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Abstract

In traditional machine learning approaches to classification, one usea tatigled
set to train the classifier. Labeled instances however are often diffigpknsive,
or time consuming to obtain, as they require the efforts of experienced human
annotators. Meanwhile unlabeled data may be relatively easy to collect,dvat th
has been few ways to use them. Semi-supervised learning addressesitésp
by using large amount of unlabeled data, together with the labeled data, to build
better classifiers. Because semi-supervised learning requires less bffiarhand
gives higher accuracy, it is of great interest both in theory and irtipeac

We present a series of novel semi-supervised learning approaitiag §om
a graph representation, where labeled and unlabeled instances reserded as
vertices, and edges encode the similarity between instances. Theysatihdrésl-
lowing questions: How to use unlabeled data? (label propagation); Wil is
probabilistic interpretation? (Gaussian fields and harmonic functions);t Wha
we can choose labeled data? (active learning); How to construct gepthsy
(hyperparameter learning); How to work with kernel machines like SVM&ag(g
kernels); How to handle complex data like sequences? (kernel conditenma
dom fields); How to handle scalability and induction? (harmonic mixtures). An
extensive literature review is included at the end.
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Chapter 1

Introduction

1.1 Whatis Semi-Supervised Learning?

The field of machine learning has traditionally been divided into three sldsfie

e unsupervised learning. The learning system observes an unlab¢lefl se
items, represented by their featurgs,, ..., x,}. The goal is to organize
the items. Typical unsupervised learning tasks include clustering thgigrou
items into clusters; outlier detection which determines if a new itdasig-
nificantly different from items seen so far; dimensionality reduction which
mapsz into a low dimensional space, while preserving certain properties of
the dataset.

e supervised learning. The learning system observes a labeled trairting se
consisting of (feature, label) pairs, denoted{§y1,y1), ..., (zn,yn)}. The
goal is to predict the label for any new input with feature. A supervised
learning task is called regression whgne R, and classification whep
takes a set of discrete values.

e reinforcement learning. The learning system repeatedly observesihe e
ronmentz, performs an actiom, and receives a rewand The goal is to
choose the actions that maximize the future rewards.

This thesis focuses on classification, which is traditionally a superviseat lear
ing task. To train a classifier one needs the labeled training sety: ), . . ., (zn, yn) }-
However the labelg are often hard, expensive, and slow to obtain, because it may
require experienced human annotators. For instance,

e Speech recognition. Accurate transcription of speech utterance agfto
level is extremely time consuming (as slow as 4&T, i.e. 400 times longer

1



2 CHAPTER 1. INTRODUCTION

than the utterance duration), and requires linguistic expertise. Tratsarip

at word level is still time consuming (about 4&T), especially for conver-
sational or spontaneous speech. This problem is more prominent éagrior
languages or dialects with less speakers, when linguistic experts of that lan
guage are hard to find.

e Text categorization. Filtering out spam emails, categorizing user messages
recommending Internet articles — many such tasks need the user to label
text document as ‘interesting’ or not. Having to read and label thousafnds
documents is daunting for average users.

e Parsing. To train a good parser one needs sentence / parse tre&mains
as treebanks. Treebanks are very time consuming to construct by linguists
It took the experts several years to create parse trees for only adesahd
sentences.

¢ Video surveillance. Manually labeling people in large amount of surveil-
lance camera images can be time consuming.

e Protein structure prediction. It may take months of expensive lab work by
expert crystallographers to identify the 3D structure of a single protein.

On the other hand, unlabeled datawvithout labels, is usually available in large
guantity and costs little to collect. Utterances can be recorded from radaal-bro
cast; Text documents can be crawled from the Internet; Sentencesaye/bere;
Surveillance cameras run 24 hours a day; DNA sequences of proteimsaalily
available from gene databases. The problem with traditional classificatitmodse
is: they cannot use unlabeled data to train classifiers

The questiorsemi-supervised learningddresses is: given a relatively small
labeled datasef(z,y)} and a large unlabeled datadet}, can one devise ways
to learn from both for classification? The name “semi-supervised learomgeés
from the fact that the data used is between supervised and unsugddeaseing.
Semi-supervised learning promises higher accuracies with less annotiédirig e
It is therefore of great theoretic and practical interest. A broadenitefi of
semi-supervised learning includes regression and clustering as welebwill
not pursued that direction here.

1.2 A Short History of Semi-Supervised Learning

There has been a whole spectrum of interesting ideas on how to learrbéitbm
labeled and unlabeled data. We give a highly simplified history of semi-sisperv
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learning in this section. Interested readers can skip to Chapter 11 fotemded
literature review. It should be pointed out that semi-supervised learnangpisidly
evolving field, and the review is necessarily incomplete.

Early work in semi-supervised learning assumes there are two clasdescn
class has a Gaussian distribution. This amounts to assuming the complete data
comes from a mixture model . With large amount of unlabeled data, the mixture
components can be identified with the expectation-maximization (EM) algorithm.
One needs only a single labeled example per component to fully determine the
mixture model. This model has been successfully applied to text categorization

A variant is self-training : A classifier is first trained with the labeled data. It
is then used to classify the unlabeled data. The most confident unlabétesl, po
together with their predicted labels, are added to the training set. The classsifie
re-trained and the procedure repeated. Note the classifier uses itg@stictipns
to teach itself. This is a ‘hard’ version of the mixture model and EM algorithm.
The procedure is also called self-teaching , or bootstrapgimgome research
communities. One can imagine that a classification mistake can reinforce itself.

Both methods have been used since long time ago. They remain popular be-
cause of their conceptual and algorithmic simplicity.

Co-training reduces the mistake-reinforcing danger of self-trainings réleent
method assumes that the features of an item can be split into two subsetsuBach
feature set is sufficient to train a good classifier; and the two sets adgéionally
independent given the class. Initially two classifiers are trained with théeldbe
data, one on each sub-feature set. Each classifier then iterativelifietatize
unlabeled data, and teaches the other classifier with its predictions.

With the rising popularity of support vector machines (SVMs), transdectiv
SVMs emerge as an extension to standard SVMs for semi-supervisethtgarn
Transductive SVMs find a labeling for all the unlabeled data, and a a&pgr
hyperplane, such that maximum margin is achieved on both the labeled data and
the (now labeled) unlabeled data. Intuitively unlabeled data guides theatecis
boundary away from dense regions.

Recently graph-based semi-supervised learning methods have attresd¢d g
attention. Graph-based methods start with a graph where the nodes klectieel
and unlabeled data points, and (weighted) edges reflect the similarity eEnod
The assumption is that nodes connected by a large-weight edge tendetthbav
same label, and labels can propagation throughout the graph. Grapt-veth-
ods enjoy nice properties from spectral graph theory. This thesis maguysses
graph-based semi-supervised methods.

We summarize a few representative semi-supervised methods in Table 1.1.

INot to be confused with the resample procedure with the same name in statistic
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Method Assumptions
mixture model, EM generative mixture model
transductive SVM  low density region between classes
co-training conditionally independent and redundant features splits
graph methods labels smooth on graph

Table 1.1: Some representative semi-supervised learning methods

1.3 Structure of the Thesis

The rest of the thesis is organized as follows:

Chapter 2 starts with the simpibel propagatioralgorithm, which propagates
class labels on a graph. This is the first semi-supervised learning algovitthwill
encounter. It is also the basis for many variations later.

Chapter 3 discusses how one constructs a graph. The emphasis is dmithe in
ition — what graphs make sense for semi-supervised learning? We wikgwezal
examples on various datasets.

Chapter 4 formalizes label propagation in a probabilistic framework with Gaus
sian random fields. Concepts like graph Laplacian and harmonic funcéonteo-
duced. We will explore interesting connections to electric networks, randalk,
and spectral clustering. Issues like the balance between classesgchsibim of
external classifiers are also discussed here.

Chapter 5 assumes that one can choose a data point and ask an artwe fo
label. This is the standard active learning scheme. We show that actimntpar
and semi-supervised learning can be naturally combined.

Chapter 6 establishes the link to Gaussian processes. The kernel mateices
shown to be the smoothed inverse graph Laplacian.

Chapter 7 no longer assumes the graph is given and fixed. Insteadg-we p
rameterize the graph weights, and learn the optimal hyperparameters. We will
discuss several methods: evidence maximization, entropy minimization, and mini-
mum spanning tree.

Chapter 8 turns semi-supervised learning problem into kernel learnirgy. W
show a natural family of kernels derived from the graph Laplacian,femtthe
best kernel via convex optimization.

Chapter 9 discusses kernel conditional random fields, and its potguplada
tion in semi-supervised learning, for sequences and other complex sésictu

Chapter 10 explores scalability and induction for semi-supervised learning

Chapter 11 reviews the literatures on semi-supervised learning.



Chapter 2

Label Propagation

In this chapter we introduce our first semi-supervised learning algorithaelL
Propagation. We formulate the problem as a form of propagation on b,gréere
a node’s label propagates to neighboring nodes according to theinpitpXn this
process we fix the labels on the labeled data. Thus labeled data act likesthat
push out labels through unlabeled data.

2.1 Problem Setup

Let {(z1,y1) ... (x;,y1)} be the labeled data, € {1...C}, and{z;y1 ... T4y}

the unlabeled data, usually u. Letn = | + u. We will often useL andU to

denote labeled and unlabeled data respectively. We assume the numlasisetc

C'is known, and all classes are present in the labeled data. In most of Hievlee

study thetransductiveproblem of finding the labels fdv. The inductive problem

of finding labels for points outside df U U will be discussed in Chapter 10.
Intuitively we want data points that are similar to have the same label. We

create a graph where the nodes are all the data points, both labeledlaipelech

The edge between nodégi represents their similarity. For the time being let us

assume the graph is fully connected with the following weights:

Ty — T4 2
w;j = exp <—” > il > (2.1)

whereq is a bandwidth hyperparameter. The construction of graphs will be dis-
cussed in later Chapters.
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2.2 The Algorithm

We propagate the labels through the edges. Larger edge weights allds tiabe
travel through more easily. Definenax n probabilistic transition matrix’
. ) Wi
P.=P(i—j)= — 4 2.2
ij ( 7) 2221 Wi (2.2)
whereP;; is the probability of transit from nodeto j. Also define a x C' label
matrix Y7, whoseith row is an indicator vector foy;, i € L: Y;. = §(y;,c). We
will compute soft labelsf for the nodes.f is an x C matrix, the rows can be
interpreted as the probability distributions over labels. The initializatighisfnot
important. We are now ready to present the algorithm.
The label propagation algorithm is as follows:

1. Propagat¢ < Pf
2. Clamp the labeled datg, = Y7..
3. Repeat from step 1 untjl converges.

In step 1, all nodes propagate their labels to their neighbors for oneStegp2
is critical: we want persistent label sources from labeled data. So instésiting
the initially labels fade away, we clamp themYat With this constant ‘push’ from
labeled nodes, the class boundaries will be pushed through high deswiing
and settle in low density gaps. If this structure of data fits the classificatidn goa
then the algorithm can use unlabeled data to help learning.

2.3 Convergence

IL

fu )
Sincefy, is clamped tdv;,, we are solely interested ifi;. We split P into labeled
and unlabeled sub-matrices

We now show the algorithm converges to a simple solution. fLet

Prp Pry ]
P = 2.3
[ Pyr Pyu (2:3)

It can be shown that our algorithm is

fv — Pyufu +PurYr (2.4)
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which leads to

n

Ju = T}i_)l"{)lo(PUU)”fg + (Z(PUU)(i_1)> PyrYy (2.5)

i=1

where ) is the initial value forf;,. We need to showPy )" £ — 0. SinceP is
row normalized, and’; is a sub-matrix ofP, it follows

Jy < 1,zu:(PUU)ij <~v,Vi=1...u (2.6)
j=1
Therefore
Sy = Y0 Po) "V (Pov)i (2.7
j ik
= Y P)" VS Pov ) (2.8)
k j
< S )"V (2.9)
< vl; (2.10)

Therefore the row sums ¢f;;/)" converges to zero, which meaf®; )" £ —
0. Thus the initial valugf((} is inconsequential. Obviously

fu=I~-Pyu) 'PuLYs (2.11)

is a fixed point. Therefore it is the unique fixed point and the solution to our
iterative algorithm. This gives us a way to solve the label propagation proble
directly without iterative propagation.

Note the solution is valid only wheh — Py is invertible. The condition is
satisfied, intuitively, when every connected component in the grapht kessdone
labeled point in it.

2.4 lllustrative Examples

We demonstrate the properties of the Label Propagation algorithm on twesign
datasets. Figure 2.1(a) shows a synthetic dataset with three classebgeeara
narrow horizontal band. Data points are uniformly drawn from the hamtsre
are 3 labeled points and 178 unlabeled points. 1-nearest-neighbdttatgamne of
the standard supervised learning methods, ignores the unlabeled datastite
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ST

(a) The data (b) INN (c) Label Propagation
Figure 2.1: The Three Bands dataset. Labeled data are marked withyolools,

and unlabeled data are black dots in (a). 1NN ignores unlabeled datiusgr(im),
while Label Propagation takes advantage of it (c).

band structure (b). On the other hand, the Label Propagation algorika® itato
account the unlabeled data (c). It propagates labels along the bantgs éxam-
ple, we usedv = 0.22 from the minimum spanning tree heuristic (see Chapter 7).

Figure 2.2 shows a synthetic dataset with two classes as intertwined three-
dimensional spirals. There are 2 labeled points and 184 unlabeled poudn, A
1NN fails to notice the structure of unlabeled data, while Label Propagatids fi
the spirals. We used = 0.43.

(b) INN (c) Label Propagation

Figure 2.2: The Springs dataset. Again 1NN ignores unlabeled data s&uctu
while Label Propagation takes advantage of it.



Chapter 3

What is a Good Graph?

In Label Propagation we need a graph , represented by the weight matiiow
does one construct a graph? What is a good graph? In this chaptéreaseygeral
examples on different datasets. The goal is not to rigorously defiralgwaphs,
but to illustrate the assumptions behind graph based semi-superviseddearnin
A good graph should reflect our prior knowledge about the domain. ét th

present time, its design is more of an art than science. Itis the practitioegpsn-
sibility to feed a good graph to graph-based semi-supervised learningtiahys,

in order to expect useful output. The algorithms in this thesis do not desithyir
with the design of graphs (with the exception of Chapter 7).

3.1 Example One: Handwritten Digits

Our first example is optical character recognition (OCR) for handwritigitsd
The handwritten digits dataset originates from the Cedar Buffalo binarysdig
database (Hull, 1994). The digits were initially preprocessed to reducsizbe
of each image down to 5 x 16 grid by down-sampling and Gaussian smoothing,
with pixel values in 0 to 255 (Le Cun et al., 1990). Figure 3.1 shows a rarsdon-
ple of the digits. In some of the experiments below they are further scaled ow
8 x 8 by averagin@® x 2 pixel bins.

We show why graphs based on pixel-wise Euclidean distance make sense f
digits semi-supervised learning. Euclidean distance by itself is a bad similarity
measure. For example the two images in Figure 3.2(a) have a large Euclidean
distance although they are in the same class. However Euclidean distance is a
good ‘local’ similarity measure. If it is small, we can expect the two images to
be in the same class. Considek-aearest-neighbor graph based on Euclidean
distance. Neighboring images have small Euclidean distance. With large amoun

9
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Figure 3.1: some random samples of the handwritten digits dataset

o A

(a) two images of ‘2’ with large Euclidean distance

[ S G R Ry §

(b) a path in an Euclidean distance kNN graph between them

Figure 3.2: Locally similar images propagate labels to globally dissimilar ones.

of unlabeled images of 2s, there will be mamgthsconnecting the two images in
(a). One such path is shown in Figure 3.2(b). Note adjacent pairs arersimila
each other. Although the two images in (a) are not directly connectedi(nitérs

in Euclidean distance), Label Propagation can propagate along the ipaitkéng
them with the same label.

Figure 3.3 shows a symmetrizéd®2NN graph based on Euclidean distance.
The small dataset has only a few 1s and 2s for clarity. The actual gregelaisin
the OCR experiments are too large to show.

It should be mentioned that our focus is on semi-supervised learning nsethod
not OCR handwriting recognizers. We could have normalized the imageitgtens
or used edge detection or other invariant features instead of Euclids@amak.
These should be used for any real applications, as the graph shpuddeat do-
main knowledge. The same is true for all other tasks described below.

1Symmetrization means we connect nodggif  is in j's kNN or vice versa, and therefore a
node can have more tharedges.
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Figure 3.3: A symmetrized Euclidean 2NN graph on some 1s and 2s. Lal®! Pr
agation on this graph works well.
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3.2 Example Two: Document Categorization

Our second example is document categorization on 20 newsgroupstdatBseh
document has no header except ‘From’ and ‘Subject’ lines. Each datume
minimally processed into &f.idf vector, without frequency cutoff, stemming, or

a stopword list. The ‘From’ and ‘Subject’ lines are included. We measure the
similarity between two documents v with the cosine similarity:s(u, v) = %

Like Euclidean distance, cosine similarity is not a good ‘global’ measure: two
documents from the same class can have few common words. However @dsla g
‘local’ measure.

A graph based on cosine similarity in this domain makes good sense. Docu-
ments from the same thread (class) tend to quote one another, giving thiem hig
cosine similarities. Many paths in the graph are quotations. Even thoughghe fir
and last documents in a thread share few common words, them can beedigsifi
the same class via the graph.

The full graphs are again too large to visualize. We show the few neweigst-
bors of document 60532 in comp.sys.ibm.pc.hardware vs. comp.sys.maahard
sub-dataset in Figure 3.4. The example is typical in the whole graph. theless
we note that not all edges are due to quotation.

3.3 Example Three: The FreeFoodCam

The Carnegie Mellon University School of Computer Science has a lowitgre
leftover pizza from various meetings converge, to the delight of studémts.ct

a webcam (the FreeFoodCalnwas set up in the lounge, so that people can see
whether food is available. The FreeFoodCam provides interesting casgapor-
tunities. We collect webcam images of 10 people over a period of severahso

The data is used for 10-way people recognition, i.e. identify the name sdpén
FreeFoodCam images. The dataset consists of 5254 images with ondyaoden
person in it. Figure 3.5 shows some random images in the dataset. The task is no
trivial:

1. The images of each person were captured on multiple days during a four
month period. People changed clothes, had hair cut, one person evea gr
beard. We simulate a video surveillance scenario where a person is manually
labeled at first, and needs to be recognized on later days. Thereéore w
choose labeled data within the first day of a person’s appearanctesiruh

2http:/iwww.ai.mit.edu/people/jrennie/20Newsgroups/, ‘18828 version’
3http:/iwww-2.cs.cmu.eda/coke/, Carnegie Mellon internal access.
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From: rash@access.digex.com (Wayne Rash)

Subject: Re: 17" Monitors

mikey@sgi.com (Mike Yang) writes:

>In article <lgslfssbml@access.digex.net> rash@access. digex.com (Wayne Rash) writes:
>>| also reviewed a new Nanao, the F550iW, which has just

>>been released.

>What's the difference between the F550i and the new F550iW? I'm

>about to buy a Gateway system and was going to take the F550i

>upgrade. Should | get the F550iW instead?

> Mike Yang Silicon Graphics, Inc.

> mikey@sgi.com 415/390-1786

The F550iW is optimized for Windows. It powers down when the s creen
blanker appears, it powers down with you turn your computer o ff, and it
meets all of the Swedish standards. It's also protected agai nst EMI from
adjacent monitors.

Personally, | think the F550i is more bang for the buck right n ow.

(a) document 60532. Its nearest neighbors are shown below.

From: mikey@eukanuba.wpd.sgi.com (Mike Yang)
Subject: Re: 17" Monitors

In article <lqulga$hp2@access.digex.net>, rash@access. digex.com (Wayne Rash) writes:
|> The F550iW is optimized for Windows. It powers down when th e screen

|> blanker appears, it powers down with you turn your compute r off, and it

|> meets all of the Swedish standards. It's also protected ag ainst EMI from

|> adjacent monitors.

Thanks for the info.

|> Personally, | think the F550i is more bang for the buck righ t now.
How much more does the F550iW cost?

Mike Yang Silicon Graphics, Inc.
mikey@sgi.com 415/390-1786

(b) The nearest neighbor 60538. It quotes a large portion of 60532.

From: rash@access.digex.com (Wayne Rash)
Subject: Re: 17" Monitors
mikey@eukanuba.wpd.sgi.com (Mike Yang) writes:

>In article <lqulga$hp2@access.digex.net>, rash@access .digex.com (Wayne Rash) writes:
>|> The F550iW is optimized for Windows. It powers down when t he screen

>|> blanker appears, it powers down with you turn your comput er off, and it

>|> meets all of the Swedish standards. It's also protected a gainst EMI from

>|> adjacent monitors.

>Thanks for the info.

>|> Personally, | think the F550i is more bang for the buck rig ht now.
>How much more does the F550iW cost?

> Mike Yang Silicon Graphics, Inc.
> mikey@sgi.com 415/390-1786
| think the difference is about 400 dollars, but | could be wro ng. These

things change between press time and publication.

(c) The 2nd nearest neighbor 60574. It also quotes 60532.

Figure 3.4: (continued on next page)
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From: mikey@sgi.com (Mike Yang)

Subject: Re: 17" Monitors

In article <lgslfs$bml@access.digex.net> rash@access.d igex.com (Wayne Rash) writes:
>| also reviewed a new Nanao, the F550iW, which has just

>been released.

What's the difference between the F550i and the new F550iW? | 'm

about to buy a Gateway system and was going to take the F550i

upgrade. Should | get the F550iW instead?

Mike Yang Silicon Graphics, Inc.
mikey@sgi.com 415/390-1786

(d) The 3rd nearest neighbor 60445, quoted by 60532.

From: goyal@utdallas.edu (MOHIT K GOYAL)
Subject: Re: 17" Monitors

>the Mitsubishi. | also reviewed a new Nanao, the F550iW, whi ch has just
>been released. Last year for the May '92 issue of Windows, | r eviewed
Do you have the specs for this monitor? What have they changed from the
F550i?

Do you know if their is going to be a new T560i soon? (a T560iW?)

Thanks.

(e) The 4th nearest neighbor 60463. It and 60532 quote the sanwesour

From: mikey@eukanuba.wpd.sgi.com (Mike Yang)
Subject: Gateway 4DX2-66V update

| just ordered my 4DX2-66V system from Gateway. Thanks for al | the net
discussions which helped me decide among all the vendors and options.
Right now, the 4DX2-66V system includes 16MB of RAM. The 8MB u pgrade
used to cost an additional $340.
Mike Yang Silicon Graphics, Inc.
mikey@sgi.com 415/390-1786

(f) The 5th nearest neighbor 61165. It has a different subject@h&f?2, but the
same author signature appears in both.

Figure 3.4: The nearest neighbors of document 60532 in the 20nawsgdataset,
as measured by cosine similarity. Notice many neighbors either quote oraesiqu
by the document. Many also share the same subject line.
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Figure 3.5: A few FreeFoodCam image examples

the remaining images of the day and all other days. It is harder than testing
only on the same day, or allowing labeled data to come from all days.

2. The FreeFoodCam is a low quality webcam. Each frantelisx 480 so
faces of far away people are small; The frame rate is a little over 0.5 frame
per second; Lighting in the lounge is complex and changing.

3. The person could turn the back to the camera. About one third of the $mage
have no face.

Since only a few images are labeled, and we have all the test images, it is a
natural task to apply semi-supervised learning techniques. As computar i&s
not the focus of the paper, we use only primitive image processing methods to
extract the following features:

Time. Each image has a time stamp.

Foreground color histogram. A simple background subtraction algorithm is ap-
plied to each image to find the foreground area. The foreground area is
assumed to be the person (head and body). We compute the color histogram
(hue, saturation and brightness) of the foreground pixels. The histoigra
100 dimensional vector.
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Face image.We apply a face detector (Schneiderman, 2004b) (Schneiderman,
2004a) to each image. Note it i®t a face recognizer (we do not use a
face recognizer for this task). It simply detects the presence of frontal
profile faces. The output is the estimated center and radius of the detected
face. We take a square area around the center as the face imageadérnis f
detected, the face image is empty.

One theme throughout the thesis is that the graph should reflect domaii know
edge of similarity. The FreeFoodCam is a good example. The nodes in e gra
are all the images. An edge is put between two images by the following criteria:

1. Time edge®eople normally move around in the lounge in moderate speed,
thus adjacent frames are likely to contain the same person. We represent
this belief in the graph by putting an edge between imaggsvhose time
difference is less than a thresheld(usually a few seconds).

2. Color edgedhe color histogram is largely determined by a person’s clothes.
We assume people change clothes on different days, so color histiggram
unusable across multiple days. However it is an informative feature daring
shorter time period:() like half a day. In the graph for every imageve find
the set of images having a time difference betwgens) to 7, and connect
1 with its k.-nearest-neighbors (in terms of cosine similarity on histograms)
in the set.k. is a small number, e.g. 3.

3. Face edgedVe resort to face similarity over longer time spans. For every
image: with a face, we find the set of images more tharapart froms,
and connect with its k-nearest-neighbor in the set. We use pixel-wise
Euclidean distance between face images (the pair of face images are scaled
to the same size).

The final graph is the union of the three kinds of edges. The edgesamighted

in the experiments (one could also learn different weights for differamtskof
edges. For example it might be advantageous to give time edges highets)eigh
We usedt; = 2 second¢, = 12 hours,k. = 3 andk; = 1 below. Incidentally
these parameters give a connected graph. It is impossible to visualize tfe wh
graph. Instead we show the neighbors of a random node in Figure 3.6.

3.4 Common Ways to Create Graphs

Sometimes one faces a dataset with limited domain knowledge. This section dis-
cusses some common ways to create a graph as a starting point.
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neighbor 4: color edge neighbor 5: face edge

Figure 3.6: A random image and its neighbors in the graph

17
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Fully connected graphs One can create a fully connected graph with an edge be-
tween all pairs of nodes. The graph needs to be weighted so that similar
nodes have large edge weight between them. The advantage of a fully con
nected graph is in weight learning — with a differentiable weight function,
one can easily take the derivatives of the graph w.r.t. weight hyperpara
eters. The disadvantage is in computational cost as the graph is dense (al-
though sometimes one can apply fast approximate algorithms\ikendy
problems). Furthermore we have observed that empirically fully connect
graphs performs worse than sparse graphs.

Sparse graphsOne can creatéNN or eNN graphs as shown below, where each
node connects to only a few nodes. Such sparse graphs are comaliation
fast. They also tend to enjoy good empirical performance. We surmise it
is because spurious connections between dissimilar nodes (which tend to be
in different classes) are removed. With sparse graphs, the edgbs cam
weighted or weighted. One disadvantage is weight learning — a change in
weight hyperparameters will likely change the neighborhood, making opti-
mization awkward.

kNN graphs Nodesi, j are connected by an edge i in j's k-nearest-neighborhood
or vice versa.k is a hyperparameter that controls the density of the graph.
kNN has the nice property of “adaptive scales,” because the neigimbrh
radius is different in low and high data density regions. Srhathay re-
sult in disconnected graphs. For Label Propagation this is not a prablem
each connected component has some labeled points. For other algorithms
introduced later in the thesis, one can smooth the Laplacian.

eNN graphs Nodesi, j are connected by an edge, if the distadte j) < e. The
hyperparametes controls neighborhood radius. Althoughs continuous,
the search for the optimal value is discrete, with at n@&t?) values (the
edge lengths in the graph).

tanh-weighted graphs w;; = (tanh(aq(d(4,j) — a2)) + 1)/2. The hyperbolic
tangent function is a ‘soft step’ function that simulatdN in that when
d(i,7) > oo, wi; = 0; d(i,j) < a2, wij = 1. The hyperparametets;, o
controls the slope and cutoff value respectively. The intuition is to create a
soft cutoff around distance,, so that close examples (presumably from the
same class) are connected and examples from different classasipleyg
with large distance) are nearly disconnected. Uniikié, tanh-weighted
graph is continuous with respectdq, a, and is amenable to learning with
gradient methods.
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exp-weighted graphs w;; = exp(—d(i, j)?/a?). Again this is a continuous weight-
ing scheme, but the cutoff is not as cleartaah(). Hyperparameter
controls the decay rate. #fis e.g. Euclidean distance, one can have one
hyperparameter per feature dimension.

These weight functions are all potentially useful when we do not hasegmndo-
main knowledge. However we observed that weightlsidN graphs with a smak
tend to perform well empirically. All the graph construction methods haveihyp
parameters. We will discuss graph hyperparameter learning in Chapter 7.

A graph is represented by the x n weight matrixW, w;; = 0 if there is
no edge between nodgj. We point out thati’ does not have to be positive
semi-definite. Nor need it satisfy metric conditions. As long/'s entries are
non-negative and symmetric, the graph Laplacian, an important quantitedéfi
the next chapter, will be well defined and positive semi-definite.
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Chapter 4

Gaussian Random Fields and
Harmonic Functions

In this chapter we formalize label propagation with a probabilistic framework.
Without loss of generality we assume binary classificatjog {0,1}. We as-
sume then x n weight matrix\ is given, which defines the graphl’ has to be
symmetric with non-negative entries, but otherwise need not to be positine s
definite. IntuitivelyWW specifies the ‘local similarity’ between points. Our task is
to assign labels to unlabeled nodes.

4.1 Gaussian Random Fields

Our strategy is to define a continuous random field on the graph. Firsefireed

a real function over the nodes: L UU — R. Notice f can be negative or
larger than 1. Intuitively, we want unlabeled points that are similar (asrdeted

by edge weights) to have similar labels. This motivates the choice of the gigcadra
energyfunction

B(f) = 5 3wy (F6) ~ FG))? (4.1)
%)

ObviouslyE is minimized by constant functions. But since we have observed some
labeled data, we constrajfito take valuesf (i) = y;,i € L on the labeled data.
We assign a probability distribution to functiofidoy aGaussian random field

p(f) = e PP (42)

21
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whereg is an “inverse temperature” parameter, & the partition function

Z- / exp (~BE(f)) df 4.3)
fo=Y1

which normalizes over functions constrainedriioon the labeled data. We are in-
terested in the inference problertyf;|Yz), i € U, or the meany™ _ fip(fi|Yz) df;.

The distributionp(f) is very similar to a standard Markov Random field with
discrete states (the Ising model, or Boltzmann machines (Zhu & Ghahramani,
2002Db)). In fact the only difference is the relaxation to real-valuedst&tewever
this relaxation greatly simplify the inference problem. Because of the qu@adra
energy,p(f) andp(fy|Yz) are both multivariate Gaussian distributions. This is
why p is called aGaussianrandom field. The marginals(f;|Yz) are univariate
Gaussian too, and have closed form solutions.

4.2 The Graph Laplacian

We now introduce an important quantity: thembinatorial LaplacianA. Let D
be the diagonal degree matrix, whdpg, = Ej Wi is the degree of node The
Laplacian is defined as

A=D-W (4.4)

For the time being the Laplacian is useful shorthand for the energy funcina
can verify that

B() = 5 Y wi (F6) — 1G) = FTAF (@5)
(2]
The Gaussian random field can be written as
p(f) = e P (4.6)

where the quadratic form becomes obviodsplays the role of the precision (in-
verse covariance) matrix in a multivariate Gaussian distribution. It is alwags
itive semi-definite ifi is symmetric and non-negative. The Laplacian will be
further explored in later chapters.

4.3 Harmonic Functions

Itis not difficult to show that the minimum energy functign= arg miny, _y, F(f)
is harmonic namely, it satisfieg\ f = 0 on unlabeled data pointg, and is equal
to Y7, on the labeled data poinfs We useh to represent this harmonic function.
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The harmonic property means that the valueh6f) at each unlabeled data
pointi is the average of its neighbors in the graph:

LS wish(), fori e U @4.7)

hG) = o

Jj~
which is consistent with our prior notion of smoothness with respect to thghgra
Because of the maximum principle of harmonic functions (Doyle & Snell, 1984),
h is unique and satisfied < h(i) < 1 fori € U (rememberi(i) = 0 or 1 for
i€ L).
To compute the harmonic solution, we partition the weight mal¥ix(and
similarly D, A, etc.) into 4 blocks fod. andU:

Wi Wro ]
W = 4.8
[ Wy Wyu (48)
The harmonic solutiod\h = 0 subject toh;, = Y7, is given by
hy = (Duv—Wyu) 'WurYy (4.9)
= —(Apy) " AuLYL (4.10)
= (I-Pyu) 'PuLYs (4.11)

The last representation is the same as equation (2.11), whereD 'V is the
transition matrix on the graph. The Label Propagation algorithm in Chapter 2 in
fact computes the harmonic function.

The harmonic function minimizes the energy and is thus the mode of (4.2).
Since (4.2) defines a Gaussian distribution which is symmetric and unimodal, the
mode is also the mean.

4.4 Interpretation and Connections

The harmonic function can be viewed in several fundamentally differagsiand
these different viewpoints provide a rich and complementary set of taobsiigpr
reasoning about this approach to the semi-supervised learning problem.

4.4.1 Random Walks

Imagine a random walk on the graph. Starting from an unlabeled Hedemove

to a node;j with probability P;; after one step. The walk stops when we hit a
labeled node. Theh(i) is the probability that the random walk, starting from
nodei, hits a labeled node with label 1. Here the labeled data is viewed as an
“absorbing boundary” for the random walk. The random walk intdgtien is
shown in Figure 4.1.
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e dgﬁ%%@

Figure 4.2: Harmonic function as electric network graph

4.4.2 Electric Networks

We can also view the framework as electrical networks. Imagine the edigles o
graph to be resistors with conductanidé Equivalently the resistance between
nodest, j is 1/w;;. We connect positive labeled nodes te-a volt source, and
negative labeled nodes to the ground. Thenis the voltage in the resulting elec-
tric network on each of the unlabeled nodes (Figure 4.2). Furthermonain-
imizes the energy dissipation, in the form of heat, of the electric network. The
energy dissipation is exactly(h) as in (4.1). The harmonic property here follows
from Kirchoff’s and Ohm’s laws, and the maximum principle then shows that th
is precisely the same solution obtained in (4.11).

4.4.3 Graph Mincut

The harmonic function can be viewed as a soft version of the graph mapeut
proach by Blum and Chawla (2001). In graph mincut the problem is casha
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of finding a minimumst-cut. The minimumst-cuts minimize the same energy
function (4.1) but with discrete labels 0,1. Therefore they are the modestan-
dard Boltzmann machine. It is difficult to compute the mean. One often has to use
Monte Carlo Markov Chain or use approximation methods. Furthermore, the min
imum st-cut is not necessarily unigue. For example, consider a linear chgih gra
with n nodes. Letw; ;41 = 1 and other edges zero. Let node 1 be labeled positive,
noden negative. Then a cut on any one edge is a minimgout. In contrast, the
harmonic solution has a closed form, unique solution for the mean, which is also
the mode.

The Gaussian random fields and harmonic functions also have conngstion
graph spectral clustering, and kernel regularization. These will loeisked later.

4.5 Incorporating Class Proportion Knowledge

To go from f to class labels, the obvious decision rule is to assign label 1 to node
i if h(i) > 0.5, and label O otherwise. We call this rule5-threshold In terms

of the random walk interpretation (i) > 0.5, then starting ai, the random
walk is more likely to reach a positively labeled point before a negativelyiddbe
point. This decision rule works well when the classes are well separatwae\ér

in practice, 0.5-threshold tends to produce unbalanced classification [frints

in one of the classes). The problem stems from the factWihatvhich specifies

the data manifold, is often poorly estimated in practice and does not reflect the
classification goal. In other words, we should not “fully trust” the graphcsure.

Often we have the knowledge of class proportions, i.e. how many unlabeled
data are from class 0 and 1 respectively. This can either be estimatedhfeom
labeled set, or given by domain experts. This is a valuable piece of compkyen
information.

We propose a heuristic method callddss mass normalizatiogf€MN) to in-
corporate the information as follows. Let's assume the desirable prop®ifton
classes 1 and 0 argand1 — ¢ respectively. Define the mass of class 1 to be
>, hu(7), and the mass of class 0 to be, (1 — hy(2)). Class mass normalization
scales these masses to maichAnd1 — ¢. In particular an unlabeled poiritis
classified as class 1 iff

hu (i) 1 — hy (i)
=" >1-)=F——"x
> hu (i) >i(1 = hy(i))
CMN extends naturally to the general multi-label case. It is interesting to note
CMN's potential connection to the procedures in (Belkin et al., 2004a)thEu

research is needed to study whether the heuristic (or its variation) casteu
in theory.

(4.12)
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4.6 Incorporating Vertex Potentials on Unlabeled Instances

We can incorporate the knowledge on individual class label of unlalimestahces
too. This is similar to using a “assignment cost” for each unlabeled instamce. F
example, the external knowledge may come from an external classifieh ighic
constructed on labeled data alone (It could come from domain expert o).
external classifier produces labels on the unlabeled data; can be 0/1 or soft
labels in[0, 1]. We combiney with the harmonic functiork by a simple modifi-
cation of the graph. For each unlabeled node the original graph, we attach a
“dongle” node which is a labeled node with valge Let the transition probabil-
ity from 4 to its dongle be;, and discount other transitions fronby 1 — . We
then compute the harmonic function on this augmented graph. Thus, theakxtern
classifier introduces assignment costs to the energy function, which @ayplth

of vertex potentials in the random field. It is not difficult to show that thertearic
solution on the augmented graph is, in the random walk view,

hy = (I~ (1—n)Pyv) " (1 —n)PuLYL +ngu) (4.13)

We note that up to now we have assumed the labeled data to be noise free, and
so clamping their values makes sense. If there is reason to doubt this éssump
it would be reasonable to attach dongles to labeled nodes as well, and to raove th
labels to these dongles. An alternative is to use Gaussian process ckagstfiea
noise model, which will be discussed in Chapter 6.

4.7 Experimental Results

We evaluate harmonic functions on the following tasks. For each task aseaity
increase the labeled set size systematically. For each labeled set sizerforenp

30 random trials. In each trial we randomly sample a labeled set with the specifi
size (except for the Freefoodcam task where we sample labeled setHeofirst
day only). However if a class is missing from the sampled labeled set, wetredo
random sampling. We use the remaining data as the unlabeled set andtheport
classification accuracy with harmonic functions on them.

To compare the harmonic function solution against a standard supenased le
ing method, we use a Matlab implementation of SVM (Gunn, 1997) as the baseline.
Notice the SVMs are not semi-supervised: the unlabeled data are merdlasise
test data. Foe-class multiclass problems, we use a one-against-all scheme which
creates: binary subproblems, one for each class against the rest classeg|ecid
the class with the largest margin. We use 3 standard kernels for eacHitask:
K(i,j) = (x;, x;), quadraticK (i, 7) = ({z;,z;) + 1)?, and radial basis function
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(RBF) K (i,7) = exp (—|zi — z;]|*/20%). The slack variable upper bound (usu-
ally denoted byC') for each kernel, as well as the bandwidtlior RBF, are tuned
by 5 fold cross validation for each task.

1. 1vs. 2 Binary classification for OCR handwritten digits “1” vs. “2”. This
is a subset of the handwritten digits dataset. There are 2200 images, half are
“1"s and the other half are “2”s.

The graph (or equivalently the weight mat#ix) is the single most important
input to the harmonic algorithm. To demonstrate its importance, we show the
results of not one but six related graphs:

(a) 16 x 16 full. Each digit image id6 x 16 gray scale with pixel values
between 0 and 255. The graph is fully connected, and the weights
decrease exponentially with Euclidean distance:

256 («T@ g — T d)2
w;ij = exp | — Z TOQJ (4.14)

d=1

The parameter 380 is chosen by evidence maximization (see Section
7.1). This was the graph used in (Zhu et al., 2003a).

(b) 16 x 16 10NN weighted. Same a$6 x 16 full’, but ¢, j are connected
only if 7isin j's 10-nearest-neighbor or vice versa. Other edges are re-
moved. The weights on the surviving edges are unchanged. Therefor
this is a much sparser graph. The number 10 is chosen arbitrarily and
not tuned for semi-supervised learning.

(c) 16 x 16 10NN unweighted. Same a#5 x 16 10NN weighted’ except
that the weights on the surviving edges are all set to 1. This represents
a further simplification of prior knowledge.

(d) 8 x 8 full. All images are down sampled ®x 8 by averaging x 2
pixel bins. Lowering resolution helps to make Euclidean distance less
sensitive to small spatial variations. The graph is fully connected with
weights

64 (:L"/» _— )2
. i,d 7,d
d=1
(e) 8 x 8 10NN weighted. Similar tol6 x 16 20NN weighted'.

(f) 8 x 8 10NN unweighted. Ditto.
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The classification accuracy with these graphs are shown in Figure .4.3(a)
Different graphs give very different accuracies. This should bensinder

that the quality of the graph determines the performance of harmonic func-
tion (as well as semi-supervised learning methods based on graphs in gen-
eral). 8 x 8 seems to be better thdb x 16. Sparser graphs are better than
fully connected graphs. The better graphs outperform SVM baselihea w
labeled set size is not too small.

. ten digits. 10-class classification for 4000 OCR handwritten digit images.

The class proportions are intentionally chosen to be skewed, with 213, 129
100, 754, 970, 275, 585, 166, 353, and 455 images for digits “1,2,3,4,5,9,0”
respectively. We use 6 graphs constructed similarly akws. 2 Figure
4.3(b) shows the result, which is similar tovs. 2except the overall accu-
racy is lower.

. odd vs. even Binary classification for OCR handwritten digits “1,3,5,7,9”

vs. “0,2,4,6,8". Each digit has 400 images, i.e. 2000 per class and 4000 tota
We show only thes x 8 graphs in Figure 4.3(c), which do not outperform
the baseline.

. baseball vs. hockeyBinary document classification for rec.sport.baseball

vs. rec.sport.hockey in the 20newsgroups dataset (18828 verSiomro-
cessing of documents into tf.idf vectors has been described in section 3.2.
The classes have 994 and 999 documents respectively. We repasities r

of three graphs in Figure 4.3(d):

(a) full. A fully connected graph with weights

1 (d;, d;)
i = - (1= 4.16
v = (55 (1- {3721 (@10
so that the weights decreases with the cosine similarity between docu-
mentd;, d;.

(b) 10NN weighted. Only symmetrized 10-nearest-neighbor edgesjaire ke
in the graph, with the same weights above. This was the graph in (Zhu
etal., 2003a).

(c) 10NN unweighted. Same as above except all weights are set to 1.

. PC vs. MAC Binary classification on comp.sys.ibm.pc.hardware (number

of documents 982) vs. comp.sys.mac.hardware (961) in the 20 newsgroup
dataset. The three graphs are constructed in the same wmsaball vs.
hockey. See Figure 4.3(e).
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6. religion vs. atheismBinary classification on talk.religion.misc (628) vs.
alt.atheism (799). See Figure 4.3(f). The three 20newsgroups tag&s ha
increasing difficulty.

7. isolet This is the ISOLET dataset from the UCI data repository (Blake &
Merz, 1998). It is a 26-class classification problem for isolated sp&ken
glish letter recognition. There are 7797 instances. We use the Euclidean
distance on raw features, and create a 100NN unweighted graphedtie r
is in Figure 4.3(g).

8. freefoodcamThe details of the dataset and graph construction are discussed
in section 3.3. The experiments need special treatment compared to other
datasets. Since we want to recognize people across multiple days, we only
sample the labeled set from the first days of a person’s appearahiseis T
harder and more realistic than sampling labeled set from the whole dataset.
We show two graphs in Figure 4.3(h), one with= 2 secondst, = 12
hours k. = 3, ky = 1, the other the same except= 1.

The kernel for SVM baseline is optimized differently as well. We use an
interpolated linear kernek (i, j) = w K (4, j) + we K (4, j) + weK (i, j),
where Ky, K., Ky are linear kernels (inner products) on time stamp, color
histogram, and face sub-image (normalized@ax 50 pixels) respectively.

If an image: contains no face, we defing,(i,-) = 0. The interpolation
weightsw;, w., wy are optimized with cross validation.

The experiments demonstrate that the performance of harmonic functiea var
considerably depending on the graphs. With certain graphs, the seervsgol
learning method outperforms SVM, a standard supervised learning methoal- |
ticular sparse nearest-neighbor graphs, even unweighted, tend afotrp fully
connected graphs. We believe the reason is that in fully connectedsgtapbdges
between different classes, even with relatively small weights, creatervamtedly
strong connections across the classes. This highlights the sensitivity teaghie g
in graph-based semi-supervised learning methods.

It is also apparent from the results that the benefit of semi-superviaed le
ing deminishes as the labeled set size grows. This suggests that semvisagper
learning is most helpful when the cost of getting labels is prohibitive.

CMN: Incorporating Class Proportion Knowledge

The harmonic function accuracy can be significantly improved, if we iraratp
class proportion knowledge with the simple CMN heuristic. The class propastio
estimated from labeled data with Laplace (add one) smoothing. All the graphs a
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other settings are the same as in section 4.7. The CMN results are shownri& Figu
4.4, Compared to Figure 4.3 we see that in most cases CMN helps to improve
accuracy.

For several tasks, CMN gives a huge improvement for the smallest labeted
size. The improvement is so large that the curves become ‘V' shaped ktfthe
hand side. This is an artifact: we often use the number of classes as thessmalle
labeled set size. Because of our sampling method, there will be one inftamce
each class in the labeled set. The CMN class proportion estimation is thuswnifor
Incidentally, many datasets have close to uniform class proportionsefohethe
CMN class proportion estimation is close to the truth for the smallest labeled set
size, and produces large improvement. On the other hand, intermediatellagele
size tends to give the worst class proportion estimates and hence little improve-
ment.

In conclusion, it is important to incorporate class proportion knowledgs-to a
sist semi-supervised learning. However for clarity, CMN is not used inginain-
ing experiments.

Dongles: Incorporating External Classifier

We use theodd vs. eventask, where the RBF SVM baseline is sometimes better
than the harmonic function with a 10NN unweighted graph. We augment thh gra
with a dongle on each unlabeled node. We use the hard (0/1) labels frdrBthe
SVM (Figure 4.3) on the dongles. The dongle transition probabiliig set to

0.1 by cross validation. As before, we experiment on different labededises,

and 30 random trials per size. In Figure 4.5, we compare the averageegof
incorporating the external classifieldngle) to the external classifieBYM) or the
harmonic functionitarmonic) alone. The combination results in higher accuracy
than either method alone, suggesting there is complementary information used by
each.
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Chapter 5

Active Learning

In this chapter, we take a brief detour to look at the active learning probigen.
combine semi-supervised learning and active learning naturally and efijcie

5.1 Combining Semi-Supervised and Active Learning

So far, we assumed the labeled data set is given and fixed. In practiegy inake
sense to utilizexctive learningn conjunction with semi-supervised learning. That
is, we might allow the learning algorithm to pick unlabeled instances to be labeled
by a domain expert. The expert returns the label, which will then be usgxt &5
augment) the labeled data set. In other words, if we have to label a fewdastan
for semi-supervised learning, it may be attractive to let the learning algotéhm
us which instances to label, rather than selecting them randomly. We will limit the
range of query selection to the unlabeled data set, a practice known lasgsed
active learning or selective sampling.

There has been a great deal of research in active learning. Fopéxarong
and Koller (2000) select queries to minimize the version space size foogupp
vector machines; Cohn et al. (1996) minimize the variance component oftihe e
mated generalization error; Freund et al. (1997) employ a committee of dassifi
and query a point whenever the committee members disagree. Most of thee acti
learning methods do not take further advantage of the large amount dieledia
data once the queries are selected. The work by McCallum and Nigar8(L99
is an exception, where EM with unlabeled data is integrated into active learning
Another exception is (Muslea et al., 2002), which uses a semi-supetemeatng
method during training. In addition to this body of work from the machine legrnin
community, there is a large literature on the closely related topic of experimental
design in statistics; Chaloner and Verdinelli (1995) give a survey oérxgntal
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design from a Bayesian perspective.

The Gaussian random fields and harmonic functions framework allows a na
ural combination of active learning and semi-supervised learning. Iif, bne
framework allows one to efficiently estimate the expected generalizationadfror
ter querying a point, which leads to a better query selection criterion thaalyai
selecting the point with maximum label ambiguity. Then, once the queries are se-
lected and added to the labeled data set, the classifier can be trained ukittgebo
labeled and remaining unlabeled data. Minimizing the estimated generalization er-
ror was first proposed by Roy and McCallum (2001). We independdistpvered
the same idea (Zhu et al., 2003b), and the effective combination of semmivisgd
learning and active learning is novel.

We perform active learning with the Gaussian random field model by dyeed
selecting queries from the unlabeled data to minimizeriie of the harmonic
energy minimization function. The risk is the estimated generalization error of the
Bayes classifier, and can be computed with matrix methods. We defineuthe
risk R(h) of the Bayes classifier based on the harmonic funchitm be

R(h) = Y > [s9n(hs) # il p* (i)

i=1 y;=0,1

where sgi;) is the Bayes decision rule with threshold 0.5, such that (with a slight
abuse of notation) sgh;) = 1if h; > 0.5 and sgifh;) = 0 otherwise. Here*(y;)

is the unknown true label distribution at nodegiven the labeled data. Because of
this, R(h) is not computable. In order to proceed, it is necessary to make assump-
tions. We begin by assuming that we can estimate the unknown distribftign

with the mean of the Gaussian field model:

P yi=1)=h;

Intuitively, recallingh; is the probability of reaching 1 in a random walk on the
graph, our assumption is that we can approximate the distribution using @ biase
coin at each node, whose probability of heads;isWith this assumption, we can
compute thestimated riskR () as

n

R(h) = [sgrihi) # 0] (1~ ha) + [sgn(hi) # 1] b

i=1
= > min(h;, 1 - hy) (5.1)
i=1

If we perform active learning and query an unlabeled nkdee will receive an
answery; (0 or 1). Adding this point to the training set and retraining, the Gaussian
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field and its mean function will of course change. We denote the new harmonic
function byht(#x¥+) The estimated risk will also change:

ﬁ(h%wk,yk)) — Z min(h—.k(x’“’yk)’ 1— hf"‘(xkvyk))
=1
Since we do not know what answgr we will receive, we again assume the proba-
bility of receiving answep*(y;, = 1) is approximately:;.. Theexpecteestimated
risk after querying nodé is therefore

R(F) = (L= hg) R(FERO) 4 by R(AHRD)

The active learning criterion we use in this paper is the greedy procetlah®os-
ing the next query: that minimizes the expected estimated risk:

k = argmin,R(hT%) (5.2)

To carry out this procedure, we need to compute the harmonic funiti6is-vx)
after adding zy, y) to the current labeled training set. This is the retraining prob-
lem and is computationally intensive in general. However for Gaussian aeldls
harmonic functions, there is an efficient way to retrain. Recall that thedwic
function solution is

hy = —A;j(l]AULYL

What is the solution if we fix the valug, for nodek? This is the same as finding
the conditional distribution of all unlabeled nodes, given the valug, ofn Gaus-

sian fields the conditional on unlabeled data is multivariate Normal distributions
N(hy, A{]}J). A standard result (a derivation is given in Appendix A) gives the
mean of the conditional once we fix:

(App)
(ALY ) kk

where (A7)« is the k-th column of the inverse Laplacian on unlabeled data,
and (A{;)kx is the k-th diagonal element of the same matrix. Both are already
computed when we compute the harmonic functiofhis is a linear computation
and therefore can be carried out efficiently.

To summarize, the active learning algorithm is shown in Figure 5.1. The time
complexity to find the best query i9(n?). As a final word on computational
efficiency, we note that after adding query and its answer td., in the next
iteration we will need to comput§ Ay7)-x) !, the inverse of the Laplacian on
unlabeled data, with the row/column fog removed. Instead of naively taking the
inverse, there are efficient algorithms to compute it fr(a]sryU)—l; a derivation is
given in Appendix B.

h;(xlmyk) = hy+ (yk - hk)
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Input L, U, weight matrixiV

While more labeled data required:
Compute harmonié using (4.11)
Find best query: using (5.2)
Query pointz;, receive answeyy,
Add (z, yr) to L, removerxy, from U

end

Output L and classifieh.

Figure 5.1: The active learning algorithm
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Figure 5.2: Entropy Minimization selects the most uncertain peias the next
guery. Our method will select a point iB, a better choice.

5.2 Why not Entropy Minimization

We used the estimated generalization error to select queries. A diffeweny q
selection criterionentropy minimizatiotfor selecting the most uncertain instance),
has been suggested in some papers. We next show why it is inappraphigte
the loss function is based on individual instances. Such loss functiolsiethe
widely usedaccuracyfor classification andnean squared erroior regression.

To illustrate the idea, Figure 5.2 shows a synthetic dataset with two labeled
data (marked ‘1’, ‘0’), an unlabeled point ‘a’ in the center above anllister of 9
unlabeled points ‘B’ below. ‘B’ is slighted shifted to the right. The graph ig/fu
connected with weights:;; = exp(—d;;), whered;; is the Euclidean distance be-
tweeni, j. In this configuration, we have the most uncertainty in ‘a’: the harmonic
function at node ‘a’ ish(a) = 0.43. Points in ‘B’ have their harmonic func-
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tion values around 0.32. Therefore entropy minimization will pick 'a’ as thergu
However, the risk minimization criterion picks the upper center point (markéd w
a star) in ‘B’ to query, instead of ‘a’. In fact the estimated rislﬁsa) = 2.9, and
ﬁ(b € B) ~ 1.1. Intuitively knowing the label of one point if8 let us know the
label of all points inB, which is a larger gain. Entropy minimization is worse than
risk minimization in this example.

The root of the problem is that entropy does not account for the lossaf
ing a large number otorrelated mistakes In a pool-based incremental active
learning setting, given the current unlabeled@gentropy minimization finds the
queryq € U such that the conditional entrop (U \ ¢|q) is minimized. As
H(U \ qlq) = H(U) — H(q), it amounts to selecting with the largest entropy,
or the most ambiguous unlabeled point as the query. Consider anotheplexa
whereU = {a,b1,...,bi00}. LetP(a = +) = P(a = —) = 0.5 andP(b; =
+) = 0.51,P(b; = —) = 0.49 for i = 1...100. Furthermore leb; ...bio be
perfectly correlated so they always take the same valuep laetd b;’'s be inde-
pendent. Entropy minimization will seleatas the next query sincl (a) = 1 >
H(b;) = 0.9997. If our goal were to reduce uncertainty abéutsuch query selec-
tionis gOOd:H(bl C b100|a) =0.9997 < H((I, bl, ceey bl',l, bZ'Jrl, ceey b100|bi) =
H(alb;) = 1. However if our loss function is the accuracy on the remaining
instances in’J, the picture is quite different. After querying P(b; = +) re-
mains at 0.51, so that eaéh incurs a Bayes error of 0.49 by always predict
b; = +. The problem is that the individual error adds up, and the overallracgu
is0.51%100/100 = 0.51. On the other hand if we queby, we know the labels of
bs ... bigo toO because of their perfect correlation. The only error we might make is
ona with Bayes error of 0.5. The overall accuracy(is5 + 1« 99)/100 = 0.995.
The situation is analogous to speech recognition in which one can measure the
‘word level accuracy’ or ‘sentence level accuracy’ where a sergés correct if all
words in it are correct. The sentence corresponds to the whateour example.
Entropy minimization is more aligned with sentence level accuracy. Neversheles
since most active learning systems use instance level loss function, itazstte
suboptimal query choices as we show above.

5.3 Experiments

Figure 5.3 shows a check-board synthetic dataset with 400 points. Wetaqtive
learning to discover the pattern and query a small number of represestétivn
each cluster. On the other hand, we expect a much larger number éégifer
queries are randomly selected. We use a fully connected graph with weight
exp(—d?j/él). We perform 20 random trials. At the beginning of each trial we
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Figure 5.3: A check-board example. Left: dataset and true labels; ICerdt:
mated risk; Right: classification accuracy.

randomly select a positive example and a negative example as the initial training
set. We then run active learning and compare it to two baselines: (1) Rand
Query”: randomly selecting the next query frdim (2) “Most Uncertain Query”:
selecting the most uncertain instancé/in.e. the one witth closestto 0.5. In each
case, we run for 20 iterations (queries). At each iteration, we plot tireaed risk
(5.1) of the selected query (center), and the classification accuraty (oight).
The error bars are-1 standard deviation, averaged over the random trials. As
expected, with risk minimization active learning we reduce the risk more quickly
than random queries or the most uncertain queries. In fact, risk minimizative a
learning with about 15 queries (plus 2 initial random points) learns theeciorr
concept, which is nearly optimal given that there are 16 clusters. Loakitige
gueries, we find that active learning mostly selects the central points within the
clusters.

Next, we ran the risk minimization active learning method on several tasks
(markedactive learningin the plots). We compare it with several alternative ways
of picking queries:

e random query. Randomly select the next query from the unlabeled set.
Classification on the unlabeled set is based on the harmonic function.-There
fore, this method consists of no active learning, but only semi-supervised
learning.

e most uncertain. Pick the most ambiguous poirit ¢losest to 0.5 for binary
problems) as the query. Classification is based on the harmonic function.

e SVM random query. Randomly select the next query from the unlabeled
set. Classification with SVM. This is neither active nor semi-supervised
learning.

e SVM most uncertain. Pick the query closest to the SVM decision boundary.
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Figure 5.4: Active learning accuracy

Classification with SVM.

For each task, we use the best graph for harmonic functions, and sh&erael

for SVM, as in section 4.7. We run 30 trials and the plots are the average. In
each trial, we start from a randomly selected labeled set, so that eacthakss
exactly one labeled example. The query selection methods mentioned above ar
used independently to grow the labeled set until a predetermined size. We plo
the classification accuracy on the remaining unlabeled data in Figure 5.4he~or
FreeFoodCamtask, there are two experiments: 1. We allow the queries to come
from all days; 2. From only the first days of a person’s first apgpece.

It is interesting to see what queries are selected by different methodsegigu
5.5 and 5.6 compare the first few queries for thes. 2andten digits tasks. In
each case, the initial labeled set is the same.

The combined semi-supervised learning and risk minimization active learning
method performs well on the tasks. Compared to the results reported in (Roy &
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Figure 5.4: Active learning accuracy (continued)
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Figure 5.5: The first few queries selected by different active leammatphods on
thel vs. 2task. All methods start with the same initial labeled set.
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Figure 5.6: The first few queries selected by different active leammathods on
theten digits task. All methods start with the same initial labeled set.

McCallum, 2001), we think that good semi-supervised learning algorithmeya k
to the success of the active learning scheme.



44

CHAPTER 5. ACTIVE LEARNING



Chapter 6

Connection to Gaussian Processes

A Gaussian process define a prigif(z)) over function valuesf(z), wherex
ranges over an infinite input space. It is an extension te-dimensional Gaus-
sian distribution as goes to infinity. A Gaussian process is defined by its mean
function p(z) (usually taken to be zero everywhere), and a covariance function
C(z,2'). For any finite set of points;,...,z,,, the Gaussian process on the
set reduces to am-dimensional Gaussian distribution with a covariance matrix
Cij = C(z4,x;), fori, j = 1...m. More information can be found in Chapter 45
of (MacKay, 2003).

Gaussian random fields are equivalent to Gaussian processesthedtacted
to a finite set of points. Thus, the standard machineries for Gaussiagsgexcan
be used for semi-supervised learning. Through this connection, welisktthe
link between the graph Laplacian and kernel methods in general.

6.1 A Finite Set Gaussian Process Model

Recall for any real-valued functiofion the graph, the energy is defined as

1 . .
E(f) =5 D wi (f() = ()" = [TAf (6.1)
1,J
the corresponding Gaussian random field is
1 1 T
— — o BE(f) — Z-BfTAS

The Gaussian random field is nothing but a multivariate Gaussian distribution o
the nodes. Meanwhile a Gaussian process restricted to finite data is a natkivar
Gaussian distribution too (MacKay, 1998). This indicates a connectioneeetw
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Gaussian random fields and finite set Gaussian processes. Noticeniteesét
Gaussian processes’ are not real Gaussian processes, sinarbkrkatrix is
only defined onl. U U, not the whole input spac¥.

Equation (6.2) can be viewed as a Gaussian process restricfed @ with
covariance matrix23A)~!. However the covariance matrix is an improper prior.
The LaplacianA by definition has a zero eigenvalue with constant eigenvdctor
To see this note that the degree matfixis the row sum ofi¥’. This makesA
singular: we cannot inverh to get the covariance matrix. To make a proper prior
out of the Laplacian, we can smooth its spectrum to remove the zero eigesyvalu
as suggested in (Smola & Kondor, 2003). In particular, we choose teftram the
eigenvalues\ according to the function(\) = X\ + 1/02 wherel/0? is a small
smoothing parameter. This gives tiegularized Laplacian

A+ T)o? (6.3)

Using the regularized Laplacian, we define a zero mean prior as

) xexp (3175 ) 6.4)
which corresponds to a kernel with Gram matrix (i.e. covariance matrix)
K=A"=(28A+1/0%)"" (6.5)
We note several important aspects of the resulting finite set Gaussiasproc
. fNN(o,Afl);
e Unlike A, A gives a proper covariance matrix.

e The parametef controls the overall sharpness of the distribution; lasge
means(f) is more peaked around its mean.

e The parameter? controls the amount of spectral smoothing; largamoothes
less.

e The kernel (covariance) matrix = A~! is the inverse of a function of the
LaplacianA. Therefore the covariance between any two pgijin general
depends omll the points This is how unlabeled data influences the prior.

The last point warrants further explanation. In many standard kethelgntries
are ‘local’. For example, in a radial basis function (RBF) ketfigthe matrix entry

ki; = exp (—dfj/aQ) only depends on the distance betweghandnot any other
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points In this case unlabeled data is useless because the influence of unlabeled
data inK is marginalized out. In contrast, the entries in kernel (6.4) depends on all
entries inA, which in turn depends on all edge weights Thus, unlabeled data

will influence the kernel, which is desirable for semi-supervised lear#ingther

way to view the difference is that in RBF (and many other) kernels we paesire

the covariance matrix directly, while with graph Laplacians we parameterize the
inverse covariance matrix

6.2 Incorporating a Noise Model

In moving from Gaussian fields to finite set Gaussian processes, we gerlon
assume that the soft labefg for the labeled data are fixed at the observed labels
Y. Instead we now assume the data generation processisf — y, where

f — yis anoisy label generation process. We use a sigmoid noise model between
the hidden soft labelg; and observed labels:

P(yilfi) = (6.6)

eVfivi + e—Vfivi - 14+ e~ 2 fivi

where~ is a hyperparameter which controls the steepness of the sigmoid. This
assumption allows us to handle noise in training labels, and is a common practice
in Gaussian process classification.

We are interested ip(Yy|Yz), the labels for unlabeled data. We first need to
compute the posterior distributigrt 7, fi7|Yz). By Bayes’ theorem,

T Pyl fp(fr fo)
p(fr, fulYr) = 1 P(Y,) (6.7)

Because of the noise model, the posterior is not Gaussian and has robfolose
solution. There are several ways to approximate the posterior. For simplieity
use the Laplace approximation to find the approximdtg,, fu/|Yz). A deriva-

tion can be found in Appendix C, which largely follows (Herbrich, 200R)7{.
Bayesian classification is based on the posterior distribut{df |Y7). Since un-

der the Laplace approximation this distribution is also Gaussian, the classificatio
rule depends only on the sign of the mean (which is also the modfg).of

6.3 Experiments

We compare the accuracy of Gaussian process classification with the€shetd
harmonic function (without CMN). To simplify the plots, we use the same graphs
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Figure 6.1: Gaussian process accuracy

that give the best harmonic function accuracy (exéepeFoodCam). To aid com-
parison we also show SVMs with the best kernel among linear, quadratiBler R
In the experiments, the inverse temperature paramigtemoothing parameter
and noise model parametegrare tuned with cross validation for each task. The
results are in Figure 6.1.

For FreeFoodCamwe also use two other graphs with no face edges at all
(ks = 0). The first one limits color edges to within 12 houts & 12 hour), thus
the first days that contain the labeled data is disconnected from the reste@tind
one allows color edges on far away images= oo). Neither has good accuracy,
indicating that face is an important feature to use.
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Figure 6.1: Gaussian process accuracy (continued)
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6.4 Extending to Unseen Data

We have so far restricted ourselves to the) U nodes in the graph. In this finite
case Gaussian processes are nothingilitnensional multivariate normal distri-
butions, and are equivalent to Gaussian random fields. Howevesiaauglds,
by definition, cannot handle unseen instances. Any new data pointstaéed
come additional nodes in the graph. The Laplacian and kernel matricdsmee
be re-computed, which is expensive. We would like to extend the frametwork
allow arbitrary new points. Equivalently, this is the problem of induction irtstea
of transduction.

The simplest strategy is to divide the input space into Voronoi cells. The
Voronoi cells are centered on instancedlitu U. We classify any new instance
x by the Voronoi cell it falls into. Let:* € L U U be the point closest to:

*

¥ = argmaxc Wz (6.8)
where closeness is measured by weights. From an algorithmic point of view,
we classifyz by its 1-nearest-neighbar*. When the unlabeled data size is large,

the approximation is reasonable.
We will discuss more inductive methods in Chapter 10.



Chapter 7

Graph Hyperparameter Learning

Previously we assumed that the weight mal#ixs given and fixed. In this chapter
we investigatdearning the weights from both labeled and unlabeled data. We
present three methods. The first one is evidence maximization in the cohtext o
Gaussian processes. The second is entropy minimization, and the thircbaiseds

on minimum spanning trees. The latter ones are heuristic but also practical.

7.1 Evidence Maximization

We assume the edge weights are parameterized with hyperparaetecs in-
stance the edge weights can be

< (ﬂcz'd—ﬂﬁ‘d)2
W;; = €xXp *277 a2 I

d=1 d

and® = {ai,...,ap}. To learn the weight hyperparameters in a Gaussian pro-
cess, one can choose the hyperparameters that maximize the log likelihbed:
arg max log p(y|©). log p(y|©) is known as the evidence and the procedure is
also called evidence maximization . One can also assume a prédmaonl find the
maximum a posteriori (MAP) estimate* = arg max, log p(y.|©) + logp(O).
The evidence can be multimodal and usually gradient methods are used # find
mode in hyperparameter space. This requires the derivétives(y,|0)/00. A
complete derivation is given in Appendix D.

In a full Bayesian setup, one would average over all hyperparamatees/
(weighted by the posterigi(©|yz,)) instead of using a point estima&*“. This
usually involves Markov Chain Monte Carlo techniques, and is not pdrsuihis

paper.

51



52 CHAPTER 7. GRAPH HYPERPARAMETER LEARNING

regularized evidence  accuracy
task | before after before| after

lvs. 2| -24.6 -23.9 0.973 | 0.982

7vs. 9| -40.5 -39.9 0.737 | 0.756

Table 7.1: the regularized evidence and classification before and aftemga’s
for the two digits recognition tasks

We use binary OCR handwritten digits recognition tasks as our example, since
the results are more interpretable. We choose two tasks: “1 vs. 2" whichden
presented previously, and “ 7 vs. 9” which are the two most confusingsdig
terms of Euclidean distance. We use fully connected graphs with weights

2 (@i — 254)°
Wij; = €Xp | — Z T (7'1)
d

d=1

The hyperparameters are the 64 length scalegfer each pixel dimension o#ix 8
images. Intuitively they determine which pixel positions are salient for theifilas
cation task: ifo is close to zero, a difference at pixel positidwill be magnified;

if it is large, pixel positiond will be essentially ignored. The weight function

is an extension to eq (4.15) by giving each dimension its own length scale. For
each task there are 2200 images, and we run 10 trials, in each trial wambnd
pick 50 images as the labeled set. The rest is used as unlabeled set. lror eac
trial we start ato; = 140,7 = 1...64, which is the same as in eq (4.15). We
compute the gradients far; for evidence maximization. However since there are
64 hyperparameters and only 50 labeled points, regularization is importamt. W
use a Normal prior on the hyperparameters which is centered at the initial va
p(a;) ~ N(140,30%),i = 1...64. We use a line search algorithm to find a (pos-
sibly local) optimum for they’s.

Table 7.1 shows the regularized evidence and classification beforeftend a
learninga’s for the two tasks. Figure 7.1 compares the learned hyperparameters
with the mean images of the tasks. Smaller (darkes)correspond to feature
dimensions in which the learning algorithm pays more attention. It is obvious, fo
instance in the vs. 9task, that the learned hyperparameters focus on the ‘gap on
the neck of the image’, which is the distinguishing feature between 7's and 9’
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AF T Ed
7 F M=

Figure 7.1: Graph hyperparameter learning. The upper row is fat tree 2task,
and the lower row fof7 vs. 9 The four images are: (a,b) Averaged digit images
for the two classes; (¢) The 64 initial length scale hyperparametessown as an

8 x 8 array; (d) Learned hyperparameters.

7.2 Entropy Minimization

Alternatively, we can usaverage label entropgs a heuristic criterion for parame-
ter learningt. This heuristic uses only the harmonic function and does not depend
on the Gaussian process setup.

The average label entrogy (k) of the harmonic functioih is defined as

l4u

) == 3" Hi(h(i) (7.2)

i=l+1

whereH;(h(i)) = —h(i)log h(i)— (1—h(i))log(1—h(i)) is the Shannon entropy

of individual unlabeled data poirit Here we use the random walk interpretation
of h, relying on the maximum principle of harmonic functions which guarantees
that0 < h(i) < 1fori € U. Small entropy implies thdt(7) is close to 0 or 1; this
captures the intuition that a god#l (equivalently, a good set of hyperparameters
©) should result in @onfidentabeling. There are of course many arbitrary label-
ings of the data that have low entropy, which might suggest that this criteslbn
not work. However, it is important to point out that we are constrairiran the
labeled data—maost of these arbitrary low entropy labelings are inconsigitnt
this constraint. In fact, we find that the space of low entropy labelings \zahiie

by harmonic function is small and lends itself well to tuning the hyperparameters

1We could have used the estimated risk, cf. Chapter 5. The gradient wilbbedifficult because
of themin function.
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As an example, let us consider the case where weights are parametarized a
(7.1). We can apply entropy minimization but there is a complication, nadiely
has a minimum at 0 ag; — 0. As the length scale approaches zero, the tail of the
weight function (7.1) is increasingly sensitive to the distance. In the eadabel
predicted for an unlabeled example is dominated by its nearest neighbdmels la
which results in the following equivalent labeling procedure: (1) startiomfthe
labeled data set, find the unlabeled paiptthat is closest to some labeled point
x;; (2) labelz,, with z;’s label, putz,, in the labeled set and repeat. Since these are
hard labels, the entropy is zero. This solution is desirable only when theeslas
are well separated, and is inferior otherwise. This complication can hdea/by
smoothing the transition matrix. Inspired by analysis of the PageRank algorithm
in (Ng et al., 2001b), we smooth the transition matfhwith the uniform matrix
U: Ui; = 1/n. The smoothed transition matrix 8= e/ + (1 — ) P.

We use gradient descent to find the hyperparametgthat minimizeH. The
gradient is computed as

a?falfl (55 s v

=I+1

where the value8h(i)/0a, can be read off the vectdthy /0ag, Which is given
by

_ oP oP,
_ (J_PUU)—1< YU by + ULYL> (7.4)

@ day doyg

using the fact thatl X ~! = —X~1(dX)X~'. BothdPyy/dcq anddPy /0oy
are sub-matrices @iP/day = (1 — e)%. Since the original transition matrik
is obtained by normalizing the weight matiik, we have that

Ow;; I+u Qwiy
opij aa; — Dij X1 dag (7.5)
o - l+u .
d Zn 1 Win
Finally, 5 dw” = 2w;j(za; — x45)% /a3

In the above derivation we ugg; as label probabilities directly; that is(y; =
1) = hy(2). If we incorporate class proportion information, or combine the har-
monic function with other classifiers, it makes sense to minimize entropy on the
combined probabilities. For instance, if we incorporate class proportisimg u
CMN, the probability is given by

ron q(u— > hy)hy (i)
)= TS e+ (-0 S k() O
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Figure 7.2: The effect of parameter on the harmonic function. (a) If not

smoothed,H — 0 asa — 0, and the algorithm performs poorly. (b) Result at
optimal o = 0.67, smoothed withe = 0.01 (c) Smoothing helps to remove the
entropy minimum.

and we use this probability in place bfi) in (7.2). The derivation of the gradient
descent rule is a straightforward extension of the above analysis.

We use a toy dataset in Figure 7.2 as an example for Entropy Minimization.
The upper grid is slightly tighter than the lower grid, and they are connegted b
few data points. There are two labeled examples, marked with large symbels. W
learn the optimal length scales for this dataset by minimizing entropy on unlabeled
data.

To simplify the problem, we first tie the length scales in the two dimensions,
so there is only a single parameteto learn. As noted earlier, without smoothing,
the entropy approaches the minimum at Ocas— 0. Under such conditions,
the harmonic function is usually undesirable, and for this dataset the tigider g
“invades” the sparser one as shown in Figure 7.2(a). With smoothingnthisghce
minimum” at 0 gradually disappears as the smoothing factprows, as shown
in Figure 7.2(c). When we set= 0.01, the minimum entropy is 0.898 bits at
« = 0.67. The harmonic function under this length scale is shown in Figure 7.2(b),
which is able to distinguish the structure of the two grids.

If we allow separatex's for each dimension, parameter learning is more dra-
matic. With the same smoothing ef= 0.01, o, keeps growing toward infinity
(we usea, = 10'6 for computation) whilen, stabilizes at 0.65, and we reach a
minimum entropy of 0.619 bits. In this casg — o is legitimate; it means that
the learning algorithm has identified thedirection as irrelevant, based on both the
labeled and unlabeled data. The harmonic function under these hyqmeegiars
gives the same classification as shown in Figure 7.2(b).
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7.3 Minimum Spanning Tree

If the graph edges akexp-weighted with a single hyperparamete(Section 3.4),

we can set the hyperparameterwith the following heuristic. We construct a
minimum spanning tree over all data points with Kruskal’s algorithm (Kruskal,
1956). In the beginning no node is connected. During tree growth, theseate
examined one by one from short to long. An edge is added to the tree ifriectm
two separate components. The process repeats until the whole grapimésta.
We find the first tree edge that connects two components with differenethbe
points in them. We regard the length of this edfjeas a heuristic to the minimum
distance between different class regions. We themvsetd® /3 following the 3o

rule of Normal distribution, so that the weight of this edge is close to 0, with the
hope that local propagation is then mostly within classes.

7.4 Discussion

Other ways to learn the weight hyperparameters are possible. For exameptan

try to maximize the kernel alignment to labeled data. This criterion will be used to
learn a spectral transformation from the Laplacian to a graph kernelapt€h8.
There the graph weights are fixed, and the hyperparameters are theahigs of

the graph kernel. It is possible that one can instead fix a spectraldraration but
learn the weight hyperparameters, or better yet jointly learn both. The isdpe
problem can be formulated as convex optimization. This remains futurecbsea



Chapter 8

Kernels from the Spectrum of
Laplacians

We used the inverse of a smoothed Laplacian as kernel matrix in Chapter 6. |
fact, one can construct a whole family of graph kernels from the speeicam-
position of graph Laplacians. These kernels combine labeled and urdatzein

a systematic fashion. In this chapter we devise the best one (in a certag) fan
semi-supervised learning.

8.1 The Spectrum of Laplacians

Let us denote the Laplacia\’s eigen-decomposition by\;, ¢;}, so thatA =

Yo Midig, . We assume the eigenvalues are sorted in non-decreasing order. The
LaplacianA has many interesting properties (Chung, 1997); For exafApteas
exactly k£ zero eigenvalueg; = --- = )\ = 0, wherek is the number of con-
nected subgraphs. The corresponding eigenvegtgrs ., ¢, are constant over

the individual subgraphs and zero elsewhere. Perhaps the most inigodperty

of the Laplacian related to semi-supervised learning is the following: a smaller
eigenvalue\ corresponds to a smoother eigenveciaver the graph; that is, the
value ;. wij(o(i) — #(4))? is small. Informally, a smooth eigenvector has the
property that two elements of the vector have similar values if there are magey lar
weight paths between the nodes in the graph. In a physical system, théhemoo
eigenvectors correspond to the major vibration modes. Figure 8.1(topjssho
simple graph consisting of two linear segments. The edges have the samé weigh
1. Its Laplacian spectral decomposition is shown below, where the eigesvare
sorted from small to large. The first two eigenvalues should be zero e #rer
numerical errors in Matlab eigen computation. As the eigenvalues incrirese,
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Figure 8.1: A simple graph with two segments, and its Laplacian spectral decom-
position. The numbers are the eigenvalues, and the zigzag shapes aoceréie
sponding eigenvectors.

corresponding eigenvectors become less and less smooth.

8.2 From Laplacians to Kernels

Kernel-based methods are increasingly being used for data modelingedid-p
tion because of their conceptual simplicity and good performance on masy tas
A promising family of semi-supervised learning methods can be viewed as con-
structing kernels by transforming the spectrum (i.e. eigen-decompositidh o
graph Laplacian. These kernels, when viewed as regularizerdjzeehactions
that are not smooth over the graph (Smola & Kondor, 2003).

Assuming the graph structure is correct, from a regularization pergpergt
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want to encourage smooth functions, to reflect our belief that labelddskaty

slowly over the graph. Specifically, Chapelle et al. (2002) and Smola andd

(2003) suggest a general principle for creating a family of semi-sigezhkernels
K from the graph Laplaciark: transform the eigenvaluesinto (), where the
spectral transformatiom is a non-negative and usually decreasing funétion

K=Y r(\)dig] (8.1)
=1

Note it may be that reverses the order of the eigenvalues, so that smp@&tihave
larger eigenvalues i. With such a kernel, a “soft labeling” functioh= > ¢;¢;
in a kernel machine has a penalty term in the RKHS norm giveQ@yf||%) =
Q> c2/r(\)). If ris decreasing, a greater penalty is incurred for those terms of
f corresponding to eigenfunctions that are less smooth.

In previous workr has often been chosen from a parametric family. For exam-
ple, the diffusion kernel (Kondor & Lafferty, 2002) corresponds to

o2
r(A) = exp(f?)\) (8.2)
The regularized Gaussian process kernel in Chapter 6 corresfmonds

- 1
A to

() (8.3)
Figure 8.2 shows such a regularized Gaussian process kernel,ucbedtfrom
the Laplacian in Figure 8.1 wittk = 0.05. Cross validation has been used to
find the hyperparameterfor these spectral transformations. Although the general
principle of equation (8.1) is appealing, it does not address the questishicth
parametric familyto use forr. Moreover, the degree of freedom (or the number of
hyperparameters) may not suit the task, resulting in overly constraimedi&e

We address these limitations with a nonparametric method. Instead of using
a parametric transformation(\), we allow the transformed eigenvalugs =
r(A),i = 1...n to be almost independent. The only additional condition is that
1;'s have to be non-increasing, to encourage smooth functions overapk.don-
der this condition, we find the set of optimal spectral transformatitimat maxi-
mizes the kernel alignment to the labeled data. The main advantage of usied) ker
alignment is that it gives us a convex optimization problem, and does not suf-
fer from poor convergence to local minima. The optimization problem in géner
is solved using semi-definite programming (SDP) (Boyd & Vandenberda})20

We use a slightly different notation wherds the inverse of that in (Smola & Kondor, 2003).
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Figure 8.2: The kernel constructed from the Laplacian in Figure 8.1, wéhtsum
transformation(\) = 1/(A + 0.05).

however, in our approach the problem can be formulated in terms of aficadly
constrained quadratic programming (QCQP), which can be solved marie ety
than a general SDP. We review QCQP next.

8.3 Convex Optimization using QCQP

Let K; = ¢;¢; ,i = 1---n be the outer product matrices of the Laplacian’s eigen-
vectors. Our kernek is a linear combination

K=Y ik (8.4)
i=1

wherep; > 0. We formulate the problem of finding the optimal spectral transfor-
mation as one that finds the interpolation coefficignts\;) = u;} by optimizing
some convex objective function dd. To maintain the positive semi-definiteness
constraint onk, one in general needs to invoke SDPs (Boyd & Vandenberge,
2004). Semi-definite optimization can be described as the problem of optimizing
a linear function of a symmetric matrix subject to linear equality constraints and
the condition that the matrix be positive semi-definite. The well known linear pro
gramming problem can be generalized to a semi-definite optimization by replacing
the vector of variables with a symmetric matrix, and replacing the non-negativity
constraints with a positive semi-definite constraints. This generalizationit&her
several properties: it is convex, has a rich duality theory and allowsétieally
efficient solution algorithms based on iterating interior point methods to either fol-
low a central path or decrease a potential function. However, a limitatioDB&%

their computational complexity (Boyd & Vandenberge, 2004), which hstsicted

their application to small-scale problems (Lanckriet et al., 2004). Howewer,
important special case of SDPs gadratically constrained quadratic programs
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(QCQP) which are computationally more efficient. Here both the objective fun
tion and the constraints are quadratic as illustrated below,

minimize %xTPox +q = + 10 (8.5)
subject to %xTPZ-x +¢/z+r <0 i=1---m (8.6)
Ar =1b (8.7)
whereP; ¢ S, 1 = 1,...,m, whereS} defines the set of square symmetric

positive semi-definite matrices. In a QCQP, we minimize a convex quadratic func
tion over a feasible region that is the intersection of ellipsoids. The number of
iterations required to reach the solution is comparable to the number regoired f
linear programs, making the approach feasible for large datasets. EQuaswob-
served in (Boyd & Vandenberge, 2004), not all SDPs can be relax€CQPs.
For the semi-supervised kernel learning task presented here solvBigRwould
be computationally infeasible.
Recent work (Cristianini et al., 2001a; Lanckriet et al., 2004) haggeedker-
nel target alignmenthat can be used not only to assess the relationship between
the feature spaces generated by two different kernels, but alscetgsabe similar-
ity between spaces induced by a kernel and that induced by the labelsthess
Desirable properties of the alignment measure can be found in (Cristidrahj e
2001a). The crucial aspect of alignment for our purposes is thattitai@ption can
be formulated as a QCQP. The objective function is the empirical kernehadign
score:
A(KtT,T) _ <Kt7"’T>F

\/<Ktra KtT>F<T7 T)F
where Ky, is the kernel matrix restricted to the training pointd/, N) » denotes
the Frobenius product between two square matrdésN)p = Eij mijni; =
tracg M/ N T), andT is the target matrix on training data, with enffy; set to+1
if y; = y; and—1 otherwise. Note for binarf+1, —1} training labelsY7, this
is simply the rank one matri¥’ = Y.Y,". K is guaranteed to be positive semi-
definite by constraining,; > 0. Our kernel alignment problem is special in that
the K;’s were derived from the graph Laplacian with the goal of semi-supsdlvis
learning. We require smoother eigenvectors to receive larger coetfices shown
in the next section.

(8.8)

8.4 Semi-Supervised Kernels with Order Constraints

As stated above, we would like to maintain a decreasing order on the spectral
transformationy,; = r()\;) to encourage smooth functions over the graph. This
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motivates the set adrder constraints
Wi = Pit1, t=1---n—1 (8.9)
We can specify the desired semi-supervised kernel as follows.

Definition 1 An order constrained semi-supervised kerhels the solution to the
following convex optimization problem:

max A(Ky, T) (8.10)
Subject to K=" kK, (8.11)
pi =0 (8.12)

trace(K) =1 (8.13)

Wi > piv1, t=1---n—1 (8.14)

whereT is the training target matrix<; = ¢;¢; and¢;’s are the eigenvectors of
the graph Laplacian.

The formulation is an extension to (Lanckriet et al., 2004) with order caimssy;
and with special componenfs;’s from the graph Laplacian. Singe > 0 and
K;’s are outer productgdg will automatically be positive semi-definite and hence
a valid kernel matrix. The trace constraint is needed to fix the scale ingarizn
kernel alignment. It is important to notice the order constraints are coavexas
such the whole problem is convex. This problem is equivalent to:

maxg (K, T)p (8.15)
subjectto (K, Ki)p <1 (8.16)
K =300 ki (8.17)

pi >0 (8.18)

Wi > piv1, Vi (8.19)

Let vec(A) be the column vectorization of a matrik Defining al? x m matrix
M = [vec(KLt,.) e U@C(Km,tr)] (8.20)

it is not hard to show that the problem can then be expressed as

max, vec(T)"Mu (8.21)
subject to [|Mpll <1 (8.22)
pi = 0 (8.23)

,u,iZuiH, 1=1---n—1 (8.24)
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The objective function is linear in, and there is a simple cone constraint, making
it a quadratically constrained quadratic program (QC&P)

An improvement of the above order constrained semi-supervised lemble
obtained by taking a closer look at the Laplacian eigenvectors with zerovailge
ues. As stated earlier, for a graph Laplacian there wilk lzero eigenvalues if the
graph has: connected subgraphs. Thesigenvectors are piecewise constant over
individual subgraphs, and zero elsewhere. This is desirable wher, with the
hope that subgraphs correspond to different classes. However if, the graph is
connected. The first eigenvector is a constant vector over all nodes. The corre-
spondingkK( is a constant matrix, and acts as a bias term in (8.1). In this situation
we do not want to impose the order constraint> us on the constant bias term,
rather we leu, vary freely during optimization:

Definition 2 An improved order constrained semi-supervised kefkigk the so-
lution to the same problem in Definition 1, but the order constraints (8.14) apply
only to non-constant eigenvectors:

Wi > piv1, @=1---n—1, andg; not constant (8.25)

In practice we do not need alleigenvectors of the graph Laplacian, or equiva-
lently all n K;'s. The firstm < n eigenvectors with the smallest eigenvalues work
well empirically. Also note we could have used the fact thigt are from orthog-
onal eigenvectors; to further simplify the expression. However we neglect this
observation, making it easier to incorporate other kernel componentsagsary.

It is illustrative to compare and contrast the order constrained semixgsger
kernels to other semi-supervised kernels with different spectral tanafion. We
call the original kernel alignment solution in (Lanckriet et al., 2004haximal-
alignmentkernel. It is the solution to Definition 1 without the order constraints
(8.14). Because it does not have the additional constraints, it maximizes| ke
alignment among all spectral transformation. The hyperparametefthe Diffu-
sion kernel and Gaussian fields kernel (described earlier) can tmetehy max-
imizing the alignment score too, although the optimization problem is not neces-
sarily convex. These kernels use different information in the origingldaan
eigenvalues\;. The maximal-alignment kernels ignoke altogether. The order
constrained semi-supervised kernels only useotder of \; and ignore their ac-
tual values. The diffusion and Gaussian field kernels use the actu@svala
terms of the degree of freedom in choosing the spectral transformatmnthe
maximal-alignment kernels are completely free. The diffusion and Gaussldn fi

2An alternative formulation results in a quadratic program (QP), whichsgefahan QCQP.
Details can be found dittp://www.cs.cmu.edu/"zhuxj/pub/QP.pdf
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kernels are restrictive since they have an implicit parametric form and aeljree
parameter. The order constrained semi-supervised kernels incepoesirable
features from both approaches.

8.5 Experiments

We evaluate the order constrained kernels on seven datalsasgball-hockey
(1993 instances / 2 classep)-mac (1943/2) andeligion-atheism (1427/2) are
document categorization tasks taken from the 20-newsgroups dathsatistance
measure is the standard cosine similarity between tf.idf veaboes:two (2200/2),
odd-even (4000/2) andten digits (4000/10) are handwritten digits recognition
tasks. one-two is digits “1” vs. “2”; odd-evenis the artificial task of classify-
ingodd“1, 3,5, 7,9"vs. even “0, 2, 4, 6, 8" digits, such that eacb<lzas several
well defined internal clustersen digits is 10-way classificationisolet (7797/26)

is isolated spoken English alphabet recognition from the UCI repositonthEse
datasets we use Euclidean distance on raw features. We use 10NN hiedeig
graphs on all datasets except isolet which is 100NN. For all datasetssavihe
smallestm = 200 eigenvalue and eigenvector pairs from the graph Laplacian.
These values are set arbitrarily without optimizing and do not create & afa
vantage to the proposed kernels. For each dataset we test on fivertitfebeled
set sizes. For a given labeled set size, we perform 30 random trialsiah & la-
beled set is randomly sampled from the whole dataset. All classes mustdesipre
in the labeled set. The rest is used as unlabeled (test) set in that trial. Wareomp
5 semi-supervised kernels (improved order constrained kernel, ocodestrained
kernel, Gaussian field kernel, diffusion kerhaind maximal-alignment kernel),
and 3 standard supervised kernels (RBF (bandwidth learned usoid &rbss val-
idation),linear and quadratic). We compute the spectral transformatiorrder o
constrained kernels and maximal-alignment kernels by solving the QCQP using
standard solvers (SeDuMi/YALMIP). To compute accuracy we use ttersels in

a standard SVM. We choose the bound on slack variablesth cross validation
for all tasks and kernels. For multiclass classification we perform oastgall
and pick the class with the largest margin.

Table 8.1 through Table 8.7 list the results. There are two rows for edich ce
The upper row is the averagdest set accuracyith one standard deviation; The
lower row is the averagtaining set kernel alignmentaind in parenthesis the av-
eragerun time in secondfor QCQP on a 2.4GHz Linux computer. Each number
is averaged over 30 random trials. To assess the statistical significhtimere-

3The hyperparametets are learned with théminbnd() function in Matlab to maximize kernel
alignment.
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semi-supervised kernels standard kernels
Training Improved Order Gaussian Diffusion Max-alig RBF Linear Quadratic
set size Order Field o = 200
10 95.7+ 8.9 93.9+12.0 63.1+15.8 65.8+22.8 93.21+ 6.8 53.6+ 5.5 68.1+ 7.6 68.1+ 7.6
0.90 (2) 0.69 (1) 0.35 0.44 0.95 (1) 0.11 0.29 0.23
30 98.04+ 0.2 97.3+ 21 91.849.3 59.14+17.9 96.6+ 2.2 69.3+11.2 78.5+ 8.5 77.8+10.6
0.91(9) 0.67(9) 0.25 0.39 0.93(6) 0.03 0.17 0.11
50 97.9+ 05 97.8+£ 0.6 96.7£ 0.6 93.7£ 6.8 97.0+ 1.1 77.7+83 84.1+ 7.8 75.6+14.2
0.89 (29) 0.63 (29) 0.22 0.36 0.90 (27) 0.02 0.15 0.09
70 97.9+ 0.3 97.9+ 0.3 96.8+ 0.6 975+ 14 97.2+ 0.8 839+ 7.2 87.5+ 6.5 76.1+14.9
0.90 (68) 0.64 (64) 0.22 0.37 0.90 (46) 0.01 0.13 0.07
90 98.0+ 0.5 98.0+ 0.2 97.0£ 0.4 97.8+ 0.2 97.6+ 0.3 885+ 5.1 89.3+ 4.4 73.3+16.8
0.89 (103) 0.63 (101) 0.21 0.36 0.89 (90, 0.01 0.12 0.06

Table 8.1: Baseball vs. Hockey

semi-supervised kernels standard kernels
Training Improved Order Gaussian Diffusion Max-alig RBF Linear Quadratic
set size Order Field o = 100
10 87.0£50 849172 56.4+ 6.2 57.8+115 71.1+9.7 | 51.6+34 63.0+ 5.1 62.3+ 4.2
0.71(1) 0.57 (1) 0.32 0.35 0.90(1) 0.11 0.30 0.25
30 90.3+1.3 89.6+23 76.4+ 6.1 79.6+11.2 854+ 39 | 626+9.6 71.84+ 5.5 71.2+5.3
0.68(8) 0.49(8) 0.19 0.23 0.74 (6) 0.03 0.18 0.13
50 91.3+ 0.9 90.5+ 1.7 81.1+ 4.6 87.5+ 2.8 88.4+ 2.1 67.8+ 9.0 77.6+ 4.8 75.7+ 5.4
0.64 (31) 0.46 (31) 0.16 0.20 0.68 (25)| 0.02 0.14 0.10
70 91.5+ 0.6 90.8+ 1.3 84.6+ 2.1 90.5+ 1.2 89.6+ 1.6 747+ 74 80.2+ 4.6 74.3+ 8.7
0.63 (70) 0.46 (56) 0.14 0.19 0.66 (59)| 0.01 0.12 0.08
90 91.5+06 91.3+13 86.3+ 2.3 91.3+1.1 90.3+ 1.0 | 79.0+6.4 82,5+ 4.2 79.1+ 7.3
0.63 (108) 0.45 (98) 0.13 0.18 0.65 (84), 0.01 0.11 0.08

Table 8.2: PC vs. MAC

semi-supervised kernels standard kernels
Training Improved Order Gaussian Diffusion Max-alig RBF Linear Quadratic
set size Order Field o = 130
10 72.8+11.2 70.9+10.9 55.2+ 5.8 60.9+£10.7 60.7+7.5 | 5584538 60.1+ 7.0 61.2+ 4.8
0.50 (1) 0.42 (1) 0.31 0.31 0.85(1) 0.13 0.30 0.26
30 842+ 24 83.0£ 29 71.2+ 6.3 80.3+ 5.1 744+ 54 | 634+65 63.7+ 8.3 70.1+ 6.3
0.38(8) 0.31(6) 0.20 0.22 0.60 (7) 0.05 0.18 0.15
50 845+ 23 83.5+ 25 80.4+ 4.1 83.5+ 2.7 774+ 6.1 | 69.3+6.5 69.4+ 7.0 70.7+£ 85
0.31(28) 0.26 (23) 0.17 0.20 0.48 (27)) 0.04 0.15 0.11
70 857+ 14 85.3+ 1.6 83.0+ 2.9 854+ 1.8 823+ 3.0 | 73.1+58 75.7+ 6.0 71.0+10.0
0.29 (55) 0.25 (42) 0.16 0.19 0.43 (51), 0.03 0.13 0.10
90 86.6+ 1.3 864+ 15 845+ 2.1 86.2+ 1.6 828+ 26 | 77.7£5.1 746+ 7.6 70.0+11.5
0.27 (86) 0.24 (92) 0.15 0.18 0.40 (85)| 0.02 0.12 0.09

Table 8.3: Religion vs. Atheism

semi-supervised kernels standard kernels
Training Improved Order Gaussian Diffusion Max-alig| RBF Linear Quadratic
set size Order Field o = 1000
10 96.2+ 2.7 90.6+14.0 58.2+17.6 59.4+18.9 85.4+11.5 78.7+14.3 85.1+ 5.7 85.7+ 4.8
0.87(2) 0.66 (1) 0.43 0.53 0.95 (1) 0.38 0.26 0.30
20 96.4+ 2.8 93.9+ 8.7 87.0+16.0 83.2+19.8 94.5+ 1.6 90.4+ 4.6 86.0+ 9.4 90.9+ 3.7
0.87 (3) 0.64 (4) 0.38 0.50 0.90 (3) 0.33 0.22 0.25
30 98.2+ 2.1 97.2+ 25 98.1+ 2.2 98.1+ 2.7 96.4+ 2.1 93.6+ 3.1 89.6+ 5.9 9294+ 2.8
0.84(8) 0.61(7) 0.35 0.47 0.86 ( 6) 0.30 0.17 0.24
40 98.3+ 1.9 96.5+ 2.4 98.9+ 1.8 99.1+ 14 96.3+ 2.3 94.0+ 2.7 91.6+ 6.3  94.9+ 2.0
0.84 (13) 0.61 (15) 0.36 0.48 0.86 (11) 0.29 0.18 0.21
50 98.44+ 1.9 95.64 9.0 99.4+ 0.5 99.6+ 0.3 96.6+ 2.3 96.1+2.4 93.0+£ 3.6  95.8+23
0.83 (31) 0.60 (37) 0.35 0.46 0.84 (25) 0.28 0.17 0.20

Table 8.4: One vs. Two
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semi-supervised kernels standard kernels

Training Improved Order Gaussian Diffusion Max-alig RBF Linear Quadratic
set size Order Field o = 1500
10 69.6+ 6.5 68.8+ 6.1 65.5+ 8.9 68.4+ 85 55.7t 4.4 65.0+ 7.0 63.1+ 6.9 65.4+ 6.5
0.45 (1) 0.41 (1) 0.32 0.34 0.86 (1) 0.23 0.25 0.27
30 824+ 4.1 82.0+ 4.0 79.6t+ 4.1 83.0+ 4.2 67.2£ 5.0 77.7+ 35 724+ 6.1 76.5+ 5.1
0.32(6) 0.28(6) 0.21 0.23 0.56 ( 6) 0.10 0.11 0.16
50 87.6+ 3.5 87.5+ 3.4 85.9+ 3.8 89.1+ 2.7 76.0+ 5.3 81.8+ 2.7 7444+ 9.2 81.3+ 3.1
0.29 (24) 0.26 (25) 0.19 0.21 0.45 (26) 0.07 0.09 0.12
70 89.2+ 2.6 89.0+ 2.7 89.0+ 1.9 90.3+ 2.8 80.9+ 4.4 84.4+2.0 73.61+10.0 83.8+ 2.8
0.27 (65) 0.24 (50) 0.17 0.20 0.39 (51) 0.06 0.07 0.12
90 915+ 15 9144+ 1.6 90.54+ 1.4 919+ 1.7 85.44 3.1 86.1+ 1.8 66.14+14.8 85.5+ 1.6
0.26 (94) 0.23 (97) 0.16 0.19 0.36 (88) 0.05 0.07 0.11
Table 8.5: Odd vs. Even
semi-supervised kernels standard kernels
Training Improved Order Gaussian Diffusion Max-alig RBF Linear Quadratic
set size Order Field o = 2000
50 76.6+ 4.3 71.5+ 5.0 41.4+ 6.8 49.8+ 6.3 70.3+ 5.2 57.0+ 4.0 50.24+ 9.0 66.3+ 3.7
0.47 (26) 0.21 (26) 0.15 0.16 0.51 (25) -0.62 -0.50 -0.25
100 84.8+ 2.6 83.4+ 2.6 63.74+ 3.5 72,54+ 3.3 80.7+ 2.6 69.4+ 1.9 56.0+ 7.8 772+ 2.3
0.47 (124) 0.17 (98) 0.12 0.13 0.49 (100] -0.64 -0.52 -0.29
150 86.5+ 1.7 86.4+ 1.3 75.1+ 3.0 804+ 2.1 845+ 1.9 752+ 14 56.2+ 7.2 81.4+ 2.2
0.48 (310) 0.18 (255) 0.11 0.13 0.50 (244 -0.66 -0.53 -0.31
200 88.1+ 1.3 88.0+ 1.3 80.4+ 25 84.4+ 1.6 86.0+ 1.5 783+ 13 60.84+ 7.3 84.3+ 1.7
0.47 (708) 0.16 (477) 0.10 0.11 0.49 (523 -0.65 -0.54 -0.33
250 89.1+1.1 89.3+ 1.0 84.6+ 1.4 87.2+13 87.2+ 13 804+ 14 61.3+ 7.6 85.7+ 1.3
0.47 (942) 0.16 (873) 0.10 0.11 0.49 (706 -0.65 -0.54 -0.33
Table 8.6: Ten Digits (10 classes)
semi-supervised kernels standard kernels
Training Improved Order Gaussian Diffusion Max-alig| RBF Linear Quadratic
set size Order Field o = 30
50 56.04+ 3.5 42.0+ 5.2 412429 29.0+ 2.7 50.1+ 3.7 28.7+ 2.0 30.04+ 2.7 23.7+ 24
0.27 (26) 0.13 (25) 0.03 0.11 0.31 (24) -0.89 -0.80 -0.65
100 64.6+ 2.1 59.0+ 3.6 58.5+ 2.9 47.4+ 2.7 63.2+ 1.9 46.3+ 2.4 46.6+ 2.7 42.0+ 2.9
0.26 (105) 0.10 (127) -0.02 0.08 0.29 (102 -0.90 -0.82 -0.69
150 67.6+ 2.6 65.2+ 3.0 65.4+ 2.6 57.2+ 2.7 67.9+ 2.5 57.6+ 1.5 57.3+ 1.8 53.8+ 2.2
0.26 (249) 0.09 (280) -0.05 0.07 0.27 (221 -0.90 -0.83 -0.70
200 71.0+ 1.8 70.9+ 2.3 70.6+ 1.9 64.8+ 2.1 723+ 1.7 63.9+ 1.6 64.2+ 2.0 60.5+ 1.6
0.26 (441) 0.08 (570) -0.07 0.06 0.27 (423 -0.91 -0.83 -0.72
250 718+ 2.3 736+ 15 73.7£ 1.2 69.8+ 1.5 742+ 15 68.8+ 1.5 69.5+ 1.7 66.2+ 1.4
0.26 (709) 0.08 (836) -0.07 0.06 0.27 (665 -0.91 -0.84 -0.72
Table 8.7: ISOLET (26 classes)
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sults, we perform paire¢ttest on test accuracy. We highlight the best accuracy
in each row, and those that cannot be determined as different fromegteviith
pairedi-test at significance level 0.05. The semi-supervised kernels tend to out-
perform standard supervised kernels. The improved order coredrk@rnels are
consistently among the best. Figure 8.3 shows the spectral transformatadn
the semi-supervised kernels for different tasks. These are for thr@aB0Owith the
largest labeled set size in each task. Thaxis is in increasing order of; (the
original eigenvalues of the Laplacian). The mean (thick lines)-ahdtandard de-
viation (dotted lines) of only the top 5@'s are plotted for clarity. The, values are
scaled vertically for easy comparison among kernels. As expected the nkaxima
alignment kernels’ spectral transformation is zigzagged, diffusion asgs&an
field’s are very smooth, while order constrained kernels’ are in betw&bka or-
der constrained kernels (green) have laigédecause of the order constraint. This
seems to be disadvantageous — the spectral transformation tries to balamtce it
by increasing the value of othgr’s so that the constarit’’s relative influence is
smaller. On the other hand the improved order constrained kernels (lalthmk)
11 to be small. As a result the rest’'s decay fast, which is desirable.

In conclusion, the method is both computationally feasible and results in im-
provements to classification performance when used with support veatbimaa.
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Figure 8.3: Spectral transformation of the 5 semi-supervised kernels.
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Chapter 9

Sequences and Beyond

So far, we have treated each data point individually. However in martylgns
the data has complex structures. For example in speech recognition the skxta is
quential. Most semi-supervised learning methods have not addresspbthim.
We use sequential data as an example in the following discussion becausmit is
ple. Nevertheless the discussion applies to other complex data structurgsdike
trees etc.

It is important to clarify the setting. By sequential data we do not mean each
data itemx is a sequence and we givesingle labely to the whole sequence.
Instead we want to give individual labels to the constituent data points irethe s
guence.

There are generative and discriminative methods that can be usedrior se
supervised learning on sequences.

The Hidden Markov Model (HMM) is such a generative methods. Specifi-
cally the standard EM training with forward-backward algorithm (also kmew
Baum-Welch (Rabiner, 1989)) is a sequence semi-supervised leatgorghanm,
although it is usually not presented that way. The training data typicallyistsns
of a small labeled set withlabeled sequencdsX;, Y.} = {(x1,y1) - .- (x1,¥1) },
and a much larger unlabeled set of sequen€es= {x;;1...X;4,}. We use
bold fontx; to represent thé-th sequence with lengthy;, whose elements are
xi1 ... Tim,. Similarly y; is a sequence of labels; ... yim,,. The labeled set is
used to estimate initial HMM parameters. The unlabeled data is then used to run
the EM algorithm on, to improve the HMM likelihoo#(X;) to a local maxi-
mum. The trained HMM parameters thus are determined by both the labeled and
unlabeled sequences. This parallels the mixture models and EM algorithm in the
i.i.d. case. We will not discuss it further in the thesis.

For discriminative methods one strategy is to use a kernel machine for se-

69
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guences, and introduce semi-supervised dependency via the ker@dlapier 8.
Recent kernel machines for sequences and other complex structciteseiter-
nel Conditional Random Fields (KCRFs) (Lafferty et al., 2004) and {Wexgin
Markov Networks (Taskar et al., 2003), which are generalization aflagre-
gression and support vector machines respectively to structureditiatse kernel
machines by themselves are not designed specifically for semi-supeledsed
ing. However we can use a semi-supervised kernel, for example thie kgapels
in Chapter 8, with the kernel machines. This results in semi-supervisedrigarn
methods on sequential data.

The idea is straightforward. The remainder of the chapter focuses ®FKC
describing the formalism and training issues, with a synthetic example on semi-
supervised learning.

9.1 Cliques and Two Graphs

Before we start, it is useful to distinguish two kinds of graphs in KCRF éwnis
supervised learning. The first grapss) represents the conditional random field
structure for example a linear chain graph for sequences. In this case the size of
g is the length of the sequence. In generakidte the features og,’s nodes and

y the labels. Aclique c is a subset of the nodes which is fully connected, with
any pair of nodes joined by an edge. Lyetbe the labels on the clique. We want
Mercer kerneld< to compare cliques in different graphs,

K((gsaxa CuyC)7(g/57X/7C/7yé’)) S R (91)

Intuitively, this assigns a measure of similarity between a labeled clique in one
graph and a labeled clique in a (possibly) different graph. We denoté pyhe
associated reproducing kernel Hilbert space, anffl py the associated norm.

In the context of semi-supervised learning, we are interested in kerils w
the special form:

K((gs,%,¢,5¢), (85, %, yl)) =¥ (K'(%c,X..), 8, Yo, 8 Vi) (9.2)

i.e. some function) of a kernelK’, where K’ depends only on the features, not
the labels. This is where the second graph (dengjg@adomes in.g; is the semi-
supervised graph discussed in previous chapters. Its nodes argties g, in
both labeled and unlabeled data, and edges represent similarity betwebaqués.
The size ofgy, is the total number of cliques in the whole dataset. It however
does not represent the sequence structgrds used to derive the Laplacian and
ultimately the kernel matrix’ (x., x.), as in Chapter 8.
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9.2 Representer Theorem for KCRFs

We start from a functiory which, looking at a cliqued) in graph g5, x) and an
arbitrary labeling of the cliquey(.), computes a ‘compatibility’ score. That is,
f(gs,x,c,y.) — R. We define a conditional random field

p(ylgs,x) = 27 (gs, %, f) exp (Z f(gs,x, c,yc)) (9:3)

The normalization factor is

Z(gs, %, f) = ZeXp (Zf 8s.X,C, Y, ) (9.4)

Notice we sum over all possible labelings of all cliques. The conditionaaan
field induces a loss function, theegative log loss

o(ylgs: %, f) (9.5)
= —logp(ylgs,x) (9.6)

= =) f(gsx,cyc)+logd exp (Zf(gijm%)) 9.7)
c y’ c

We now extend the standard “representer theorem” of kernel machdimasl¢
dorf & Wahba, 1971) to conditional graphical models. Consider a reigethloss
function (i.e. risk) of the form

l
=Y o (y91exD, 1) + (11 flx) (98)

i=1

on a labeled training set of sizef? is a strictly increasing function. It is important
to note that the risk depends on all possible assignmerd§labels to each clique,
not just those observed in the labeled datd. This is due to the normalization
factor in the negative log loss. We have the following representer thetoem
KCRFs:

Proposition (Representer theorem for CRFs) The minimizerf* of the risk
(9.8), if it exists, has the form

f*(gS7X7C7yC Zzza g8)7 ()7cl7y/)7(gs7x7c7yc)> (9'9)

i=1 ¢ 'y’
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where the suny’ is over all labelings of clique’. The key property distinguish-
ing this result from the standard representer theorem is that the “duaahpters”
aS) (y') now depend orll assignments of labels. That is, for each training graph
i, and each clique’ within the graph, an@ach labelingy’ of the clique, not just
the labeling in the training data, there is a dual parameter

The difference between KCRFs and the earlier non-kernel versi@Réts is
the representation gf. In a standard non-kernel CRFjs represented as a sum of
weights times feature functions

f(gS,X,C, YC) = AT(I)(g.97X7 c, yc) (910)

whereA is a vector of weights (the “primal parameters”), abds a set of fixed
feature functions. Standard CRF learning finds the optifnal herefore one ad-
vantage of KCRFs is the use of kernels which can correspond to infintierésa
In addition if we plug in a semi-supervised learning kernel to KCRFs, wdmhta
semi-supervised learning algorithm on structured data.

Let us look at two special cases of KCRF. In the first case let the clipgidse
verticesv, and with a special kernel

K((g&X?Uay’U)a(gwa/v(U/?yi/)) K/(w’lh )5(%;% ) (911)

The representer theorem states that

l
=3 DK (,2) (9.12)
(i

i=1 VEG )

Under the probabilistic model 9.3, this is simply kernel logistic regressionadt h
no ability to model sequences.

In the second case let the cliques be edges connecting two veriees Let
the kernel be

K((gs>x U1U2ayv1yvz) (géaxl Uivéa%lyia)) (913)
= K'(zvy, 2,)0Yors Yoy ) + 0 Wors Yo, )0 Yoo Yoy (9.14)

and we have

f* (':UUI ’ yvl y’U2 Z Z y’l}1 ajvl ) ’l(,L)) + a(yvl ) y’U2) (915)

=1, (‘l)

which is a simple type of semiparametric CRF. It has rudimentary ability to model
sequences with(y,, , ¥, ), Similar to a transition matrix between states. In both
cases, we can use a graph kerfiélon both labeled and unlabeled data for semi-
supervised learning.
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9.3 Sparse Training: Clique Selection

The representer theorem shows that the minimizing functiensupported by la-
beled cliques over the training examples; however, this may result in ametyre
large number of parameters. We therefore pursue a strategy of indediyealect-
ing cliques in order to greedily reduce the risk. The resulting procedyaralel
to forward stepwise logistic regression, and to related methods for Kegistic
regression (Zhu & Hastie, 2001).

Our algorithm will maintain aactive set{ g x0 ¢, yc)}, each item uniquely
specifies a labeled clique. Again notice the labeliggsire not necessarily those
appearing in the training data. Each labeled clique can be representedaby a
sis functionh(-) = K((g!”,x®, c,y.),") € Hx, and is assigned a parameter

ap = a((f) (y¢). We work with the regularized risk

l

Ro(f) = 300 (vl x. 1) + 2 1 916)

i=1

whereg is the negative log loss of equation (9.5). To evaluate a candidaire
strategy is to compute thgain sup,, R4(f) — Re(f + «h), and to choose the
candidateh having the largest gain. This presents an apparent difficulty, since the
optimal parametet: cannot be computed in closed form, and must be evaluated nu-
merically. For sequence models this would involve forward-backwardizdions

for each candidatg, the cost of which is prohibitive.

As an alternative, we adopt the functional gradient descent agpreddch
evaluates a small change to the current function. For a given candidedesider
addingh to the current model with small weight thus f — f + ¢h. Then
Ry(f + €h) = Ry(f) + edRy(f, h) + O(e?), where the functional derivative of
Ry at f in the directionh is computed as

dRy(f,h) = Eslh] = E[l] + \f,h)k (9.17)

whereE[h] = 3. 5 h(g?, x®, ¢, y{) is the empirical expectation arigy ] =
Sy e p(ylx®, HE?, xD ¢, y,) is the model expectation conditioned on
x. The ideais that in direction'swhere the functional gradiedt,( f, h) is large,
the model is mismatched with the labeled data; this direction should be added to the
model to make a correction. This results in the greedy clique selection algorithm,
as summarized in Figure 9.1.

An alternative to the functional gradient descent algorithm above is to detima
parametersy;, for each candidate. When each candidate clique is a vertex, the
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Initialize with f = 0, and iterate:
1. For each candidate € Hpg, supported by a single labeled
clique, calculate the functional derivatid&( f, h).

2. Select the candidate= arg max,|dR,(f, h)| having the largest
gradient direction. Sef — f + aph.

3. Estimate parametets; for each activef by minimizing Ry (f).

Figure 9.1: Greedy Clique Selection. Labeled cligues encode basis fustio
which are greedily added to the model, using a form of functional gradistent.

Figure 9.2: Left: The galaxy data is comprised of two interlocking spiralsthege
with a “dense core” of samples from both classes. Center: Kernel logegiies-
sion comparing two kernels, RBF and a graph kernel using the unlabated d
Right: Kernel conditional random fields, which take into account the estipl
structure of the data.

gain can be efficiently approximated using a mean field approximation. Urider th
approximation, a candidate is evaluated according to the approximate gain

Ry(f) — Ry(f + ah) (9.18)
~ Y Z(£xD) Ty P xD, f) exp(ah(x®,y())) + A(f, h(9.19)

which is a logistic approximation. Details can be found in Appendix E.

9.4 Synthetic Data Experiments

In the experiments reported below for sequences, the marginal probabiliie =
1|x) and expected counts for the state transitions are required; these aretedmp
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using the forward-backward algorithm, with log domain arithmetic to avoid un-
derflow. A quasi-Newton method (BFGS, cubic-polynomial line searchyesi wio
estimate the parameters in step 3 of Figure 9.1.

To work with a data set that will distinguish a semi-supervised graph kernel
from a standard kernel, and a sequence model from a non-seqomt, we
prepared a synthetic data set (“galaxy”) that is a variant of spiraésFgpire 9.2
(left). Note data in the dense core come from both classes.

We sample 100 sequences of length 20 according to an HMM with two states,
where each state emits instances uniformly from one of the classes. Thé&@%s
chance of staying in the same state, and the initial state is uniformly chosen. The
idea is that under a sequence model we should be able to use the conteterto d
mine the class of an example at the core. However, under a non-sequedel
without the context, the core region will be indistinguishable, and the dadaset
whole will have about 20% Bayes error rate. Note the choice of semirgapd
vs. standard kernels and sequence vs. non-sequence modelshagooal; the
four combinations are all tested on.

We construct the semi-supervised graph kernel by first building arigiied
10-nearest neighbor graph. We compute the associated graph Lapacand
then the graph kerngk = 10 (A +10761)"". The standard kernel is the radial
basis function (RBF) kernel with an optimal bandwidth= 0.35.

First we apply both kernels to a non-sequence model: kernel logistiesggn
(9.12), see Figure 9.2 (center). The sequence structure is ignosgdramdom
trials were performed with each training set size, which ranges from 20Q@o 4
points. The error intervals are one standard error. As expected thbdabeled
set size is small, the RBF kernel results in significantly larger test errorthean
graph kernel. Furthermore, both kernels saturate at the 20% Bagesadg.

Next we apply both kernels to a KCRF sequence model 9.15. Experimental
results are shown in Figure 9.2 (right). Note thexis is the number of train-
ing sequences: Since each sequence has 20 instances, the rangsaim¢has
Figure 9.2 (center). The kernel CRF is capable of getting below the 20gésBa
error rate of the non-sequence model, with both kernels and sufficiesiethdata.
However the graph kernel is able to learn the structure much faster th&Bthe
kernel. Evidently the high error rate for small label data sizes preventRRBfe
model from effectively using the context.

Finally we examine clique selection in KCRFs. For this experiment we use 50
training sequences. We use the mean field approximation and only sel@nt ver
cligues. At each iteration the selection is based on the estimated change orrisk f
each candidate vertex (training position). We plot the estimated change forisk
the first four iterations of clique selection, with the graph kernel and RBRe re-
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spectively in Figure 9.3. Smaller values (lowersaxis) indicate good candidates
with potentially large reduction in risk if selected. For the graph kernel, te fir
two selected vertices are sufficient to reduce the risk essentially to the minimum
(note in the third iteration the-axis scale is already0~%). Such reduction does

not happen with the RBF kernel.
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2nd position candidates

1st position candidates

graph kernel

1st position candidates 2nd position candidates

RBF kernel

Figure 9.3: Mean field estimate of the change in loss function with the grapklker
(top) and the RBF kernel (bottom) for the first four iterations of cliquectile on
the galaxy dataset. For the graph kernel the endpoints of the spirals@gencas

the first two cliques.
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Chapter 10

Harmonic Mixtures: Handling
Unseen Data and Reducing
Computation

There are two important questions to graph based semi-supervised ¢eareiin-
ods:

1. The graph is constructed only on the labeled and unlabeled data. Memy s
methods are transductive in nature. How can we handle unseen new data
points?

2. They often involve expensive manipulation on large matrices, for example
matrix inversion, which can b€ (n?). Because unlabeled data is relatively
easy to obtain in large quantity, the matrix could be too big to handle. How
can we reduce computation when the unlabeled dataset is large?

In this chapter we address these questions by combining graph method with a mix
ture model.

Mixture model has long been used for semi-supervised learning, e.gsfaau
mixture model (GMM) (Castelli & Cover, 1996) (Ratsaby & Venkatesh 5)98nd
mixture of multinomial (Nigam et al., 2000). Training is typically done with the
EM algorithm. It has several advantages: The model is inductive ardidsaan-
seen points naturally; It is a parametric model with a small number of parameters
However when there is underlying manifold structure in the data, EM may have
difficulty making thelabelsfollow the manifold: An example is given in Figure
10.1. The desired behavior is shown in Figure 10.2, which can be adHigvilhe
harmonic mixturenethod discussed in this Chapter.

79
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Mixture models and graph based semi-supervised learning methods make dif-
ferent assumptions about the relation between unlabeled data and ladedsths-
less, they are not mutually exclusive. It is possible that the data fits the campo
model (e.g. Gaussiamdcally, while the manifold structure appeagkbally. We
combine the best from both. From a graph method point of view, the resulting
model is a much smaller (thus computationally less expensive) ‘backbopk’ gra
with ‘supernodes’ induced by the mixture components; From a mixture model
point of view, it is still inductive and naturally handles new points, but als®the
ability for labels to follow the data manifold. Our approach is related to gragh re
ularization in (Belkin et al., 2004b), and is an alternative to the induction method
(Delalleau et al., 2005). It should be noted that we are interested in mixtutelso
with a large number (possibly more than the number of labeled points) of compo-
nents, so that the manifold structure can appear, which is differentgremious
works.

10.1 Review of Mixture Models and the EM Algorithm

In typical mixture models for classification, the generative process is tloavfo
ing. One first picks a clasg then chooses a mixture componemte {1... M}
by p(m|y), and finally generates a poimtaccording top(x|m). Thusp(z,y) =
2%21 p(y)p(m|y)p(z|m). In this paper we take a different but equivalent param-
eterization,

M

pla,y) =Y p(m)p(ylm)p(z|m) (10.1)

m=1

We allowp(y|m) > 0 for all y, enabling classes to share a mixture component.

The standard EM algorithm learns these parameters to maximize the log like-
lihood of observed data:

L£(©) = logp(zL,zv,yLlO) (10.2)
= > logp(zi,4il©) + Y logp(x;|O)
ieL it
— Zlogz p(yi|m)p(a;|m) +Zlogz p(z;|m)
icL i€V m=1

We introduce arbitrary distributiong(m|i) on mixture membership, one for each
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1. By Jensen’s inequality

M
c@::Zszmmmwwwmmm) (10.3)

il 1 qi(m|z;, yi)
p(m)p(z;|m)
1
+§] Ogmzl% mlz;)? (mM

Vv

M
Z Z gi(m|x;, y;) log p(m)p(yim)p(zijm) (10.4)

el m=1 qi(m|zi, yi)

*ZZ% mlz;) log PUTOPLE™) p(m)p(zi|m)

€U m=t ai(mlz:)

F(q,0) (10.5)

The EM algorithm works by iterating coordinate-wise ascend;@md© to max-
imize F(q,0). The E step fixe® and finds they that maximizesF(q, ©). We
denote the fixed at iterationt by p(m)®, p(y|m)® andp(z|m)®. Since the
terms of F has the form of KL divergence, it is easy to see that the optireie
the posterior omn:

p(m) p(yilm) Op(a|m)®
S p(k) O p(yi k) Op(ai k)
p(m)Wp(a|m)®
Zk 1p( ) (xl‘k

th)(m\xi,yi) = pmlzg,y) =

(t)(

;" (mlz;) = p(mlz;) = ieU (10.6)

The M step fixesy® and finds©(¢+1) to maximizeF. Taking the partial deriva-
tives and set to zero, we find

p(m)HY Z qi(m)® (10.7)
iELUU
D e, yi—1 gi(m)
00+ = p(y = 1jm)+) 5 i (10.8)
( Im) > di(m)®
1 9p(zilm)
, () p —
> qi(m) ) 96, 0 (10.9)

1€ LUU

The last equation needs to be reduced further with the specific gerenabidel
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for z, e.g. Gaussian or multinomial. For Gaussian, we have

(m)® g
i Qz m m’t
L > ieruy %(m) (t) (10.10)
2 ieruu 4i(m)
t t
) 2eienww ai(m) i — ) i = )" (10.11)
Yiero 6i(m)
In practice one can smooth the ML estimate of covariance to avoid deggnerac
sy At Bienow 6i(m) V(@i - pond ) (i — i) (10.12)
m €+ Y icrw a(m)®
After EM converges, the classification of a new pairis done by
M
ply=1lz) = > ply=1m)p(m|z)
m=1
M
=1
_ Zmzl p(y [m)p(x|m)p(m) (10.13)

>y pl|m)p(m)
10.2 Label Smoothness on the Graph

Graph-based semi-supervised learning methods enforce label smemothves a
graph, so that neighboring labels tend to have the same label. The gmph ha
nodesL U U. Two nodes are connected by an edge with higher weights if they
are more likely to be in the same class. The graph is represented hy the
symmetric weight matri¥/’, and is assumed given.

Label smoothness can be expressed in different ways. We use tigg ehthe
label posterior as the measure,

B(f) = 53 wylfi— )= TAf (10.14)

i,j=1
wheref is the label posterior vector, defined as

_ 6(yi,1) i€l
fi= { p(yi = 1]2;,0) i€U (10.15)

That is, f; is the probability that point having label 1 under the mixture model

©. The energy is small wheyi varies smoothly on the grappA = D — W

is the combinatorial Laplacian matrix, add is the diagonal degree matrix with

D;; = Zj w;j. See Chapter 4 for more details. Other smoothness measures are

possible too, for example those derived from the normalized Laplaciau(&tal.,

2004a) or spectral transforms (Zhu et al., 2005).
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10.3 Combining Mixture Model and Graph

We want to train a mixture model that maximizes the data log likelihood (10.3) and
minimizes the graph energy (10.14) at the same time. One way of doing so is to
learn the parameteggm), p(z|m), p(y|m) to maximize the objective

O=al—(1-a)E (10.16)

wherea € [0, 1] is a coefficient that controls the relative strength of the two terms.
The E term may look like a priOE_fTAf on the parameters. But it involves the
observed labelg;, and is best described as a discriminative objective, while

is a generative objective. This is closely related to, but different fromgtlaph
regularization framework of (Belkin et al., 2004b). Learning all the peaters
together however is difficult. Because of theterm, it is similar to conditional

EM training which is more complicated than the standard EM algorithm. Instead
we take a two-step approach:

e Step 1: Train all parametepgm), p(x|m), p(y|m) with standard EM, which
maximizesL only;

e Step 2: Fixp(m) andp(z|m), and only learm(y|m) to maximize (10.16).

It is suboptimal in terms of optimizing the objective function. However it has two
advantages: We created a concave optimization problem in the secondestep (
section 10.3.2); Moreover, we can use standard EM without modificatiencalV/
the solutionharmonic mixtures

We focus on step 2. The free parameterspdggm) form = 1... M. To sim-
plify the notation, we use the shorthaf\d = p(y = 1|m),andd = (61,...,0r)".
We first look at the special case with= 0 in the objective function (10.16), as it
has a particularly simple closed form solution and interpretation. Notice althoug
a = 0, the generative objectivg still influencesd throughp(m) and p(z|m)
learned in step 1.

10.3.1 The Special Case with = 0

We need to find the parametetghat minimizeE. ¢ are constrained if0, 1],
However let us look at thenconstraineaptimization problem first. Applying the
chain rule:

OF OF dfy

5. = ‘55 a8 (10.17)
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The first term is

oOF o .
o~ app A (10.18)
= % (fLALLfL +2f[ Arufu + fiAvu fu) (10.19)
= 28pvfr+28vufu (10.20)

where we partitioned the Laplacian matrix into labeled and unlabeled parecresp
tively. The second termis

% = (p(m|z111),s - .., p(m|z134)) " =R (10.21)

where we defined a x M responsibility matrixR such thaR;,,, = p(m/|z;), and
R,, is itsm-th column. We used the fact that foe U,

fi = plyi=1]x;,0) (10.22)
_ 2w Pm)p(yi = 1m)p(xi|m) 10.23
5 p(m)p(ilm) (10.29)
= D _p(mlz)p(y: = 1|m) (10.24)
= > p(m|a)0m (10.25)
Notice we can writefyy = R6. Therefore
aaTE = R, 2Avufu+2AuLfL) (10.26)

When we put allV/ partial derivatives in a vector and set them to zero, we find

22
00

where0 is the zero vector of length/. This is a linear system and the solution is

= R™(2AupyRO+2A0.fL) =0 (10.28)

=— R AyyR) R AuLSL (10.29)

Notice this is the solution to the unconstrained problem, where somight be
out of the boundo, 1]. If it happens, we set out-of-bour to their corresponding
boundary values of 0 or 1, and use them as starting point in a constingex
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optimization (the problem is convex, as shown in the next section) to find thalglo
solution. In practice however we found most of the time the closed form solutio
for the unconstrained problem is already within bounds. Even when sompa:
nents are out of bounds, the solution is close enough to the constraitieaiop
to allow quick convergence.

With the component class membershighe soft labels for the unlabeled data
are given by

fu=-RH (10.30)

Unseen new points can be classified similarly.

We can compare (10.29) with the (completely graph based) harmonic function
solution (Zhu et al., 2003a). The formerjfis = —R(RTAUUR)’1 R Ay fr;

The latter isfy = —A,}lUAULfL. Computationally the former only needs to invert
aM x M matrix, which is much cheaper than the latter:of u because typically

the number of mixture components is much smaller than the number of unlabeled
points. This reduction is possible becaifgeare now tied together by the mixture
model.

In the special case whet corresponds to hard clustering, we just created a
much smallebackbone graplwith supernodesnduced by the mixture compo-
nents. In this cas®;,, = 1 for clusterm to which pointi belongs, and 0 for all
otherM — 1 clusters. The backbone graph has the séntebeled nodes as in the
original graph, but only\/ unlabeled supernodes. Let; be the weight between
nodesi, j in the original graph. By rearranging the terms it is not hard to show that
in the backbone graph, the equivalent weight between supermodes{1 ... M}
is

ﬁ]st = Z Risttwij (10.31)
ijeu
and the equivalent weight between a supernoded a labeled nodec L is
Wy = Y Riswy (10.32)
icU

0 is simply the harmonic function on the supernodes in the backbone graph. Fo
this reasord < [0, 1] is guaranteed. Let(m) = {i|R;,, = 1} be the clustefn.
The equivalent weight between supernosligsreduces to

W= Y wy (10.33)
i€c(s), jec(t)

The supernodes are the clusters themselves. The equivalent weighite @aum
of edges between the clusters (or the cluster and a labeled node). Deasily
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Input: initial mixture modelp(m), p(z|m), p(y|m),m=1... M
dataxL, YL, Ty
graph Laplaciam\
1. Run standard EM on data and get converged ma@e), p(x|m), p(y|lm)
2. Fixp(m), p(z|m). Computed,, = p(y = 1jm) = — (RTAgyR) "R Ay [
3. Set out-of-bound’s to 0 or 1, run constrained convex optimization
Output: mixture modebp(m), p(z|m), p(y|/m),m=1... M

Table 10.1: The harmonic mixture algorithm for the special case0

create such a backbone graph by e.g. k-means clustering. In thebeses when
R is soft, the solution deviates from that of the backbone graph.

The above algorithm is listed in Table 10.1. In practice some mixture compo-
nents may have little or no responsibility(n) ~ 0). They should be excluded
from (10.29) to avoid numerical problems. In additionffis rank deficient we
use the pseudo inverse in (10.29).

10.3.2 The General Case witlae > 0

The objective (10.16) is concavefin To see this, we first writ& as

L£L(O) = Zlogz p(yilm)p(x;|m) + const (10.34)

ieL m=1

= ZlOgZ p(zi|m)0,, + Z logz p(xi|m)(1 — 0,,) + const

i€L i€l
yi=1 y;=—1

Since we fixp(m) andp(x|m), the term within the first sum has the fotog > °, | a0,
We can directly verify the Hessian

o - [8logzm amOm 1

.
[ = )
26,00, ] 5 am9m)2aa <0 (10.35)

is negative semi-definite. Therefore the first tetime(L andy; = 1) is concave.
Similarly the Hessian for the second term is
-

dlog) ., am(1 —0,)] aa
= { 00,00; ]“<zmam<1—0m>>2

<0 (10.36)
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L is the non-negative sum of concave terms and is concave. Recall R, the
graph energy can be written as

E = fTAf (10.37)
= fLALpfr +2f A fu + fiAvu fu (10.38)
= fLTALLfL + QfEALURH + QTRTAUURH (1039)

The Hessian i@ RTAyy R = 0 because\yy = 0. ThereforeE is convex ind.
Putting them togetheg) is concave ird.

As 0,,, is in [0, 1], we perform constrained convex optimization in the general
case withoe > 0. The gradient of the objective is easily computed:

00 oL )

oL
30r,
S p(m)p(xilm) 3 pmp(@ilm) 414 4y

\
Yi= Yi=—

(10.41)

anddE /00 was given in (10.28). One can also use the sigmoid function to trans-
form it into an unconstrained optimization problem with

(10.43)

and optimize the/’s.

Although the objective is concave, a good starting poin#fi still important
to reduce the computation time until convergence. We find a good initial vatue fo
0 by solving an one-dimensional concave optimization problem first. We have tw
parameters at hand,,, is the solution from the standard EM algorithm in step
1, andfpcqiq is the special case solution in section 10.3.1. We find the optimal
interpolated coefficient € [0, 1]

einit = Eeem + (1 - E)gspecial (1044)

that maximizes the objective (the optinegdh general will not bex). Then we start
from 6;,;: and use a quasi-Newton algorithm to find the global optimung for
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Figure 10.1: Gaussian mixture models learned with the standard EM algorithm
cannot make labels follow the manifold structure in an artificial dataset. Sntall do
are unlabeled data. The two labeled points are marked with-radd greeri.

The left panel had/ = 2 and right\M/ = 36 mixture components. Top plots show
the initial settings of the GMM. Bottom plots show the GMM after EM converges.
The ellipses are the contours of covariance matrices. The colored lceotsa
have sizes proportional to the component weigfht.). Components with very
small p(m) are not plotted. The color stands for component class membership
0 = p(y = 1lm): red ford = 1, green ford = 0, and intermediate yellow for
values in between — which did not occur in the converged solutions. Notibein
bottom-right plot, although the densipfx) is estimated well by EM@ does not
follow the manifold.
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Figure 10.2: The GMM with the component class membergigarned as in the
special casex = 0. 6, color coded from red to yellow and green, now follow the
structure of the unlabeled data.

10.4 Experiments

We test harmonic mixture on synthetic data, image and text classification. The
emphases are on how harmonic mixtures perform on unlabeled data cdnipare
EM or the harmonic function; how they handle unseen data; and whether the
can reduce the problem size. Unless otherwise noted, the harmonic miateres
computed withn = 0.

10.4.1 Synthetic Data

First we look at a synthetic dataset in Figure 10.1. It has a Swiss rolltstajc
and we hope the labels can follow the spiral arms. There is one positiverend
negative labeled point, at roughly the opposite ends. Weuuse766 unlabeled
points and an additional 384 points as unseen test data.
The mixture model and standard EM. We start with Figure 10.1(a, top), the
initial setting for a Gaussian mixture model witli = 2 components. The initial
means are set by running a k-means algorithm. The initial covariancesatiyd
thus the circles. The initigl are all set to 0.5, represented by the yellow color. (a,
bottom) shows the GMM after EM converges. Obviously it is a bad model lsecau
M is too small.

Next we consider a Gaussian mixture model (GMM) with = 36 compo-
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nents, each with full covariance. Figure 10.1(b, top) shows the initial Gl

(b, bottom) the converged GMM after running EM. The GMM models the manifold
densityp(x) well. However the component class membership= p(y = 1|m)

(red and green colors) does not follow the manifold. In fatakes the extreme
values of 0 or 1 along a somewhat linear boundary instead of followingpiinal s
arms, which is undesirable. The classification of data points will not follow the
manifold either.

The graph and harmonic mixtures. Next we combine the mixture model with

a graph to compute the harmonic mixtures, as in the special €ase0. We
construct a fully connected graph on thes U data points with weighted edges
w;; = exp (—||z; — 2;||*/0.01). We then reestimat& which are shown in Figure
10.2. Noted now follow the manifold as it changes from 0 (green) to approximately
0.5 (yellow) and finally 1 (red). This is the desired behavior.

The particular graph-based method we use needs extra care. Thenf@armo
function solutionf is known to sometimes skew toward 0 or 1. This problem is
easily corrected if we know or have an estimate of the proportion of positide
negative points, with the Class Mass Normalization heuristic (Zhu et al., 2003a
In this paper we use a similar but simpler heuristic. Assuming the two classes are
about equal in size, we simply set the decision boundary at the mediahnisTlea
f(l+1),..., f(n) be the soft label values on the unlabeled nodes.nkgt) =
mediar{f(l +1),..., f(n)). We classify point as positive iff (i) > m(f), and
negative otherwise.

Sensitivity to M. If the number of mixture componenid is too small, the GMM

is unable to modeb(z) well, let alonef. In other words, the harmonic mixture

is sensitive toM. M has to be larger than a certain threshold so that the man-
ifold structure can appear. In fadtf may need to be larger than the number of
labeled pointd, which is unusual in traditional mixture model methods for semi-
supervised learning. However onk£is over the threshold, further increase should
not dramatically change the solution. In the end the harmonic mixture may ap-
proach the harmonic function solution whéh = w.

Figure 10.3(a) shows the classification accuracy/oas we changé/. We
find that the threshold for harmonic mixturesiis = 35, at which point the ac-
curacy (‘HM’) jumps up and stabilizes thereafter. This is the number of méxtur
components needed for harmonic mixture to capture the manifold structuee. Th
harmonic function on the complete graph (‘graph’) is not a mixture model and
appears flat. The EM algorithm (‘EM’) fails to discover the manifold struetur
regardless of the number of mixturgs.

Computational savings The harmonic mixtures perform almost as well as the
harmonic function on the complete graph, but with a much smaller problem size.
As Figure 10.3(a) shows, we only need to inverdfax 35 matrix instead of a
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766 x 766 one as required by the harmonic function solution. The difference can
be significant if the unlabeled set size is even larger. There is of cthes®erhead

of EM training.

Handling unseen data Because the harmonic mixture model is a mixture model,

it naturally handles unseen points. On 384 new test points harmonic mixtures
perform similarly to Figure 10.3(a), with accuracies around 95.3% after 35.

10.4.2 Image Recognition: Handwritten Digits

We use the ‘1vs2’ dataset which contains equal number of images oivhittied

digit of 1s and 2s. Each gray scale imag&is 8, which is represented by a 64
dimensional vector of pixel values. We useu = 1600 images as the labeled and
unlabeled set, and 600 additional images as unseen new data to test induction
The mixture model. We use Gaussian mixture models. To avoid data sparse-
ness problem, we model each Gaussian component with a sphericabooear
i.e. diagonal covariance matrix with the same variance in all dimensions. &iffer
components may have different variances. We set the initial means dadoes

of the GMM with k-means algorithm before running EM.

The graph. We use a symmetrized 10-nearest-neighbor weighted graph on the
1600 images. That is, imagesj are connected if is within j's 10NN or vice
versa, as measured by Euclidean distance. The weighis are exp (—||z; — z;||2/140?).
Sensitivity to M. As illustrated in the synthetic data, the number of mixture com-
ponentsM needs to be large enough for harmonic mixture to work. We vidry
and observe the classification accuracies on the unlabeled data witkmliffieeth-
ods. For each/ we perform 20 trials with randomy /U split and plot the mean
and standard deviation of classification accuracies in Figure 10.3(l®.eXjer-
iments were performed with labeled set size fixed at 10. We conclude that
harmonic mixtures need only/ ~ 100 components to match the performance of
the harmonic function method.

Computational savings In terms of graph method computation, we invetda x

100 matrix instead of the origindl590 x 1590 matrix for harmonic function. This

is good saving with little sacrifice in accuracy. We fix = 100 in the experiments
that follow.

Handling unseen data We systematically vary labeled set sizeFor each we

run 20 random trials. The classification accuracyloifwith 16004 points) and
unseen data (600 points) are listed in Table 10.200Qharmonic mixtures (‘HM’)
achieve the same accuracy as harmonic function (‘graph’). Both asensitive to

. The GMM trained with EM (‘EM’) also performs well whehis not too small,

but suffers otherwise. On the unseen test data, the harmonic mixturesimainta
high accuracy.
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The general casex > 0. We also vary the parametarbetween 0 and 1, which
balances the generative and discriminative objectives. In our expdsmes 0
always gives the best accuracies.

10.4.3 Text Categorization: PC vs. Mac

We perform binary text classification on the two groups comp.sys.ibm.pevhesd

vs. comp.sys.mac.hardware (982 and 961 documents respectively) iB8A8 1
version of the 20-newsgroups data. We use rainbow (McCallum, 1998¥pro-

cess the data, with the default stopword list, no stemming, and keep words that
occur at least 5 times. We represent documentt.lof vectors with the Okapi

TF formula (Zhai, 2001), which was also used in (Zhu et al., 2003a). ©1 843
documents, we use 1600 AsJ U and the rest as unseen test data.

The mixture model. We use multinomial mixture models (bag-of-words naive
Bayes model), treatint.idf as ‘pseudo word counts’ of the documents. We found
this works better than using the raw word counts. We use k-means to initialize the
models.

The graph. We use a symmetrized 10NN weighted graph on the 1600 docu-
ments. The weight between documents is wy, = exp (—(1 — cyu)/0.03),
wherec,,, = (u,v)/ (||u]| - ||v]]) is the cosine between th¢.idf vectorsu, v.
Sensitivity to M. The accuracy o/ with different number of componenty®/

is shown in Figure 10.3(c). is fixed at 10. Qualitatively the performance of
harmonic mixtures increases whéh > 400. From the plot it may look like the
‘graph’ curve varies with\/, but this is an artifact as we used different randomly
sampled’, U splits for differentM. The error bars on harmonic mixtures are large.
We suspect the particular mixture model is bad for the task.

Computational savings Unlike the previous tasks, we need a much larfér
around 600. We still have a smaller problem than the original 1590, but the
saving is limited.

Handling unseen data We fix M = 600 and vary labeled set sizeFor eacH we

run 20 random trials. The classification accuracylbiwith 16007/ documents)

and unseen data (343 documents) are listed in Table 10.3. The harmonicemixtur
model has lower accuracies than the harmonic function od.thd’ graph. The
harmonic mixture model performs similarly @hand on unseen data.

10.5 Related Work

Recently Delalleau et al. (2005) use a small random subset of the urdatzdeto
create a small graph. This is related to the Ntstrmethod in spectral clustering
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l HM EM graph
onU:
2 98.74+00 86.7+5.7 98.7+0.0
5 98.7+00 90.1+4.1 98.7+0.1
10 98.7+0.1 93.6+24 98.7+0.1
20 98.7+£0.2 96.0+3.2 98.74+0.2
30 98.7£02 97.1+£19 98.8+0.2
on unseen:

2 96.14+01 871454 -

5 96.14+0.1 89.8+3.8 -

10 96.1+0.1 932423 -

20 96.1+£0.1 95.1+£3.2 -

30 96.1+0.1 96.8+1.7 -

Table 10.2: Image classification 1 vs. 2: Accuracyldmand unseen datalf =
100. Each number is the mean and standard deviation of 20 trials.

l HM EM graph
onU:
2 75.9+14.3 545+6.2 84.64+10.9
5 745+16.6 53.7+52 87.9+3.9
10 84.54+21 557+65 89.5+1.0
20 833+£71 595+64 90.1+1.0
40 85.7+23 61.8+6.1 90.3+0.6
on unseen:

2 736+13.0 53.5+6.0 -

5 7324152 523+5.9 -

10 829429 557457 -

20 82.0+6.5 589+6.1 -

40 84.7+33 604459 -

Table 10.3: Text classification PC vs. Mac: Accuracy @rand unseen data.
M = 600. Each number is the mean and standard deviation of 20 trials.



94 CHAPTER 10. HARMONIC MIXTURES

(Fowlkes et al., 2004), and to the random ‘landmarks’ in dimensionalityctemiu
(Weinberger et al., 2005). Our method is different in that

e It incorporates a generative mixture model, which is a second knowledge
source besides the graph;

e The backbone graph is not built on randomly selected points, but on mean-
ingful mixture components;

e When classifying an unseen pointit does not need graph edges from land-
mark points taz. This is less demanding on the graph because the burden
is transferred to the mixture component models. For example one can now
usekNN graphs. In the other works one needs edges betweamd the
landmarks, which are non-existent or awkward¥diN graphs.

In terms of handling unseen data, our approach is closely related to te reg
larization framework of (Belkin et al., 2004b; Krishnapuram et al., 2@35yraph
regularization on mixture models. However instead of a regularization term we
used a discriminative term, which allows for the closed form solution in theapec
case.

10.6 Discussion

To summarize, the proposed harmonic mixture method reduces the graph prob
lem size, and handles unseen test points. It achieves comparablagcasarthe
harmonic function for semi-supervised learning.

There are several questions for further research. First, the ca@nparodel
affects the performance of the harmonic mixtures. For example the Gaurstian
synthetic task and 1 vs. 2 task seem to be more amenable to harmonic mixtures
than the multinomial in PC vs. Mac task. How to quantify the influence remains a
guestion. A second question is when> 0 is useful in practice. Finally, we want
to find a way to automatically select the appropriate number of mixture components
M.

The backbone graph is certainly not the only way to speed up computation.
We list some other methods in literature review in Chapter 11. In addition, we
also performed an empirical study to compare several iterative metholtisiimg
Label Propagation, loopy belief propagation, and conjugate gradidnchvall
converge to the harmonic function. The study is presented in Appendix F.
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Figure 10.3: Sensitivity td/ in three datasets. Shown are the classification accu-
racies orlJ asM changes. ‘graph’ is the harmonic function on the completd/
graph; ‘HM’ is the harmonic mixture, and ‘EM’ is the standard EM algorithmeTh
intervals aret1 standard deviation with 20 random trials when applicable.
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Chapter 11

Literature Review

We review some of the literature on semi-supervised learning. There kasabe
whole spectrum of interesting ideas on how to learn from both labeled and un
labeled data. The review is by no means comprehensive and the field of semi-
supervised learning is evolving rapidly. The author apologizes in advianany
inaccuracies in the descriptions, and welcomes corrections and commieatse P
send corrections and suggest papers to zhuxj@cs.cmu.edu. To malewidve r
more useful, we maintain an online version at
http://www.cs.cmu.edu/"zhuxj/pub/semireview.html

which will be updated indefinitely.

11.1 Q&A

Q: What is semi-supervised learning?

A: It's a special form of classification. Traditional classifiers need labdbad
(feature / label pairs) to train. Labeled instances however are oftBouttif ex-
pensive, or time consuming to obtain, as they require the efforts of erpede
human annotators. Meanwhile unlabeled data may be relatively easy to collect,
but there has been few ways to use them. Semi-supervised learningseidtieis
problem by using large amount of unlabeled data, together with the labeied da
to build better classifiers. Because semi-supervised learning requiselsugen
effort and gives higher accuracy, it is of great interest both in thaod in practice.

Q: Can we really learn anything from unlabeled data? It looks like magic.

A: Yes we can — under certain assumptions. It's not magic, but good matching o
problem structure with model assumption.

97
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Q: Does unlabeled data always help?

A: No, there’s no free lunch. Bad matching of problem structure with model as
sumption can lead to degradation in classifier performance. For exampkeaqu
few semi-supervised learning methods assume that the decision bouhdatg s
avoid regions with highy(x). These methods include transductive support vector
machines (SVMs), information regularization, Gaussian processes wWitbate+
gory noise model, graph-based methods if the graph weights is determipadr-by
wise distance. Nonetheless if the data is generated from two heavily quieidap
Gaussian, the decision boundary would go right through the denggshrand
these methods would perform badly. On the other hand EM with generative mix
ture models, another semi-supervised learning method, would have edgdy so
the problem. Detecting bad match in advance however is hard and remaipsran o
guestion.

Q: How many semi-supervised learning methods are there?

A: Many. Some often-used methods include: EM with generative mixture models,
self-training, co-training, transductive support vector machines,gaaph-based
methods. See the following sections for more methods.

Q: Which method should | use / is the best?

A: There is no direct answer to this question. Because labeled data is, smamie
supervised learning methods make strong model assumptions. Ideallyarid sh
use a method whose assumptions fit the problem structure. This may beltdifficu
in reality. Nonetheless we can try the following checklist: Do the classesipeod
well clustered data? If yes, EM with generative mixture models may be a good
choice; Do the features naturally split into two sets? If yes, co-training reay b
appropriate; Is it true that two points with similar features tend to be in the same
class? If yes, graph-based methods can be used; Already using Bhtluctive
SVM is a natural extension; Is the existing supervised classifier complieaied
hard to modify? Self-training is a practical wrapper method.

Q: How do semi-supervised learning methods use unlabeled data?

A: Semi-supervised learning methods use unlabeled data to either modify or re-
prioritize hypotheses obtained from labeled data alone. Although not alloaieth
are probabilistic, it is easier to look at methods that represent hypotiwesésgx),

and unlabeled data lpy(z). Generative models have common parameters for the
joint distributionp(x,y). It is easy to see thai(z) influencesp(y|x). Mixture
models with EM is in this category, and to some extent self-training. Many other
methods are discriminative, including transductive SVM, Gaussian gesges-
formation regularization, and graph-based methods. Original discrimeniaéin-
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ing cannot be used for semi-supervised learning, sige:) is estimated ignoring
p(x). To solve the problenmy(z) dependent terms are often brought into the ob-
jective function, which amounts to assumipn@/|z) andp(z) share parameters.

Q: Where can | learn more?
A: An existing survey can be found in (Seeger, 2001).

11.2 Generative Mixture Models and EM

This is perhaps the oldest semi-supervised learning method. It assuraeera-g
tive modelp(z,y) = p(y)p(x|y) wherep(x|y) is an identifiable mixture distribu-
tion, for example Gaussian mixture models. With large amount of unlabeled data,
the mixture components can be identified; then ideally we only need one labeled
example per component to fully determine the mixture distribution. One can think
of the mixture components as ‘soft clusters’.

Nigam et al. (2000) apply the EM algorithm on mixture of multinomial for
the task of text classification. They showed the resulting classifiersrpelfetter
than those trained only fror. Baluja (1998) uses the same algorithm on a face
orientation discrimination task.

One has to pay attention to a few things:

11.2.1 Identifiability

The mixture model ideally should be identifiable. In genera{tet be a family of

distributions indexed by a parameter vedlo# is identifiable ifd; # 02 = py, #

Do, UP to @ permutation of mixture components. If the model family is identifiable,

in theory with infiniteU one can leard up to a permutation of component indices.
Here is an example showing the problem with unidentifiable models. The

modelp(x|y) is uniform fory € {+1,—1}. Assuming with large amount of un-

labeled dated/ we knowp(z) is uniform in [0,1]. We also have 2 labeled data

points(0.1,+1), (0.9, —1). Can we determine the label far= 0.5? No. With

our assumptions we cannot distinguish the following two models:

p(y =1) =0.2, p(xz|y = 1) = unif(0,0.2), p(z|y = —1) = unif(0.2,1) (11.1)
p(y =1) = 0.6, p(x|y = 1) = unif(0,0.6), p(z|y = —1) = unif(0.6,1) (11.2)
which give opposite labels at= 0.5, see Figure 11.1. Itis known that a mixture of
Gaussian is identifiable. Mixture of multivariate Bernoulli (McCallum & Nigam,

1998a) is not identifiable. More discussions on identifiability and semi-sigeet

learning can be found in e.g. (Ratsaby & Venkatesh, 1995) and (Geashu &
Jaakkola, 2001).
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p(xly=—1)=2.5

Figure 11.1: An example of unidentifiable models. Even if we kng\r) (top)

is a mixture of two uniform distributions, we cannot uniquely identify the two
components. For instance, the mixtures on the second and third line giventiee s
p(z), but they classifyr = 0.5 differently.

(a) Horizontal class separation  (b) High probability (c) Low probability

Figure 11.2: If the model is wrong, higher likelihood may lead to lower classific
tion accuracy. For examplégq) is clearly not generated from two Gaussian. If we
insist that each class is a single Gauss{ahwill have higher probability thagc).
But (b) has around 50% accuracy, wh{l&'s is much better.

11.2.2 Model Correctness

If the mixture model assumption is correct, unlabeled data is guaranteed tovénpro
accuracy (Castelli & Cover, 1995) (Castelli & Cover, 1996) (Ratsabgnkatesh,
1995). However if the model is wrong, unlabeled data may actually hudracg.
Figure 11.2 shows an example. This has been observed by multiple re=sarc
Cozman et al. (2003) give a formal derivation on how this might happen.

It is thus important to carefully construct the mixture model to reflect reality.
For example in text categorization a topic may contain several sub-topitsyikn
be better modeled by multiple multinomial instead of a single one (Nigam et al.,
2000). Some other examples are (Shahshahani & Landgrebe, 199y &
Uyar, 1997). Another solution is to down-weighing unlabeled data (Geedou &
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Jaakkola, 2001), which is also used by Nigam et al. (2000), and by @aiBsirch
et al. (2004) who estimate word alignment for machine translation.

11.2.3 EM Local Maxima

Even if the mixture model assumption is correct, in practice mixture components
are identified by the Expectation-Maximization (EM) algorithm (Dempster et al.,
1977). EM is prone to local maxima. If a local maximum is far from the global
maximum, unlabeled data may again hurt learning. Remedies include smart choice
of starting point by active learning (Nigam, 2001).

11.2.4 Cluster and Label

We shall also mention that instead of using an probabilistic generative mixture
model, some approaches employ various clustering algorithms to cluster thee who
dataset, then label each cluster with labeled data, e.g. (Demiriz et al., T289) (

et al., 2000). Although they may perform well if the particular clustering -algo
rithms match the true data distribution, these approaches are hard to anadytoe d
their algorithmic nature.

11.3 Self-Training

Self-training is a commonly used technique for semi-supervised learnirgglfin
training a classifier is first trained with the small amount of labeled data. The
classifier is then used to classify the unlabeled data. Typically the most ennfid
unlabeled points, together with their predicted labels, are added to the training
set. The classifier is re-trained and the procedure repeated. Note $isdieta
uses its own predictions to teach itself. The procedure is also called sgiriga

or bootstrapping (not to be confused with the statistical procedure withathe s
name). The generative model and EM approach of section 11.2 canvbedvas

a special case of ‘soft’ self-training. One can imagine that a classificatistake

can reinforce itself. Some algorithms try to avoid this by ‘unlearn’ unlabetéutp

if the prediction confidence drops below a threshold.

Self-training has been applied to several natural language processig)
Yarowsky (1995) uses self-training for word sense disambiguation,degding
whether the word ‘plant’ means a living organism or a factory in a giveaedn
Riloff et al. (2003) uses it to identify subjective nouns. Maeireizo et 2004)
classify dialogues as ‘emotional’ or ‘non-emotional’ with a procedure irnglv
two classifiers.Self-training has also been applied to parsing and machiskatra
tion. Rosenberg et al. (2005) apply self-training to object detectionragstiem
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(@) z! view (b) 22 view

Figure 11.3: Co-Training: Conditional independent assumption on feaplit.
With this assumption the high confident data pointscinview, represented by
circled labels, will be randomly scattered# view. This is advantageous if they
are to be used to teach the classifiesfrview.

images, and show the semi-supervised technique compares favorablystatie-a
of-the-art detector.

11.4 Co-Training

Co-training (Blum & Mitchell, 1998) (Mitchell, 1999) assumes that featuia@s c
be split into two sets; Each sub-feature set is sufficient to train a goosifeas
The two sets are conditionally independent given the class. Initially twaatpa
classifiers are trained with the labeled data, on the two sub-feature sestiesly.
Each classifier then classifies the unlabeled data, and ‘teaches’ the lasfier
with the few unlabeled examples (and the predicted labels) they feel mdst con
dent. Each classifier is retrained with the additional training examples gyvereb
other classifier, and the process repeats.

In co-training, unlabeled data helps by reducing the version spacdrsiather
words, the two classifiers (or hypotheses) must agree on the muchuautgbeled
data as well as the labeled data.

We need the assumption that sub-features are sufficiently good, soetitairw
trust the labels by each learner &n We need the sub-features to be conditionally
independent so that one classifier’s high confident data poinigdasamples for
the other classifier. Figure 11.3 visualizes the assumption.

Nigam and Ghani (2000) perform extensive empirical experiments to aemp
co-training with generative mixture models and EM. Their result showsasohtig
performs well if the conditional independence assumption indeed holdsldin
tion, it is better to probabilistically label the entitg instead of a few most con-
fident data points. They name this paradigm co-EM. Finally, if there is noalatu
feature split, the authors create artificial split by randomly break the feaéiiinto
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two subsets. They show co-training with artificial feature split still helps,dho
not as much as before. Jones (2005) used co-training, co-EM aad refated
methods for information extraction from text.

Co-training makes strong assumptions on the splitting of features. One might
wonder if these conditions can be relaxed. Goldman and Zhou (200Gmase
learners of different type but both takes the whole feature set, aedtedl/ use
one learner’s high confidence data points, identified with a set of statitgta) in
U to teach the other learning and vice versa. Recently Balcan et al. (2618%) r
the conditional independence assumption with a much weaker expansitiaon
and justify the iterative co-training procedure.

11.5 Maximizing Separation

11.5.1 Transductive SVM

Discriminative methods work op(y|z) directly. This brings up the danger of
leavingp(x) outside of the parameter estimation loopp(f) andp(y|z) do not
share parameters. Notigéz) is usually all we can get from unlabeled data. It is
believed that ifp(z) andp(y|z) do not share parameters, semi-supervised learning
cannot help. This point is emphasized in (Seeger, 2001). Zhang asd ZDi@0)
give both theoretical and experimental evidence of the same point spHgibia
transductive support vector machines (TSVM). However this is coetsis as
empirically TSVMs seem beneficial.

TSVM is an extension of standard support vector machines with unlabeled
data. In a standard SVM only the labeled data is used, and the goal is to find a
maximum margin linear boundary in the Reproducing Kernel Hilbert Spaca. |
TSVM the unlabeled data is also used. The goal is to find a labeling of the unla-
beled data, so that a linear boundary has the maximum margin on both thelorigina
labeled data and the (now labeled) unlabeled data. The decision bourdattyeh
smallest generalization error bound on unlabeled data (Vapnik, 199@8jtively,
unlabeled data guides the linear boundary away from dense regionseveio
finding the exact transductive SVM solution is NP-hard. Several apaiion al-
gorithms have been proposed and show positive results, see e.dhi@®at999)
(Bennett & Demiriz, 1999) (Demirez & Bennettt, 2000) (Fung & Mangasaria
1999) (Chapelle & Zien, 2005).

The maximum entropy discrimination approach (Jaakkola et al., 1999) also
maximizes the margin, and is able to take into account unlabeled data, with SVM
as a special case.

The application of graph kernels (Zhu et al., 2005) to SVMs differs from
TSVM. The graph kernels are special semi-supervised kernels appldtan-



104 CHAPTER 11. LITERATURE REVIEW

Figure 11.4: In TSVM,U helps to put the decision boundary in sparse regions.
With labeled data only, the maximum margin boundary is plotted with dotted lines.
With unlabeled data (black dots), the maximum margin boundary would be the one
with solid lines.

dard SVM; TSVM is a special optimization criterion regardless of the kdyeiglg
used.

11.5.2 Gaussian Processes

Lawrence and Jordan (2005) proposed a Gaussian processelppninich can be
viewed as the Gaussian process parallel of TSVM. The key diffeterecetandard
Gaussian process is in the noise model. A ‘null category noise model’ maps the
hidden continuous variablgto three instead of two labels, specifically to the never
used label ‘0’ whery is around zero. On top of that, it is restricted that unlabeled
data points cannot take the label 0. This pushes the posterjfoawhy from zero
for the unlabeled points. It achieves the similar effect of TSVM where thgjima
avoids dense unlabeled data region. However nothing special is ddne pirocess
model. Therefore all the benefit of unlabeled data comes from the noisel.nfod
very similar noise model is proposed in (Chu & Ghahramani, 2004) for ardin
regression.

This is different from the Gaussian processes in (Zhu et al., 2003&ramwve
have a semi-supervised Gram matrix, and semi-supervised learning tegjiran
the process model, not the noise model.

11.5.3 Information Regularization

Szummer and Jaakkola (2002) propose the information regularizationvixaine
to control the label conditionalgy|x) by p(x), wherep(x) may be estimated from
unlabeled data. The idea is that labels shouldn’t change too much in regiens
p(zx) is high. The authors use the mutual informatiqn;; y) betweenr andy as

a measure of label complexity(z; y) is small when the labels are homogeneous,
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and large when labels vary. This motives the minimization of the produet:of
mass in a region witli (x; y) (normalized by a variance term). The minimization
is carried out on multiple overlapping regions covering the data space.

The theory is developed further in (Corduneanu & Jaakkola, 2003)r- C
duneanu and Jaakkola (2005) extend the work by formulating semivisger
learning as a communication problem. Regularization is expressed as thé rate o
information, which again discourages complex conditiopélgz) in regions with
highp(x). The problem becomes finding the unigu@|z) that minimizes a regu-
larized loss on labeled data. The authors give a local propagation atgorith

11.5.4 Entropy Minimization

The hyperparameter learning method in section 7.2 uses entropy minimization.
Grandvalet and Bengio (2005) used the label entropy on unlabeledslaaeg-
ularizer. By minimizing the entropy, the method assumes a prior which prefers
minimal class overlap.

11.6 Graph-Based Methods

Graph-based semi-supervised methods define a graph where theanethdseled

and unlabeled examples in the dataset, and edges (may be weighted)theflect
similarity of examples. These methods usually assume label smoothness over the
graph. Graph methods are nonparametric, discriminative, and transdirctia-

ture. This thesis largely focuses on graph-based semi-supervisathteatgo-
rithms.

11.6.1 Regularization by Graph

Many graph-based methods can be viewed as estimating a furfatiothe graph.
One wantsf to satisfy two things at the same time: 1) it should be close to the
given labelsy;, on the labeled nodes, and 2) it should be smooth on the whole
graph. This can be expressed in a regularization framework wheregheefim is
a loss function, and the second term is a regularizer.

Several graph-based methods listed here are similar to each other. iffaey d
in the particular choice of the loss function and the regularizer. Are thiéfse-d
ences crucial? Probably not. We believe it is much more important to construct
a good graph than to choose among the methods. However graph ctiostras
we will see later, is not a well studied area.
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Mincut

Blum and Chawla (2001) pose semi-supervised learning as a graph riahsmt
known asst-cut) problem. In the binary case, positive labels act as sources and
negative labels act as sinks. The objective is to find a minimum set of edgeew
removal blocks all flow from the sources to the sinks. The nodes ctingdo the
sources are then labeled positive, and those to the sinks are label&dendgguiv-
alently mincut is thenodeof a Markov random field with binary labels (Boltzmann
machine). The loss function can be viewed as a quadratic loss with infinityhtveig

00 icr (Wi — yi|L)2, so that the values on labeled data are in fact clamped. The
labelingy minimizes

1 1
izwij’yi —yj| = 52%;‘(% —y;)? (11.3)
i, i,

which can be thought of as a regularizer on binary (0 and 1) labels.

One problem with mincut is that it only gives hard classification without con-
fidence. Blum et al. (2004) perturb the graph by adding random noigetedge
weights. Mincut is applied to multiple perturbed graphs, and the labels anre dete
mined by a majority vote. The procedure is similar to bagging, and createft'a ‘so
mincut.

Pang and Lee (2004) use mincut to improve the classification of a sentémce in
either ‘objective’ or ‘subjective’, with the assumption that sentencesdingach
other tend to have the same class.

Gaussian Random Fields and Harmonic Functions

The Gaussian random fields and harmonic function methods in (Zhu et @aR00
can be viewed as having a quadratic loss function with infinity weight, so that
the labeled data are clamped, and a regularizer based on the graph donddina
LaplacianA:

00 Y (fi — w2 +1/2> wii(fi — f;)? (11.4)
i€L %]

= 00 (fi—w)+ fTAf (11.5)
€L

Recently Grady and Funka-Lea (2004) applied the harmonic function chétho
medical image segmentation tasks, where a user labels classes (e.gntddfere
gans) with a few strokes. Levin et al. (2004) use essentially harmonitiduns for
colorization of gray-scale images. Again the user specifies the desil@dwith
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only a few strokes on the image. The rest of the image is used as unlab&ded da
and the labels propagation through the image. Niu et al. (2005) applied tie lab
propagation algorithm (which is equivalent to harmonic functions) to werges
disambiguation.

Local and Global Consistency

The local and global consistency method (Zhou et al., 2004a) uses ffehasion
S (fi—vi)?, and thenormalized LaplacialD—'/2AD~1/2 = [-D~1/2Ww D~1/2
in the regularizer,

1/22wij(fi/\/D_ii_fj/\/Djj)2 = fTD_l/QAD_1/2f (116)
i,J

Tikhonov Regularization

The Tikhonov regularization algorithm in (Belkin et al., 2004a) uses theflogs
tion and regularizer:

kY (fi—9:)> +7f7Sf (11.7)
whereS = A or AP for some integep.

Graph Kernels

For kernel methods, the regularizer is a (typically monotonically increagimg)
tion of the RKHS norni| f||x = fT K ~! f with kernel K. Such kernels are derived
from the graph, e.g. the Laplacian.

Chapelle et al. (2002) and Smola and Kondor (2003) both show the apectr
transformation of a Laplacian results in kernels suitable for semi-supdnéam-
ing. The diffusion kernel (Kondor & Lafferty, 2002) corresportdsa spectrum
transform of the Laplacian with

o2
r(A) = exp(—?)\) (11.8)

The regularized Gaussian process kerhel I/02 in (Zhu et al., 2003c) corre-

sponds to
1

) = A+o

Similarly the order constrained graph kernels in (Zhu et al., 2005) are con
structed from the spectrum of the Laplacian, with non-parametric congéx o
mization. Learning the optimal eigenvalues for a graph kernel is in factyatova

(11.9)
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(at least partially) correct an imprecise graph. In this sense it is relatghjpin
construction.

Spectral Graph Transducer

The spectral graph transducer (Joachims, 2003) can be viewed wih fuftction
and regularizer

co(f—="C(f—~)+fTLf (11.10)

where~; = /I_/l4 for positive labeled data;-+/l/l_ for negative data]_
being the number of negative data and so ércan be the combinatorial or nor-

malized graph Laplacian, with a transformed spectrum.

Tree-Based Bayes

Kemp et al. (2003) define a probabilistic distributi®Y |7") on discrete (e.g. 0

and 1) labelingy” over an evolutionary tre&'. The treeT is constructed with

the labeled and unlabeled data being the leaf nodes. The labeled data iscclampe
The authors assume a mutation process, where a label at the rootgtespdgwn

to the leaves. The label mutates with a constant rate as it moves down along the
edges. As a result the trgé(its structure and edge lengths) uniquely defines the
label prior P(Y'|T"). Under the prior if two leaf nodes are closer in the tree, they
have a higher probability of sharing the same label. One can also integeatallov

tree structures.

The tree-based Bayes approach can be viewed as an interesting wagrto in
porate structure of the domain. Notice the leaf nodes of the tree are thedainele
unlabeled data, while the internal nodes do not correspond to phyatzalThis is
in contrast with other graph-based methods where labeled and unlalaetedrd
all the nodes.

Some Other Methods

Szummer and Jaakkola (2001) performstep Markov random walk on the graph.
The influence of one example to another example is proportional to howtlgasy
random walk goes from one to the other. It has certain resemblance tifftissooh
kernel. The parameteiis important.

Chapelle and Zien (2005) use a density-sensitive connectivity distatwedn
nodesi, j (a given path between j consists of several segments, one of them
is the longest; now consider all paths betwéeghand find the shortest ‘longest
segment’). Exponentiating the negative distance gives a graph kernel.
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Bousquet et al. (2004) consider the continuous counterpart ohdraged
regularization. They define regularization based on a knpwr) and provide
interesting theoretical analysis. However there seem to be problems inrapply
the theoretical results to higheD(> 2) dimensional tasks.

11.6.2 Graph Construction

Although the graph is the heart and soul of graph-based semi-sugetiesrning
methods, its construction has not been studied carefully. The issue éraglise
cussed informally in Chapter 3, and graph hyperparameter learningsdestin
Chapter 7. There are relatively few literatures on graph constructmmexXample
Carreira-Perpinan and Zemel (2005) build robust graphs from multiplemam
spanning trees by perturbation and edge removal. Itis possible thatgpaptruc-
tion is domain specific because it encodes prior knowledge, and hasathisein
treated on an individual basis.

11.6.3 Induction

Most graph-based semi-supervised learning algorithms are transjuaivthey
cannot easily extend to new test points outsidé.of U. Recently induction has
received increasing attention. One common practice is to ‘freeze’ thén gnap
L U U. New points do not (although they should) alter the graph structure. This
avoids expensive graph computation every time one encounters new. points

Zhu et al. (2003c) propose that new test point be classified by itsstewsgigh-
borin LUU. Thisis sensible whel is sufficiently large. In (Chapelle et al., 2002)
the authors approximate a new point by a linear combination of labeled and unla
beled points. Similarly in (Delalleau et al., 2005) the authors proposes actioalu
scheme to classify a new pointby

ZieLuU Wy f ()

ZieLUU Wei

fz) =

(11.11)

This can be viewed as an application of the Ngstimethod (Fowlkes et al., 2004).
In the regularization framework of (Belkin et al., 2004b), the functfodoes
not have to be restricted to the graph. The graph is merely used to regufariz
which can have a much larger support. It is necessarily a combination iof an
ductive algorithm and graph regularization. The authors give the gegliarized
version of least squares and SVM. Note such an SVM is different flengraph
kernels in standard SVM in (Zhu et al., 2005). The former is inductive wtn b

a graph regularizer and an inductive kernel. The latter is transductttheonly
the graph regularizer. Following the work, Krishnapuram et al. (2088)graph
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regularization on logistic regression. These methods create inductivetsdhat
naturally handle new test points.

The harmonic mixture model in Chapter 10 naturally handles new points with
the help of a mixture model.

11.6.4 Consistency

The consistency of graph-based semi-supervised learning algorittnmohbeen
studied extensively according to the author’s knowledge. By consisteaenean
whether the classification converges to the right solution as the numberetédab
and unlabeled data grows to infinity. Recently von Luxburg et al. (200&) (
Luxburg et al., 2004) study the consistency of spectral clustering metfide au-
thors find that the normalized Laplacian is better than the unnormalized Laplacia
for spectral clustering. The convergence of the eigenvectors ofrthermalized
Laplacian is not clear, while the normalized Laplacian always convergdsru
general conditions. There are examples where the top eigenvectos wrfitlor-
malized Laplacian do not yield a sensible clustering. Although these are i&luab
results, we feel the parallel problems in semi-supervised learning nagterf
study. One reason is that in semi-supervised learning the whole Laplaian (
malized or not) is often used for regularization, not only the top eigenwector

11.6.5 Ranking

Given a large collection of items, and a few ‘query’ items, ranking ordergéms
according to their similarity to the queries. It can be formulated as semi-gapédrv
learning with positive data only (Zhou et al., 2004b), with the graph indsted
larity measure.

11.6.6 Directed Graphs

Zhou et al. (2005) take a hub/authority approach, and essentiallyrtandieected
graph into an undirected one. Two hub nodes are connected by aectadiedge
with appropriate weight if they co-link to authority nodes, and vice vergmiS
supervised learning then proceeds on the undirected graph.

Lu and Getoor (2003) convert the link structure in a directed graph into pe
node features, and combines them with per-node object features in logogtis-
sion. They also use an EM-like iterative algorithm.
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11.6.7 Fast Computation

Fast computation with sparse graphs and iterative methods has been digefly
cussed in Chapter 10. Recently numerical methods for fast N-bodyepnsthave
been applied talensegraphs in semi-supervised learning, reducing the computa-
tional cost fromO(n?) to O(n) (Mahdaviani et al., 2005). This is achieved with
Krylov subspace methods and the fast Gauss transform.

11.7 Metric-Based Model Selection

Metric-based model selection (Schuurmans & Southey, 2001) is a methobtd de
hypotheses inconsistency with unlabeled data. We may have two hypothashs w
are consistent oh, for example they all have zero training set error. However they
may be inconsistent on the much lardér If so we should reject at least one of
them, e.g. the more complex one if we employ Occam'’s razor.

The key observation is that a distance metric is defined in the hypotheses spac
H. One such metric is the number of different classifications two hypothedes ma
under the data distributiop(z): d,(h1, he) = E,lhi(z) # ha(z)]. Itis easy to
verify that the metric satisfies the three metric properties. Now consider the tru
classification functiorh* and two hypotheses,;, ho. Since the metric satisfies the
triangle inequality (the third property), we have

dp(h1, h2) < dp(h1, h*) + dp(h*, ha)

Under the premise that labels Inis noiseless, let's assume we can approximate
dy(h1,h*) andd,(h*, he) by h1 andhy’s training set error rategr, (hy, h*) and
dr(ha, h*), and approximatel,(h,, he) by the differenceh; and hy make on a
large amount of unlabeled dat&a di;(hi, he). We get

dy(hi, he) < dp(hi,h*) +dr(h*, he)

which can be verified directly. If the inequality does not hold, at leastafribe
assumptions is wrong. U] is large enough ant/ Y p(z), dy(hi, he) will be
a good estimate at,(h1, he). This leaves us with the conclusion that at least one
of the training errors does not reflect its true error. If both trainingrsrare close
to zero, we would know that at least one model is overfitting. An Occamtsrra
type of argument then can be used to select the model with less complexity. Suc
use of unlabeled data is very general and can be applied to almost anyndear
algorithms. However it only selects among hypotheses; it does not gemaa
hypothesis based on unlabeled data.

The co-validation method (Madani et al., 2005) also uses unlabeled data fo
model selection and active learning.
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11.8 Related Areas

The focus of the thesis is on classification with semi-supervised methodse The
are some closely related areas with a rich literature.

11.8.1 Spectral Clustering

Spectral clustering is unsupervised. As such there is no labeled datalothe
process. Instead the clustering depends solely on the graph wé&ightdn the
other hand semi-supervised learning for classification has to maintain acealan
between how good the ‘clustering’ is, and how well the labeled data camx-be e
plained by it. Such balance is expressed explicitly in the regularization frarkew

As we have seen in section 8.1 and 11.6.4, the top eigenvectors of the graph
Laplacian can unfold the data manifold to form meaningful clusters. This is the
intuition behind spectral clustering. There are several criteria on varetitutes
a good clustering (Weiss, 1999).

The normalized cut (Shi & Malik, 2000) seeks to minimize

cut(A, B) n cut(A, B)
assoc(A, V) = assoc(B,V)

Ncut(A,B) = (11.12)

The continuous relaxatiomf the cluster indicator vector can be derived from the
normalized Laplacian. In fact it is derived from the second smallest esgptor of

the normalized Laplacian. The continuous vector is then discretized to obéain th
clusters.

The data points are mapped into a new space spanned by thediggnvec-
tors of the normalized Laplacian in (Ng et al., 2001a), with special normalizatio
Clustering is then performed with traditional methods (like k-means) in this new
space. This is very similar to kernel PCA.

Fowlkes et al. (2004) use the NySin method to reduce the computation cost
for large spectral clustering problems. This is related to our method in Gipte

Chung (1997) presents the mathematical details of spectral graph theory.

11.8.2 Clustering with Side Information

This is the ‘opposite’ of semi-supervised classification. The goal is clogteut

there are some ‘labeled data’ in the fornmadist-linkgtwo points must in the same
cluster) anacannot-linkg(two points cannot in the same cluster). There is a tension
between satisfying these constraints and optimizing the original clusteringasrite
(e.g. minimizing the sum of squared distances within clusters). Proceduraly o
can modify the distance metric to try to accommodate the constraints, or one can
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bias the search. We refer readers to a recent short survey (Galtaz004) for the
literatures.

11.8.3 Nonlinear Dimensionality Reduction

The goal of nonlinear dimensionality reduction is to find a faithful low dimeradion
mapping of the high dimensional data. As such it belongs to unsupervisathiga
However the way it discovers low dimensional manifold within a high dimensional
space is closely related to spectral graph semi-supervised learningsepfative
methods include Isomap (Tenenbaum et al., 2000), locally linear embeddi&y (
(Roweis & Saul, 2000) (Saul & Roweis, 2003), Hessian LLE (Donoh@iémnes,
2003), Laplacian eigenmaps (Belkin & Niyogi, 2003), and semidefinite ethbgd
(SDE) (Weinberger & Saul, 2004) (Weinberger et al., 2004) (Wenptreet al.,
2005).

11.8.4 Learning a Distance Metric

Many learning algorithms depend, either explicitly or implicitly, on a distance met-
ric on X. We use the term metric here loosely to mean a measure of distance or
(dis)similarity between two data points. The default distance in the featuoe spa
may not be optimal, especially when the data forms a lower dimensional manifold
in the feature vector space. With a large amourt/oft is possible to detect such
manifold structure and its associated metric. The graph-based methodsaabove
based on this principle. We review some other methods next.

The simplest example in text classification might be Latent Semantic Indexing
(LSI, a.k.a. Latent Semantic Analysis LSA, Principal Component AnalySi&,P
or sometimes Singular Value Decomposition SVD). This technique defines a lin-
ear subspace, such that the variance of the data, when projected thtpace,
is maximumly preserved. LSI is widely used in text classification, where the orig
inal space forX is usually tens of thousands dimensional, while people believe
meaningful text documents reside in a much lower dimensional space. daikov
and Hirsh (2001) and Cristianini et al. (2001b) both U5en this case unlabeled
documents, to augment the term-by-document matrix.ot.Sl is performed on
the augmented matrix. This representation induces a new distance metric. By the
property of LSI, words that co-occur very often in the same documeatsarged
into a single dimension of the new space. In the extreme this allows two docu-
ments with no common words to be ‘close’ to each other, via chains of ca-occu
word pairs in other documents.

Probabilistic Latent Semantic Analysis (PLSA) (Hofmann, 1999) is an impor-
tant improvement over LSI. Each word in a document is generated by ia’‘{ap
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multinomial, i.e. unigram). Different words in the document may be generated by
different topics. Each document in turn has a fixed topic proportion (a noultin
mial on a higher level). However there is no link between the topic proporiions
different documents.

Latent Dirichlet Allocation (LDA) (Blei et al., 2003) is one step further. It
assumes the topic proportion of each document is drawn from a Dirichtebdis
tion. With variational approximation, each document is represented byterjpos
Dirichlet over the topics. This is a much lower dimensional representation.

Some algorithms derive a metric entirely from the densit{/ofThese are mo-
tivated by unsupervised clustering and based on the intuition that data jpciimés
same high density ‘clump’ should be close in the new metric. For instan€g, if
is generated from a single Gaussian, then the Mahalanobis distancedrimjutte
covariance matrix is such a metric. Tipping (1999) generalizes the Malmano
distance by fitting/ with a mixture of Gaussian, and define a Riemannian mani-
fold with metric atx being the weighted average of individual component inverse
covariance. The distance betwegnandzx, is computed along the straight line (in
Euclidean space) between the two points. Rattray (2000) further digesrthe
metric so that it only depends on the change in log probabilities of the density, n
on a particular Gaussian mixture assumption. And the distance is computed along
a curve that minimizes the distance. The new metric is invariate to linear transfor-
mation of the features, and connected regions of relatively homogedeosgy
in U will be close to each other. Such metric is attractive, yet it depends on the
homogeneity of the initial Euclidean space. Their application in semi-supdrvise
learning needs further investigation.

We caution the reader that the metrics proposed above are based pemnsu
vised techniques. They all identify a lower dimensional manifold within which the
data reside. However the data manifold may or may not correlate with a particula
classification task. For example, in LSI the new metric emphasizes words with
prominent count variances, but ignores words with small variancebe Iflassi-
fication task is subtle and depends on a few words with small counts, LSI might
wipe out the salient words all together. Therefore the success of theg®ds
is hard to guarantee without putting some restrictions on the kind of classificatio
tasks. It would be interesting to includeinto the metric learning process.

In a separate line of work, Baxter (1997) proves that there is a unigtiraal
metric for classification if we use 1-nearest-neighbor. The metric, namednGa
cal Distortion Measure (CDM), defines a distamie, , z2) as the expected loss if
we classifyz, with x5's label. The distance measure proposed in (Yianilos, 1995)
can be viewed as a special case. Yianilos assume a Gaussian mixture a®odel h
been learned frond/, such that a class correspond to a component, but the corre-
spondence is unknown. In this case CAM 1, z2) = p(z1, x2from same component
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and can be computed analytically. Now that a metric has been learned/frara
can find withinL the 1-nearest-neighbor of a new data painand classifyz with
the nearest neighbor’s label. It will be interesting to compare this schemd&iith
based semi-supervised learning, wheérns used to label mixture components.

Weston et al. (2004) propose the neighborhood mismatch kernel anaggedb
mismatch kernel. More precisely both &ernel transformatiorthat modifies an
input kernel. In the neighborhood method, one defines the neighbodiagabint
as points close enough according to certain similarity measure (note that is
the measure induced by the input kernel). The output kernel betweéenippis
the average of pairwise kernel entries betwégmeighbors and’s neighbors. In
bagged method, if a clustering algorithm thinks they tend to be in the same cluster
(note again this is a different measure than the input kernel), the conéisiy
entry in the input kernel is boosted.

11.8.5 Inferring Label Sampling Mechanisms

Most semi-supervised learning methods assunandU are bothi.i.d. from the
underlying distribution. However as (Rosset et al., 2005) points outishaot
always the case. For examplecan be the binary label whether a customer is
satisfied, obtained through a survey. It is conceivable survey panticip (and
thus labeled data) depends on the satisfagfion

Let s; be the binary missing indicator fay;. The authors modeb(s|x,y)
with a parametric family. The goal is to estimaiés|x,y) which is the label
sampling mechanism. This is done by computing the expectation of an arbi-
trary functiong(x) in two ways: onL UU asl/n) ;. , g(x;), and onL only as
1/nY e 9(xi)/p(si = 1|z, ;). By equating the two(s|z,y) can be estimated.
The intuition is that the expectation dnrequires weighting the labeled samples
inversely proportional to the labeling probability, to compensate for igndtieg
unlabeled data.
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Chapter 12

Discussions

We have presented a series of semi-supervised learning algorithms, drase
graph representation of the data. Experiments show that they are able adtak
vantage of the unlabeled data to improve classification. Contributions of tkis the
include:

e We proposed a harmonic function and Gaussian field formulations for semi-
supervised problems. This is not the first graph-based semi-supkenetbod.
The first one was graph mincut. However our formulation is a continuous
relaxation to the discrete labels, resulting in a more benign problem. Sev-
eral variations of the formulation were proposed independently by difter
groups shortly after.

e We addressed the problem of graph construction, by setting up parametric
edge weights and performing edge hyperparameter learning. Sincefite gr
is the input to all graph-based semi-supervised algorithms, it is important that
we construct graphs that best suit the task.

e We combined an active learning scheme that reduces expected erradinste
of ambiguity, with graph-based semi-supervised learning. We believe that
active learning and semi-supervised learning will be used together for pra
tical problems, because limited human annotation resources should be spent
wisely.

e We defined optimal semi-supervised kernels by spectral transformation of
the graph Laplacian. Such optimal kernels can be found with convex opti-
mization. We can use the kernels with any kernel machine, e.g. suppert vec
tor machines, for semi-supervised learning. The kernel machines imagene
can handle noisy labeled data, which is an improvement over the harmonic
function solution.

117
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We kernelized conditional random fields. CRFs were traditionally feature
based. We derived the dual problem and presented an algorithmstfor fa
sparse kernel CRF training. With kernel CRFs, it is possible to use a semi-
supervised kernel on instances for semi-supervised learning oersszgl
and other structures.

We proposed to solve large-scale problems with harmonic mixtures. Har-
monic mixtures reduce computation cost significantly by grouping unlabeled
data into soft clusters, then carrying out semi-supervised learning on the
coarser data representation. Harmonic mixtures also handle new data points
naturally, making the semi-supervised learning method inductive.

Semi-supervised learning is a relatively new research area. Theraaamg
open questions and research opportunities:

The graph is the single most important quantity for graph-based semivisgubr
learning. Parameterizing graph edge weights, and learning weightgayper
rameters, should be the first step of any graph-based semi-supdeased

ing methods. Current methods in Chapter 7 are not efficient enoughw€an
find better ways to learn the graph structure and parameters?

Real problems can have millions of unlabeled data points. Anecdotal sto-
ries and experiments in Appendix F indicate that conjugate gradient with a
suitable pre-conditioner is one of the fastest algorithms in solving harmonic
functions. Harmonic mixture works along an orthogonal direction by reduc
ing the problem size. How large a dataset can we process if we combine
conjugate gradient and harmonic mixture? What can we do to handle even
larger datasets?

Semi-supervised learning on structured data, e.g. sequences andstrees
largely unexplored. We have proposed the use of kernel conditianal r
dom fields plus semi-supervised kernels. Much more work is needed in this
direction.

In this thesis we focused on classification problems. The spirit of combining
some human effort with large amount of data should be applicable to other
problems. Examples include: regression with both labeled and unlabeled
data; ranking with ordered pairs and unlabeled data; clustering with cluster
membership knowledge. What can we do beyond classification?

Because labeled data is scarce, semi-supervised learning methods depen
more heavily on their assumptions (see e.g. Table 1.1). Can we develop
novel semi-supervised learning algorithms with new assumptions?
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e Applications of semi-supervised learning are emerging rapidly. These in-
clude text categorization, natural language processing, bioinformaties,
age processing, and computer vision. Many others are sure to comk App
cations are attractive because they solve important practical probleths, an
provide fertile test bed for new ideas in machine learning. What problems
can we apply semi-supervised learning? What applications were too hard
but are now feasible with semi-supervised learning?

e The theory of semi-supervised learning is almost absent in both the ma-
chine learning literature and the statistics literature. Is graph-based semi-
supervised learning consistent? How many labeled and unlabeled points are
needed to learn a concept with confidence?

We expect advances in research will address these questions. Weadrop
supervised learning become a fruitful area for both machine learningyttaeal
practical applications.
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Appendix A

The Harmonic Function after
Knowing One More Label

Construct the graph as usual. We ys¢o denote the harmonic function. The
random walk solution ig, = —A, Ay fi = AW, fi. There areu unlabeled
nodes. We ask the question: what is the solution if we add a node with iatoe
the graph, and connect the new node to unlabeled hadté weightwy? The new
node is a “dongle” attached to nodeBesides the usage here, dongle nodes can
be useful for handling noisy labels where one would put the obserbetslan the
dongles, and infer the hidden true labels for the nodes attached to dohigites
that whenwy — oo, we effectively assign labgl to node;.

Since the dongle is a labeled node in the augmented graph,

1 _
f+ = ;ru ijfﬁ:(D;ru_WU“) 1W1jifl+

(woee + Dyu — Wau) ™ Hwo foe + W f1)
(woee” + Auu)_l(wofo6 + Wufi)

wheree is a column vector of length with 1 in position:; and 0 elsewhere. Note
that we can use the matrix inversion lemma here, to obtain

1 L1 A (Vawee) (Vioe) T Ay,

(woeeT + AUU)_ = Auu -1
1+ (ywoe)T Ay (y/woe)
1
= G- 1+ woGiy; woG,G

where we use the shorthadti= A;! (the Green’s function);; is thei-th row,
i-th column element iitz; G|; is a square matrix witld='s i-th column and 0 else-
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where. Some calculation gives

wOfO - wOfi

+ p—
fu Jut 1+ woGi

wheref; is the unlabeled node’s original solution, aid is thei-th column vector

in G. If we want to pin down the unlabeled node to valfge we can letwy — oo

to obtain

fo—1i
Gi

f;r = fu"‘ Gz



Appendix B

The Inverse of a Matrix with One
Row/Column Removed

Let A be ann x n non-singular matrix. Giverl—!, we would like a fast algorithm
to computeA~}, whereA_; is the(n — 1) x (n — 1) matrix obtained by removing
thei-th row and column fronmu.

Let B = perm A, i) be the matrix created by moving tlie¢h row in front of

the 1st row, and théth column in front of the 1st column of. Then
AT} = (perm(A,i)-1) ! = (B) ™

Also note B~! = perm(4A~!,4). So we only need to consider the special case of

removing the first row/column of a matrix. Writg out asB = [ gﬂ ?* ]
*1 =1
whereBy,. = (bi2...b1,) and B,y = (b21...bn1) . We will transformB into a
block diagonal form in two steps. First, 1Bt = [ Bl BO } = B+uv" where
*1 -1

u=(—1,0,...,0)T andv = (b1; — 1, B1.)". We are interested i(B’) ~! which
will be used in the next step. By the matrix inversion lemma (Sherman-Morrison-
Woodbury formula),

B~ lyv™B7!
B/ -1 — B T\—1 — B—l _
(B) (B+uv’) 1+v7B 1y

1 0
N __
Next let B” = [ 0 B.

matrix inversion lemma again,

} = B’ 4+ wu" wherew = (0, B,1)". Applying the

(B/)—lqu(B/)—l
1+u™(B) tw

(B//)—l — (B/ + qu)fl _ (B/)—l _
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1 0

But sinceB” is block diagonal, we knowB”)~! = [
0 (Bﬁl)

(B-1) ™t = ((B") ™)1

1 ] . Therefore



Appendix C

Laplace Approximation for
Gaussian Processes

This derivation largely follows (Herbrich, 2002) (B.7). The Gaussiaocess
model, restricted to the labeled and unlabeled data, is

£ N (M, A—l) (C.1)

We will useG = A~! to denote the covariance matrix (i.e. the Gram matrix). Let
y € {—1,+1} be the observed discrete class labels. The hidden varfadhel
labelsy are connected via a sigmoid noise model

eV fiyi 1

P(yilfi) =

where~ is a hyperparameter which controls the steepness of the sigmoid. Given
the prior and the noise model, we are interested in the postgfiprfy/|y). By
Bayes theorem,

i £ e Fyi 1+ e 2w (C.2)

[T, Plyil f:)p(£r, fr)
p(fr. fulyr) = == (C.3)
(o) Plye)
Because of the noise model, the posterior is not Gaussian and has ribfolose
solution. We use the Laplace approximation.

First, we find the mode of the posterior (6.7):

[T, P(yil fi)p(EL. f0)

(. fy) = argmay, g Plys) (C.4)
l

= argmax, ¢, Y Pyl fi) + Inp(fr, fiy) (C.5)
=1

= argmax, r Q1+ Q2 (C.6)
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Notefy only appears if),, and we can maximizé; independently givelﬁAL. Q2
is the log likelihood of the Gaussian (C.1). Therefore gifenf; follows the
conditional distribution of Gaussian:

p(fulfr) = N (GULGZifL, Guu — GULGZEGLU) (C.7)
Moreover, the mode is the conditional mean
fy = GurGLifL (C.8)

It's easy to see (C.8) has the same form as the solution for Gaussian Bidltis (
RecallG = A~!. From partitioned matrix inversion theorem,

Apy = S;!

Ay =—S4'GuLGr]

whereS, = Gyy — Gur(Grr) 'Gry is the Schur complement @f ;. This
gives us

—(App)'Apr = SaSy'GurGL1 = GurGL}

Thus we have

A~

fr = —AppAuctr (C.9)

= AppWurfy (C.10)
which has the same form as the harmonic energy minimizing functionin (Zhu et al.,
2003a). In fact the latter is the limiting case wheh— oo and there is no noise
model.

Substitute (C.8) back t@),, using partitioned inverse of a matrix, it can be
shown that (not surprisingly)

1
Q2 = —ngGgifL +e (C.11)

Now go back taQ);. The noise model can be written as

eV fivi
Pulf) = e (C.12)
eVt vt i 1-y;
- (m) <1—m> (C.13)

y;+1

= n(fi) 2

(1—n(f)) =" (C.14)
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therefore
l
Q1 = > _ WnPylf) (C.15)
=1
! . _|_ 1 1 _ .
_ Z; Y —Inn(f) + — Vi1 — n(f;)) (C.16)
l
= ~(yp—1)'fL — Zln(l + e~y (C.17)

=1

Put it together,

A~

f, = argmax); + Q- (C.18)
l
1
= argmaxy(y, — 1) f, — > In(1+e i) — §ng;£fL (C.19)
=1

To find the mode, we take the derivative,

0(Q1 +Q2)

o~ -1+ -x(f) - Gpfe (C20)
L

Because of the term(fy) it is not possible to find the root directly. We solve it
with Newton-Raphson algorithm,

£ — g - Hlia@gft ) » (C.21)
whereH is the Hessian matrix,
2
H= [(ﬂgﬁ—;ﬂ% fL] (C.22)
Note ;=7 (f;) = 2ym(fi)(1 — m(fi)), we can writeH as
H=-G;, - P (C.23)

whereP is a diagonal matrix with elemenf; = 4v27(f;)(1 — 7(fi)).

Once Newton-Raphson converges we comjiutizom £, with (C.8). Classifi-
cation can be done with s¢fia;) noting this is the Bayesian classification rule with
Gaussian distribution and sigmoid noise model.
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To compute the covariance matrix of the Laplace approximation, note by defi-
nition the inverse covariance matrix of the Laplace approximation is

2 _
ofidf; g, g,
From (6.7) it is straightforward to confirm
1 P O 1 _| P O <
b)) _[00+G—00+A (C.25)
Therefore the covariance matrix is
-1
P 0 <
s ([5 0]+ a) c.26

whereP is evaluated at the mode.



Appendix D

Hyperparameter Learning by
Evidence Maximization

This derivation largely follows (Williams & Barber, 1998). We want to find the
MAP hyperparameter® which maximize the posterior

p(Olyr) x p(yL|©)p(©)

The prior p(©) is usually chosen to be simple, and so we focus on the term
p(y1|©), known as theevidence The definition

p(5210) = [ pyLltp(tule) df,
is hard to compute analytically. However notice

p(yL|fL)p(fL|©)
p(fLlyz,©)

Since it holds for alF;, it holds for the mode of the Laplace approximatipn

_ plyslfr)p(fr]©)

The terms on the numerator are straightforward to compute; the denominator is
tricky. However we can use the Laplace approximation, i.e. the probabilitsitge
at the modep(fL\yL, @) = N(fL’fL, ELL)- Recall

N
([0 o)+ [6e &) o
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VL (D.1)

p(yL|©)
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By applying Schur complement in block matrix decomposition twice, we find

YL =(P+Gp)™ (D.3)
Therefore the evidence is
£.)p(fL|©
P(y2]©) p(yq sz( .|©) (D.4)
Nt Xor)
_ plyclfr)p(fL[©) (D.5)
(2m)% (S| 2
_ p(yrlfr)p(fL|©) (D.6)
(2m)5|(P+ GLp) 2
Switching tolog domain, we have
N n 1
logp(yr|®) ~ U(fy)+ 5 log 27 + 5 log |X11] (D.7)
N 1
- W)+ g log 2 — > log [P + G| (D.8)

whereW (1) = log p(yz|f1) + log p(£2]©). Sincef ~ A’ (u, A*l) =N (1, G),
we havef;, ~ N (ur,Grr). Therefore

W(fr) = logp(yrlfr) + logp(f1|O©) (D.9)
L

= = log(1+ exp(—2yfiyi))
=1

n 1 1 - o
—3 log 2m — §1Og \Grr| — §(fL — ) Gy (fr — pXD.10)

Put it together,

L

_ Z log(1 + eXp(—2'7fiyi))

=1

Q

log p(yL|©)

. - . 1 _
) log |G| — §(fL - ML)TGLi(fL —pL) = 2 log | + GLH
L
- — Z log(1 + exp(—27fiy:))
i=1

. N 1
(£, — 1) GLL (L — pur)

— 510g|GLLP+I| (D.11)

1
2
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This gives us a way to (approximately) compute the evidence.

To find the MAP estimate ad (which can have multiple local maxima), we use
gradient methods. This involves the derivatives of the evidériog p(y,|©)/06,
wheref is the hyperparametét, o, v or the ones controllingl/.

We start from

0 . 0 1
—7(fi) = ———— D.12
m(fi) 001 4 e—2fi ( )

= ()0 nNGAL 4400y (DA3)

To computedf;, /00, note the Laplace approximation mofjesatisfies

oV (fr)
ofr, £,

= yr+1-2n(f)) - G (fL —p) =0 (D.14)

which means
f, = ~AGro(yr+1—2n(f1)) + uz (D.15)

Taking derivatives on both sides,

of; ) R
8—9L = %VGLL(YL +1—2n(fL)) (D.16)
oG . on(f]
= 789[/[/ (yL +1-—- 27T(fL)) — ZVGLL% (Dl?)
NG A 1 0 ot
= ’YagLL(yL—l—l—Q’]T(fL)) — ;GLLPfLa_g_GLLpa—HL(D:LS)
which gives
ofy, oGrr )

. 1 .
— = (I P! 1-—2n(f;)) — =G Pf .19
50 (I+GrLP) 50 (yr + 7(fL)) VGLL ng%) )
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Now it is straightforward to compute the gradient with (D.11):

0
log p(yL|©)

00
o[ & ; 1. s 1
~ 5 | ;108;(1 + exp(—27fiyi)) — §(fL —pr) Grp(fL —pr) — 3 log |G P +1|

L - ~
_ e exp(20fiyi)(“2y) 2 Oy Ofi
- ; 1+ exp(—2v i) & o6 "7 86)

1 P of, . OGLL -
—3 lz(GLi(fL —pr)’ 20 (fL — pr)" 89LL (fr — ML)]
1 _10GLLP
—itr <(GLLP +1) 50 )
where we used the fact
Olog |A] _104
S R S .
ot ( ~ (D.21)
For example, it) = v, the gradient can be computed by notii§Le = Gz,
1 ~
o =1, % =, and %P — G 9 where 9 = sym(f))(1 - w(f) +
4721 — 2(fi)) 25482,
1
Forg = 3, we have?10LL = 5(~1/8)Grr, 5% = 0, %35 = G1/6, and

aGa#ﬁLP = —GLLP/ﬁ-i-GLL Whereap“ =83 (f)(1—n(fi))(1— QW(fz))afz

For6 = o, the computat|on is more intensive because the complex depen-
dency betweer ando. We start from?GLe = [9G] . Using the fac?4,~ =

—AT1% A andG = AL, we getaf 3/a3G2. Note the computation in-

volves the multiplication of théull matrix G and is thus more demanding. Once
ag% is computed the rest is easy.

If we parameterize the weightd” in Gaussian Fields with radial basis func-
tions (for simplicity we assume a single length scale parameter all dimen-
sions. Extension to multiple length scales is simple),

wij =exp | ——5 (D.22)
(0%
whered;; is the Euclidean distance betweenz; in the original feature space, we
6w” _ 4 9A _ oD oW

can similarly learn the hyperparameter Note
98 — 392 The rest s the same as forabove.

= Wijo51 9a = da T da

(D.20)
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Similarly with a tanh()-weighted weight functionv;; = (tanh(ai(d;; —
az)) +1)/2, we haveles = (1 — tanh?(as (dij — a2)))(di; — a2)/2 and g =
—(1 — tanh?(aq (d;j — a2)))aq /2, and the rest follows.
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Appendix E

Mean Field Approximation for
Kernel CRF Training

In the basic kernel CRF model, each cliquis associated withy|Il parameters
aj(yc). Even if we only consider vertex cliques, there would be hundreds of tho
sands of parameters for a typical protein dataset. This seriously dfiedigining
efficiency.

To solve the problem, we adopt the notion of “import vector machines” by Zhu
and Hastie (2001). That is, we use a subset of the training exampledinstah
of them. The subset is constructed by greedily selecting training examded an

time to minimize the loss function:

arg min, R(faugry, A) — R(fa, A) (E.1)
where
fal,y) =Y o(y)K(x),%) (E.2)
jeA

andA is the currentictive import vector set

(E.1) is hard to compute: we need to update all the parameterf,fqy;; .
Even if we keep old parameters jin fixed, we still need to use expensive forward-
backward algorithm to train the new parameter$y) and compute the loss. Fol-
lowing McCallum (2003), we make a set of speed up approximations.

Approximation 1: Mean field approximation. With the old f4 we have an
old distribution P(y|x) = 1/Zexp(>_, fG(x,y)) over a label sequenae We
approximateP(y|x) by the mean field

Py(ylx) = H Po(yilxi) (E.3)

135



136 APPENDIX E. MEAN FIELD APPROXIMATION

i.e. the mean field approximation is the independent product of marginal distrib
tions at each position It can be computed with the Forward-Backward algorithm
on P(y|x).

Approximation 2: Consider only the vertex kernel. In conjunction with the
mean field approximation, we only consider the vertex kefgt;, z;) and ignore
edge or other higher order kernels. The loss function becomes

R(aN) = = Y log Pofuia) + 5 3 S auly)oy)K (wizy)  (EA)

€T 1,JEA Y

whereT = {1,..., M} is the set of training positions on which to evaluate the
loss function. Once we add a candidate import vegjoto the active set, the new
model is

Po(yilxi) exp(ar(yi) K (x4, 21))
(yz|$z) Z P (y’xl) exp(ak (y)K(xi, xk)) (E.5)

The new loss function is

R(favgey: N) = — Y log Pu(yila:) + % > > ai)a(y)K (i, x))

i€T i,jeAU{k} ¥
(E.6)

And (E.1) can be written as
R(favgey: ) = R(Fa, ) = = oneya) K (i, ) (E.7)

i€T

ZlogZP ylz;) exp(ag(y) K (x;, xr))

€T

A D a(y)an(y) K (z), ) + Zak K (g, zp)
JEA Yy

This change of loss is a convex function of tlyé parametersy,(y). We can find
the best parameters with Newton’s method. The first order derivatiees a

OR(faugrys A) — R(fa, A)
dag(y)

= = K(wi,2:)0(yi,y) (E.8)
i€T
+ 3 Pa(yla) K (zi, zp) (E.9)
ieT
+A Z a;(y)K(xzj,xz) (E.10)
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And the second order derivatives are

O?R(faugry, A) — R(fa,A)
Aoy (y) O (y')

et
+AK (g, 71)0(y, y')

Approximation 1 and 2 allow us to estimate the change in loss function inde-
pendently for each position ifi. This avoids the need of dynamic programming.
Although the time complexity to evaluate each candidates still linear in|7T|,
we save by a (potentially large) constant factor. Further more, they allmara
dramatic approximation as shown next.

Approximation 3: Sparse evaluation of likelihood. A typical protein database
has around 500 sequences, with hundreds of amino acid residualsquense.
ThereforeM , the total number of training positions, can easily be around 100,000.
Normally 7" = {1,...,M}, i.e. we need to sum over all training positions to
evaluate the log-likelihood. However we can speed up by reduEinghere are
several possibilities:

1. Focus on errorsl’ = {ily; # arg max Pp(y|x;)}
2. Focus on low confidenc& = {i| P,(yi|x;) < po}
3. Skip positionsT = {ailai < M;a,i € N}

4. Random samplél’ = {i|i ~ uniform(1, M)}

5

. Error/confidence guided sample: errors/low confidence positavestigher
probability to be sampled.

We need to scale the log likelihood term to maintain the balance between it and the
regularization term:

R(faih) = —% Slog Pyl + 5 3 S aullag(y)K (r2y) (E12)
€T L,jJEA Y

and scale the derivatives accordingly.

Other approximations: We may want to add more than one candidate import
vector toA at a time. However we need to eliminate redundant vectors, possibly
by the kernel distance. We may not want to fully trdin ;,, once we selectekl.

= > [Palyle) K> (i, 20)d(y, y') — Palylai) K2 (25, 1) Pa(y|2:)]

(E.11)
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Appendix F

An Empirical Comparison of
Iterative Algorithms

The single most significant bottleneck in computing the harmonic function is to
invert au x u matrix, as inf, = —A_lA,f;. Done naively the cost is close
to O(n?), which is prohibitive for practical problems. For example Matlah(jnv
function can only handle in the range of several thousand. Clearly, we need to
find ways to avoid the expensive inversion. One can go several dinsctio

1. One can approximate the inversion of a matrix by its top few eigenvalues
and eigenvectors. Ifa x n invertible matrixA has spectrum decomposition
A=Y Nidio], then A~ = ST 1/Ngig] ~ i 1/ N . The
topm < n eigenvectors); with the smallest eigenvalues is less expensive
to compute than inverting the matrix. This has been used in non-parametric
transforms of graph kernels for semi-supervised learning in Chaptér 8.
similar approximation is used in (Joachims, 2003). We will not pursue it
further here.

2. One can reduced the problem size. Instead of using all of the undabele
data, we can use a subset (or clusters) to construct the graph. irhertia
solution on the remaining data can be approximated with a computationally
cheap method. The backbone graph in Chapter 10 is an example.

3. One can use iterative methods. The hope is that each iteratiofnisand
convergence can be reached in relatively few iterations. There is saiai
iterative methods applicable. We will compare the simple ‘label propagation’
algorithm, loopy belief propagation and conjugate gradient next.
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F.1 Label Propagation

The original label propagation algorithm was proposed in (Zhu & Ghahra,
2002a). A slightly modified version is presented here. Pet= D~'W be the
transition matrix. Letf; be the vector for labeled set (for multiclass problems it
can be arl x ¢ matrix). The label propagation algorithm consists of two steps:

t+1 t

(1N (10

: 751;+1) f’lg,t)
2. Clamp the labeled datgf' " = f,

It can be showry,, converges to the harmonic solution regardless of initialization.
Each iteration needs a matrix-vector multiplication, which cawipe) for sparse
graphs. However the convergence may be slow.

F.2 Conjugate Gradient
The harmonic function is the solution to the linear system

Auufu = _Aulfl (Fl)

Standard conjugate gradient methods have been shown to perfornfvggitiou,
2004). In particular, the use of Jacobi preconditioner was shown tmiramon-
vergence. The Jacobi preconditioner is simply the diagondl gf, and the pre-
conditioned linear system is

dianuu)ilAuufu = _dianuu)ilAUlfl (FZ)

We note this is exactly
([ - Puu)fu = _Pulfl (F3)

i.e. the alternative definition of harmonic functigp = — (I — P,, ) "' P, f;, where
P = D~'W is the transition matrix.

F.3 Loopy belief propagation on Gaussian fields
The harmonic solution
fu=—AmAufi (F.4)

computes the mean of the marginals on unlabeled nedésis the graph Lapla-
cian. The computation involves invertingiax u matrix and is expensive for large
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datasets. We hope to use loopy belief propagation instead, as each iteréx{an
if the graph is sparse, and loopy BP has a reputation of converging/¥ests &
Freeman, 2001) (Sudderth et al., 2003). It has been proved thapif BB con-
verges, the mean values are correct (i.e. the harmonic solution).

The Gaussian field is defined as

1
py) o< exp(=5yAy") (F.5)
And f, = E,[y,]. Note the corresponding pairwise clique representation is
py) o J]iwiv) (F.6)
.3
1 2
= JJex» —5wi (Yi — ;) (F.7)
.3
_ Lo yfab Yi
Me(om (23)(3) e
wherea = d = w;;,b = ¢ = —w;j, andw;; is the weight of edge;. Notice in

this simple model we don’t have nodes for hidden variables and anothefor
observed ones; we only hasenodes with some of them observed. In other words,
there is no 'noise model'.

The standard belief propagation messages are

mij(y) = o | biilyey) [ mwi(v)dy (F.9)
vi keN (i)\j

wherem;; is the message fromto j, N(i)\j is the neighbors of exceptj, and
« a normalization factor. Initially the messages are arbitrary (e.g. uniforngpeéxc
for observed nodeg = f;, whose messages to their neighbors are

mii(y;) = abij(y, y;) (F.10)
After the messages converge, the marginals (belief) is computed as
byi) =a [ mwi(vs) (F.11)
keN (i)

For Gaussian fields with scalar-valued nodes, each messagan be param-
eterized similar to a Gaussian distribution by its megnand inverse variance
(precision)P;; = 1/0% parameters. That is,

mij(z;) o< exp (—%(mj — wij)*P; > (F.12)
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We derive the belief propagation iterations for this special case next.

mij(y;)

a | i) [ mwiy)dy

Yi

keN(i)\j

for(Chom (2 2)(3) T e

ofon 3 (w2 8)(3)+ 3 o)

keN(i)\j

dy;

keN(i)\j

1
Qa3 exp <—§dy]2->

i

[ e
Y

{

1
5 ((a - Z 4P,m-) Y7 + 2 (byj - Z ‘Pkiﬂki) y)} dy;
kEN(i)\j keN()\j

where we use the faét= c. Let A = a+2k€N(i)\j P, B = byj—zkeN(i)\j Pripiki,

mij (y;) (F.13)
1 1
= azexp <—§dyj2> / exp [—5 (Ay,2 + QByi)} dy;
1 1

= agexp (2dy§) / exp [2 ((\/Zyi +B/VA) - BWA)} dy;

a3 €xp [—% (dy? — BQ/A)} / exp [—% ((\/Zyi + B/\/Z)Q)] dy;

Yi

Note the integral is Gaussian whose value depend4,omot B. However sinced
is constant w.r.ty;, the integral can be absorbed into the normalization factor,

mz‘j(yj)_

4 XD

4 €XP

Qa5 €Xp

N = N =

1
2

(F.14)
(@7~ 51|

dy? — beJQ' = 203 penqypy Pritniyi + (reniyy Pritiri)?
! a+ > ken(ing Dhi

b Zk‘GN(i)\j Prifiri

b2
d— Y2+ 2 Yj
(( a+ 3 pen@n Pki) Tat Y penn Pri ]>]
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g b2 b pen(iy Priktki
LetC =d atdpenng Pri' T T atXpen(n Pri
mij(y;) (F.15)
[ 1
= asexp 5 (C’y] + 2Dyj)] (F.16)
1
= asexp [—3 <(\/—yJ+D/\/—) —Dz/cﬂ (F.17)
[ 1
= agexp |~ (\ij —I—D/\/>) (F.18)
[ 1
— avewp |~ (0 - (/017 C)] (F.19)

Thus we see the messagg; has the form of a Gaussian density with sufficient
statistics

P, = C (F.20)
b2
— d- (F.21)
a+ 2 ken(ng Pri
_ Dhkeny Ptk P! (F.23)

a+ > ken(ing Dhi
For our special case of = d = w;;,b = ¢ = —w;;, we get

2

we.
’ T wig + Yokenn Pri
1w = -D/C (F.25)
Wij D _ken(i)j Prittki 4

. P (F.26)
wij + P kenn Pri

For observed nodeg = f;, they ignore any messages sent to them, while sending
out the following messages to their neighbgrs

mj = fi (F.27)
F)lj = wlj (F28)
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The belief at nodé is

bi(yi) (F.29)
= H M yz) (F30)
kEN(i)

(F.31)

1
= aexp|—o > Wi — i) P
kEN (i)
= agexp (Z Puy; =2 ) Pki#kiyi)] (F.32)

kEN (4) kEN (4)

[ ~ Preifikei
— asexp _% GFMWP’““) S P (F.33)
2ken() P KEN (i)

This is a Gaussian distribution with mean and inverse variance

ZkeN(i) Pripigi

Hi = (F.34)
ZkeN(i) P

P = Z Py (F.35)
kEEN (i)

F.4 Empirical Results

We compare label propagation (LP), loopy belief propagation (loopy &#ju-
gate gradient (CG) and preconditioned conjugate gradient (CG(pigbn tasks.
The tasks are small because we want to be able to compute the closedlittionso
f» With matrix inversion. LP is coded in Matlab with sparse matrix. Loopy BP is
implemented in C. CG and CG(p) use Matla}z() function.

Figure F.1 compares the mean squared éxtqr,; () (i) — fu(z'))2 with dif-
ferent methods at iteration We assume that with good implementation, the cost
per iteration for different methods is similar. For multiclass tasks, it shows the
binary sub-task of the first class vs. the rest. Notey@is is inlog scale. We
observe that loopy BP always converges reasonably fast; CGfp)ateh up and
come closest to the closed form solution quickly, however sometimes it dbes no
converge (d,e,f); CG is always worse than CG(p); LP convergsssiewly.

For classification purpose we do not need to waitﬁﬁ)r to converge. Another
qguantity of interest is when doﬁt) give the same classification as the closed
form solutionf,. For the binary case this meaﬁg) and f,, are on the same side
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Figure F.1: Mean squared error to the harmonic solution with various iterativ
methods: loopy belief propagation (loopy BP), conjugate gradient (GiBjugate
gradient with Jacobi preconditioner (CG(p)), and label propagaliBy. (Note the
log-scaley-axis.
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task nodes  edges loopy BP CG CG(p) LP closed form

one vs. two 2200 17000 0.02 0.002 0.001 0.0008 2e+01
odd vs. even 4000 31626 0.03 0.003 0.0007 0.00L 1le+02
baseball vs. hockey 1993 13930 0.02 0.001 0.002 o0.000f 2e+01
pc vs. mac 1943 14288 0.02 0.002 0.002 0.000f 2e+01
religion vs. atheism 1427 10201 0.01 0.001 0.001 0.0005 7
ten digits 4000 31595 0.03 0.003 0.004 0.008 9e+01
isolet 7797 550297 5 0.0005 0.0003 1 2e+03
freefoodcam 5254 23098 0.02 0.0001 7e-05 0.008 le+02

Table F.1: Average run time per iteration for loopy belief propagation (I&RY,
conjugate gradient (CG), conjugate gradient with Jacobi precondit{@@(p)),
and label propagation (LP). Also listed is the run time for closed form solution
Time is in seconds. Loopy BP is implemented in C, others in Matlab.

of 0.5, if labels are 0 and 1. We define classification agreement as thenjpage of
unlabeled data Whogét) andf, have the same label. Note this is not classification
accuracy. ldeally agreement should reach 100% long bg‘ﬁ@reonverges. Figure
F.2 compares the agreement. Nat@xis is inlog scale. All methods quickly
reach classification agreement with the closed form solution, except €G@(p)
sometimes do not converge; Task (f) has only 80% agreement.

Since loopy BP code is implemented in C and others in Matlab, their speed
may not be directly comparable. Nonetheless we list the average per-ienatio
time of different iterative methods in Table F.1. Also listed are the run time of the
closed form solution with Matlabnv().
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Figure F.2: Classification agreement to the closed form harmonic solution with
various iterative methods: loopy belief propagation (loopy BP), conjugyaigient
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NOTATION

Notation

€ R 82333~ PP ICRAIXIOLRERETHTUSAIT >TSS 2w b

combinatorial graph Laplacian

smoothed Laplacian

length scale hyperparameter for edge weights

inverse temperature parameter for Gaussian random fields
steepness parameter for the Gaussian process noise model
transition probability to the dongle node

component class membershijy = 1|m) for mixture models
eigenvalues of the Laplacian

optimal spectrum transformation of the Laplacian
smoothing parameter for the graph Laplacian kernel
eigenvectors of the Laplacian

diagonal degree matrix of a graph

energy function on a graph

kernel

labeled data

log likelihood of mixture models

combined log likelihood and graph energy objective
transition matrix of a graph

responsibility of mixture component®;,,, = P(m|i)

risk, the estimated generalization error of the Bayes classifier
unlabeled data

weight matrix of a graph

arbitrary real functions on the graph

the graph for semi-supervised learning

the graph encoding sequence structure in KCRFs
harmonic function

labeled data size

length of a sequence

total size of labeled and unlabeled data

spectral transformation function to turn Laplacian into a kernel
unlabeled data size

edge weight in a graph

Features of a data point

Target value. In classification it is the (discrete) class label
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eNN graphs, 18
exp-weighted graphs, 19
tanh-weighted graphs, 18
kNN graphs, 18

active learning, 35

backbone graph, 85
bandwidth, 5

Baum-Welch algorithm, 69
bootstrapping, 3

class mass normalization, 25
clique, 70
co-training, 3

dongle, 26

edge, 5

eigen decomposition, 57
electric networks, 24

EM, 80

energy, 21

entropy minimization, 53
evidence maximization, 51

forward-backward algorithm, 69
fully connected graphs, 18

Gaussian process, 45
Gaussian random field, 21
graph, 5,9

harmonic function, 22
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harmonic mixtures, 83
hyperparameter, 5
hyperparameters, 51

inductive, 5

kernel alignment, 61
kernel conditional random fields, 70

label propagation, 6

labeled data, 5

Laplacian
combinatorial, 22
regularized, 46

mincut, 24
minimum spanning tree, 56
mixture model, 3, 80

order constraints, 62
QCQP, 60

random walk, 23
representer theorem, 71

self training, 3, 101
self-teaching, 3
semi-supervised learning, 2
sparse graphs, 18

spectral transformation, 59
supernode, 85
symmetrization, 10

transductive, 5
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transductive SVM, 3
transition matrix, 6

unlabeled data, 5



