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Parameter tuning: divide subjects into “training” and “test”
groups. Maximize training group human prediction likelihood.
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Imagine two identical people receive exactly the same training on
how to classity certain objects. Perhaps surprisingly, we show that
one can then manipulate them into classifying some test items in
opposite ways, simply depending on what other test items they

are asked to classify (without label feedback). We call this the Test- The Test-Item Effect due to order (Left) and distribution (Right) B :ZO _— /\ ) :EE //—*\
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propose and compare three online semi-supervised extensions:
Model behavior under different parameters:
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human’s mind. Two otherwise identical people A, B receiving
exactly the same training data can be made to disagree on certain
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extends the generahzed Receive 1, (may be unlabeled), update model:
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