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1 introduction

This thesis provides an overview of recent results in adversarial online learning due to myself
and my collaborators. The key question is the following: Consider an online learning setting, e.g.
online supervised learning, bandits, or reinforcement learning, in which we define 3 entities: the
underlying environment, the adversary, and the learning agent. During the learning process, the
agent tries to achieve the learning goal by interacting with the environment, whereas the adversary
desires to mislead the learner to achieve an attack goal by contaminating the interaction between
the agent and the environment.

This general setting of adversarial learning can be viewed as a two-player game between the
attacker and the learner. The learner plays first by choosing a learning strategy. Observing the
learning strategy and the environment, the attacker plays second by choosing an attack strategy.
Notice that there is an information gap between the attacker and the learner. A (white-box) attacker
observes both the strategy of the learner and the mechanics of the environment and therefore can
find the corresponding optimal strategy directly. On the other hand, the learner observes neither
the environment’s mechanics (otherwise there is no need to learn) nor the attacker’s strategy/utility,
and therefore has no better choice than deploying a min-max strategy, hoping to maximize its utility
against the worst-case adversary.

Traditionally, this problem has been extensively studied in the offline learning setting. Taking
supervised learning as an example, where the environment generates a pool of i.i.d. data from the
underlying distribution D. The attacker has the power to contaminate the data by injection/dele-
tion/modification, and the learner must perform learning on the contaminated data. Prior work has
studied this problem from both the attacker’s side and the learner’s side. On the attacker’s side, this
is sometimes referred to as the data poisoning problem. It is shown that the optimal attack problem
can be formulated as a bi-level optimization problem [122] and a computationally efficient attack
is possible when the learning problem is convex. On the learner’s side, the majority of the work
focuses on designing robust learning algorithms that aim to recover the underlying distribution of
D despite the contamination. This is traditionally studied in the field of robust statistics going back
at least to Tukey [162]. Recently, it has been shown that a computationally efficient robust estimator
exists in high-dimensional settings [51].

However, many real-world machine learning systems, such as recommendation systems, stock
market forecasting, and automatic logistics planning, need to constantly adapt to the changing
environment in an online fashion. Looking into the future, the grand goal of artificial intelligence is
to design learning systems that can automatically learn and adapt in the ever-changing open world.
These all call for the study of adversarial learning and robust learning in the online learning context,
for which very little prior work exists. When it comes to online learning, instead of performing one
contamination and learning action, now both the attacker and the learner need to make a sequence
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of decisions throughout the learning process. On the attacker’s side, we will show that instead of
a bilevel optimization problem, now the optimal attack problem can be formulated as an optimal
control problem. On the learner’s side, this sequential nature gives rise to several unique challenges
to robust learning compared to the offline setting:

1. Robust estimation under time-varying distribution: In online learning, typically the under-
lying distribution is also evolving, sometimes depending on the agent’s action. Performing
robust estimation under this moving distribution and with adversarial noise can be challeng-
ing;

2. Contamination robust exploration: An important theme unique to online learning is the
need for exploration, where the agent must learn to collect data adaptively to more efficiently
learn the optimal policy;

In the first half of this work, we study the optimal attack problem from the attacker’s perspective,
showing that the optimal attack problem can be formulated as an optimal control problem in
both online supervised learning (Chapter 2, 3) and reinforcement learning (Chapter 4, 5) settings.
On the theoretical side, we derive necessary and sufficient conditions under which attacks can
succeed. In the second half, we switch to the learner’s perspective and aim at designing robust
reinforcement learning algorithms against adversarial corruptions in both offline (Chapter 6) and
online RL (Chapter 7) settings.
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2 an optimal control approach to sequential machine teaching

In our first chapter, we study the strategy of an unconstrained omnipotent attacker who can pro-
vide arbitrary legitimate data to the learner, completely bypassing the environment. While such
assumptions is obvious strong and make defenses hopeless, our main goal in this chapter is to lay
down the mathematical foundation of the optimal attack problem, and we leave the discussion
of more realistic and constrained adversary to the next chapter. As a demonstrating example, in
this chapter, we will focus on a learner that performs online gradient descent with a squared loss.
Such omnipotent attacker is mathematically equivalent to a teacher the machine teaching setting.
Under this setting, we show that one can use the Pontryagin principle from optimal control theory
to derive a closed-form solution to the optimal attack/teaching strategy.

2.1 An optimal control view of sequential machine teaching

Machine teaching studies optimal control on machine learners [196, 194]. In controls language
the plant is the learner, the state is the model estimate, and the input is the (not necessarily i.i.d.)
training data. The controller wants to use the least number of training items—a concept known as
the teaching dimension [67]—to force the learner to learn a target model. For example, in adversarial
learning, an attacker may minimally poison the training data to force a learner to learn a nefarious
model [24, 123]. Conversely, a defender may immunize the learner by injecting adversarial training
examples into the training data [68]. In education systems, a teacher may optimize the training
curriculum to enhance student (modeled as a learning algorithm) learning [152, 137].

Machine teaching problems are either batch or sequential depending on the learner. Themajority
of prior work studied batch machine teaching, where the controller performs one-step control by
giving the batch learner an input training set. Modern machine learning, however, extensively
employs sequential learning algorithms. We thus study sequential machine teaching: what is the
shortest training sequence to force a learner to go from an initial model w0 to some target model w??
Formally, at time t = 0, 1, . . . the controller chooses input (xt, yt) from an input set U . The learner
then updates the model according to its learning algorithm. This forms a dynamical system f :

wt+1 = f(wt,xt, yt). (2.1a)

The controller has full knowledge of w0,w?, f,U , and wants to minimize the terminal time T subject
to wT = w?. As a concrete example, we focus on teaching a gradient descent learner of least squares:

f(wt,xt, yt) = wt − η(wT
t xt − yt)xt (2.1b)

with w ∈ Rn and the input set ‖x‖ ≤ Rx, |y|≤ Ry. We caution the reader not to trivialize the
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problem: (2.1) is a nonlinear dynamical system due to the interaction between wt and xt. A previous
best attempt to solve this control problem by [115] employs a greedy control policy, which at step
t optimizes xt, yt to minimize the distance between wt+1 and w?. One of our observations is that
this greedy policy can be substantially suboptimal. Figure 2.1 shows three teaching problems
and the number of steps T to arrive at w? using different methods. Our optimal control method
formulated as Nonlinear Programming (NLP) found shorter teaching sequences compared to the
greedy policy (lengths 151, 153, 259 for NLP vs 219, 241, 310 for GREEDY, respectively). This and
other experiments are discussed in Section 2.3.

0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0

GREEDY, T=219
STRAIGHT, T=172
NLP, T=151
CNLP, tf =1.52s

−1 0 1

0.0

0.5

1.0

1.5

2.0

2.5
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GREEDY, T=241
STRAIGHT, T=166
NLP, T=153
CNLP, tf =1.53s
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−0.5

0.0

0.5

1.0

1.5

GREEDY, T=310
STRAIGHT, T=305
NLP, T=259
CNLP, tf =2.59s

Figure 2.1: The shortest teaching trajectories found by different methods. All teaching tasks use
the terminal point w? = (1, 0). The initial points used are w0 = (0, 1) (left panel), w0 = (0, 2.5)
(middle panel), and w0 = (−1.5, 0.5) (right panel). The learner is the least squares gradient descent
algorithm (2.1) with η = 0.01 and Rx = Ry = 1. Total steps T to arrive at w? is indicated in the
legends.

Time-optimal control

To study the structure of optimal control we consider the continuous gradient flow approximation
of gradient descent, which holds in the limit of diminishing step size, i.e. η → 0. In this section,
we present the corresponding canonical time-optimal control problem and summarize some of
the key theoretical and computational tools in optimal control that address it. For a more detailed
exposition on the theory, we refer the reader to modern references on the topic [93, 110, 13].

This section is self-contained and we will use notation consistent with the control literature (x
instead of w, u instead of (x, y), tf instead of T). We revert back to machine learning notation in
section 2.2. Consider the following boundary value problem:

ẋ = f(x, u) with x(0) = x0 and x(tf ) = xf . (2.2)

The function x : R+ → Rn is called the state and u : R+ → U is called the input. Here, U ⊆ Rm is
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a given constraint set that characterizes admissible inputs. The initial and terminal states x0 and
xf are fixed, but the terminal time tf is free. If an admissible u together with a state x satisfy the
boundary value problem (2.2) for some choice of tf , we call (x, u) a trajectory of the system. The
objective in a time-optimal control problem is to find an optimal trajectory, which is a trajectory that
has minimal tf .

Established approaches for solving time-optimal control problems can be grouped in three broad
categories: dynamic programming, indirect methods, and direct methods. We now summarize
each approach.

Dynamic Programming Consider the value function V : Rn → R+, where V (x) is the minimum
time required to reach xf starting at the initial state x. TheHamilton–Jacobi–Bellman (HJB) equation
gives necessary and sufficient conditions for optimality and takes the form:

min
ũ∈U

∇V (x)Tf(x, ũ) + 1 = 0 for all x ∈ Rn (2.3)

together with the boundary condition V (xf ) = 0. If the solution to this differential equation is V?,
then the optimal input is given by the minimizer:

u(x) ∈ arg min
ũ∈U

∇V?(x)Tf(x, ũ) for all x ∈ Rn (2.4)

A nice feature of this solution is that the optimal input u depends on the current state x. In other
words, HJB produces an optimal feedback policy.

Unfortunately, the HJB equation (2.3) is generally difficult to solve. Even if the minimization
has a closed form solution, the resulting differential equation is often intractable. We remark that
the optimal V? may not be differentiable. For this reason, one looks for so-called viscosity solutions,
as described by [110, 159] and references therein.

Numerical approaches for solvingHJB include the fast-marchingmethod [161] andLax–Friedrichs
sweeping [90]. The latter reference also contains a detailed survey of other numerical schemes.

Indirect Methods Also known as “optimize then discretize”, indirect approaches start with nec-
essary conditions for optimality obtained via the Pontryagin Maximum Principle (PMP). The PMP
may be stated and proved in several different ways, most notably using the Hamiltonian formalism
from physics or using the calculus of variations. Here is a formal statement.

Theorem 2.1.1 (PMP). Consider the boundary value problem (2.2) where f and its Jacobian with respect to
x are continuous onRn×U . Define the HamiltonianH : Rn×Rn×U → R asH(x, p, u) := pTf(x, u)+1.
If (x?, u?) is an optimal trajectory, then there exists some function p? : R+ → Rn (called the “co-state”)
such that the following conditions hold.
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1. x? and p? satisfy the following system of differential equations for t ∈ [0, tf ] with boundary conditions
x?(0) = x0 and x?(tf ) = xf .

ẋ?(t) = ∂H

∂p
(x?(t), p?(t), u?(t)), (2.5a)

ṗ?(t) = −∂H
∂x

(x?(t), p?(t), u?(t)). (2.5b)

2. For all t ∈ [0, tf ], an optimal input u?(t) satisfies:

u?(t) ∈ arg min
ũ∈U

H(x?(t), p?(t), ũ). (2.6)

3. Zero Hamiltonian along optimal trajectories:

H(x?(t), p?(t), u?(t)) = 0 for all t ∈ [0, tf ]. (2.7)

In comparison to HJB, which needs to be solved for all x ∈ Rn, the PMP only applies along
optimal trajectories. Although the differential equations (2.5) may still be difficult to solve, they
are simpler than the HJB equation and therefore tend to be more amenable to both analytical and
numerical approaches. Solutions to HJB and PMP are related via ∇V ?(x?(t)) = p?(t).

PMP is only necessary for optimality, so solutions of (2.5)–(2.7) are not necessarily optimal.
Moreover, PMP does not produce a feedback policy; it only produces optimal trajectory candidates.
Nevertheless, PMP can provide useful insight, as we will explore in Section 2.2.

If PMP cannot be solved analytically, a common numerical approach is the shooting method, where
we guess p?(0), propagate the equations (2.5)–(2.6) forward via numerical integration. Then p?(0)
is refined and the process is repeated until the trajectory reaches xf .

Direct Methods Also known as “discretize then optimize”, a sparse nonlinear program is solved,
where the variables are the state and input evaluated at a discrete set of timepoints. An example is
collocation methods, which use different basis functions such as piecewise polynomials to interpolate
the state between timepoints. For contemporary surveys of direct and indirect numerical approaches,
see [143, 22].

If the dynamics are already discrete as in (2.1), we may directly formulate a nonlinear program.
We refer to this approach as NLP. Alternatively, we can take the continuous limit and then discretize,
which we call CNLP.We discuss the advantages and disadvantages of both approaches in Section 2.3.
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2.2 Teaching least squares: insight from Pontryagin

In this section, we specialize time-optimal control to least squares. To recap, our goal is to find the
minimum number of steps T such that there exists a control sequence (xt, yt)0:T−1 that drives the
learner (2.1) with initial state w0 to the target state w?. The constraint set is

U = {(x, y) | ‖x‖ ≤ Rx, |y|≤ Ry}

This is an nonlinear discrete-time time-optimal control problem, for which no closed-form solution is
available. On the corresponding continuous-time control problem, applying Theorem 2.1.1 we
obtain the following necessary conditions for optimality1 for all t ∈ [0, tf ].

w(0) = w0, w(tf ) = w? (2.8a)
ẇ(t) = (y(t)−w(t)Tx(t)) x(t) (2.8b)
ṗ(t) = (p(t)Tx(t)) x(t) (2.8c)

x(t), y(t) ∈ arg min
‖x̂‖≤Rx, |ŷ|≤Ry

(ŷ −w(t)Tx̂)(p(t)Tx̂) (2.8d)

0 = (y(t)−w(t)Tx(t))(p(t)Tx(t)) + 1 (2.8e)

We can simplify (2.8) by setting y(t) = Ry , as described in Proposition 2.2.1 below.

Proposition 2.2.1. For any trajectory (w,p,x, y) satisfying (2.8), there exist another trajectory of the form
(w,p, x̃, Ry). So we may set y(t) = Ry without any loss of generality.

Proof. Since (2.8d) is linear in ŷ, the optimal ŷ occurs at a boundary and ŷ = ±Ry. Changing the
sign of ŷ is equivalent to changing the sign of x̂, so we may assume without loss of generality that
ŷ = Ry . These changes leave (2.8b)–(2.8c) and (2.8e) unchanged so w and p are unchanged as well.

In fact, Proposition 2.2.1 holds if we consider trajectories of (2.1) as well. For a proof, see the
appendix. Applying Proposition 2.2.1, the conditions (2.8d) and (2.8e) may be combined to yield
the following quadratically constrained quadratic program (QCQP) equation.

min
‖x‖≤Rx

(Ry −wTx)(pTx) = −1 (2.9)

where we have omitted the explicit time specification (t) for clarity. Note that (2.9) constrains the
possible tuples (w,p,x) that can occur as part of an optimal trajectory. So in addition to solving

1State, co-state, and input in Theorem 2.1.1 are (x, p, u), which is conventional controls notation. For this problem, we
use (w, p, (x, y)), which is machine learning notation.
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the left-hand side to find x, we must also ensure that it’s equal to −1. We will now characterize
the solutions of (2.9) by examining five distinct regimes of the solution space that depend on the
relationship between w and p as well as which regime transitions are admissible.

Regime I (Origin): w = 0 and p 6= 0. This regime happens when the teaching trajectory pass
through the origin. In this regime, one can obtain closed-form solutions. In particular, x = − Rx

‖p‖p

and ‖p‖ = 1
RxRy

. In this regime, both ẇ and ṗ are positively aligned with p. Therefore, Regime I
necessarily transitions from Regime II and into Regime III, given that it is not at the beginning or the
end of the teaching trajectory.

Regime II (positive alignment): w = αp with p 6= 0 and α > 0. This regime happens when w

and p are positively aligned. Again we have closed form solutions. In particular, x? = − Rx
‖w‖w and

α = Rx‖w‖(Ry +Rx‖w‖). In this regime, both ẇ and ṗ are negatively aligned with w, thus Regime
II necessarily transitions into Regime I and can never transition from any other regimes.

Regime III (negative alignment inside the origin-centered ball): w = −αp with p 6= 0 and α > 0
and ‖w‖ ≤ Ry

2Rx . This regime happens when w and p are negatively aligned and w is inside the
ball centered at the origin with radius R = Ry

2Rx . Again, closed form solutions exists: x? = Rx
‖w‖w

and α = R‖w‖(1−R‖w‖). Regime III necessarily transitions from Regime I and into Regime IV.

Regime IV (negative alignment out of the origin-centered ball): w = −αp with p 6= 0 and α > 0

and ‖w‖ > Ry
2Rx . In this case, the solutions satisfies α =

R2
y

4 so that p is uniquely determined by w.

However, the optimal x? is not unique. Any solution to wTx = Ry
2 with ‖x‖ ≤ Rx can be chosen.

Regime IV can only transition from Regime III and cannot transition into any other regime. In other
word, once the teaching trajectory enters Regime IV, it cannot escape. Another interesting property
of Regime IV is that we know exactly how fast the norm of w is changing. In particular, knowing
wTx = Ry

2 , one can derive that d‖w‖2
dt = R2

y

2 . As a result, once the trajectory enters regime IV, we
know exact how long it will take for the trajectory to reach w?, if it is able to reach it.

RegimeV (general positions): w andp are linearly independent. This case covers the remaining
possibilities for the state and co-state variables. To characterize the solutions in this regime, we’ll
first introduce some new coordinates. Define {ŵ, û} to be the orthonormal basis for span{w,p}
such that w = γŵ and p = αŵ + βû for some α, β, γ ∈ R. Note that β 6= 0 because we assume w
and p are assumed to be linearly independent in this regime. We can therefore express any input
uniquely as x = wŵ + uû + zẑ where ẑ is an out-of-plane unit vector orthogonal to both ŵ and û,
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and w, u, z ∈ R are suitably chosen. Substituting these definitions, (2.9) becomes

min
w2+u2+z2≤R2

x

(Ry − γw)(αw + βu) = −1. (2.10)

Now observe that the objective is linear in u and does not depend on z. The objective is linear in u
because β 6= 0 and (1−γw) 6= 0 otherwise the entire objective would be zero. Since the feasible set is
convex, the optimal umust occur at the boundary of the feasible set of variables w and u. Therefore,
z = 0. This is profound, because it implies that in Regime V, the optimal solution necessarily lies on
the 2D plane span{w,p}. In light of this fact, we can pick a more convenient parametrization. Let
w = Rx cos θ and u = Rx sin θ. Equation (2.10) becomes:

min
θ

Rx(Ry − γRx cos θ)(α cos θ + β sin θ) = −1. (2.11)

This objective function has at most four critical points, of which there is only one global minimum,
and we can find it numerically. Last but not least, Regime V does not transition from or into any
other Regime.

II
I III IV V

w?
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Figure 2.2: Optimal trajectories for w? = (1, 0) for different choices of w0. Trajectories are colored
according to the regime to which they belong and the directed graph above shows all possible
transitions. The optimal trajectories are symmetric about the x-axis. For implementation details, see
Section 2.3.

Intrinsic low-dimensional structure of the optimal control solution.

As is hinted in the analysis of Regime V, the optimal control x sometimes lies in the 2D subspace
spanned by w and p. In fact, this holds not only for Regime V but for the whole problem. In
particular, we make the following observation.
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Theorem 2.2.2. There always exists a global optimal trajectory of (2.8) that lies in a 2D subspace of Rn.

The detailed proof can be found in the appendix. An immediate consequence of Theorem 2.2.2 is
that if w0 and w? are linearly independent, we only need to consider trajectories that are confined to
the subspace span{w0,w?}. When w0 and w? are aligned, trajectories are still 2D, and any subspace
containing w0 and w? is equivalent and arbitrary choice can be made.

This insight is extremely important because it enables us to restrict our attention to 2D trajectories
even though the dimensionality of the original problem (n) may be huge. This allows us to not
only obtain a more elegant and accurate solution in solving the necessary condition induced by
PMP, but also to parametrize direct and indirect approaches (see Sections 2.1 and 2.1) to solve this
intrinsically 2D problem more efficiently.

−2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−0.5

0.0

0.5

1.0

1.5

2.0
shooting trajectories

candidate 1, tf = 2.58s

candidate 2, tf = 3.26s

Figure 2.3: Trajectories found using a shooting approach (Section 2.1) with w0 = (−2, 1) and
w? = (1, 0). Gray curves show different shooting trajectories while the blue and orange curves show
two trajectories that satisfy the necessary conditions for optimality (2.8). Markers show intervals of
0.5 seconds, which is roughly 50 steps when using a stepsize of η = 0.01.

Multiplicity of Solution Candidates.

The PMP conditions are only necessary for optimality. Therefore, the optimality conditions (2.8)
need not have a unique solution. We illustrate this phenomenon in Figure 2.3. We used a shooting
approach (Section 2.1) to propagate different choices of p?(0) forward in time. It turns out two
choices lead to trajectories that end at w?, and they do not have equal total times. So in general,
PMP identifies optimal trajectory candidates, which can be thought of as local minima for this highly
nonlinear optimization problem.
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2.3 Numerical methods

While the PMP yields necessary conditions for time-optimal control as detailed in Section 2.2, there
is no closed-form solution in general. We now present and discuss four numerical methods: CNLP
and NLP are different implementations of time-optimal control, while GREEDY and STRAIGHT
are heuristics.

CNLP: This approach solves the continuous gradient flow limit of the machine teaching problem
using a direct approach (Section 2.1). Specifically, we used the NLOptControl package [63], which
is an implementation of the hp-pseudospectral method GPOPS-II [138] written in the Julia program-
ming language using the JuMP modeling language [58] and the IPOPT interior-point solver [164].
The main tuning parameters for this software are the integration scheme and the number of mesh
points. We selected the trapezoidal integration rule with 100 mesh points for most simulations. We
used CNLP to produce the trajectories in Figures 2.1 and 2.2.

NLP: A naïve approach to optimal control is to find the minimum T for which there is a feasible
input sequence to drive the learner tow?. Fixing T , the feasibility subproblem is a nonlinear program
over 2T n-dimensional variables x0, . . . ,xT−1 and w1, . . . ,wT constrained by learner dynamics.
Recall w0 is given, and one can fix yt = Ry for all t by Proposition 2.2.1. For our learner (2.1), the
feasibility problem is

min
w1:T ,x0:T−1

0 (2.12)

s.t. wT = w?

wt+1 = wt − η(wT
t xt −Ry)xt

‖xt‖ ≤ Rx, ∀t = 0, . . . , T − 1.

As in the CNLP case, we modeled and solved the subproblems (2.12) using JuMP and IPOPT. We
also tried Knitro, a state-of-the-art commercial solver [33], and it produced similar results. We
stress that such feasibility problems are difficult; IPOPT and Knitro can handle moderately sized T .
For our specific learner (2.1) there are 2D optimal control and state trajectories in span{w0,w?} as
discussed in Section 2.2. Therefore, we reparameterized (2.12) to work in 2D.

On top of this, we run a binary search over positive integers to find the minimum T for which
the subproblem (2.12) is feasible. Subject to solver numerical stability, the minimum T and its
feasibility solution x0, . . . ,xT−1 is the time-optimal control. While NLP is conceptually simple and
correct, it requires solving many subproblems with 2T variables and 2T constraints, making it less
stable and scalable than CNLP.
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GREEDY: We restate the greedy control policy initially proposed by [115]. It has the advantage
of being computationally more efficient and readily applicable to different learning algorithms (i.e.
dynamics). Specifically for the least squares learner (2.1) and given the current state wt, GREEDY
solves the following optimization problem to determine the next teaching example (xt, yt):

min
(xt,yt)∈U

‖wt+1 −w?‖2 (2.13)

s.t. wt+1 = wt − η(wT
t xt − yt)xt.

The procedure repeats until wt+1 = w?. We used the Matlab function fmincon to solve the above
quadratic program iteratively. We point out that the optimization problem is not convex. Moreover,
wt+1 does not necessarily point in the direction of w?. This is evident in Figure 2.1 and Figure 2.6.

STRAIGHT: We describe an intuitive control policy: at each step, move w in straight line toward
w? as far as possible subject to the constraint U . This policy is less greedy than GREEDY because
it may not reduce ‖wt+1 −w?‖2 as much at each step. The per-step optimization in x is a 1D line
search:

min
a,yt∈R

‖wt+1 −w?‖2 (2.14)

s.t. xt = a(w? −wt)/‖w? −wt‖

(xt, yt) ∈ U

wt+1 = wt − η(wT
t xt − yt)xt.

The line search (2.14) can be solved in closed-form. In particular, one can obtain that

a =

min{Rx, Ry‖w?−w‖
2(w?−w)Tw}, if (w? −w)Tw > 0

Rx, otherwise.

Comparison ofMethods We ran a number of experiments to study the behavior of these numerical
methods. In all experiments, the learner is gradient descent on least squares (2.1), and the control
constraint set is ‖x‖ ≤ 1, |y|≤ 1. Our first observation is that CNLP has a number of advantages:

1. CNLP’s continuous optimal state trajectory matches NLP’s discrete state trajectories, especially
on learners with small η. This is expected, since the continuous optimal control problem is
obtained asymptotically from the discrete one as η → 0. Figure 2.4 shows the teaching task
w0 = (1, 0)⇒ w∗ = (1, 0). Here we compare CNLP with NLP’s optimal state trajectories on
four gradient descent learners with different η values. The NLP optimal teaching sequences
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Figure 2.4: Comparison of CNLP vs NLP. All teaching tasks use the terminal point w? = (1, 0). The
initial points used are w0 = (0, 1) (left panel), w0 = (0, 2.5) (middle panel), and w0 = (−1.5, 0.5)
(right panel). We observe that the NLP trajectories on learners with smaller η’s quickly converges
to the CNLP trajectory.

vary drastically in length T , but their state trajectories quickly overlap with CNLP’s optimal
trajectory.

2. CNLP is quick to compute, while NLP runtime grows as the learner’s η decreases. Table 2.1
presents the wall clock time. With a small η, the optimal control takes more steps (larger T ).
Consequently, NLP must solve a nonlinear program with more variables and constraints. In
contrast, CNLP’s runtime does not depend on η.

3. CNLP can be used to approximately compute the “teaching dimension”, i.e. the minimum
number of sequential teaching steps T for the discrete problem. Recall CNLP produces an
optimal terminal time tf . When the learner’s η is small, the discrete “teaching dimension” T
is related by T ≈ tf/η. This is also supported by Table 2.1.

That said, it is not trivial to extract a discrete control sequence from CNLP’s continuous control
function. This hinders CNLP’s utility as an optimal teacher.

Our second observation is that NLP, being the discrete-time optimal control, produces shorter
teaching sequences than GREEDY or STRAIGHT. This is not surprising, and we have already
presented three teaching tasks in Figure 2.1 where NLP has the smallest T . In fact, there exist
teaching tasks on which GREEDY and STRAIGHT can perform arbitrarily worse than the optimal
teaching sequence found by NLP. A case study is presented in Table 2.2. In this set of experiments,
we set w0 = (a, 0) and w? = (0, 2a). As a increases, the ratio of teaching sequence length between
STRAIGHT and NLP and between GREEDY and NLP grow at an exponential rate.

We now dig deeper and present an intuitive explanation of why GREEDY requires more teaching
steps than NLP. The fundamental issue is the nonlinearity of the learner dynamics (2.1) in x. For
any w let us define the one-step reachable set {w− η(wTx− y)x

∣∣ (x, y) ∈ U
}. Figure 2.5 shows
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Table 2.1: Teaching sequence length and wall clock time comparison. NLP teaches three learners
with different η’s. Target is always w? = (1, 0). All experiments were performed on a conventional
laptop.

NLP CNLP
w0 η = 0.4 0.02 0.001

(0, 1) T = 3 75 1499 tf = 1.52s
0.013s 0.14s 59.37s 4.1s

(0, 2.5) T = 5 76 1519 tf = 1.53s
0.008s 0.11s 53.28s 2.37s

(−1.5, 0.5) T = 6 128 2570 tf = 2.59s
0.012s 0.63s 310.08s 2.11s

Table 2.2: Comparison of teaching sequence length T . We fixed η = 0.01 in all cases.

w0 w? NLP STRAIGHT GREEDY
(0, 1) (2, 0) 148 161 233
(0, 2) (4, 0) 221 330 721
(0, 4) (8, 0) 292 867 2667
(0, 8) (16, 0) 346 2849 10581

a sample of such reachable sets. The key observation is that the starting w is quite close to the
boundary of most reachable sets. In other words, there is often a compressed direction—from w to
the closest boundary of U—along which w makes minimal progress. The GREEDY scheme falls
victim to this phenomenon.

Figure 2.6 compares NLP and GREEDY on a teaching task chosen to have short teaching se-
quences in order to minimize clutter. GREEDY starts by eagerly descending a slope and indeed this
quickly brings it closer to w?. Unfortunately, it also arrived at the x-axis. For w on the x-axis, the
compressed direction is horizontally outward. Therefore, subsequent GREEDY moves are relatively
short, leading to a large number of steps to reach w?. Interestingly, STRAIGHT is often better than
GREEDY because it also avoids the x-axis compressed direction for general w0.

We illustrate the optimal inputs in Figure 2.7, which compares {xt} produced by STRAIGHT,
GREEDY, and NLP and the x(t) produced by CNLP. The heuristic approaches eventually take
smaller-magnitude steps as they approach w? while NLP and CNLP maintain a maximal input
norm the whole way.

Concluding remarks

Techniques from optimal control are under-utilized in machine teaching, yet they have the power to
provide better quality solutions as well as useful insight into their structure.
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Figure 2.5: Points reachable in one step of gradient descent (with η = 0.1) on a least-squares
objective starting from each of the black dots. There is circular symmetry about the origin (red dot).
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Figure 2.6: Reachable sets along the trajectory of NLP (left panel) and GREEDY (right panel). To
minimize clutter, we only show every 3rd reachable set. For this simulation, we used η = 0.1. The
greedy approach makes fast progress initially, but slows down later on.

As seen in Section 2.2, optimal trajectories for the least squares learner are fundamentally 2D.
Moreover, there is a taxonomy of regimes that dictates their behavior. We also saw in Section 2.3
that the continuous CNLP solver can provide a good approximation to the true discrete trajectory
when η is small. CNLP is also more scalable than simply solving the discrete NLP directly because
NLP becomes computationally intractable as T gets large (or η gets small), whereas the runtime of
CNLP is independent of η.
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Figure 2.7: Trajectories of the input sequence {xt} for GREEDY, STRAIGHT, and NLP methods and
the corresponding x(t) for CNLP. The teaching task is w0 = (−1.5, 0.5), w? = (1, 0), and η = 0.01.
Markers show every 10 steps. Input constraint is ‖x‖ ≤ 1.

A drawback of both NLP and CNLP is that they produce trajectories rather than policies. In
practice, using an open-loop teaching sequence (xt, yt) will not yield the wt we expect due to the
accumulation of small numerical errors as we iterate. In order to find a control policy, which is a
map from state wt to input (xt, yt), we discussed the possibility of solving HJB (Section 2.1) which
is computationally expensive.

An alternative to solving HJB is to pre-compute the desired trajectory via CNLP and then use
model-predictive control (MPC) to find a policy that tracks the reference trajectory as closely as
possible. Such an approach is used in [113], for example, to design controllers for autonomous race
cars, and would be an interesting avenue of future work for the machine teaching problem.

Finally, this chapter presents only a glimpse at what is possible using optimal control. For
example, the PMP is not restricted to merely solving time-optimal control problems. It is possible
to analyze problems with state- and input-dependent running costs, state and input pointwise or
integral constraints, conditional constraints, and even problems where the goal is to reach a target
set rather than a target point.
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3 online data poisoning attack.

In this chapter, we generalize our analysis to a more general online learning setting, where no
assumption is made on the learning algorithm or the environment. In this more general setting, we
show that, again, optimal control techniques can be used to formulate and solve for the optimal
attack strategy. Theoretically, we show that evenwhen the underlying distribution is unknown to the
attacker, it can perform reinforcement learning on the joint system of the learner and environment,
and achieve a regret that is sublinear in time and polynomial only in the complexity of the underlying
distribution and independent of the complexity of the learning system.

3.1 Motivations and Problem definitions

Protecting machine learning from adversarial attacks is of paramount importance [163, 84, 195].
To do so one much first understand various types of adversarial attacks. Data poisoning is a type
of attack where an attacker contaminates the training data in order to force a nefarious model on
the learner [171, 122, 32, 40, 85, 108]. Prior work on data poisoning focused almost exclusively
on the batch setting, where the attacker poisons a batch training set, and then the victim learns
from the batch [25, 125, 171, 122, 151, 39]. However, the batch setting misses the threats posed
by the attacker on sequential learners. For example, in e-commerce applications user-generated
data arrives at the learner sequentially. Such applications are particularly susceptible to poisoning
attacks, because it is relatively easy for the attacker to manipulate data items before they arrive at
the learner. Furthermore, the attacker may observe the effect of previous poisoning on the learner
and adaptively decides how to poison next. This adaptivity makes online data poisoning a potentially
more severe threat compared to its batch counterpart.

This paper presents a principled study of online data poisoning attacks. Our key contribution is
an optimal control formulation of such attacks. We provide theoretical analysis to show that the
attacker can attack near-optimally even without full knowledge of the underlying data generating
distribution. We then propose two practical attack algorithms—one based on traditional model-
based optimal control, and the other based on deep reinforcement learning—and show that they
achieve near-optimal attack performance in synthetic and real-data experiments. Taken together,
this paper builds a foundation for future studies of defense against online data poisoning.

The online data poisoning problem in this paper is shown in Figure 3.1. There are three entities:
a stochastic environment, a sequential learning victim, and the online attacker. In the absence of
attacks, at time t the environment draws a training data point zt ∈ Z i.i.d. from a time-invariant
distribution P : zt

i.i.d.∼ P. For example, zt can be a feature-label pair zt := (xt, yt) in supervised
learning or just the features zt := xt in unsupervised learning. The victim maintains a model θt ∈ Θ.
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Environment
zt

i.i.d.∼ P

Attacker
at = φ(zt, θt)

Victim learner
θt+1 = f(θt,at)

{θt}
{zt} {at}

Figure 3.1: Online data poisoning attack diagram. The attacker observes the training samples {zt}
and the learner’s model {θt} in an online fashion, and injects poisoned samples {at}.

Upon receiving zt, the victim performs one step of the sequential update defined by the function f :

θt+1 = f(θt, zt), (3.1)

For example, f can be gradient descent f(θt, zt) := θt − η∇`(θt, zt) under learner loss ` and step
size η. We now introduce the attacker by defining its knowledge, allowed actions, and goals:

• The attacker has knowledge of the victim’s update function f , the victim’s initial model θ0, data
z0:t generated by the environment so far, and optionally n “pre-attack” data points z−n:−1

i.i.d.∼
P . However, at time t the attacker does not have the clairvoyant knowledge of future data
points zt+1, zt+2, . . ., nor does it have the knowledge of the environment distribution P .

• The attacker can perform only one type of action: once the environment draws a data point zt,
the attacker perturbs the data point into a potentially different point at ∈ Z . The attacker incurs
a perturbation cost gper(zt,at), which reflects the price to attack. For example, gper(zt,at) :=
‖at − zt‖p if Z is endowed with an appropriate p-norm. The attacker then gives at to the
victim, who proceeds with model update (3.1) using at instead of zt.

• The attacker’s goal, informally, is to force the victim’s learned models θt to satisfy certain
nefarious properties at each step while paying a small cumulative perturbation cost. These
“nefarious properties” (rather the inability to achieve them) are captured by a nefarious cost
gnef(θ). It can encode a variety of attack goals considered in the literature such as: (i) targeted
attack gnef(θ) := ‖θ − θ†‖ to drive the learned model toward an attacker-defined target model
θ† (the dagger is a mnemonic for attack); (ii) aversion attack gnef(θ) := −‖θ − θ̂‖ (note the
sign) to push the learned model away from a good model θ̂, such as the one estimated from
pre-attack data; (iii) backdoor attack gnef(θ) := `(θ, z†), in which the goal is to plant a backdoor
such that the learned model behaves unexpectedly on special examples z† [108, 151, 39]. To
balance nefarious properties with perturbation cost, the attacker defines a running cost g at
time t:

g(θt, zt,at) := λgnef(θt) + gper(zt,at), (3.2)
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where λ is a weight chosen by the attacker to balance the two. The attacker desires small
cumulative running costs, which is the topic of Section 3.2.

Related Work

Data poisoning attacks have been studied against a wide range of learning systems. However, this
body of prior work has almost exclusively focused on the offline or batch settings, where the attacker
observes and can poison the whole training set or an entire batch of samples at once, respectively.
In contrast, our paper focuses on the online setting, where the attacker has to act multiple times
and sequentially during training. Examples of offline or batch poisoning attacks against SVM
include [25, 32, 171]. Such attacks are generalized into a bilevel optimization framework against
general offline learners with a convex objective function in [122]. A variety of attacks against
other learners have been developed, including neural networks [95, 125], autoregressive models
[8, 40], linear and stochastic bandits [85, 119], collaborative filtering [108], andmodels for sentiment
analysis [130].

There is an intermediate attack setting between offline and online, which we call clairvoyant
online attacks, where the attacker performs actions sequentially but has full knowledge of all
future input data zt+1, zt+2, . . . Examples include heuristic attacks against SVM learning from data
streams [32] and binary classification with an online gradient descent learner [166]. Our paper
focuses instead on the perhaps more realistic setting where the attacker has no knowledge of the
future data stream. More broadly, our paper advocates for a general optimal control viewpoint that
is not restricted to specific learners such as SVM.

The parallel line of work studying online teaching also considers the sequential control problem
of machine learners, where the goal is to choose a sequence of training examples that accelerates
learning [115, 106]. However, [115] solves the problem using a greedy heuristic that we show in
Section 3.5 performs poorly compared to our optimal control approach. On the other hand, [106]
finds optimal teaching sequences but is restricted to an ordinary linear regression learner.

The problem of optimal feedback control in the presence of noise, uncertain disturbances, or
uncertain dynamics has been an area of study for the better part of the past century. Major subfields
include stochastic control, when disturbances are stochastic in nature [11, 100], adaptive control, when
unknown parameters must be learned in an online fashion [12, 146], and robust control, when a
single controller is designed to control a family of systems within some uncertainty set [193, 155].

More recently, these classical problems have been revisited in the context of modern statistics,
with the goal of obtaining tight sample complexity bounds. Examples include unknown dynamics
[45], adversarial dynamics [5], adversarial cost [42] or unknown dynamics and cost [64]. These
works typically restrict their attention to linear systems with quadratic or convex losses, which is a
common and often reasonable assumption for control systems. However, for our problem of interest
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described in Section 3.1, the system dynamics (3.1) are the learner’s dynamics, which are nonlinear
for all cases of practical interest, including simple cases like gradient descent. In the sections that
follow, we develop tools, algorithms, and analysis for handling this more general nonlinear setting.

3.2 An Optimal Control Formulation

We now precisely define the notion of optimal online data poisoning attacks. To do so, we cast
the online data poisoning attack setting in Section 3.1 as a Markov Decision Process (MDP)M =
(S,A, T, g, γ, s0) explained below.

• The state st at time t is the stacked vector st := [θt, zt]T consisting of the victim’s current
model θt and the incoming environment data point zt. The state space is S := Θ×Z .

• The attacker’s action is the perturbed training point, i.e. at ∈ Z . The action space is A := Z .

• From the attacker’s perspective, the state transition probability T : S × A → ∆S , where
∆S is the probability simplex over S, describes the conditional probability on the next state
given current state and attack action. Specifically, T (st+1 | st,at) = T ([θt+1, zt+1]T | st,at) =
Pr(f(θt,at) = θt+1) · P (zt+1). For concreteness, in this paper, we assume that the victim
learning update f is deterministic, and thus the stochasticity is solely in the zt+1 component
inside st+1, which has a marginal distribution P , i.e.

T
(
[f(θt,at), zt+1]T

∣∣ st,at
)

= P (zt+1). (3.3)

• The quality of control at time t is specified by the running cost g(θt, zt,at) in (3.2), to be
minimized. From now on, we overload the notation and write the running cost equivalently
as g(st,at). Note that this is the opposite of the reward maximization setup commonly seen
in reinforcement learning.

• We present online data poisoning attack with an infinite time horizon (the finite horizon case
is similar but omitted due to space). We introduce a discounting factor γ ∈ (0, 1) to define a
discounted cumulative cost.

• The initial probability µ0 : S → ∆S is the probability distribution of the initial state s0. In
particular, we assume that the initial model θ0 is fixed while the first data point z0 is sampled
from P , i.e. µ0(θ0, z0) = P (z0).

A policy is a function φ : S → A that the attacker uses to choose the attack action at := φ(st) =
φ([θt, zt]T) based on the current victim model θt and the current environment input zt. The value
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V φM(s) of a state s is the expected discounted cumulative cost starting at s and following policy φ:

V φM(s) := EM

[ ∞∑
t=0

γtg(st, φ(st))
∣∣∣∣
s0=s

]
(3.4)

where the expectation is over the transition probability T . Overall, the attacker wants to perform
optimal control over the MDP, that is, to find an optimal control policy φ?M that minimizes the
expected value at the initial state. Define the attacker’s objective as JM(φ) := Es∼µ0

[
V φM(s)

]
, and

the attacker’s optimal attack policy as φ?M = arg minφ JM(φ).
Fortunately for the victim, the attacker cannot directly solve this optimal attack problem because

it does not know the environment data distribution P and thus cannot evaluate the expectation.
However, as we show next, the attacker can use model predictive control to approximately and
incrementally solve for the optimal attack policy while it gathers information about P as the attack
happens.

3.3 Practical Attack Algorithms via Model Predictive Control

The key obstacle that prevents the attacker from obtaining an optimal attack is the unknown data
distribution P . However, the attacker can build an increasingly accurate empirical distribution
P̂t from z0:t and optionally the pre-attack data sampled from P . Specifically, at time t with P̂t
in place of P and with the model θt in place of θ0, the attacker can construct a surrogate MDP
M̂t = (S,A, T̂t, g, γ, µ̂t), solve for the optimal policy φ?M̂t

= arg minφ JM̂t
(φ) on M̂t, and use φ?M̂t

to perform a one-step attack: at = φ?M̂t
(st).

As time t goes on, the attacker repeats the process of estimating φ?M̂t
and applying the one-step

attack φ?M̂t
(st). This repeated procedure of (re)-planning ahead but only executing one action

is called Model Predictive Control (MPC) [27, 121], and is widely used across the automotive,
aerospace, and petrochemical industries, to name a few. At each time step t, MPC would plan a
sequence of attacks using the surrogate model (in our case P̂t instead of P ), apply the first attack
at, update P̂ , and repeat. This allows the controller to continually adapt without committing to an
inaccurate model.

Next, we present two algorithms that practically solve the surrogate MDP, one based on model-
based planning and the other based on model-free reinforcement learning.

Algorithm NLP: Planning with Nonlinear Programming In the NLP algorithm, the attacker
further approximates the surrogate objective as

JM̂t
(φ) ≈ EP̂t

[
t+h−1∑
τ=t

γτ−tg(sτ , φ(sτ ))
]
≈
t+h−1∑
τ=t

γτ−tg(sτ ,aτ )
∣∣∣
zt:t+h−1
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The first approximation truncates at h steps after t, making it a finite-horizon control problem. The
second approximation does two things: (i) It replaces the expectation by one sampled trajectory of
the future input sequence, i.e. zt:t+h−1 ∼ P̂t. It is of course possible to use the average of multiple
trajectories to better approximate the expectation, though empirically we found that one trajectory
is sufficient. (ii) Instead of optimizing over a policy φ, it locally searches for the action sequence
at:t+h−1 ∈ Z . The attacker now solves the following optimization problem at every time t:

min
at:t+h−1

t+h−1∑
τ=t

γτ−tg(sτ ,aτ ) (3.5)

s.t. sτ+1 = [f(sτ ,aτ ), zτ ]T,∀τ = t, ..., t+ h− 1

zt:t+h−1 and st fixed and given.

Let a?t:t+h−1 be a solution. The NLP algorithm defines φ?
M̂t

(st) := a?t , then moves on to t + 1. The
resulting attack problem in general has a nonlinear objective stemming from gnef() and gper()
in (3.2), and nonconvex equality constraints stemming from the victim’s learning rule f() in (3.1).
Nonetheless, the attacker can solve modest-sized problems using modern nonlinear programming
solvers such as IPOPT [165].

Algorithm DDPG: Deep Deterministic Policy Gradient Instead of truncating and sampling to
approximate the surrogate attack problem with a nonlinear program, one can directly solve for
the optimal parametrized policy φ using reinforcement learning. In this paper, we utilize deep
deterministic policy gradient (DDPG) [111] to handle a continuous action space. DDPG learns a
deterministic policy with an actor-critic framework. Roughly speaking, it simultaneously learns an
actor network µ(s) parametrized by θµ and a critic network Q(s, a) parametrized by θQ. The actor
network represents the currently learned policy while the critic network estimate the action-value
function of the current policy, whose functional gradient guides the actor network to improve its pol-
icy. Specifically, the policy gradient can be written as: ∇θµJ = Es∼ρµ

[
∇aQ(s, µ(s)|θQ)∇θµµ(s|θµ)

]
in which the expectation is taken over ρµ, the discounted state visitation distribution for the current
policy µ. The critic network is updated using Temporal-Difference (TD) learning. We refer the
reader to the original paper [111] for a more detailed discussion of this algorithm and other deep
learning implementation details.

There are two advantages of this policy learning approach to the direct approach NLP. Firstly,
it actually learns a policy which can generalize to more than one step of attack. Secondly, it is a
model-free method and doesn’t require knowledge of the analytical form of the system dynamic f ,
which is necessary for the direct approach. Therefore, DDPG also applies to the black-box attack
setting, where the learner’s dynamic f is unknown. To demonstrate the generalizability of the
learned policy, in our experiments described later, we only allow the DDPG method to train once
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at the beginning of the attack on the surrogate MDP M̂0 based on (θ0, z0) and the pre-attack data
z−n:−1. The learned policy φM̂0

is then applied to all later attack rounds without retraining.

3.4 Theoretical Analysis

The fundamental statistical limit to a realistic attacker is its lack of knowledge on the environment
data distribution P . An idealized attacker with knowledge of P can find the optimal control
policy φ?M that achieves the optimal attack objective JM. In contrast, a realistic attacker only
has an estimated P̂ , hence an estimated state transition T̂ , and ultimately an estimated MDP
M̂ = (S,A, T̂ , g, γ, µ̂0). The realistic attacker will find an optimal policy with respect to its estimated
MDP M̂: φ?M̂ = arg minφ JM̂(φ), but φ?M̂ is in general suboptimal with respect to the true MDPM.
We are interested in the optimality gap V φ

?

M̂
M (s) − V φ

?
M
M (s). Note both are evaluated on the true

MDP.
We present a theoretical analysis relating the optimality gap to the quality of estimated P̂ . Our

analysis is a natural extension to the Simulation Lemma in tabular reinforcement learning [91] and
that of [16]. We assume that both Z and Θ are compact, and the running cost g is continuous and
thus bounded on its compact domain. WLOG, we assume g ∈ [0, Cmax]. It is easy to see that then
the range of value is bounded: V ∈ [0, Cmax

1−γ ] for bothM, M̂ , any policy, and any state. Note the
value function (3.4) satisfies the Bellman equation: V φM(s) = g(s, φ(s)) + γET (s′|s,φ(s))

[
V φM(s′)

]
.

Proposition 3.4.1. Consider two MDPsM,M̂ that differ only in state transition, induced by P and P̂ ,
respectively. Assume that ‖P̂ − P‖1:=

∫
Z |P̂ (z)− P (z)|dz ≤ ε. Let φ?M denote the optimal policy onM

and φ?M̂ the optimal policy on M̂. Then, sups∈S V
φ?M̂
M (s)− V φ

?
M
M (s) ≤ γCmaxε

(1−γ)2 .

Proposition 3.4.1 implies that optimality gap is at most linear in ε := ‖P̂ − P‖1. Classic Results
on Kernel Density Estimation (KDE) suggest that the L1 distance between P and the kernel density
estimator P̂n based on n samples converges to zero asymptotically in a rate of O(n−s/d+2s) for some
constant s (e.g. Theorem 9 in [71]).

In the experiment section below, the environment data stream is generated from a uniform
distribution on a finite data set, in which case P is a multinomial distribution. Under this special
setting, we are able to provide a finite-sample bound of order O(n−1/2) that matches with the best
achievable asymptotic rate above, i.e. as s→∞.

Theorem 3.4.2. Consider an MDPM induced by a multinomial distribution P with support cardinality
N , and a surrogate MDP M̂ induced by the empirical distribution P̂ on n i.i.d. samples, i.e. P̂ (i) =
1
n

∑n
j=1 Ixj=i. Denote φ?M the optimal policy onM and φ?M̂ the optimal policy on M̂. Then, with probability

at least 1− δ, we have sups∈S V
φ?M̂
M (s)− V φ

?
M
M (s) ≤ 2γCmax

(1−γ)2

√
1

2n ln 2N+1

δ = O(n−1/2).
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3.5 Experiments

In this section, we empirically evaluate our attack algorithms NLP and DDPG in Section 3.3 against
several baselines on synthetic and real data. As an empirical measure of attack efficacy, we compare
the attack methods by their empirical discounted cumulative cost J̃(t) :=

∑t
τ=0 γ

τg(θτ , zτ ,aτ ),
where the attack actions aτ are chosen by each method. Note that J̃(t) is computed on the actual
instantiation of the environment data stream z0, . . . , zt. Better attack methods tend to have smaller
J̃(t). We compare our algorithms with the following Baseline Attackers:

Null Attack: This is the baseline without attack, namely aNull
t = zt for all t. We expect the null

attack to form an upper bound on any attack method’s empirical discounted cumulative cost J̃(t).
GreedyAttack: The greedy strategy is appliedwidely as a practical heuristic in solving sequential

decision problems ([115, 106]). For our problem at time step t the greedy attacker uses a time-
invariant attack policy which minimizes the current step’s running cost g. Specifically, the greedy
attack policy can be written as aGreedy

t = arg mina g(θt, zt,a). If we instantiate gnef = ‖θt − θ†‖22 for
a target model θ† and gper = 0, we exactly recover the algorithm in [115]. Both null attack and
greedy attack can be viewed as time-invariant policies that do not utilize the information in P̂t.

Clairvoyant Attack: A clairvoyant attacker is an idealized attacker who knows the time horizon
T and the whole data sequence z0:T−1 upfront. In most realistic online data poisoning settings an
attacker only know z0:t at time t. Therefore, the clairvoyant attacker has strictly more information,
and we expect it to form a lower bound on realistic attack methods in terms of J̃(t). The clairvoyant
attacker solves a finite time-horizon optimal control problem, equivalent to the formulation in
[166] but without terminal cost: mina0:T−1

∑T−1
t=0 γtg(θt, zt,at) subject to θ0 given, z0:T−1 given

(clairvoyant), and θt+1 = f(θt,at), t = 0 . . . T − 1.

Poisoning Task Specification To specify a poisoning task is to define the victim learner f in (3.1)
and the attacker’s running cost g in (3.2). We evaluate all attacks on two types of victim learners:
online logistic regression, a supervised learning algorithm, and online soft k-means clustering, an
unsupervised learning algorithm.

Online logistic regression: Online logistic regression performs a binary classification task. The
incoming data takes the form of zt = (xt, yt), where xt ∈ Rd is the feature vector and yt ∈ {−1, 1} is
the binary label. In the experiments, we focus on attacking the feature part of the data, as is done in
a number of prior works [122, 166, 95]. The learner’s update rule is one step of gradient descent on
the log likelihood with step size η: f (θ, (x, y)) = θ + η yx

1+exp(yθTx) . The attacker wants to force the
victim learner to stay close to a target parameter θ†, i.e. this is a targeted attack. The attacker’s cost
function g is a weighted sum of two terms: the nefarious cost gnef is the negative cosine similarity
between the victim’s parameter and the target parameter, and the perturbation cost gper is the
L2 distance between the perturbed feature vector and the clean one, i.e. g (θt, (xt, y), (x′t, y)) =
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−λ cos
(
θt, θ

†)+ ‖x′t − xt‖2. Recall cos(a, b) := aTb
‖a‖‖b‖ .

Online soft k-means: Online soft k-means performs a k-means clustering task. The incoming
data contains only the feature vector, i.e. zt = xt. Its only difference from traditional k-means is that
instead of updating only the centroid closest to the current data point, it updates all the centroids
but the updates are weighted by their squared distances to the current data point using the softmax
function [23]. Specifically, the learner’s update rule is one step of soft k-means update with step
size η on all centroids, i.e. f(θ(j),a) = θ(j) + ηrj(a − θ(j)), j = 1, . . . , k, where r = softmax(−‖a −
θ(1)‖2, . . . ,−‖a − θ(k)‖2). Recall softmax(x1, . . . , xk) := [ ex1∑k

j
exj

, . . . , exk∑k

j
exj

]T. Similar to online
logistic regression, we consider a targeted attack objective. The attacker wants to force the learned
centroids to each stay close to the corresponding target centroid θ†(j). The attacker’s cost function
g is a weighted sum of two terms: the nefarious cost function gnef is the sum of the squared
distance between each of the victim’s centroid and the corresponding target centroid, and the
perturbation cost gper is the `2 distance between the perturbed feature vector and the clean one, i.e.
g(θt, zt,at) = λ

∑k
j=1‖f(θ,a)(j) − θ†(j)‖2+‖at − zt‖2.

Synthetic Data Experiments We first show a synthetic data experiment where the attack policy
can be visualized. The environment is a mixture of two 1D Gaussian: P = 1

2N(θ(1), 1) + 1
2N(θ(2), 1)

with θ(1) = −1 and θ(2) = +1. The victim learner is online soft k-means with k = 2 and initial
parameter θ(1)

0 = −2, θ(2)
0 = +2. The attack target is θ†(1) = −3 and θ†(2) = +3, namely the opposite

of how the victim’s parameters should move. We set the learning rate η = 0.01, cost regularizer
λ = 10, discounting factor γ = 0.99, evaluation length T = 500 and look-ahead horizon for MPC
h = 100. For attack methods that requires solving a nonlinear program, including GREEDY, NLP
and Clairvoyant, we use the JuMP modeling language [59] and the IPOPT interior-point solver
[165]. Following the above specification, we run each attack method on the same data stream and
compare their behavior.

Results: Figure 3.2a shows the empirical discounted cumulative cost J̃(t) as the attacks go on.
On this toy example, the null attack baseline achieves J̃(T ) = 3643 at T = 500. The greedy attacker
is only slight more effective at J̃(T ) = 3372. NLP and DDPG (curve largely overlap and hidden
under NLP) achieve 1265 and 1267, respectively, almost matching Clairvoyant’s 1256. As expected,
the null and clairvoyant attacks form upper and lower bounds on J̃(t).

Figure 3.2b-f shows the victim’s θt trajectory as attacks go on. Without attack (null), θt converges
to the true parameter −1 and +1. The greedy attack only perturbs each data point slightly, failing
to force θt toward attack targets. This failure is due to its greedy nature: the immediate cost gt at
each round is indeed minimized, but not enough to move the model parameters close to the target
parameters. In contrast, NLP and DDPG (trajectory similar to NLP, not shown) exhibit a different
strategy in the earlier rounds. They inject larger perturbations to the data points and sacrifice larger



26

0 100 200 300 400 500
t

0

500

1000

1500

2000

2500

3000

3500

J(
t)

NULL
GREEDY
DDPG
NLP, h = 80
CLAIRVOYANT

(a) Cumulative Attack
Costs

0 100 200 300 400 500
t

4

2

0

2

4

(0)
t
(1)
t
(0)
target
(1)
target

(b) NULL Attack

0 100 200 300 400 500
t

4

2

0

2

4

(0)
t
(1)
t
(0)
target
(1)
target

(c) GREEDY Attack

0 100 200 300 400 500
t

4

2

0

2

4

(0)
t
(1)
t
(0)
target
(1)
target

(d) NLP Attack

Figure 3.2: Synthetic data experiments. In (b)-(f), transparent blue and red dots indicate clean
positive and negative data point zt at time step t, solid dots indicate attacker-perturbed data point
at, vertical lines in between indicate the amount of perturbation.

immediate costs in order to drive the victim’s model parameters quickly towards the target. In later
rounds they only need to stabilize the victim’s parameters near the target with smaller per-step cost.

Real Data Experiments In the real data experiments, we run each attack method on 10 data sets
across two victim learners.

Datasets: We use 5 datasets for online logistic regression: Banknote Authentication (with
feature dimension d = 4), Breast Cancer (d = 9), Cardiotocography (d = 25), Sonar (d = 60),
and MNIST 1 vs. 7 (d = 784), and 5 datasets for online k-means clustering: User Knowledge
(d = 6, k = 2), Breast Cancer (d = 10, k = 2), Seeds (d = 8, k = 3), posture (d = 11, k = 5), MNIST
1 vs. 7 (d = 784, k = 2). All datasets except for MNIST can be found in the UCI Machine Learning
Repository [57]. Note that two datasets, Breast Cancer and MNIST, are shared across both tasks.

Preprocessing: To reduce the running time, for datasets with dimensionality d > 30, we reduce
the dimension to 30 via PCA projection. Then, all datasets are normalized so that each feature
has mean 0 and variance 1. Each dataset is then turned into a data stream by random sampling.
Specifically, each training data point zt is sampled uniformly from the dataset with replacement.

Experiment Setup: In order to demonstrate the general applicability of our methods, we draw
both the victim’s initial model θ0 and the attacker’s target θ† at random from a standard Gaussian
distribution of the appropriate dimension, for both online logistic regression and online k-means in
all 10 datasets. Across all datasets, we use the following hyperparameters: η = 0.01, γ = 0.99, T =
300. For online logistic regression λ = 100 while for online k-means λ = 10.

For DDPG attacker we only perform policy learning at the beginning to obtain φM̂0
; the learned

policy is then fixed and used to perform all the attack actions in later rounds. In order to give it a
fair chance, we give it a pre-attack dataset z−n:−1 of size n = 1000. For the sake of fair comparisons,
we give the same pre-attack dataset to NLP as well. For NLP attack we set the look-ahead horizon h
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Figure 3.3: The empirical discounted cumulative reward J̃(t) for the five attack methods across
10 real datasets. The first row is on online logistic regression and the second row is on online
k-means. Note that g(·) for online logistic regression can be negative, and thus the J̃(t) curve can be
decreasing.

such that the total runtime to perform T = 300 attacks does not exceed the DDPG training time,
which is 24 hours on an Intel Core i7-6800K CPU 3.40GHz with 12 cores. This results in h = 20 for
online logistic regression on CTG, Sonar and MNIST, and h = 80 in all other experiments.

Results: The experiment results are shown in figure 3.3. Interestingly, several consistent
patterns emerge from the experiments: The clairvoyant attacker consistently achieves the lowest
cumulative cost J̃(T ) across all 10 datasets. This is not surprising, as the clairvoyant attacker has
extra information of the future. The NLP attack achieves clairvoyant-matching performance on all 7
datasets in which it is given a large enough look-ahead horizon, i.e. h = 80. DDPG follows closely
next to MPC and Clairvoyant on most of the datasets, indicating that the pre-trained policy φM̂0

can achieve reasonable attack performance in most cases. On the 3 datasets where h = 20 for NLP,
DDPG exceeds the short-sighted NLP, indicating that when the computational resource is limiting,
DDPG has an advantage by avoiding the iterative retraining that NLP cannot bypass. GREEDY does
not do well on any of the 10 datasets, achieving only a slightly lower cost than the NULL baseline.
This matches our observations in the synthetic experiment.

Each of the attack methods also exhibits strategic behavioral patterns similar to what we observe
in the synthetic experiment. In particular, the optimal-control based methods NLP and DDPG
sacrifice larger immediate costs in earlier rounds in order to achieve smaller attack costs in later
rounds. This is especially obvious in the online logistic regression plots 3.3b-e, where the cumulative
costs J̃(t) rise dramatically in the first 50 rounds, becoming higher than the cost of NULL and
GREEDY around that time. This early sacrifice pays off after t = 50 where the cumulative cost starts
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to fall much faster. In 3.3c-e, however, the short-sighted NLP (with h = 20) fails to fully pick up
this long-term strategy, and exhibits a behavior close to an interpolation of greedy and optimal.
This is not surprising, as NLP with horizon h = 1 is indeed equivalent to the GREEDY method.
Thus, there is a spectrum of methods between GREEDY and NLP that can achieve various levels of
performance with different computational costs.
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4 policy poisoning in batch reinforcement learning and control

Next, we extend our study of optimal attack to the reinforcement learning setting. This chapter
studies the adversarial attack problem in the batch reinforcement learning where the data is pre-
collected and provided as a set of transitions. The attacker aims at mislead the learner to learn a
particular target policy by contaminate the collected dataset before presenting it to the learner. This
is in fact an offline learning problem, but we will see that several insights obtained here will help us
understand the online attack problem later.

4.1 Motivation

With the increasing adoption of machine learning, it is critical to study security threats to learning
algorithms and design effective defensemechanisms against those threats. There has been significant
work on adversarial attacks [26, 72]. We focus on the subarea of data poisoning attacks where
the adversary manipulates the training data so that the learner learns a wrong model. Prior work
on data poisoning targeted victims in supervised learning [122, 96, 166, 189] and multi-armed
bandits [85, 119, 114]. We take a step further and study data poisoning attacks on reinforcement
learning (RL). Given RL’s prominent applications in robotics, games and so on, an intentionally
and adversarially planted bad policy could be devastating.

While there has been some related work in test-time attack on RL, reward shaping, and teaching
inverse reinforcement learning (IRL), little is understood on how to training-set poison a reinforce-
ment learner. We take the first step and focus on batch reinforcement learner and controller as the
victims. These victims learn their policy from a batch training set. We assume that the attacker
can modify the rewards in the training set, which we show is sufficient for policy poisoning. The
attacker’s goal is to force the victim to learn a particular target policy (hence the name policy poi-
soning), while minimizing the reward modifications. Our main contribution is to characterize batch
policy poisoning with a unified optimization framework, and to study two instances against tabular
certainty-equivalence (TCE) victim and linear quadratic regulator (LQR) victim, respectively.

Related Work

Of particular interest is the work on test-time attacks against RL [73]. Unlike policy poisoning, there
the RL agent carries out an already-learned and fixed policy π to e.g. play the Pong Game. The
attacker perturbs pixels in a game board image, which is part of the state s. This essentially changes
the RL agent’s perceived state into some s′. The RL agent then chooses the action a′ := π(s′) (e.g.
move down) which may differ from a := π(s) (e.g. move up). The attacker’s goal is to force some
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specific a′ on the RL agent. Note π itself stays the same through the attack. In contrast, ours is a
data-poisoning attack which happens at training time and aims to change π.

Data-poisoning attacks were previously limited to supervised learning victims, either in batch
mode [25, 170, 108, 122] or online mode [166, 189]. Recently data-poisoning attacks have been
extended to multi-armed bandit victims [85, 119, 114], but not yet to RL victims.

There are two related but distinct concepts in RL research. One concept is reward shaping [131,
10, 47, 167] which also modifies rewards to affect an RL agent. However, the goal of reward shaping
is fundamentally different from ours. Reward shaping aims to speed up convergence to the same
optimal policy as without shaping. Note the differences in both the target (same vs. different
policies) and the optimality measure (speed to converge vs. magnitude of reward change).

The other concept is teaching IRL [36, 29, 89]. Teaching and attacking are mathematically
equivalent. However, the main difference to our work is the victim. They require an IRL agent,
which is a specialized algorithm that estimates a reward function from demonstrations of (state,
action) trajectories alone (i.e. no reward given). In contrast, our attacks target more prevalent RL
agents and are thus potentially more applicable. Due to the difference in the input to IRL vs. RL
victims, our attack framework is completely different.

4.2 Preliminaries

AMarkov Decision Process (MDP) is defined as a tuple (S,A, P,R, γ), where S is the state space,
A is the action space, P : S × A → ∆S is the transition kernel where ∆S denotes the space of
probability distributions on S , R : S ×A → R is the reward function, and γ ∈ [0, 1) is a discounting
factor. We define a policy π : S → A as a function that maps a state to an action. We denote the Q
function of a policy π as Qπ(s, a) = E[

∑∞
τ=0 γ

τR(sτ , aτ ) | s0 = s, a0 = a, π], where the expectation
is over the randomness in both transitions and rewards. The Q function that corresponds to the
optimal policy can be characterized by the following Bellman optimality equation:

Q∗(s, a) = R(s, a) + γ
∑
s′∈S

P (s′|s, a) max
a′∈A

Q∗(s′, a′), (4.1)

and the optimal policy is defined as π∗(s) ∈ arg maxa∈AQ∗(s, a).
We focus on RL victims who perform batch reinforcement learning. A training item is a tuple

(s, a, r, s′) ∈ S × A × R × S, where s is the current state, a is the action taken, r is the received
reward, and s′ is the next state. A training set is a batch of T training items denoted by D =
(st, at, rt, s′t)t=0:T−1. Given training set D, a model-based learner performs learning in two steps:

Step 1. The learner estimates an MDP M̂ = (S,A, P̂ , R̂, γ) from D. In particular, we assume the
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learner uses maximum likelihood estimate for the transition kernel P̂ : S ×A 7→ ∆S

P̂ ∈ arg max
P

T−1∑
t=0

logP (s′t|st, at), (4.2)

and least-squares estimate for the reward function R̂ : S ×A 7→ R

R̂ = arg min
R

T−1∑
t=0

(rt −R(st, at))2. (4.3)

Note that we do not require (4.2) to have a unique maximizer P̂ . When multiple maximizers exist,
we assume the learner arbitrarily picks one of them as the estimate. We assume the minimizer R̂ is
always unique. We will discuss the conditions to guarantee the uniqueness of R̂ for two learners
later.

Step 2. The learner finds the optimal policy π̂ thatmaximizes the expected discounted cumulative
reward on the estimated environment M̂ , i.e.,

π̂ ∈ arg max
π:S7→A

EP̂
∞∑
τ=0

γτ R̂(sτ , π(sτ )), (4.4)

where s0 is a specified or random initial state. Note that there could be multiple optimal policies,
thus we use ∈ in (4.4). Later we will specialize (4.4) to two specific victim learners: the tabular
certainty equivalence learner (TCE) and the certainty-equivalent linear quadratic regulator (LQR).

4.3 Policy Poisoning

We study policy poisoning attacks onmodel-based batch RL learners. Our threat model is as follows:
Knowledge of the attacker. The attacker has access to the original training set

D0 = (st, at, r0
t , s
′
t)t=0:T−1

. The attacker knows the model-based RL learner’s algorithm. Importantly, the attacker knows
how the learner estimates the environment, i.e., (4.2) and (4.3). In the case (4.2) has multiple
maximizers, we assume the attacker knows exactly the P̂ that the learner picks.

Available actions of the attacker. The attacker is allowed to arbitrarily modify the rewards
r0 = (r0

0, ..., r
0
T−1) in D0 into r = (r0, ..., rT−1). As we show later, changing r’s but not s, a, s′ is

sufficient for policy poisoning.
Attacker’s goals. The attacker has a pre-specified target policy π†. The attack goals are to (1)

force the learner to learn π†, (2) minimize attack cost ‖r − r0‖α under an α-norm chosen by the
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attacker.
Given the threat model, we can formulate policy poisoning as a bi-level optimization problem1:

min
r,R̂

‖r− r0‖α (4.5)

s.t. R̂ = arg min
R

T−1∑
t=0

(rt −R(st, at))2 (4.6)

{π†} = arg max
π:S7→A

EP̂
∞∑
τ=0

γτ R̂(sτ , π(sτ )). (4.7)

The P̂ in (4.7) does not involve r and is precomputed from D0. The singleton set {π†} on the LHS
of (4.7) ensures that the target policy is learned uniquely, i.e., there are no other optimal policies
tied with π†. Next, we instantiate this attack formulation to two representative model-based RL
victims.

Poisoning aTabularCertainty Equivalence (TCE)Victim In tabular certainty equivalence (TCE),
the environment is a Markov Decision Process (MDP) with finite state and action space. Given
original data D0 = (st, at, r0

t , s
′
t)0:T−1, let Ts,a = {t | st = s, at = a}, the time indexes of all training

items for which action a is taken at state s. We assume Ts,a ≥ 1, ∀s, a, i.e., each state-action pair
appears at least once in D0. This condition is needed to ensure that the learner’s estimate P̂ and R̂
exist. Remember that we require (4.3) to have a unique solution. For the TCE learner, R̂ is unique
as long as it exists. Therefore, Ts,a ≥ 1, ∀s, a is sufficient to guarantee a unique solution to (4.3). Let
the poisoned data be D = (st, at, rt, s′t)0:T−1. Instantiating model estimation (4.2), (4.3) for TCE,
we have

P̂ (s′ | s, a) = 1
|Ts,a|

∑
t∈Ts,a

1 [s′t = s′] , (4.8)

where 1 [] is the indicator function, and

R̂(s, a) = 1
|Ts,a|

∑
t∈Ts,a

rt. (4.9)

The TCE learner uses P̂ , R̂ to form an estimated MDP M̂ , then solves for the optimal policy π̂ with
respect to M̂ using the Bellman equation (4.1). The attack goal (4.7) can be naively characterized by

Q(s, π†(s)) > Q(s, a),∀s ∈ S,∀a 6= π†(s). (4.10)
1As we will show, the constraint (4.7) could lead to an open feasible set (e.g., in (4.10)) for the attack optimization (4.5)-

(4.7), on which the minimum of the objective function (4.5) may not be well-defined. In the case (4.7) induces an open set,
we will consider instead a closed subset of it, and optimize over the subset. How to construct the closed subset will be made
clear for concrete learners later.
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However, due to the strict inequality, (4.10) induces an open set in the Q space, on which the
minimum of (4.5) may not be well-defined. Instead, we require a stronger attack goal which leads
to a closed subset in the Q space. This is defined as the following ε-robust target Q polytope.

Definition 4.3.1. (ε-robust target Q polytope) The set of ε-robust Q functions induced by a target policy π†

is the polytope
Qε(π†) = {Q : Q(s, π†(s)) ≥ Q(s, a) + ε,∀s ∈ S,∀a 6= π†(s)} (4.11)

for a fixed ε > 0.

The margin parameter ε ensures that π† is the unique optimal policy for any Q in the polytope.
We now have a solvable attack problem, where the attacker wants to force the victim’s Q function
into the ε-robust target Q polytope Qε(π†):

min
r∈RT ,R̂,Q∈R|S|×|A|

‖r− r0‖α (4.12)

s.t. R̂(s, a) = 1
|Ts,a|

∑
t∈Ts,a

rt (4.13)

Q(s, a) = R̂(s, a) + γ
∑
s′

P̂ (s′|s, a)Q
(
s′, π†(s′)

)
,∀s,∀a (4.14)

Q(s, π†(s)) ≥ Q(s, a) + ε, ∀s ∈ S,∀a 6= π†(s). (4.15)

The constraint (4.14) enforces Bellman optimality on the value functionQ, inwhichmaxa′∈AQ(s′, a′)
is replaced by Q (s′, π†(s′)), since the target policy is guaranteed to be optimal by (4.15). Note
that problem (4.12)-(4.15) is a convex program with linear constraints given that α ≥ 1, thus
could be solved to global optimality. However, we point out that (4.12)-(4.15) is a more stringent
formulation than (4.5)-(4.7) due to the additional margin parameter ε we introduced. The feasible
set of (4.12)-(4.15) is a subset of (4.5)-(4.7). Therefore, the optimal solution to (4.12)-(4.15) could
in general be a sub-optimal solution to (4.5)-(4.7) with potentially larger objective value. We now
study a few theoretical properties of policy poisoning on TCE. All proofs are in the appendix. First
of all, the attack is always feasible.

Proposition 4.3.2. The attack problem (4.12)-(4.15) is always feasible for any target policy π†.

Proposition 4.3.2 states that for any target policy π†, there exists a perturbation on the rewards
that teaches the learner that policy. Therefore, the attacker changing r’s but not s, a, s′ is already
sufficient for policy poisoning.

We next bound the attack cost. Let theMDP estimated on the clean data be M̂0 = (S,A, P̂ , R̂0, γ).
Let Q0 be the Q function that satisfies the Bellman optimality equation on M̂0. Define ∆(ε) =
maxs∈S [maxa 6=π†(s)Q0(s, a)−Q0(s, π†(s)) + ε]+, where []+ takes the maximum over 0. Intuitively,
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∆(ε) measures how suboptimal the target policy π† is compared to the clean optimal policy π0

learned on M̂0, up to a margin parameter ε.

Theorem 4.3.1. Assume α ≥ 1 in (4.12). Let r∗, R̂∗ and Q∗ be an optimal solution to (4.12)-(4.15), then

1
2(1− γ)∆(ε)

(
min
s,a
|Ts,a|

) 1
α

≤ ‖r∗ − r0‖α≤
1
2(1 + γ)∆(ε)T 1

α . (4.16)

Corollary 4.3.3. If α = 1, then the optimal attack cost is O(∆(ε)T ). If α = 2, then the optimal attack cost
is O(∆(ε)

√
T ). If α =∞, then the optimal attack cost is O(∆(ε)).

Note that both the upper and lower bounds on the attack cost are linear with respect to ∆(ε),
which can be estimated directly from the clean training set D0. This allows the attacker to easily
estimate its attack cost before actually solving the attack problem.

Poisoning a LinearQuadratic Regulator (LQR)Victim As the second example, we study an LQR
victim that performs system identification from a batch training set [45]. Let the linear dynamical
system be

st+1 = Ast +Bat + wt,∀t ≥ 0, (4.17)

where A ∈ Rn×n, B ∈ Rn×m, st ∈ Rn is the state, at ∈ Rm is the control signal, and wt ∼ N (0, σ2I)
is a Gaussian noise. When the agent takes action a at state s, it suffers a quadratic loss of the general
form

L(s, a) = 1
2s
>Qs+ q>s+ a>Ra+ c (4.18)

for some Q � 0, R � 0, q ∈ Rn and c ∈ R. Here we have redefined the symbols Q and R in order to
conformwith the notation convention in LQR: nowwe useQ for the quadratic loss matrix associated
with state, not the action-value function; we use R for the quadratic loss matrix associated with
action, not the reward function. The previous reward function R(s, a) in general MDP (section 4.2)
is now equivalent to the negative loss −L(s, a). This form of loss captures various LQR control
problems. Note that the above linear dynamical system can be viewed as an MDP with transition
kernel P (s′ | s, a) = N (As + Ba, σ2I) and reward function −L(s, a). The environment is thus
characterized by matrices A, B (for transition kernel) and Q, R, q, c (for reward function), which
are all unknown to the learner.

We assume the clean training data D0 = (st, at, r0
t , st+1)0:T−1 was generated by running the

linear system for multiple episodes following some random policy [45]. Let the poisoned data be
D = (st, at, rt, st+1)0:T−1. Instantiating model estimation (4.2), (4.3), the learner performs system
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identification on the poisoned data:

(Â, B̂) ∈ arg min
(A,B)

1
2

T−1∑
t=0
‖Ast +Bat − st+1‖22 (4.19)

(Q̂, R̂, q̂, ĉ) = arg min
(Q�0,R�εI,q,c)

1
2

T−1∑
t=0

∥∥∥∥1
2s
>
t Qst + q>st + a>t Rat + c+ rt

∥∥∥∥2

2
. (4.20)

Note that in (4.20), the learner uses a stronger constraint R � εI than the original constraint R � 0,
which guarantees that the minimizer can be achieved. The conditions to further guarantee (4.20)
having a unique solution depend on the property of certain matrices formed by the clean training
set D0, which we defer to appendix C.

The learner then computes the optimal control policy with respect to Â, B̂, Q̂, R̂, q̂ and ĉ. We
assume the learner solves a discounted version of LQR control

max
π:S7→A

−E

[ ∞∑
τ=0

γτ (1
2s
>
τ Q̂sτ + q̂>sτ + π(sτ )>R̂π(sτ ) + ĉ)

]
(4.21)

s.t. sτ+1 = Âsτ + B̂π(sτ ) + wτ ,∀τ ≥ 0. (4.22)

where the expectation is over wτ . It is known that the control problem has a closed-form solution
âτ = π̂(sτ ) = Ksτ + k, where

K = −γ
(
R̂+ γB̂>XB̂

)−1
B̂>XÂ, k = −γ(R̂+ γB̂>XB̂)−1B̂>x. (4.23)

Here X � 0 is the unique solution of the Algebraic Riccati Equation,

X = γÂ>XÂ− γ2Â>XB̂
(
R̂+ γB̂>XB̂

)−1
B̂>XÂ+ Q̂, (4.24)

and x is a vector that satisfies
x = q̂ + γ(Â+ B̂K)>x. (4.25)

The attacker aims to force the victim into taking target action π†(s),∀s ∈ Rn. Note that in LQR,
the attacker cannot arbitrarily choose π†, as the optimal control policy K and k enforce a linear
structural constraint between π†(s) and s. One can easily see that the target action must obey
π†(s) = K†s+ k† for some (K†, k†) in order to achieve successful attack. Therefore we must assume
instead that the attacker has a target policy specified by a pair (K†, k†). However, an arbitrarily
linear policy may still not be feasible. A target policy (K†, k†) is feasible if and only if it is produced
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by solving some Riccati equation, namely, it must lie in the following set:

{(K, k) : ∃Q � 0, R � εI, q ∈ Rn, c ∈ R, such that (4.23), (4.24), and (4.25) are satisfied}. (4.26)

Therefore, to guarantee feasibility, we assume the attacker always picks the target policy (K†, k†) by
solving an LQR problem with some attacker-defined loss function. We can now pose the policy
poisoning attack problem:

min
r,Q̂,R̂,q̂,ĉ,X,x

‖r− r0‖α (4.27)

s.t. −γ
(
R̂+ γB̂>XB̂

)−1
B̂>XÂ = K† (4.28)

−γ
(
R̂+ γB̂>XB̂

)−1
B̂>x = k† (4.29)

X = γÂ>XÂ− γ2Â>XB̂
(
R̂+ γB̂>XB̂

)−1
B̂>XÂ+ Q̂ (4.30)

x = q̂ + γ(Â+ B̂K†)>x (4.31)

(Q̂, R̂, q̂, ĉ) = arg min
(Q�0,R�εI,q,c)

T−1∑
t=0

∥∥∥∥1
2s
>
t Qst + q>st + a>t Rat + c+ rt

∥∥∥∥2

2
(4.32)

X � 0. (4.33)

Note that the estimated transition matrices Â, B̂ are not optimization variables because the attacker
can only modify the rewards, which will not change the learner’s estimate on Â and B̂. The attack
optimization (4.27)-(4.33) is hard to solve due to the constraint (4.32) itself being a semi-definite
program (SDP). To overcome the difficulty, we pull all the positive semi-definite constraints out
of the lower-level optimization. This leads to a more stringent surrogate attack optimization (see
appendix C). Solving the surrogate attack problem, whose feasible region is a subset of the original
problem, in general gives a suboptimal solution to (4.27)-(4.33). But it comes with one advantage:
convexity.

4.4 Experiments

Throughout the experiments, we use CVXPY [54] to implement the optimization. All code can be
found in https://github.com/myzwisc/PPRL_NeurIPS19.

Policy Poisoning Attack on TCE Victim

Experiment 1. We consider a simple MDP with two states A,B and two actions: stay in the same
state or move to the other state, shown in figure 4.1a. The discounting factor is γ = 0.9. The MDP’s
Q values are shown in table 4.1b. Note that the optimal policy will always pick action stay. The

https://github.com/myzwisc/PPRL_NeurIPS19
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A B

+1 +1
0

0

(a) A toy MDP with two states.
stay move

A 10 9
B 10 9

(b) Original Q values.
stay move

A 9 10
B 9 10

(c) Poisoned Q values. (d) Trajectory for the Q values of state A during value itera-
tion.

Figure 4.1: Poisoning TCE in a two-state MDP.

clean training data D0 reflects this underlying MDP, and consists of 4 tuples:

(A, stay, 1, A) (A,move, 0, B) (B, stay, 1, B) (B,move, 0, A)

Let the attacker’s target policy be π†(s) =move, for any state s. The attacker sets ε = 1 and uses α = 2,
i.e. ‖r− r0‖2 as the attack cost. Solving the policy poisoning attack optimization problem (4.12)-
(4.15) produces the poisoned data:

(A, stay, 0, A) (A,move, 1, B) (B, stay, 0, B) (B,move, 1, A)

with attack cost ‖r− r0‖2= 2. The resulting poisoned Q values are shown in table 4.1c. To verify
this attack, we run TCE learner on both clean data and poisoned data. Specifically, we estimate the
transition kernel and the reward function as in (4.8) and (4.9) on each data set, and then run value
iteration until the Q values converge. In Figure 4.1d, we show the trajectory of Q values for state A,
where the x and y axes denoteQ(A, stay) andQ(A,move) respectively. All trajectories start at (0, 0).
The dots on the trajectory correspond to each step of value iteration, while the star denotes the
converged Q values. The diagonal dashed line is the (zero margin) policy boundary, while the gray
region is the ε-robust targetQ polytope with an offset ε = 1 to the policy boundary. The trajectory of
clean data converges to a point below the policy boundary, where the action stay is optimal. With
the poisoned data, the trajectory of Q values converge to a point exactly on the boundary of the
ε-robust target Q polytope, where the actionmove becomes optimal. This validates our attack.
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We also compare our attack with reward shaping [131]. We let the potential function φ(s) be
the optimal value function V (s) for all s to shape the clean dataset. The dataset after shaping is

(A, stay, 0, A) (A,move,−1, B) (B, stay, 0, B) (B,move,−1, A)

In Figure 4.1d, we show the trajectory of Q values after reward shaping. Note that same as on clean
dataset, the trajectory after shaping converges to a point also below the policy boundary. This means
reward shaping can not make the learner learn a different policy from the original optimal policy.
Also note that after reward shaping, value iteration converges much faster (in only one iteration),
which matches the benefits of reward shaping shown in [131]. More importantly, this illustrates the
difference between our attack and reward shaping.
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(a) Grid world with a single terminal state G.
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(b) Grid world with two terminal states G1 and G2.

Figure 4.2: Poisoning TCE in grid-world tasks.

Experiment 2. As another example, we consider the grid world tasks in [36]. In particular, we
focus on two tasks shown in figure 4.2a and 4.2b. In figure 4.2a, the agent starts from S and aims
to arrive at the terminal cell G. The black regions are walls, thus the agent can only choose to go
through the white or gray regions. The agent can take four actions in every state: go left, right, up
or down, and stays if the action takes it into the wall. Reaching a gray, white, or the terminal state
results in rewards −10, −1, 2, respectively. After the agent arrives at the terminal state G, it will
stay there forever and always receive reward 0 regardless of the following actions. The original
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optimal policy is to follow the blue trajectory. The attacker’s goal is to force the agent to follow the
red trajectory. Correspondingly, we set the target actions for those states on the red trajectory as
along the trajectory. We set the target actions for the remaining states to be the same as the original
optimal policy learned on clean data.

The clean training data contains a single item for every state-action pair. We run the attack
with ε = 0.1 and α = 2. Our attack is successful: with the poisoned data, TCE generates a policy
that produces the red trajectory in Figure 4.2a, which is the desired behavior. The attack cost is
‖r− r0‖2≈ 2.64, which is small compared to ‖r0‖2= 21.61. In Figure 4.2a, we show the poisoning
on rewards. Each state-action pair is denoted by an orange arrow. The value tagged to each arrow is
the modification to that reward, where red value means the reward is increased and blue means
decreased. An arrow without any tagged value means the corresponding reward is not changed by
attack. Note that rewards along the red trajectory are increased, while those along the blue trajectory
are reduced, resulting in the red trajectory being preferred by the agent. Furthermore, rewards
closer to the starting state S suffer larger poisoning since they contribute more to the Q values. For
the large attack +2.139 happening at terminal state, we provide an explanation in appendix C.

Experiment 3. In Figure 4.2b there are two terminal states G1 and G2 with reward 1 and 2,
respectively. The agent starts from S. AlthoughG2 is more profitable, the path is longer and each step
has a −1 reward. Therefore, the original optimal policy is the blue trajectory to G1. The attacker’s
target policy is to force the agent along the red trajectory to G2. We set the target actions for states
as in experiment 2. The clean training data contains a single item for every state-action pair. We run
our attack with ε = 0.1 and α = 2. Again, after the attack, TCE on the poisoned dataset produces
the red trajectory in figure 4.2b, with attack cost ‖r− r0‖2≈ 0.38, compared to ‖r0‖2= 11.09. The
reward poisoning follows a similar pattern to experiment 2.

Policy Poisoning Attack on LQR Victim

Experiment 4. We now demonstrate our attack on LQR. We consider a linear dynamical system
that approximately models a vehicle. The state of the vehicle consists of its 2D position and 2D
velocity: st = (xt, yt, vxt , v

y
t ) ∈ R4. The control signal at time t is the force at ∈ R2 which will be

applied on the vehicle for h seconds. We assume there is a friction parameter η such that the friction
force is −ηvt. Letm be the mass of the vehicle. Given small enough h, the transition matrices can be
approximated by (4.17) where

A =


1 0 h 0
0 1 0 h

0 0 1− hη/m 0
0 0 0 1− hη/m

 , B =


0 0
0 0

h/m 0
0 h/m

 . (4.34)
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(a) Clean and poisoned vehicle trajectory. (b) Clean and poisoned rewards.

Figure 4.3: Poisoning a vehicle running LQR in 4D state space.

In this example, we let h = 0.1,m = 1, η = 0.5, and wt ∼ N (0, σ2I) with σ = 0.01. The vehicle starts
from initial position (1, 1) with velocity (1,−0.5), i.e., s0 = (1, 1, 1,−0.5). The true loss function is
L(s, a) = 1

2s
>Qs + a>Ra with Q = I and R = 0.1I (i.e., Q = I,R = 0.1I, q = 0, c = 0 in (4.18)).

Throughout the experiment, we let γ = 0.9 for solving the optimal control policy in (4.21). With
the true dynamics and loss function, the computed optimal control policy is

K∗ =
[
−1.32 0 −2.39 0

0 −1.32 0 −2.39

]
, k∗ =

[
0 0

]
, (4.35)

which will drive the vehicle to the origin.
The batch LQR learner estimates the dynamics and the loss function from a batch training data.

To produce the training data, we let the vehicle start from state s0 and simulate its trajectory with a
random control policy. Specifically, in each time step, we uniformly sample a control signal at in a
unit sphere. The vehicle then takes action at to transit from current state st to the next state st+1,
and receives a reward rt = −L(st, at). This gives us one training item (st, at, rt, st+1). We simulate
a total of 400 time steps to obtain a batch data that contains 400 items, on which the learner estimates
the dynamics and the loss function. With the learner’s estimate, the computed clean optimal policy
is

K̂0 =
[
−1.31 1.00e−2 −2.41 2.03e−3
−1.97e−2 −1.35 −1.14e−2 −2.42

]
, k̂0 =

[
−4.88e−5 4.95e−6

]
. (4.36)

The clean optimal policy differs slightly from the true optimal policy due to the inaccuracy of the
learner’s estimate. The attacker has a target policy (K†, k†) that can drive the vehicle close to its
target destination (x†, y†) = (0, 1) with terminal velocity (0, 0), which can be represented as a target
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state s† = (0, 1, 0, 0). To ensure feasibility, we assume that the attacker starts with the loss function
1
2 (s− s†)>Q(s− s†) + a>Rawhere Q = I,R = 0.1I . Due to the offset this corresponds to setting
Q = I,R = 0.1I, q = −s†, c = 1

2s
†>Qs† = 0.5 in (4.18). The attacker then solves the Riccati equation

with its own loss function and the learner’s estimates Â and B̂ to arrive at the target policy

K† =
[
−1.31 9.99e−3 −2.41 2.02e−3
−1.97e−2 −1.35 −1.14e−2 −2.42

]
, k† =

[
−0.01 1.35

]
. (4.37)

We run our attack (4.27)-(4.33) with α = 2 and ε = 0.01 in (4.32). Figure 4.3 shows the result of
our attack. In Figure 4.3a, we plot the trajectory of the vehicle with policy learned on clean data and
poisoned data respectively. Our attack successfully forces LQR into a policy that drives the vehicle
close to the target destination. The wiggle on the trajectory is due to the noise wt of the dynamical
system. On the poisoned data, the LQR victim learns the policy

K̂ =
[
−1.31 9.99e−3 −2.41 2.02e−3
−1.97e−2 −1.35 −1.14e−2 −2.42

]
, k̂ =

[
−0.01 1.35

]
, (4.38)

which matches exactly the target policyK†, k†. In Figure 4.3b, we show the poisoning on rewards.
Our attack leads to very small modification on each reward, thus the attack is efficient. The total
attack cost over all 400 items is only ‖r− r0‖2= 0.73, which is tiny small compared to ‖r0‖2= 112.94.
The results here demonstrate that our attack can dramatically change the behavior of LQR by only
slightly modifying the rewards in the dataset.

Finally, for both attacks on TCE and LQR, we note that by setting the attack cost norm α = 1
in (4.5), the attacker is able to obtain a sparse attack, meaning that only a small fraction of the
batch data needs to be poisoned. Such sparse attacks have profound implications in adversarial
machine learning as they can be easier to carry out and harder to detect. We show detailed results
in appendix C.
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5 adaptive reward-poisoning attacks against reinforcement learning

In this chapter, we move to the online renforcement learning setting, where the agent must learn
by interacting with the environment. However, we restrict our attention to a particular form of
adversarial attack called reward poisoning, where the adversary perturbs the rewards generated by
the environment but does not have the power to contaminate the state transition.

5.1 Motivation

In many reinforcement learning (RL) applications the agent extracts reward signals from user
feedback. For example, in recommendation systems the rewards are often represented by user
clicks, purchases or dwell time [190, 38]; in conversational AI, the rewards can be user sentiment
or conversation length [48, 109]. In such scenarios, an adversary can manipulate user feedback
to influence the RL agent in nefarious ways. Figure 5.1 describes a hypothetical scenario of how
conversational AI can be attacked. One real-world example is that of the chatbot Tay, which
was quickly corrupted by a group of Twitter users who deliberately taught it misogynistic and
racist remarks shortly after its release [126]. Such attacks reveal significant security threats in the
application of reinforcement learning.

Hey, don’t say that!

Hello! You look pretty!at :
<latexit sha1_base64="WrmHutJH8BBpIxn0fkHZzCJshjQ=">AAAB63icbVDLSgNBEOyNrxhfUY9eFoPgKez6QPEU9OIxgnlAsoTZySQZMjO7zPQKYckvePGgiFd/yJt/42yyB00saCiquunuCmPBDXret1NYWV1b3yhulra2d3b3yvsHTRMlmrIGjUSk2yExTHDFGshRsHasGZGhYK1wfJf5rSemDY/UI05iFkgyVHzAKcFMIj286ZUrXtWbwV0mfk4qkKPeK391+xFNJFNIBTGm43sxBinRyKlg01I3MSwmdEyGrGOpIpKZIJ3dOnVPrNJ3B5G2pdCdqb8nUiKNmcjQdkqCI7PoZeJ/XifBwXWQchUnyBSdLxokwsXIzR53+1wzimJiCaGa21tdOiKaULTxlGwI/uLLy6R5VvXPq5cPF5XabR5HEY7gGE7BhyuowT3UoQEURvAMr/DmSOfFeXc+5q0FJ585hD9wPn8AznqOFw==</latexit>

Thank you!

Hello! You look pretty!at :
<latexit sha1_base64="WrmHutJH8BBpIxn0fkHZzCJshjQ=">AAAB63icbVDLSgNBEOyNrxhfUY9eFoPgKez6QPEU9OIxgnlAsoTZySQZMjO7zPQKYckvePGgiFd/yJt/42yyB00saCiquunuCmPBDXret1NYWV1b3yhulra2d3b3yvsHTRMlmrIGjUSk2yExTHDFGshRsHasGZGhYK1wfJf5rSemDY/UI05iFkgyVHzAKcFMIj286ZUrXtWbwV0mfk4qkKPeK391+xFNJFNIBTGm43sxBinRyKlg01I3MSwmdEyGrGOpIpKZIJ3dOnVPrNJ3B5G2pdCdqb8nUiKNmcjQdkqCI7PoZeJ/XifBwXWQchUnyBSdLxokwsXIzR53+1wzimJiCaGa21tdOiKaULTxlGwI/uLLy6R5VvXPq5cPF5XabR5HEY7gGE7BhyuowT3UoQEURvAMr/DmSOfFeXc+5q0FJ585hD9wPn8AznqOFw==</latexit>

Figure 5.1: Example: an RL-based conversational AI is learning from real-time conversations with
human users. the chatbot says “Hello! You look pretty!” and expects to learn from user feedback
(sentiment). A benign user will respond with gratitude, which is decoded as a positive reward
signal. An adversarial user, however, may express anger in his reply, which is decoded as a negative
reward signal.

In this paper, we formally study the problem of training-time attack on RL via reward poisoning. As
in standard RL, the RL agent updates its policy πt by performing action at at state st in each round
t. The environment Markov Decision Process (MDP) generates reward rt and transits the agent
to st+1. However, the attacker can change the reward rt to rt + δt, with the goal of driving the RL
agent toward a target policy πt → π†.

Figure 5.2 shows a running example that we use throughout the paper. The episodic MDP is a
linear chain with five states, with left or right actions and no movement if it hits the boundary. Each
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Figure 5.2: A chain MDP with attacker’s target policy π†

move has a -0.1 negative reward, and G is the absorbing goal state with reward 1. Without attack,
the optimal policy π∗ would be to always move right. The attacker’s goal, however, is to force the
agent to learn the nefarious target policy π† represented by the arrows in Figure 5.2. Specifically,
the attacker wants the agent to move left and hit its head against the wall whenever the agent is at
the left-most state.

Our main contributions are:

leftmirgin=*, nolistsep We characterize conditions under which such attacks are guaranteed
to fail (thus RL is safe), and vice versa;

leftmiirgiin=*, noliistsep In the case where an attack is feasible, we provide upper bounds on
the attack cost in the process of achieving π†;

leftmiiirgiiin=*, noliiistsep We show that effective attacks can be found empirically using deep
RL techniques.

Related Work

Test-time attacks against RL Prior work on adversarial attacks against reinforcement learning
focused primarily on test-time, where the RL policy π is pre-trained and fixed, and the attacker
manipulates the perceived state st to s†t in order to induce undesired action [73, 112, 97, 19]. For
example, in video games the attacker canmake small pixel perturbation to a frame [69]) to induce an
action π(s†t) 6= π(st). Although test-time attacks can severely impact the performance of a deployed
and fixed policy π, they do not modify π itself. For ever-learning agents, however, the attack surface
includes π. This motivates us to study training-time attack on RL policy.

Reward Poisoning: Reward poisoning has been studied in bandits [85, 139, 9, 114, 119], where
the authors show that adversarially perturbed reward can mislead standard bandit algorithms to
pull a suboptimal arm or suffer large regret.

Reward poisoning has also been studied in batch RL [182, 183, 120] where rewards are stored in
a pre-collected batch data set by some behavior policy, and the attacker modifies the batch data.
Because all data are available to the attacker at once, the batch attack problem is relatively easier.
This paper instead focuses on the online RL attack setting where reward poisoning must be done on
the fly.
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[74] studies a restricted version of reward poisoning, in which the perturbation only depend on
the current state and action: δt = φ(st, at). While such restriction guarantees the convergence of Q-
learning under the perturbed reward and makes the analysis easier, we show both theoretically and
empirically that such restriction severely harms attack efficiency. Our paper subsumes their results by
considering more powerful attacks that can depend on the RL victim’s Q-tableQt. Theoretically, our
analysis does not require the RL agent’s underlying Qt to converge while still providing robustness
certificates; see section 5.3.

Reward Shaping: While this paper is phrased from the adversarial angle, the framework and
techniques are also applicable to the teaching setting, where a teacher aims to guide the agent to
learn the optimal policy as soon as possible, by designing the reward signal. Traditionally, reward
shaping and more specifically potential-based reward shaping [131] has been shown able to speed
up learning while preserving the optimal policy. [47] extend potential-based reward shaping to be
time-varying while remains policy-preserving. More recently, intrinsic motivations[147, 136, 18, 20]
was introduced as a new form of reward shaping with the goal of encouraging exploration and
thus speed up learning. Our work contributes by mathematically defining the teaching via reward
shaping task as an optimal control problem, and provide computational tools that solve for problem-
dependent high-performing reward shaping strategies.

5.2 The Threat Model

In the reward-poisoning attack problem, we consider three entities: the environment MDP, the RL
agent, and the attacker. Their interaction is formally described by Alg 1.

The environment MDP isM = (S,A,R, P, µ0) where S is the state space, A is the action space,
R : S × A × S → R is the reward function, P : S × A × S → R is the transition probability, and
µ0 : S → R is the initial state distribution. We assume S, A are finite, and that a uniformly random
policy can visit each (s, a) pair infinitely often.

We focus on anRL agent that performs standardQ-learning defined by a tupleA = (Q0, ε, γ, {αt}),
where Q0 is the initial Q table, ε is the random exploration probability, γ is the discounting factor,
{αt} is the learning rate scheduling as a function of t. This assumption can be generalized: in
the additional experiments provided in appendix D.4, we show how the same framework can be
applied to attack general RL agents, such as DQN. Denote Q∗ as the optimal Q table that satisfies
the Bellman’s equation:

Q∗(s, a) = EP (s′|s,a)

[
R(s, a, s′) + γmax

a′∈A
Q∗(s′, a′)

]
(5.1)

and denote the corresponding optimal policy as π∗(s) = arg maxaQ∗(s, a). For notational simplicity,
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we assume π∗ is unique, though it is easy to generalize to multiple optimal policies, since most of
our analyses happen in the space of value functions.

Algorithm 1 Reward Poisoning against Q-learning

PARAMETERS: Agent parameters A = (Q0, ε, γ, {αt}), MDP parametersM = (S,A,R, P, µ0).

1: for t = 0, 1, ... do
2: agent at state st, has Q-table Qt.
3: agent acts according to ε-greedy behavior policy

at ←
{

arg maxaQt(st, a), w.p. 1− ε
uniform from A, w.p. ε. (5.2)

4: environment transits st+1 ∼ P (· | st, at), produces reward rt = R(st, at, st+1).
5: attacker poisons the reward to rt + δt.
6: agent receives (st+1, rt + δt), performs Q-learning update:

Qt+1(st, at)← (1− αt)Qt(st, at)+ (5.3)

αt

(
rt + δt + γmax

a′∈A
Qt(st+1, a

′)
)

7: environment resets if episode ends: st+1 ∼ µ0.

The Threat Model The attacker sits between the environment and the RL agent. In this paper
we focus on white-box attacks: the attacker has knowledge of the environment MDP and the RL
agent’s Q-learning algorithm, except for their future randomness. Specifically, at time t the attacker
observes the learner Q-table Qt, state st, action at, the environment transition st+1 and reward rt.
The attacker can choose to add a perturbation δt ∈ R to the current environmental reward rt. The
RL agent receives poisoned reward rt + δt. We assume the attack is inf-norm bounded: |δt|≤ ∆,∀t.

There can be many possible attack goals against an RL agent: forcing the RL agent to perform
certain actions; reaching or avoiding certain states; or maximizing its regret. In this paper, we focus
on a specific attack goal: policy manipulation. Concretely, the goal of policy manipulation is to
force a target policy π† on the RL agent for as many rounds as possible.

Definition 5.2.1. Target (partial) policy π† : S 7→ 2A: For each s ∈ S, π†(s) ⊆ A specifies the set of
actions desired by the attacker.

The partial policy π† allows the attacker to desiremultiple target actions on one state. In particular,
if π†(s) = A then s is a state that the attacker “does not care.” Denote S† = {s ∈ S : π†(s) 6= A} the
set of target states on which the attacker does have a preference. In many applications, the attacker
only cares about the agent’s behavior on a small set of states, namely |S†|� |S|.
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For RL agents utilizing a Q-table, a target policy π† induces a set of Q-tables:

Definition 5.2.2. Target Q-table set

Q† := {Q : max
a∈π†(s)

Q(s, a) > max
a/∈π†(s)

Q(s, a),∀s ∈ S†}

If the target policy π† always specifies a singleton action or does not care on all states, then Q† is
a convex set. But in general when 1 < |π†(s)|< |A| on any s, Q† will be a union of convex sets but
itself can be in general non-convex.

5.3 Theoretical Guarantees

Figure 5.3: A summary diagram of the theoretical results.

Now, we are ready to formally define the optimal attack problem. At time t, the attacker observes
an attack state (N.B. distinct from MDP state st):

ξt := (st, at, st+1, rt, Qt) ∈ Ξ (5.4)

which jointly characterizes the MDP and the RL agent. The attacker’s goal is to find an attack policy
φ : Ξ → [−∆,∆], where for ξt ∈ Ξ the attack action is δt := φ(ξt), that minimizes the number of
rounds on which the agent’s Qt disagrees with the attack target Q†:

min
φ

Eφ
∞∑
t=0

1[Qt /∈ Q†], (5.5)

where the expectation accounts for randomness in Alg 1. We denote J∞(φ) = Eφ
∑∞
t=0 1[Qt /∈ Q†]

the total attack cost, and JT (φ) = Eφ
∑T
t=0 1[Qt /∈ Q†] the finite-horizon cost. We say the attack is

feasible if (5.5) is finite.
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Next, we characterize attack feasibility in terms of poisonmagnitude constraint∆, as summarized
in Figure 5.3. Proofs to all the theorems can be found in the appendix.

Attack Infeasibility Intuitively, smaller ∆ makes it harder for the attacker to achieve the attack
goal. We show that there is a threshold ∆1 such that for any ∆ < ∆1 the RL agent is eventually safe,
in that πt → π∗ the correct MDP policy. This implies that (5.5) is infinite and the attack is infeasible.
There is a potentially larger ∆2 such that for any ∆ < ∆2 the attack is also infeasible, though πt may
not converge to π∗.

While the above statements are on πt, our analysis is via the RL agent’s underlyingQt. Note that
under attack the rewards rt + δt are no longer stochastic, and we cannot utilize the usual Q-learning
convergence guarantee. Nonetheless, we show that Qt is bounded in a polytope in the Q-space.

Theorem 5.3.1 (Boundedness of Q-learning). Assume that δt < ∆ for all t, and the stepsize αt’s satisfy
that αt ≤ 1 for all t,

∑
αt =∞ and

∑
α2
t <∞. Let Q∗ be defined as (5.1). Then, for any attack sequence

{δt}, there exists N ∈ N such that, with probability 1, for all t ≥ N , we have

Q∗(s, a)− ∆
1− γ ≤ Qt(s, a) ≤ Q∗(s, a) + ∆

1− γ . (5.6)

Remark 5.3.2. The bounds in Theorem 5.3.1 are in fact tight. The lower and upper bound can be achieved
by setting δt = −∆ or +∆ respectively.

We immediately have the following two infeasibility certificates.

Corollary 5.3.3 (Strong Infeasibility Certificate). Define

∆1 = (1− γ) min
s

[
Q∗(s, π∗(s))− max

a6=π∗(s)
Q∗(s, a)

]
/2.

If ∆ < ∆1, there existN ∈ N such that, with probability 1, for all t > N , πt = π∗. In other words, eventually
the RL agent learns the optimal MDP policy π∗ despite the attacks.

Corollary 5.3.4 (Weak Infeasibility Certificate). Given attack target policy π†, define

∆2 = (1− γ) max
s

[
Q∗(s, π∗(s))− max

a∈π†(s)
Q∗(s, a)

]
/2.

If ∆ < ∆2, there exist N ∈ N such that, with probability 1, for all t > N , πt(s) /∈ π†(s) for some s ∈ S†. In
other words, eventually the attacker is unable to enforce π† (though πt may not settle on π∗ either).

Intuitively, an MDP is difficult to attack if its margin mins
[
Q∗(s, π∗(s))−maxa6=π∗(s)Q∗(s, a)

] is
large. This suggests a defense: for RL to be robust against poisoning, the environmental reward signal
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should be designed such that the optimal actions and suboptimal actions have large performance
gaps.

Attack Feasibility We now show there is a threshold ∆3 such that for all ∆ > ∆3 the attacker can
enforce π† for all but finite number of rounds.

Theorem 5.3.5. Given a target policy π†, define

∆3 = 1 + γ

2 max
s∈S†

[ max
a/∈π†(s)

Q∗(s, a)− max
a∈π†(s)

Q∗(s, a)]+ (5.7)

where [x]+ := max(x, 0). Assume the same conditions on αt as in Theorem 5.3.1. If ∆ > ∆3, there is a
feasible attack policy φsas∆3

. Furthermore, J∞(φsas∆3
) ≤ O(L5), where L is the covering number.

Algorithm 2 The Non-Adaptive Attack φsas∆3

PARAMETERS: target policy π†, agent parameters A = (Q0, ε, γ, {αt}), MDP parameters
M = (S,A,R, P, µ0), maximum magnitude of poisoning ∆.
def Init(π†,A,M):

1: Construct a Q-table Q′, where Q′(s, a) is defined as
Q∗(s, a) + ∆

(1 + γ) , if s ∈ S†, a ∈ π†(s)

Q∗(s, a)− ∆
(1 + γ) , if s ∈ S†, a /∈ π†(s)

Q∗(s, a), if s /∈ S†

2: Calculate a new reward function

R′(s, a) = Q′(s, a)− γEP (s′|s,a)

[
max
a′

Q′(s′, a′)
]
.

3: Define the attack policy φsas∆3
as:

φsas∆3
(s, a) = R′(s, a)− EP (s′|s,a) [R(s, a, s)] ,∀s, a.

def Attack(ξt):

1: Return φsas∆3
(st, at)

Theorem 5.3.5 is proved by constructing an attack policy φsas∆3
(st, at), detailed in Alg. 2. Note that

this attack policy does not depend on Qt. We call this type of attack non-adaptive attack. Under such
construction, one can show that Q-learning converges to the target policy π†. Recall the covering
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number L is the upper bound on the minimum sequence length starting from any (s, a) pair and
follow the MDP until all (state, action) pairs appear in the sequence [61]. It is well-known that
ε-greedy exploration has a covering time L ≤ O(e|S|) [91]. Prior work has constructed examples
on which this bound is tight [78]. We show in appendix D.1 that on our toy example ε-greedy
indeed has a covering time O(e|S|). Therefore, the objective value of (5.5) for non-adaptive attack is
upper-bounded by O(e|S|). In other words, the non-adaptive attack is slow.

FastAdaptiveAttack (FAA) Wenow show that there is a fast adaptive attackφξFAAwhich depends
on Qt and achieves J∞ polynomial in |S|. The price to pay is a larger attack constraint ∆4, and the
requirement that the attack target states are sparse: k = |S†|≤ O(log|S|). The FAA attack policy
φξFAA is defined in Alg. 3.

Conceptually, the FAA algorithm ranks the target states in descending order by their distance
to the starting states, and focusing on attacking one target state at a time. Of central importance
is the temporary target policy νi, which is designed to navigate the agent to the currently focused
target state s†(i), while not altering the already achieved target actions on target states of earlier rank.
This allows FAA to achieve a form of program invariance: after FAA achieves the target policy in
a target state s†(i), the target policy on target state (i) will be preserved indefinitely. We provide a
more detailed walk-through of Alg. 3 with examples in appendix D.2.

Definition 5.3.6. Define the shortest ε-distance from s to s′ as

dε(s, s′) = min
π∈Π

Eπε [T ] (5.9)

s.t. s0 = s, sT = s′, st 6= s′,∀t < T

where πε denotes the epsilon-greedy policy based on π. Since we are in an MDP, there exists a common
(partial) policy πs′ that achieves dε(s, s′) for all source state s ∈ S. Denote πs′ as the navigation policy to
s′.

Definition 5.3.7. The ε-diameter of an MDP is defined as the longest shortest ε-distance between pairs of
states in S:

Dε = max
s,s′∈S

dε(s, s′) (5.10)

Theorem 5.3.8. Assume that the learner is running ε-greedy Q-learning algorithm on an episodic MDP
with ε-diameter Dε and maximum episode length H , and the attacker aims at k distinct target states, i.e.
|S†|= k. If ∆ is large enough that the Clip∆() function in Alg. 3 never takes effect, then φξFAA is feasible,
and we have

J∞(φξFAA) ≤ k |S||A|H1− ε + |A|
1− ε

[
|A|
ε

]k
Dε, (5.11)
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Algorithm 3 The Fast Adaptive Attack (FAA)

PARAMETERS: target policy π†, margin η, agent parameters A = (Q0, ε, γ, {αt}), MDP
parametersM = (S,A,R, P, µ0).
def Init(π†,A,M, η):

1: Given (st, at, Qt), define the hypothetical Q-update function without attack as Q′t+1(st, at) =
(1− αt)Qt(st, at) + αt (rt + γ(1− EOE) maxa′∈AQt(st+1, a

′)).
2: Given (st, at, Qt), denote the greedy attack function at st w.r.t. a target action set Ast as g(Ast),

defined as 
1
αt

[maxa/∈Ast Qt(st, a)−
Q′t+1(st, at) + η]+ if at ∈ Ast

1
αt

[maxa∈Ast Qt(st, a)−
Q′t+1(st, at) + η]− if at /∈ Ast .

(5.8)

3: Define Clip∆(δ) = min(max(δ,−∆),∆).
4: Rank the target states in descending order as {s†(1), ..., s

†
(k)}, according to their shortest ε-distance

to the initial state Es∼µ0

[
dε(s, s(i))

].
5: for i = 1, ..., k do
6: Define the temporary target policy νi as

νi(s) =
{

πs†(i)
(s) if s /∈ {s†(j) : j ≤ i}

π†(s) if s ∈ {s†(j) : j ≤ i}.

def Attack(ξt):

1: for i = 1, ..., k do
2: if arg maxaQt(s

†
(i), a) /∈ π†(s†(i)) then

3: Return δt ← Clip∆(g({νi(st)})).
4:
5: Return δt ← Clip∆(g({π†(st)})).

How large is Dε? For MDPs with underlying structure as undirected graphs, such as the
grid worlds, it is shown that the expected hitting time of a uniform random walk is bounded by
O(|S|2)[104]. Note that the random hitting time tightly upper bounds the optimal hitting time, a.k.a.
the ε-diameter Dε, and they match when ε = 1. This immediately gives us the following result:

Corollary 5.3.9. If in addition to the assumptions of Theorem 5.3.8, the maximal episode lengthH = O(|S|),
then J∞(φξFAA) ≤ O(ek|S|2|A|) in Grid World environments. When the number of target states is small,
i.e. k ≤ O(log|S|), J∞(φξFAA) ≤ O(poly(|S|)).

Remark 5.3.10. Theorem 5.3.8 and Corollary 5.3.9 can be thought of as defining an implicit ∆4, such that
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Figure 5.4: Attack cost J105(φ) on different ∆’s. Each curve shows mean ±1 standard error over
1000 independent test runs.

for any ∆ > ∆4, the clip function in Alg. 3 never take effect, and φξFAA achieves polynomial cost.

Illustrating Attack (In)feasibility ∆ Thresholds The theoretical results developed so far can be
summarized as a diagram in Figure 5.3. We use the chain MDP in Figure 5.2 to illustrate the four
thresholds ∆1,∆2,∆3,∆4 developed in this section. On this MDP and with this attack target policy
π†, we found that ∆1 = ∆2 = 0.0069. The two matches because this π† is the easiest to achieve in
terms of having the smallest upperbound ∆2. Attackers whose poison magnitude |δt|< ∆2 will not
be able to enforce the target policy π† in the long run.

We found that ∆3 = 0.132. We know that φsas∆3
should be feasible if ∆ > ∆3. To illustrate this, we

ran φsas∆3
with ∆ = 0.2 > ∆3 for 1000 trials and obtained estimated J105(φsas∆3

) = 9430. The fact that
J105(φsas∆3

)� T = 105 is empirical evidence that φsas∆3
is feasible. We found that∆4 = 1 by simulation.

The adaptive attack φξFAA constructed in Theorem 5.3.8 should be feasible with ∆ = ∆4 = 1. We
run φξFAA for 1000 trials and observed J105(φξFAA) = 30.4� T , again verifying the theorem. Also
observe that J105(φξFAA) is much smaller than J105(φsas∆3

), verifying the foundamental difference in
attack efficiency between the two attack policies as shown in Theorem 5.3.5 and Corollary 5.3.9.

While FAA is able to force the target policy in polynomial time, it’s not necessarily the optimal
attack strategy. Next, we demonstrate how to solve for the optimal attack problem in practice, and
empirically show that with the techniques from Deep Reinforcement Learning (DRL), we can find
efficient attack policies in a variety of environments.

5.4 Attack RL with RL

The attack policies φsas∆3
and φξFAA were manually constructed for theoretical analysis. Empirically,

though, they do not have to be the most effective attacks under the relevant ∆ constraint.
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In this section, we present our key computational insight: the attacker can find an effective attack
policy by relaxing the attack problem (5.5) so that the relaxed problem can be effectively solved with
RL. Concretely, consider the higher-level attack MDP N = (Ξ,∆, ρ, τ) and the associated optimal
control problem:

• The attacker observes the attack state ξt ∈ Ξ.

• The attack action space is {δt ∈ R : |δt|≤ ∆}.

• The original attack loss function 1[Qt /∈ Q†] is a 0-1 loss that is hard to optimize. We replace it
with a continuous surrogate loss function ρ that measures how close the current agent Q-table
Qt is to the target Q-table set:

ρ(ξt) =
∑
s∈S†

[
max
a/∈π†(s)

Qt(s, a)− max
a∈π†(s)

Qt(s, a) + η

]
+

(5.12)

where η > 0 is a margin parameter to encourage that π†(s) is strictly preferred over A\π†(s)
with no ties.

• The attack state transition probability is defined by τ(ξt+1 | ξt, δt). Specifically, the new attack
state ξt+1 = (st+1, at+1, st+2, rt+1, Qt+1) is generated as follows:

leftmargin=* st+1 is copied from ξt if not the end of episode, else st+1 ∼ µ0.
leftmargin=* at+1 is the RL agent’s exploration action drawn according to (5.2), note it involves Qt+1.
leftmargin=* st+2 is the RL agent’s new state drawn according to the MDP transition probability

P (· | st+1, at+1).
leftmargin=* rt+1 is the new (not yet poison) reward according to MDP R(st+1, at+1, st+2).
leftmargin=* The attack δt happens. The RL agent updates Qt+1 according to (5.3).

With the higher-level attack MDP N , we relax the optimal attack problem (5.5) into

φ∗ = arg min
φ

Eφ
∞∑
t=0

ρ(ξt) (5.13)

One can now solve (5.13) using Deep RL algorithms. In this paper, we choose Twin Delayed
DDPG (TD3) [65], a state-of-the-art algorithm for continuous action space. We use the same set of
hyperparameters for TD3 across all experiments, described in appendix D.3.
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Figure 5.5: Attack performances on the chain MDPs of different lengths. Each curve shows mean
±1 standard error over 1000 independent test runs.

5.5 Experiments

In this section, We make empirical comparisons between a number of attack policies φ: We use the
naming convention where the superscript denotes non-adaptive or adaptive policy: φsas depends
on (st, at, st+1) but notQt. Such policies have been extensively used in the reward shaping literature
and prior work [120, 74] on reward poisoning; φξ depends on the whole attack state ξt. We use
the subscript to denote how the policy is constructed. Therefore, φξTD3 is the attack policy found
by solving (5.13) with TD3; φξFAA+TD3 is the attack policy found by TD3 initialized from FAA
(Algorithm 3), where TD3 learns to provide an additional δ′t on top of the δt generated by φξFAA,
and the agent receives rt + δt + δ′t as reward; φsasTD3 is the attack policy found using TD3 with the
restriction that the attack policy only takes (st, at, st+1) as input.

In all of our experiments, we assume a standard Q-learning RL agent with parameters: Q0 =
0S×A, ε = 0.1, γ = 0.9, αt = 0.9,∀t. The plots show ±1 standard error around each curve (some are
difficult to see). We will often evaluate an attack policy φ using a Monte Carlo estimate of the 0-1
attack cost JT (φ) for T = 105, which approximates the objective J∞(φ) in (5.5).

Efficiency of Attacks across different∆’s Recall that∆ > ∆3, ∆ > ∆4 are sufficient conditions for
manually-designed attack policiesφsas∆3

andφξFAA to be feasible, but they are not necessary conditions.
In this experiment, we empirically investigate the feasibilities and efficiency of non-adaptive and
adaptive attacks across different ∆ values.

We perform the experiments on the chain MDP in Figure 5.2. Recall that on this example,
∆3 = 0.132 and ∆4 = 1 (implicit). We evaluate across 4 different ∆ values, [0.1, 0.2, 0.5, 1], covering
the range from ∆3 to ∆4. The result is shown in Figure 5.4.

We are able to make several interesting observations:
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Figure 5.6: The 10× 10 Grid World. s0 is the starting state and G the terminal goal. Each move has
a −0.1 negative reward, and a +1 reward for arriving at the goal. We consider two partial target
policies: π†1 marked by the green arrows, and π†2 by both the green and the orange arrows.

(1) All attacks are feasible (y-axis� T), even when ∆ falls under the thresholds ∆3 and ∆4 for
corresponding methods. This suggests that the feasibility thresholds are not tight.
(2) For non-adaptive attacks, as ∆ increases the best-found attack policies φsasTD3 achieve small
improvement, but generally incur a large attack cost.
(3) Adaptive attacks are very efficient when ∆ is large. At ∆ = 1, the best adaptive attack φξFAA+TD3

achieves a cost of merely 13 (takes 13 steps to always force π† on the RL agent). However, as ∆
decreases the performance quickly degrades. At ∆ = 0.1 adaptive attacks are only as good as
non-adaptive attacks. This shows an interesting transition region in ∆ that our theoretical analysis
does not cover.

Adaptive Attacks are Faster In this experiment, we empirically verify that, while both are feasible,
adaptive attacks indeed have an attack costO(Poly|S|) while non-adaptive attacks haveO(e|S|). The
0-1 costs 1[πt 6= π†] are in general incurred at the beginning of each t = 0 . . . T run. In other words,
adaptive attacks achieve π† faster than non-adaptive attacks. We use several chain MDPs similar
to Figure 5.2 but with increasing number of states |S|= 3, 4, 5, 6, 12. We provide a large enough
∆ = 2� ∆4 to ensure the feasibility of all attack policies. The result is shown in Figure 5.5. The
best-found non-adaptive attack φsasTD3 is approximately straight on the log-scale plot, suggesting
attack cost J growing exponentially with MDP size |S|. In contrast, the two adaptive attack polices
φξFAA and φξFAA+TD3 actually achieves attack cost linear in |S|. This is not easy to see from this
log-scaled plot; We reproduce Figure 5.5 without the log scale in the appendix D.4, where the linear
rate can be clearly verified. This suggests that the upperbound developed in Theorem 5.3.8 and
Corollary 5.3.9 can be potentially improved.
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(a) 6-state chain MDP
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(b) 12-state chain MDP
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(c) 10 × 10 MDP with π†
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(d) 10 × 10 MDP with π†
2.

Figure 5.7: Experiment results for the ablation study. Each curve shows mean ±1 standard error
over 20 independent test runs. The gray dashed lines indicate the total number of target actions.

Ablation Study In this experiment, we compare three adaptive attack policies: φξTD3 the policy
found by out-of-the-box TD3, φξFAA the manually designed FAA policy, and φξFAA+TD3 the policy
found by using FAA as initialization for TD3.

We use three MDPs: a 6-state chain MDP, a 12-state chain MDP, and a 10× 10 grid world MDP..
The 10× 10 MDP has two separate target policies π†1 and π†2, see Figure 5.6.

For evaluation, we compute the number of target actions achieved |{s ∈ S† : πt(s) ∈ π†(s)}| as a
function of t. This allows us to look more closely into the progress made by an attack. The results
are shown in Figure 5.7.

First, observe that across all 4 experiments, attack policy φξTD3 found by out-of-the-box TD3
never succeeded in achieving all target actions. This indicates that TD3 alone cannot produce an
effective attack. We hypothesize that this is due to a lack of effective exploration scheme: when the
target states are sparse (|S†|� |S|) it can be hard for TD3 equiped with Gaussian exploration noise
to locate all target states. As a result, the attack policy found by vanilla TD3 is only able to achieve
the target actions on a subset of frequently visited target states.

Hand-crafted φξFAA is effective in achieving the target policies, as is guaranteed by our theory.
Nevertheless, we found that φξFAA+TD3 always improves upon φξTD3. Recall that we use FAA as
the initialization and then run TD3. This indicates that TD3 can be highly effective with a good
initialization, which effectively serves as the initial exploration policy that allows TD3 to locate all
the target states.

Of special interest are the two experiments on the 10 × 10 Grid World with different target
policies. Conceptually, the advantage of the adaptive attack is that the attacker can perform explicit
navigation to lure the agent into the target states. An efficient navigation policy that leads the agent
to all target states will make the attack very efficient. Observe that in Figure 5.6, both target polices
form a chain, so that if the agent starts at the beginning of the chain, the target actions naturally lead
the agent to the subsequent target states, achieving efficient navigation.

Recall that the FAA algorithm prioritizes the target states farthest to the starting state. In the
10× 10 Grid World, the farthest state is the top-left grid. For target states S†1 , the top-left grid turns
out to be the beginning of the target chain. As a result, φξFAA is already very efficient, and φξFAA+TD3
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couldn’t achieve much improvement, as shown in 5.7c. On the other hand, for target states S†2 , the
top-left grid is in the middle of the target chain, which makes φξFAA not as efficient. In this case,
φξFAA+TD3 makes a significant improvement, successfully forcing the target policy in about 500
steps, whereas it takes φξFAA as many as 1000 steps, about twice as long as φξFAA+TD3.
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6 corruption-robust online rl

In this and the next chapters, we move on to the defense side of the problem and investigate whether
learning algorithms can be robust against data poisoning attacks, and if so, what is the information-
theoretical limits of the learning performance, in online and offline settings respectively. In the rest
of this chapter, we start with a general introduction of the RL under data corruption problem along
with a thorough overview of prior works. We then follow by formally define the contamination
model and learning objectives. For both online and offline reinforcement learning settings, we derive
near-matching information-theoretical bounds on the best achievable optimality gap, showing the
unique benefit of online interaction to robust learning that is previously unknown to the robust
learning community.

6.1 Introduction

While reinforcement learning algorithms have seen tremendous success in recent years, one main
drawback of existing RL algorithms is their lack of robustness to data corruption, which severely
limits their applications to high-stack decision-making domains with highly noisy data, such as
autonomous driving, quantitative trading, or medical diagnosis. In fact, data corruption can be
a larger threat in the RL paradigm than in traditional supervised learning, because supervised
learning is often applied in a controlled environment where data are collected and cleaned by highly-
skilled data scientists and domain experts, whereas RL agents are developed to learn in the wild
using raw feedbacks from the environment. While the increasing autonomy and less supervision
mark a step closer to the goal of general artificial intelligence, they also make the learning system
more susceptible to data corruption: autonomous vehicles can misread traffic signs when the signs
are contaminated by adversarial stickers [62]; chatbot can be mistaught by a small group of tweeter
users to make misogynistic and racist remarks [126]; recommendation systems can be fooled by
a small number of fake clicks/reviews/comments to rank products higher than they should be.
Despite the many vulnerabilities, robustness against data corruption in RL has not been extensively
studied only until recently.

The existing works on robust RL are mostly theoretical and can be viewed as a successor of
the adversarial bandit literature. However, several drawbacks of this line of approach make them
insufficient to modern real-world threats faced by RL agents. We elaborate them below:

1. Reward vs. transition contamination: The majority of prior works on adversarial RL focus
on reward contamination [60, 127, 128, 197, 145, 79], while in reality the adversary often has
stronger control during the adversarial interactions. For example, when a chatbot interacts
with an adversarial user, the user has full control over both the rewards and transitions during
that conversation episode.
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2. Density of contamination: The existing works that do handle adversarial/time-varying tran-
sitions can only tolerate sublinear number of interactions being corrupted [118, 41, 132, 133].
These methods would fail when the adversary’s attack budget also grows linearly with time,
which is often the case in practice.

3. Practicability: The majority of these work focuses on the setting of tabular MDPs and cannot
be applied to real-world RL problems that have large state and action spaces and require
function approximations.

In this chapter, we address the above shortcomings by developing a variant of natural policy
gradient (NPG) methods that, under the linear value function assumption, are provably robust
against strongly adaptive adversaries, who can arbitrarily contaminate both rewards and transitions
in ε fraction of all learning episodes. Our algorithm does not need to know ε, and is adaptive to the
contamination level. Specifically, it guarantees to find an Õ(ε1/4)-optimal policy in a polynomial
number of steps. Complementarily, we also present a corresponding lower-bound, showing that no
algorithm can consistently find a better than Ω(ε) optimal policy, even with infinite data. In addition
to the theoretical results, we also develop a neural network implementation of our algorithm which
is shown to achieve strong robustness performance on the MuJoCo continuous control benchmarks
[158], proving that our algorithm can be applied to real-world, high-dimensional RL problems.

Related Work

RL in standard MDPs. Learning MDPs with stochastic rewards and transitions is relatively well-
studied for the tabular case (that is, a finite number of states and actions). For example, in the
episodic setting, the UCRL2 algorithm [14] achieves O(

√
H4S2AT ) regret, where H is the episode

length, S is the state space size, A is the action space size, and T is the total number of steps. Later
the UCBVI algorithm [16, 44] achieves the optimal O(

√
H2SAT ) regret matching the lower-bound

[135, 43]. Recent work extends the analysis to various linear setting [81, 174, 173, 180, 15, 191, 34, 56,
86] with known linear feature. For unknown feature, [3] proposes a sample efficient algorithm that
explicitly learns feature representation under the assumption that the transition matrix is low rank.
Beyond the linear settings, there are works assuming the function class has low Eluder dimension
which so far is known to be small only for linear functions and generalized linear models [134].
For more general function approximation, [77, 156] showed that polynomial sample complexity is
achievable as long as the MDP and the given function class together induce low Bellman rank and
Witness rank, which include almost all prior models such as tabular MDP, linear MDPs [174, 81],
Kernelized nonlinear regulators [86], low rank MDP [3], and Bellman completion under linear
functions [180].
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Policy Gradient and Policy Optimization Policy Gradient [168, 157] and Policy optimization
methods are widely used in practice [87, 149, 150] and have demonstrated amazing performance
on challenging applications [21, 7]. Unlike model-based approach or Bellman-backup based ap-
proaches, PG methods directly optimize the objective function and are often more robust to model-
misspecification [2]. In addition to being robust to model-misspecification, we show in this chapter
that vanilla NPG is also robust to constant fraction and bounded adversarial corruption on both
rewards and transitions.

RL with adversarial rewards. Almost all prior works on adversarial RL study the setting where
the reward functions can be adversarial but the transitions are still stochastic and remain unchanged
throughout the learning process. Specifically, at the beginning of each episode, the adversary must
decide on a reward function for this episode, and can not change it for the rest of the episode. Also,
the majority of these works focus on tabular MDPs. Early works on adversarial MDPs assume a
known transition function and full-information feedback. For example, [60] proposes the algorithm
MDP-E and proves a regret bound of Õ(τ

√
T logA) in the non-episodic setting, where τ is themixing

time of the MDP; Later, [197] consider the episodic setting and propose the O-REPS algorithm
which applies Online Mirror Descent over the space of occupancy measures, a key component
adopted by [145] and [79]. O-REPS achieves the optimal regret Õ(

√
H2T log(SA)) in this setting.

Several works consider the harder bandit feedback model while still assuming known transitions.
The work [127] achieves regret Õ(

√
H3AT/α) assuming that all states are reachable with some

probability α under all policies. Later, [127] eliminates the dependence on α but only achieves
O(T 2/3) regret. The O-REPS algorithm of [197] again achieves the optimal regret Õ(

√
H3SAT ).

To deal with unknown transitions, [128] proposes the Follow the Perturbed Optimistic Policy
algorithm and achieves Õ(

√
H2S2A2T ) regret given full-information feedback. Combining the idea

of confidence sets and Online Mirror Descent, the UC-O-REPS algorithm of [145] improves the
regret to Õ(

√
H2S2AT ). A few recent works start to consider the hardest setting assuming unknown

transition as well as bandit feedback. [145] achieves O(T 3/4) regret, which is improved by [79] to
Õ(
√
H2S2AT ), matching the regret of UC-O-REPS in the full information setting. Also, note that

the lower bound of Ω(
√
H2SAT ) [78] still applies. In summary, it is found that on tabular MDPs

with oblivious reward contamination, an O(
√
T ) regret can still be achieved. Recent improvements

include best-of-both-worlds algorithms [82], data-dependent bound [105] and extension to linear
function approximation [129].

RL with adversarial transitions and rewards. Very few prior works study the problem of both
adversarial transitions and adversarial rewards, in fact, only one that we are aware of [118]. They
study a setting where only a constant C number of episodes can be corrupted by the adversary,
and most of their technical effort dedicate to designing an algorithm that is agnostic to C, i.e. the
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algorithm doesn’t need to know the contamination level ahead of time. As a result, their algorithm
takes a multi-layer structure and cannot be easily implemented in practice. Their algorithm achieves
a regret ofO(C

√
T ) for tabular MDPs andO(C2

√
T ) for linear MDPs, which unfortunately becomes

vacuous when C ≥ Ω(
√
T ) and C ≥ Ω(T 1/4), respectively. Note that the contamination ratio C/T

approaches zero when T increases, and hence their algorithm cannot handle constant fraction
contamination. Notably, in all of the above works, the adversary can partially adapt to the learner’s
behavior, in the sense that the adversary can pick an adversary MDPMk or reward function rk at
the start of episode k based on the history of interactions so far. However, it can no longer adapt its
strategy after the episode starts, and therefore, the learner can still use a randomization strategy to
trick the adversary.

A separate line of work studies the online MDP setting, where the MDP is not adversarial but
slowly change over time, and the amount of change is bounded under a total-variation metric
[41, 132, 133, 55]. Due to the slow-changing nature of the environment, algorithms in these works
typically uses a sliding window approach where the algorithm keeps throwing away old data and
only learns a policy from recent data, assuming that most of them come from the MDP that the
agent is currently experiencing. These methods typically achieve a regret in the form of O(∆cK1−c),
where ∆ is the total variation bound. It is worth noting that all of these regrets become vacuous
when the amount of variation is linear in time, i.e. ∆ ≥ Ω(T ). Separately, it is shown that when
both the transitions and the rewards are adversarial in every episode, the problem is at least as hard
as stochastic parity problem, for which no computationally efficient algorithm exists [172].

Learning robust controller. Adifferent type of robustness has also been considered in RL [142, 46]
and robust control [192, 141], where the goal is to learn a control policy that is robust to potential
misalignment between the training and deployment environment. Such approaches are often
conservative, i.e. the learned polices are sub-optimal even if there is no corruption. In comparison,
our approach can learn as effectively as standard RL algorithms without corruption. Interestingly,
parallel to our work, a line of concurrent work in the robust control literature [185, 184, 186] has also
found that policy optimization method enjoys some implicit regularization/robustness property
that can automatically converge to robust control policies. An interesting future direction could be
to understand the connection between these two kind of robustness.

Robust statistics. One of the most important discoveries in modern robust statistics is that there
exists computationally efficient and robust estimator that can learn near-optimally even under the
strongest adaptive adversary. For example, in the classic problem of Gaussian mean estimation,
the recent works [49, 101] present the first computational and sample-efficient algorithms. The
algorithm in [49] can generate a robust mean estimate µ̂, such that ‖µ̂ − µ‖2≤ O(ε

√
log (1/ε))

under ε corruption. Crucially, the error bound does not scale with the dimension d of the problem,
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suggesting that the estimator remains robust even in high dimensional problems. Similar results
have since been developed for robust mean estimation under weaker assumptions [51], and for
supervised learning and unsupervised learning tasks [37, 50]. We refer readers to [52] for a more
thorough survey of recent advances in high-dimensional robust statistics.

6.2 Problem Definitions

A Markov Decision Process (MDP)M = (S,A, P, r, γ, µ0) is specified by a state space S , an action
space A, a transition model P : S × A → ∆(S) (where ∆(S) denotes a distribution over S), a
(stochastic and possibly unbounded) reward function r : S × A → ∆(R), a discounting factor
γ ∈ [0, 1), and an initial state distribution µ0 ∈ ∆(S), i.e. s0 ∼ µ0. In this chapter, we assume that A
is a small and finite set, and denote A = |A|. A policy π : S → ∆(A) specifies a decision-making
strategy in which the agent chooses actions based on the current state, i.e., a ∼ π(·|s).

The value function V π : S → R is defined as the expected discounted sum of future rewards,
starting at state s and executing π, i.e. V π(s) := E [

∑∞
t=0 γ

tr(st, at)|π, s0 = s] ,where the expectation
is taken with respect to the randomness of the policy and environmentM. Similarly, the state-action
value function Qπ : S ×A → R is defined as Qπ(s, a) := E [

∑∞
t=0 γ

tr(st, at)|π, s0 = s, a0 = a] .
Wedefine the discounted state-action distribution dπs of a policyπ: dπs′(s, a) := (1−γ)

∑∞
t=0 γ

tPπ(st =
s, at = a|s0 = s′), where Pπ(st = s, at = a|s0 = s′) is the probability that st = s and at = a, after
we execute π from t = 0 onwards starting at state s′ in modelM. Similarly, we define dπs′,a′(s, a) as:
dπs′,a′(s, a) := (1− γ)

∑∞
t=0 γ

tPπ(st = s, at = s|s0 = s′, a0 = a′). For any state-action distribution ν,
we write dπν (s, a) :=

∑
(s′,a′)∈S×A ν(s′, a′)dπs′,a′(s, a). For ease of presentation, we assume that the

agent can reset to s0 ∼ µ0 at any point in the trajectory. We denote dπν (s) =
∑
a d

π
ν (s, a).

The goal of the agent is to find a policy π that maximizes the expected value from the starting
state s0, i.e. the optimization problem is: maxπ V π(µ0) := Es∼µ0V

π(s), where the max is over some
policy class.

For completeness, we specify a dπν -sampler and an unbiased estimator ofQπ(s, a) in Algorithm 4,
which are standard in discounted MDPs [4, 2]. The dπν sampler samples (s, a) i.i.d from dπν , and the
Qπ sampler returns an unbiased estimate of Qπ(s, a) for a given pair (s, a) by a single roll-out from
(s, a). Later, when we define the contamination model and the sample complexity of learning, we
treat each call of dπν -sampler (optionally followed by a Qπ(s, a)-estimator) as a single episode, as in
practice both of these procedures can be achieved in a single roll-out from µ0.

Assumption 6.2.1 (Linear Q function). For the theoretical analysis, we focus on the setting of linear value
function approximation. In particular, we assume that there exists a feature map φ : S ×A → Rd, such that
for any (s, a) ∈ S ×A and any policy π : S → ∆A, we have

Qπ(s, a) = φ(s, a)>wπ , for some ‖wπ‖≤W (6.1)
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We also assume that the feature is bounded, i.e. maxs,a‖φ(s, a)‖2≤ 1, and the reward function has bounded
first and second moments, i.e. E [r(s, a)] ∈ [0, 1] and Var(r(s, a)) ≤ σ2 for all (s, a).

Remark 6.2.1. Assumption 7.2.1 is satisfied, for example, in tabular MDPs and linear MDPs of [81]
or [173]. Unlike most theoretical RL literature, we allow the reward to be stochastic and unbounded.
Such a setup aligns better with applications with a low signal-to-noise ratio and motivates the
requirement for nontrivial robust learning techniques.

Notation. When clear from context, we write dπ(s, a) and dπ(s) to denote dπµ0
(s, a) and dπµ0

(s)
respectively. For iterative algorithms which obtain policies at each episode, we let V i,Qi and Ai
denote the corresponding quantities associated with episode i. For a vector v, we denote ‖v‖2=√∑

i v
2
i , ‖v‖1=

∑
i|vi|, and ‖v‖∞= maxi|vi|. We use Uniform(A) (in short UnifA) to represent a

uniform distribution over the set A.

The Contamination Model

In this chapter, we study the performance of algorithms under the ε-contamination model, a widely
studied adversarial model in the robust statistics literature, e.g. see [49]. In the classic robust mean
estimation problem, given a dataset D and a learning algorithm f , the ε-contamination model
assumes that the adversary has full knowledge of the dataset D and the learning algorithm f , and
can arbitrarily change ε-fraction of the data in the dataset and then send the contaminated data
to the learner. The goal of the learner is to identify an O(poly(ε))-optimal estimator of the mean
despite the ε-contamination.

Unfortunately, the original ε-contamination model is defined for the offline learning setting
and does not directly generalize to the online setting, because it doesn’t specify the availability of
knowledge and the order of actions between the adversary and the learner in the time dimension.
In this paper, we define the ε-contamination model for online learning as follows:

Definition 6.2.1 (ε-contamination model for Reinforcement Learning). Given ε and the clean MDP
M, an ε-contamination adversary operates as follows:

1. The adversary has full knowledge of the MDPM and the learning algorithm, and observes
all the historical interactions.I

2. At any time step t, the adversary observes the current state-action pair (st, at), as well as the
reward and next state returned by the environment, (rt, st+1). He then can decide whether to
replace (rt, st+1) with an arbitrary reward and next state (r†t , s

†
t+1) ∈ R× S .

3. The only constraint on the adversary is that if the learning process terminates afterK episodes,
he can contaminate in at most εK episodes.
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Compared to the standard adversarial models studied in online learning [153], adversarial
bandits [30, 117, 70] and adversarial RL [118, 79], the ε-contamination model in Definition 6.2.1 is
stronger in several ways: (1) The adversary can adaptively attack after observing the action of the
learner as well as the feedback from the clean environments; (2) the adversary can perturb the data
arbitrarily (any real-valued reward and any next state from the state space) rather than sampling it
from a pre-specified bounded adversarial reward function or adversarial MDP.

Given the contamination model, our first result is a lower-bound, showing that under the ε-
contamination model, one can only hope to find an O(ε)-optimal policy. Exact optimal policy
identification is not possible even with infinite data.

Theorem 6.2.1 (lower bound). For any algorithm, there exists an MDP such that the algorithm fails to
find an

(
ε

2(1−γ)

)
-optimal policy under the ε-contamination model with a probability of at least 1/4.

The high-level idea is that we can construct twoMDPs,M andM ′, with the following properties:
1. No policy can be O(ε/(1 − γ)) optimal on both MDP simultaneously. 2. An ε-contamination
adversary can with large probability mimic one MDP via contamination in the other, regardless of
the learner’s behavior. Therefore, under contamination, the learner will not be able to distinguish
M andM ′ and must suffer Ω(ε/(1− γ)) gap on at least one of them.

Background on NPG

Given a differentiable parameterized policy πθ : S → ∆(A), NPG can be written in the follow-
ing actor-critc style update form. With the dataset {si, ai, Q̂πθ (si, ai)}Ni=1 where si, ai ∼ dπθν , and
Q̂πθ (si, ai) is unbiased estimate of Qπθ (s, a) (e.g., via Qπ-estimator), we have

ŵ ∈ arg min
w:‖w‖2≤W

N∑
i=1

(
w>∇ log πθ(ai|si)− Q̂πθ (si, ai)

)2

θ′ = θ + ηŵ. (6.2)

In theoretical part of this chapter, we focus on softmax linear policy, i.e., πθ(a|s) ∝ exp(θ>φ(s, a)).
In this case, note that ∇ log πθ(a|s) = φ(s, a), and it is not hard to verify that the policy update
procedure is equivalent to:

πθ′(a|s) ∝ πθ(a|s) exp
(
ηŵ>φ(s, a)

)
, ∀s, a,

which is equivalent to running Mirror Descent on each state with a reward vector ŵ>φ(s, ·) ∈ R|A|.
We refer readers to [4] for more detailed explanation of NPG and the equivalence between the form
in Eq. (6.2) and the classic form that uses Fisher information matrix. Similar to [4], we make the
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following assumption of having access to an exploratory reset distribution, under which it has been
shown that NPG can converge to the optimal policy without contamination.

Assumption 6.2.2 (Relative condition number). With respect to any state-action distribution υ, define:

Συ = Es,a∼υ
[
φs,aφ

>
s,a

]
,

and define

sup
w∈Rd

w>Σd?w
w>Σνw

= κ, where d∗(s, a) = dπ
∗

µ0
(s) ◦UnifA(a)

We assume κ is finite and small w.r.t. a reset distribution ν available to the learner at training time.

6.3 The Natural Robustness of NPG Against Bounded corruption

Our first result shows that, surprisingly, NPG can already be robust against ε-contamination, if
the adversary can only generate small and bounded rewards. In particular, we assume that the
adversarial rewards is bounded in [0, 1] (the feature φ(s, a) is already bounded).

Theorem 6.3.1 (Natural robustness of NPG). Under assumptions 7.2.1 and 6.2.2, given a desired
optimality gapα, there exists a set of hyperparameters agnostic to the contamination level ε, such that Algorithm
2 guarantees with a poly(1/α, 1/(1− γ), |A|,W, σ, κ) sample complexity that under ε-contamination with
adversarial rewards bounded in [0, 1], we have

E
[
V ∗(µ0)− V π̂(µ0)

]
≤ Õ

(
max

[
α,W

√
|A|κε

(1− γ)3

])

where π̂ is the uniform mixture of π(1) through π(T ).

A few remarks are in order.

Remark 6.3.1 (Agnostic to the contamination level ε). It is worth emphasizing that to achieve the
above bound, the hyperparameters of NPG are agnostic to the value of ε, and so the algorithm can be
applied in the more realistic setting where the agent does not have knowledge of the contamination
level ε, similar to what’s achieved in [118] with a complicated nested structure. The same property
is also achieved by the FPG algorithm in the next section.

Remark 6.3.2 (Dimension-independent robustness guarantee). Theorem 6.3.1 guarantees that NPG
can find an O(ε1/2)-optimal policy after polynomial number of episodes, provided that |A| and κ
are small. Conceptually, the relative condition number κ indicates how well-aligned the initial state
distribution is to the occupancy distribution of the optimal policy. A good initial distribution can
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have a κ as small as 1, and so κ is independent of d. Interested readers can refer to [4] (Remark 6.3)
for additional discussion on the relative condition number. Here, importantly, the optimality gap
does not directly scale with d, and so the guarantee will not blow up on high-dimensional problems.
This is an important attribute of robust learning algorithms heavily emphasized in the traditional
robust statistics literature.

The proof of Theorem 6.3.1 relies on the following NPG regret lemma, first developed by [60]
for the MDP-Expert algorithm and later extend to NPG by [4, 2]:

Lemma 6.3.1 (NPG Regret Lemma). Suppose Assumption 7.2.1 and 6.2.2 hold and Algorithm 2 starts
with θ(0) = 0, η =

√
2 log|A|/(W 2T ). Suppose in addition that the (random) sequence of iterates satisfies

the assumption that

E
[
Es,a∼d(t)

[(
Qπ

(t)
(s, a)− φ(s, a)>w(t)

)2
]]
≤ ε(t)stat.

Then, we have that

E

[
T∑
t=1
{V ∗(µ0)− V (t)(µ0)}

]
≤ W

1− γ
√

2 log|A|T +
T∑
t=1

√
4|A|κε(t)stat
(1− γ)3 .

Intuitively, Lemma 6.3.1 decompose the regret of NPG into two terms. The first term corresponds
to the regret of standard mirror descent procedure, which scales with

√
T . The second term

corresponds to the estimation error on the Q value, which acts as the reward signal for mirror
descent. When not under attack, estimation error ε(t)stat goes to zero as the number of samplesM
gets larger, which in turn implies the global convergence of NPG. However, when under bounded
attack, the generalization error ε(t)stat will not go to zero even with infinite data. Nevertheless, we can
show that it is bounded by O(ε(t)) when the sample sizeM is large enough, where ε(t) denotes the
fraction of episodes being corrupted in iteration t. Note that by definition, we have∑t ε

(t) ≤ εT .

Lemma 6.3.2 (Robustness of linear regression under bounded contamination). Suppose the adversarial
rewards are bounded in [0, 1], and in a particular iteration t, the adversary contaminates ε(t) fraction of the
episodes, then given M episodes, it is guaranteed that with probability at least 1− δ,

Es,a∼d(t)

[(
Qπ

(t)
(s, a)− φ(s, a)>w(t)

)2
]
≤ 4

(
W 2 +WH

)(
ε(t) +

√
8
M

log 4d
δ

)
.

where H = (log δ − logM)/log γ is the effective horizon.

This along with the NPG regret lemma guarantees that the expected regret of NPG is bounded
by O(

√
T +M−1/4 +

√
εT ) which in turn guarantees to identify an O(

√
ε)-optimal policy.
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Algorithm 1 dπν sampler and Qπ estimator
1: function dπν -sampler
2: Input: A reset distribution ν ∈ ∆(S ×A).
3: Sample s0, a0 ∼ ν.
4: Execute π from s0, a0; at any step twith (st, at), return (st, at) with probability 1− γ.
5: function Qπ-estimator
6: Input: current state-action (s, a), a policy π.
7: Execute π from (s0, a0) = (s, a); at step twith (st, at), terminate with probability 1− γ.
8: Return: Q̂π(s, a) =

∑t
i=0 r(si, ai).

[In an adversarial episode, the adversary can hijack the dπν sampler to return any (s, a) pair and the
Qπ-estimator to return any Q̂π(s, a) ∈ R.]

In the special case of tabular MDPs, φ(s, a) will all be one-hot vectors andW will in general by
on the order of O(

√
SA), which means that the bound given by Theorem 6.3.1 still scales with the

size of the state space. In the following corollary, we show that this dependency can be removed
through a tighter analysis.

Corollary 6.3.1 (Dimension-free Robustness of NPG in tabular MDPs). Given a tabular MDP and
assumption 6.2.2, given a desired optimality gap α, there exists a set of hyperparameters agnostic to the
contamination level ε, such that Algorithm 2 guarantees with a poly(1/α, 1/(1− γ), |A|,W, σ, κ) sample
complexity that under ε-contamination with adversarial rewards bounded in [0, 1], we have

E
[
V ∗(µ0)− V π̂(µ0)

]
≤ Õ

(
max

[
α,

√
|A|κε

(1− γ)5

])

where π̂ is the uniform mixture of π(1) through π(T ).

In the more general case of linear MDP,W will not necessarily scale with d in an obvious way
and thus we leave Theorem 6.3.1 untouched.

6.4 FPG: Robust NPG Against Unbounded Corruption

Our second result is the Filtered Policy Gradient (FPG) algorithm, a robust variant of the NPG
algorithm [88, 4] that can be robust against arbitrary and potentially unbounded data corruption.
Specifically, FPG replace the standard linear regression solver in NPG with a statistically robust
alternative. In this chapter, we use the SEVER algorithm [50]. In practice, one can substitute it
with any computationally efficient robust linear regression solver. We show that FPG can find an
O(ε1/4)-optimal policy under ε-contamination with a polynomial number of samples.
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Algorithm 2 Natural Policy Gradient (NPG)
Require: Learning rate η; number of episodes per iterationM
1: Initialize θ(0) = 0.
2: for t = 0, 1, . . . , T − 1 do
3: Call Algorithm 4 M times with π(t) to obtain a dataset that consist of si, ai ∼ d

(t)
ν and

Q̂(t)(si, ai), i ∈ [M ].
4: Solve the linear regression problem

w(t) = arg min
‖w‖2≤W

M∑
i=1

(
Q̂(t)(si, ai)− w>∇θφ(si, ai)

)2

5: Update θ(t+1) = θ(t) + ηw(t).

Algorithm 3 Robust Linear Regression via SEVER

Input: Dataset {(xi, yi)}i=1:M , a standard linear regression solver L, and parameter σ′ ∈ R+.
Initialize S ← {1, . . . ,M}, fi(w) = ‖yi − w>xi‖2.
repeat

w ← L({(xi, yi)}i∈S). . Run learner on S.
Let ∇̂ = 1

|S|
∑
i∈S ∇fi(w).

Let G = [∇fi(w)− ∇̂]i∈S be the |S|×dmatrix of centered gradients.
Let v be the top right singular vector of G.
Compute the vector τ of outlier scores defined via τi =

(
(∇fi(w)− ∇̂) · v

)2
.

S′ ← S
if 1
|S|
∑
i∈S τi ≤ c0 · σ′2, for some constant c0 > 1 then

S = S′ .We only filter out points if the variance is larger than an appropriately chosen
threshold.

else
Draw T from Uniform[0,maxi τi].
S = {i ∈ S : τi < T}.

until S = S′.
Return w.

Theorem 6.4.1. Under assumptions 7.2.1 and 6.2.2, given a desired optimality gap α, there exists a set
of hyperparameters agnostic to the contamination level ε, such that Algorithm 2, using Algorithm 3 as the
linear regression solver, guarantees with a poly(1/α, 1/(1− γ), |A|,W, σ, κ) sample complexity that under
ε-contamination, we have

E
[
V ∗(µ0)− V π̂(µ0)

] (6.3)

≤ Õ

(
max

[
α,

√
|A|κ (W 2 + σW )

(1− γ)4 ε1/4

])
.
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Figure 6.1: Experiment Results on the 6 MuJoTo benchmarks.

where π̂ is the uniform mixture of π(1) through π(T ).

The proof of Theorem 6.4.1 relies on a similar result to Lemma 6.3.2, which shows that if we use
Algorithm 3 as the linear regression subroutine, then ε(t)stat can be bounded by O(

√
ε(t)) when the

sample sizeM is large enough, even under unbounded ε-contamination.

Lemma 6.4.1 (Robustness of SEVER under unbounded contamination). Suppose the adversarial rewards
are unbounded, and in a particular iteration t, the adversarial contaminate ε(t) fraction of the episodes, then
given M episodes, it is guaranteed that if ε(t) ≤ c, for some absolute constant c, and any constant τ ∈ [0, 1],
we have

E
[
Es,a∼d(t)

[(
Qπ

(t)
(s, a)− φ(s, a)>w(t)

)2
]]

(6.4)

≤ O
((

W 2 + σW

1− γ

)(√
ε(t) + f(d, τ)M− 1

2 + τ
))

.

where f(d, τ) =
√
d log d+

√
log(1/τ).

In Lemma 6.4.1, c is the break point of SEVER and is an absolute constant that does not depend
on the data, and (1− τ) is the probability that the clean data satisfies a certain stability condition
which suffices for robust learning.
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Algorithm 4 Robust Policy Cover-Policy Gradient (PC-PG)
1: Input: iterations N , threshold β, regularizer λ
2: Initialize π0(a|s) to be uniform.
3: for episode n = 0, . . . N − 1 do
4: Define the policy cover’s state-action distribution ρncov as

ρncov(s, a) =
n∑
i=0

di(s, a)/(n+ 1)

5: Sample {si, ai}Ki=1 ∼ ρncov(s, a) and estimate the covariance of πn as

Σ̂n = (n+ 1)
(

K∑
i=1

φ(si, ai)φ(si, ai)>/K
)

+ λI

6: Set the exploration bonus bn to reward infrequently visited state-action under ρncov

bn(s, a) = 1{(s, a) : φ(s, a)>(Σ̂ncov)−1φ(s, a) ≥ β}
1− γ .

7: Update πn+1 = Robust-NPG-Update(ρncov, bn) [Alg. 9 in the appendix, similar to Alg. 2].
8: return π̂ := Uniform{π0, ..., πN−1}.

6.5 Robust NPG with Exploration via Policy Cover

The Policy Cover-Policy Gradient (PC-PG) algorithm, defined in Algorithm 4, is an exploratory
policy gradient methods recently developed by [2]. Intuitively, PC-PG is a spiritually inheritor of
the RMax algorithm [28], and encourages exploration by adding reward bonuses in directions of the
feature space that past polices (stored in the policy cover) haven’t visited sufficiently. Similar to the
NPG algorithm, we show that PC-PG enjoys a (weaker) natural robustness against bounded data
corruption. This gives us the following robustness guarantee:

Theorem 6.5.1 (Best hyperparameters, assuming known ε). There exists a set of hyperparameters, such
that Algorithm 4 guarantees with probability at least 1− δ

E
[
V ∗(µ0)− V π̂(µ0)

]
≤ Õ

(
d2ε1/7

)
(6.5)

with poly (d,W, σ, κ, |A|, 1/(1− γ), 1/α) number of episodes.

Remark 6.5.1 (The scaling with dimension d). Compared to the guarantee of vanilla NPG, PC-PG

alleviate the requirement of a good initial distribution with small relative conditional number.
However, this process introduce a dependency on d. In particular, the gap in Theorem 6.5.1 is on
the order of Õ (d2ε1/7

) . This implies that for any fixed ε, the bound becomes vacuous for high
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dimensional problems where d ≥ Ω(ε−2/3). Intuitively, the dependency on d is introduced because
PC-PG is trying to find a initial state-action distribution with good coverage, i.e. a distribution
whose covariance matrix has a lower-bounded smallest eigenvalue. Under the assumption that
‖φ(s, a)‖2≤ 1, such a distribution will have a covariance matrix whose eigenvalues are all on the
order of O(1/d). and so the value of κ will be on the order of O(d), which by Theorem 6.4.1 will
similarly introduce a d dependency. We expect that for a robust RL algorithm to avoid the d
dependency, it must gradually find a state-action distribution approaching d∗. How to design such
an algorithm is left as an open problem.

6.6 Experiments

In the theoretical analysis, we rely on the assumption of linear Q function, finite action space
and exploratory initial state distribution to prove the robustness guarantees for NPG and FPG.
In this section, we present a practical implementation of FPG, based on the Trusted Region Policy
Optimization (TRPO) algorithm [148], in which the conjugate gradient step (equivalent to the linear
regression step in Alg. 2) is robustified with SEVER. The pseudo-code and implementation details
are discussed in appendix E.71. In this section, we demonstrate its empirical performance on the
MuJoCo benchmarks [158], a set of high-dimensional continuous control domains where both
assumptions no longer holds, and show that FPG can still consistently performs near-optimally with
and without attack.

Figure 6.2: Consecutive Frames of Half-Cheetah trained with TRPO (top row) and FPG (bottom
row) respectively under δ = 100 attack. The dashed red line serves as a stationary reference object.
TRPO was fooled to learn a ”running backward” policy, contrasted with the normal ”running
forward” policy learned by FPG.

1A Pytorch Implementation of FPG-TRPO can be found at https://github.com/zhangxz1123/
FilteredPolicyGradient

https://github.com/zhangxz1123/FilteredPolicyGradient
https://github.com/zhangxz1123/FilteredPolicyGradient
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Figure 6.3: Detailed Results on Humanoid-v3.

Attack mechanism: While designing and calculating the optimal attack strategy against a deep
RL algorithm is still a challenging problem and active area of research [120, 188], here we describe
the poisoning strategy used in our empirical evaluation, which, despite being simple, can fool
non-robust RL algorithms with ease. Conceptually, policy gradient methods can be viewed as a
stochastic gradient ascent method, where each iteration can be simplified as:

θ(t+1) = θ(t) + g(t) (6.6)

where g(t) is a gradient step that ideally points in the direction of fastest policy improvement.
Assuming that g(t) is a good estimate of the gradient direction, then a simple attack strategy is to try
to perturb g(t) to point in the −g(t) direction, in which case the policy, rather than improving, will
deteriorate as learning proceed. A straightforward way to achieve this is to flip the rewards and
multiply them by a big constant δ in the adversarial episodes. In the linear regression subproblem
of Alg. 2, this would result in a set of (x, y) pairs whose y becomes −δy. This in expectation will
make the best linear regressor w point to the opposite direction, which is precisely what we want.

This attack strategy is therefore parameterized by a single parameter δ, which guides the mag-
nitude of the attack, and is adaptively tuned against each learning algorithm in the experiments:
Throughout the experiment, we set the contamination level ε = 0.01, and tune δ among the values
of [1, 2, 4, 8, 16, 32, 64] to find the most effective magnitude against each learning algorithm. All
experiments are repeated with 3 random seeds and the mean and standard deviations are plotted
in the figures.

Results: The experiment results are shown in Figure 7.1. Consistent patterns can be observed
across all environments: vanilla TRPO performs well without attack but fails completely under the
adaptive attack (which choose δ = 64 in all environments). FPG, on the other hand, matches the
performance of vanilla TRPO with or without attack. Figure 6.2 showcase two half-cheetah control
policies learned by TRPO and FPG under attack with δ = 100. Interestingly, due to the large negative
adversarial rewards, TRPO actually learns the “running backward” policy, showing that our attack
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strategy indeed achieves what it’s designed for. In contrast, FPG is still able to learn the ”running
forward” policy despite the attack.

Figure 6.3 shows the detailed performances of TRPO and FPG across different δ’s on the hardest
Humanoid environment. One can observe that TRPO actually learns robustly under attacks of small
magnitude (δ = 1, 2, 4) and achieves similar performances to itself in clean environments, verifying
our theoretical result in Theorem 6.3.1. In contrast, FPG remains robust across all values of δ’s. Figure
6.3c shows the proportion of adversary data detected and removed by FPG’s filtering subroutine
throughout the learning process. One can observe that as the attack norm δ increases, the filtering
algorithm also does a better job detecting the adversarial data and thus protect the algorithm from
getting inaccurate gradient estimates. Similar patterns can be observed in all the other environments,
and we defer the additional figures to the appendix.

6.7 Discussions

To summarize, in this chapter we present an O(ε) lower-bound for robust learning, an O(
√
κε)

upper-bound for algorithms with the help of an exploration policy with finite relative condition
number κ, showing that online robust RL can be dimension-free. When no such helper policy is
available, we show that one can still achieve O(d2ε1/7), which, despite being suboptimal, is the first
robust RL result that achieves non-vanishing bound under constant fraction adaptive contamination.
In the next section, we shall look at the offline RL setting, in which robust learning becomes strictly
harder due to the lack of online interaction.
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7 corruption-robust offline rl

7.1 Introduction

Offline Reinforcement Learning (RL) [102, 107] has received increasing attention recently due to
its appealing property of avoiding online experimentation and making use of offline historical
data. In applications such as assistive medical diagnosis and autonomous driving, historical data is
abundant and keeps getting generated by high-performing policies (from human doctors/drivers).
However, it is expensive to allow an online RL algorithm to take over and start experimenting with
potentially suboptimal policies, as often human lives are at stake. Offline RL provides a powerful
framework where the learner aims at finding the optimal policy based on historical data alone.
Exciting advances have been made in designing stable and high-performing empirical offline RL
algorithms [66, 103, 169, 98, 99, 6, 92, 154, 116, 175, 178]. On the theoretical front, recent works have
proposed efficient algorithms with theoretical guarantees, based on the principle of pessimism in
face of uncertainty [116, 31, 179, 83, 144], or variance reduction [176, 177]. Interesting readers are
encouraged to check out these works and the references therein.

In this chapter, we investigate a different aspect of the offline RL framework that have not been
explored previously, namely the statistical robustness in the presence of data corruption. To the
best of our knowledge, all prior works on corruption-robust RL study the online RL setting.

In the batch learning setting, existing works mostly come from the robust statistics community
and focuses on statistical estimation and lately supervised and unsupervised learning. We refer
interesting readers to a comprehensive survey [52] of recent advances along these directions. In
robust statistics, a prevailing problem setting is to perform a statistical estimation, e.g. mean
estimation of an unknown distribution, assuming that a small fraction of the collected data is
arbitrarily corrupted by an adversary. This is also referred to as the Huber’s contamination model [75].
Motivated by these prior works, in this chapter we ask the following question:

Given an offline RL dataset with ε-fraction of corrupted data, what is the information-theoretic limit of
robust identification of the optimal policy?

Towards answering this question, we summarize the following results in this chapter:

1. We provide the formal definition of ε-contamination model in offline RL, and establish an
information-theoretical lower-bound of Ω(Hdε) in the setting of linear MDP with dimension
d.

2. We design a robust variant of the Least-Square Value Iteration (LSVI) algorithm utilizing
robust supervised learning oracles with a novel pessimism bonus term, and show that it
achieves near-optimal performance in cases with (Theorem 7.3.2) or without data coverage
(Theorem 7.3.3).
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3. In the without coverage case, we establish a sufficient condition for learning based on the
relative condition number with respect to any comparator policy — not necessary the optimal
one. When specialized to offline RL without corruption, our partial coverage assumption is
much weaker than the full coverage assumption in [83] for linear MDP.

4. In contrast to existing robust online RL results, we show that agnostic learning, i.e. learning
without the knowledge of ε, is generally impossible in the offline RL setting, establishing a
separation in hardness between online and offline RL in face of data corruption.

While our main focus are on corruption robust offline RL, it is worth noting when specialized to the
classic offline RL setting, i.e., ε = 0, our work also gives two interesting new results: (1) under linear
MDP setting, we achieve an optimality gap with respect to any comparator policy (not necessarily
the optimal one) in the order ofO(d3/2/

√
N) withN being the number of offline samples, by simply

randomly splitting the dataset (this does sacrifices H dependence), (2) our analysis works for the
setting where offline data only has partial coverage which is formalized using the concept of relative
condition number with respect to the comparator policy.

7.2 Preliminaries

To begin with, let us formally introduce the episodic linear MDP setup we will be working with, the
data collection and contamination protocol, as well as the robust linear regression oracle.

Environment. Weconsider an episodic finite-horizonMarkovdecision process (MDP),M(S,A, P,R,H, µ0),
where S is the state space,A is the action space, P : S×A → ∆(S) is the transition function, such that
P (·|s, a) gives the distribution over the next state if action a is taken from state s,R : S×A → ∆(R) is
a stochastic and potentially unbounded reward function,H is the time horizon, and µ0 ∈ ∆S is an ini-
tial state distribution. The value functions V πh : S → R is the expected sumof future rewards, starting
at time h in state s and executing π, i.e. V πh (s) := E

[∑H
t=hR(st, at)|π, s0 = s

]
,where the expectation

is taken with respect to the randomness of the policy and environmentM. Similarly, the state-action
value function Qπh : S × A → R is defined as Qπh(s, a) := E

[∑H
t=hR(st, at)|π, s0 = s, a0 = a

]
.We

use π∗h, Q∗h, V ∗h to denote the optimal policy, Q-function and value function, respectively. For any
function f : S → R, we define the Bellman operator as

(Bf)(s, a) = Es′∼P (·|s,a)[R(s, a) + f(s′)]. (7.1)

We then have the Bellman equation

V πh (s) = 〈Qπh(s, ·), πh(·|s)〉A, Qπh(s, a) = (BV πh+1)(s, a)
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and the Bellman optimality equation

V ∗h (s) = max
a

Q∗h(s, a), Q∗h(s, a) = (BV ∗h+1)(s, a)

We define the averaged state-action distribution dπ of a policy π: dπ(s, a) := 1
H

∑H
h=1 Pπ(st =

s, at = a|s0 ∼ µ0) . We aim to learn a policy that maximizes the expected cumulative reward and
thus define the performance metric as the suboptimality of the learned policy π compared to a
comparator policy π̃:

SubOpt(π, π̃) = Es∼µ0 [V π̃1 (s)− V π1 (s)]. (7.2)

Notice that π̃ doesn’t necessarily have to be the optimal policy π∗, in contrast to most recent results
in pessimistic offline RL, such as [83, 31]. For the majority of this chapter, we focus on the linear
MDP setting [173, 81].

Assumption 7.2.1 (Linear MDP). There exists a known feature map φ : S ×A → Rd, d unknown signed
measures µ = (µ(1), ..., µ(d)) over S and an unknown vector θ ∈ Rd, such that for all (s, a, s′) ∈ S ×A×S ,

P (s′|s, a) = φ(s, a)>µ(s′), R(s, a) = φ(s, a)>θ + ω

where ω is a zero-mean and σ2-subgaussian distribution. Here we also assume that the parameters are bounded,
i.e.‖φ(s, a)‖≤ 1, E[R(s, a)] ∈ [0, 1] for all (s, a) ∈ S ×A and max(‖µ(S)‖, ‖θ‖) ≤

√
d.

Note that compared to the last chapter, here our assumption on the MDP is stronger. We not only
require linear value function but in fact, linear transition and reward functions, a strictly stronger
condition.

CleanDataCollection. Weconsider the offline setting, where a cleandataset D̃ = {(s̃i, ãi, r̃i, s̃′i)}i=1:N

of transitions is collected a priori by an unknown experimenter. We assume the stochasticity of the
clean data collecting process, i.e. there exists an offline state-action distribution ν ∈ ∆(S ×A), s.t.
(s̃i, ãi) ∼ ν(s, a), r̃i ∼ R(s̃i, ãi) and s̃′i ∼ P (s̃i, ãi). When there is no corruption, D̃ will be observed
by the learner. However, we study the setting where the data is contaminated by an adversary
before revealed to the learner.

Contamination model. We define an adversarial model that can be viewed as a direct extension
to the ε-contamination model studied in the traditional robust statistics literature.

Assumption 7.2.2 (ε-Contamination in offline RL). Given ε ∈ [0, 1] and a set of clean tuples D̃ =
{(s̃i, ãi, r̃i, s̃′i)}i=1:N , the adversary is allowed to inspect the tuples and replace any εN of them with arbitrary
transition tuples (s, a, r, s′) ∈ S×A×R×S . The resulting set of transitions is then revealed to the learner. We
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will call such a set of samples ε-corrupted, and denote the contaminated dataset asD = {(si, ai, ri, s′i)}i=1:N .
In other words, there are at most εN number of indices i, on which (s̃i, ãi, r̃i, s̃′i) 6= (si, ai, ri, s′i).

Under ε-contamination, we assume access to a robust linear regression oracle.

Assumption 7.2.3 (Robust least-square oracle (RLS)). Given a set of ε-contaminated samples S =
{(xi, yi)}1:N , where the clean data is generated as: x̃i ∼ ν, P (‖x‖≤ 1) = 1, ỹi = x̃i>w∗ + γi, where γi’s
are subgaussian noise with zero-mean and γ2-variance. Then, a robust least-square oracle returns an estimator
ŵ, such that

leftmirgin=* If Eν [xx>] � ξ, then with probability at least 1− δ,

‖ŵ − w∗‖2≤ c1(δ) ·
(√

γ2poly(d)
ξ2N

+ γ

ξ
ε

)

leftmiirgiin=* With probability at least 1− δ,

Eν
(
‖x>(ŵ − w∗)‖22

)
≤ c2(δ) ·

(
γ2poly(d)

N
+ γ2ε

)

where c1 and c2 hide absolute constants and polylog(1/δ).

Such guarantees are common in the robust statistics literature, see e.g. [17, 140, 94]. While we
focus on oracles with such guarantees, our algorithm and analysis are modular and allow one to
easily plug in oracles with stronger or weaker guarantees.

7.3 Algorithms and Main Results

Here, we focus on a Robust variant of Least-Squares Value Iteration (LSVI)-style algorithms [83],
which directly calls a robust least-square oracle to estimate the Bellman operator B̂V̂h(s, a). Option-
ally, it may also subtract a pessimistic bonus Γh(s, a) during the Bellman update. A template of such
an algorithm is defined in Algorithm 5. In section 7.3 and 7.3, we present two variants of the LSVI
algorithm designed for two different settings, depending on whether the data has full coverage over
the whole state-action space or not. However, before that, we first present an algorithm-independent
minimax lower-bound that illustrates the hardness of the robust learning problem in offline RL, in
contrast to classic results in statistical estimation and supervised learning.
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Algorithm 5 Robust Least-Square Value Iteration (R-LSVI)
1: Input: Dataset D = {(si, ai, ri, s′i)}1:N ; pessimism bonus Γh(s, a) ≥ 0, robust least-squares

Oracle: RLS(·).
2: Split the dataset randomly into H subset: Dh = {(shi , ahi , rhi , s′hi )}1:(N/H), for h ∈ [H].
3: Initialization: Set V̂H+1(s)← 0.
4: for step h = H,H − 1, . . . , 1 do

5: Set ŵh ← RLS

({
(φ(shi , ahi ), (rhi + V̂h+1(s′hi )))

}
1:(N/H)

)
.

6: Set Q̂h(s, a)← φ(s, a)>ŵh − Γh(s, a), clipped within [0, H − h+ 1].
7: Set π̂h(a|s)← arg maxa Q̂h(s, a) and V̂h(s)← maxa Q̂h(s, a).
8: Output: {π̂h}Hh=1.

Minimax Lower-bound

Theorem7.3.1 (MinimaxLower bound). Under assumptions 7.2.1 (linearMDP) and 7.2.2 (ε-contamination),
for any fixed data-collecting distribution ν, no algorithm L : (S ×A×R×A)N → Π can find a better than
O(dHε)-optimal policy with probability more than 1/4 on all MDPs. Specifically,

min
L,ν

max
M,fc

SubOpt(π̂, π∗) = Ω (dHε) (7.3)

where fc denotes an ε-contamination strategy that corrupts the data based on the MDPM and clean data
D̃ and returns a contaminated dataset, and L denotes an algorithm that takes the contaminated dataset and
return a policy π̂, i.e. π̂ = L(fc(M, D̃)).

The detailed proof is presented in appendix F.2, but the high-level idea is simple. Consider the
tabular MDP setting which is a special case of linear MDP with d = SA. For any data generating
distribution ν, by the pigeonhole principle, there must exists a least-sampled (s, a) pair, for which
ν(s, a) ≤ 1/SA. If the adversary concentrate all its attack budget on this least sampled (s, a) pair, it
can perturb the empirical reward on this (s, a) pair to be as much as r̂(s, a) = r(s, a) + SAε. Further
more, assume that there exists another (s∗, a∗) such that r(s∗, a∗) = r(s, a) + SAε/2. Then, the
learner has no way to tell if truly r(s, a) > r(s∗, a∗) (i.e., the learner believes what she observes
and believes there is no contamination) or if the data is contaminated and in fact r(s, a) < r(s∗, a∗).
Either could be true and whichever alternative the learner chooses to believe, it will suffer at least
SAHε/2 optimality gap in one of the two scenarios.

Remark 7.3.1 (dimension scaling). Theorem 7.3.1 says that even if the algorithm has control over
the data collecting distribution ν (without knowingM a priori), it can still do no better than
Ω(dHε) in the worst-case, which implies that robustness is fundamentally impossible in high-
dimensional problems where d ≥ 1/ε. This is in sharp contrast to the classic results in the robust
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statistics literature, where estimation errors are found to not scale with the problem dimension, in
settings such as robust mean estimation [49, 101] and robust supervised learning [37, 50]. From
the construction we can see that the dimension scaling appears fundamentally due to a multi-task
learning effect: the learner must perform SA separate reward mean estimation problems for each
(s, a) pair, while the data is provided as a mixture for all these tasks. As a result, the adversary can
concentrate on one particular task, raising the contamination level to effectively dε.

Remark 7.3.2 (Offline vs. Online RL). We note that the construction in Theorem 7.3.1 remains valid
even if the adversary only contaminates the rewards, and if the adversary is oblivious and perform
the contamination based only on the data generating distribution ν rather than the instantiated
dataset D̃. In contrast, in the last chapter, our lower-bound for robust online RL is Ω(Hε). It remains
unknown whether Ω(Hε) is tight, as no algorithm yet can achieve a matching upper-bound without
additional information. We will come back to this discussion in section 7.3.

In what follows, we show that the above lower-bound is tight in both d and ε, by presenting two
upper-bound results nearly matching the lower-bound.

Robust Learning with Data Coverage

To begin with, we study the simple setting where the offline data has sufficient coverage over the
whole state-action distribution. This is often considered as a strong assumption. However, results
in this setting will establish meaningful comparison to the above lower-bound and the no-coverage
results later. In the context of linear MDP, we say that a data generating distribution has coverage if
it satisfies the following assumption.

Assumption 7.3.1 (Uniform Coverage). Under assumption 7.2.1, define Σν := Eν [φ(s, a)φ(s, a)>] as
the covariance matrix of ν. We say that the data generating distribution ξ-covers the state-action space for
ξ > 0, if

Σν � ξ (7.4)

i.e. the smallest eigenvalue of Σν is strictly positive and at least ξ.

Under such an assumption, we show that the R-LSVI without pessimism bonus can already be
robust to data contamination.

Theorem 7.3.2 (Robust Learning under ξ-Coverage). Under assumption 7.2.1, 7.2.2 and 7.3.1, for any
ξ, ε > 0, given a dataset of size N , Algorithm 5 with bonus Γh(s, a) = 0 achieves

(7.5)SubOpt(π̂, π∗) ≤ c1(δ/H) ·
(√

(σ +H)2H3poly(d)
ξ2N

+ (σ +H)H2

ξ
ε

)
with probability at least 1− δ.
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The proof of Theorem 7.3.2 follows readily from the standard analysis of approximated value
iterations and rely on the following classic result connecting the Bellman error to the suboptimality
of the learned policy, see e.g. Section 2.3 of [76].

Lemma 7.3.1 (Optimality gap of VI). Under assumption 7.2.1, Algorithm 5 with Γh(s, a) = 0 satisfies

SubOpt(π̂, π∗) ≤ 2H max
s,a,h
|Q̂h(s, a)− (BhV̂h+1)(s, a)|≤ 2H max

s,a,h
‖φ(s, a)‖2·‖ŵh − w∗h‖2 (7.6)

where w∗h := θ +
∫
S V̂h+1(s′)µh(s′)ds′ is the best linear predictor.

The result then follows immediately using property 1 of the robust least-square oracle and the
fact that E[((r(s, a) + V̂ (s′))− (BhV̂ )(s, a))2|s, a] ≤ (σ +H)2 (Lemma F.1.2).

Remark 7.3.3 (Data Splitting and tighter d-dependency). The data splitting in step 2 of Algorithm
5 is mainly for the sake of theoretical analysis and is not required for practical implementations.
Nevertheless, it directly contributes to our tighter bounds. Specifically, the data splittingmakes V̂h+1,
which is learned based onDh+1, independent fromDh, at the cost of an additionalH multiplicative
factor. In contrast, the typical covering argument used in online RL will introduce another O(d1/2)
multiplicative factor, and naively applying it to the offline RL setting will make the finally sample
complexity scales as O(d3/2), see e.g. Corollary 4.5 of [83]. Our result above, when specialized to
offline RL without corruption (i.e., ε = 0), achieves the following results.

Corollary 7.3.1 (Uncorrupted Learning under ξ-Coverage). Under assumption 7.2.1 and 7.3.1, for
any ξ > 0, given a clean dataset of size N , with bonus Γh(s, a) = 0 and ridge regression with regularizer
coefficient λ = 1 as the RLS solver, Algorithm 5 achieves with probability at least 1− δ

(7.7)SubOpt(π̂, π∗) ≤ Õ
(
H3d

ξ
√
N

)
.

Remark 7.3.4 (Tolerable ε). Notice that Theorem 7.3.2 requires ε ≤ ξ to provide a non-vacuous
bound. This is because if ε > ξ, then similar to the lower-bound construction in Theorem 7.3.1, the
adversary can corrupt all the data along the eigenvector direction corresponding to the smallest
eigenvalue, in which case the empically estimated reward along that direction can be arbitrarily
far away from the true reward even with a robust mean estimator, and thus the estimation error
becomes vacuous.

Remark 7.3.5 (Unimprovable gap). Notice in contrast to classic RL results, Theorem 7.3.2 implies
that in the presence of data contamination, there exists an unimprovable optimality gap (σ+H)H2ε/ξ

even if the learner has access to infinite data. Also note that because ‖φ(s, a)‖≤ 1, ξ is at most 1/d.
This implies that asymptotically, V ∗ − V π̂ ≤ O(H3dε) when ξ is on the order of 1/d, matching the
lower-bound upto H factors.
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Remark 7.3.6 (Agnosticity to problem parameters). It is worth noting that in theorem 7.3.2, the
algorithm does not require the knowledge of ε or ξ, and thus works in the agnostic setting where
these parameters are not available to the learner (given that the robust least-square oracle is agnostic).
In other words, the algorithm and the bound are adaptive to both ε and ξ. This point will be revisited
in the next section.

Robust Learning without Coverage

Next, we consider the harder setting where assumption 7.3.1 does not hold, as often in practice,
the offline data will not cover the whole state-action space. Instead, we provide a much weaker
sufficient condition under which offline RL is possible.

Assumption 7.3.2 (relative condition number). For any given comparator policy π̃, under assumption
7.2.1 and 7.2.2, define the relative condition number as

κ = sup
w

w>Σ̃w
w>Σνw

(7.8)

where Σ̃ denotes Σdπ̃ and we take the convention that 0
0 = 0. We assume that κ <∞.

The relative condition number is recently introduced in the policy gradient literature [4, 187].
Intuitively, the relative condition number measures the worst-case density ratio between the occu-
pancy distribution of comparator policy and the data generating distribution. For example, in a
tabular MDP, κ = maxs,a d

π̃(s,a)
ν(s,a) . Here, we show that a finite relative condition number with respect

to an arbitrary comparator policy is already sufficient for offline RL, for both clean and contaminated
setting.

Without data coverage, we now rely on pessimism to retain reasonable behavior. However, the
challenge, in this case, is to design a valid confidence bonus using only the corrupted data. We now
present our constructed pessimism bonus that allows Algorithm 5 to handle ε-corruption, albeit
requiring the knowledge of ε.

Theorem 7.3.3 (Robust Learning without Coverage). Under assumption 7.2.1, 7.2.2 and 7.3.2, with
ε > 0, given any comparator policy π̃ with κ <∞, define the ε-robust empirical covariance as

Λh = 3
5

H
N

N/H∑
i=1

φ(shi , ahi )φ(shi , ahi )> + (ε+ λ) · I

 , λ = c′ · dH log(N/δ)/N

where c′ is an absolute constant. Then, Algorithm 5 with pessimism bonus

(7.9)Γh(s, a) =
(

(σ +H)
√
Hpoly(d)√
N

+ ((σ +H) + 2H
√
d)
√
ε+
√
dλ

)√
c2(δ/H)‖φ(s, a)‖Λ−1

h



81

will with probability at least 1− δ achieve

(7.10)SubOpt(π̂, π̃) ≤ Õ
(

(σ +H)
√
H3κpoly(d)√
N

+ ((σ +H)H +H2
√
d)
√
dκε

)
Remark 7.3.7 (Arbitrary comparator policy). Notice that in comparison to Theorem 4.2 of [83],
Lemma 7.3.2 allows the comparator policy to be arbitrary, and the implication is profound. Specifi-
cally, Lemma 7.3.2 indicates that a pessimism-style algorithm always retains reasonable behavior,
in the sense that, given enough data, it will eventually find the best policy among all the policies
covered by the data generating distribution, i.e. arg maxπ V π(µ), s.t. κ(π) < ∞. Similar to the
ξ-coverage, when specialized to standard offline RL, our analysis provides a tighter bound.

Corollary 7.3.2 (Uncorrupted Learning without Coverage). Under assumption 7.2.1 and 7.3.2, given
any comparator policy π̃ with κ <∞, define the empirical covariance as

Λh = H

N

N/H∑
i=1

φ(shi , ahi )φ(shi , ahi )> + λ · I, λ = c′ · dH log(N/δ)/N

where c′ is an absolute constant. Then, with pessimism bonus

(7.11)Γh(s, a) = H

(
√
d · λ+

√
Hd log(N/δλ)

N

)
· ‖φ(s, a)‖Λ−1

h

and ridge regression with regularizer coefficient λ as the RLS solver, Algorithm 5 will with probability at least
1− δ achieve

(7.12)SubOpt(π̂, π̃) ≤ Õ
((

H2d+H2.5
√
d
)√dκ

N

)

We note that the leading term (first term)O(d3/2) is directly due to the assumption that the linear
MDP parameter max(‖µ(S)‖, ‖θ‖) ≤

√
d. If instead max(‖µ(S)‖, ‖θ‖) ≤ ρ for some ρ indepdent of

d, then the above bound will become linear in d. In contrast, the covering-number style analysis
will generate d3/2 regardless of the parameter norm, since its second term will become O(d3/2)
and dominate (as one needs to perform a covering argument to cover the quadratic penalty term
Γh(s, a)).

The proof of Theorem 7.3.3 is technical but largely follows the analysis framework of pessimism-
based offline RL and consists of two main steps. The first step establishes Γh(s, a) as a valid bonus
by showing

|Q̂h(s, a)− (BhV̂h+1)(s, a)|≤ Γh(s, a), w.p. 1− δ/H. (7.13)

The second step applies the following Lemma connectingthe optimality gap with the expectation of
Γh(s, a) under visitation distribution of the comparator policy.
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Lemma 7.3.2 (Suboptimality for Pessimistic Value Iteration). Under assumption 7.2.1, if Algorithm
5 has a proper pessimism bonus, i.e. |Q̂h(s, a) − (BhV̂h+1)(s, a)|≤ Γh(s, a),∀h ∈ [H], then against any
comparator policy π̃, it achieves

SubOpt(π̂, π̃) ≤ 2
H∑
h=1

Edπ̃ [Γh(s, a)] (7.14)

We then further upper-bound the expectation through the following inequality, which bounds
the distribution shift effect using the relative condition number κ:

Edπ̃
[√

φ(s, a)>Λ−1φ(s, a)
]
≤
√

5dκ (7.15)

The detailed proof can be found in Appendix F.3. Note that the prior work [83] only establishes
results in terms of the suboptimality comparing with the optimal policy, and when specializes to
linear MDPs, they assume the offline data has global full coverage. We replace these redundant
assumptions with a single assumption of partial coverage with respect to any comparator policy, in
the form of a finite relative condition number.

Remark 7.3.8 (Novel bonus term). One of ourmain algorithmic contributions is the new bonus term
that upper-bound the effect of data contamination on the Bellman error. Ignoring ε-independent
additive terms and absolute constants, our bonus term has the form

H
√
ε ·
√
φ(s, a)>Λ−1φ(s, a). (7.16)

In comparison, below is the one used in [118] for online corruption-robust RL:

Hε ·
√
φ(s, a)>Λ−2φ(s, a). (7.17)

In the tabular case, (7.17) evaluates to Hε/ν(s, a) and (7.16) evaluates to H
√
ε/ν(s, a), and thus

(7.17) is actually tighter than (7.16) for ν(s, a) ≥ ε. However, in the linear MDP case, the relation
between the two is less obvious. As we shall see, when offline distribution has good coverage, i.e. Λ
is well-conditioned, (7.17) appears to be tighter. However, as the smallest eigenvalue of Λ goes to
zero, a.k.a. lack of coverage, (7.17) actually blows up rapidly, whereas both (7.16) and the actual
achievable gap remain bounded.

We demonstrate these behaviors with a numerical simulation, shown in Figure 7.1. In the
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simulation, we compare the size of three terms

maximum possible gap = max
‖y‖∞≤2H,‖y‖0≤εN

φ(s, a)>Λ−1

(
1
N

N∑
i=1

φ(si, ai) · yi

)
(7.18)

bonus 1 = Hε ·
√
φ(s, a)>Λ−2φ(s, a)

bonus 2 = H
√
ε ·
√
φ(s, a)>Λ−1φ(s, a)

The maximum possible gap is defined as above since for any (s, a) pair and in any step h, the bias
introduced to its Bellman update due to corruption takes the form of

(7.19)φ(s, a)>Λ−1

(
1
N

N∑
i=1

φ(si, ai) ·
(

(r̃i + V̂h+1(s̃′i))− (ri + V̂h+1(s′i))
))

where r̃i and x̃′i are the clean reward and transitions. For the sake of clarity, here we assume that
the adversary only contaminate the reward and transitions in a bounded fashion while keeping the
current (s, a)-pairs unchanged. (7.19) can then be upper-bounded by (7.18), because there are at
most εN tuples on which r̃i 6= ri or s̃′i 6= s′i, and for any such tuple (r̃i+ V̂h+1(s̃′i))− (ri+ V̂h+1(s′i)) ≤
2H .

In the simulation, we set H = 1 to ignore the scaling on time horizon and let λ = 1; We let
both the test data φ(s, a) and the training data φ(si, ai) to be sampled from a truncated standard
Gaussian distribution in R3, denoted by ν, with mean 0, and covariance eigenvalues 1, 1, λmin. We
set the training data size set to N = 106 and contamination level set to ε = 0.01. The x-axis tracks
− log(λmin), while the y-axis tracks Es,a∼νbonus(s, a), with expectation being approximated by 1000
test samples from ν. It can be seen that bonus 1 starts off closely upper-bounding the maximum
possible gap when the data has good coverage, but increases rapidly as λmin decreases. Note that
for a fixed N , bonus 1 will eventually plateau at HNε/λ, but this term scales with N , so the error
blows up as the number of samples grows, which certainly is not desirable. Bonus 2, on the other
hand, is not as tight as bonus 1 when there is good data coverage, but remains intact regardless of
the value of λmin, which is essential for the more challenging setting with poor data coverage.

This new bonus term can be of independent interest in other robust RL contexts. For example,
in the online corruption-robust RL problem, as a result of using the looser bonus term (7.16), the
algorithm in [118] can only handle ε = T−3/4 amount of corruptions in the linear MDP setting,
while being able to handle ε = T−1/2 amount of corruptions in the tabular setting, due to the
tabular bonus being tighter. Our bonus term can be directly plugged into their algorithm, allowing
it to handle up to ε = T−1/2 amount of corruption even in the linear MDP setting, achieving an
immediate improvement over previous results.1

1Though our bound improve their result, the tolerable corruption amount is still sublinear, which is due to the multi-layer
scheduling procedure used in their algorithm.
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Figure 7.1: bonus size simulation

Note that our algorithm and theorem are adaptive to the unknown relative coverage κ, but is not
adaptive to the level of contamination ε (i.e., algorithm requires knowing ε or a tight upper bound
of ε). One may ask whether there exists an agnostic result, similar to Theorem 7.3.2, where an
algorithm can be adaptive simultaneously to unknown values of ε and coverage parameter κ. Our
last result shows that this is unfortunately not possible without full data coverage. In particular, we
show that no algorithm can achieve a best-of-both-world guarantee in both clean and ε-corrupted
environments. More specifically, in this setting, κ is still unknown to the learner, and the adversary
either corrupt ε amount of tuples (ε is known) or does not corrupt at all—but the learner does not
know which situation it is.

Theorem 7.3.4 (Agnostic learning is impossible without full coverage). Under assumption 7.2.1 and
7.3.2, for any algorithm L : (S × A × R × A)N → Π that achieves diminishing suboptimality in clean
environment, i.e., for any clean dataset D̃ it achieves SubOpt(L(D̃)) = g(N) for some positive function g
such that limN→∞ g(N) = 0, we have that for any ε ∈ (0, 1/2], there exists an MDPM† such that with
probability at least 1/4,

max
fc

SubOpt(π̂, π̃) ≥ 1/2 (7.20)

Intuitively, the logic behind this result is that in order to achieve vanishing errors in the clean
environment, the learner has no choice but to trust all data as clean. However, it is also possible that
the same dataset could be generated under some adversarial corruption from another MDP with a
very different optimal policy—thus the learner cannot be robust to corruption under that MDP.

Specifically, consider a 2-arm bandit problem. The learner observes a dataset of N data points
of arm-reward pairs, of which p fraction is arm a1 and (1 − p) fraction is arm a2. For simplicity,
we assume that N large enough such that the empirical distribution converges to the underlying
sampling distribution. Assume further that the average reward observed for a1 is r̂1 = 1

2 + ε
2p , for

some ε ≤ p, and the average reward observed for a2 is 1
2 . Given such a dataset, two data generating
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processes can generate such a dataset with equal likelihood and thus indistinguishable based only
on the data:

1. There is no contamination. The MDP has reward setting where a1 indeed has reward r1 =
Bernoulli( 1

2 + ε
2p ) and a2 has r2 = Bernoulli( 1

2 ). Since there is no corruption, κ = 1/p in this
MDP.

2. The data is ε-corrupted. In particular, in thisMDP, the actual reward of a1 is r1 = Bernoulli( 1
2−

ε
2p ), and the adversary is able to increase empirical mean by ε/p via changing εN number of
data points from (a1, 0) to (a1, 1). One can show that this can be achieved by the adversary
with probability at least 1/2 (which is where the probability 1/2 in the theorem statement
comes from). In this MDP, we have κ = 1/(1− p).

Now, since the algorithm achieves a diminishing suboptimal gap in all clean environments, it must
return a1 with high probability given such a dataset, due to the possibility of the learner facing
the data generation process 1. However, committing to action a1 will incur ε/2p suboptimal gap
in the second MDP with the data generation process 2. On the other hand, note that the relative
condition number in the second MDP is bounded, i.e. 1

1−p ≤ 2 for ε ≤ p ≤ 1/2. Therefore, for any
ε ∈ (0, 1/2], one can construct such an instance with p = ε, such that the relative condition number
for the second MDP is 1

1−p ≤ 2 and the relative condition number for the first MDP is 1
ε <∞, while

the learner would always suffer ε/2p = 1/2 suboptimality gap in the second MDP if she had to
commit to a1 under the first MDP where data is clean.

Remark 7.3.9 (Offline vs. Online RL: Agnostic Learning). Theorem 7.3.4 shows that no algorithm
can simultaneously achieve good performance in both clean and corrupted environments without
knowing which one it is currently experiencing. This is in sharp contrast to the recent result in
[187], which shows that in the online RL setting, natural policy gradient (NPG) algorithm can find
an O(

√
κε)-optimal policy for any unknown contamination level εwith the help of an exploration

policy with finite relative condition number. Without such a helper policy, however, robust RL is
much harder, and the best-known result [118] can only handle ε ≤ O(1/

√
T ) corruption, but still

does not require the knowledge of ε. Intuitively, such adaptivity is lost in the offline setting, because
the learner is no longer able to evaluate the current policy by collecting on-policy data. In the online
setting, the construction in Theorem 7.3.4 will not work. Our construction heavily relies on the fact
that ν has ε probability of sampling a1, which allows adversary in the second MDP to concentrate
its corruption budget all on a1. In the online setting, one can simply uniform randomly try a1 and
a2 to significantly increase the probability of sampling a1 which in turn makes the estimation of r1

accurate (up to O(ε) in the corrupted data generation process).
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7.4 Discussions

In this chapter, we studied corruption-robust RL in the offline setting. We provided an information-
theoretical lower-bound and two near-matching upper-bounds for cases with or without full data
coverage, respectively. When specialized to the uncorrupted setting, our algorithm and analysis
also obtained tighter error bounds while under weaker assumptions. Many future works remain:

1. Our upper-bounds do not yet match with the lower-bound in terms of their dependency on
H , and the√ε rather than ε dependency on ε in the partial coverage setting. Tightening the
dependency on ε likely requires designing a new and tighter bonus term, as our simulation
shows that neither of the currently known bonus is tight.

2. Unlike the online counter-part, in the offline setting we do not yet have an empirically robust
algorithm that incorporates more flexible function approximators, such as neural networks.

3. While we show that dimension-scaling is unavoidable (Theorem 7.3.1) in the worst case in the
Optimal Policy Identification (OPI) task, it remains unknown whether it can be achieved in
the less challenging tasks, such as offline policy evaluation (OPE) and imitation learning (IL).
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a appendix for chapter 2

Proof of modified Proposition 2.2.1.

In this version, we assume (w,x, y) is a trajectory of (2.1) rather than being a trajectory of (2.8).
All we need to show is that for any pair of (x, y), there exist another pair (x̃, Ry), such that they

give the same update. In particular, we set x̃ = ax and show that there always exists an a ∈ [−1, 1]
such that

(y −wTx)x = (Ry −wTax)ax.

This simplifies to
g(a) := (wTx)a2 −Rya+ (y −wTx) = 0. (A.1)

The discriminant of the quadratic (A.1) is

R2
y − 4wTx(y −wTx) ≥ R2

y − 4|wTx|
(
Ry + |wTx|

)
=
(
Ry − 2|wTx|

)2 ≥ 0

So there always exists a solution a ∈ R. Moreover, g(−1) = Ry + y ≥ 0 and g(1) = −Ry + y ≤ 0, so
there must be a real root in [−1, 1].

Proof of Theorem 2.2.2.

We showed in Section 2.2 that Regime V trajectories are 2D. We also argued that solutions that reach
w? via Regime III–IV are not unique and need not be 2D. We will now show that it’s always possible
to construct a 2D solution.

We begin by characterizing the set of w? reachable via Regime III–IV. Recall from Section 2.2
that the transition between III and IV occurs when ‖w‖ = R := Ry

2Rx
. If t0 is the time at which

this transition occurs, then for 0 ≤ t ≤ t0, the solution is x = Rx
‖w‖w, which leads to a straight-line

trajectory from w0 to w(t0).
Now consider the part of the trajectory in Regime IV, where t0 ≤ t ≤ tf . As derived in Section 2.2,

Regime IV trajectories satisfy ẇ = wTx = Ry
2 . These lead to d‖w‖2

dt = R2
y

2 , which means that ‖w‖
grows at the same rate regardless of x. If our trajectory reaches w(tf ) = w?, then we can deduce
via integration that

‖w?‖2 − ‖w(t0)‖2 =
R2
y

2 (tf − t0), (A.2)

Suppose (w(t),x(t)) for t0 ≤ t ≤ tf is a trajectory that reaches w?. Refer to Figure A.1. The reachable
set at time tf is a spherical sector whose boundary requires a trajectory that maximizes curvature.
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We will now derive this fact.

III

IV

w(t1)

0 R ‖w?‖

w0
w(t0)

w(tf ) = w?

Figure A.1: If a reachable w? is contained in the concave funnel shape, which is the reachable set
in Regime IV, it can be reached by some trajectory (w(t),x(t)) lying entirely in the 2D subspace
defined by span{w0,w?}: follow the max-curvature solution until t1 and then transition to a radial
solution until tf .

Let θmax be the largest possible angle between w(t0) and any reachable w(tf ) = w?, where we
have fixed tf . Define θ(t) to be the angle between w(t) and w(tf ).

θ(t0) =
∫ tf

t0

θ̇ dt ≤
∫ tf

t0

|θ̇|dt

An alternative expression for this rate of change is the projection of ẇ onto the orthogonal comple-
ment of w:

|θ̇| =
‖ẇ− (ẇT w

‖w‖ ) w
‖w‖‖

‖w‖ =
Ry‖x−

Ry
2‖w‖2 w‖

2‖w‖

Where we used the fact that ẇ = wTx = Ry
2 in Regime IV. Now,

θmax = max
x: wTx=Ry/2
‖x‖≤Rx

θ(t0)

≤ max
x: wTx=Ry/2
‖x‖≤Rx

∫ tf

t0

Ry‖x−
Ry

2‖w‖2 w‖

2‖w‖ dt

≤
∫ tf

t0

√
R2
x − ( Ry

2‖w‖ )
2

‖w‖ dt (A.3)

In the final step, we maximized over x. Notice that the integrand (A.3) is an upper bound that only
depends on t0 and ‖w?‖ but not on x. One can also verify that this upper bound is achieved by the
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choice

x = Ry
2‖w‖ŵ +

√
R2
x −

(
Ry

2‖w‖

)2 w? − (ŵTw?)ŵ
‖w? − (ŵTw?)ŵ‖

.

where ŵ := w/‖w‖ and w? is any vector that satisfies (A.2) with angle θmax with w(t0). Any w?

with this norm but angle θf < θmax can also be reached by using the max-curvature control until

time t1, where t1 is chosen such that θf =
∫ t1
t0

√
R2
x−( Ry

2‖w‖ )
2

‖w‖ dt, and then using x = Ry
2‖w‖2 w for

t1 ≤ t ≤ tf . This piecewise path is illustrated in Figure A.1.
Our constructed optimal trajectory lies in the 2D span of w? and w0. This shows that all reachable

w? can be reached via a 2D trajectory.
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b appendix for chapter 3

Proof of Theorem 3.4.1

Proof. For any policy φ and state s ∈ S, we have

|V φM̂(s)− V φM(s)| (B.1)
Bellman= |g(s, φ(s)) + γET̂ (s′|s,φ(s))V

φ

M̂(s′)− g(s, φ(s))− γET (s′|s,φ(s))V
φ
M(s′)|

= γ|ET̂ (s′|s,φ(s))V
φ

M̂(s′)− ET (s′|s,φ(s))V
φ
M(s′)|

= γ|ET̂ (s′|s,φ(s))V
φ

M̂(s′)− ET (s′|s,φ(s))V
φ

M̂(s′) + ET (s′|s,φ(s))V
φ

M̂(s′)− ET (s′|s,φ(s))V
φ
M(s′)|

tri.
≤ γ|ET̂ (s′|s,φ(s))V

φ

M̂(s′)− ET (s′|s,φ(s))V
φ

M̂(s′)|+γ|ET (s′|s,φ(s))V
φ

M̂(s′)− ET (s′|s,φ(s))V
φ
M(s′)|

extremal
≤ γ|ET̂ (s′|s,φ(s))V

φ

M̂(s′)− ET (s′|s,φ(s))V
φ

M̂(s′)|+γ sup
s∈S
|V φM̂(s)− V φM(s)|

= γ
∣∣∣〈T̂ (·|s, φ(s))− T (·|s, φ(s)), V φM̂(·)

〉∣∣∣+ γ sup
s∈S
|V φM̂(s)− V φM(s)|

const.= γ

∣∣∣∣〈T̂ (·|s, φ(s))− T (·|s, φ(s)), V φM̂(·)− Cmax

2(1− γ)

〉∣∣∣∣+ γ sup
s∈S
|V φM̂(s)− V φM(s)|

Hölder
≤ γ‖T̂ (·|s, φ(s))− T (·|s, φ(s))‖1sup

s∈S

∣∣∣∣V φM̂(s)− Cmax

2(1− γ)

∣∣∣∣+ γ sup
s∈S
|V φM̂(s)− V φM(s)|

range
≤ γ‖T̂ (·|s, φ(s))− T (·|s, φ(s))‖1

Cmax

2(1− γ) + γ sup
s∈S
|V φM̂(s)− V φM(s)|

= γ‖P̂ − P‖1
Cmax

2(1− γ) + γ sup
s∈S
|V φM̂(s)− V φM(s)|

≤ γCmaxε

2(1− γ) + γ sup
s∈S
|V φM̂(s)− V φM(s)|.

Since this holds for all s ∈ S, we can also take the supremum on the LHS, which yields

sup
s∈S
|V φM̂(s)− V φM(s)|≤ γCmaxε

2(1− γ)2 . (B.2)
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Now, for any s ∈ S,

V
φ?M̂
M (s)− V φ

?
M
M (s) = V

φ?M̂
M (s)− V φ

?
M
M̂ (s) + V

φ?M
M̂ (s)− V φ

?
M
M (s) (B.3)

opt.
≤ V

φ?M̂
M (s)−

(
V
φ?M̂
M̂ (s)

)
+ V

φ?M
M̂ (s)− V φ

?
M
M (s) (B.4)

(B.2)
≤ γCmaxε

2(1− γ)2 + γCmaxε

2(1− γ)2 (B.5)

= γCmaxε

(1− γ)2 . (B.6)

This completes the proof.

Proof of Theorem 3.4.2

Proof. We first want to establish an `1 concentration bound for multinomial distribution. Observe
that for any vector v ∈ RN ,

‖v‖1= max
u∈{−1,1}N

uTv. (B.7)

The plan is to prove concentration for each uTv first, and then union bound over all u to obtain the `1
error bound. Observe that uTP̂ is the average of n i.i.d. random variables uTexi with range [−1, 1].
Then, by Hoeffding’s Inequality, with probability at least 1− δ/2N , we have

uT(P̂ − P ) ≤ 2
√

1
2n ln 2N+1

δ
. (B.8)

Then, we can apply union bound across all u ∈ {−1, 1}Nand get that, with probability at least 1− δ,

‖P̂ − P‖1= max
u

uT(P̂ − P ) ≤ 2
√

1
2n ln 2N+1

δ
(B.9)

Substituting this quantity into Lemma 3.4.1 yields the desired result.
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c appendix for chapter 4

Proof of Proposition 4.3.2

The proof of feasibility relies on the following result, which states that there is a bijection mapping
between reward space and value function space.

Proposition C.0.1. Given an MDP with transition probability function P and discounting factor γ ∈ [0, 1),
letR = {R : S ×A 7→ R} denote the set of all possible reward functions, and let Q = {Q : S ×A 7→ R}
denote the set of all possible Q tables. Then, there exists a bijection mapping betweenR and Q, induced by
Bellman optimality equation.

Proof. ⇒ Given any reward function R(s, a) ∈ R, define the Bellman operator as

HR(Q)(s, a) = R(s, a) + γ
∑
s′

P (s′ | s, a) max
a′

Q(s′, a′). (C.1)

Since γ < 1,HR(Q) is a contractionmapping, i.e., ‖HR(Q1)−HR(Q2)‖∞≤ γ‖Q1−Q2‖∞, ∀Q1, Q2 ∈
Q. Then by Banach Fixed Point Theorem, there is a unique Q ∈ Q that satisfies Q = HR(Q), which
is the Q that Rmaps to.
⇐ Given any Q ∈ Q, one can define the corresponding R ∈ R by

R(s, a) = Q(s, a)− γ
∑
s′

P (s′ | s, a) max
a′

Q(s′, a′). (C.2)

Thus the mapping is one-to-one.

Proof of Theorem 4.3.2. For any target policy π† : S 7→ A, we construct the following Q:

Q(s, a) =
{
ε ∀s ∈ S, a = π†(s),

0, otherwise.
(C.3)

The Q values in (C.3) satisfy the constraint (4.15). Note that we construct the Q values so that for
all s ∈ S, maxaQ(s, a) = ε. By proposition C.0.1, the corresponding reward function induced by
Bellman optimality equation is

R̂(s, a) =
{

(1− γ)ε ∀s ∈ S, a = π†(s),

− γε, otherwise.
(C.4)

Then one can let rt = R̂(st, at) so that r = (r0, ..., rT−1), R̂ in (C.4), together with Q in (C.3) is a
feasible solution to (4.12)-(4.15).
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Proof of Theorem 4.3.1

The proof of Theorem 4.3.1 relies on a few lemmas. We first prove the following result, which shows
that given two vectors that have equal element summation, the vector whose elements are smoother
will have smaller `α norm for any α ≥ 1. This result is used later to prove Lemma C.0.2.

Lemma C.0.1. Let x, y ∈ RT be two vectors. Let I ⊂ {0, 1, ..., T − 1} be a subset of indexes such that

i). xi = 1
|I|
∑
j∈I

yj ,∀i ∈ I, ii). xi = yi,∀i 6= I. (C.5)

Then for any α ≥ 1, we have ‖x‖α≤ ‖y‖α.

Proof. Note that the conditions i) and ii) suggest the summation of elements in x and y are equal,
and only elements in I differ for the two vectors. However, the elements in I of x are smoother than
that of y, thus x has smaller norm. To prove the result, we consider three cases separately.

Case 1: α = 1. Then we have

‖x‖α−‖y‖α=
∑
i

|xi|−
∑
j

|yj |=
∑
i∈I
|xi|−

∑
j∈I
|yj |= |

∑
j∈I

yj |−
∑
j∈I
|yj |≤ 0. (C.6)

Case 2: 1 < α <∞. We show ‖x‖αα≤ ‖y‖αα. Note that

‖x‖αα−‖y‖αα =
∑
i

|xi|α−
∑
j

|yj |α=
∑
i∈I
|xi|α−

∑
j∈I
|yj |α

= 1
|I|α−1 |

∑
j∈I

yj |α−
∑
j∈I
|yj |α≤

1
|I|α−1 (

∑
j∈I
|yj |)α −

∑
j∈I
|yj |α.

(C.7)

Let β = α
α−1 . By Holder’s inequality, we have∑

j∈I
|yj |≤ (

∑
j∈I
|yj |α) 1

α (
∑
j∈I

1β)
1
β = (

∑
j∈I
|yj |α) 1

α |I|1− 1
α . (C.8)

Plugging (C.8) into (C.7), we have

‖x‖αα−‖y‖αα≤
1

|I|α−1 (
∑
j∈I
|yj |α)|I|α−1−

∑
j∈I
|yj |α= 0. (C.9)

Case 3: α =∞. We have

‖x‖α = max
i
|xi|= max{ 1

|I|
|
∑
j∈I

yj |,max
i/∈I
|xi|} ≤ max{ 1

|I|
∑
j∈I
|yj |,max

i/∈I
|xi|}

≤ max{max
j∈I
|yj |,max

i/∈I
|xi|} = max{max

j∈I
|yj |,max

j /∈I
|yj |} = max

j
|yj |= ‖y‖α.

(C.10)
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Therefore ∀α ≥ 1, we have ‖x‖α≤ ‖y‖α.

Next we prove Lemma C.0.2, which shows that one possible optimal attack solution to (4.12)-
(4.15) takes the following form: shift all the clean rewards in Ts,a by the same amount ψ(s, a). Here
ψ(s, a) is a function of state s and action a. That means, rewards belonging to different Ts,a might
be shifted a different amount, but those corresponding to the same (s, a) pair will be identically
shifted.

Lemma C.0.2. There exists a function ψ(s, a) such that rt = r0
t + ψ(st, at), together with some R̂ and Q,

is an optimal solution to our attack problem (4.12)-(4.15).

We point out that although there exists an optimal attack taking the above form, it is not
necessarily the only optimal solution. However, all those optimal solutions must have exactly the
same objective value (attack cost), thus it suffices to consider the solution in Lemma C.0.2.

Proof. Let r∗ = (r∗0 , ..., r∗T−1), R̂∗ and Q∗ be any optimal solution to (4.12)-(4.15). Fix a particular
state-action pair (s, a), we have

R̂∗(s, a) = 1
|Ts,a|

∑
t∈Ts,a

r∗t . (C.11)

Let R̂0(s, a) = 1
|Ts,a|

∑
t∈Ts,a r

0
t be the reward function for the (s, a) pair estimated from clean data

r0. We then define a different poisoned reward vector r′ = (r′0, ..., r′T−1), where

r′t =
{
r0
t + R̂∗(s, a)− R̂0(s, a), t ∈ Ts,a,

r∗t , t /∈ Ts,a.
(C.12)

Now we show r′, R̂∗ and Q∗ is another optimal solution to (4.12)-(4.15). We first verify that r′,
R̂∗, and Q∗ satisfy constraints (4.13)-(4.15). To verify (4.13), we only need to check R̂∗(s, a) =

1
|Ts,a|

∑
t∈Ts,a r

′
t, since r′ and r∗ only differ on those rewards in Ts,a. We have

1
|Ts,a|

∑
t∈Ts,a

r′t = 1
|Ts,a|

∑
t∈Ts,a

(
r0
t + R̂∗(s, a)− R̂0(s, a)

)
= R̂0(s, a) + R̂∗(s, a)− R̂0(s, a) = R̂∗(s, a),

(C.13)

Thus r′ and R̂∗ satisfy constraint (4.13). R̂∗ and Q∗ obviously satisfy constraints (4.14) and (4.15)
because r∗, R̂∗ and Q∗ is an optimal solution.

Let δ′ = r′ − r0 and δ∗ = r∗ − r0, then one can easily show that δ′ and δ∗ satisfy the conditions
in Lemma C.0.1 with I = Ts,a. Therefore by Lemma C.0.1, we have

‖r′ − r0‖α= ‖δ′‖α≤ ‖δ∗‖α= ‖r∗ − r0‖α. (C.14)
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But note that by our assumption, r∗ is an optimal solution, thus ‖r∗− r0‖α≤ ‖r′− r0‖α, which gives
‖r′ − r0‖α= ‖r∗ − r0‖α. This suggests r′, R̂∗, and Q∗ is another optimal solution. Compared to r∗,
r′ differs in that r′t − r0

t now becomes identical for all t ∈ Ts,a for a particular (s, a) pair. Reusing the
above argument iteratively, one can make r′t − r0

t identical for all t ∈ Ts,a for all (s, a) pairs, while
guaranteeing the solution is still optimal. Therefore, we have

r′t = r0
t + R̂∗(s, a)− R̂0(s, a),∀t ∈ Ts,a,∀s, a, (C.15)

together with R̂∗ and Q∗ is an optimal solution to (4.12)-(4.15). Let ψ(s, a) = R̂∗(s, a) − R̂0(s, a)
conclude the proof.

Finally, Lemma C.0.3 provides a sensitive analysis on the value functionQ as the reward function
changes.

Lemma C.0.3. Let M̂ = (S,A, P̂ , R̂′, γ) and M̂0 = (S,A, P̂ , R̂0, γ) be two MDPs, where only the reward
function differs. Let Q′ and Q0 be action values satisfying the Bellman optimality equation on M̂ and M̂0

respectively, then
(1− γ)‖Q′ −Q0‖∞≤ ‖R̂− R̂0‖∞≤ (1 + γ)‖Q′ −Q0‖∞. (C.16)

Proof. Define the Bellman operator as

HR̂(Q)(s, a) = R̂(s, a) + γ
∑
s′

P̂ (s′ | s, a) max
a′

Q(s′, a′). (C.17)

From now onwe suppress variables s and a for convenience. Note that due to the Bellman optimality,
we have HR̂0(Q0) = Q0 and HR̂′(Q′) = Q′, thus

‖Q′ −Q0‖∞ = ‖HR̂′(Q
′)−HR̂0(Q0)‖∞

= ‖HR̂′(Q
′)−HR̂′(Q

0) +HR̂′(Q
0)−HR̂0(Q0)‖∞

≤ ‖HR̂′(Q
′)−HR̂′(Q

0)‖∞+‖HR̂′(Q
0)−HR̂0(Q0)‖∞

≤ γ‖Q′ −Q0‖∞+‖HR̂′(Q
0)−HR̂0(Q0)‖∞ (by contraction of HR̂′(·))

= γ‖Q′ −Q0‖∞+‖R̂′ − R̂0‖∞ (by HR̂′(Q
0)−HR̂0(Q0) = R̂′ − R̂0)

(C.18)
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Rearranging we have (1− γ)‖Q′ −Q0‖∞≤ ‖R̂′ − R̂0‖∞. Similarly we have

‖Q′ −Q0‖∞ = ‖HR̂′(Q
′)−HR̂0(Q0)‖∞

= ‖HR̂′(Q
0)−HR̂0(Q0) +HR̂′(Q

′)−HR̂′(Q
0)‖∞

≥ ‖HR̂′(Q
0)−HR̂0(Q0)‖∞−‖HR̂′(Q

′)−HR̂′(Q
0)‖∞

≥ ‖HR̂′(Q
0)−HR̂0(Q0)‖∞−γ‖Q′ −Q0‖∞

= ‖R̂′ − R̂0‖∞−γ‖Q′ −Q0‖∞

(C.19)

Rearranging we have ‖R̂′ − R̂0‖∞≤ (1 + γ)‖Q′ −Q0‖∞, concluding the proof.

Now we are ready to prove our main result.

Proof of Theorem 4.3.1. We construct the following value function Q′.

Q′(s, a) =


Q0(s, a) + ∆(ε)

2 , ∀s ∈ S, a = π†(s),

Q0(s, a)− ∆(ε)
2 , ∀s ∈ S,∀a 6= π†(s).

(C.20)

Note that ∀s ∈ S and ∀a 6= π†(s), we have

∆(ε) = max
s′∈S

[ max
a′ 6=π†(s′)

Q0(s′, a′)−Q0(s′, π†(s′)) + ε]+

≥ max
a′ 6=π†(s)

Q0(s, a′)−Q0(s, π†(s)) + ε ≥ Q0(s, a)−Q0(s, π†(s)) + ε,
(C.21)

which leads to
Q0(s, a)−Q0(s, π†(s))−∆(ε) ≤ −ε, (C.22)

thus we have ∀s ∈ S and ∀a 6= π†(s),

Q′(s, π†(s)) = Q0(s, π†(s)) + ∆(ε)
2

= Q0(s, a)− [Q0(s, a)−Q0(s, π†(s))−∆(ε)]− ∆(ε)
2

≥ Q0(s, a) + ε− ∆(ε)
2 = Q′(s, a) + ε.

(C.23)

Therefore Q′ satisfies the constraint (4.15). By proposition C.0.1, there exists a unique function
R′ such that Q′ satisfies the Bellman optimality equation of MDP M̂ ′ = (S,A, P̂ , R′, γ). We then
construct the following reward vector r′ = (r′0, ..., r′T−1) such that ∀(s, a) and ∀t ∈ Ts,a, r′t =
r0
t + R′(s, a) − R̂0(s, a), where R̂0(s, a) is the reward function estimated from r0. The reward
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function estimated on r′ is then

R̂′(s, a) = 1
|Ts,a|

∑
t∈Ts,a

r′t = 1
|Ts,a|

∑
t∈Ts,a

(
r0
t +R′(s, a)− R̂0(s, a)

)
= R̂0(s, a) +R′(s, a)− R̂0(s, a) = R′(s, a).

(C.24)

Thus r′, R̂′ and Q′ is a feasible solution to (4.12)-(4.15). Now we analyze the attack cost for r′,
which gives us a natural upper bound on the attack cost of the optimal solution r∗. Note that Q′
and Q0 satisfy the Bellman optimality equation for reward function R̂′ and R̂0 respectively, and

‖Q′ −Q0‖∞= ∆(ε)
2 , (C.25)

thus by Lemma C.0.3, we have ∀t,

|r′t − r0
t | = |R̂′(st, at)− R̂0(st, at)|≤ max

s,a
|R̂′(s, a)− R̂0(s, a)|= ‖R̂′ − R̂0‖∞

≤ (1 + γ)‖Q′ −Q0‖∞= 1
2(1 + γ)∆(ε).

(C.26)

Therefore, we have

‖r∗ − r0‖α≤ ‖r′ − r0‖α= (
T−1∑
t=0
|r′t − r0

t |α) 1
α ≤ 1

2(1 + γ)∆(ε)T 1
α . (C.27)

Now we prove the lower bound. We consider two cases separately.
Case 1: ∆(ε) = 0. We must have Q0(s, π†(s)) ≥ Q0(s, a) + ε, ∀s ∈ S,∀a 6= π†(s). In this case no

attack is needed and therefore the optimal solution is r∗ = r0. The lower bound holds trivially.
Case 2: ∆(ε) > 0. Let s′ and a′ (a′ 6= π†(s′)) be a state-action pair such that

∆(ε) = Q0(s′, a′)−Q0(s′, π†(s′)) + ε. (C.28)

Let r∗, R̂∗ and Q∗ be an optimal solution to (4.12)-(4.15) that takes the form in Lemma C.0.2, i.e.,

r∗t = r0
t + R̂∗(s, a)− R̂0(s, a),∀t ∈ Ts,a,∀s, a. (C.29)

Constraint (4.15) ensures thatQ∗(s′, π†(s′)) ≥ Q∗(s′, a′)+ε, in which case either one of the following
two conditions must hold:

i). Q∗(s′, π†(s′))−Q0(s′, π†(s′)) ≥ ∆(ε)
2 , ii). Q0(s′, a′)−Q∗(s′, a′) ≥ ∆(ε)

2 , (C.30)
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since otherwise we have

Q∗(s′, π†(s′)) < Q0(s′, π†(s′)) + ∆(ε)
2 = Q0(s′, π†(s′)) + 1

2 [Q0(s′, a′)−Q0(s′, π†(s′)) + ε]

= 1
2Q

0(s′, a′) + 1
2Q

0(s′, π†(s′)) + ε

2 = Q0(s′, a′)− 1
2 [Q0(s′, a′)−Q0(s′, π†(s′)) + ε] + ε

= Q0(s′, a′)− ∆(ε)
2 + ε < Q∗(s′, a′) + ε.

(C.31)

Next note that if either i) or ii) holds, we have ‖Q∗ −Q0‖∞≥ ∆(ε)
2 . By Lemma C.0.3, we have

max
s,a
|R̂∗(s, a)− R̂0(s, a)|= ‖R̂∗ − R̂0‖∞≥ (1− γ)‖Q∗ −Q0‖∞≥

1
2(1− γ)∆(ε). (C.32)

Let s∗, a∗ ∈ arg maxs,a|R̂∗(s, a)− R̂0(s, a)|, then we have

|R̂∗(s∗, a∗)− R̂0(s∗, a∗)|≥ 1
2(1− γ)∆(ε). (C.33)

Therefore, we have

‖r∗ − r0‖αα =
T−1∑
t=0
|r∗t − r0

t |α=
∑
s,a

∑
t∈Ts,a

|r∗t − r0
t |α≥

∑
t∈Ts∗,a∗

|r∗t − r0
t |α

=
∑

t∈Ts∗,a∗
|R̂∗(s∗, a∗)− R̂0(s∗, a∗)|α≥

(
1
2(1− γ)∆(ε)

)α
|Ts∗,a∗ |

≥
(

1
2(1− γ)∆(ε)

)α
min
s,a
|Ts,a|.

(C.34)

Therefore ‖r∗ − r0‖α≥ 1
2 (1− γ)∆(ε) (mins,a|Ts,a|)

1
α .

We finally point out that while an optimal solution r∗ may not necessarily take the form
in Lemma C.0.2, it suffices to bound the cost of an optimal attack which indeed takes this form (as
we did in the proof) since all optimal attacks have exactly the same objective value.
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Convex Surrogate for LQR Attack Optimization

Bypulling the positive semi-definite constraints onQ andR out of the lower level optimization (4.32),
one can turn the original attack optimization (4.27)-(4.33) into the following surrogate optimization:

min
r,Q̂,R̂,q̂,ĉ,X,x

‖r− r0‖α (C.35)

s.t. −γ
(
R̂+ γB̂>XB̂

)−1
B̂>XÂ = K†, (C.36)

−γ
(
R̂+ γB̂>XB̂

)−1
B̂>x = k†, (C.37)

X = γÂ>XÂ− γ2Â>XB̂
(
R̂+ γB̂>XB̂

)−1
B̂>XÂ+ Q̂ (C.38)

x = q̂ + γ(Â+ B̂K†)>x (C.39)

(Q̂, R̂, q̂, ĉ) = arg min
T−1∑
t=0

∥∥∥∥1
2s
>
t Qst + q>st + a>t Rat + c+ rt

∥∥∥∥2

2
(C.40)

Q̂ � 0, R̂ � εI,X � 0. (C.41)

The feasible set of (C.35)-(C.41) is a subset of the original problem, thus the surrogate attack opti-
mization is a more stringent formulation than the original attack optimization, that is, successfully
solving the surrogate optimization gives us a (potentially) sub-optimal solution to the original
problem. To see why the surrogate optimization is more stringent, we illustrate with a much simpler
example as below. A formal proof is straight forward, thus we omit it here. The original problem
is (C.42)-(C.43). The feasible set for â is a singleton set {0}, and the optimal objective value is 0.

min
â

0 (C.42)
s.t. â = arg min

a≥0
(a+ 3)2, (C.43)

Once we pull the constraint out of the lower-level optimization (C.43), we end up with a surrogate
optimization (C.44)-(C.46). Note that (C.45) requires â = −3, which does not satisfy (C.46).
Therefore the feasible set of the surrogate optimization is ∅, meaning it is more stringent than (C.42)-
(C.43).

min
â

0 (C.44)
s.t. â = arg min(a+ 3)2, (C.45)

â ≥ 0 (C.46)

Back to our attack optimization (C.35)-(C.41), this surrogate attack optimization comes with
the advantage of being convex, thus can be solved to global optimality.
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Proposition C.0.2. The surrogate attack optimization (C.35)-(C.41) is convex.

Proof. First note that the sub-level optimization (C.40) is itself a convex problem, thus is equivalent
to the corresponding KKT condition. We write out the KKT condition of (C.40) to derive an explicit
form of our attack formulation as below:

min
r,Q̂,R̂,q̂,ĉ,X,x

‖r− r0‖α (C.47)

s.t. −γ
(
R̂+ γB̂>XB̂

)−1
B̂>XÂ = K†, (C.48)

−γ
(
R̂+ γB̂>XB̂

)−1
B̂>x = k†, (C.49)

X = γÂ>XÂ− γ2Â>XB̂
(
R̂+ γB̂>XB̂

)−1
B̂>XÂ+ Q̂ (C.50)

x = q̂ + γ(Â+ B̂K†)>x (C.51)
T−1∑
t=0

(1
2s
>
t Q̂st + q̂>st + a>t R̂at + ĉ+ rt)sts>t = 0, (C.52)

T−1∑
t=0

(1
2s
>
t Q̂st + q̂>st + a>t R̂at + ĉ+ rt)ata>t = 0, (C.53)

T−1∑
t=0

(1
2s
>
t Q̂st + q̂>st + a>t R̂at + ĉ+ rt)st = 0, (C.54)

T−1∑
t=0

(1
2s
>
t Q̂st + q̂>st + a>t R̂at + ĉ+ rt) = 0, (C.55)

Q̂ � 0, R̂ � εI,X � 0. (C.56)

The objective is obviously convex. (C.48)-(C.50) are equivalent to

− γB̂>XÂ =
(
R̂+ γB̂>XB̂

)
K†. (C.57)

− γB̂>x =
(
R̂+ γB̂>XB̂

)
k†. (C.58)

X = γÂ>X(Â+ B̂K†) + Q̂, (C.59)

Note that these three equality constraints are all linear in X , R̂, x, and Q̂. (C.51) is linear in x and
q̂. (C.52)-(C.55) are also linear in Q̂, R̂, q̂, ĉ and r. Finally, (C.56) contains convex constraints on Q̂,
R̂, and X . Given all above, the attack problem is convex.

Next we analyze the feasibility of the surrogate attack optimization.
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Proposition C.0.3. Let Â, B̂ be the learner’s estimated transition kernel. Let

L†(s, a) = 1
2s
>Q†s+ (q†)>s+ a>R†a+ c† (C.60)

be the attacker-defined loss function. Assume R† � εI . If the target policy K†, k† is the optimal control
policy induced by the LQR with transition kernel Â, B̂, and loss function L†(s, a), then the surrogate attack
optimization (C.35)-(C.41) is feasible. Furthermore, the optimal solution can be achieved.

Proof. To prove feasibility, it suffices to construct a feasible solution to optimization (C.35)-(C.41).
Let

rt = 1
2s
>
t Q
†st + q†

>
st + a>t R

†at + c† (C.61)

and r be the vector whose t-th element is rt. We next show that r, Q†, R†, q†, c†, together with
some X and x is a feasible solution. Note that sinceK†, k† is induced by the LQR with transition
kernel Â, B̂ and cost function L†(s, a), constraints (C.36)-(C.39) must be satisfied with some X
and x. The poisoned reward vector r obviously satisfies (C.40) since it is constructed exactly as
the minimizer. By our assumption, R† � εI , thus (C.41) is satisfied. Therefore, r, Q†, R†, q†, c†,
together with the corresponding X , x is a feasible solution, and the optimization (C.35)-(C.41) is
feasible. Furthermore, since the feasible set is closed, the optimal solution can be achieved.

Conditions for The LQR Learner to Have Unique Estimate

The LQR learner estimates the cost function by

(Q̂, R̂, q̂, ĉ) = arg min
(Q�0,R�εI,q,c)

1
2

T−1∑
t=0

∥∥∥∥1
2s
>
t Qst + q>st + a>t Rat + c+ rt

∥∥∥∥2

2
. (C.62)

We want to find a condition that guarantees the uniqueness of the solution.
Let ψ ∈ RT be a vector, whose t-th element is

ψt = 1
2s
>
t Qst + q>st + a>t Rat + c, 0 ≤ t ≤ T − 1. (C.63)

Note that we can viewψ as a function ofD,Q,R, q, and c, thus we can also denoteψ(D,Q,R, q, c).
Define Ψ(D) = {ψ(D,Q,R, q, c) | Q � 0, R � εI, q, c}, i.e., all possible vectors that are achievable
with form (C.63) if we vary Q, R, q and c subject to positive semi-definite constraints on Q and R.
We can prove that Ψ is a closed convex set.

Proposition C.0.4. ∀D, Ψ(D) = {ψ(D,Q,R, q, c) | Q � 0, R � εI, q, c} is a closed convex set.



102

Proof. Let ψ1, ψ2 ∈ Ψ(D). We use ψi,t to denote the t-th element of vector ψi. Then we have

ψ1,t = 1
2s
>
t Q1st + q>1 st + a>t R1at + c1 (C.64)

for some Q1 � 0, R1 � εI , q1 and c1, and

ψ2,t = 1
2s
>
t Q2st + q>2 st + a>t R2at + c2 (C.65)

for some Q2 � 0, R2 � εI , q2 and c2. ∀k ∈ [0, 1], let ψ3 = kψ1 + (1− k)ψ2. Then the t-th element of
ψ3 is

ψ3,t =1
2s
>
t [kQ1 + (1− k)Q2]st + [kq1 + (1− k)q2]>st

+ a>t [kR1 + (1− k)R2]at + kc1 + (1− k)c2
(C.66)

Since kQ1 + (1− k)Q2 � 0 and kR1 + (1− k)R2 � εI , ψ3 ∈ Ψ(D), concluding the proof.

The optimization (C.62) is intrinsically a least-squares problem with positive semi-definite
constraints on Q and R, and is equivalent to solving the following linear equation:

1
2s
>
t Q̂st + q̂>st + a>t R̂at + ĉ = ψ∗t ,∀t, (C.67)

where ψ∗ = arg minψ∈Ψ(D)‖ψ + r‖22 is the projection of the negative reward vector −r onto the set
Ψ(D). The solution to (C.67) is unique if and only if the following two conditions both hold

i). The projection ψ∗ is unique.

ii). (C.67) has a unique solution for ψ∗.

Condition i) is satisfied because Ψ(D) is convex, and any projection (in `2 norm) onto a convex set
exists and is always unique (see Hilbert Projection Theorem). We next analyze when condition
ii) holds. (C.67) is a linear function in Q̂, R̂, q̂, and ĉ, thus one can vectorize Q̂ and R̂ to obtain
a problem in the form of linear regression. Then the uniqueness is guaranteed if and only if the
design matrix has full column rank. Specifically, let Q̂ ∈ Rn×n, R̂ ∈ Rm×m, and q̂ ∈ Rn. Let st,i and
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at,i denote the i-th element of st and at respectively. Define

A =



s20,1
2 . . .

s0,is0,j
2 . . .

s20,n
2 a2

0,1 . . . a0,ia0,j . . . a2
0,m s>0 1

s21,1
2 . . .

s1,is1,j
2 . . .

s21,n
2 a2

1,1 . . . a1,ia2,j . . . a2
1,m s>1 1

... ... ... ... ... ... ... ...
s2t,1
2 . . .

st,ist,j
2 . . .

s2t,n
2 a2

t,1 . . . at,iat,j . . . a2
t,m s>t 1

... ... ... ... ... ... ... ...
s2T−1,1

2 . . .
sT−1,isT−1,j

2 . . .
s2T−1,n

2 a2
T−1,1 . . . aT−1,iaT−1,j . . . a2

T−1,m s>T−1 1


,

x> =
[
Q̂11 . . . Q̂ij . . . Q̂nn R̂11 . . . R̂ij . . . R̂mm q̂1 . . . q̂i . . . q̂n ĉ

]
,

then (C.67) is equivalent to Ax = ψ∗, where x contains the vectorized variables Q̂, R̂, q̂ and ĉ.
Ax = ψ∗ has a unique solution if and only if A has full column rank.

Sparse Attacks on TCE and LQR

In this section, we present experimental details for both TCE and LQR victims when the attacker
uses `1 norm to measure the attack cost, i.e. α = 1. The other experimental parameters are set
exactly the same as in the main text.

We first show the result for MDP experiment 2 with α = 1, see Figure C.1. The attack cost
is ‖r − r0‖1= 3.27, which is small compared to ‖r0‖1= 105. We note that the reward poisoning
is extremely sparse: only the reward corresponding to action “go up” at the terminal state G is
increased by 3.27, and all other rewards remain unchanged. To explain this attack, first note that
we set the target action for the terminal state to “go up”, thus the corresponding reward must be
increased. Next note that after the attack, the terminal state becomes a sweet spot, where the agent
can keep taking action “go up” to gain large amount of discounted future reward. However, such
future reward is discounted more if the agent reaches the terminal state via a longer path. Therefore,
the agent will choose to go along the red trajectory to get into the terminal state earlier, though at a
price of two discounted −10 rewards.

The result is similar for MDP experiment 3. The attack cost is ‖r − r0‖1= 1.05, compared to
‖r0‖1= 121. In Figure C.2, we show the reward modification for each state action pair. Again, the
attack is very sparse: only rewards of 12 state-action pairs are modified out of a total of 124.

Finally, we show the result on attacking LQR with α = 1. The attack cost is ‖r − r0‖1= 5.44,
compared to ‖r0‖1= 2088.57. In Figure C.3, we plot the clean and poisoned trajectory of the vehicle,
together with the reward modification in each time step. The attack is as effective as with a dense
2-norm attack in Figure 4.3. However, the poisoning is highly sparse: only 10 out of 400 rewards are
changed.
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Figure C.1: Sparse reward modification for MDP experiment 2.
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Figure C.2: Sparse reward modification for MDP experiment 3.
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(a) Clean and poisoned vehicle trajectory. (b) Clean and poisoned rewards.

Figure C.3: Sparse-poisoning a vehicle running LQR in 4D state space.

Derivation of Discounted Discrete-time Algebraic Riccati Equation

We provide a derivation for the discounted Discrete-time Algebraic Riccati Equation. For simplicity,
we consider the noiseless case, but the derivation easily generalizes to noisy case. We consider the
loss function is a general quadratic function w.r.t. s as follows:

L(s, a) = 1
2s
>Qs+ q>s+ c+ a>Ra. (C.68)

When q = 0, c = 0, we recover the classic LQR setting. Assume the general value function takes the
form V (s) = 1

2s
>Xs+ s>x+ v. Let Q(s, a) (note that this is different notation from the Qmatrix

in L(s, a)) be the corresponding action value function. We perform dynamics programming as
follows:

Q(s, a) = 1
2s
>Qs+ q>s+ c+ a>Ra+ γV (As+Ba)

= 1
2s
>Qs+ q>s+ c+ a>Ra+ γ

(
1
2(As+Ba)>X(As+Ba) + (As+Ba)>x+ v

)
= 1

2s
>(Q+ γA>XA)s+ 1

2a
>(R+ γB>XB)a+ s>(γA>XB)a

+ s>(q + γA>x) + a>(γB>x) + (c+ γv).
(C.69)

We minimize a above:

(R+ γB>XB)a+ γB>XAs+ γB>x = 0

⇒ a = −γ(R+ γB>XB)−1B>XAs− γ(R+ γB>XB)−1B>x , Ks+ k.
(C.70)
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Now we substitute it back to Q(s, a) and regroup terms, we get:

V (s) =1
2s
>(Q+ γA>XA+K>(R+ γB>XB)K + 2γA>XBK)s

+ s>(K>(R+ γB>XB)k + γA>XBk + q + γA>x+ γK>B>x) + C
(C.71)

for some constant C, which gives us the following recursion:

X = γA>XA− γ2A>XB(R+ γB>XB)−1B>XA+Q,

x = q + γ(A+BK)>x.
(C.72)
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d appendix for chapter 5

Proof of Theorem 5.3.1

Proof. Consider two MDPs with reward functions defined as R+ ∆ and R−∆, denote the Q table
corresponding to them as Q+∆ and Q−∆, respectively. Let {(st, at)} be any instantiated trajectory
of the learner corresponding to the attack policy φ. By assumption, {(st, at)} visits all (s, a) pairs
infinitely often and αt’s satisfy

∑
αt =∞ and∑α2

t <∞. Assuming now that we apply Q-learning
on this particular trajectory with reward given by rt + ∆, standard Q-learning convergence applies
and we have that Qt,+∆ → Q+∆ and similarly, Qt,−∆ → Q−∆ [124].

Next, we want to show that Qt(s, a) ≤ Qt,+∆(s, a) for all s ∈ S, a ∈ A and for all t. We prove by
induction. First, we know Q0(s, a) = Q0,+∆(s, a). Now, assume that Qk(s, a) ≤ Qk,+∆(s, a). We
have

Qk+1,+∆(sk+1, ak+1) (D.1)

= (1− αk+1)Qk,+∆(sk+1, ak+1) + αk+1

(
rk+1 + ∆ + γmax

a′∈A
Qk,+∆(s′k+1, a

′)
)

(D.2)

≥ (1− αk+1)Qk(sk+1, ak+1) + αk+1

(
rk+1 + δk+1 + γmax

a′∈A
Qk(s′k+1, a

′)
)

(D.3)

= Qk+1(sk+1, ak+1), (D.4)

which established the induction. Similarly, we have Qt(s, a) ≥ Qt,−∆(s, a). Since Qt,+∆ → Q+∆,
Qt,−∆ → Q−∆, we have that for large enough t,

Q−∆(s, a) ≤ Qt(s, a) ≤ Q+∆,∀s ∈ S, a ∈ A. (D.5)

Finally, it’s not hard to see that Q+∆(s, a) = Q∗(s, a) + ∆
1−γ and Q−∆(s, a) = Q∗(s, a)− ∆

1−γ . This
concludes the proof.

Proof of Theorem 5.3.5

Proof. We provide a constructive proof. We first design an attack policy φ, and then show that φ is a
strong attack. For the purpose of finding a strong attack, it suffices to restrict the constructed φ to
depend only on (s, a) pairs, which is a special case of our general attack setting. Specifically, for any
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∆ > ∆3, we define the following Q′:

Q′(s, a) =


Q∗(s, a) + ∆

(1 + γ) , ∀s ∈ S†, a ∈ π†(s),

Q∗(s, a)− ∆
(1 + γ) , ∀s ∈ S†, a /∈ π†(s),

Q∗(s, a),∀s /∈ S†, a,

(D.6)

where Q∗(s, a) is the original optimal value function without attack. We will show Q′ ∈ Q†, i.e.,
the constructed Q′ induces the target policy. For any s ∈ S†, let a† ∈ arg maxa∈π†(s)Q∗(s, a), a best
target action desired by the attacker under the original value function Q∗. We next show that a†
becomes the optimal action under Q′. Specifically, ∀a′ /∈ π†(s), we have

Q′(s, a†) = Q∗(s, a†) + ∆
(1 + γ) (D.7)

= Q∗(s, a†)−Q∗(s, a′) + 2∆
(1 + γ) +Q∗(s, a′)− ∆

(1 + γ) (D.8)

= Q∗(s, a†)−Q∗(s, a′) + 2∆
(1 + γ) +Q′(s, a′), (D.9)

Next note that

∆ > ∆3 ≥ 1 + γ

2 [ max
a/∈π†(s)

Q∗(s, a)− max
a∈π†(s)

Q∗(s, a)] (D.10)

= 1 + γ

2 [ max
a/∈π†(s)

Q∗(s, a)−Q∗(s, a†)] (D.11)

≥ 1 + γ

2 [Q∗(s, a′)−Q∗(s, a†)], (D.12)

which is equivalent to
Q∗(s, a†)−Q∗(s, a′) > − 2∆

1 + γ
, (D.13)

thus we have

Q′(s, a†) = Q∗(s, a†)−Q∗(s, a′) + 2∆
(1 + γ) +Q′(s, a′) (D.14)

> 0 +Q′(s, a′) = Q′(s, a′). (D.15)

This shows that underQ′, the original best target action a† becomes better than all non-target actions,
thus a† is optimal andQ′ ∈ Q†. According to Proposition 4 in [120], the Bellman optimality equation
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induces a unique reward function R′(s, a) corresponding to Q′:

R′(s, a) = Q′(s, a)− γ
∑
s′

P (s′ | s, a) max
a′

Q′(s′, a′). (D.16)

We then construct our attack policy φsas∆3
as:

φsas∆3
(s, a) = R′(s, a)−R(s, a),∀s, a. (D.17)

The φsas∆3
(s, a) results in that the reward function after attack appears to beR′(s, a) from the learner’s

perspective. This in turn guarantees that the learner will eventually learn Q′, which achieves the
target policy. Next we show that under φsas∆3

(s, a), the objective value (5.5) is finite, thus the attack
is feasible. To prove feasibility, we consider adapting Theorem 4 in [61], re-stated as below.

Lemma D.0.1 (Even-Dar & Mansour). Assume the attack is φsas∆3
(s, a) and let Qt be the value of the

Q-learning algorithm using polynomial learning rate αt = ( 1
1+t )

ω where ω ∈ ( 1
2 , 1]. Then with probability

at least 1− δ, we have ‖QT −Q′‖∞≤ τ with

T = Ω
(
L3+ 1

ω
1
τ2 (ln 1

δτ
) 1
ω + L

1
1−ω ln 1

τ

)
, (D.18)

Note that Q† is an open set and Q′ ∈ Q†. This implies that one can pick a small enough τ0 > 0
such that ‖QT − Q′‖∞≤ τ0 implies QT ∈ Q†. From now on we fix this τ0, thus the bound in the
above theorem becomes

T = Ω
(
L3+ 1

ω (ln 1
δ

) 1
ω + L

1
1−ω

)
. (D.19)

As the authors pointed out in [61], the ω that leads to the tightest lower bound on T is around 0.77.
Here for our purpose of proving feasibility, it is simpler to let ω ≈ 1

2 to obtain a loose lower bound
on T as below

T = Ω
(
L5(ln 1

δ
)2
)
. (D.20)

Now we represent δ as a function of T to obtain that ∀T > 0,

P [‖QT −Q′‖∞> τ0] ≤ C exp(−L− 5
2T

1
2 ). (D.21)
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Let et = 1 [‖Qt −Q′‖∞> τ0], then we have

Eφsas∆3

[ ∞∑
t=1

1[Qt /∈ Q†]
]
≤ Eφsas∆3

[ ∞∑
t=1

et

]
(D.22)

=
∞∑
t=1

P [‖QT −Q′‖∞> τ0] ≤
∞∑
t=1

C exp(−L− 5
2 t

1
2 ) (D.23)

≤
∫ ∞
t=0

C exp(−L− 5
2 t

1
2 )dt = 2CL5, (D.24)

which is finite. Therefore the attack is feasible.
It remains to validate that φsas∆3

is a legitimate attack, i.e., |δt|≤ ∆ under attack policy φsas∆3
. By

Lemma 7 in [120], we have

|δt| = |R′(st, at)−R(st, at)| (D.25)
≤ max

s,a
[R′(s, a)−R(s, a)] = ‖R′ −R‖∞ (D.26)

≤ (1 + γ)‖Q′ −Q∗‖= (1 + γ) ∆
(1 + γ) = ∆. (D.27)

Therefore the attack policy φsas∆3
is valid.

Discussion on a number of non-adaptive attacks: Here, we discuss and contrast 3 non-adaptive
attack polices developed in this and prior work:

leftmirgin=*, nolistsep [74] produces the non-adaptive attack that is feasiblewith the smallest
∆. In particular, it solves for the following optimization problem:

min
δ,Q∈RS×A

‖δ‖∞ (D.28)

s.t. Q(s, a) = δ(s, a) + EP (s′|s,a)

[
R(s, a, s) + γmax

a′∈A
Q(s′, a′)

]
(D.29)

Q ∈ Q† (D.30)

where the optimal objective value implicitly defines a ∆′3 < ∆3. How-
ever, it’s a fixed policy independent of the actual ∆ . In other word,
It’s either feasible if ∆ > ∆′3, or not.

leftmiirgiin=*, noliistsep φsas∆3
is a closed-form non-adaptive attack that depends on ∆. φsas∆3

is
guaranteed to be feasible when ∆ > ∆3. However, this is sufficient
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but not necessary. Implicitly, there exists a ∆′′3 which is the necessary
condition for the feasibility of φsas∆3

. Then, we know ∆′′3 > ∆′3, because
∆′3 is the sufficient and necessary condition for the feasibility of any
non-adaptive attacks, whereas ∆′′3 is the condition for the feasibility
of non-adaptive attacks of the specific form constructed above.

leftmiiirgiiin=*, noliiistsep φsasTD3 (assume perfect optimization) produces the most efficient non-
adaptive attack that depends on ∆.

In terms of efficiency, φsasTD3 achieves smaller J∞(φ) than φsas∆3
and [74]. It’s not clear between φsas∆3

and [74] which one is better. We believe that in most cases, especially when ∆ is large and learning
rate αt is small, φsas∆3

will be faster, because it takes advantage of that large ∆, whereas [74] does not.
But there probably exist counterexamples on which [74] is faster than φsas∆3

.

D.1 The Covering Time L is O(exp(|S|)) for the chain MDP

Proof. While the ε-greedy exploration policy constantly change according to the agent’s current
policy πt, since L is a uniform upper bound over the whole sequence, and we know that πt will
eventually converge to π†, it suffice to show that the covering time under π†ε is O(exp(|S|)).

Recall that π† prefers going right in all but the left most grid. The covering time in this case is
equivalent to the expected number of steps taken for the agent to get from s0 to the left-most grid,
because to get there, the agent necessarily visited all states along the way. Denote the non-absorbing
states from right to left as s0, s1, ..., sn−1, with |S|= n. Denote Vk the expected steps to get from
state sk to sn−1. Then, we have the following recursive relation:

Vn−1 = 0 (D.31)
Vk = 1 + (1− ε

2)Vk−1 + ε

2Vk+1, for k = 1, ..., n− 2 (D.32)

V0 = 1 + (1− ε

2)V0 + ε

2V1 (D.33)

Solving the recursive gives

V0 = p(1 + p(1− 2p))
(1− 2p)2

[
(1− p

p
)n−1 − 1

]
(D.34)

where p = ε
2 <

1
2 and thus V0 = O(exp(n)).



113

Proof of Theorem 5.3.8

Lemma D.1.1. For any state s ∈ S and target actions A(s) ⊂ A, it takes FAA at most |A|1−ε visits to s in
expectation to enforce the target actions A(s).

Proof. Denote Vt the expected number of visits s to teach A(s) given that under the current Qt,
maxa∈A(s) is ranked t among all actions, where t ∈ 1, ..., |A|. Then, we can write down the following
recursion:

V1 = 0 (D.35)

Vt = 1 + (1− ε)Vt−1ε

[
t− 1
|A|

Vt−1 + 1
A
V1 + |A|−t

|A|
Vt

]
(D.36)

Equation (D.36) can be simplified to

Vt =
1− ε+ ε t−1

|A|

1− ε |A|−t|A|

Vt−1 + 1
1− ε |A|−t|A|

(D.37)

≤ Vt−1 + 1
1− ε (D.38)

Thus, we have
Vt ≤

t− 1
1− ε ≤

|A|
1− ε (D.39)

as needed.

Now, we prove Theorem 5.3.8.

Proof. Let i ∈ [1, n] be given. First, consider the number of episodes, on which the agent was found
in at least one state st and is equipped with a policy πt, s.t. πt(st) /∈ νi(st). Since each of these
episodes contains at least one state st on which νi has not been successfully taught, and according
to Lemma 2, it takes at most |A|1−ε visits to each state to successfully teach any actions A(s), there will
be at most |S||A|1−ε such episodes. These episodes take at most |S||A|H1−ε iterations for all target states.
Out of these episodes, we can safely assume that the agent has successfully picked up νi for all the
states visited.

Next, we want to show that the expected number of iterations taken by π†i to get to si is upper
bounded by

[
|A|
ε

]i−1
D, where π†i is defined as

π†i = arg min
π∈Π,π(sj)∈π†(sj),∀j≤i−1

Es0∼µ0 [dπ(s0, si)] . (D.40)
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First, we define another policy

π̂†i (s) =
{

π†(s) if s ∈ {s1, ..., si−1}
πsi(s) otherwise (D.41)

Clearly Es0∼µ0

[
dπ†

i
(s0, si)

]
≤ Es0∼µ0

[
dπ̂†

i
(s0, si)

]
for all i.

We now prove by induction that dπ̂†
i
(s, si) ≤

[
|A|
ε

]i−1
D for all i and s ∈ S.

First, let i = 1, π̂†i = πs1 , and thus dπ̂†
i
(s, si) ≤ D.

Next, we assume that when i = k, dπ̂†
i
(s, si) ≤ Dk, and would like to show that when i = k + 1,

dπ̂†
i
(s, si) ≤

[
|A|
ε

]
Dk. Define another policy

π̃†i (s) =
{

π†(s) if s ∈ {s2, ..., si−1}
πsi(s) otherwise (D.42)

which respect the target policies on s2, ..., si−1, but ignore the target policy on s1. By the induc-
tive hypothesis, we have that dπ̃†

i
(s, si) ≤ Dk. Consider the difference between dπ̂†

i
(s)(s1, sk) and

dπ̃†
i
(s1, sk). Since π̂†i (s) and π̃†i only differs by their first action at s1, we can derive Bellman’s equation

on each policy, which yield

dπ̂†
i
(s1, sk) = (1− ε)Q(s1, π

†(s1)) + εQ̄(s1, a) (D.43)
≤ max

a∈A
Q(s1, a) (D.44)

dπ̃†
i
(s1, sk) = (1− ε)Q(s1, πs1(s1)) + εQ̄(s1, a) (D.45)

≥ ε

|A|
max
a∈A

Q(s1, a) (D.46)

(D.47)

where Q(s1, a) denotes the expected distance to sk from s1 by performing action a in the first step,
and follow π̂†i thereafter, and Q̄(s1, a) denote the expected distance by performing a uniformly
random action in the first step. Thus,

dπ̂†
i
(s, sk) ≤ |A|

ε
dπ̃†

i
(s1, sk) (D.48)
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With this, we can perform the following decomposition:

dπ̂†
i
(s, sk) = P [visit s1 before reaching sk]

(
dπ̂†

i
(s, s1) + dπ̂†

i
(s1, sk)

)
+ P [not visit s1]

(
dπ̂†

i
(s, s1)|not visit s1

)
≤ P [visit s1 before reaching sk]

(
dπ̃†

i
(s, s1) + |A|

ε
dπ̃†

i
(s1, sk)

)
+ P [not visit s1]

(
dπ̃†

i
(s, sk)|not visit s1

)
= dπ̃†

i
(s, sk) +

(
|A|
ε
− 1
)
dπ̃†

i
(s1, sk)

≤ Dk +
(
|A|
ε
− 1
)
Dk = |A|

ε
Dk.

This completes the induction. Thus, we have

dπ̂†
i
(s, si) ≤

(
|A|
ε

)i−1
D, (D.49)

and the total number of iterations taken to arrive at all target states sequentially sums up to
n∑
i=1

dπ̂†
i
(s, si) ≤

(
|A|
ε

)n
D. (D.50)

Finally, each target states need to visited for |A|1−ε number of times to successfully enforce π†. Adding
the numbers for enforcing each π†i gives the correct result.

D.2 Detailed Explanation of Fast Adaptive Attack Algorithm

In this section, we try to give a detailed walk-through of the Fast Adaptive Attack Algorithm (FAA)
with the goal of providing intuitive understanding of the design principles behind FAA. For the
sake of simplisity, in this section we assume that the Q-learning agent is ε = 0, such that the attacker
is able to fully control the agent’s behavior. The proof of correctness and sufficiency in the general
case when ε ∈ [0, 1] is provided in section D.1.

The Greedy Attack: To begin with, let’s talk about the greedy attack, a fundamental subroutine that
is called in every step of FAA to generate the actual attack. Given a desired (partial) policy ν, the
greedy attack aims to teach ν to the agent in a greedy fashion. Specifically, at time step t, when the
agent performs action at at state st, the greedy attack first look at whether at is a desired action at
s+ t according to sν, i.e. whether at ∈ ν(st). If at is a desired action, the greedy attack will produce
a large enough δt, such that after the Q-learning update, at becomes strictly more preferred than all
undesired actions, i.e. Qt+1(st, at) > maxa/∈ν(st)Qt+1(st, a). On the other hand, if at is not a desired
action, the greedy attack will produce a negative enough δt, such that after the Q-learning update,
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at becomes strictly less preferred than all desired actions, i.e. Qt+1(st, at) < maxa∈ν(st)Qt+1(st, a).
It can be shown that with ε = 0, it takes the agent at most |A|−1 visit to a state s, to force the desired
actions ν(s).

Given the greedy attack procedure, one could directly apply the greedy attack with respect to π†
throughout the attack procedure. The problem, however, is efficiency. The attack is not considered
success without the attacker achieving the target actions in ALL target states, not just the target
states visited by the agent. If a target state is never visited by the agent, the attack never succeed. π†
itself may not efficiently lead the agent to all the target states. A good example is the chain MDP
used as the running example in the main paper. In section D.1, we have shown that if an agent
follows π†, it will take exponentially steps to reach the left-most state. In fact, if ε = 0, the agent will
never reach the left-most state following π†, which implies that the naive greedy attack w.r.t. π† is
in fact infeasible. Therefore, explicit navigation is necessary. This bring us to the second component
of FAA, the navigation polices.

The navigation polices: Instead of trying to achieve all target actions at once by directly appling
the greedy attack w.r.t. π†, FAA aims at one target state at a time. Let s†(1), ..., s

†
(k) be an order of

target states. We will discuss the choice of ordering in the next paragraph, but for now, we will
assume that an ordering is given. The agent starts off aiming at forcing the target actions in a single
target state s†(1). To do so, the attacer first calculate the corresponding navigation policy ν1, where
ν1(st) = πs†(1)

(st) when st 6= s†(1), and ν1(st) = π†(st) when st = s†(1). That is, ν1 follows the shortest
path policy w.r.t. s†(1) when the agent has not arrived at s†(1), And when the agent is in s†(1), ν1 follows
the desired target actions. Using the greedy attack w.r.t. ν1 allows the attacker to effectively lure the
agent into s†(1) and force the target actions π†(s†(1)). After successfully forcing the target actions in
s†(1), the attacker moves on to s†(2). This time, the attacker defines the navigation policy ν2 similiar to
ν1, except that we don’t want the already forced π†(s†(1)) to be untaught. As a result, in ν2, we define
ν2(s†(1)) = π†(s†(1)), but otherwise follows the corresponding shortest-path policy πs†(2)

. Follow the
greedy attack w.r.t. ν2, the attacker is able to achieve π†(s†(2)) efficiently without affecting π†(s†(1)).
This process is carried on throughout the whole ordered list of target states, where the target actions
for already achieved target states are always respected when defining the next νi. If each target
states s†(i) can be reachable with the corresponding νi, then the whole process will terminate at
which point all target actions are guaranteed to be achieved. However, the reachability is not always
guaranteed with any ordering of target states. Take the chain MDP as an example. if the 2nd left
target state is ordered before the left-most state, then after teaching the target action for the 2nd
left state, which is moving right, it’s impossible to arrive at the left-most state when the navigation
policy resepct the moving-right action in the 2nd left state. Therefore, the ordering of target states
matters.
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Parameters Values Description
exploration noise 0.5 Std of Gaussian exploration noise.
batch size 100 Batch size for both actor and critic
discount factor 0.99 Discounting factor for the attacker problem.
policy noise 0.2 Noise added to target policy during critic update.
noise clip [−0.5, 0.5] Range to clip target policy noise.
action L2 weight 50 Weight for L2 regularization added to the actor network optimization objective.
buffer size 107 Replay buffer size, larger than total number of iterations.
optimizer Adam Use the Adam optimizer.
learning rate critic 10−3 Learning rate for the critic network.
learning rate actor 5−4 Learning rate for the actor network.
τ 0.002 Target network update rate.
policy frequency 2 Frequency of delayed policy update.

Table D.1: Hyperparameters for TD3.

The ordering of target states: FAA orders the target states descendingly by their shortest distance
to the starting state s0. Under such an ordering, the target states achieved first are those that are
farther away from the starting state, and they necessarily do not lie on the shortest path of the target
states later in the sequence. In the chain MDP example, the target states are ordered from left to
right. This way, the agent is always able to get to the currently focused target state from the starting
state s0, without worrying about violating the already achieved target states to the left. However,
note that the bound provided in theorem 5.3.8 do not utilize this particular ordering choice and
applies to any ordering of target states. As a result, the bound diverges when ε→ 0, matching with
the pathological case described at the end of the last paragraph.

D.3 Experiment Setting and Hyperparameters for TD3

Throughout the experiments, we use the following set of hyperparameters for TD3, described in
Table D.1. The hyperparameters are selected via grid search on the Chain MDP of length 6. Each
experiment is run for 5000 episodes, where each episode is of 1000 iteration long. The learned policy
is evaluated for every 10 episodes, and the policy with the best evaluation performance is used for e
evaluations in the experiment section.

D.4 Additional Experiments

Additional Plot for the rate comparison experiment

See Figure D.1.
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Figure D.1: Attack performances on the chain MDP of different length in the normal scale. As can
be seen in the plot, both φξFAA + φξTD3+FAA achieve linear rate.

Additional Experiments: Attacking DQN

Throughout the main paper, we have been focusing on attacking the tabular Q-learning agent.
However, the attack MDP also applies to arbitrary RL agents. We describe the general interaction
protocol in Alg. 6. Importantly, we assume that the RL agent can be fully characterized by an
internal state, which determines the agent’s current behavior policy as well as the learning update.
For example, if the RL agent is a Deep Q-Network (DQN), the internal state will consist of the

Algorithm 6 Reward Poisoning against general RL agent

Parameters: MDP (S,A,R, P, µ0), RL agent hyperparameters.

1: for t = 0, 1, ... do
2: agent at state st, has internal state θ0.
3: agent acts according to a behavior policy:
4: at ← πθt(st)
5: environment transits st+1 ∼ P (· | st, at), produces reward rt = R(st, at, st+1) and an end-of-

episode indicator EOE.
6: attacker perturbs the reward to rt + δt
7: agent receives (st+1, rt + δt, EOE), performs one-step of internal state update:

θt+1 = f(θt, st, at, st+1, rt + δt, EOE) (D.51)

8: environment resets if EOE = 1: st+1 ∼ µ0.

Q-network parameters as well as the transitions stored in the replay buffer.
In the next example, we demonstrate an attack against DQN in the cartpole environment. In

the cartpole environment, the agent can perform 2 actions, moving left and moving right, and the
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Figure D.2: Result for attacking DQN on the Cartpole environment. The left figure plots the
cumulative attack cost JT (φ) as a function of T . The right figure plot the performance of the DQN
agent J(θt) under the two attacks.

goal is to keep the pole upright without moving the cart out of the left and right boundary. The
agent receives a constant +1 reward in every iteration, until the pole falls or the cart moves out of
the boundary, which terminates the current episode and the cart and pole positions are reset.

In this example, the attacker’s goal is to poison a well-trained DQN agent to perform as poorly as
possible. The corresponding attack cost ρ(ξt) is defined as J(θt), the expected total reward received
by the current DQN policy in evaluation. The DQN is first trained in the clean cartpole MDP
and obtains the optimal policy that successfully maintains the pole upright for 200 iterations (set
maximum length of an episode). The attacker is then introduced while the DQN agent continues
to train in the cartpole MDP. We freeze the Q-network except for the last layer to reduce the size
of the attack state representation. We compare TD3 with a naive attacker that perform δt = −1.1
constantly. The results are shown in Fig. D.2.

One can see that under the TD3 found attack policy, the performance of the DQN agent degener-
ates much faster compared to the naive baseline. While still being a relatively simple example, this
experiment demonstrates the potential of applying our adaptive attack framework to general RL
agents.
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e appendix for chapter 6

E.1 Proof for the lower-bound result

Theorem E.1.1 (Theorem 6.2.1). For any algorithm, there exists an MDP such that the algorithm fails to
find an

(
ε

2(1−γ)

)
-optimal policy under the ε-contamination model with a probability of at least 1/4.

Proof of Theorem E.1.1. Consider two MDPsM1,M2, both with 3 states and 2 actions, defined as

P1(s2|s1, a1) = 1− ε
2 , P1(s3|s1, a1) = 1 + ε

2 , P1(s3|s1, a2) = P1(s3|s1, a2) = 1
2 (E.1)

P2(s2|s1, a1) = 1 + ε

2 , P2(s3|s1, a1) = 1− ε
2 , P2(s3|s1, a2) = P2(s3|s1, a2) = 1

2 (E.2)

and for both MDPs s2, s3 are absorbing states with constant reward 1 and 0, respectively. So for
M1, the optimal policy is π∗1(s1) = a2, and forM2, the optimal policy is π∗2(s1) = a1. In both cases,
choosing the alternative action in s1 will incur a suboptimality gap of ε

2(1−γ) .

Let N(·) be the probability function of Bernoulli distribution on {s2, s3}: N(x) =

1 if x = s2

0 if x = s3
.

First of all, notice that an 2ε-oblivious adversary can make the two MDPsM1,M2 indistinguishable by
changing P1(· | s1, a1) to be (1 − 2ε

1+ε )P1(· | s1, a1) + 2ε
1+εN(·), which is exactly P2(· | s1, a1). Note

that 2ε
1+ε ≤ 2ε and thus can be achieved by a 2ε-oblivious adversary.

When the two MDPs are indistinguishable, any rollout has the same probability under both
MDP, and thus conditioned on any roll-out, the learner can at best obtain an ε

2(1−γ) -optimal policy
with probability 1/2 on both MDP.

What remains to be shown is that with high probability, the ε-contamination adversary can
simulate the oblivious adversary.

Let Xi, Yi be Bernoulli random variables s.t. Xi =

s2 U ≤ 1−ε
2

s3 o.w.
, Yi =

s2 U ≤ 1+ε
2

s3 o.w.
, where

U is picked uniformly random in [0, 1]. Then (Xi, Yi) is a coupling with law: P ((Xi, Yi) = (s2, s2)) =
1−ε

2 , P ((Xi, Yi) = (s2, s3)) = 0, P ((Xi, Yi) = (s3, s2)) = ε, P ((Xi, Yi) = (s3, s3)) = 1−ε
2 , Xi and

Yi can be thought as the outcome of P1(· | s1, a1), P2(· | s1, a1) respectively. The ε-contamination
adversary can simulate the oblivious adversary by changing Xi to Yi when X1 6= Yi, which has
probability ε. This is possible when there are at most ε fraction of index i s.t. Xi 6= Yi. Suppose
there are T episodes, then

P

(
T∑
i=1

1{a1 is taken at s1}
1{Xi 6=Yi} ≥ εT

)
≤ P (

T∑
i=1

1{Xi 6=Yi} ≥ Tε) ≤
1
2 (E.3)
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because the median of Binomial(n, p) is at most dnpe. Therefore, the probability that the adaptive
adversary can simulate the oblivious adversary throughout T episodes is at least 1/2. Assuming
that when the adversary fails to simulate, the learner automatically succeed in finding the optimal
policy, then we’ve established that the learner will still fail to find an

(
ε

2(1−γ)

)
-optimal policy with

probability 1/4 on both MDPs.

E.2 Property of Q̂(s, a) sampled from Algorithm 4

To prepare for the analysis that follows, we first show that the Q̂(s, a) sampled from Algorithm 4 is
unbiased and has bounded variance.

Lemma E.2.1. E
[
Q̂π(s, a)

]
= Qπ(s, a), Var(Q̂π(s, a)) ≤ γ

(1−γ)2 + σ2

1−γ . The bound for variance is tight.

Proof of Lemma E.2.1. In the following, we treat (s0, a0) as deterministic.

E
[
Q̂π(s0, a0)

]
=
∞∑
k=0

E

[
T∑
t=0

r(st, at)

∣∣∣∣∣T = k

]
P (T = k) (by law of total expectation)

=
∞∑
k=0

E

[
k∑
t=0

r(st, at)
]

(1− γ)γk (each r(s, a) is independent of T )

=(1− γ)
∞∑
k=0

γk

1− γE [r(ak, sk)]

=Qπ(s0, a0)

Now, we upperbound the variance. Let r̄(s, a) := r(s, a)− e(s, a) be the expected reward over the
zero-mean noise. Because the zero-mean noise is independent of state transition, we observe that:

E [r(s, a)] =E [r̄(s, a)]

E
[
r(s, a)2] =E

[
(r̄(s, a) + e(s, a))2] = E

[
r̄(s, a)2]+ E

[
e(s, a)2] ≤ E

[
r̄(s, a)2]+ σ2

E [r(si, ai)r(sj , aj)] =E [(r̄(si, ai) + e(si, ai))(r̄(sj , aj) + e(sj , aj))] = E [r̄(si, ai)r̄(sj , aj)] ,

for i 6= j.
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Given the above observations, we can bound the variance as follows

Var(Q̂π(s0, a0))

≤ σ2 + E
[
(Q̂π(s0, a0)− r̄(s0, a0))2

]
−
(
E
[
Q̂π(s0, a0)

]
− r̄(s0, a0)

)2
(separate the variance of r(s0, a0))

= σ2 +
∞∑
k=1

(1− γ)γkE

( k∑
t=1

r(st, at)
)2− (E [Q̂π(s0, a0)

]
− r̄(s0, a0)

)2

= σ2 +
∞∑
k=1

(1− γ)γk
 k∑
t=1

E
[
r(st, at)2]+ 2

k∑
i=1

k∑
j=i+1

E [r(si, ai)r(sj , aj)]

− (E [Q̂π(s0, a0)
]
− r̄(s0, a0)

)2

= σ2 +
∞∑
t=1

γtE
[
r(st, at)2]+ 2

∞∑
i=1

∞∑
j=i+1

γjE [r(si, ai)r(sj , aj)]−
(
E
[
Q̂π(s0, a0)

]
− r̄(s0, a0)

)2

≤ σ2

1− γ +
∞∑
t=1

γtE
[
r̄(st, at)2]+ 2

∞∑
i=1

∞∑
j=i+1

γjE [r̄(si, ai)r̄(sj , aj)]−
(
E
[
Q̂π(s0, a0)

]
− r̄(s0, a0)

)2

≤ σ2

1− γ +
∞∑
t=1

γtE [r̄(st, at)] + 2
∞∑
i=1

∞∑
j=i+1

γjE [r̄(si, ai)]−
(
E
[
Q̂π(s0, a0)

]
− r̄(s0, a0)

)2

= σ2

1− γ +
∞∑
t=1

γtE [r̄(st, at)] + 2
∞∑
i=1

γi+1

1− γE [r̄(si, ai)]−
(
E
[
Q̂π(s0, a0)

]
− r̄(s0, a0)

)2

= σ2

1− γ + 1 + γ

1− γ

∞∑
t=1

γtE [r̄(st, at)]−
( ∞∑
t=1

γtE [r̄(st, at)]
)2

= −

( ∞∑
t=1

γtE [r̄(st, at)]−
1 + γ

2(1− γ)

)2

+ (1 + γ)2

4(1− γ)2 + σ2

1− γ

≤ −

( ∞∑
t=1

γt − 1 + γ

2(1− γ)

)2

+ (1 + γ)2

4(1− γ)2 + σ2

1− γ = γ

(1− γ)2 + σ2

1− γ

The last line is because:
∞∑
t=1

γtE [r̄(st, at)] ≤
∞∑
t=1

γt = γ

1− γ ≤
1 + γ

2(1− γ) .

The equality can be reached by the following reward setting: let P (1 = r̄(s1, a1) = · · · = r̄(st, at) =
· · ·) = 1 and therefore is tight.
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E.3 Proofs for Section 6.3.

Lemma E.3.1 (Lemma 6.3.2). Suppose the adversarial rewards are bounded in [0, 1], and in a particular
iteration t, the adversary contaminates ε(t) fraction of the episodes, then given M episodes, it is guaranteed
that with probability at least 1− δ,

Es,a∼d(t)

[(
Qπ

(t)
(s, a)− φ(s, a)>w(t)

)2
]
≤ 4

(
W 2 +WH

)(
ε(t) +

√
8
M

log 4d
δ

)
.

where H = (log δ − logM)/log γ is the effective horizon.

Proof of Lemma E.3.1. First of all, observe that since the adversarial reward is bounded in [0, 1],
with probability 1− δ, the Q̂(s, a) estimates collected in the adversarial episodes are bounded by
H := (log δ − logM)/log γ.

Conditioned on the above event, consider three loss functions f̂ , f† and f , representing the loss
w.r.t. clean data, corrupted data and underlying distribution respectively, i.e.

f̂ = 1
M

M∑
i=1

(yi − x>i w)2 (E.4)

f† = 1
M

[∑
i∈C

(y†i − x
†>
i w)2 +

∑
i/∈C

(yi − x>i w)2

]
(E.5)

f = E(yi − x>i w)2 (E.6)

Then, for all w, we can make the following decomposition

||∇wf† −∇wf ||≤ ||∇wf† −∇wf̂ ||+||∇wf̂ −∇wf ||. (E.7)

We next bound each of the two terms in equation E.7. For the first term,

‖∇wf† −∇wf̂‖ (E.8)

=

∥∥∥∥∥ 2
M

∑
i∈C

[
(x†ix

†>
i − xix

>
i )w + (y†ix

†
i − yixi)

]∥∥∥∥∥ (E.9)

≤ 4 (W +H) ε(t) (E.10)

where the last step uses the fact that |C|/M ≤ ε(t), and ‖x‖≤ 1, |y†|≤ H and ‖w‖≤ W . For the
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second term

||∇wf̂ −∇wf || (E.11)

≤ 2

∥∥∥∥∥
(
E[xx>]− 1

M

M∑
i=1

xix
>
i

)
w −

(
E[yx]− 1

M

M∑
i=1

yixi

)∥∥∥∥∥ (E.12)

≤ 2
(

2
3M log 4d

δ
+
√

2
M

log 4d
δ

)
W + 2

√
2
M

log 4d
δ
· 2H (E.13)

≤ 4
√

8
M

log 4d
δ

(W +H) , forM ≥ 2 log 4d
δ
. (E.14)

where in step (E.13) we apply Matrix Bernstein inequality [160] on the first term and vector Hoeffd-
ing’s inequality [80] on the second term. The constant in Corollary 7 of [80] is instantiated to be
c = 1, because boundedness means we always have condition 2 in Lemma 2 of [80]. This condition
is all we need throughout the proof for the vector Hoeffding.

Now, letM be sufficiently large, and instantiate w to be wt, i.e. the constrained linear regression
solution w.r.t f†, then our result above implies that for any vector v such that ||w+ v||≤W , we have
∇wf†(wt)>v/||v||≥ 0, and thus

∇wf(wt)>v/||v||≥ −4 (W +H)
(
ε(t) +

√
8
M

log 4d
δ

)
(E.15)

which by Lemma B.8 of [50] implies that

ε
(t)
stat ≤ 4

(
W 2 +HW

)(
ε(t) +

√
8
M

log 4d
δ

)
, w.p. 1− 2δ. (E.16)

Theorem E.3.1 (Theorem 6.3.1). Under assumptions 7.2.1 (linear Q function) and 6.2.2 (reset distribu-
tion with small κ), given a desired optimality gap α, there exists a set of hyperparameters agnostic to the
contamination level ε, such that Algorithm 2 guarantees with a poly(1/α, 1/(1− γ), |A|,W, σ, κ) sample
complexity that under ε-contamination with adversarial rewards bounded in [0, 1], we have

E
[
V ∗(µ0)− V π̂(µ0)

]
≤ Õ

(
max

[
α,W

√
|A|κε

(1− γ)3

])

where π̂ is the uniform mixture of π(1) through π(T ).

Proof of Theorem E.3.1. First note that εstat = Es,a∼d(t) [
(
φ(s, a)>(w(t) − w∗)

)2] ≤ 4W 2, because
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‖φ(s, a)‖≤ 1 and ‖w(t)‖, ‖w∗‖≤W . As a result, the high probability bound in Lemma 6.3.2 can be
ready translate into an expected bound:

E
[
Es,a∼d(t)

[(
Qπ

(t)
(s, a)− φ(s, a)>w(t)

)2
]]
≤ 4

(
W 2 +HW

)(
ε(t) +

√
8
M

log 4d
δ

)
+ 8δW 2(E.17)

where δ becomes a free parameter. Plugging this into Lemma 6.3.1, we get

E

[
1
T

T∑
t=1
{V ∗(µ0)− V (t)(µ0)}

]

≤ W

1− γ

√
2 log|A|
T

+ 1
T

T∑
t=1

√
4|A|κε(t)stat
(1− γ)3

≤ W

1− γ

√
2 log|A|
T

+ 1
T

T∑
t=1

√√√√√16|A|κ
(

(W 2 +HW )
(
ε(t) +

√
8
M log 4d

δ

)
+ 2δW 2

)
(1− γ)3

≤ W

1− γ

√
2 log|A|
T

+ 1
T

T∑
t=1

√√√√√16|A|κ
(

(W 2 +HW )
√

8
M log 4d

δ + 2δW 2
)

(1− γ)3

+ 1
T

T∑
t=1

√
16|A|κ (W 2 +HW ) ε(t)

(1− γ)3

≤ W

1− γ

√
2 log|A|
T

+

√√√√√16|A|κ
(

(W 2 +HW )
√

8
M log 4d

δ + 2δW 2
)

(1− γ)3 +

√
16|A|κ (W 2 +HW ) ε

(1− γ)3

where the last step is by Cauchy Schwarz and the fact that the attacker only has ε budget to distribute,
which implies that∑T

t=1 ε
(t) = Tε. Setting

T = 2W 2 log|A|
α2(1− γ)2 (E.18)

δ = α2(1− γ)3

32W 2|A|κ
(E.19)

M = 512|A|2W 2(W +H)2κ2

α4(1− γ)6 log 4d
δ
, (E.20)

we get

E

[
1
T

T∑
t=1
{V ∗(µ0)− V (t)(µ0)}

]
≤ 3α+

√
16|A|κ (W 2 +HW ) ε

(1− γ)3 . (E.21)
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with sample complexity

TM = 1024|A|2log|A|W 4(W +H)2κ2

α6(1− γ)8 log 128W 2|A|κd
α2(1− γ)3 . (E.22)

Next, we prove this tighter version of Theorem 6.3.1 in the special case of tabular MDPs.

Corollary E.3.1 (Corollary 6.3.1). Given a tabular MDP and assumption 6.2.2, given a desired optimality
gap α, there exists a set of hyperparameters agnostic to the contamination level ε, such that Algorithm 2
guarantees with a poly(1/α, 1/(1 − γ), |A|,W, σ, κ) sample complexity that under ε-contamination with
adversarial rewards bounded in [0, 1], we have

E
[
V ∗(µ0)− V π̂(µ0)

]
≤ Õ

(
max

[
α,

√
|A|κε

(1− γ)5

])
(E.23)

where π̂ is the uniform mixture of π(1) through π(T ).

The proof follows the exact same structure as the proof of Theorem E.3.1, but with a tighter
robustness bound of linear regression.

Lemma E.3.2. Assume a tabular MDP and the adversarial rewards are bounded in [0, 1], and in a particular
iteration t, the adversary contaminates ε(t) fraction of the episodes, then given M episodes, it is guaranteed
that with probability at least 1− δ,

Es,a∼d(t)

[(
Qπ

(t)
(s, a)− φ(s, a)>w(t)

)2
]
≤ H2ε(t) + 3

(
W 2 +WH

)√ log 1/δ
M

. (E.24)

where H = (log δ − logM)/log γ is the effective horizon.

Proof of Lemma E.3.2. The proof is largely based on Lemma G.1 of [2]. We assumed that the con-
strained linear regression problem is solved using Projected Online Gradient Descent [198] on the
sequence of loss functions (w>φi − Q̂i)2, i.e.

wi+1 = Proj‖w‖≤W
(
wi − ηi(w>i φi − Q̂i)φi

)
, for all i ∈ [M ], (E.25)

where ηi = W 2/((W +H)
√
N) and we set w(t) = 1

M

∑M
i=1 wi.
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Using the projected online gradient descent regret guarantee, we have that:∑
i∈C

(w>i φ
†
i − Q̂

†
i )

2 +
∑
i/∈C

(w>i φi − Q̂i)2 ≤
∑
i∈C

(w?>φ†i − Q̂
†
i )

2 +
∑
i/∈C

(w?>φi − Q̂i)2 +W (W +H)︸ ︷︷ ︸
:=Q

√
M.

(E.26)

which implies∑
i∈[M ]

(w>i φi − Q̂i)2 −
∑
i∈[M ]

(w?>φi − Q̂i)2 (E.27)

≤
∑
i∈C

[
(w?>φ†i − Q̂

†
i )

2 − (w?>φi − Q̂i)2
]
−
∑
i∈C

[
(w>i φ

†
i − Q̂

†
i )

2 − (w>i φi − Q̂i)2
]

+Q
√
M. (E.28)

We now want to show by induction that w>i φ ∈ [0, H] for any i and φ. w0 = 0 which satisfies
w>0 φ ∈ [0, H]. Now, assume that w>i φ ∈ [0, H], we want to show w>i+1φ ∈ [0, H]. In a tabular MDP,
φ is an one-hot vector, and thus for φ 6= φi, w>i+1φ = w>i φ ∈ [0, H]. If φ = φi, then

w>i+1φ =
(
wi − ηi(w>i φi − Q̂i)φi

)>
φi ≤ (1− ηi)w>i φi + ηQ̂i ∈ [0, H] (E.29)

because both wi>φi (by induction hypothesis) and Q̂i (by assumption on bounded attack) are in
[0, H]. Therefore, we have shown that w>i φ ∈ [0, H] for any i and φ. Then, (E.28) implies that∑

i∈[M ]

(w>i φi − Q̂i)2 ≤
∑
i∈[M ]

(w?>φi − Q̂i)2 + 2H2ε(t)M +Q
√
M. (E.30)

Denote random variable zi = (θi · xi − yi)2 − (θ? · xi − yi)2. Denote Ei as the expectation taken
over the randomness at step i conditioned on all history t = 1 to i− 1. Note that for Ei[zi], we have:

Ei
[
(θi · x− y)2 − (θ? · x− y)2] (E.31)

= Ei
[
(θi · x− E[y|x])2] (E.32)
− Ei

[
2(θi · x− E[y|x])(E[y|x]− y)− (θ? · x− E[y|x])2 + 2(θ? · x− E[y|x])(E[y|x]− y))

]
(E.33)

= Ei
[
(θi · x− E[y|x])2 − (θ? · x− E[y|x])2] , (E.34)

where we use E[E[y|x]− y] = 0. Also for |zi|, we can show that for |zi|we have:

|zi| = |(θi · xi − θ? · xi)(θi · xi + θ? · xi − 2yi)| ≤W (2W + 2H) = 2W (W +H). (E.35)

Note that zi forms a Martingale difference sequence. Using Azuma-Hoeffding’s inequality, we have
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that with probability at least 1− δ:∣∣∣∣∣
M∑
i=1

zi −
M∑
i=1

Ei
[
(θi · x− E[y|x])2 − (θ? · x− E[y|x])2]∣∣∣∣∣ ≤ 2W (W +H)

√
ln(1/δ)M, (E.36)

which implies that:

M∑
i=1

Ei
[
(θi · x− E[y|x])2 − (θ? · x− E[y|x])2] ≤ M∑

i=1
zi + 2W (W +H)

√
ln(1/δ)M (E.37)

≤ 2W (W +H)
√

ln(1/δ)M + 2H2Mε(t) +Q
√
M. (E.38)

Apply Jensen’s inequality on the LHS of the above inequality, we have that:

E
(
θ̂ · x− E[y|x]

)2
≤ E (θ? · x− E[y|x])2 + 2H2ε(t) + (Q+ 2W (W +H))

√
ln(1/δ)
M

. (E.39)

E.4 A modified analysis for SEVER

In this section, we will derive an expected error bound for SEVER [50] when applied to a linear
regression problem. The high level idea is to use the results of [53] to show the existence of a stable
set and change the probabilistic argument in [50] to an expectation argument. We note that the
original result in [50] works only with probability 9/10, and there is no direct way of translating it
into either a high-probability argument or an expectation argument.

In the following, we consider a robust linear regression problem. We observe pairs (Xi, Yi) ∈
Rd ×R for i ∈ [n], whereXi’s are drawn i.i.d. from a distributionDx and Yi = w∗>Xi + ei for some
unknown w∗ ∈ Rd. ei’s are i.i.d, noise from some distribution De|x. Note that here ei and Xi may
not be independent. We letDxy be the joint distribution of (X,Y ). Let fi(w) = (Yi−w>Xi)2. Given
a multiset of observations {(Xi, Yi)}ni=1, our goal is to minimize the objective function

f̄(w) = E(X,Y )∼Dxy [(Y − w>X)2] (E.40)

on a convex feasible set H. Let r := maxw∈H‖w‖ be the `2-radius of H. In the following, we use
‖·‖ to denote the spectral norm of a matrix and the 2-norm of a vector. We use Cov to denote the
covariance matrix of a random vector: Cov[X] = E

[
(X − EX)(X − EX)>

]. When S is a set, we use
ES and CovS to denote the expectation and covariance over the empirical distribution on S. We
allow for an ε-fraction of the observations to be arbitrary outliers. The ε-corruption model is defined
in more detail in the Appendix A of [50].
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Due to our application, we make assumptions on the linear regression model that is slight
different from Assumption E.1 in [50]:

Assumption E.4.1. Given the model for linear regression described above, assume the following conditions
for De|x and Dx:

• E [e|X] = 0;

• E
[
e2
∣∣X] ≤ ξ;

• EX∼Dx [XX>] � s2I for some s > 0;

• There is a constant C > 0, such that for all unit vectors v, EX∼Dx [〈v,X〉4] ≤ Cs4.

In [50], the noise term e andX are independent. We weaken the assumption on e and bound its
first and second moments conditional on X .

Stability with subgaussian rate

We first note that the gradient of fi, ∇fi(w) has bounded covariance matrix. We will show this by
following the proof of Lemma E.3 in [50], but make minor changes as we do not assume e and X
are independent:

Lemma E.4.1 (A variant of Lemma E.3 in [50]). SupposeDxy satisfies the conditions of Assumption E.4.1.
Then for all unit vectors v ∈ Rd, we have

v>Cov(Xi,Yi)∼Dxy [∇fi(w)]v ≤ 4s2ξ + 4Cs4‖w∗ − w‖2. (E.41)

Proof of Lemma E.4.1. Wefirst note that fi(w) = (Yi−w>Xi)2 and∇fi(w) = −2((w∗−w)>Xi+ei)Xi.
By the property of conditional expectation, for any function g(·), h(·), we have E [g(X)h(e)] =
EX

[
Eh(e)|X [g(X)h(e)|X]

]
= EX

[
g(X)Eh(e)|X [h(e)|X]

]. Then
E
[
∇fi(w)∇fi(w)>

]
= 4E

[
((w∗ − w)>Xi + ei)2XiX

>
i

] (E.42)
= 4E

[
((w∗ − w)>Xi)2XiX

>
i

]
+ 4E

[
e2
iXiX

>
i

]
+ 4E

[
2(w∗ − w)>XieiXiX

>
i

] (E.43)
= 4E

[
((w∗ − w)>Xi)2XiX

>
i

]
+ 4E

[
XiX

>
i E

[
e2
i

∣∣Xi

]] (E.44)

By Assumption E.4.1, for all unit vectors v ∈ Rd, we have

v>E
[
((w∗ − w)>Xi)2XiX

>
i

]
v = E

[
((w∗ − w)>Xi)2(v>Xi)2] (E.45)

≤
√
E [((w∗ − w)>Xi)4]E [(v>Xi)4] (E.46)

≤ Cs4‖w∗ − w‖2 (E.47)
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and
v>E

[
XiX

>
i E

[
e2
i

∣∣Xi

]]
v ≤ ξv>E

[
XiX

>
i

]
v ≤ s2ξ (E.48)

Thus for all unit vectors v ∈ Rd, we have

v>Cov(Xi,Yi)∼Dxy [∇fi(w)]v ≤ v>E
[
∇fi(w)∇fi(w)>

]
v ≤ 4s2ξ + 4Cs4‖w∗ − w‖2. (E.49)

We then use the following Theorem E.4.1 to show that the observations f1, . . . , fn satisfies the
Assumption E.4.2 with high probability:

Theorem E.4.1 (Theorem 1.4 in [53]). Fix any 0 < τ < 1. Let S be a multiset of n i.i.d. samples from a
distribution on Rd with mean µ and covariance Σ. Let ε′ = C̃ (log(1/τ)/n+ ε) = O(1), for some constant
C̃ > 0. Then, with probability at least 1− τ , there exists a subset S′ ⊆ S such that |S′|≥ (1− ε′)n and for
every S′′ ⊆ S′ with |S′′|≥ (1− 2ε′)|S′|, the following conditions hold: (i) ‖µS′′ − µ‖≤

√
‖Σ‖δ, and (ii)

‖ΣS′′ − ‖Σ‖I‖≤ ‖Σ‖δ2/(2ε′), for δ = O
(√

(d log d)/n+
√
ε+

√
log(1/τ)/n

)
.

where µS′′ = 1
|S′′|

∑
x∈S′′ x and ΣS′′ = 1

|S′′|
∑
x∈S′′(x− µ)(x− µ)>.

We use a notion of stability similar to that in [50] but allow the parameter to depend on the
confidence level and sample size:

Assumption E.4.2 (A variant of Assumption B.1 in [50]). Fix 0 < ε < 1/2. With probability at least
1− τ , there exists an unknown set Igood ⊆ [n] with |Igood|≥ (1− ε)n of “good” functions {fi}i∈Igood and
parameters σ, α(ε, n, τ), β(ε, n, τ) ∈ R+ such that for all w ∈ H:∥∥∥∥∥∥ 1

|Igood|
∑

i∈Igood

∇fi(w)−∇f̄(w)

∥∥∥∥∥∥ ≤ σα(ε, n, τ) (E.50)

and ∥∥∥∥ 1
|Igood|

(∇fi(w)−∇f̄(w))(∇fi(w)−∇f̄(w))>
∥∥∥∥ ≤ σ2β(ε, n, τ) (E.51)

We can then equivalently write Theorem E.4.1 as the following Proposition:

Proposition E.4.1. Given a linear regression model fi(w) = (Yi − w>Xi)2 satisfying Assump-
tion E.4.1,Xi ∼ Dx,De ∼ De, with probability at least 1−τ , {fi}i∈[n] satisfies Assumption E.4.2 with
σ = 2s

√
ξ + 2

√
Cs2‖w∗ − w‖, α(ε, n, τ) = O

(√
(d log d)/n+

√
ε+

√
log(1/τ)/n

)
and β(ε, n, τ) =(

d log d
log(1/τ)+nε + 1

)
.
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Proof of Proposition E.4.1. By Theorem E.4.1 and Lemma E.4.1, with probability at least 1− τ , there
exist an unknown set Igood ⊆ [n] with |Igood|≥ (1− ε′)n, s.t.∥∥∥∥ 1

|Igood|
(∇fi(w)−∇f̄(w))(∇fi(w)−∇f̄(w))>

∥∥∥∥ (E.52)

≤
∥∥∥∥ 1
|Igood|

(∇fi(w)−∇f̄(w))(∇fi(w)−∇f̄(w))> − ‖Covf∈p∗ [∇f ]‖ I
∥∥∥∥+ ‖Covf∈p∗ [∇f ]‖(E.53)

≤
(
4s2ξ + 4Cs4‖w∗ − w‖2

)
O

(
d log d

log(1/τ) + nε
+ 1
)

(E.54)

≤
(

2s
√
ξ + 2

√
Cs2‖w∗ − w‖

)2
O

(
d log d

log(1/τ) + nε
+ 1
)

=: σ2β(ε, n, τ). (E.55)

‖∇f̂(w)−∇f̄(w)‖ ≤ σO
(√

(d log d)/n+
√
ε+

√
log(1/τ)/n

)
=: σα(ε, n, τ). (E.56)

The expected optimality gap

In order to prove the expected optimality gap, we first state a slightly modified version of the main
theorem in [50] by specifying the probability of success;

Theorem E.4.2 (Theorem B.2 in [50]). Let the corruption level ε ∈ [0, c], for some small enough c > 0.
Suppose that the functions f1, . . . , fn, f̄ : H → R are bounded below, and that Assumption E.4.2 is
satisfied. Then SEVER applied to f1, . . . , fn returns a point w ∈ H that, fix p ≥

√
ε, with probability

at least 1 − p, is a O
(
σ
(
α(ε, n, τ) +

√
α(ε, n, τ)2 + β(ε, n, τ)

√
ε/p
))

-approximate critical point of f̄ ,
i.e. for all unit vectors v where w + λv ∈ H for arbitrarily small positive λ, we have that v · ∇f(w) ≥
−O

(
σ
(
α(ε, n, τ) +

√
α(ε, n, τ)2 + β(ε, n, τ)

√
ε/p
))

.

if f̄ is convex, we have the following optimality gap. Recall r is the radius of the convex setH
where w∗ belongs.

Corollary E.4.1 (Corollary B.3 in [50]). Let the corruption level ε ∈ [0, c], for some small enough c > 0.
For functions f1, . . . , fn : H → R, suppose that Assumption E.4.2 holds and that H is convex. Then, fix
p ≥

√
ε, with probability at least 1 − p, the output of SEVER satisfies the following: if f̄ is convex, the

algorithm finds aw ∈ H such that f̄(w)− f̄(w∗) = O
(
rσ
(
α(ε, n, τ) +

√
α(ε, n, τ)2 + β(ε, n, τ)

√
ε/p
))

Given Theorem E.4.1, we can prove the following expected optimality gap:

Theorem E.4.3 (expected optimality gap). Let the corruption level ε ∈ [0, c], for some small enough
c > 0. LetH be a convex set. Given n samples from a linear regression model f(w) = (Y −w>X)2 satisfying
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Assumption E.4.1, where X ∼ Dx, e ∼ De, Y = w∗>X + e for some unknown w∗ ∈ H, SEVER will find
a w ∈ H, such that

E
[
f̄(w)− f̄(w∗)

]
= O

((
sr
√
ξ + s2r2

)(
τ +

√
(d log d)/n+

√
ε+

√
log(1/τ)/n

))
. (E.57)

where the expectation above is over both the randomness of SEVER and (Xi, Yi) pairs.

Proof of Theorem E.4.3. In the following, we use α and β as shorthands of α(ε, n, τ) and β(ε, n, τ).
We first show that f̄(w)− f̄(w∗) is upper bounded:

f̄(w)− f̄(w∗) = EX,Y
[
(Y − w>X)2 − (Y − w∗>X)2] (E.58)

= EX,e
[
(w∗ − w)>X + e)2 − e2] (E.59)

= (w∗ − w)>EX [XX>](w∗ − w) ≤ s2(w − w∗)2 ≤ 4s2r2. (E.60)

For some constant M > 0, define x1 := Mrσ
(
α/
√
ε+

√
α2 + β

)√
ε. Let A1 be the event of

{Assumption E.4.2 holds}. Let A2 be the event of {SEVER removes less than (1 + 1/
√
ε)εn points}.

Let A3(p) be the event of
{
f̄(w)− f̄(w∗) > Mrσ

(
α+

√
α2 + β

√
ε/p
)}

. Then, ∀0 ≤ p < √ε

P (A2, A3(p) | A1) = 0. (E.61)

By Corollary E.4.1, ∀√ε ≤ p ≤ 1
P (A2, A3(p) | A1) ≤ p. (E.62)

By Proposition E.4.1,
P (A1) ≥ 1− τ. (E.63)

By Lemma E.4.3,
P (A2 | A1) ≥ 1−

√
ε, (E.64)

and thus
1− P (A1, A2) = 1− P (A2 | A1)P (A1) ≤ τ +

√
ε. (E.65)

Then, we have:

P
(
f̄(w)− f̄(w∗) > x1/

√
p | A1, A2

) (E.66)
≤P (A3(p) | A1, A2) = P (A2, A3(p) | A1)/P (A2 | A1) (E.67)

≤

0 0 ≤ p <
√
ε

p
1−
√
ε

√
ε ≤ p ≤ 1

. (E.68)
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Let x = x1/
√
p, we have:

P
(
f̄(w)− f̄(w∗) > x

∣∣A1, A2
)
≤


0 x ≥ x1ε

−1/4

1
1−
√
ε

x2
1
x2 x1 ≤ x < x1ε

−1/4

1 0 ≤ x < x1

. (E.69)

By Proposition E.4.1 and law of total expectation, we can bound the expected optimality gap by:

E
[
f̄(w)− f̄(w∗)

]
≤ E

[
f̄(w)− f̄(w∗)

∣∣A1, A2
]
P (A1, A2) + 4s2r2(1− P (A1, A2)) (E.70)

≤
∫ ∞

0
P
(
f̄(w)− f̄(w∗) > x

∣∣A1, A2
)
dx+ 4s2r2(τ +

√
ε) (E.71)

=
∫ x1

0
1dx+ 1

1−
√
ε

∫ x1ε
−1/4

x1

x2
1
x2 dx+ 4s2r2(τ +

√
ε) (E.72)

≤ 2x1 + 4s2r2(τ +
√
ε) (E.73)

= 2Mrσ
(
α/
√
ε+

√
α2 + β

)√
ε+ 4s2r2(τ +

√
ε) (E.74)

= O
((
sr
√
ξ + s2r2

)(
τ +

√
(d log d)/n+

√
ε+

√
log(1/τ)/n

))
(E.75)

Note that the expectation above is over both the randomness of SEVER and (Xi, Yi) pairs.

Proof of Theorem E.4.2

In this proof, we mainly follow the steps in [50] but use our notion of stability in Assumption E.4.2.
We also allow the success probability to vary, so that we can give an expected error bound later on.

We first restate the SEVER algorithm in Algorithm 7 and Algorithm 8. Throughout this proof
we let Igood be as in Assumption E.4.2. We require the following three lemmas. Roughly speaking,
the first states that with high probability, we will not remove too many points throughtout the
process, the second states that on average, we remove more corrupted points than uncorrupted
points, and the third states that at termination, and if we have not removed too many points, then
we have reached a point at which the empirical gradient is close to the true gradient. Formally:

Lemma E.4.2. If the samples satisfy Assumption E.4.2, |S|≥ c1n, and the filtering threshold is at least

2(1− ε)σ2

c1 − 2ε
(
α(ε, n, τ)2 + β(ε, n, τ)

) (E.76)

then if S′ is the output of Filter(S, τ, σ), we have that

E[|Igood ∩ (S\S′)|] ≤ E[|([n]\Igood) ∩ (S\S′)|]. (E.77)
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Algorithm 7 Sever(f1:n,L, σ)
1: Input: Sample functions f1, . . . , fn : H → R, bounded below on a closed domain H, γ-

approximate learner L, and parameter σ ∈ R+.
2: Initialize S ← {1, . . . , n}.
3: repeat
4: w ← L({fi}i∈S). . Run approximate learner on points in S.
5: Let ∇̂ = 1

|S|
∑
i∈S ∇fi(w).

6: Let G = [∇fi(w)− ∇̂]i∈S be the |S|×dmatrix of centered gradients.
7: Let v be the top right singular vector of G.
8: Compute the vector τ of outlier scores defined via τi =

(
(∇fi(w)− ∇̂) · v

)2
.

9: S′ ← S
10: S ← Filter(S′, τ, σ) . Remove some i’s with the largest scores τi from S; see Algorithm 8.
11: until S = S′.
12: Return w.

Algorithm 8 Filter(S, τ, σ)
1: Input: Set S ⊆ [n], vector τ of outlier scores, and parameter σ ∈ R+.
2: If 1

|S|
∑
i∈S τi ≤ c0 · σ2, for some constant c0 > 1, return S . We only filter out points if the

variance is larger than an appropriately chosen threshold.
3: Draw T from the uniform distribution on [0,maxi τi].
4: Return {i ∈ S : τi < T}.

Lemma E.4.3 (Revised version of Lemma 6 in [50]). Assume filtering threshold is 4(α(ε, n, τ)2 +
β(ε, n, τ))σ2, ε ≤ 1/16, then we have that for any given p ≥

√
ε, with probability at least 1− p, n− |S|≤

(1 + 1/p)εn when the filtering algorithm terminates.

Lemma E.4.4. If the samples satisfy Assumption E.4.2, Filter(S, τ, σ) = S, and n − |S|≤ (1 + 1/p)εn,
for p ≥

√
ε, then∥∥∥∥∥∇f̄(w)− 1

|Igood|
∑
i∈S
∇fi(w)

∥∥∥∥∥
2

≤ O
(
σ
(
α(ε, n, τ) +

√
α(ε, n, τ)2 + β(ε, n, τ)

√
ε/p
))

(E.78)

Before we prove these lemmata, we show how together they imply Theorem E.4.2.

Proof of Theorem E.4.2 assuming Lemma E.4.3 and Lemma E.4.4. First, we note that the algorithmmust
terminate in at most n iterations. This is easy to see as each iteration of the main loop except for the
last must decrease the size of S by at least 1.

It thus suffices to prove correctness. Note that Lemma E.4.3 says that with probability at least
1− p, SEVER will not remove too many points, this will allow us to apply Lemma E.4.4 to complete
the proof, using the fact that w is a critical point of 1

|Igood|
∑
i∈S ∇fi(w).
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Thus it suffices to prove these three lemmata.

Proof of Lemma E.4.2. Let Sgood = S ∩ Igood and Sbad = S\Igood. We wish to show that the expected
number of elements thrown out of Sbad is at least the expected number thrown out of Sgood. We
note that our result holds trivially if Filter(S, τ, σ) = S. Thus, we can assume that Ei∈S [τi] ≥
2(1−ε)σ2

c1−2ε
(
α(ε, n, τ)2 + β(ε, n, τ)

).
It is easy to see that the expected number of elements thrown out of Sbad is proportional to∑
i∈Sbad

τi, while the number removed from Sgood is proportional to∑i∈Sgood
τi (with the same

proportionality). Hence, it suffices to show that∑i∈Sbad
τi ≥

∑
i∈Sgood

τi.
We first note that since Covi∈Igood [∇fi(w)] � σ2I , we have that

Covi∈Sgood [v · ∇fi(w)] ≤ 1− ε
c1 − ε

Covi∈Igood [v · ∇fi(w)] (since |Sgood|≥ c1−ε
1−ε |Igood|) (E.79)

= 1− ε
c1 − ε

 1
|Igood|

∑
i∈Igood

(v · (∇fi(w)− f̄(w)))2 − (f̄(w)− Ei∈Igood [v · ∇fi(w)])2


(E.80)

≤ (1− ε)σ2

c1 − ε
(
α(ε, n, τ)2 + β(ε, n, τ)

) (By Assumption E.4.2), (E.81)

Let µgood = Ei∈Sgood [v · ∇fi(w)] and µ = Ei∈S [v · ∇fi(w)]. Note that

Ei∈Sgood [τi] = Covi∈Sgood [v·∇fi(w)]+(µ−µgood)2 ≤ (1− ε)σ2

c1 − ε
(
α(ε, n, τ)2 + β(ε, n, τ)

)
+(µ−µgood)2 .

(E.82)
We now split into two cases.

Firstly, if
(µ− µgood)2 ≥ ε

c1 − 2ε
(1− ε)σ2

c1 − ε
(
α(ε, n, τ)2 + β(ε, n, τ)

)
, (E.83)

we let µbad = Ei∈Sbad [v · ∇fi(w)], and note that |µ− µbad||Sbad|= |µ− µgood||Sgood|. We then have
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that

Ei∈Sbad [τi] = Covi∈Sbad [v · ∇fi(w)] + (µ− µbad)2 ≥ (µ− µbad)2 (E.84)

= (µ− µgood)2
(
|Sgood|
|Sbad|

)2
(E.85)

≥ |Sgood|
|Sbad|

c1 − ε
ε

(µ− µgood)2 (because |Sgood|≥ (c1 − ε)n and |Sbad|≤ εn) (E.86)

= |Sgood|
|Sbad|

(
c1 − 2ε
ε

(µ− µgood)2 + (µ− µgood)2
)

(E.87)

≥ |Sgood|
|Sbad|

(
(1− ε)σ2

c1 − ε
(
α(ε, n, τ)2 + β(ε, n, τ)

)
+ (µ− µgood)2

)
(by (E.83)) (E.88)

≥ |Sgood|
|Sbad|

Ei∈Sgood [τi] (by (E.82)). (E.89)

Hence,∑i∈Sbad
τi ≥

∑
i∈Sgood

τi.
On the other hand, if (µ − µgood)2 ≤ ε

c1−2ε
(1−ε)σ2

c1−ε
(
α(ε, n, τ)2 + β(ε, n, τ)

), then Ei∈Sgood [τi] ≤(
1 + ε

c−2ε

)
(1−ε)σ2

c1−ε
(
α(ε, n, τ)2 + β(ε, n, τ)

)
≤ Ei∈S [τi]/2. Therefore

∑
i∈Sbad

τi ≥
∑
i∈Sgood

τi once
again. This completes our proof.

Proof of Lemma E.4.3. Define the event

A = {n− |S|≤ (1 + 1/p)εn}, (E.90)

and we want to lower-bound P (A). Given that ε ≤ 1/16, the threshold is 4(α(ε, n, τ)2 +β(ε, n, τ))σ2

and p ≥ √ε, and conditioned on the event A, it can be verified that the asusumption of Lemma E.4.2
is satisfied. In particular, simple calculation shows that given c1 = 1− (1 + 1/p)ε, ε ≤ 1/16, p ≥ √ε,
we have

4σ2 ≥ 2(1− ε)σ2

c1 − 2ε (E.91)

And Lemma E.4.2 implies that |([n]\Igood) ∩ S|+|Igood\S| is a supermartingale. Since its initial
size is at most εn, with probability at least 1− p, it never exceeds εn/p, and therefore at the end of
the algorithm, we must have that n− |S|≤ εn+ |Igood\S|≤ (1 + 1/p)εn.

We now prove Lemma E.4.4.
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Proof of Lemma E.4.4. We note that∥∥∥∥∥∑
i∈S

(∇fi(w)−∇f̄(w))

∥∥∥∥∥
2

(E.92)

≤

∥∥∥∥∥∥
∑

i∈Igood

(∇fi(w)−∇f̄(w))

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
∑

i∈(Igood\S)

(∇fi(w)−∇f̄(w))

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
∑

i∈(S\Igood)

(∇fi(w)−∇f̄(w))

∥∥∥∥∥∥
2

(E.93)

≤

∥∥∥∥∥∥
∑

i∈(Igood\S)

(∇fi(w)−∇f̄(w))

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
∑

i∈(S\Igood)

(∇fi(w)−∇f̄(w))

∥∥∥∥∥∥
2

+ nσα(ε, n, τ). (E.94)

First we analyze ∥∥∥∥∥∥
∑

i∈(Igood\S)

(∇fi(w)−∇f̄(w))

∥∥∥∥∥∥
2

. (E.95)

This is the supremum over unit vectors v of∑
i∈(Igood\S)

v · (∇fi(w)−∇f̄(w)). (E.96)

However, we note that ∑
i∈Igood

(v · (∇fi(w)−∇f̄(w)))2 ≤ nσ2β(ε, n, τ). (E.97)

Since |Igood\S|≤ (1 + 1/p)εn, we have by Cauchy-Schwarz that∑
i∈(Igood\S)

v · (∇fi(w)−∇f̄(w)) =
√

(nσ2β(ε, n, τ))((1 + 1/p)εn) = nσ
√
β(ε, n, τ)(1 + 1/p)ε,

(E.98)
as desired.

Let
∆ :=

∥∥∥∥∥∑
i∈S

(∇fi(w)−∇f̄(w))

∥∥∥∥∥
2

. (E.99)

Because our Filter algorithm terminates with n− |S|≤ (1 + 1/p)εn, and the stopping condition is
set as ‖ 1

|S|
∑
i∈S(∇fi(w)−∇f̂(w))(∇fi(w)−∇f̂(w))>‖≤ 4(α(ε, n, τ)2 + β(ε, n, τ))σ2, we note that

since for any such v that
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∑
i∈S

(v · (∇fi(w)−∇f̄(w)))2 =
∑
i∈S

(v · (∇fi(w)−∇f̂(w)))2 + |S|(v · (∇f̂(w)−∇f̄(w)))2(E.100)

≤
∑
i∈S

(v · (∇fi(w)−∇f̂(w)))2 + ∆2/|S|≤ n4(α(ε, n, τ)2 + β(ε, n, τ))σ2 + ∆2/((1− (1 + 1/p)ε)n)(E.101)

and since |S\Igood|≤ (1 + 1/p)εn, and so we have similarly that∥∥∥∥∥∥
∑

i∈(S\Igood)

∇fi(w)−∇f̄(w)

∥∥∥∥∥∥
2

≤ 2nσ
√
α(ε, n, τ)2 + β(ε, n, τ)

√
(1 + 1/p)ε+ ∆

√
(1 + 1/p)ε

1− (1 + 1/p)ε .(E.102)

Combining with the above we have that

∆
n
≤ σα(ε, n, τ)+σ

√
β(ε, n, τ)(1 + 1/p)ε+2σ

√
α(ε, n, τ)2 + β(ε, n, τ)

√
(1 + 1/p)ε+∆

n

√
(1 + 1/p)ε

1− (1 + 1/p)ε ,

(E.103)
Thus

∆
n
≤ 1

1−
√

(1+1/p)ε
1−(1+1/p)ε

(
σα(ε, n, τ) + 6σ

√
α(ε, n, τ)2 + β(ε, n, τ)

√
ε/p
)

(E.104)

and therefore, ∆
n = O

(
σ
(
α(ε, n, τ) +

√
α(ε, n, τ)2 + β(ε, n, τ)

√
ε/p
))

as desired.

E.5 Proofs for Section 6.4

Lemma E.5.1 (Lemma 6.4.1). Suppose the adversarial rewards are unbounded, and in a particular iteration
t, the adversarial contaminate ε(t) fraction of the episodes, then given M episodes, it is guaranteed that if
ε(t) ≤ c, for some absolute constant c, and any constant τ ∈ [0, 1], we have

E
[
Es,a∼d(t)

[(
Qπ

(t)
(s, a)− φ(s, a)>w(t)

)2
]]

(E.105)

≤ O
((

W 2 + σW

1− γ

)(√
ε(t) + f(d, τ)M− 1

2 + τ
))

.

where f(d, τ) =
√
d log d+

√
log(1/τ).

Proof of Lemma E.5.1. The proof of Lemma 6.4.1 follows by instantiating TheoremE.4.3 to our specific
linear regression problem instance. To specify the constants in Theorem E.4.3, wemake the following
observations

leftmirgin=* By Lemma E.2.1, we have that ξ = 1
(1−γ)2 + σ2

1−γ .
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leftmiirgiin=* Since ‖X‖≤ 1, EX∼Dx
[
XX>

]
≤ I , and thus s = 1.

leftmiiirgiiin=* max‖v‖=1 E
[
(v>X)4] ≤ E

[
‖v‖4‖X‖4

]
≤ 1, thus C = 1.

Plugging in the above instantiation to Theorem E.4.3 concludes the proof.

Theorem E.5.1 (Theorem 6.4.1). Under assumptions 7.2.1 and 6.2.2, given a desired optimality gap α,
there exists a set of hyperparameters agnostic to the contamination level ε, such that Algorithm 2, using
Algorithm 3 as the linear regression solver, guarantees with a poly(1/α, 1/(1 − γ), |A|,W, σ, κ) sample
complexity that under ε-contamination, we have

E
[
V ∗(µ0)− V π̂(µ0)

] (E.106)

≤ Õ

(
max

[
α,

√
|A|κ (W 2 + σW )

(1− γ)4 ε1/4

])
.

where π̂ is the uniform mixture of π(1) through π(T ).

Proof of Theorem E.5.1. Denote z := 2W and again εstat ≤ (2W )2 = z2. Denote
(
W 2 + σW

1−γ

)
= b.

Notice that Lemma 6.4.1 only holds when ε(t) ≤ c for some absolute constant c, and there are at
most εT/c iterations in which ε(t) > c, which incurs at most εstat ≤ z2 error. Given this observation
we can now plugging Lemma 6.4.1 into Lemma 6.3.1, and we get

E

[
1
T

T∑
t=1
{V ∗(µ0)− V (t)(µ0)}

]
(E.107)

≤ W

1− γ

√
2 log|A|
T

+ 1
T

T∑
t=1

√
4|A|κε(t)stat
(1− γ)3 (E.108)

≤ W

1− γ

√
2 log|A|
T

+ z2

c
ε+ 1

T

T∑
t=1

√√√√4|A|κb
(√

ε(t) +
√

(d log d)/M +
√

log(1/τ)/M + τ
)

(1− γ)3 (E.109)

≤ W

1− γ

√
2 log|A|
T

+ z2

c
ε+

√√√√4|A|κb
(√

(d log d)/M +
√

log(1/τ)/M + τ
)

(1− γ)3 + 1
T

T∑
t=1

√
4|A|κb

√
ε(t)

(1− γ)3(E.110)

≤ W

1− γ

√
2 log|A|
T

+ z2

c
ε+

√√√√4|A|κb
(√

(d log d)/M +
√

log(1/τ)/M + τ
)

(1− γ)3 +

√
4|A|κb

(1− γ)3 ε
1/4(E.111)
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where the last two steps are by Cauchy Schwarz and the fact that the attacker only has ε budget to
distribute, which implies that∑T

t=1 ε
(t) = Tε. Setting

T = 2W 2 log|A|
α2(1− γ)2 (E.112)

τ = α2(1− γ)3

4|A|bκ (E.113)

M = 16|A|2b2κ2

α4(1− γ)6 max [d log d, log(1/τ)] (E.114)

we get

E

[
1
T

T∑
t=1
{V ∗(µ0)− V (t)(µ0)}

]
≤ O

(
α+

√
|A|κb

(1− γ)3 ε
1/4

)
. (E.115)

with sample complexity

TM = 32W 2|A|2log|A|b2κ2

α6(1− γ)8 max [d log d, log(1/τ)] . (E.116)

E.6 Proof of Theorem 6.5.1

In PC-PG, aside from the robust linear regression step in Algorithm 9, in step 4 of Algorithm 4, we
also needs to robustly estimate the covariancematrix under ε-contamination. Luckily, by assumption,
φ(s, a) is bounded, and thus the current empirical mean estimation is already robust to adversarial
contamination:

Lemma E.6.1 (Robust variant of Lemma G.3 in [2]). Given ν ∈ ∆(S × A) and K ε-contaminated
samples from ν. Denote Σ = E(s,a)∼ν

[
φ(s, a)φ(s, a)>

]
. Then, with probability at least 1− δ, we have that

under ε-corruption

max
‖x‖≤1

∣∣∣∣∣x>
(

K∑
i=1

φ(si, ai)φ(si, ai)>/K − Σ
)
x

∣∣∣∣∣ ≤
√

8 log(8d/δ)
K

+ 2ε. (E.118)

Proof. Without contamination, Lemma G.3 in [2] shows that

max
‖x‖≤1

∣∣∣∣∣x>
(

K∑
i=1

φ(si, ai)φ(si, ai)>/K − Σ
)
x

∣∣∣∣∣ ≤ 2 log(8d/δ)
3K +

√
2 log(8d/δ)

K
. (E.119)
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Algorithm 9 Robust NPG Update
1: Input ρncov, bn, learning rate η, sample sizeM for critic fitting, iterations T
2: Define Kn = {s : ∀a ∈ A, bn(s, a) = 0}
3: Initialize policy π0 : S → ∆(A), such that

π0(·|s) =
{
Uniform(A) s ∈ Kn

Uniform({a ∈ A : bn(s, a) > 0}) s 6∈ Kn.

4: for t = 0→ T − 1 do
5: DrawM i.i.d samples

{
si, ai, Q̂

πt(si, ai; r + bn)
}M
i=1

with si, ai ∼ ρncov (see Alg 4)
6: Critic fit: Call Algorithm 3 to solve for the robust linear regression problem

θt = arg min
‖θ‖≤W

M∑
i=1

(
θ · φ(si, ai)−

(
Q̂π

t

(si, ai; r + bn)− bn(si, ai)
))2

7: Actor update

πt+1(·|s) ∝ πt(·|s) exp
(
η
(
bn(s, ·) + θt · φ(s, ·)

)
1{s ∈ Kn}

) (E.117)

8: return πn := Uniform{π0, ..., πT−1}.

Since both x and φ(s, a) has norm bounded by 1, the ε fraction of contaminated samples can only
bias the estimate by at most 2ε, i.e. with ε-contamination

max
‖x‖≤1

∣∣∣∣∣x>
(

K∑
i=1

φ(si, ai)φ(si, ai)>/K − Σ
)
x

∣∣∣∣∣ ≤
√

8 log(8d/δ)
K

+ 2ε. (E.120)

Lemma E.6.2 (Lemma G.4 in [2]). Denote η(K) =
√

8 log(8d/δ)
K + 2ε. Then, under ε-contamination,

φ(s, a)>(Σncov)−1φ(s, a) ≤ β is guaranteed with probability 1− δ, if Nη(K) ≤ λ/2.

Lemma E.6.3 (variant of Lemma C.2 in [2]). Assuming that for all iterations n butm of them, we have
φ(s, a)>(Σncov)−1φ(s, a) ≤ β for (s, a) ∈ Kn, then

V ∗ − V π̂ ≤ 1
1− γ

(
2W
√

logA
T

+ 2
√
βλW 2 + 1

NT

N−1∑
n=0

T−1∑
t=0

2
√
βNε

(n,t)
stat + 2IN (λ)

βN
+ 2Hm

)
(E.121)

Proof. The proof follows exactly the proof of Lemma C.2 in [2], except that we note that for iterations
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in which the assumption is not satisfied, the worst-case loss is bounded:

1
T

T−1∑
t=0

(
E(s,a)∼d̃Mn

(
Atbn(s, a)− Âtbn(s, a)

)
1{s ∈ Kn}

)
≤ 2H (E.122)

Proof of Theorem 6.5.1. First of all, we need to upper-bound m. The condition in Lemma E.6.2 is
satisfied as long as 2ε(n) ≤ λ

4N andK ≥ 128N2 log(8d̃/δ)
λ2 . Also note that∑N−1

n=0 ε
(n) ≤ Nε, and thusm

is at most 8N2ε
λ .

Also, by Lemma E.3.1,

ε
(n,t)
stat ≤ 4

(
W 2 +WH

)(
ε(n,t) +

√
8
M

log 4d
δ

)
. (E.123)

Plugging both into Lemma E.6.3, we get

(E.124)
V ∗ − V π̂ ≤ 1

1− γ

2W
√

logA
T

+ 2
√
βλW 2 + 2

√√√√4 (W 2 +WH)βN
(
ε+

√
8
M

log 4d
δ

)

+ 2IN (λ)
βN

+ 16HN2ε

λ


Let

T = 4W 2 logA
(1− γ)2α2 , λ = 1, β = α2(1− γ)2

4W 2 , N = 4W 2d log(N + 1)
α3(1− γ)3 (E.125)

M =
2d2 log2(N + 1)(W 2 +WH)2 log( 4d

δ )
α6(1− γ)6 , K = 128N2 log(8d̃/δ) (E.126)

Then, (E.124) gives

V ∗ − V π̂ ≤ 4α+

√
16(W 2WH)d log(N + 1)

α(1− γ)3 ε+ 256HW 4d2 log2(N + 1)
α6(1− γ)6 ε (E.127)

Let α = ε1/7, then

V ∗ − V π̂ ≤ 4ε1/7 +

√
16(W 2WH)d log(N + 1)

(1− γ)3 ε3/7 + 256HW 4d2 log2(N + 1)
(1− γ)6 ε1/7(E.128)

≤ Õ(d2ε1/7) (E.129)
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Algorithm 10 FPG-TRPO
1: Input: initial policy parameter θ0; initial value function parameter φ0.
2: Hyperparameters: KL-divergence limit δ; backtracking coefficient α; maximum number of

backtracking stepsK; upper-bound of corruption level ε; episode length H ; batch sizeM .
3: for k = 0, 1, . . . do
4: Collect set ofM trajectories Dk = {τi}1:M by running policy πk = π(θk) in the environment.
5: Compute rewards-to-go R̂t,i =

∑H
h=t γ

h−trh,i.
6: Using GAE to compute advantage estimate Ât,i based on the current value function Vφk .
7: Compute and save ĝt,i = ∇θ log πθ(at,i, st,i)|θk for all t = 1 : H and i = 1 : M .
8: Call the filtered conjugate gradient algorithm in Alg. 11 to get Sk ⊂ [M ] × [H], x̂k =
FCG(ĝt,i, Ât,i).

9: Compute policy gradient estimate ĝk = 1
|Sk|

∑
(t,i)∈Sk ĝt,iÂt,i.

10: Update the policy by backtracking line search with

θk+1 = θk + αj

√
2δ
x̂kĝk

x̂k (E.130)

where j ∈ {0, 1, 2, ...,K} is the smallest value which improves the sample loss and satisfies the
sample KL-divergence constraint.

11: Fit the value function by regression on mean-squared error on the filtered trajectories Sk:

φk+1 = arg min
φ

1
|Sk|

∑
(t,i)∈Sk

(
Vφ(st,i)− R̂t,i

)2
(E.131)

In practice, one often only take a few gradient steps in each iteration k, instead of optimizing to
convergence.

This concludes the proof.

E.7 Implementation Details of FPG-TRPO

In the experiment, we use a TRPO variant of FPG implementation, which differs from Alg. 2 in
several ways:

1. Most existing TRPO implementation uses the conjugate gradient (CG) method instead of
linear regression to solve for the matrix inverse vector product problem. We follow this
convention and design FPG-TRPO to use a filtered conjugate gradient (FCG) subroutine to
replace the standard CG produce. The FPG procedure is detailed in Alg. 11. At a high level
FCG performs a filtering algorithm (a.k.a. outlier removal) on the residues of CG with respect
to each data point.
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Algorithm 11 Filtered Conjugate Gradient (FCG)
1: Input: ĝt,i, Ât,i
2: Hyperparameters: Number of iterations r (default r = 4), fraction of data filtered in each

iteration p (default p = ε/2, i.e. filter out 2ε data in total).
3: Initialize S = {1, 2, . . . ,M}.
4: for k = 1, . . . , r do
5: Call standard CG to solve for x̂ = F̂−1ĝ, where F̂ = 1

S

∑
(t,i)∈S ĝt,iĝ

>
t,i and ĝ =

1
S

∑
(t,i)∈S ĝt,iÂt,i.

6: Compute the residues rt,i = ĝt,iĝ
>
t,ix̂ − ĝt,iÂt,i for (t, i) ∈ S and save in a matrix G of size

d× |S|.
7: Let v be the top right singular vector of G.
8: Compute the vector τ of outlier scores defined via τt,i =

(
r>t,iv

)2.
9: Remove (HMp) number of (t, i) pair with the largest outlier scores from S.
10: Call standard CG one more time and return (S, x̂).

2. Again following existing TRPO implementations, FPG-TRPO builds another network to es-
timate the value function for the purpose of variance reduction, effectively resulting in an
actor-critic algorithm. Instead of performing robust learning procedure on both policy and
value function learning, we perform the main filtering algorithm on the policy learning proce-
dure (the CG step discussed above), which also returns a filtered subset of data as a by-product.
We then use this filtered subset of data to perform the rest of the learning procedure, including
value function update and the sample loss estimation in backtracking line search. This allows
us to perform the robust learning procedure only once per PG iteration.

3. FPG-TRPO uses a deterministic variant of the filtering algorithm suggested in [50], which
empirically performs better and is simpler to implement than the stochastic variant used for
theoretical analysis. Specifically, the filtering algorithm will simply remove a fixed fraction of
points with the largest deviation along the top singular value direction (step 9 of Alg. 11).

The pseudo-code of FPG-TRPO can be found in Alg. 10. Similar to the NPG variant of FPG, the only
difference between Alg. 10 and a standard TRPO implementation is the replacement of the CG
subroutine with the FCG subroutine. This modular implementation allows one to easily replace
Alg. 11 with any state-of-the-art robust CG procedure in the future. Table E.1 lists all the hyper-
parameters we used in our experiments, which are taken from open-source implementations of
TRPO tuned for theMuJoCo environments. Our code to reproduce the experiment result is included
in the supplementary material and will be open-sourced. Finally, Figure E.1 presents the detailed
results on all experiments, completing the partial results shown in Figure 6.3.
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Parameters Values Description
γ 0.995 discounting factor.
λ 0.97 GAE parameter [149].
l2-reg 0.001 L2 regularization weight in value loss.
δ 0.01 KL constraint in TRPO.
damping 0.1 damping factor in conjugate gradient.
batch-size 25000 number of time steps per policy gradient iteration.
α 0.5 backtracking coefficient.
K 10 maximum number of backtracking steps.

Table E.1: Hyperparameters for FPG-TRPO.
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Figure E.1: Detailed Results on the MuJoCo benchmarks.
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f appendix for chapter 7

F.1 Basics

Lemma F.1.1. ‖w∗h‖≤ H
√
d for all h.

Proof. By definition, we have
w∗h = θ +

∫
S
V̂h+1(s′)µh(s′)ds′ (F.1)

and thus

‖w∗h‖ ≤ ‖θ‖+‖
∫
S
V̂h+1(s′)µh(s′)ds′‖ (F.2)

≤ ‖θ‖+
∫
S
‖V̂h+1(s′)µh(s′)‖ds′ (F.3)

≤
√
d+ (H − h+ 1)

√
d (F.4)

≤ H
√
d. (F.5)

Lemma F.1.2. Note that E[[(r(s, a) + V̂ (s′))− (BhV̂ )(s, a)]2|s, a] ≤ γ2 = (σ +H/2)2

Proof.

V ar(X + Y ) = V ar(X) + V ar(Y ) + 2Cov(X,Y ) ≤ V ar(X) + V ar(Y ) + 2
√
V ar(X)V ar(Y )

Because 0 ≤ V̂ (s′) ≤ H ,

E[(V̂ (s′)− E[V̂ (s′)|s, a])2|s, a] = E[V̂ (s′)2|s, a]− E[V̂ (s′)|s, a]2 (F.6)

≤HE[V̂ (s′)|s, a]− E[V̂ (s′)|s, a]2 ≤ H2

4 . (F.7)
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E[[(r(s, a) + V̂ (s′))− (BhV̂ )(s, a)]2|s, a] (F.8)
=E[[(r(s, a) + V̂ (s′))− E[r(s, a) + V̂ (s′)|s, a]]2|s, a] (F.9)
=E[(r(s, a)− E[r(s, a)|s, a])2|s, a] + E[(V̂ (s′)− E[V̂ (s′)|s, a])2|s, a] (F.10)

+ 2E[(r(s, a)− E[r(s, a)|s, a])(V̂ (s′)− E[V̂ (s′)|s, a])|s, a] (F.11)
≤E[(r(s, a)− E[r(s, a)|s, a])2|s, a] + E[(V̂ (s′)− E[V̂ (s′)|s, a])2|s, a] (F.12)

+ 2
√
E[(r(s, a)− E[r(s, a)|s, a])2|s, a]E[(V̂ (s′)− E[V̂ (s′)|s, a])2|s, a] (By Cauchy’s Ineq)

(F.13)

=V ar(r(s, a) | (s, a)) + V ar(V̂ (s′) | (s, a)) + 2
√
V ar(r(s, a) | (s, a))V ar(V̂ (s′) | (s, a)) (F.14)

=
(√

V ar(r(s, a) | (s, a)) +
√
V ar(V̂ (s′) | (s, a))

)2
≤ (σ +H/2)2 (F.15)

]

F.2 Proof of the Minimax Lower-bound

Proof of Theorem 7.3.1. Given any dimension d, time horizonH , consider a tabular MDP with action
space size A > 2 and state space size S ≤ (A2 )H/2 s.t. SA = d. Consider a “tree” with self-loops,
which has S nodes and depth dlogA/2

(
S
(
A
2 − 1

)
+ 1
)
e. There is 1 node at the first level, A2 nodes at

the second level, (A2 )2 nodes at the third level, . . . , (A2 )dlogA/2(S(A2 −1)+1)e−2 nodes at the second to
last level. The rest nodes are all at the last level. Define the MDP induced by this graph, where each
state corresponds to a node, and each action corresponds to an edge. The agent always starts from
the first level. For each state at the first dlogA/2

(
S
(
A
2 − 1

)
+ 1
)
e−2 levels, there areA/2 actions that

leads to child nodes, and the rest leads back to that state, i.e. self-loops. The leaf states are absorbing
state, i.e. all actions lead to self-loops. Denote this transition structure as P . Let’s consider twoMDPs
with the same transition structure and different reward function, i.e. M = (P,R),M ′ = (P,R′).

For MDP M , define R(s∗, a∗) = Bernoulli(SAε/2) on one particular (s∗, a∗) pair, where s∗
is a leaf state at the last level, a∗ is a self-loop action. Every other (s, a) pair receive reward 0.
Let (s′, a′) = arg min(s,a) ν(s, a) be the state-action pair appears least often in the data collecting
distribution. For MCPM ′, define R′(s∗, a∗) = Bernoulli(SAε/2), R′(s′, a′) = Bernoulli(SAε) and 0
everywhere else. Then, it can be easily verified that: onM , the expected cumulative reward of the
optimal policy is

(
H − dlogA/2

(
S
(
A
2 − 1

)
+ 1
)
e
)
SAε/2; onM ′, the expected cumulative reward of

the optimal policy is at least
(
H − dlogA/2

(
S
(
A
2 − 1

)
+ 1
)
e
)
SAε; no policy can be simultaneously

better than
(
H − dlogA/2

(
S
(
A
2 − 1

)
+ 1
)
e
)
SAε/4-optimal on bothM andM ′. Note that because
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S ≤
(
A
2
)H/2, (

H − dlogA/2
(
S

(
A

2 − 1
)

+ 1
)
e
)
SAε/4 = Ω(HSAε). (F.16)

With probability at least 1/2, we haveN(s′, a′) ≤ Tν(s′, a′) ≤ T/SA by the pigeonhole principle.
Conditioning on N(s′, a′) ≤ T/SA, with probability at least 1/2, the amount of positive reward
r(s′, a′) will not exceed SAεN(s′, a′) ≤ εT , and thus an ε-contamination adversary can perturb all
the positive rewards on (s′, a′) to 0. In other words, with probability 1/4, the learner will observe a
dataset whose likelihood underM and (M ′ + ε-contamination) are exactly the same, and thus the
learner must suffer at least Ω(HSAε) regret on one of the MDPs.

F.3 Proof of Upper-bounds

Proof of Lemma 7.3.2. Applying Lemma F.6.2 with π = π̂, π′ = π̃, and {Q̂h}Hh=1 being the Q-functions
constructed by the meta-algorithm, we have

V̂1(s)− V π̃1 (s) =
H∑
h=1

Eπ̃
[
〈Q̂h(sh, ·), π̂h(·|sh)− π̃h(·|sh)〉A|s1 = s

]
+

H∑
h=1

Eπ̃
[
Q̂h(sh, ah)− (BhV̂h+1)(sh, ah)|s1 = s

]
(F.17)

Similarly, applying Lemma F.6.2 with π = π′ = π̂, we have

V̂1(s)− V π̂1 (s) =
H∑
h=1

Eπ̂
[
Q̂h(sh, ah)− (BhV̂h+1)(sh, ah)|s1 = s

]
(F.18)

Then, we have

SubOpt(π̂, π̃) =
(
V π̂1 (µ)− V̂1(µ)

)
+
(
V̂1(µ)− V π̂1 (µ)

)
(F.19)

=−
H∑
h=1

Eπ̃
[
(BhV̂h+1)− Q̂h

]
+

H∑
h=1

Eπ̃
[
(BhV̂h+1)− Q̂h

]
(F.20)

+
H∑
h=1

Eπ̃
[
〈Q̂h(sh, ·), π̃h(·|sh)− π̂h(·|sh)〉A

]
(F.21)

≤0 + 2
H∑
h=1

Eπ̃[Γh(s, a)] + 0 (F.22)

=2
H∑
h=1

Eπ̃[Γh(s, a)] (F.23)
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as needed.

Proof of Theorem 7.3.3. To simplify notation, below we use N for the number of data points per time
step, i.e. N := N/H . We first show that

|Q̂h(s, a)− (BhV̂h+1)(s, a)|≤ Γ(s, a). (F.24)

The robust least-square oracle guarantees

Eν
(
‖x>(ŵ − w∗)‖22

)
≤ c2(δ) ·

(
γ2poly(d)

N
+ γ2ε

)
(F.25)

=⇒ ‖ŵh − w∗h‖2Σ ≤ c2(δ) ·
(
γ2poly(d)

N
+ γ2ε

)
(F.26)

=⇒ ‖ŵh − w∗h‖2Σ+(2ε+λ)I ≤ c2(δ) ·
(
γ2poly(d)

N
+ γ2ε+ (2ε+ λ)H2d

)
(F.27)

Then,

|Q̂h(s, a)− (BhV̂h+1)(s, a)| = |φ(s, a)(ŵh − w∗h)| (F.28)
≤ ‖ŵh − w∗h‖(Σ+(2ε+λ)I)‖φ(s, a)‖(Σ+(2ε+λ)I)−1 (F.29)

≤

√
c2(δ) ·

(
γ2poly(d)

N
+ γ2ε+ (2ε+ λ)H2d

)
‖φ(s, a)‖(Σ+(2ε+λ)I)−1

(F.30)

≤
√
c2(δ) ·

(
γpoly(d)√

N
+ (γ + 2H

√
d)
√
ε+H

√
dλ)
)
‖φ(s, a)‖Λ−1

(F.31)

where the last step are due toW ≤ H
√
d and

Λ =3
5

(
1
N

N∑
i=1

φiφ
>
i + (ε+ λ) · I

)
(F.32)

�3
5

(
1
N

N∑
i=1

φ̃iφ̃
>
i + (2ε+ λ) · I

)
(F.33)

� (Σ + (2ε+ λ) · I) (F.34)

where the last step applies Lemma F.6.3 because N(2ε+ λ) ≥ Ω(d log(N/δ)) due to the definition of
λ and ε ≥ 0.
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Next, we show that Algorithm 5 achieves the desired optimality gap. By Lemma 7.3.2, we have

SubOpt(π̂) ≤ 2HEπ∗ [Γ(s, a)] (F.35)

≤
√
c2(δ) ·

(
γHpoly(d)√

N
+ (Hγ + 2H2

√
d)
√
ε+H2

√
dλ

)
Eπ∗ [‖φ(s, a)‖Λ−1 ] (F.36)

Focusing on the last term, applying Lemma F.6.3 again, we have

Ed∗ [‖φ(s, a)‖Λ−1 ] ≤Ed∗ [‖φ(s, a)‖( 1
5 (Σ+λI))−1 ] (F.37)

=Ed∗
[√

φ>(1
5(Σ + λI))−1φ

]
(F.38)

≤
√
Ed∗ [φ>(1

5(Σ + λI))−1φ] (F.39)

≤

√
tr

(
Σ∗(

1
5(Σ + λI))−1

)
(F.40)

≤

√
κtr

(
Σ(1

5(Σ + λI))−1
)

(F.41)

≤

√√√√5κ
d∑
i=1

σi
σi + λ

(F.42)

≤
√

5dκ (F.43)

Combining the two terms give the desired results.

F.4 Proof of uncorrupted learning results

In this section, we prove the conclusion in Corollary 7.3.1 and 7.3.2. The proof follows closely the
classic analysis of Least Squared Value Iteration (LSVI) methods with the only difference being the
data splitting which allows us to ditch the covering argument and obtain a tighter bound. Such a
trick is only possible in the offline setting where the data are assumed to be i.i.d. For completeness,
we specify the uncorrupted algorithm in Alg. 12.



152

Algorithm 12 Uncorrupted Least-Square Value Iteration (R-LSVI)
1: Input: Dataset D = {(si, ai, ri, s′i)}1:N ; pessimism bonus Γh(s, a) ≥ 0, λ > 0.
2: Split the dataset randomly into H subset: Dh = {(shi , ahi , rhi , s′hi )}1:(N/H), for h ∈ [H].
3: Initialization: Set V̂H+1(s)← 0.
4: for step h = H,H − 1, . . . , 1 do
5: Set Λh ← H

N

∑N/H
i=1 φ(shi , ahi )φ(shi , ahi )> + λ · I .

6: Set ŵh ← Λ−1
h (HN

∑N/H
i=1 φ(shi , ahi ) · (rhi + V̂h+1(sh+1

i ))).
7: Set Q̂h(s, a)← φ(s, a)>ŵh − Γh(s, a), clipped within [0, H − h+ 1].
8: Set π̂h(a|s)← arg maxa Q̂h(s, a) and V̂h(s)← maxa Q̂h(s, a).
9: Output: {π̂h}Hh=1.

We first prove the following lemma:

Lemma F.4.1 (Bound on the Bellman Error). Under assumption 7.2.1, given a dataset of sizeN , Algorithm
5 achieves

|(BhV̂h+1)(s, a)− Q̂h(s, a)|≤ H
(
√
d · λ+

√
Hd log(N/δλ)

N

)
·
√
φ(x, a)>Λ−1

h φ(x, a)

for all (s, a, h) ∈ S ×A× [H], with probability at least 1− δ.

Proof. We start by applying the following decomposition

(BhV̂h+1)(s, a)− Q̂h(s, a) (F.44)
=(BhV̂h+1)(s, a)− (B̂hV̂h+1)(s, a) (F.45)

=φ(s, a)>wh − φ(s, a)>Λ−1
h

H
N

N/H∑
i=1

φ(si, ai) · (BhV̂h+1)(si, ai)


︸ ︷︷ ︸

(i)

− (F.46)

φ(s, a)>Λ−1
h

H
N

N/H∑
i=1

φ(si, ai) ·
(
ri + V̂h+1(s′i)− (BhV̂h+1)(si, ai)

)
︸ ︷︷ ︸

(ii)

(F.47)

Therefore, by triangle inequality we have

|(BhV̂h+1)(s, a)− Q̂h(s, a)|≤ |(i)|+|(ii)| (F.48)
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Then, we bound the two terms separately:

|(i)| =

∣∣∣∣∣∣φ(s, a)>wh − φ(s, a)>Λ−1
h

H
N

N/H∑
i=1

φ(si, ai) · φ(si, ai)>wh

∣∣∣∣∣∣
=
∣∣φ(s, a)>wh − φ(s, a)>Λ−1

h (Λh − λ · I)wh| = λ · |φ(s, a)>Λ−1
h wh

∣∣
≤ λ · ‖wh‖Λ−1

h
·‖φ(s, a)‖Λ−1

h
≤ H
√
d · λ ·

√
φ(s, a)>Λ−1

h φ(s, a).

For the second term, define

εhi (V ) = rhi + V (sh′i )− (BhV )(shi , ahi ) (F.49)

Then, we have

|(ii)| =

∣∣∣∣∣∣φ(s, a)>Λ−1
h

H
N

N/H∑
i=1

φ(si, ai) · εhi (V̂h+1)

∣∣∣∣∣∣
≤
∥∥∥H
N

N/H∑
i=1

φ(si, ai) · εhi (V̂h+1)
∥∥∥

Λ−1
h︸ ︷︷ ︸

(iii)

·
√
φ(x, a)>Λ−1

h φ(x, a). (F.50)

From here, because of our data splitting, V̂h+1 is independent from Dh, and thus we can bypass the
covering argument and directly apply matrix concentrations. In particular, by applying Lemma
F.6.1, we have that with probability at least 1− δ

(iii) ≤ H
√
Hd log(1 +N/Hλ) + 2H log(1/δ)

N
(F.51)

Combining the two terms gives

|(BhV̂h+1)(s, a)− Q̂h(s, a)|≤ H
(
√
d · λ+

√
Hd log(N/δλ)

N

)
·
√
φ(x, a)>Λ−1

h φ(x, a) (F.52)

Now, given Lemma F.4.1, applying Lemma 7.3.2, we have

SubOpt(π̂, π̃) ≤ 2
H∑
h=1

Edπ̃ [Γh(s, a)] ≤ 2H2

(
√
d · λ+

√
Hd log(N/δλ)

N

)
·Edπ̃ [

√
φ(x, a)>Λ−1

h φ(x, a)]

(F.53)
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The last step would be to bound Edπ̃ [
√
φ(x, a)>Λ−1

h φ(x, a)], similar to the last section. In partic-
ular, applying Lemma F.6.3, we have

Edπ̃
[√

φ(x, a)>Λ−1
h φ(x, a)

]
≤Edπ̃

[√
3φ(x, a)>(Σ + λI)φ(x, a)

]
(F.54)

≤
√

3Edπ̃ [φ(x, a)>(Σ + λ · I)φ(x, a)] (F.55)
≤
√

3dκ (F.56)

where step F.54 requires λ ≥ HΩ(d log(N/δ))/N . Thus,

SubOpt(π̂, π̃) ≤2H2
(√

d · λ+
√
Hd log(N/δλ)

)√3dκ
N

(F.57)

≤Õ

(
H2
(
d
√

log(N/δ) +
√
Hd log(N/(dδ))

)√3dκ
N

)
(F.58)

F.5 Lower-bound on best-of-both-world results

Proof of Theorem 7.3.4. Consider two instances of the offline RL problem, with two MDPs,M and
M ′, both of which are actually simple two-arm bandit problems, along with their data generating
distribution ν and ν′, defined below.

1. Instance 1: BanditM has r1 = Bernoulli( 1
2 + ε

2p ) and r2 = Bernoulli( 1
2 ). The data generating

distribution is ν(a1) = p and ν(a2) = 1− p. The relative condition number is 1/p.

2. Instance 2: BanditM has r1 = Bernoulli( 1
2 −

ε
2p ) and r2 = Bernoulli( 1

2 ). The data generating
distribution is ν(a1) = p and ν(a2) = 1− p, same as instance 1. The relative condition number
is 1/(1− p).

Let D and D′ be i.i.d. dataset of size N generated by instance 1 and 2 respectively, generated with
the following coupling process. First, the actions are sampled from ν and shared across instances, e.g.
ND(a1) = ND′(a1) and ND(a2) = ND′(a2). Then, the rewards of a2 are sampled from Bernoulli( 1

2 )
and shared across tasks, e.g. ND(a2, 0) = ND′(a2, 0) and ND(a2, 1) = ND′(a2, 1).

Finally, letXi, Yi be Bernoulli randomvariables s.t. Xi =

0 U ≤ 1
2 −

ε
2p

1 o.w.
, Yi =

0 U ≤ 1
2 + ε

2p

1 o.w.
,

where U is picked uniformly random in [0, 1]. Then (Xi, Yi) is a coupling with law: P ((Xi, Yi) =
(0, 0)) = 1

2 −
ε

2p , P ((Xi, Yi) = (1, 0)) = 0, P ((Xi, Yi) = (0, 1)) = ε
2p , P ((Xi, Yi) = (s3, s3)) = 1

2 −
ε

2p ,
Xi and Yi can be thought as the outcome of Bernoulli( 1

2 + ε
2p ), Bernoulli( 1

2 + ε
2p ) respectively. Then,
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let the rewards of a1 of the two instances be generated by Yi and Xi respectively. We then have

P (
N(a1)∑
i=1

1 [Xi 6= Yi]) ≥ P (N(a1) ≤ pN) · P (
pN∑
i=1

1 [Xi 6= Yi]) ≥
1
2 ·

1
2 = 1

4 (F.59)

In otherword, with probability at least 1
4 , instance 1 and 2 are indistinguishable under ε-contamination,

in particular the adversary can replace at most εN of (a1, 0) with (a1, 1) in D′ to replicate D. There-
fore, instance 1 and (instance 2 + ε-contamination) are with probability at least 1/4 indistinguishable.
Now, if an algorithm wants to achieve best of both world guarantee, it must return a1 as the optimal
arm with high probability when observing a dataset generated as above, in which case it will suffer
a suboptimality of ε

2p if the data is generated by (instance 2 + ε-contamination). As p ≥ ε ≥ 0
goes to 0, this gap blows up, while the relative condition number 1/(1− p) remains bounded, thus
contradiction.

F.6 Technical Lemmas

Lemma F.6.1 (Concentration of Self-Normalized Processes [1]). Let {εt}∞t=1 be a real-valued stochastic
process that is adaptive to a filtration {Ft}∞t=0. That is, εt is Ft-measurable for all t ≥ 1. Moreover, we
assume that, for any t ≥ 1, conditioning on Ft−1, εt is a zero-mean and σ-subGaussian random variable
such that

E[εt|Ft−1] = 0 and E[exp(λεt)|Ft−1] ≤ exp(λ2σ2/2), ∀λ ∈ R. (F.60)

Besides, let {φt}∞t=1 be an Rd-valued stochastic process such that φt is Ft−1-measurable for all t ≥ 1. Let
M0 ∈ Rd×d be a deterministic and positive-definite matrix, and we defineMt = M0 +

∑t
s=1 φsφ

>
s for all

t ≥ 1. Then for any δ > 0, with probability at least 1− δ, we have for all t ≥ 1 that

∥∥∥ t∑
s=1

φs · εs
∥∥∥2

M−1
t

≤ 2σ2 · log
(

det(Mt)1/2 det(M0)−1/2

δ

)
.

Lemma F.6.2 (Extended Value Difference [35]). Let π = {πh}Hh=1 and π′ = {π′h}Hh=1 be two arbitrary
policies and let {Q̂h}Hh=1 be any given Q-functions. For any h ∈ [H], we define a value function V̂h:S → R
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by letting V̂h(x) = 〈Q̂h(x, ·), πh(·|x)〉A for all s ∈ S. Then for all s ∈ S, we have

V̂1(s)− V π
′

1 (s) =
H∑
h=1

Eπ′
[
〈Q̂h(sh, ·), πh(·|sh)− π′h(·|sh)〉A|s1 = s

]
(F.61)

+
H∑
h=1

Eπ′
[
Q̂h(sh, ah)− (BhV̂h+1)(sh, ah)|s1 = s

]
, (F.62)

where the expectation Eπ′ is taken with respect to the trajectory generated by π′, and Bh is the Bellman
operator.

Lemma F.6.3 (Concentration of Covariances [181]). Let {φi}1:N ⊂ Rd be i.i.d. samples from an
underlying bounded distribution ν, with ‖φi‖i≤ 1 and covariance Σ. Define

Λ =
N∑
i=1

φiφ
>
i + λ · I (F.63)

for some λ ≥ Ω(d log(N/δ)). Then, we have that with probability at least (1− δ),

1
3(NΣ + λI) � Λ � 5

3(NΣ + λI) (F.64)

Proof. See [181] Lemma 32 for detailed proof.
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