmonic function, 22

harmonic mixtures, 83
hyperparameter, 5
hyperparameters, 51

inductive, 5

kernel alignment, 61
kernel conditional random fields, 70

label propagation, 6
labeled data, 5
Laplacian

combinatorial, 22
regularized, 46

mincut, 24
minimum spanning tree, 56
mixture model, 3, 80

order constraints, 62

QCQP, 60

random walk, 23
representer theorem, 71

self training, 3, 101
self-teaching, 3
semi-supervised learning, 2
sparse graphs, 18
spectral transformation, 59
supernode, 85
symmetrization, 10

transductive, 5

163

164 INDEX

transductive SVM, 3
transition matrix, 6

unlabeled data, 5

