
ROBUST DECISION-MAKING UNDER DATA CORRUPTION

by

Yiding Chen

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2023

Date of final oral examination: 12/19/2023

The dissertation is approved by the following members of the Final Oral Committee:
Yudong Chen, Associate Professor, Computer Sciences
Kirthevasan Kandasamy, Assistant Professor, Computer Sciences
Qiaomin Xie, Assistant Professor, Industrial and Systems Engineering
Xiaojin Zhu, Professor, Computer Sciences

© Copyright by Yiding Chen 2023
All Rights Reserved

i

To my parents, Jianzhang Chen and Xuefeng Ding

ii
contents

Contents ii

List of Tables vi

List of Figures vii

1 Introduction 1

2 The High Level Ideas 4
2.1 Reinforcement Learning 4
2.2 Robust Statistics 5
2.3 Attack and Defense in Reinforcement Learning 6

3 Robust Online Reinforcement Learning 11
3.1 Introduction 11
3.2 Related Work 13
3.3 Problem Definitions 16
3.4 The natural robustness of NPG against bounded corruption 21
3.5 FPG: Robust NPG against unbounded corruption 23
3.6 Experiments 26
3.7 Discussions 29

4 Robust Offline Reinforcement Learning 30
4.1 Introduction 30
4.2 Preliminaries 33
4.3 Algorithms and Main Results 36
4.4 Discussions and Conclusion 48

5 Byzantine-Robust Reinforcement Learning 50
5.1 Introduction 50

iii
5.2 Related Work 52
5.3 Robust Mean Estimation From Untruthful Batches 54
5.4 Byzantine-Robust RL in Parallel MDPS 57
5.5 Byzantine-Robust Online RL 59
5.6 Byzantine-Robust Offline RL 62
5.7 Conclusion 67

6 Robust Gap-Dependent Reinforcement Learning 70
6.1 Introduction 70
6.2 Related Work 71
6.3 Preliminary 73
6.4 Sufficient Condition for Exact Optimal Policy Recovery in Offline RL 75
6.5 Case Studies 77
6.6 Comparison between Different Optimality Conditions 87
6.7 Conclusion 89

7 Perturbation Stability in Two-player Zero-sum Games 90
7.1 Introduction 90
7.2 Related Works 92
7.3 Preliminary 93
7.4 Main Results: Conditions for Nash Recovery 96
7.5 Applications to Corruption-Robust Offline Learning101
7.6 Conclusion107

8 Mechanism Design in Normal Mean Estimation108
8.1 Introduction108
8.2 Problem Setup113
8.3 Method and Results119
8.4 Special Cases: Restricting the Agents’ Strategy Space125
8.5 Conclusion128

9 Future Work129

iv
References131

A Appendix for Chapter 3155
A.1 Additional Related Work155
A.2 Proof for lower bound result156
A.3 Property of Q̂(s, a) sampled from Algorithm 1157
A.4 Proofs for Section 3.4.159
A.5 A modified analysis for SEVER163
A.6 Proofs for Section 3.5176
A.7 Implementation Details of FPG-TRPO179

B Appendix for Chapter 4184
B.1 Basics184
B.2 Proof of the Minimax Lower-bound185
B.3 Proof of Upper-bounds186
B.4 Proof of uncorrupted learning results189
B.5 Lower-bound on best-of-both-world results192
B.6 Technical Lemmas194

C Appendix for Chapter 5196
C.1 More Discussion on page 56:COW 196
C.2 Proof of Theorem 5.3.1197
C.3 Proof of Theorem 5.5.1207
C.4 Proof of Theorem 5.6.1238
C.5 Useful Inequalities242

D Appendix for Chapter 6246
D.1 Deferred Algorithms246
D.2 Proof of Proposition 6.3.1246
D.3 Proof of Theorem 6.4.1247
D.4 Proof of Theorem 6.4.2251
D.5 Proof of Proposition 6.5.1252

v
D.6 Proof of Proposition 6.5.2253
D.7 Theorem 6.5.4254
D.8 Useful results264

E Appendix for Chapter 7265
E.1 General Guarantee in the Value Space265
E.2 Proof of Lemma 7.4.1266
E.3 Proof of Theorem 7.4.2266
E.4 Proof of Theorem 7.4.3274
E.5 Proof of Theorem 7.4.4274
E.6 Proof of Proposition 7.5.1279
E.7 Useful Results279

F Appendix for Chapter 8288
F.1 Proof of Theorem 8.3.1288
F.2 Proof of Theorem 8.4.1304
F.3 Proof of Theorem 8.4.2 306
F.4 Additional Materials for Section 8.4 313
F.5 High dimensional mean estimation with bounded variance315
F.6 Application to Bayesian Settings321
F.7 Useful Results322

vi
list of tables

A.1 Hyperparameters for FPG-TRPO. 182

vii
list of figures

3.1 Experiment Results on the 6 MuJoTo benchmarks. 25
3.2 Consecutive Frames of Half-Cheetah trained with TRPO (top row) and

FPG (bottom row) respectively under δ = 100 attack. TRPO was fooled
to learn a ”running backward” policy, contrasted with the normal ”run-
ning forward” policy learned by FPG. 27

3.3 Detailed Results on Humanoid-v3. 27

4.1 bonus size simulation . 46

A.1 Detailed Results on the MuJoCo benchmarks. 183

F.1 Plot for G
((

1 + Cm
m

)
σ1/2

(cm)1/4

)
. See G_em_plot.py. The discontinuity at

m = 20 is due to the different values for Cm when m ≤ 20 and when
m > 20. 290

F.2 E(m) plot. See G_em_plot.py. 320

1
1 introduction

In this thesis, we study robust decision-making under data corruption. In its most
general setting, the learner seeks to determine a “good” decision, which can be a
proficient policy in reinforcement learning or a nearly-optimal strategy in a zero-
sum game. Operating within an unknown environment, the learner relies on data
for insights. However, unlike conventional learning settings, a formidable adversary
is introduced, capable of manipulating a portion of the dataset, compelling the
learner to grapple with a compromised information source.

Data corruption introduces a formidable threat to sequential decision-making
processes. The adversary’s capacity to manipulate data opens avenues for mislead-
ing the agent into making suboptimal decisions, particularly in security-sensitive
applications. Examples range from data manipulation causing the collision of self-
driving vehicles Behzadan and Munir (2019), to Twitter users misleading chatbots
into expressing misogynistic and racist remarks Neff and Nagy (2016), and adver-
saries compromising forward collision warning systems through false or delayed
alerts Ma et al. (2021). Recognizing the severe consequences of data corruption, it
becomes imperative to identify effective defense strategies.

There are three entities in this learning setting: the environment, the adversary,
and the learner. The environment generates data, the learner selects a learning
strategy, and the adversary crafts an attack strategy. Observing the dataset, the ad-
versary generates a corrupted version based on the attack strategy, and the learner,
oblivious to the attack strategy, must navigate the complexities of learning from
this corrupted dataset. Crucially, the learner lacks visibility into the attack strat-
egy, rendering reverse engineering and recovery of the original data unattainable.
Conversely, the adversary adapts its attack strategy based on the observed learning
strategy.

The presence of data corruption amplifies the complexities of decision-making.
Traditional methods falter in the face of data corruption. To illustrate, mean esti-
mation serves as a foundational problem in decision-making. For example, in the
multi-armed bandit, the learner relies on a good mean estimation to evaluate an

2
arm. Given i.i.d. samples x1, x2, . . . , xN from some Gaussian distribution N (µ, σ2),
empirical mean estimator has an error upper bounded by Õ(σ√

N
). Nonetheless,

empirical mean estimation is vulnerable to data corruption: when as few as one
data point is corrupted, the estimation error can be arbitrarily large because the
adversary can mislead the empirical mean estimation to output an arbitrary value.
As a result, the attacker’s ability to alter the empirical mean, even with a single
manipulated data point, can mislead the learner into choosing suboptimal arms.

Robust statistics emerge as a robust defense against data corruption, particularly
in the context of robust mean estimation Huber (1992). By mitigating the influence
of outliers, robust statistics exhibit minimal estimation error even in the presence
of potentially unbounded data corruption. For example, when ε-fraction of the
Gaussian samples are corrupted, trimmed-mean estimation achieves an error rate
Õ
(
σε
√

log 1
ε

+ σ√
N

)
by removing the left and right tails Lugosi and Mendelson

(2021). Even in scenarios where the corrupted data is unbounded, the error rate
remains manageable. This error rate consists of data corruption effects and statistical
errors due to finite samples.

Extending this insight to complex decision-making problems, such as reinforce-
ment learning and two-player zero-sum games, robust statistics emerge as a potent
defense. By applying robust mean estimation, the impact of corrupted data is miti-
gated, enabling the learner to identify nearly-optimal choices with sufficient data.
However, various challenges and opportunities arise in specific problem settings:

• In online reinforcement learning, where the adversary strategically designs
attacks within a fixed budget, a comprehensive defense strategy must account
for diverse attack scenarios. Possible attack patterns include: 1. concentrating
the data corruption in the initial stages to mislead the exploration; 2. postpon-
ing the attacks until the end of the learning process to corrupt the final model; 3.
uniformly distributes data corruption across the entire learning process. We
resolve this online data corruption challenge by presenting a robust version
of policy gradient algorithm in Chapter 3;

• In offline learning setting, the learner is given an offline dataset and can not

3
interact with the environment to get more information. The adversary may
strategically concentrate data corruption along some particular direction or
on certain state-action pairs. We study the corruption-robust offline learning
setting in Chapter 4;

• In a distributed learning environment comprising both regular learning
agents and adversarial agents, each fixed throughout the learning process,
corrupted data comes solely from the set of Byzantine agents. In contrast to
the standard setting, this additional information presents a batch structure to
enhance learner performance. An effective learning algorithm should leverage
this batch structure to improve robustness while managing communication
and switching costs inherent to the distributed nature of the problem. We
explore this Byzantine-robust distributed RL setting in Chapter 5;

• Tabular Markov decision processes (MDPs) feature a discrete set of policies,
creating a safe zone with error tolerance around the optimal policy along with
gap conditions for optimality. A dedicated analysis should utilize these gap
conditions to achieve optimal policy recovery against data corruption. In the
domain of two-player zero-sum games, the situation grows more intricate.
Despite the discrete nature of the action space, certain games exclusively
feature mixed-strategy Nash equilibria. In such cases, the clarity of gap
conditions diminishes, introducing complexity to the analysis. We study the
gap-dependent analysis of MDPs and two-player zero-sum games in Chapter 6
and 7 respectively.

• The preceding discussion has predominantly centered on decision-making
with an adversary seeking to degenerate the performance of the learning
algorithm. However, in scenarios where agents prioritize individual bene-
fits without adversarial intent, incentives emerge as an alternative to robust
statistics. As shown in Chapter 8, in these instances, incentivizing truthful
data-sharing can eliminate the need for robust statistical defenses.

4
2 the high level ideas

2.1 Reinforcement Learning

Reinforcement learning aims to find the optimal policy in a Markov Decision Pro-
cess (MDP) (Sutton and Barto, 2018). In the online setting, the UCB-type algorithm
uses optimistic bonuses to encourage exploration, which achieves the optimal regret
rate in tabular MDP Azar et al. (2017); Dann et al. (2017). It has also been applied
in MDP with continuous stats space Jin et al. (2020b); In the offline setting, the
pessimistic algorithm uses pessimistic bonuses to account for the lack of further
interactions with the environment. It is proved to be efficient Jin et al. (2021);
Rashidinejad et al. (2021). Xie et al. (2020); Cui and Du (2022) generalize the opti-
mism and pessimism principles to multi-agent settings. Policy Gradient Williams
(1992); Sutton et al. (1999) and Policy optimization methods are widely used in
real-world application Kakade and Langford (2002); Schulman et al. (2015b, 2017)
and have shown amazing performance on challenging problems Berner et al. (2019);
Akkaya et al. (2019). Using refined analysis, gap-dependent analysis achieves a
faster convergence rate in the offline setting Wang et al. (2022) and logarithmic re-
gret in the online setting Wagenmaker et al. (2022). Parallel RL deploys large-scale
models in distributed system (Kretchmar, 2002). (Horgan et al., 2018; Espeholt
et al., 2018) provide distributed architecture for deep reinforcement learning by
parallelizing the data-generating process. (Dubey and Pentland, 2021; Agarwal
et al., 2021; Chen et al., 2021a) provide the first sets of theoretical guarantees for per-
formance and communication cost in parallel RL. Most of the prior work deal with
i.i.d. data, where the error only comes from the randomness of the environment. In
contrast, this thesis considers data corruption on top of the randomness, making it a
strictly harder problem. The classic algorithms fail under such data corruption. We
show that under certain assumptions, it’s still possible to get a meaningful estima-
tion of the environment and learn a reasonable policy even under data corruption
by utilizing robust mean estimation. We give a detailed discussion below.

5
2.2 Robust Statistics

Robust statistics studies the estimation problem when a fraction of the dataset
are corrupted. It was first studied by Tukey (1960); Anscombe (1960); Huber
(1992). Recently, Diakonikolas et al. (2016); Lai et al. (2016) present the first
computational and sample-efficient results for dimension-free error guarantees
in high-dimension robust mean estimation problems. These results have been
applied as the fundamental tools to solve supervised and unsupervised learning
tasks Prasad et al. (2020); Diakonikolas et al. (2019b,c). Interested readers may
refer to Diakonikolas and Kane (2023) for a survey on robust statistics. In this
thesis, we resolve the robust sequential decision-making problem using a similar
insight.

In the distributed learning setting, each agent collects a data batch. In the
Byzantine-robust learning setting, robust statistics get an improved error rate due
to the batch structure Yin et al. (2018); Zhu et al. (2023). This insight inspires our
work in Chapter 5. In particular, we generalize this study to a setting with uneven
batch sizes by balancing the batch weighting carefully.

There is also a line of work studying the mean estimation for heavy-tailed distri-
bution. The challenge there is not the data corruption, but instead, the distribution
itself. Lugosi and Mendelson (2019b) uses the median-of-means framework to
achieve an optimal subGaussian error rate when the distribution has bounded
covariance. However, the known algorithms to compute the estimator of Lugosi
and Mendelson (2019b) have running time exponential in the dimension. HOP-
KINS (2020) provides the first polynomial-time algorithm with the optimal error
rate. Lugosi and Mendelson (2021) studies the robust mean estimation problem
with both heavy-tailed distribution and data corruption. It achieves the optimal
error rate but requires exponential computation. Diakonikolas et al. (2020) showed
that any stability-based robust mean estimator, e.g. the estimator in Diakonikolas
et al. (2016, 2017) achieves optimal error with (near-)subGaussian rates. Bubeck
et al. (2013); Yu et al. (2018); Medina and Yang (2016); Shao et al. (2018); Dubey
et al. (2020) studies heavy-tailed bandits, where the reward distribution may not

6
even have finite variance. Inspired by Lugosi and Mendelson (2021), we show, in
Chapter 6, that trimmed-mean estimation achieves optimal error rate for the core
mean estimation problem in this setting and is robust to data corruption at the
same time.

2.3 Attack and Defense in Reinforcement Learning

Reinforcement learning is vulnerable to adversarial attacks. In this section, we show
that the classic Upper Confidence Bound (UCB) and Lower Confidence Bound
(LCB) algorithms fail with a strong attacker while robust statistics can be adapted
to provide efficient defense.

For illustration purposes, we consider a 2-arm bandit problem with arm indexed
by {1, 2}. The reward of the first arm is drawn from N (µ1, σ

2) while the reward of
the second arm is drawn from N (µ2, σ

2). Without loss of generality, we assume
µ1 > µ2 and µ1, µ2 ∈ [0, 1].

Offline Learning Setting

In the offline learning setting, the learning algorithm has access to an offline dataset
collected by some behavior policy. Suppose the behavior behavior pulls each arm
evenly and the offline dataset consists of N reward instantiations from each arm:

{r1,i}Ni=1 ∪ {r2,i}Ni=1.

Using standard concentration results, we provide an upper bound on the estimation
error for empirical mean estimation on the rewards distribution: with probability
at least 1− δ, the following holds,

|µ̂1 − µ1| ≤ b1, |µ̂2 − µ2| ≤ b2, (2.1)

7

where µ̂k = 1
N

∑N
k=1 rk,i for k = 1, 2 and b1 = b2 = σ

√
2 log 4

δ

N
. The right-hand side

b1, b2 is the confidence bound on the mean estimation. To account for the uncertainty,
an LCB algorithm Jin et al. (2021); Rashidinejad et al. (2021) simply choose the arm
with highest lower confidence bound:

î ∈ argmax
i∈{1,2}

µ̂i − bi.

Standard results show that the suboptimality of î is at most:

µ1 − µî ≤ 2σ
√

2 log 4
δ

N
,

with probability at least 1− δ.
Consider an ε-strong adversary who can inspect the whole dataset and replace

ε-fraction of the rewards from each arm. We first show that the standard LCB
algorithm fails in the presence of such adversary. The adversary can simply change
r1,1 and r2,1 to

−
N∑
i=2

r1,i, N −
N∑
i=2

r2,i

respectively while keeping the other reward entries unchanged. With such data
corruption, the LCBs of arm 1 and 2 become:

−σ

√
2 log 4

δ

N
, 1− σ

√
2 log 4

δ

N

respectively. In this case, the learner will always choose arm 2 and suffer a sub-
optimality µ1 − µ2 regardless of the choice of µ1, µ2 and the instantiation of the
dataset.

The main issue is: with data corruption, the empirical mean is no longer accurate
and the bounds in (2.1) are no longer valid.

Robust mean estimation is an effective approach to defend against data cor-
ruption. When the corruption level ε is not too large and N is sufficiently large,

8
trimmed-mean estimation, as a standard robust mean estimator, achieves a nearly-
optimal error bound Lugosi and Mendelson (2021). Let µ̂TM

1 and µ̂TM
2 be the output

of the trimmed-mean estimation given the corrupted dataset, the results in Lugosi
and Mendelson (2021) show that, with probability at least 1− δ,

∣∣∣µ̂TM
1 − µ1

∣∣∣ ≤ bTM
1 ,

∣∣∣µ̂TM
2 − µ2

∣∣∣ ≤ bTM
2 ,

where bTM
1 = bTM

2 = C1σε
√

log 1
ε

+ C2σ

√
log 1

δ

N
and C1, C2 are absolute constants.

When using trimmed-mean estimation as a sub-routine, the robustified LCB algo-
rithm outputs

îTM ∈ argmax
i∈{1,2}

µ̂TM
i − bTM

i

The suboptimality of îTM is at most:

µ1 − µîTM ≤ 2C1σε

√
log 1

ε
+ 2C2σ

√
log 1

δ

N
(2.2)

with probability at least 1− δ. At a high level, C1σε
√

log 1
ε

is the bias term, which

is the effect of data corruption while C2σ

√
log 1

δ

N
is the statistical error due to finite

dataset. When the corruption level ε is small and N is large, the right hand side
of (2.2) can be much smaller than µ1 − µ2, the suboptimality of the classic LCB
leaner under data corruption.

Online Learning Setting

In the online learning setting, the learner interacts with the environment to collect
data. Suppose the learner interacts with the environment for T rounds. In each
round t, the UCB algorithm builds the upper bound for each arm i:

µ̂i,t−1 + σ

√√√√2 log 4
δ

Ni,t−1
,

9
where Ni,t−1 is the number of pulls on arm i in the first t− 1 round and µ̂i,t−1 is the
empirical mean of arm i using the data collected in the first t− 1 rounds. The arm
with the highest UCB will be pulled in each round. Standard analysis Lattimore
and Szepesvári (2020) shows that the regret of UCB algorithm is O(

√
T log T

δ
) with

probability at least 1− δ.
We consider an ε-strong adversary adapted from the offline setting: the adver-

sary can change the reward entries to arbitrary values, as long as in each round,
there are at most ε fraction of corrupted data for each arm. Similar settings are
studied in Niss and Tewari (2020); Kapoor et al. (2019).

We first show that the classic UCB algorithm fails under such adversary. Con-
sider the following attack strategy: suppose arm 1 is pulled for the d1

ε
e-th time in

round t0 and t0 << T , the adversary changes the reward r1,t0 from this arm pull to:

(N1,t0−1 + 1)
−σ

√
2 log 4

δ

−N1,t0−1µ̂1,t0−1

and keeps all other rewards unchanged. Then in round t0 + 1, the UCB of arm 1 is

1
N1,t0−1 + 1

N1,t0−1µ̂1,t0−1 + (N1,t0−1 + 1)
−σ

√
2 log 4

δ

−N1,t0−1µ̂1,t0−1


+ σ

√√√√ 2 log 4
δ

Ni,t0−1 + 1

=− σ
√

2 log 4
δ

+ σ

√√√√ 2 log 4
δ

Ni,t0−1 + 1

<0 ≤ µ2.

By standard concentration results, we know that the UCB of arm 2 is always not
less than µ2 throughout the learning process with probability at least 1− δ. This
means, with probability at least 1− δ, the UCB algorithm will no longer choose arm
1 after round t0. As a result, it will suffer a regret Θ(T (µ1 − µ2)), which is linear in
T .

10
On the other hand, using a scheme similar to the offline setting, the robustified

UCB algorithm based on the trimmed-mean estimation and modified confidence
bound achieves a regret boundO

(
σε
√

log 1
ε
T +

√
T log T

δ

)
for any ε-strong adversary

with probability at least 1− δ. Even though the first term is still linear in T , it can
be much smaller than Θ(T (µ1 − µ2)), the regret of the classic UCB algorithm, when
ε is small.

Related Work

Huang et al. (2017) shows that adversarial attacks can significantly degrade the
performance of neural network policies at test time. Ma et al. (2019) characterizes
a framework for batch policy poisoning. The learner can be forced to learn a pre-
chosen target policy with a small attack cost. Zhang et al. (2020a) studies the
reward-poisoning attack against reinforcement learning. The feasibility of attack
and robustness certification are studied. On the defense side, Niss and Tewari
(2020); Kapoor et al. (2019) study corruption robust multi-armed bandits under
data corruption by using robust mean estimator to estimate the expected reward of
each arm. However, our work presents a more comprehensive study in MDP and
multi-agent settings. Lykouris et al. (2019) study corruption robust reinforcement
learning. In their setting, only a constant number of episodes can be corrupted by
the adversary. The majority of their technical effort is dedicated to being agnostic to
the corruption level. In contrast, using robust statistics, our work allows a constant
fraction of data corruption.

11
3 robust online reinforcement learning

In this chapter, we study the robust reinforcement learning in the online setting. We
first formally define the robust RL problem and present the information-theoretical
limits. We show that surprisingly the natural policy gradient (NPG) method re-
tains a natural robustness property if the reward corruption is bounded. As the
main result of this chapter, we develop a Filtered Policy Gradient (FPG) algorithm
that can achieve a nearly-optimal suboptimality gap even with unbounded reward
corruption. Complimentary to the theoretical results, we show that a neural im-
plementation of our methods achieves strong robust learning performance on the
MuJoCo continuous control benchmarks.

This Chapter is joint work with Xuezhou Zhang, Xiaojin Zhu and Wen Sun. The
author Yiding Chen contributed to the theoretical analysis of robust statistics.

3.1 Introduction

Policy gradient methods are a popular class of Reinforcement Learning (RL) meth-
ods among practitioners, as they are amenable to parametric policy classes Schul-
man et al. (2015b, 2017), resilient to modeling assumption mismatches Agarwal et al.
(2019a, 2020a), and they directly optimizing the cost function of interest. However,
one current drawback of these methods and most existing RL algorithms is the
lack of robustness to data corruption, which severely limits their applications to
high-stack decision-making domains with highly noisy data, such as autonomous
driving, quantitative trading, or medical diagnosis.

In fact, data corruption can be a larger threat in the RL paradigm than in tra-
ditional supervised learning, because supervised learning is often applied in a
controlled environment where data are collected and cleaned by highly-skilled data
scientists and domain experts, whereas RL agents are developed to learn in the wild
using raw feedbacks from the environment. While the increasing autonomy and
less supervision mark a step closer to the goal of general artificial intelligence, they

12
also make the learning system more susceptible to data corruption: autonomous
vehicles can misread traffic signs when the signs are contaminated by adversarial
stickers Eykholt et al. (2018); chatbot can be mistaught by a small group of tweeter
users to make misogynistic and racist remarks Neff and Nagy (2016); recommen-
dation systems can be fooled by a small number of fake clicks/reviews/comments
to rank products higher than they should be. Despite the many vulnerabilities,
robustness against data corruption in RL has not been extensively studied only until
recently.

The existing works on robust RL are mostly theoretical and can be viewed as a
successor of the adversarial bandit literature. However, several drawbacks of this
line of approach make them insufficient to modern real-world threats faced by RL
agents. We elaborate them below:

1. Reward vs. transition contamination: The majority of prior works on adversar-
ial RL focus on reward contamination Even-Dar et al. (2009); Neu et al. (2010,
2012); Zimin and Neu (2013); Rosenberg and Mansour (2019); Jin et al. (2020a),
while in reality the adversary often has stronger control during the adversarial
interactions. For example, when a chatbot interacts with an adversarial user, the
user has full control over both the rewards and transitions during that conversa-
tion episode.

2. Density of contamination: The existing works that do handle adversarial/time-
varying transitions can only tolerate sublinear number of interactions being
corrupted Lykouris et al. (2019); Cheung et al. (2019); Ornik and Topcu (2019);
Ortner et al. (2019). These methods would fail when the adversary’s attack
budget also grows linearly with time, which is often the case in practice.

3. Practicability: The majority of these work focuses on the setting of tabular MDPs
and cannot be applied to real-world RL problems that have large state and action
spaces and require function approximations.

In this work, we address the above shortcomings by developing a variant of natural
policy gradient (NPG) methods that, under the linear value function assumption,

13
are provably robust against strongly adaptive adversaries, who can arbitrarily
contaminate both rewards and transitions in ε fraction of all learning episodes.
Our algorithm does not need to know ε, and is adaptive to the contamination level.
Specifically, it guarantees to find an Õ(ε1/4)-optimal policy in a polynomial number
of steps. Complementarily, we also present a corresponding lower-bound, showing
that no algorithm can consistently find a better than Ω(ε) optimal policy, even with
infinite data. In addition to the theoretical results, we also develop a neural network
implementation of our algorithm which is shown to achieve strong robustness
performance on the MuJoCo continuous control benchmarks Todorov et al. (2012),
proving that our algorithm can be applied to real-world, high-dimensional RL
problems.

3.2 Related Work

Policy Gradient and Policy Optimization Policy Gradient Williams (1992); Sut-
ton et al. (1999) and Policy optimization methods are widely used in practice
Kakade and Langford (2002); Schulman et al. (2015b, 2017) and have demonstrated
amazing performance on challenging applications Berner et al. (2019); Akkaya
et al. (2019). Unlike model-based approach or Bellman-backup based approaches,
PG methods directly optimize the objective function and are often more robust
to model-misspecification Agarwal et al. (2020a). In addition to being robust to
model-misspecification, we show in this work that vanilla NPG is also robust to
constant fraction and bounded adversarial corruption on both rewards and transi-
tions. Additional discussions on other RL algorithms in standard stochastic MDPs
can be found in appendix A.1.

RL with adversarial rewards. Almost all prior works on adversarial RL study
the setting where the reward functions can be adversarial but the transitions are
still stochastic and remain unchanged throughout the learning process. Specifi-
cally, at the beginning of each episode, the adversary must decide on a reward
function for this episode, and can not change it for the rest of the episode. Also,
the majority of these works focus on tabular MDPs. Early works on adversarial

14
MDPs assume a known transition function and full-information feedback. For
example, Even-Dar et al. (2009) proposes the algorithm MDP-E and proves a regret
bound of Õ(τ

√
T logA) in the non-episodic setting, where τ is the mixing time of

the MDP; Later, Zimin and Neu (2013) consider the episodic setting and propose
the O-REPS algorithm which applies Online Mirror Descent over the space of oc-
cupancy measures, a key component adopted by Rosenberg and Mansour (2019)
and Jin et al. (2020a). O-REPS achieves the optimal regret Õ(

√
H2T log(SA)) in this

setting. Several works consider the harder bandit feedback model while still assum-
ing known transitions. The work Neu et al. (2010) achieves regret Õ(

√
H3AT/α)

assuming that all states are reachable with some probability α under all policies.
Later, Neu et al. (2010) eliminates the dependence on α but only achieves O(T 2/3)
regret. The O-REPS algorithm of Zimin and Neu (2013) again achieves the optimal
regret Õ(

√
H3SAT). To deal with unknown transitions, Neu et al. (2012) proposes

the Follow the Perturbed Optimistic Policy algorithm and achieves Õ(
√
H2S2A2T)

regret given full-information feedback. Combining the idea of confidence sets
and Online Mirror Descent, the UC-O-REPS algorithm of Rosenberg and Mansour
(2019) improves the regret to Õ(

√
H2S2AT). A few recent works start to consider

the hardest setting assuming unknown transition as well as bandit feedback. Rosen-
berg and Mansour (2019) achieves O(T 3/4) regret, which is improved by Jin et al.
(2020a) to Õ(

√
H2S2AT), matching the regret of UC-O-REPS in the full information

setting. Also, note that the lower bound of Ω(
√
H2SAT) Jin et al. (2018) still applies.

In summary, it is found that on tabular MDPs with oblivious reward contamination,
an O(

√
T) regret can still be achieved. Recent improvements include best-of-both-

worlds algorithms Jin and Luo (2020), data-dependent bound Lee et al. (2020) and
extension to linear function approximation Neu and Olkhovskaya (2020).

RL with adversarial transitions and rewards. Very few prior works study the
problem of both adversarial transitions and adversarial rewards, in fact, only one
that we are aware of Lykouris et al. (2019). They study a setting where only a
constant C number of episodes can be corrupted by the adversary, and most of their
technical effort dedicate to designing an algorithm that is agnostic to C, i.e. the
algorithm doesn’t need to know the contamination level ahead of time. As a result,

15
their algorithm takes a multi-layer structure and cannot be easily implemented
in practice. Their algorithm achieves a regret of O(C

√
T) for tabular MDPs and

O(C2
√
T) for linear MDPs, which unfortunately becomes vacuous whenC ≥ Ω(

√
T)

and C ≥ Ω(T 1/4), respectively. Note that the contamination ratio C/T approaches
zero when T increases, and hence their algorithm cannot handle constant fraction
contamination. Notably, in all of the above works, the adversary can partially adapt
to the learner’s behavior, in the sense that the adversary can pick an adversary
MDPMk or reward function rk at the start of episode k based on the history of
interactions so far. However, it can no longer adapt its strategy after the episode
starts, and therefore, the learner can still use a randomization strategy to trick the
adversary.

A separate line of work studies the online MDP setting, where the MDP is not
adversarial but slowly change over time, and the amount of change is bounded
under a total-variation metric Cheung et al. (2019); Ornik and Topcu (2019); Ortner
et al. (2019); Domingues et al. (2020). Due to the slow-changing nature of the
environment, algorithms in these works typically uses a sliding window approach
where the algorithm keeps throwing away old data and only learns a policy from
recent data, assuming that most of them come from the MDP that the agent is
currently experiencing. These methods typically achieve a regret in the form of
O(∆cK1−c), where ∆ is the total variation bound. It is worth noting that all of
these regrets become vacuous when the amount of variation is linear in time, i.e.
∆ ≥ Ω(T). Separately, it is shown that when both the transitions and the rewards
are adversarial in every episode, the problem is at least as hard as stochastic parity
problem, for which no computationally efficient algorithm exists Yadkori et al.
(2013).

Learning robust controller. A different type of robustness has also been con-
sidered in RL Pinto et al. (2017); Derman et al. (2020) and robust control Zhou
and Doyle (1998); Petersen et al. (2012), where the goal is to learn a control pol-
icy that is robust to potential misalignment between the training and deployment
environment. Such approaches are often conservative, i.e. the learned polices are
sub-optimal even if there is no corruption. In comparison, our approach can learn

16
as effectively as standard RL algorithms without corruption.

Robust statistics. One of the most important discoveries in modern robust
statistics is that there exists computationally efficient and robust estimator that can
learn near-optimally even under the strongest adaptive adversary. For example, in
the classic problem of Gaussian mean estimation, the recent works Diakonikolas
et al. (2016); Lai et al. (2016) present the first computational and sample-efficient
algorithms. The algorithm in Diakonikolas et al. (2016) can generate a robust mean
estimate µ̂, such that ‖µ̂− µ‖2≤ O(ε

√
log (1/ε)) under ε corruption. Crucially, the

error bound does not scale with the dimension d of the problem, suggesting that
the estimator remains robust even in high dimensional problems. Similar results
have since been developed for robust mean estimation under weaker assumptions
Diakonikolas et al. (2017), and for supervised learning and unsupervised learn-
ing tasks Charikar et al. (2017); Diakonikolas et al. (2019b). We refer readers to
Diakonikolas and Kane (2019) for a more thorough survey of recent advances in
high-dimensional robust statistics.

3.3 Problem Definitions

A Markov Decision Process (MDP)M = (S,A, P, r, γ, µ0) is specified by a state
space S, an action space A, a transition model P : S × A → ∆(S) (where ∆(S)
denotes a distribution over S), a (stochastic and possibly unbounded) reward
function r : S × A → ∆(R), a discounting factor γ ∈ [0, 1), and an initial state
distribution µ0 ∈ ∆(S), i.e. s0 ∼ µ0. In this paper, we assume that A is a small
and finite set, and denote A = |A|. A policy π : S → ∆(A) specifies a decision-
making strategy in which the agent chooses actions based on the current state, i.e.,
a ∼ π(·|s).

The value function V π : S → R is defined as the expected discounted sum of
future rewards, starting at state s and executing π, i.e.

V π(s) := E
[∞∑
t=0

γtr(st, at)|π, s0 = s

]
,

17
where the expectation is taken with respect to the randomness of the policy and
environmentM. Similarly, the state-action value functionQπ : S×A → R is defined
as Qπ(s, a) := E [∑∞t=0 γ

tr(st, at)|π, s0 = s, a0 = a] .
We define the discounted state-action distribution dπs of a policy π: dπs′(s, a) :=

(1 − γ)∑∞t=0 γ
tPrπ(st = s, at = a|s0 = s′), where Prπ(st = s, at = a|s0 = s′) is

the probability that st = s and at = a, after we execute π from t = 0 onwards
starting at state s′ in model M. Similarly, we define dπs′,a′(s, a) as: dπs′,a′(s, a) :=
(1 − γ)∑∞t=0 γ

tPrπ(st = s, at = s|s0 = s′, a0 = a′). For any state-action distribution
ν, we write dπν (s, a) := ∑

(s′,a′)∈S×A ν(s′, a′)dπs′,a′(s, a). For ease of presentation, we
assume that the agent can reset to s0 ∼ µ0 at any point in the trajectory. We denote
dπν (s) = ∑

a d
π
ν (s, a).

The goal of the agent is to find a policy π that maximizes the expected value from
the starting state s0, i.e. the optimization problem is: maxπ V π(µ0) ∆= Es∼µ0V

π(s),
where the max is over some policy class.

For completeness, we specify a dπν -sampler and an unbiased estimator ofQπ(s, a)
in Algorithm 1, which are standard in discounted MDPs Agarwal et al. (2019a,
2020a). The dπν sampler samples (s, a) i.i.d from dπν , and the Qπ sampler returns
an unbiased estimate of Qπ(s, a) for a given pair (s, a) by a single roll-out from
(s, a). Later, when we define the contamination model and the sample complexity
of learning, we treat each call of dπν -sampler (optionally followed by a Qπ(s, a)-
estimator) as a single episode, as in practice both of these procedures can be achieved
in a single roll-out from µ0.

Assumption 3.3.1 (Linear Q function). For the theoretical analysis, we focus on the
setting of linear value function approximation. In particular, we assume that there exists a
feature map φ : S×A → Rd, such that for any (s, a) ∈ S×A and any policy π : S → ∆A,
we have

Qπ(s, a) = φ(s, a)>wπ, for some ‖wπ‖≤ W (3.1)

We also assume that the feature is bounded, i.e. maxs,a‖φ(s, a)‖2≤ 1, and the reward
function has bounded first and second moments, i.e. E [r(s, a)] ∈ [0, 1] and Var(r(s, a)) ≤

18
σ2 for all (s, a).

Remark 3.3.1. Assumption 4.2.1 is satisfied, for example, in tabular MDPs and linear
MDPs of Jin et al. (2020b) or Yang and Wang (2019a). Unlike most theoretical
RL literature, we allow the reward to be stochastic and unbounded. Such a setup
aligns better with applications with a low signal-to-noise ratio and motivates the
requirement for nontrivial robust learning techniques.

Notation. When clear from context, we write dπ(s, a) and dπ(s) to denote
dπµ0(s, a) and dπµ0(s) respectively. For iterative algorithms which obtain policies
at each episode, we let V i,Qi and Ai denote the corresponding quantities associ-
ated with episode i. For a vector v, we denote ‖v‖2=

√∑
i v

2
i , ‖v‖1= ∑

i|vi|, and
‖v‖∞= maxi|vi|. We use Uniform(A) (in short UnifA) to represent a uniform distri-
bution over the set A.

The Contamination Model

In this paper, we study the robustness of policy gradient methods under the ε-
contamination model, a widely studied adversarial model in the robust statistics
literature, e.g. see Diakonikolas et al. (2016). In the classic robust mean estimation
problem, given a dataset D and a learning algorithm f , the ε-contamination model
assumes that the adversary has full knowledge of the dataset D and the learning
algorithm f , and can arbitrarily change ε-fraction of the data in the dataset and
then send the contaminated data to the learner. The goal of the learner is to identify
an O(poly(ε))-optimal estimator of the mean despite the ε-contamination.

Unfortunately, the original ε-contamination model is defined for the offline
learning setting and does not directly generalize to the online setting, because it
doesn’t specify the availability of knowledge and the order of actions between
the adversary and the learner in the time dimension. In this paper, we define the
ε-contamination model for online learning as follows:

Definition 3.3.1 (ε-contamination model for Reinforcement Learning). Given ε and
the clean MDPM, an ε-contamination adversary operates as follows:

19
1. The adversary has full knowledge of the MDPM and the learning algorithm,

and observes all the historical interactions.I

2. At any time step t, the adversary observes the current state-action pair (st, at),
as well as the reward and next state returned by the environment, (rt, st+1). He
then can decide whether to replace (rt, st+1) with an arbitrary reward and next
state (r†t , s†t+1) ∈ R× S .

3. The only constraint on the adversary is that if the learning process terminates
after T episodes, he can contaminate in at most εT episodes.

Compared to the standard adversarial models studied in online learning Shalev-
Shwartz et al. (2011), adversarial bandits Bubeck and Cesa-Bianchi (2012); Lykouris
et al. (2018); Gupta et al. (2019) and adversarial RL Lykouris et al. (2019); Jin et al.
(2020a), the ε-contamination model in Definition 3.3.1 is stronger in several ways:
(1) The adversary can adaptively attack after observing the action of the learner as
well as the feedback from the clean environments; (2) the adversary can perturb
the data arbitrarily (any real-valued reward and any next state from the state space)
rather than sampling it from a pre-specified bounded adversarial reward function
or adversarial MDP.

Given the contamination model, our first result is a lower-bound, showing that
under the ε-contamination model, one can only hope to find an O(ε)-optimal policy.
Exact optimal policy identification is not possible even with infinite data.

Theorem 3.3.1 (lower bound). For any algorithm, there exists an MDP such that the
algorithm fails to find an

(
ε

2(1−γ)

)
-optimal policy under the ε-contamination model with a

probability of at least 1/4.

Background on NPG

Given a differentiable parameterized policy πθ : S → ∆(A), NPG can be written in
the following actor-critc style update form. With the dataset {si, ai, Q̂πθ(si, ai)}Ni=1

20
where si, ai ∼ dπθν , and Q̂πθ(si, ai) is unbiased estimate of Qπθ(s, a) (e.g., via Qπ-
estimator), we have

ŵ ∈ argmin
w:‖w‖2≤W

N∑
i=1

(
w>∇ log πθ(ai|si)− Q̂πθ(si, ai)

)2

θ′ = θ + ηŵ. (3.2)

In theoretical part of this work, we focus on softmax linear policy, i.e., πθ(a|s) ∝
exp(θ>φ(s, a)). In this case, note that ∇ log πθ(a|s) = φ(s, a), and it is not hard to
verify that the policy update procedure is equivalent to:

πθ′(a|s) ∝ πθ(a|s) exp
(
ηŵ>φ(s, a)

)
, ∀s, a,

which is equivalent to running Mirror Descent on each state with a reward vector
ŵ>φ(s, ·) ∈ R|A|. We refer readers to Agarwal et al. (2019a) for more detailed expla-
nation of NPG and the equivalence between the form in Eq. (3.2) and the classic
form that uses Fisher information matrix. Similar to Agarwal et al. (2019a), we
make the following assumption of having access to an exploratory reset distribu-
tion, under which it has been shown that NPG can converge to the optimal policy
without contamination.

Assumption 3.3.2 (Relative condition number). With respect to any state-action dis-
tribution υ, define:

Συ = Es,a∼υ
[
φs,aφ

>
s,a

]
,

and define

sup
w∈Rd

w>Σd?w

w>Σνw
= κ, where d∗(s, a) = dπ

∗

µ0(s) ◦UnifA(a)

We assume κ is finite and small w.r.t. a reset distribution ν available to the learner at
training time.

21
3.4 The natural robustness of NPG against bounded

corruption

Our first result shows that, surprisingly, NPG can already be robust against ε-
contamination, if the adversary can only generate small and bounded rewards. In
particular, we assume that the adversarial rewards is bounded in [0, 1] (the feature
φ(s, a) is already bounded).

Theorem 3.4.1 (Natural robustness of NPG). Under assumptions 4.2.1 and 3.3.2, given
a desired optimality gapα, there exists a set of hyperparameters agnostic to the contamination
level ε, such that Algorithm 2 guarantees with a poly(1/α, 1/(1− γ), |A|,W, σ, κ) sample
complexity that under ε-contamination with adversarial rewards bounded in [0, 1], we have

E
[
V ∗(µ0)− V π̂(µ0)

]
≤ Õ

max
α,W

√√√√ |A|κε
(1− γ)3


where π̂ is the uniform mixture of π(1) through π(T).

A few remarks are in order.

Remark 3.4.1 (Agnostic to the contamination level ε). It is worth emphasizing
that to achieve the above bound, the hyperparameters of NPG are agnostic to the
value of ε, and so the algorithm can be applied in the more realistic setting where
the agent does not have knowledge of the contamination level ε, similar to what’s
achieved in Lykouris et al. (2019) with a complicated nested structure. The same
property is also achieved by the FPG algorithm in the next section.

Remark 3.4.2 (Dimension-independent robustness guarantee). Theorem 3.4.1 guar-
antees that NPG can find an O(ε1/2)-optimal policy after polynomial number of
episodes, provided that |A| and κ are small. Conceptually, the relative condition
number κ indicates how well-aligned the initial state distribution is to the occu-
pancy distribution of the optimal policy. A good initial distribution can have a κ as
small as 1, and so κ is independent of d. Interested readers can refer to Agarwal et al.

22
(2019a) (Remark 6.3) for additional discussion on the relative condition number.
Here, importantly, the optimality gap does not directly scale with d, and so the
guarantee will not blow up on high-dimensional problems. This is an important
attribute of robust learning algorithms heavily emphasized in the traditional robust
statistics literature.

The proof of Theorem 3.4.1 relies on the following NPG regret lemma, first
developed by Even-Dar et al. (2009) for the MDP-Expert algorithm and later extend
to NPG by Agarwal et al. (2019a, 2020a):

Lemma 3.4.1 (NPG Regret Lemma). Suppose Assumption 4.2.1 and 3.3.2 hold and
Algorithm 2 starts with θ(0) = 0, η =

√
2 log|A|/(W 2T). Suppose in addition that the

(random) sequence of iterates satisfies the assumption that

E
[
Es,a∼d(t)

[(
Qπ(t)(s, a)− φ(s, a)>w(t)

)2]]
≤ ε

(t)
stat.

Then, we have that

E
[
T∑
t=1
{V ∗(µ0)− V (t)(µ0)}

]
(3.3)

≤ W

1− γ
√

2 log|A|T +
T∑
t=1

√√√√4|A|κε(t)stat
(1− γ)3 .

Intuitively, Lemma 3.4.1 decompose the regret of NPG into two terms. The
first term corresponds to the regret of standard mirror descent procedure, which
scales with

√
T . The second term corresponds to the estimation error on the Q

value, which acts as the reward signal for mirror descent. When not under attack,
estimation error ε(t)stat goes to zero as the number of samples M gets larger, which in
turn implies the global convergence of NPG. However, when under bounded attack,
the generalization error ε(t)stat will not go to zero even with infinite data. Nevertheless,
we can show that it is bounded by O(ε(t)) when the sample size M is large enough,
where ε(t) denotes the fraction of episodes being corrupted in iteration t. Note that
by definition, we have ∑t ε

(t) ≤ εT .

23
Algorithm 1 dπν sampler and Qπ estimator

1: Function dπν -sampler
2: Input: A reset distribution ν ∈ ∆(S ×A).
3: Sample s0, a0 ∼ ν.
4: Execute π from s0, a0; at any step twith (st, at), return (st, at) with probability

1− γ.
5: Function Qπ-estimator
6: Input: current state-action (s, a), a policy π.
7: Execute π from (s0, a0) = (s, a); at step t with (st, at), terminate with proba-

bility 1− γ.
8: Return: Q̂π(s, a) = ∑t

i=0 r(si, ai).

Lemma 3.4.2 (Robustness of linear regression under bounded contamination).
Suppose the adversarial rewards are bounded in [0, 1], and in a particular iteration t, the
adversary contaminates ε(t) fraction of the episodes, then given M episodes, it is guaranteed
that with probability at least 1− δ,

Es,a∼d(t)

[(
Qπ(t)(s, a)− φ(s, a)>w(t)

)2]
(3.4)

≤ 4
(
W 2 +WH

)ε(t) +
√

8
M

log 4d
δ

 .
where H = (log δ − logM)/log γ is the effective horizon.

This along with the NPG regret lemma guarantees that the expected regret of
NPG is bounded by O(

√
T +M−1/4 +

√
εT) which in turn guarantees to identify an

O(
√
ε)-optimal policy.

3.5 FPG: Robust NPG against unbounded corruption

Our second result is the Filtered Policy Gradient (FPG) algorithm, a robust
variant of the NPG algorithm Kakade (2001); Agarwal et al. (2019a) that can be
robust against arbitrary and potentially unbounded data corruption. Specifically, FPG
replace the standard linear regression solver in NPG with a statistically robust

24
Algorithm 2 Natural Policy Gradient (NPG)
Require: Learning rate η; number of episodes per iteration M

1: Initialize θ(0) = 0.
2: for t = 0, 1, . . . , T − 1 do
3: Call Algorithm 1 M times with π(t) to obtain a dataset that consist of si, ai ∼

d(t)
ν and Q̂(t)(si, ai), i ∈ [M].

4: Solve the linear regression problem

w(t) = argmin
‖w‖2≤W

M∑
i=1

(
Q̂(t)(si, ai)− w>∇θφ(si, ai)

)2

5: Update θ(t+1) = θ(t) + ηw(t).
6: end for

Algorithm 3 Robust Linear Regression via SEVER

1: Input: Dataset {(xi, yi)}i=1:M , a standard linear regression solver L, and param-
eter σ′ ∈ R+.

2: Initialize S ← {1, . . . ,M}, fi(w) = ‖yi − w>xi‖2.
3: repeat
4: w ← L({(xi, yi)}i∈S). . Run learner on S.
5: Let ∇̂ = 1

|S|
∑
i∈S∇fi(w).

6: Let G = [∇fi(w)− ∇̂]i∈S be the |S|×d matrix of centered gradients.
7: Let v be the top right singular vector of G.
8: Compute the vector τ of outlier scores defined via τi =

(
(∇fi(w)− ∇̂) · v

)2
.

9: S ′ ← S
10: if 1

|S|
∑
i∈S τi ≤ c0 · σ′2, for some constant c0 > 1 then

11: S = S ′ . We only filter out points if the variance is larger than an appropri-
ately chosen threshold.

12: else
13: Draw T from Uniform[0,maxi τi].
14: S = {i ∈ S : τi < T}.
15: end if
16: until S = S ′.
17: Return w.

25

0 50 100 150 200
iterations

0

100

200

300
Re

wa
rd

s TRPO without attack
TRPO under optimal attack
FPG without attack
FPG under optimal attack

(a) Swimmer-v3

0 50 100 150 200
iterations

0

500

1000

1500

2000

2500

3000

Re
wa

rd
s TRPO without attack

TRPO under optimal attack
FPG without attack
FPG under optimal attack

(b) Hopper-v3

0 100 200 300 400 500
iterations

0

1000

2000

3000

4000

Re
wa

rd
s TRPO without attack

TRPO under optimal attack
FPG without attack
FPG under optimal attack

(c) Walker2d-v3

0 100 200 300 400 500
iterations

0

1000

2000

3000

4000

Re
wa

rd
s TRPO without attack

TRPO under optimal attack
FPG without attack
FPG under optimal attack

(d) HalfCheetah-v3

0 200 400 600 800 1000
iterations

1000

1500

2000

2500

Re
wa

rd
s TRPO without attack

TRPO under optimal attack
FPG without attack
FPG under optimal attack

(e) Ant-v3

0 200 400 600 800 1000
iterations

0

1000

2000

3000

4000

5000

Re
wa

rd
s TRPO without attack

TRPO under optimal attack
FPG without attack
FPG under optimal attack

(f) Humanoid-v3

Figure 3.1: Experiment Results on the 6 MuJoTo benchmarks.

alternative. In this work, we use the SEVER algorithm Diakonikolas et al. (2019b).
In practice, one can substitute it with any computationally efficient robust linear
regression solver. We show that FPG can find an O(ε1/4)-optimal policy under
ε-contamination with a polynomial number of samples.

Theorem 3.5.1. Under assumptions 4.2.1 and 3.3.2, given a desired optimality gap α, there
exists a set of hyperparameters agnostic to the contamination level ε, such that Algorithm
2, using Algorithm 3 as the linear regression solver, guarantees with a poly(1/α, 1/(1−
γ), |A|,W, σ, κ) sample complexity that under ε-contamination, we have

E
[
V ∗(µ0)− V π̂(µ0)

]
(3.5)

≤ Õ

max
α,

√√√√ |A|κ (W 2 + σW)
(1− γ)4 ε1/4

 .
where π̂ is the uniform mixture of π(1) through π(T).

The proof of Theorem 3.5.1 relies on a similar result to Lemma 3.4.2, which
shows that if we use Algorithm 3 as the linear regression subroutine, then ε

(t)
stat

26
can be bounded by O(

√
ε(t)) when the sample size M is large enough, even under

unbounded ε-contamination.

Lemma 3.5.1 (Robustness of SEVER under unbounded contamination). Suppose
the adversarial rewards are unbounded, and in a particular iteration t, the adversarial
contaminate ε(t) fraction of the episodes, then given M episodes, it is guaranteed that if
ε(t) ≤ c, for some absolute constant c, and any constant τ ∈ [0, 1], we have

E
[
Es,a∼d(t)

[(
Qπ(t)(s, a)− φ(s, a)>w(t)

)2]]
(3.6)

≤ O

((
W 2 + σW

1− γ

)(√
ε(t) + f(d, τ)M− 1

2 + τ
))

.

where f(d, τ) =
√
d log d+

√
log(1/τ).

In Lemma 3.5.1, c is the break point of SEVER and is an absolute constant that
does not depend on the data, and (1 − τ) is the probability that the clean data
satisfies a certain stability condition which suffices for robust learning.

3.6 Experiments

In the theoretical analysis, we rely on the assumption of linear Q function, finite
action space and exploratory initial state distribution to prove the robustness guar-
antees for NPG and FPG. In this section, we present a practical implementation
of FPG, based on the Trusted Region Policy Optimization (TRPO) algorithm Schul-
man et al. (2015a), in which the conjugate gradient step (equivalent to the linear
regression step in Alg. 2) is robustified with SEVER. The pseudo-code and imple-
mentation details are discussed in appendix A.7. In this section, we demonstrate its
empirical performance on the MuJoCo benchmarks Todorov et al. (2012), a set of
high-dimensional continuous control domains where both assumptions no longer
holds, and show that FPG can still consistently performs near-optimally with and
without attack.

27

Figure 3.2: Consecutive Frames of Half-Cheetah trained with TRPO (top row) and
FPG (bottom row) respectively under δ = 100 attack. TRPO was fooled to learn a
”running backward” policy, contrasted with the normal ”running forward” policy
learned by FPG.

0 200 400 600 800 1000
iterations

0

1000

2000

3000

4000

5000

Re
wa

rd
s

(a) TRPO Rewards

0 200 400 600 800 1000
iterations

1000

2000

3000

4000

5000

Re
wa

rd
s

(b) FPG Rewards

0 200 400 600 800 1000
iterations

0.0

0.2

0.4

0.6

0.8

1.0

de
te

ct
io

n
Ra

tio

= 1
= 1
= 2
= 4
= 8
= 16
= 32
= 64

(c) FPG Detection Ratio

Figure 3.3: Detailed Results on Humanoid-v3.

Attack mechanism: While designing and calculating the optimal attack strategy
against a deep RL algorithm is still a challenging problem and active area of research
Ma et al. (2019); Zhang et al. (2020a), here we describe the poisoning strategy used
in our empirical evaluation, which, despite being simple, can fool non-robust RL
algorithms with ease. Conceptually, policy gradient methods can be viewed as a
stochastic gradient ascent method, where each iteration can be simplified as:

θ(t+1) = θ(t) + g(t) (3.7)

where g(t) is a gradient step that ideally points in the direction of fastest policy
improvement. Assuming that g(t) is a good estimate of the gradient direction, then

28
a simple attack strategy is to try to perturb g(t) to point in the −g(t) direction, in
which case the policy, rather than improving, will deteriorate as learning proceed.
A straightforward way to achieve this is to flip the rewards and multiply them by
a big constant δ in the adversarial episodes. In the linear regression subproblem
of Alg. 2, this would result in a set of (x, y) pairs whose y becomes −δy. This in
expectation will make the best linear regressor w point to the opposite direction,
which is precisely what we want.

This attack strategy is therefore parameterized by a single parameter δ, which
guides the magnitude of the attack, and is adaptively tuned against each learning
algorithm in the experiments: Throughout the experiment, we set the contamination
level ε = 0.01, and tune δ among the values of [1, 2, 4, 8, 16, 32, 64] to find the most
effective magnitude against each learning algorithm. All experiments are repeated
with 3 random seeds and the mean and standard deviations are plotted in the
figures.

Results: The experiment results are shown in Figure 4.1. Consistent patterns
can be observed across all environments: vanilla TRPO performs well without attack
but fails completely under the adaptive attack (which choose δ = 64 in all environ-
ments). FPG, on the other hand, matches the performance of vanilla TRPO with or
without attack. Figure 3.2 showcase two half-cheetah control policies learned by
TRPO and FPG under attack with δ = 100. Interestingly, due to the large negative
adversarial rewards, TRPO actually learns the “running backward” policy, showing
that our attack strategy indeed achieves what it’s designed for. In contrast, FPG is
still able to learn the ”running forward” policy despite the attack.

Figure 3.3 shows the detailed performances of TRPO and FPG across different δ’s
on the hardest Humanoid environment. One can observe that TRPO actually learns
robustly under attacks of small magnitude (δ = 1, 2, 4) and achieves similar perfor-
mances to itself in clean environments, verifying our theoretical result in Theorem
3.4.1. In contrast, FPG remains robust across all values of δ’s. Figure 3.3c shows the
proportion of adversary data detected and removed by FPG’s filtering subroutine
throughout the learning process. One can observe that as the attack norm δ in-
creases, the filtering algorithm also does a better job detecting the adversarial data

29
and thus protect the algorithm from getting inaccurate gradient estimates. Similar
patterns can be observed in all the other environments, and we defer the additional
figures to the appendix.

3.7 Discussions

To summarize, in this work we present a robust policy gradient algorithm FPG, and
show theoretically and empirically that it can learn in the presence of strong data
corruption. Despite our results, many open questions remain unclear:

1. FPG does not handle exploration and relies on an exploratory initial distribu-
tion. Can we design algorithms that achieve the same dimension-free robustness
guarantee without such assumptions?

2. Our O(ε1/4) upper-bound and O(ε) lower-bound are not tight. Information
theoretically, what is the best robustness guarantee one can achieve under
ε-contamination?

3. The SEVER algorithm requires computing the top eigenvalue of an n×dmatrix,
which is memory and time consuming when using large neural networks
(large d). More computationally efficient robust learning method will be
extremely valuable to make FPG truly scale.

4. In the experiment, we focus on TRPO as the closest variant of NPG. Can other
policy gradient algorithm, such as PPO and SAC, be robustified in similar
fashions and achieve strong empirical performance?

We believe that answering these questions will be important steps towards robust
reinforcement learning.

30
4 robust offline reinforcement learning

In this chapter, we study reinforcement learning in the offline setting. Unlike the
online setting, the learner learns from a corrupted offline dataset but no further
interaction with the environment is allowed. By utilizing robust supervised learning
oracles, we propose robust variants of the Least-Square Value Iteration (LSVI)
algorithm. Furthermore, our method achieves near-matching performances in
cases both with and without global data coverage.

This Chapter is joint work with Xuezhou Zhang, Xiaojin Zhu and Wen Sun. The
author Yiding Chen contributed to part of the theoretical analysis.

4.1 Introduction

Offline Reinforcement Learning (RL) (Lange et al., 2012; Levine et al., 2020) has
received increasing attention recently due to its appealing property of avoiding
online experimentation and making use of offline historical data. In applications
such as assistive medical diagnosis and autonomous driving, historical data is
abundant and keeps getting generated by high-performing policies (from human
doctors/drivers). However, it is often unethical or expensive to allow an online
RL algorithm to freely experiment with potentially suboptimal policies, as often
human lives are at stake. Offline RL provides a powerful framework aiming to
find a good policy based on historical data alone. Exciting advances have been
made in designing stable and high-performing empirical offline RL algorithms
(Fujimoto et al., 2019; Laroche et al., 2019; Wu et al., 2019; Kumar et al., 2019, 2020;
Agarwal et al., 2020d; Kidambi et al., 2020; Siegel et al., 2020; Liu et al., 2020; Yang
and Nachum, 2021; Yu et al., 2021). On the theoretical front, recent works have
proposed efficient algorithms with theoretical guarantees, based on the principle of
pessimism in face of uncertainty (Liu et al., 2020; Buckman et al., 2020; Yu et al., 2020;
Jin et al., 2020c; Rashidinejad et al., 2021), or variance reduction (Yin et al., 2020,
2021).

31
In this work, however, we investigate a different aspect of the offline RL frame-

work, namely the statistical robustness in the presence of data corruption. Data
corruption is one of the main security threats against modern ML systems: au-
tonomous vehicles can misread traffic signs contaminated by adversarial stickers
(Eykholt et al., 2018); chatbots were misguided by tweeter users to make misogy-
nistic and racist remarks (Neff, 2016); recommendation systems are fooled by fake
reviews/comments to produce incorrect rankings. Despite the many vulnerabilities,
robustness against data corruption has not been extensively studied in RL until re-
cently. To the best of our knowledge, all prior works on corruption-robust RL study
the online RL setting. As direct extensions to the setting of adversarial bandits,
earlier works focus on designing robust algorithms in fully adversarial environments,
i.e. the reward functions at all rounds are adversarially generated, and show that
O(
√
T) regret is achievable (Even-Dar et al., 2009; Neu et al., 2010, 2012; Zimin and

Neu, 2013; Rosenberg and Mansour, 2019; Jin et al., 2020a). While such setting
might appear certain game-theoretical situations, in most practical scenarios, such
as the ones described above, only a small fraction of the data are actually adversarial
while the majority of the data are benign.

Recent works start to study the Huber’s contamination setting (Lykouris et al.,
2019; Chen et al., 2021b), where both rewards and transitions can be contaminated
but only in ε fraction of all episodes. This setting turns out to be significantly harder,
and both works can only tolerate at most ε ≤ O(1/

√
T) fraction of corruptions

even against oblivious adversaries. Zhang et al. (2021b) recently proposes the first
online RL algorithm that can be robust against a constant fraction (i.e. ε ≥ Ω(1))
of adaptive corruption on both rewards and transitions while being agnostic to
the value of ε, albeit requiring the help of an exploration policy with finite relative
condition number.

In this work, we extend the study of robust RL to the offline setting. Follow-
ing (Lykouris et al., 2019; Chen et al., 2021b; Zhang et al., 2021b), we study the
Huber’s contamination model in offline reinforcement learning, formally defined in
Assumption 4.2.2. Huber’s contamination model is a classic model for studying
sparse data contamination, and is widely used in the traditional literature of robust

32
statistics (Huber et al., 1967). We refer interesting readers to a comprehensive
survey (Diakonikolas and Kane, 2019) of recent advances along these directions.
Motivated by these prior works, in this paper we ask the following question:

Given an offline RL dataset with ε-fraction of corrupted data, what is the information-
theoretic limit of robust identification of the optimal policy?

Towards answering this question, we summarize the following contributions of
this work:

1. We provide the formal definition of ε-contamination model in offline RL, and
establish an information-theoretical lower-bound of Ω(Hdε) in the setting of
linear MDP with dimension d.

2. We design a robust variant of the Least-Square Value Iteration (LSVI) algorithm
utilizing robust supervised learning oracles with a novel pessimism bonus term,
and show that it achieves near-optimal performance in cases with (Theorem
4.3.2) or without global data coverage (Theorem 4.3.3).

3. In the without coverage case, we establish a sufficient condition for learning
based on the relative condition number with respect to any comparator policy
— not necessary the optimal one. When specialized to offline RL without cor-
ruption, our partial coverage assumption is much weaker than the full coverage
assumption in (Jin et al., 2020c) for linear MDP.

4. In contrast to (Zhang et al., 2021b), we show that agnostic learning, i.e. learning
without the knowledge of ε, is generally impossible in the offline RL setting,
establishing a separation in hardness between online and offline RL in face of
data corruption.

While our paper’s main contributions are on corruption robust offline RL, it is worth
noting when specialized to the clean offline RL setting, i.e., ε = 0, our work also gives
two improved results: (1) under the linear MDP setting, we achieve an optimality
gap with respect to any comparator policy (not necessarily the optimal one) in
the order of O(d3/2/

√
N) with N being the number of offline samples, saving a

√
d

33
factor over previously best-known results. (2) our analysis works for the setting
where offline data only has partial coverage which is formalized using the concept
of relative condition number with respect to the comparator policy1.

4.2 Preliminaries

To begin with, let us formally introduce the episodic linear MDP setup we will be
working with, the data collection and contamination protocol, as well as the robust
linear regression oracle.

Environment. We consider an episodic finite-horizon Markov decision process
(MDP), M(S,A, P, R,H, µ0), where S is the state space, A is the action space,
P : S×A → ∆(S) is the transition function, such that P (·|s, a) gives the distribution
over the next state if action a is taken from state s, R : S ×A → ∆(R) is a stochastic
and potentially unbounded reward function, H is the time horizon, and µ0 ∈ ∆S
is an initial state distribution. The value functions V π

h : S → R is the expected
sum of future rewards, starting at time h in state s and executing π, i.e. V π

h (s) :=
E
[∑H

t=hR(st, at)|π, s0 = s
]
, where the expectation is taken with respect to the ran-

domness of the policy and environmentM. Similarly, the state-action value function
Qπ
h : S×A → R is defined asQπ

h(s, a) := E
[∑H

t=hR(st, at)|π, s0 = s, a0 = a
]
.We use

π∗h, Q∗h, V ∗h to denote the optimal policy, Q-function and value function, respectively.
For any function f : S → R, we define the Bellman operator as

(Bf)(s, a) = Es′∼P (·|s,a)[R(s, a) + f(s′)]. (4.1)

We then have the Bellman equation

V π
h (s) = 〈Qπ

h(s, ·), πh(·|s)〉A, Qπ
h(s, a) = (BV π

h+1)(s, a)
1Contemporary to ours, Jin et al. (2020c) added a new Corollary 4.5 in the latest arXiv version

of their paper that matches with our results.

34
and the Bellman optimality equation

V ∗h (s) = max
a

Q∗h(s, a), Q∗h(s, a) = (BV ∗h+1)(s, a)

We define the averaged state-action distribution dπ of a policy π: dπ(s, a) :=
1
H

∑H
h=1 Prπ(st = s, at = a|s0 ∼ µ0) . We aim to learn a policy that maximizes

the expected cumulative reward and thus define the performance metric as the
suboptimality of the learned policy π compared to a comparator policy π̃:

SubOpt(π, π̃) = Es∼µ0 [V π̃
1 (s)− V π

1 (s)]. (4.2)

Notice that π̃ doesn’t necessarily have to be the optimal policy π∗, in contrast to
most recent results in pessimistic offline RL, such as (Jin et al., 2020c; Buckman
et al., 2020).

For the majority of this work, we focus on the linear MDP setting (Yang and
Wang, 2019a; Jin et al., 2020b).

Assumption 4.2.1 (Linear MDP). There exists a known feature map φ : S ×A → Rd, d
unknown signed measures µ = (µ(1), ..., µ(d)) over S and an unknown vector θ ∈ Rd, such
that for all (s, a, s′) ∈ S ×A× S ,

P (s′|s, a) = φ(s, a)>µ(s′), R(s, a) = φ(s, a)>θ + ω

where ω is a zero-mean and σ2-subgaussian distribution. Here we also assume that the
parameters are bounded, i.e.‖φ(s, a)‖≤ 1, E[R(s, a)] ∈ [0, 1] for all (s, a) ∈ S × A and
max(‖µ(S)‖, ‖θ‖) ≤

√
d.

Clean Data Collection. We consider the offline setting, where a clean dataset D̃ =
{(s̃i, ãi, r̃i, s̃′i)}i=1:N of transitions is collected a priori by an unknown experimenter.
In this work, we assume the stochasticity of the clean data collecting process, i.e.
there exists an offline state-action distribution ν ∈ ∆(S ×A), s.t. (s̃i, ãi) ∼ ν(s, a),
r̃i ∼ R(s̃i, ãi) and s̃′i ∼ P (s̃i, ãi). When there is no corruption, D̃ will be observed

35
by the learner. However, in this work, we study the setting where the data is
contaminated by an adversary before revealed to the learner.

Contamination model. We define an adversarial model that can be viewed as
a direct extension to the ε-contamination model studied in the traditional robust
statistics literature.

Assumption 4.2.2 (ε-Contamination in offline RL). Given ε ∈ [0, 1] and a set of clean
tuples D̃ = {(s̃i, ãi, r̃i, s̃′i)}i=1:N , the adversary is allowed to inspect the tuples and replace
any εN of them with arbitrary transition tuples (s, a, r, s′) ∈ S×A×R×S . The resulting
set of transitions is then revealed to the learner. We will call such a set of samples ε-corrupted,
and denote the contaminated dataset as D = {(si, ai, ri, s′i)}i=1:N . In other words, there are
at most εN number of indices i, on which (s̃i, ãi, r̃i, s̃′i) 6= (si, ai, ri, s′i).

Under ε-contamination, we assume access to a robust linear regression oracle.

Assumption 4.2.3 (Robust least-square oracle (RLS)). Given a set of ε-contaminated
samples S = {(xi, yi)}1:N , where the clean data is generated as: x̃i ∼ ν, P (‖x‖≤ 1) = 1,
ỹi = x̃i>w∗ + γi, where γi’s are subgaussian noise with zero-mean and γ2-variance. Then,
a robust least-square oracle returns an estimator ŵ, such that

1. IfEν [xx>] � ξ, then with probability at least 1−δ, ‖ŵ−w∗‖2≤ c1(δ)·
(√

γ2poly(d)
ξ2N

+ γ
ξ
ε
)

2. With probability at least 1− δ, Eν
(
‖x>(ŵ − w∗)‖2

2

)
≤ c2(δ) ·

(
γ2poly(d)

N
+ γ2ε

)
where c1 and c2 hide absolute constants and polylog(1/δ).

Such guarantees are common in the robust statistics literature, see e.g. (Bakshi
and Prasad, 2020; Pensia et al., 2020; Klivans et al., 2018). In particular, in the
simpler setting of bounded reward, i.e. ri ∈ [0, 1] for all i, Regular Least Square
(RLS) already satisfies Assumption 4.2.3 with polyd = O(d), see e.g. Appendix F of
(Lykouris et al., 2019). We note that while we focus on oracles with such guarantees,
our algorithm and analysis are modular and allow one to easily plug in oracles
with stronger or weaker guarantees.

36
4.3 Algorithms and Main Results

In this work, we focus on a Robust variant of Least-Squares Value Iteration (LSVI)-
style algorithms (Jin et al., 2020c), which directly calls a robust least-square oracle
to estimate the Bellman operator B̂V̂h(s, a). Optionally, it may also subtract a pes-
simistic bonus Γh(s, a) during the Bellman update. A template of such an algorithm
is defined in Algorithm 4. In section 4.3 and 4.3, we present two variants of the
LSVI algorithm designed for two different settings, depending on whether the data
has full coverage over the whole state-action space or not. However, before that, we
first present an algorithm-independent minimax lower-bound that illustrates the
hardness of the robust learning problem in offline RL, in contrast to classic results
in statistical estimation and supervised learning.

Minimax Lower-bound

Theorem 4.3.1 (Minimax Lower bound). Under assumptions 4.2.1 (linear MDP)
and 4.2.2 (ε-contamination), for any fixed data-collecting distribution ν, no algorithm
L : (S ×A×R×A)N → Π can find a better than O(dHε)-optimal policy with probability
more than 1/4 on all MDPs. Specifically,

min
L,ν

max
M,fc

SubOpt(π̂, π∗) = Ω (dHε) (4.3)

where fc denotes an ε-contamination strategy that corrupts the data based on the MDP
M and clean data D̃ and returns a contaminated dataset, and L denotes an algorithm that
takes the contaminated dataset and return a policy π̂, i.e. π̂ = L(fc(M, D̃)).

The detailed proof is presented in appendix B.2, but the high-level idea is simple.
Consider the tabular MDP setting which is a special case of linear MDP with d = SA.
For any data generating distribution ν, by the pigeonhole principle, there must exists
a least-sampled (s, a) pair, for which ν(s, a) ≤ 1/SA. If the adversary concentrate all
its attack budget on this least sampled (s, a) pair, it can perturb the empirical reward
on this (s, a) pair to be as much as r̂(s, a) = r(s, a) + SAε. Further more, assume

37
that there exists another (s∗, a∗) such that r(s∗, a∗) = r(s, a) + SAε/2. Then, the
learner has no way to tell if truly r(s, a) > r(s∗, a∗) (i.e., the learner believes what
she observes and believes there is no contamination) or if the data is contaminated
and in fact r(s, a) < r(s∗, a∗). Either could be true and whichever alternative the
learner chooses to believe, it will suffer at least SAHε/2 optimality gap in one of
the two scenarios.

Remark 4.3.1 (dimension scaling). Theorem 4.3.1 says that even if the algorithm
has control over the data collecting distribution ν (without knowingM a priori), it
can still do no better than Ω(dHε) in the worst-case, which implies that robustness
is fundamentally impossible in high-dimensional problems where d & 1/ε. This
is in sharp contrast to the classic results in the robust statistics literature, where
estimation errors are found to not scale with the problem dimension, in settings
such as robust mean estimation (Diakonikolas et al., 2016; Lai et al., 2016) and
robust supervised learning (Charikar et al., 2017; Diakonikolas et al., 2019b). From
the construction we can see that the dimension scaling appears fundamentally due
to a multi-task learning effect: the learner must perform SA separate reward mean
estimation problems for each (s, a) pair, while the data is provided as a mixture for
all these tasks. As a result, the adversary can concentrate on one particular task,
raising the contamination level to effectively dε.

Remark 4.3.2 (Offline vs. Online RL). We note that the construction in Theorem
4.3.1 remains valid even if the adversary only contaminates the rewards, and if
the adversary is oblivious and perform the contamination based only on the data
generating distribution ν rather than the instantiated dataset D̃. In contrast, the best-
known lower-bound for robust online RL is Ω(Hε) (Zhang et al., 2021b). It remains
unknown whether Ω(Hε) is tight, as no algorithm yet can achieve a matching upper-
bound without additional information. We will come back to this discussion in
section 4.3.

In what follows, we show that the above lower-bound is tight in both d and ε,
by presenting two upper-bound results nearly matching the lower-bound.

38
Algorithm 4 Robust Least-Square Value Iteration (R-LSVI)

1: Input: Dataset D = {(si, ai, ri, s′i)}1:N ; pessimism bonus Γh(s, a) ≥ 0, robust
least-squares Oracle: RLS(·).

2: Split the dataset randomly into H subset: Dh = {(shi , ahi , rhi , s′hi)}1:(N/H), for
h ∈ [H].

3: Initialization: Set V̂H+1(s)← 0.
4: for step h = H,H − 1, . . . , 1 do
5: Set ŵh ← RLS

({
(φ(shi , ahi), yhi)

}
i∈Dh

)
, where yhi = rhi + V̂h+1(s′hi).

6: Set Q̂h(s, a)← φ(s, a)>ŵh − Γh(s, a), clipped within [0, H − h+ 1].
7: Set π̂h(a|s)← argmaxa Q̂h(s, a) and V̂h(s)← maxa Q̂h(s, a).
8: end for
9: Output: {π̂h}Hh=1.

Robust Learning with Data Coverage

To begin with, we study the simple setting where the offline data has sufficient
coverage over the whole state-action distribution. This is often considered as a
strong assumption. However, results in this setting will establish meaningful
comparison to the above lower-bound and the no-coverage results later. In the
context of linear MDP, we say that a data generating distribution has coverage if it
satisfies the following assumption.

Assumption 4.3.1 (Uniform Coverage). Under assumption 4.2.1, define

Σν
∆= Eν [φ(s, a)φ(s, a)>]

as the covariance matrix of ν. We say that the data generating distribution ξ-covers the
state-action space for ξ > 0, if Σν � ξI i.e. the smallest eigenvalue of Σν is strictly positive
and at least ξ.

Under such an assumption, we show that the R-LSVI without pessimism bonus
can already be robust to data contamination.

39
Theorem 4.3.2 (Robust Learning under ξ-Coverage). Under assumption 4.2.1, 4.2.2
and 4.3.1, for any ξ, ε > 0, given a dataset of size N , Algorithm 4 with bonus Γh(s, a) = 0
achieves

(4.4)SubOpt(π̂, π∗) ≤ Õ

√(σ +H)2H3poly(d)
ξ2N

+ (σ +H)H2

ξ
ε


with probability at least 1− δ.

The proof of Theorem 4.3.2 follows readily from the standard analysis of ap-
proximated value iterations and rely on the following classic result connecting the
Bellman error to the suboptimality of the learned policy, see e.g. Section 2.3 of
(Jiang, 2020).

Lemma 4.3.1 (Optimality gap of VI). Under assumption 4.2.1, Algorithm 4 with
Γh(s, a) = 0 satisfies

SubOpt(π̂, π∗) ≤ 2H max
s,a,h
|Q̂h(s, a)− (BhV̂h+1)(s, a)|

≤ 2H max
s,a,h
‖φ(s, a)‖2·‖ŵh − w∗h‖2 (4.5)

where w∗h
∆= θ +

∫
S V̂h+1(s′)µh(s′)ds′ is the best linear predictor.

The result then follows immediately using property 1 of the robust least-square
oracle and the fact that E[((r(s, a) + V̂ (s′))− (BhV̂)(s, a))2|s, a] ≤ (σ+H)2 (Lemma
B.1.2).

Remark 4.3.3 (Data Splitting and tighter d-dependency). The data splitting in step
2 of Algorithm 4 is mainly for the sake of theoretical analysis and is not required
for practical implementations. Nevertheless, it directly contributes to our tighter
bounds. Specifically, the data splitting makes V̂h+1, which is learned based on
Dh+1, independent from Dh, at the cost of an additional H multiplicative factor. In
contrast, the typical covering argument used in online RL will introduce another
O(d1/2) multiplicative factor, and naively applying it to the offline RL setting will
make the finally sample complexity scales as O(d3/2), see e.g. Corollary 4.5 of (Jin

40
et al., 2020c). Our result above, when specialized to offline RL without corruption
(i.e., ε = 0), achieves the following results.

Corollary 4.3.1 (Uncorrupted Learning under ξ-Coverage). Under assumption 4.2.1
and 4.3.1, for any ξ > 0, given a clean dataset of size N , with bonus Γh(s, a) = 0 and ridge
regression with regularizer coefficient λ = 1 as the RLS solver, Algorithm 4 achieves with
probability at least 1− δ

(4.6)SubOpt(π̂, π∗) ≤ Õ

(
H3d

ξ
√
N

)
.

Remark 4.3.4 (Tolerable ε). Notice that Theorem 4.3.2 requires ε ≤ ξ to provide
a non-vacuous bound. This is because if ε > ξ, then similar to the lower-bound
construction in Theorem 4.3.1, the adversary can corrupt all the data along the
eigenvector direction corresponding to the smallest eigenvalue, in which case the
empically estimated reward along that direction can be arbitrarily far away from
the true reward even with a robust mean estimator, and thus the estimation error
becomes vacuous.

Remark 4.3.5 (Unimprovable gap). Notice in contrast to classic RL results, Theorem
4.3.2 implies that in the presence of data contamination, there exists an unimprov-
able optimality gap (σ +H)H2ε/ξ for the proposed algorithm, even if the learner
has access to infinite data. Also note that because ‖φ(s, a)‖≤ 1, ξ is at most 1/d.
This implies that asymptotically, V ∗ − V π̂ ≤ O(H3dε) when ξ is on the order of 1/d,
matching the lower-bound upto H factors.

Remark 4.3.6 (Agnosticity to problem parameters). It is worth noting that in theo-
rem 4.3.2, the algorithm does not require the knowledge of ε or ξ, and thus works in
the agnostic setting where these parameters are not available to the learner (given
that the robust least-square oracle is agnostic). In other words, the algorithm and
the bound are adaptive to both ε and ξ. This point will be revisited in the next
section.

41
Robust Learning without Coverage

Next, we consider the harder setting where assumption 4.3.1 does not hold, as often
in practice, the offline data will not cover the whole state-action space. Instead, we
provide a much weaker sufficient condition under which offline RL is possible.

Assumption 4.3.2 (relative condition number). For any given comparator policy π̃,
under assumption 4.2.1 and 4.2.2, define the relative condition number as

κ = sup
w

w>Σ̃w
w>Σνw

(4.7)

where Σ̃ denotes Σdπ̃ and we take the convention that 0
0 = 0. We assume that κ <∞.

The relative condition number is recently introduced in the policy gradient
literature (Agarwal et al., 2019a; Zhang et al., 2021b). Intuitively, the relative
condition number measures the worst-case density ratio between the occupancy
distribution of comparator policy and the data generating distribution. For example,
in a tabular MDP, κ = maxs,a d

π̃(s,a)
ν(s,a) . Here, we show that a finite relative condition

number with respect to an arbitrary comparator policy is already sufficient for offline
RL, for both clean and contaminated setting.

Without data coverage, we now rely on pessimism to retain reasonable behavior.
However, the challenge, in this case, is to design a valid confidence bonus using
only the corrupted data. We now present our constructed pessimism bonus that
allows Algorithm 4 to handle ε-corruption, albeit requiring the knowledge of ε.

Theorem 4.3.3 (Robust Learning without Coverage). Under assumption 4.2.1, 4.2.2
and 4.3.2, with ε > 0, given any comparator policy π̃ with κ < ∞, define the ε-robust
empirical covariance as

Λh = 3
5

H
N

∑
i∈Dh

φ(shi , ahi)φ(shi , ahi)> + (ε+ λ) · I
 , (4.8)

λ = c′ · dH log(N/δ)/N

42
where Dh denotes the data for step h and c′ is an absolute constant. Then, Algorithm 4 with
pessimism bonus

Γh(s, a)

=
(

(σ +H)
√
Hpoly(d)√
N

+ ((σ +H) + 2H
√
d)
√
ε+
√
dλ

)√
c2(δ/H)‖φ(s, a)‖Λ−1

h

(4.9)

will with probability at least 1− δ achieve

(4.10)SubOpt(π̂, π̃) ≤ Õ

(
(σ +H)

√
H3κpoly(d)√
N

+ ((σ +H)H +H2
√
d)
√
dκε

)

Remark 4.3.7 (Arbitrary comparator policy). Notice that in comparison to The-
orem 4.2 of (Jin et al., 2020c), Lemma C.4.1 allows the comparator policy to be
arbitrary, and the implication is profound. Specifically, Lemma C.4.1 indicates that
a pessimism-style algorithm always retains reasonable behavior, in the sense that,
given enough data, it will eventually find the best policy among all the policies
covered by the data generating distribution, i.e. argmaxπ V π(µ), s.t. κ(π) < ∞.
Similar to the ξ-coverage, when specialized to standard offline RL, our analysis
provides a tighter bound.

Corollary 4.3.2 (Uncorrupted Learning without Coverage). Under assumption 4.2.1
and 4.3.2, given any comparator policy π̃ with κ <∞, define the empirical covariance as

Λh = H

N

N/H∑
i=1

φ(shi , ahi)φ(shi , ahi)> + λ · I (4.11)

λ = c′ · dH log(N/δ)/N

where c′ is an absolute constant. Then, with pessimism bonus

Γh(s, a) = H

√d · λ+
√
Hd log(N/δλ)

N

 · ‖φ(s, a)‖Λ−1
h

43
and ridge regression with regularizer coefficient λ as the RLS solver, Algorithm 4 will with
probability at least 1− δ achieve

(4.12)SubOpt(π̂, π̃) ≤ Õ

(H2d+H2.5
√
d
)√dκ

N


We note that the leading term (first term) O(d3/2) is directly due to the as-

sumption that the linear MDP parameter max(‖µ(S)‖, ‖θ‖) ≤
√
d. If instead

max(‖µ(S)‖, ‖θ‖) ≤ ρ for some ρ indepdent of d, then the above bound will be-
come linear in d. In contrast, the covering-number style analysis will generate d3/2

regardless of the parameter norm, since its second term will become O(d3/2) and
dominate (as one needs to perform a covering argument to cover the quadratic
penalty term Γh(s, a)).

The proof of Theorem 4.3.3 is technical but largely follows the analysis frame-
work of pessimism-based offline RL and consists of two main steps. The first step
establishes Γh(s, a) as a valid bonus by showing

|Q̂h(s, a)− (BhV̂h+1)(s, a)|≤ Γh(s, a), w.p. 1− δ/H. (4.13)

The second step applies the following Lemma connectingthe optimality gap with
the expectation of Γh(s, a) under visitation distribution of the comparator policy.

Lemma 4.3.2 (Suboptimality for Pessimistic Value Iteration). Under assumption
4.2.1, and under the event E that the Γh(s, a) satisfies the required property of bounding
the Bellman error, i.e. |Q̂h(s, a)− (BhV̂h+1)(s, a)|≤ Γh(s, a),∀h ∈ [H], then against any
comparator policy π̃, it achieves

SubOpt(π̂, π̃) ≤ 2
H∑
h=1

Edπ̃ [Γh(s, a)] (4.14)

We then further upper-bound the expectation through the following inequality,
which bounds the distribution shift effect using the relative condition number κ:

Edπ̃
[√
φ(s, a)>Λ−1φ(s, a)

]
≤
√

5dκ (4.15)

44
The detailed proof can be found in Appendix B.3. Note that the prior work (Jin
et al., 2020c) only establishes results in terms of the suboptimality comparing with
the optimal policy, and when specializes to linear MDPs, they assume the offline
data has global full coverage. We replace these redundant assumptions with a
single assumption of partial coverage with respect to any comparator policy, in the
form of a finite relative condition number.

Remark 4.3.8 (Novel bonus term). One of our main algorithmic contributions is the
new bonus term that upper-bound the effect of data contamination on the Bellman
error. Ignoring ε-independent additive terms and absolute constants, our bonus
term has the form

H
√
ε ·
√
φ(s, a)>Λ−1φ(s, a). (4.16)

In comparison, below is the one used in (Lykouris et al., 2019) for online corruption-
robust RL:

Hε ·
√
φ(s, a)>Λ−2φ(s, a). (4.17)

In the tabular case, (4.17) evaluates toHε/ν(s, a) and (4.16) evaluates toH
√
ε/ν(s, a),

and thus (4.17) is actually tighter than (4.16) for ν(s, a) ≥ ε. However, in the linear
MDP case, the relation between the two is less obvious. As we shall see, when
offline distribution has good coverage, i.e. Λ is well-conditioned, (4.17) appears
to be tighter. However, as the smallest eigenvalue of Λ goes to zero, a.k.a. lack
of coverage, (4.17) actually blows up rapidly, whereas both (4.16) and the actual
achievable gap remain bounded.

We demonstrate these behaviors with a numerical simulation, shown in Figure
4.1. In the simulation, we compare the size of three terms

maximum possible gap = (4.18)

max
‖y‖∞≤2H,‖y‖0≤εN

φ(s, a)>Λ−1
(

1
N

N∑
i=1

φ(si, ai) · yi
)

(4.19)

bonus 1 = Hε ·
√
φ(s, a)>Λ−2φ(s, a)

bonus 2 = H
√
ε ·
√
φ(s, a)>Λ−1φ(s, a)

45
The maximum possible gap is defined as above since for any (s, a) pair and in any
step h, the bias introduced to its Bellman update due to corruption takes the form
of

φ(s, a)>Λ−1
(

1
N

N∑
i=1

φi (ỹi − yi)
)

(4.20)

where ỹi = r̃i + V̂h+1(s̃′i) and yi = ri + V̂h+1(s′i), in which r̃i and x̃′i are the clean
reward and transitions. For the sake of clarity, here we assume that the adversary
only contaminates the reward and transitions in a bounded fashion while keeping
the current (s, a)-pairs unchanged. (4.20) can then be upper-bounded by (4.19),
because there are at most εN tuples on which r̃i 6= ri or s̃′i 6= s′i, and for any such
tuple (r̃i + V̂h+1(s̃′i))− (ri + V̂h+1(s′i)) ≤ 2H .

In the simulation, we set H = 1 to ignore the scaling on time horizon and let
λ = 1; We let both the test data φ(s, a) and the training data φ(si, ai) to be sampled
from a truncated standard Gaussian distribution in R3, denoted by ν, with mean 0,
and covariance eigenvalues 1, 1, λmin. We set the training data size set to N = 106

and contamination level set to ε = 0.01. The x-axis tracks − log(λmin), while the
y-axis tracks Es,a∼νbonus(s, a), with expectation being approximated by 1000 test
samples from ν. It can be seen that bonus 1 starts off closely upper-bounding the
maximum possible gap when the data has good coverage, but increases rapidly as
λmin decreases. Note that for a fixed N , bonus 1 will eventually plateau at HNε/λ,
but this term scales with N , so the error blows up as the number of samples grows,
which certainly is not desirable. Bonus 2, on the other hand, is not as tight as bonus
1 when there is good data coverage, but remains intact regardless of the value of
λmin, which is essential for the more challenging setting with poor data coverage.

This new bonus term can be of independent interest in other robust RL contexts.
For example, in the online corruption-robust RL problem, as a result of using the
looser bonus term (4.16), the algorithm in (Lykouris et al., 2019) can only handle
ε = T−3/4 amount of corruptions in the linear MDP setting, while being able to
handle ε = T−1/2 amount of corruptions in the tabular setting, due to the tabular
bonus being tighter. Our bonus term can be directly plugged into their algorithm,
allowing it to handle up to ε = T−1/2 amount of corruption even in the linear MDP

46

Figure 4.1: bonus size simulation

setting, achieving an immediate improvement over previous results.2

Note that our algorithm and theorem are adaptive to the unknown relative
coverage κ, but is not adaptive to the level of contamination ε (i.e., algorithm
requires knowing ε or a tight upper bound of ε). One may ask whether there
exists an agnostic result, similar to Theorem 4.3.2, where an algorithm can be
adaptive simultaneously to unknown values of ε and coverage parameter κ. Our
last result shows that this is unfortunately not possible without full data coverage. In
particular, we show that no algorithm can achieve a best-of-both-worlds guarantee
in both clean and ε-corrupted environments. More specifically, in this setting, κ is
still unknown to the learner, and the adversary either corrupt ε amount of tuples (ε
is known) or does not corrupt at all—but the learner does not know which situation
it is.

Theorem 4.3.4 (Agnostic learning is impossible without full coverage). Under as-
sumption 4.2.1 and 4.3.2, for any algorithm L : (S × A × R ×A)N → Π that achieves
diminishing suboptimality in clean environment, i.e., for any clean dataset D̃ it achieves

2Though our bound improve their result, the tolerable corruption amount is still sublinear,
which is due to the multi-layer scheduling procedure used in their algorithm.

47
SubOpt(L(D̃)) = g(N) for some positive function g such that limN→∞ g(N) = 0, we have
that for any ε ∈ (0, 1/2], there exists an MDPM† such that with probability at least 1/4,
maxfc SubOpt(π̂, π̃) ≥ 1/2.

Intuitively, the logic behind this result is that to achieve vanishing errors in the
clean environment, the learner has no choice but to trust all data as clean. However,
it is also possible that the same dataset could be generated under some adversarial
corruption from another MDP with a very different optimal policy—thus the learner
cannot be robust to corruption under that MDP.

Specifically, consider a 2-arm bandit problem. The learner observes a dataset of
N data points of arm-reward pairs, of which p fraction is arm a1 and (1− p) fraction
is arm a2. For simplicity, we assume that N is large enough such that the empirical
distribution converges to the underlying sampling distribution. Assume further that
the average reward observed for a1 is r̂1 = 1

2 + ε
2p , for some ε ≤ p, and the average

reward observed for a2 is 1
2 . Given such a dataset, two data generating processes

can generate such a dataset with equal likelihood and thus indistinguishable based
only on the data:

1. There is no contamination. The MDP has a reward setting where a1 indeed has
reward r1 = Bernoulli(1

2 + ε
2p) and a2 has r2 = Bernoulli(1

2). Since there is no
corruption, κ = 1/p in this MDP.

2. The data is ε-corrupted. In particular, in this MDP, the actual reward of a1 is
r1 = Bernoulli(1

2 −
ε

2p), and the adversary is able to increase empirical mean by
ε/p via changing εN number of data points from (a1, 0) to (a1, 1). One can show
that this can be achieved by the adversary with probability at least 1/2 (which is
where the probability 1/2 in the theorem statement comes from). In this MDP,
we have κ = 1/(1− p).

Now, since the algorithm achieves a diminishing suboptimal gap in all clean envi-
ronments, it must return a1 with high probability given such a dataset, due to the
possibility of the learner facing the data generation process 1. However, committing

48
to action a1 will incur ε/2p suboptimal gap in the second MDP with the data gener-
ation process 2. On the other hand, note that the relative condition number in the
second MDP is bounded, i.e. 1

1−p ≤ 2 for ε ≤ p ≤ 1/2. Therefore, for any ε ∈ (0, 1/2],
one can construct such an instance with p = ε, such that the relative condition
number for the second MDP is 1

1−p ≤ 2 and the relative condition number for the
first MDP is 1

ε
<∞, while the learner would always suffer ε/2p = 1/2 suboptimality

gap in the second MDP if she had to commit to a1 under the first MDP where data
is clean.

Remark 4.3.9 (Offline vs. Online RL: Agnostic Learning). Theorem 4.3.4 shows
that no algorithm can simultaneously achieve good performance in both clean and
corrupted environments without knowing which one it is currently experiencing.
This is in sharp contrast to the recent result in (Zhang et al., 2021b), which shows
that in the online RL setting, natural policy gradient (NPG) algorithm can find an
O(
√
κε)-optimal policy for any unknown contamination level ε with the help of an

exploration policy with finite relative condition number. Without such a helper
policy, however, robust RL is much harder, and the best-known result (Lykouris
et al., 2019) can only handle ε ≤ O(1/

√
T) corruption, but still does not require the

knowledge of ε. Intuitively, such adaptivity is lost in the offline setting, because
the learner is no longer able to evaluate the current policy by collecting on-policy
data. In the online setting, the construction in Theorem 4.3.4 will not work. Our
construction heavily relies on the fact that ν has ε probability of sampling a1, which
allows adversary in the second MDP to concentrate its corruption budget all on a1.
In the online setting, one can simply uniform randomly try a1 and a2 to significantly
increase the probability of sampling a1 which in turn makes the estimation of r1

accurate (up to O(ε) in the corrupted data generation process).

4.4 Discussions and Conclusion

In this paper, we studied corruption-robust RL in the offline setting. We provided
an information-theoretical lower bound and two near-matching upper-bounds

49
for cases with or without full data coverage, respectively. We also establish an
impossibility result, showing that an agnostic algorithm is impossible in corruption-
robust offline RL and distincting the offline setting from the online counterpart.
Finally, when specialized to the uncorrupted setting, our algorithm and analysis
also obtained tighter bounds than prior works.

50
5 byzantine-robust reinforcement learning

In the last two chapters, we study online and offline reinforcement with an adversary
who can change a constant fraction of the data. When applying robust learning
method, the corruption results in a bias term in the suboptimality gap. However,
when the data corruption has some special structure, one may aim to achieve a
better robustness guarantee. In this chapter, we consider a distributed reinforcement
learning setting where multiple agents separately explore the environment and
communicate their experiences through a central server. However, a portion of
agents are adversarial and can report arbitrary fake information. This means the
clean and corrupted data form clean and corrupted data batches. By utilizing the
batch structure, we show that our algorithms achieve sublinear regret in the online
setting and diminishing bound on suboptimality gap in the offline setting.

5.1 Introduction

Distributed learning systems have been one of the main driving forces to recent
successes of deep learning (Verbraeken et al., 2020; Goyal et al., 2017; Abadi et al.,
2016). Advances in designing efficient distributed optimization algorithms(Horgan
et al., 2018) and deep learning infrastructures (Espeholt et al., 2018) have enabled
the training of powerful models with hundreds of billions of parameters (Brown
et al., 2020). However, new challenges emerge with the outsourcing of computation
and data collection. In particular, distributed systems have been found vulnerable
to Byzantine failure (LAMPORT et al., 1982), meaning there could be agents with
failure that may send arbitrary information to the central server. Even a small
number of Byzantine machines that send out moderately corrupted data can lead
to a significant loss in performance (Yin et al., 2018; Ma et al., 2019; Zhang et al.,
2020a), which raise security concern in real-world applications such as chatbot
(Neff and Nagy, 2016) and autonomous vehicles (Eykholt et al., 2018; Ma et al.,
2021). In addition, other desired properties are chased after, such as protecting the

51
data privacy of individual data contributors (Sakuma et al., 2008; Liu et al., 2019)
and reducing communication cost (Dubey and Pentland, 2021). These challenges
require new algorithmic design on the server side, which is the main focus of this
paper.

When it comes to reinforcement learning (RL), distributed learning has been
prevalent in many large-scale decision-making problems even before the deep
learning era, such as cooperative learning in robotics systems (Ding et al., 2020a),
power grids optimization (Yu et al., 2014) and automatic traffic control (Bazzan,
2009). Unlike supervised learning, where the data distribution of interest is often
fixed prior, reinforcement learning requires active exploration on the agent’s side
to discover the optimal policy for the current task, thus creating new challenges in
achieving the above desiderata while exploring in an unknown environment.

This paper studies this exact problem:

Can we design a distributed RL algorithm that is sample efficient and robust to Byzantine
agents while having small communication costs and promoting data privacy?

We study Byzantine-robust RL in both the online and offline settings: In the
online setting, a central server is designed to outsource exploration tasks to m

agents iteratively, the agents collect experiences and send them back to the server,
and the server uses the data to update its policy; In the offline setting, a central
server collects logged data from m agents and uses the data to identify a good
policy without additional interaction with the environment. However, among the
m agents, an α-fraction is Byzantine, meaning they can send arbitrary data in both
the online and offline settings. We summarize our contributions as follows:

1. We design COW, a robust mean estimation algorithm for learning from batches.
By utilizing the batch structure, the estimation error of our algorithm vanishes
with more data. Compared to prior works (Qiao and Valiant, 2017; Chen et al.,
2020; Jain and Orlitsky, 2021; Yin et al., 2018), our algorithm adapts to arbitrary
batch sizes, which is desired in many applications of interest.

52
2. We design Byzan-UCBVI, a Byzantine-Robust variant of optimistic value iteration

for online RL, by calling COW as a subroutine. We show that Byzan-UCBVI
achieves near-optimal regret with α-fraction Byzantine agents. Meanwhile,
Byzan-UCBVI also enjoys a logarithmic communication cost and switching
cost (Bai et al., 2019; Zhang et al., 2020b; Gao et al., 2021), and preserves data
privacy of individual agents.

3. We design Byzan-PEVI, a Byzantine-Robust variant of pessimistic value iteration
for offline RL, again utilizing COW as a subroutine. Despite the presence of
Byzantine agents, we show that Byzan-PEVI can learn a near-optimal policy
with a polynomial number of samples when certain coverage conditions are
satisfied (Zhang et al., 2021a).

5.2 Related Work

Reinforcement Learning: Reinforcement learning aims to find the optimal policy
in a Markov Decision Process (MDP) (Sutton and Barto, 2018). Here we mainly
survey prior works that introduce ideas and theoretical tools that inspire our work.
(Azar et al., 2017; Dann et al., 2017) show that UCB-style algorithms achieve min-
imax regret bound in tabular MDPs. Recent work extends the theoretical under-
standing to RL with function approximation (Jin et al., 2020b; Yang and Wang,
2019a, 2020). Our analysis for the online RL algorithm follows the theoretical
framework of optimism in the face of uncertainty, yet the technical steps differ sig-
nificantly from the above works. (Jin et al., 2021; Rashidinejad et al., 2021) use a
pessimistic strategy to efficiently learn a near-optimal policy in the offline setting.
The same principle is utilized in the design of our offline RL algorithm. Recently,
(Bai et al., 2019; Zhang et al., 2020b; Gao et al., 2021) study low switching-cost RL
algorithm, meaning the learning agent only performs a small number of policy
changes. Our algorithm borrows ideas from these works to simultaneously achieve
small communication costs and statistical robustness.

53
Distributed Reinforcement Learning: Parallel RL deploys large-scale models in
distributed system (Kretchmar, 2002). (Horgan et al., 2018; Espeholt et al., 2018)
provide distributed architecture for deep reinforcement learning by parallelizing
the data-generating process. (Dubey and Pentland, 2021; Agarwal et al., 2021; Chen
et al., 2021a) provide the first sets of theoretical guarantees for performance and
communication cost in parallel RL. We take a step further to study the Byzantine-
robust problem in distributed RL.

Robust Statistics: Robust statistics studies learning with corrupted datasets and
has a long history (Huber, 1992; Tukey, 1960). In modern machine learning, models
are high-dimensional. Recent work provides sample and computationally effi-
cient algorithms for robust mean and covariance estimation in high dimension
(Diakonikolas et al., 2016, 2017; Lai et al., 2016). Shortly after, those robust mean
estimators are applied to robust supervised learning (Diakonikolas et al., 2019b;
Prasad et al., 2018) and RL (Zhang et al., 2021a,b). A line of work of particular
interest to us studies robust learning from data batches (Qiao and Valiant, 2017;
Chen et al., 2020; Jain and Orlitsky, 2021; Yin et al., 2018). They consider a setting
where the data is collected from many distinct data sources, and a fraction of the
data sources is corrupted. By exploiting the batch structure of the data, these al-
gorithms can achieve significantly higher accuracy than in the non-batch setting
(Diakonikolas et al., 2016). However, to our best knowledge, all of these works
study batches with equal sizes, which does not often capture situations in practice.
In contrast, our algorithm in page 54 works for arbitrarily different batch sizes and
achieves a near-optimal rate adaptively.

Byzantine-Robust Distributed Learning: Byzantine-Robust learning algorithm
studies learning under Byzantine failure (LAMPORT et al., 1982). (Chen et al.,
2017) provides a Byzantine gradient descent via the geometric median of mean
estimation for the gradients. (Yin et al., 2018) provides robust distributed gradient
descent algorithms with optimal statistics rates. These works also restrict to a setting
where each worker handles the same number of gradient computations. As we will

54
show later, their algorithm and rate will no longer be optimal when the batch sizes
differ.

Corruption-Robust RL And Byzantine-Robust RL: There is a line of work study-
ing adversarial attack against reinforcement learning (Ma et al., 2019; Zhang et al.,
2020a; Huang et al., 2017), and corruption robust reinforcement RL for online
(Zhang et al., 2021b; Lykouris et al., 2021) and offline (Zhang et al., 2021a) settings.
(Jadbabaie et al., 2022) studies Byzantine-Robust linear bandits in the federated
setting. Unlike our setting, they allow different agents to be subject to Byzantine
attacks in different episodes. Our algorithm enjoys a better regret bound and com-
munication cost. (Fan et al., 2021) provides a Byzantine-robust policy gradient
algorithm that is guaranteed to converge to an approximately stationary point,
whereas our algorithm guarantees to find an approximately optimal policy. (Dubey
and Pentland, 2020) studies Byzantine-Robust multi-armed bandit, where the cor-
ruption can only come from a fixed distribution. We study a more difficult MDP
setting and allow the corruption to be arbitrary.

5.3 Robust Mean Estimation From Untruthful
Batches

To prepare for our discussion of byzantine-robust RL, we first discuss an important
subproblem called robust mean estimation from batches, which captures many of the
unique properties and challenges byzantine-robust RL faces. Indeed, our byzantine-
robust RL algorithms will crucially be built upon the algorithm we design for this
preliminary problem.

Definition 5.3.1 (Robust mean estimation from batches). There aremdata providers
indexed by {1, 2, . . . ,m} =: [m]. Among these providers, we denote the indices
of uncorrupted (good) providers by G ⊆ [m] and the indices of corrupted (bad)
providers by B = [m]\G, where |B| = αm. Each provider j ∈ [m] sends a data batch
x

[nj]
j := {x1

j , . . . , x
nj
j } to the server, where the batch size nj can be arbitrary. For

55
j ∈ G, its batch consists of i.i.d. samples drawn from the same σ-subGaussian distri-
butionDwith mean µ (i.e. EX∼D[X] = µ and EX∼D [exp (s (X − µ))] ≤ exp (σ2s2/2),
∀s ∈ R.). For j ∈ B, x[nj]

j can be arbitrary.

page 54 considers a robust learning problem from batches where we allow arbi-
trarily different batch sizes. The corruption level α is the fraction of bad providers
not data points; it is possible that a bad provider j has an overwhelmingly large nj
compared to other providers. In contrast, prior works (Qiao and Valiant, 2017; Chen
et al., 2020; Jain and Orlitsky, 2021) have only studied the setting with (roughly)
equal batch sizes. In many real-world crowd-sourcing applications, large and small
data providers can differ drastically in the amount of data they provide, so our
framework above captures broader application scenarios than prior works.

For this problem, we propose the COW (clique-overweight) algorithm (page 56).
Given the empirical means of the batches µ̂j := 1

nj

∑nj
i=1 x

i
j , j = 1, . . . ,m, batch sizes

n1, . . . , nm, subGaussian parameter σ, corruption level α < 1/2, and confidence
level δ > 0, COW first constructs a confidence interval Ij for the true mean µ on
page 56 using each batch j, where Ij = R if nj = 0. With large probability, all
good providers’ intervals Ij should intersect because they contain µ. Define an
undirected graph with nodes I1 . . . Im, and Ii, Ij is connected by an edge if and
only if Ii ∩ Ij 6= ∅. Then we anticipate the good providers to form a large clique
of size (1 − α)m. Accordingly, the algorithm finds the maximum clique in this
graph. Of course, the maximum clique may contain some bad providers and miss
some good providers. The second part of the algorithm reduces the influence of
any “overweight” providers by cutting their effective batch size on page 56, thus
preventing bad providers in the clique to overwhelm the final mean estimate on
page 56.

There can be multiple maximum cliques in page 56; we break ties arbitrarily. A
maximum clique can be computed efficiently.

We show that page 56 achieves the following guarantee.

Theorem 5.3.1. Under page 54, if ncut > 0 and α < 1
2 , then with probability at least 1− δ,

56
Algorithm 5 COW
Require: Batch empirical means: µ̂1, . . . , µ̂m; batch sizes: n1, . . . , nm; subGaussian

parameter σ; corruption level α; confidence level δ
1: Ij ←

[
µ̂j − σ√

nj

√
2 log 2m

δ
, µ̂j + σ√

nj

√
2 log 2m

δ

]
, ∀j ∈ [m]

2: C∗ ← argmaxC⊆[m]:
⋂
j∈C Ij 6=∅|C|

3: ncut ← the (2αm+ 1)-th largest batch size
4: ñj ← min(nj, ncut),∀j ∈ [m]
5: return µ̂← 1∑

j∈C∗ ñj

∑
j∈C∗ ñjµ̂j , Error← page 56

the estimation error |µ̂− µ| of µ̂ returned by page 56 satisfies:

2√∑
j∈[m] ñj

σ

√
2 log 2

δ
+ 8αm

√
ncut∑

j∈[m] ñj
σ

√
2 log 2m

δ
(5.1)

where ncut and ñj’s are defined in page 56 and page 56 in page 56.

A few remarks are in order.

Remark 5.3.1 (Compare to prior work). Note that compared to prior works (Yin
et al., 2018), our algorithm allows arbitrary batch sizes. Even if some agents report
nj = 0, as long as ncut > 0, i.e. there are at least 2αm+ 1 agents reporting non-zero
nj’s, our estimator will return a well-behaved estimator. In contrast, algorithms
designed for equal batches will provably fail if the batches are imbalanced. (Yin
et al., 2018) calculates the trimmed-mean of the empirical means of each batch.
Suppose the clean data distribution is Gaussian N(µ, 1) and 3αm batches have size
n∗ >> m > 1 while the rest of the batches have size 1, then the error of trimmed-
mean is Õ

(
1√
m

+ α
)
, Importantly, O

(
1√
m

)
is much larger than Õ

(
1√

m+αmn∗

)
, the

optimal statistical rate without data corruption. On the contrary, page 56 returns
an estimation with error Õ

(
1√

m+αmn∗ + αmn∗

m+αmn∗
1√
n∗

)
≤ Õ

(
1√
n∗

)
<< Õ

(
1√
m

)
.

Remark 5.3.2 (Equal batch size case). On the other hand, in case of equal batch
sizes, i.e. n1 = · · · = nm = n, page 56 becomes O

(
σ√
n

(
1√
m

+ α
√

logm
))
. This

recovers the rate in (Yin et al., 2018), which is optimal (up to logarithmic factors).

57
Therefore, our result strictly generalizes prior works on robust estimation from
batches.

Remark 5.3.3 (Robust mean estimation v.s. robust mean estimation from batches).
In classical robust mean estimation setting (Huber, 1992; Diakonikolas et al., 2016),
the optimal error rate is O

(
σ
(
α + 1√

m

))
given m total samples and α fraction

corrupted samples. In contrast, due to having access to the data source ID, i.e. the
batch indices, the learner can achieve significantly improved robustness. To see this,
notice that the equal batch setting can be viewed as robust mean estimation from
m data points x̂j’s. When the batch size n becomes larger, x̂j has a smaller variance
σ2

n
and thus the error of robust mean estimation becomes O

(
σ√
n

(
α + 1√

m

))
, which

matches the above rate (up to logarithmic factors).

Remark 5.3.4 (Dependency on the largest batches). Our bound in page 56 does
not depend on the largest 2αm nj’s. This implies that even if some clean agents
have infinite samples, the algorithm cannot achieve an error that diminishes to zero.
This might not look ideal at first glance, but we show this is inevitable information-
theoretically. Interested readers are referred to page 196.

Remark 5.3.5 (Technical extensions). When the good data batch is subject to point-
wise perturbation of magnitude at most ε, a variant of Algorithm 5 (page 197
Pert-COW, see page 197) suffers at most a 2ε term in the error upper bound in
addition to (5.1). In addition, page 56 does not require the exact dataset as input,
but only the empirical mean and batch sizes of each data batch. As we shall see
next, these two properties allow us to use Pert-COW in our byzantine-robust online
RL algorithm to achieve low communication costs and preserve data privacy.

5.4 Byzantine-Robust RL in Parallel MDPS

Now, we are ready to study the problem of Byzantine-robust reinforcement learning
in parallel Markov Decision Processes (MDPs). We consider a setting with one central
server and m agents, α fraction of which may be adversarial. We postpone the
precise interaction protocols between the server and agents to page 59 and page 62.

58
In both online and offline settings, we focus on finite horizon episodic tabular

MDPsM = (S,A,P ,R, H, µ1). Where S is the finite state space with |S|= S; A
is the finite action space with |A|= A; P = {Ph}Hh=1 is the sequence of transition
probability matrix, meaning ∀h ∈ [H], Ph : S×A 7→ ∆(S) and Ph(·|s, a) specifies the
state distribution in step h+1 if action a is taken from state s at step h;R = {Rh}Hh=1

is the sequence of bounded stochastic reward function, meaning ∀h ∈ [H], Rh(s, a)
is the stochastic reward bounded in [0, 1] associated with taking action a in state s
at step h; H is the time horizon; µ1 is the initial state distribution. For simplicity, we
assume µ1 is deterministic and has probability mass 1 on state s1.

Within each episode, the MDP starts at state s1. At each step h, the agent
observes the current state sh and takes an action ah and receives a stochastic reward
Rh(sh, ah). After that, the MDP transits to the next state sh+1, which is drawn from
Ph(·|s, a). The episode terminates after the agent takes action aH in state sH and
receives reward RH(sH , aH) at step H .

A policy π is a sequence of functions {π1, . . . , πH}, each maps from state space
S to action space A. The value function V π

h : S 7→ [0, H − h + 1], is the ex-
pected sum of future rewards by taking action according to policy π, i.e. V π

h (s) :=
E
[∑H

t=hRt(st, πt(st))
∣∣∣ sh = s

]
, where the expectation is w.r.t. to the stochasticity of

state transition and reward in the MDP. Similarly, we define the state-action value
function Qπ

h : S ×A 7→ [0, H − h+ 1]:

Qπ
h(s, a) := E [Rh(s, a)] + E

 H∑
t=h+1

Rt(st, πt(st))

∣∣∣∣∣∣ sh = s, ah = a


Let π∗ =

{
πh
}

be an optimal policy and let V ∗h (s) := V π∗
h (s, a), Q∗h(s) := Qπ∗

h (s, a),
∀h, s, a.

For any f : S 7→ [0, H], We define the Bellman operator by: (Bhf) (s, a) =
E [Rh(s, a)] + Es′∼Ph(·|s,a)[f(s′)] Then the Bellman equation is given by:

V π
h (s) =Qπ

h(s, πh(s)) (5.2)

Qπ
h(s, a) =

(
BhV π

h+1

)
(s, a) (5.3)

59
V π
H+1(s) =0. (5.4)

The Bellman optimality equation is given by:

V ∗h (s) = max
a∈A

Q∗h(s, a) (5.5)

Q∗h(s, a) =
(
BhV ∗h+1

)
(s, a) (5.6)

V ∗H+1(s) =0. (5.7)

We define the state distribution at step h by following policy π as dπh(s) := P π
h (sh = s),

and the state trajectory distribution of π as: dπ := {dπh}
H
h=1. The goal is to find a

policy that maximizes the reward, i.e. find a π̂, s.t. V π̂
1 (s1) = V ∗1 (s1) = maxπ V π

1 (s1).
To measure the performance of our RL algorithms, we use suboptimality as our
performance metric for offline settings and use regret as our performance metric for
online settings. We formalize these two measures in their corresponding sections
below.

5.5 Byzantine-Robust Online RL

In the online setting, we assume that a central server and m agents aim to collabora-
tively minimize their total regrets. The agents and server collaborate by following
a communication protocol to decide when to synchronize and what information to
communicate. Unlike the standard distributed RL setting, we assume α-fraction of
the agents are Byzantine:

Definition 5.5.1 (Distributed online RL with Byzantine corruption). There are m
agents consisting of two types:

• (1 − α)m good agents, denoted by G: Each of the good agents interacts with
a copy of M and communicates its observations to the server following the
interaction protocol;

60
• αm bad agents, denoted by B: The bad agents are allowed to communicate

arbitrarily.

Because the server has no control over the bad agents, we only seek to minimize
the error incurred by the good agents. Formally, we use regret as our performance
measure for the online RL algorithm:

Regret(K) =
K∑
k=1

∑
j∈G

(
V ∗1 (s1)− V πj

k
1 (s1)

)
, (5.8)

where πjk is the policy used by agent j in episode k. At the same time, because of
the distributed nature of our problem, we want to synchronize between the servers
and agents only if necessary to reduce the communication cost.

Based on these considerations, we propose the Byzan-UCBVI algorithm (page 68).
We highlight the following key features of Byzan-UCBVI:

1. Low-switching-cost algorithm design: the server will check the synchroniza-
tion criteria in page 68 when receiving agent requests. Each good agent will
request synchronization if and only if any of their own (s, a, h) counts doubles
(page 68). Importantly, our agents do not need to know other agents’ (s, a, h)
counts to decide if synchronization is necessary. This design choice reduces the
number of policy switches, synchronization rounds, and total communication
costs, all from O(K) to O(logK). Compared to the O(

√
K) communication steps

in (Jadbabaie et al., 2022), ours is much lower. Unlike (Dubey and Pentland,
2021), our agents do not need to know other agents’ transition counts to decide
whether to synchronize.

2. Homogeneous policy execution: In any episode k, our algorithm is designed so
that all good agents are running the same policy πk. This ensures that the robust
mean estimation achieves the smallest estimation error. Recall that the samples
in the large batches are wasted if the batch sizes are severely imbalanced (cf.
page 54).

61
3. Robust UCBVI updates: During synchronization, the central server performs

policy update using a variant of the UCBVI algorithm (Azar et al., 2017): for
h = H,H − 1, . . . , 1, compute:

Q̄h(·, ·) =
(
B̂hV̂h+1

)
(·, ·) + Γh(·, ·) (5.9)

Q̂h(·, ·) = min
{
Q̄h(·, ·), H − h+ 1

}+
(5.10)

π̂h(·) = argmax
a

Q̂h(·, a) (5.11)

V̂h(·) = max
a

Q̂h(·, a). (5.12)

The main difference lies in page 68, where we replace the standard mean and
confidence interval estimation with our Pert-COW algorithm (page 197). Instead
of estimating the transition matrix and reward function, we directly estimate the
Bellman operator given an estimated value function V̂h+1. The server gathers
sufficient statistics from agents in page 68. According to page 197, when ncut ≤ 0,
the Γh(s, a) in page 68 is set to be∞ as a trivial error bound. page 68 adjust the
bonus to be the range of the value function. The an additional ε is an adjustment
for ε-cover argument in the proof of page 61.

We are now ready to present the following regret bound for Byzan-UCBVI.

Theorem 5.5.1 (Regret bound). Under page 59, if α ≤ 1
3

(
1− 1

m

)
, for all δ < 1

4 , with
probability at least 1− 3δ, the total regret of page 68 is at most

K∑
k=1

∑
j∈G

(
V ∗1 (s1)− V π̂j

k
1 (s1)

)
(5.13)

=Õ
(

(1 + α
√
m)H2S

√
AmK log(1/δ)

)
. (5.14)

Remark 5.5.1 (Understanding the regret bound). In page 68, the good agents are
using the same policy, and thus for all j ∈ G, π̂jk = π̂k, where π̂k is the policy
calculated by the server in k-th episode. By utilizing the batch structure, page 68
achieves a regret sublinear in K, even under Byzantine attacks. Our regret is only

62
O(
√
mK + αm

√
K)) compared to the O(m

√
K +mα1/4K3/4) regret in (Jadbabaie

et al., 2022). When α ≤ 1/
√
m, the dominating term

√
mK is optimal even in the

clean setting (Azar et al., 2017).

Remark 5.5.2 (The Breakdown point). We require α to be smaller than 1
3 because

we can show that with high probability, all of the good agents will have visitation
on some (s, a) pair and simply restricting α ≤ 1

3 ensures the ncut in page 197 is
greater than 0, which meets the requirement in page 55 and allows for a cleaner
exposition of page 61.

Remark 5.5.3 (Communication cost). Because each agent runs K episodes in total,
the count of each of the (s, a, h) tuples doubles at most blog2Kc times during
training. Thus each good agent will send at most SAHblog2Kc sync requests. The
bad agents can only send a logarithmic number of effective requests because of
the checking step in page 68. As a result, there will be at most mSAHblog2Kc
synchronization episodes in total. The communication inside one synchronization
episode includes the following: at least one agent sends a sync request; inside the
value iteration, the server will send estimated value functions at H steps to each
agent; Each good agent will send the estimated Bellman operator for each (s, a) pair
at H steps and the counts to the server. Importantly, the agents only need to send
summary statistics instead of the raw dataset to the server. This preserves the data
privacy of individual agents (Sakuma et al., 2008; Liu et al., 2019).

Remark 5.5.4 (Switching cost). Switching cost measures the number of policy
changes. Algorithms with low switching costs are favorable in real-world applica-
tions (Bai et al., 2019; Zhang et al., 2020b; Gao et al., 2021). page 68 only performs
policy updates during synchronization episodes. Its switching cost is thus at most
mSAHblog2Kc.

5.6 Byzantine-Robust Offline RL

In the offline setting, we assume the server has access to logged interaction data
from many agents, among which some are adversarial. The goal of the server is to

63
find a nearly optimal policy using this collection of offline datasets without further
interaction with the environment. Specifically:

Definition 5.6.1 (Distributed offline RL with Byzantine corruption). The server
has access to an offline data set with m data batches ⋃j∈[m] Dj , including (1− α)m
good batches G and αm bad batches B, where

Dj :=
⋃

h∈[H]
Dh
j :=

⋃
h∈[H]

{(
sj,kh , a

j,k
h , r

j,k
h , s′h

j,k
)}Kj

k=1
.

We make an assumption on the data generating process similar to (Wang et al.,
2020a). Specifically, for all j ∈ G, Dj is drawn from an unknown distribution{
νjh
}H
h=1

, where for each h ∈ [H], νjh ∈ ∆ (S ×A). For all h, j, k,
(
sj,kh , a

j,k
h

)
∼ νjh,

s′h
j,k ∼ Ph(·|sj,kh , a

j,k
h) and rj,kh is an instantiation of Rh

(
sj,kh , a

j,k
h

)
. For any j ∈ B (i.e.

bad batches), Dj can be arbitrary.

The performance is measured by the suboptimality w.r.t. a deterministic com-
parator policy π̃ (not necessarily an optimal policy):

SubOpt (π, π̃) := V π̃
1 (s1)− V π

1 (s1). (5.15)

In the offline setting, the server cannot interact with the MDP. So our result relies
heavily on the quality of the dataset. As we will see in the analysis, the suboptimality
gap page 63 can be upper bounded by the estimation error of the Bellman operator
along the trajectory of π̃. As a result, we do not need full coverage over the whole
state-action space. Instead, we only need the offline dataset to have proper coverage
over {dπ̃h}Hh=1, the state distribution of policy π̃ at each step h. To characterize the
data coverage, for any s, a, h, we define the counts on (s, a, h) tuples by:

N j
h(s, a) :=

∑
k∈[Kj]

1
{

(sj,kh , a
j,k
h) = (s, a)

}
, ∀j ∈ [m]. (5.16)

When calling page 56, the large data batches might be clipped in page 56. By
definition, the clipping threshold is bounded between NG,cut1

h (s, a), the (αm+ 1)-th

64
largest of

{
N j
h(s, a)

}
j∈G

and NG,cut2
h (s, a), the (2αm+ 1)-th largest of

{
N j
h(s, a)

}
j∈G

.
We define three quantities pG,0, κ, κeven to characterize the quality of the offline
dataset. The first quantity describes the density of π̃ trajectory that is not properly
covered by the offline dataset:

Definition 5.6.2 (Measure of insufficient coverage). We define pG,0 as the probability
of π̃ visiting an (s, h, a) tuple that is insufficiently covered by the logged data, namely

pG,0 :=
H∑
h=1

Edπ̃
h

[
1
{
NG,cut2
h (s, π̃(s)) = 0

}]
. (5.17)

Recall that page 56 requires there are at least (2αm+1) non-empty data batches to
make an informed decision. pG,0 measures an upper bound on the total probability
under dπ̃ to encounter an (s, h, a) on which COW cannot return a good mean
estimator.

We now introduce κ, the density ratio between the dπ̃, and the empirical distri-
bution of the uncorrupted offline dataset. κ quantifies the portion of useful data in
the whole dataset and is commonly used in the offline RL literature (Rashidinejad
et al., 2021; Zhang et al., 2021a). We only focus on the (s, a, h) tuples excluded by
pG,0 in page 64:

Definition 5.6.3 (density ratio). We use {Ch}Hh=1 to denote the state space (in the
support of {dπ̃h}

H
h=1) that have proper clean agents coverage:

Ch =
{
s|NG,cut2

h (s, π̃(s)) > 0
}
. (5.18)

We use κ to denote the density ratio between the state distribution of policy π̃
and the empirical distribution over the uncorrupted offline dataset:

κ := max
h∈[H]

max
s∈Ch

dπ̃h(s)∑
j∈G N

j
h(s, π̃h(s))/

∑
j∈GKj

. (5.19)

As we can see in page 55, the accuracy of page 56 heavily depends on the even-
ness of the batches. We define the following quantity to measure the information

65
loss in the clipping step (page 56 in page 56):

Definition 5.6.4 (Unevenness of good agents coverage).

κeven := max
h∈[H]

max
s∈Ch

∑
j∈G N

j
h(s, π̃h(s))∑

j∈G Ñ
j,cut2
h (s, π̃h(s))

(5.20)

· m(1− α)NG,cut1
h (s, π̃h(s))∑

j∈G Ñ
j,cut2
h (s, π̃h(s))

, (5.21)

where Ñ j,cut2
h (s, π̃h(s)) = max

(
NG,cut2
h (s, π̃h(s)), N j

h(s, π̃h(s))
)
.

Intuitively, κeven describes the unevenness of good agent coverage. It takes
into account both how much data in large batches are cut off by the clipping step
and the unevenness of the batches after clipping. We include NG,cut1

h (s, π̃h(s)) and
NG,cut2
h (s, π̃h(s)), instead of the true clipping threshold, meaning κeven serves as an

upper bound of the actual unevenness resulting from running the algorithm. For
example, suppose αm > 1: if for any s, a, h, j, N j

h(s, a) = n, then κeven = 1; if for any
s, a, h, there is one good data batch with size Lm for some L > 1 while the others
have size 1, then NG,cut1

h (s, a) = NG,cut2
h (s, a) = 1 and κeven = Lm+(1−α)m−1

(1−α)m
(1−α)m
(1−α)m ≈

L+ 1, meaning κeven increases as the batches become less even.
Remarkably, all three quantities defined above only depend on the (s, a, h) counts

of the good data batches.
Given the above setup, we now present our second algorithm, Byzan-PEVI, a

Byzantine-Robust variant of pessimistic value iteration (Jin et al., 2021). Similar to
the online setting, we use our COW (without perturbation) algorithm to approxi-
mate the Bellman operator and use the estimation error to design the PESSIMISTIC
bonus for the value iteration. Byzan-PEVI (page 69) runs pessimistic value iteration
(page 65-page 66) and calls COW as a subroutine to robustly estimate the Bellman
operator using offline dataset D:

Q̄h(·, ·) =
(
B̂hV̂h+1

)
(·, ·)− Γh(·, ·) (5.22)

Q̂h(·, ·) = min
{
Q̄h(·, ·), H − h+ 1

}+
(5.23)

66
π̂h(·) = argmax

a
Q̂h(·, a) (5.24)

V̂h(·) = max
a

Q̂h(·, a). (5.25)

Theorem 5.6.1. Given any deterministic comparator policy π̃, under page 63, 5.6.2, 5.6.3
and 5.6.4: for any δ, α < 1

3 , with probability at least 1− δ, page 69 outputs a policy π̂ with:

SubOpt (π̂, π̃) ≤ 2HpG,0

+O

√κκevenH
2
√
S

1 +
√
mα√∑

j∈GKj

√
log HSAm

δ

 . (5.26)

Remark 5.6.1 (Understanding the sub-optimality gap). The sub-optimality gap
page 66 depends on both the offline data distribution (characterized by pG,0, κ and
κeven) and number of clear samples ∑j∈GKj . The first term only depends on the
coverage of the data distribution and will not shrink with a larger sample size.
When for each (s, a, h), all agents visit the tuple for equal times, we have κeven = 1.
Furthermore, let Kj = K for all j ∈ [m], RHS of page 66 becomes:

2HpG,0

+O
√κH2

√
S

1√
mK

√
log HSAm

δ


+O

√κH2
√
S

α√
K

√
log HSAm

δ

 ,
where the first term measures the effect of lack of coverage, the second term is
the statistical error and the third term is the bias term due to the data corruption.
Importantly, both the second and the third terms vanish as K → ∞, whereas
the first term is due to the lack of data coverage. On the contrary, (Zhang et al.,
2021a) has a non-diminishing bias term due to data corruption. To the best of our
knowledge, this is the first result for Byzantine-robust offline RL.

67
Remark 5.6.2 (Offline v.s. online RL). Our offline RL results are more involved
and notation-heavy due to the nature of the problem. In the offline RL setting,
the learner cannot control the data-generating process, and each data source can
be arbitrarily different. The agent can only passively rely on the robust mean
estimator we designed and the pessimism principle to learn as well as the data
permits. In contrast, the learner has complete control over the clean agents’ data
collection process in the online setting. Our algorithm Byzan-UCBVI enables the
server to realize its full potential and obtain a tighter and cleaner sample complexity
guarantee.

5.7 Conclusion

To summarize, in this work, we start by presenting COW, a robust mean esti-
mation algorithm for learning from uneven batches. Building upon COW, we
propose byzantine-robust online (Byzan-UCBVI) and the first byzantine-robust
offline (Byzan-PEVI) reinforcement learning algorithms in the distributed setting.
Several questions remain open: (1) Can we provide a complete characterization of
the information-theoretical lower bound for robust mean estimation from uneven
batches? (2) Can we extend our RL algorithms to the function approximation
setting? Allowing function approximation is essential to apply our algorithm to
empirical evaluations. However, this would require a computationally efficient
high-dimensional robust mean estimator from uneven batches, which is highly
nontrivial. Therefore, we defer the generalization to the function approximation
setting and empirical evaluation of our framework as an important direction for
future research.

68
Algorithm 6 Byzan-UCBVI (K, δ, α)

1: [S]V̂H+1(·) ← 0, Q̂H+1(·, ·) ← 0, SyncCountj ← −1,∀j ∈ [m], Syncj ←
TRUE,∀j ∈ [m] δ′ ← δ

(SAHKm)3S , ε← 1
SAHKm

We use [S] to denote the action of
central server

2: [A]N j
h(s, a)← 0, Dj

h ← ∅, ∀(j, h, s, a) ∈ G × [H]× S ×A # We use [A] to denote
the action of agents

3: for episode k ∈ [K] do
4: [S] Receive Sync1, Sync2, . . . , Syncm
5: for agent j ∈ [m] do
6: if Syncj and SyncCountj ≤ SAH log2K then
7: [S] SyncCountj ← SyncCountj +1
8: [S] SYNCHRONIZE← TRUE
9: end if

10: end for
11: if SYNCHRONIZE then
12: [A] Nold

h,j (s, a)← N j
h(s, a), ∀s, a, h, j

13: for h = H,H − 1, . . . , 1 do
14: [S] Communicate V̂h+1(·) to each agent
15: for (s, a) ∈ S ×A do

16: [A] send xj ←
∑

(s,a,r,s′)∈Dj
h

r+V̂h+1(s′)

Nj
h

(s,a) , nj ← N j
h(s, a) to Server, ∀j ∈ G

17: [S]
(
B̂hV̂h+1

)
(s, a),Γh(s, a)← Pert-COW

(
x[m], n[m], H − h+ 1, α, ε, δ′

)
18: Γh(s, a)← min(H − h+ 1,Γh(s, a) + ε)
19: end for
20: [S] Compute Q̄h, Q̂h, π̂h, V̂h as in page 61-page 61.
21: end for
22: end if
23: [S] SYNCHRONIZE← FALSE
24: for j ∈ G do
25: [A] Syncj ← FALSE
26: [A] Sample

{
(sj,kh , a

j,k
h , r

j,k
h , sj,kh+1)

}
h∈[H]

under {π̂h}Hh=1

27: [A] ∀h,N j
h(sj,kh , a

j,k
h)← N j

h(sj,kh , a
j,k
h)+1, Dj

h ← Dj
h∪
{

(sj,kh , a
j,k
h , r

j,k
h , sj,kh+1)

}
28: [A] Send Sync request to Server, if Syncj ← 1

{
maxs,a,h

Nj
h

(s,a)
Nold
h,j

(s,a) ≥ 2
}

is
TRUE.

29: end for
30: end for
31: return {π̂h}Hh=1

69

Algorithm 7 Byzan-PEVI

Require: D := ⋃
j∈[m]Dj := ⋃

h∈[H] D
h
j := ⋃

h∈[H]

{(
sj,kh , a

j,k
h , r

j,k
h , s′h

j,k
)}Kj

k=1
, α, δ

1: δ′ ← δ
H|S||A|m

2: V̂H+1(·)← 0
3: for h = H,H − 1, . . . , 1 do
4: σ ← H − h+ 1
5: for (s, a) ∈ S ×A do
6: for j ∈ G do
7: nj ←

∑
k∈[Kj] 1

{
(sj,kh , a

j,k
h) = (s, a)

}
8: xj ← 1

Nj
h

(s,a)
∑

(s,a,r,s′)∈Dj
h

(
r + V̂h+1(s′)

)
9: end for

10: if |j ∈ [m] : nj > 0|≥ 2αm+ 1 then
11:

(
B̂hV̂h+1

)
(s, a),Γh(s, a)← COW

(
x[m], n[m], σ, α, δ

′
)

12: else
13:

(
B̂hV̂h+1

)
(s, a)← 0, Γh(s, a)← H − h+ 1

14: end if
15: end for
16: Compute Q̄h, Q̂h, π̂h, V̂h as in page 65-page 66.
17: end for
18: return {π̂h}Hh=1

70
6 robust gap-dependent reinforcement learning

We present suboptimality upper bounds in offline reinforcement learning as the
worst-case analysis in the previous chapters. Those bounds hold universally regard-
less of the environments. However, those results can be overly conservative. In this
chapter, we develop a refined instance-dependent analysis and show that under
certain conditions, a generalized Pessimistic Value Iteration (PEVI) outputs the
optimal policy even with the presence of data corruption and heavy-tailed reward
distribution.

6.1 Introduction

Previous studies have primarily focused on problems under certain concentration
assumptions, typically requiring that the rewards are bounded or follow a distri-
bution with subGaussian tails Lattimore and Szepesvári (2020). However, there
is growing evidence indicating that the subGaussianity assumption may not hold
for many real-world scenarios Arnold (2014); Liebeherr et al. (2012); Borak et al.
(2005), challenging the applicability of algorithms designed solely for sub-Gaussian
settings.

In terms of data corruption in RL, prior work Zhang et al. (2022); Chen et al.
(2022) showed that one can apply pessimistic value iteration (PEVI) with robust
mean estimation to partially handle data corruption in offline RL, resulting in a
policy π̂ with suboptimality upper bound SubOpt(π̂) ≤ Õ

(
poly(H,σ)√

N

)
+ O(Hσε).

Such an upper bound involves a term diminishing with sample size N and an
irreducible bias term involves the corruption level ε. This implies that PEVI returns
a suboptimal policy even with infinite data.

In this paper, we address the challenge of policy recovery in the presence of
both heavy-tailed reward distributions and data corruption. We establish that
Trimmed-mean estimation achieves the optimal error rate of O

(
σε

γ
1+γ + σN−

γ
1+γ
)

for the robust mean estimation problem when confronted data corruption and

71
heavy-tailed distribution. When using Trimmed-mean estimation as a subroutine,
PEVI generates a nearly optimal policy. In particular, by utilizing the property of
action gap, we show that O(Hσε

γ
1+γ + εH) < ∆Amin is sufficient for the policy to

achieve the optimal value even under corruption. We summarize our contributions
as follows:

1. We show that a modified version of Trimmed-Mean estimation achieves minimax-
optimal error guarantee for robust mean estimation problems with heavy-tailed
distribution and data corruption. Importantly, we only require the distribution to
have bounded (1 +γ)-th centered moment and allow the variance of the distribution
to be infinite. Unlike the truncated empirical mean estimation in Bubeck et al.
(2013), the trimmed mean estimator considered in our paper is both translation-
invariant and robust to data corruption. As a result, we show that reward
distribution with bounded (1 + γ)-th moment is sufficient to ensure the success
of policy learning, which is a much weaker concentration assumption than the
subGaussian or bounded variance assumption typically used in the literature.

2. We present a generalized PEVI and derive an optimality condition based on
the action gap. In the offline learning setting with heavy-tailed reward and data
corruption, we plug in the trimmed mean estimation for reward estimation. We
show that given sufficient samples, O(Hσε

γ
1+γ + εH) < ∆Amin ensures that the

learner takes an optimal action in each state visited by some optimal policy and
thus achieves the optimal value.

6.2 Related Work

RL and adversarial attack against RL: Reinforcement learning aims to find the
optimal strategy in a Markov Decision Process (MDP) Sutton and Barto (2018). In
online RL, Azar et al. (2017); Dann et al. (2017) show that the UCB-style algorithm
achieves minimax regret bound. In offline RL, Jin et al. (2021); Rashidinejad et al.
(2021); Xie et al. (2021) use the pessimistic principle to design algorithms for offline
policy learning. There are lines of work studying gap-dependent online Simchowitz

72
and Jamieson (2019); Xu et al. (2021a); Dann et al. (2021); Jonsson et al. (2020);
Wagenmaker et al. (2022) and offline Wang et al. (2022); Hu et al. (2021) RL. Our
paper is closely related to the work on offline gap-dependent RL. However, our
main objective is to characterize sufficient conditions for optimality under data
corruption instead of optimal sample complexity.

Heavy-tailed bandits: There is a significant body of research dedicated to study-
ing bandit problems under weak moment assumptions. For instance, Bubeck et al.
(2013) focused on the mean multi-armed bandit (MAB) problem with heavy-tailed
rewards and utilized robust mean estimation to develop a UCB algorithm that
achieves logarithmic regret. The pure-exploration problem for MAB with heavy-
tailed distributions was investigated by Yu et al. (2018). Furthermore, Medina and
Yang (2016); Shao et al. (2018) explored the linear bandit problem with heavy-tailed
noise distributions and proposed algorithms with nearly-optimal regret guarantees.
Dubey et al. (2020) examined this problem in the context of cooperative multi-agent
settings.

Robust statistics: Robust statistics studies estimation with corrupted data Hu-
ber (1992); Tukey (1960). Recent advances Diakonikolas et al. (2019a); Lai et al.
(2016) design efficient algorithms for high-dimensional robust statistics. These
techniques are applied to more general machine learning tasks, including linear
regression Diakonikolas et al. (2019c), supervised learning Diakonikolas et al.
(2019b); Prasad et al. (2018) and RL Zhang et al. (2022, 2021b). Our work utilizes
robust mean estimation to defend data corruption in offline RLs.

Adversarial RL and robust RL: RL is vulnerable to adversarial attacks Ma et al.
(2019); Zhang et al. (2020a); Huang et al. (2017); Sun et al. (2020); Behzadan
and Munir (2017). Corruption robust RL performs policy learning under data
corruption Lykouris et al. (2021); Wei et al. (2022); Zhang et al. (2021b, 2022); Chen
et al. (2022), which usually results in a bias term in the performance guarantee
due to the data corruption. Niss and Tewari (2020); Kapoor et al. (2019) study
multi-armed bandits under data corruption using robust statistics. They show that
if the corruption level is not high enough to make the robust reward estimation
of a suboptimal to be larger than that of an optimal arm, then the learner suffers

73
only sublinear regret, which captures an optimal arm. We use this intuition to
study offline RL under data corruption. There is a separate line of works studying
distributionally robust RL problem Shi and Chi (2022); Panaganti et al. (2022)
where the state transition is specified by some uncertainty sets. Our setting is
significantly different from this line of works.

6.3 Preliminary

MDP formulation: We consider a finite horizon episodic tabular Markov Decision
Process (MDP)M = (S,A,P ,R, H, p0) with finite state space |S| = S, finite action
space |A| = A, transition matrices P = {Ph}Hh=1, reward distributionsR = {Rh}Hh=1,
and initial state distribution p0. We assume the rewards are scholastic and the
expectations of reward distributions are bounded in [0, 1], i.e. for all (s, a, h) ∈
S × A × [H], rh(s, a) := ERh(s,a)∼Rh(s,a)[Rh(s, a)] ∈ [0, 1]. Later on, we will study
MDPs with different concentration assumptions on the reward distributions.

Policy and value function: A policy π = {πh}Hh=1 from a deterministic policy
class Π is a sequence of deterministic functions that map from state to action:
πh : S 7→ A,∀h. The state value function of π is defined as

V π
h (s) := E

[
H∑
t=h

Rt(st, πt(st))
∣∣∣∣∣ st = s

]
.

We similarly define the state-action value function:

Qπ
h(s, a) := E[Rh(s, a)] + Esh+1∼Ph(·|s,a)

[
V π
h+1(sh+1)

]
.

The value of a policy is the expectation of V π
1 (s) over the initial state distribution:

V π
p0 := Es1∼p0 [V π

1 (s1)]. An optimal policy is one that simultaneously maximizes V π
h (s)

for all h and s. We use Π∗ ⊆ Π to denote the set of all deterministic optimal poli-
cies. And we use V ∗h (·), Q∗h(·, ·), V ∗p0 to denote the state value function, state-action
value function, and value of the optimal policies. We use dπh(s) := Eπ[I{sh = s}],
dπh(s, a) := Eπ[I{(sh, ah) = (s, a)}] to denote the state occupancy distribution and

74
state-action occupancy distribution under policy π.

Performance measure: In this paper, we mainly focus on the offline setting and
use the suboptimality gap as the performance measure for a policy: SubOpt(π) :=
V ∗p0 − V

π
p0 . Our goal is to find a policy with a small suboptimality gap.

Policy gap and action gap: Among policies that fail to achieve the optimal value,
the best one has the smallest suboptimality gap. We call this gap the policy gap:
∆Π

min := minπ∈Π:V πp0<V
∗
p0

SubOpt(π). In contrast, we define a more fine-grained action
gap by ∆Amin := min(h,s,a):∆h(s,a)>0,s∈Sh ∆h (s, a), where ∆h (s, a) := V ∗h (s) − Q∗h(s, a)
and Sh :=

{
s ∈ S : ∃π∗ ∈ Π∗, s.t. dπ∗h (s) > 0

}
. For notation convenience we assume

there is at least one (s, a, h) tuple s.t. s ∈ Sh and ∆h (s, a) > 0 to exclude trivial
MDPs. A similar notion of ∆Amin has been introduced in Simchowitz and Jamieson
(2019); Wang et al. (2022), Our notation of ∆Amin is a refinement over theirs where
the minimum is over only the (s, h) pairs covered by at least an optimal policy. We can
show that our action gap is always no less than policy gap, and the difference can
be large:

Proposition 6.3.1. For any MDPM, there exists (π∗, s′, h′) ∈ Π∗×S×[H], s.t.

dπ
∗

h′ (s′) > 0, and ∆Π
min ≤ dπ

∗

h′ (s′)∆Amin ≤ ∆Amin.

Intuitively, by definition of ∆Amin, there exists a (s′, a′, h′) tuples and an optimal
policy π∗ s.t. ∆h′ (s′, a′) = ∆Amin and dπ∗h′ (s′) > 0. We can design a suboptimal policy
π̃ by choosing the suboptimal action a′ at state s′ and step h′ and follow π∗ in all
other states or steps. The suboptimality of π̃, dπ∗h′ (s′)∆Amin, depends on the state
occupancy measure dπ∗h′ (s′). Because ∆Π

min is a lower bound on the suboptimality
of all suboptimal policies, we conclude that ∆Π

min ≤ dπ
∗
h′ (s′)∆Amin. dπ∗h′ (s′) can be very

close to 0 in some MDPs, thus ∆Π
min can be much smaller than ∆Amin.

75
6.4 Sufficient Condition for Exact Optimal Policy

Recovery in Offline RL

In this section, we provide a sufficient condition for exact optimal policy recovery in
offline RL. Our characterization is based on the well-known PEVI algorithm Jin et al.
(2021), we slightly generalize it in Algorithm 8 to decouple RL from the estimators
on mean rewards and transitions. This enables us to plug in different estimators
later based on specific data assumptions, such as when the data is drawn from
heavy-tailed distributions or adversarially corrupted. We then achieve different
exact optimal policy recovery guarantees accordingly. Concretely, Algorithm 8 calls
a RewardEstimator f to obtain a confidence interval r̂h(s, a)±b1

h(s, a) for the reward
rh(s, a), and a TransitionEstimator g to obtain a confidence interval P̂Vh,s,a±b2

h(s, a)
for the expectation of a vector V h under the transition multinomial Ph,s,a. These
estimators will be instantiated differently in Section 6.5 based on different data
assumptions. The notation Dr|hsa stands for the set of reward values observed at
stage h in state s under action a in the offline dataset; similarly for the set of next
states Ds′|hsa.

If the sum of confidence bound b1
h(s, a)+b2

h(s, a) is uniformly bounded on (s, a, h)
tuples that are covered by the optimal policies, we can get a clean suboptimality
guarantee for Algorithm 8:

Theorem 6.4.1 (Bound on suboptimality). Suppose for all (s, a, h) ∈ S×A×[H], with
probability at least 1− δ

SAH
, we have:

|r̂h(s, a)− rh(s, a)| ≤ b1
h(s, a)∣∣∣P̂Vh,s,a − P>h,s,aV h+1

∣∣∣ ≤ b2
h(s, a).

If ∀(s, a, h) ∈
{

(s, a, h) : ∃π∗ ∈ Π∗, s.t. dπ∗h (s, a) > 0
}

, we have b1
h(s, a) + b2

h(s, a) ≤ b,
then with probability at least 1− δ, π̂ returned by Algorithm 8 satisfies

SubOpt(π̂) ≤ 2Hb. (6.1)

76
Algorithm 8 Generalized PEVI

Input: dataset D = ⋃H
h=1

{(
sh,i, ah,i, rh,i, s

′
h,i

)}N
i=1

. confidence level δ.
Set Q

H+1(s, a) = 0, V H+1(s) = 0 for all (s, a)
for h = H, . . . , 1 do

for s ∈ S, a ∈ A do
(r̂h(s, a), b1

h(s, a))← f(Dr|hsa, δ
2SAH)(

P̂Vh,s,a, b
2
h(s, a)

)
← g(Ds′|hsa, V h+1,

δ
2SAH)

Q
h
(s, a) = max(0, r̂h(s, a)− b1

h(s, a) + P̂Vh,s,a − b2
h(s, a))

end for
for s ∈ S do
V h(s) = maxa∈AQh

(s, a)
π̂h(s) = argmaxa∈AQh

(s, a)
end for

end for
Return: π̂.

When the confidence bounds are small enough, the estimation for value function
in Algorithm 8 will be accurate and π̂ will choose the optimal action in each state
with positive occupancy measure. With this intuition, we get a sufficient condition
for optimality:

Theorem 6.4.2 (Optimality condition). Under the conditions in Theorem 6.4.1, if 2Hb <
∆Amin, then SubOpt(π̂) = 0 with probability at least 1− δ.

Theorem 6.4.2 provides a general condition for optimal policy identification,
which results in different guarantees given different estimators and corresponding
confidence bounds. One can also derive an optimality condition using policy gap
∆Π

min: because the set of deterministic optimal policies Π∗ is discrete, when (6.1) is
less than ∆Π

min, SubOpt(π̂) = 0. However, this argument usually results in an overly
conservative optimality condition. We defer the detailed discussion to Section 6.6.

In the case of learning with i.i.d. offline dataset, Theorem 4.1 of Wang et al.
(2022) provides a dedicated sample complexity guarantee for offline optimal policy
identification when the rewards are deterministic and known. Under a similar
i.i.d. learning setting but with subGaussian rewards, we show, in Section 6.5, that

77
when the reward and transition estimators f and g are specified to be empirical
mean estimators with Hoeffding-style confidence bound, Theorem 6.4.2 provides a
similar sample complexity bound. However, our main focus is to use Algorithm 8
to study the robust offline learning setting in Section 6.5, which is much more
challenging.

6.5 Case Studies

The meta-algorithm Algorithm 8 and its theoretical guarantee in Section 6.4 can be
applied to various data generative models and reward distributions given estimators
with proper confidence bounds. In this section, we present two case studies. We
start with a standard learning setting in Section 6.5 as a warm-up where the dataset
consists of i.i.d. samples and the reward distributions are subGaussian; we then
present our main result in Section 6.5 with a harder learning setting where the
dataset can be corrupted and reward distributions are heavy-tailed. In both case
studies, we provide sufficient conditions for optimality derived using Theorem 6.4.2.

Warm-up: i.i.d. dataset with subGaussian rewards

We first consider the standard offline learning setting with an i.i.d. dataset and a sub-
Gaussian rewards distribution. The exact policy recovery condition is known Wang
et al. (2022), but our purpose here is to illustrate how one can instantiate Theo-
rem 6.4.2 with f, g, in anticipation of our main result in the next section. We assume
the reward distributions are subGausian:

Assumption 6.5.1 (SubGaussian rewards). For all (s, a, h) ∈ S×A×[H],Rh(s, a) is
subGaussian with mean rh(s, a) := EX∼Rh(s,a)[X] ∈ [0, 1] and parameter σ2, σ > 0,
i.e. EX∼Rh(s,a)[exp(s(X − rh(s, a)))] ≤ exp(σ2s2/2), for all s ∈ R.

In our offline learning setting, we consider the data generative model similar
to Wang et al. (2020a), where the learning agent has access to an offline dataset
drawn from some data distribution but cannot have further interaction with the

78
MDP. The i.i.d. dataset is generated as a set of transition tuples instead of trajectories.
Specifically,

Definition 6.5.1 (Offline dataset). An offline dataset D of size N collected with data
distributions µ = {µh}h∈[H] is a multiset consisting of N transition tuples sampled
at each time step:

D =
H⋃
h=1

{(
sh,i, ah,i, rh,i, s

′
h,i

)}N
i=1

where (sh,i, ah,i) ∼ µh, rh,i ∼ Rh(sh,i, ah,i) and s′h,i ∼ Ph(· | sih, aih).

We assume the data distribution µ has uniform coverage on all optimal policies:

Assumption 6.5.2 (Uniform optimal policy coverage). There exists P > 0, s.t.
µh(s, a) ≥ P , for all (s, a, h) ∈

{
(s, a, h) : ∃π∗ ∈ Π∗, s.t. dπ∗h (s, a) > 0

}
.

As shown in Section D of Wang et al. (2022), this assumption is necessary for
optimal policy recovery.

Under this standard offline learning setting, it is sufficient to use empirical mean
estimator in both the reward estimator and transition estimator:

r̂emp
h,s,a = 1

Nh(s, a)
∑

r∈Dr|hsa

r (6.2)

P̂V
emp
h,s,a = 1

Nh(s, a)
∑

s′∈Ds′|hsa

V h+1(s′), (6.3)

where Nh(s, a) =
∣∣∣Dr|hsa∣∣∣ =

∣∣∣Ds′|hsa∣∣∣. We use the convention that 0/0 = 0. The
confidence bounds are given by the following lemma:

Proposition 6.5.1 (Confidence bound). If Assumption 6.5.1 holds, then for all
(s, a, h) ∈ S×A×[H], with probability at least 1− δ

2SAH :

∣∣∣r̂emp
h,s,a − rh(s, a)

∣∣∣ ≤b1,emp
h,s,a ,∣∣∣P̂V

emp
h,s,a − P>h,s,aV h+1

∣∣∣ ≤b2,emp
h,s,a .

79
where

b1,emp
h,s,a = σ

√√√√2 log 8SAH
δ

Nh(s, a) , b2,emp
h,s,a = H

√√√√ log 8SAH
δ

2Nh(s, a)

In this case study, the reward and transition estimators are defined to be:

femp

(
Dr|hsa,

δ

2SAH

)
:=
(
r̂emp
h,s,a, b

1,emp
h,s,a

)
gemp

(
Ds′|hsa, V h+1,

δ

2SAH

)
:=
(
P̂V

emp
h,s,a, b

2,emp
h,s,a

)

Given the reward estimator and transition estimator, we can get the following
optimality condition by applying Theorem 6.4.2:

Proposition 6.5.2 (Optimality condition). Suppose Assumption 6.5.1, 6.5.2 hold.
We specify the reward and transition estimators in Algorithm 8 to be femp and gemp.
Let π̂ be the policy returned by Algorithm 8 given an offline dataset D generated
according to Definition 6.5.1. If 4H(2σ + H) log 8SAH

δ√
NP

< ∆Amin, then SubOpt(π̂) = 0
with probability at least 1− δ.

Proposition 6.5.2 translates Theorem 6.4.2 to a sample complexity bound by
using empirical mean estimation with Hoeffding-style confidence bound. This
result is similar to Theorem 4.1 of Wang et al. (2022) but with a slightly worse
dependence on H . We are now ready to present our main results in the robust
offline learning setting.

Main results: corrupted dataset and heavy-tailed reward
distributions

When (i) the reward distributions have weaker concentrations, and (ii) the dataset
is corrupted, the learning problem becomes more challenging. Nonetheless, Al-
gorithm 8 can be adapted to this setting by using powerful robust estimators. We
first provide a novel analysis that allows an existing robust estimator to handle

80
unbounded variance and data corruption, then instantiate the exact policy recovery
condition under this estimator.

Formally, we first relax the SubGaussian reward assumption in Assumption 6.5.1
by only assuming the reward distributions to have bounded (1 + γ)-th centered
moment:

Assumption 6.5.3 (Heavy-tailed reward distributions). There exsits γ ∈ (0, 1] and
σ > 0, s.t. for all (s, a, h) ∈ S×A×[H], EX∼Rh(s,a)

[
(X − rh(s, a))1+γ

]
≤ σ1+γ , where

rh(s, a) = EX∼Rh(s,a)[X] ∈ [0, 1].

Bubeck et al. (2013) first studies this reward distribution in multi-armed bandits.
The reward distributions may not have finite variance, making the reward estimation
itself a hard problem, even given clean data without data corruption. Bubeck
et al. (2013) shows that empirical mean estimator results in a significantly wider
confidence interval, which is not satisfactory. In this section, we study offline RL
with a corrupted dataset, on top of this heavy-tailed reward model. Specifically,
we consider an ε-corruption model on the offline dataset where both rewards and
transitions can be corrupted, which is much more challenging than the learning
problem in Definition 6.5.1:

Definition 6.5.2 (ε-corruption model). Let ε ≥ 0. An ε-corrupted offline dataset D
is a multiset generated by the following procedure: a clean offline dataset D̃ =⋃H
h=1

{(
sh,i, ah,i, r̃h,i, s̃

′
h,i

)}N
i=1

is generated according to Definition 6.5.1; an adversary
is allowed to inspect the whole dataset D̃ and replace up to ε fraction of the reward
entries and transition entries with something arbitrary for each (s, a, h) tuple. We
denote the corrupted dataset as D = ⋃H

h=1

{(
sh,i, ah,i, rh,i, s

′
h,i

)}N
i=1

. In other words,

we require
∑N

i=1 I{(sh,i,ah,i)=(s,a),rh,i 6=r̃h,i}
Nh(s,a) ≤ ε and

∑N

i=1 I{(sh,i,ah,i)=(s,a),s′h,i 6=s̃
′
h,i}

Nh(s,a) ≤ ε for
all (s, a, h).

In the robust learning setting defined in Definition 6.5.2, the corrupted rewards
can be unbounded. And importantly, the learning agent has no access to the clean
dataset D̃ and can only learn from the corrupted dataset D.

81
Similar to Section 6.5, our first step is to design RewardEstimator f and Transi-

tionEstimator g with proper confidence bound for Algorithm 8. We first formally
define the robust mean estimation problem, which captures the hardness of the
reward estimation problem:

Definition 6.5.3 (Robust mean estimation with heavy-tailed distribution). Let γ ∈
(0, 1], σ ≥ 0, ε ∈ (0, 1). Let P be a heavy-tailed distribution in R with bounded
(1+γ)-th centered moment: EX∼P

[
|X − µ|1+γ

]
≤ σ1+γ , where µ := EX∼P [X]. Given

an i.i.d. dataset X̃1, . . . , X̃N drawn from P , an adversary can inspect the dataset and
replace an ε-faction of the data points with arbitrary values. The corrupted dataset
X1, . . . , XN is revealed to the learning algorithm, which attempts to estimate µ, the
mean of P .

Trimmed Mean estimation is a well-studied estimator in robust statistics Lugosi
and Mendelson (2021, 2019a). However, most prior work are limited to distribu-
tions with subGaussian distribution or at most distribution with bounded variance.
Surprisingly, we show that the Trimmed Mean estimator in Lugosi and Mendelson
(2021) can be directly applied to robust mean estimation in Definition 6.5.3 and re-
solves both difficulties simultaneously. For completeness, we present the Trimmed
Mean estimator: Trimmed-Mean in Algorithm 17 in Appendix D.1.

Theorem 6.5.4 (Trimmed-Mean for heavy-tailed distribution). Suppose γ ∈ (0, 1],
ε < 1

32 , δ ∈ (0, 1) and N > 96 log 4
δ
. Given N samples generated by the ε-corruption

model in Definition 6.5.3, Algorithm 17 outputs a µ̂, s.t. with probability at least 1− δ,
|µ̂− µ| ≤ C1,γσε

γ
1+γ + C2,γσ

(
1
N

log 8
δ

) γ
1+γ , where C1,γ = 128Aγ , C2,γ = 768Aγ and Aγ

is the smallest value s.t. Aγ((1 + x) log(1 + x)− x) ≥ x
γ+1
γ /

(
1 + x

1
γ

)
for all x > 0.

The error bound in Theorem 6.5.4 involves a bias term O
(
σε

γ
1+γ
)

and a statistical
error term Õ

(
σN−

γ
1+γ
)
. The bias is caused by data corruption why the statistical

error term is due to finite sample. Importantly, both bias and statistical error term
meets the information-theoretic lower bound (up to constants). Our new analysis is
based on a variant of Bernstein inequality under weak moment assumption. We defer
the details and more discussion about Theorem 6.5.4 to the end of this section.

82
We use the Trimmed-Mean estimator in Algorithm 17 and its confidence bound

for reward estimation to handle the corrupted reward. The estimated reward is set
to be: for all (s, a, h) ∈ S×A×[H],

r̂TM
h,s,a = Trimmed-Mean

(
Dr|hsa, ε,

δ

4SAH

)
, (6.4)

recall that Dr|hsa is the set of all rewards received in (s, a) visitations at step h. We
use the same empirical mean estimator in (6.3) but with modified confidence bound
to account for the effect of data corruption on the state transition. Formally, we
have:

Proposition 6.5.3 (Confidence bound). If Assumption 6.5.3 holds, then for all
(s, a, h) ∈ S×A×[H], with probability at least 1− δ

2SAH :

∣∣∣r̂TM
h,s,a − rh(s, a)

∣∣∣ ≤b1,TM
h,s,a∣∣∣P̂V

emp
h,s,a − P>h,s,aV h+1

∣∣∣ ≤b2,robust
h,s,a .

where P̂V
emp
h,s,a is defined in (6.3) and

b1,TM
h,s,a =


∞ if Nh(s, a) ≤ 96 log 8SAH

δ

C1,γσε
γ

1+γ + C2,γσ
(

log 32SAH
δ

Nh(s,a)

) γ
1+γ

o.w.
(6.5)

b2,robust
h,s,a =εH +H

√√√√ log 8SAH
δ

2Nh(s, a) , (6.6)

where C1,γ and C2,γ are specified in Theorem 6.5.4.

b1,TM
h,s,a is the confidence bound for the Trimmed-Mean estimator when applied

to reward estimation. The success of the Trimmed-Mean estimation requires a
minimum number of samples. So we simply set b1,TM

h,s,a to∞ when Nh(s, a) is less
than the threshold. Setting b1,TM

h,s,a to∞ looks excessive at the first glance. However,
by Theorem 6.4.1, we can see that the suboptimality of π̂ only depends on the bonus
for (s, a, h) tuples covered by some optimal policy. By Assumption 6.5.2, the sample

83
size requirement of Trimmed-Mean is met with high probability for any (s, a, h)
tuples covered by some optimal policy when N , the number of samples, is large
enough.

In this case study, the reward and transition estimators are defined to be:

frobust

(
Dr|hsa,

δ

2SAH

)
:=
(
r̂TM
h,s,a, b

1,TM
h,s,a

)
grobust

(
Ds′|hsa, V h+1,

δ

2SAH

)
:=
(
P̂V

emp
h,s,a, b

2,robust
h,s,a

)

By applying Theorem 6.4.2, we get the following optimality condition:

Theorem 6.5.5 (Optimality condition). Suppose Assumption 6.5.3, 6.5.2 holds and
ε < 1

32 ,N > 768
P

(
log 8SA

δ

)2
. We specify the reward and transition estimators in Algorithm 8

to be frobust and grobust. Let π̂ be the policy returned by Algorithm 8 given an offline
dataset D, where D is generated according to Definition 6.5.2. If 2H

(
C1,γσε

γ
1+γ + εH

)
+

4H
(√

2C2,γσ

(NP)
γ

1+γ
+ H√

NP

)
log 32SAH

δ
< ∆Amin, then SubOpt(π̂) = 0 with probability at least

1− δ.

There are two terms on the LHS of the optimality condition in Theorem 6.5.5: the
first term 2H

(
C1,γσε

γ
1+γ + εH

)
involves the corruption level ε, which characterizes

the bias caused by data corruption; the second term 4H
(√

2C2,γσ

(NP)
γ

1+γ
+ H√

NP

)
log 32SAH

δ

involves N , the size of the dataset, which characterizes the statistical error. If

2H
(
C1,γσε

γ
1+γ + εH

)
< ∆Amin (6.7)

then for N large enough, the optimality condition holds with high probability. This
implies a key difference between robust RL and robust mean estimation: in robust
mean estimation, it is never possible to learn the true mean even regardless of
sample size due to the data corruption Lai et al. (2016); however, in robust RL, ∆Amin

creates a quantization effect, enabling the exact identification of a policy with the

84
optimal value despite minor corruption. This is reassuring because we can still aim
to find a policy with the optimal value as long as (6.7) holds.

More discussion on Theorem 6.5.4 and the minimax optimality

Bubeck et al. (2013) provides a Median-of-Means estimator and a truncated empiri-
cal mean estimator for the mean estimation problem under heavy-tailed distribution,
both are designed without the consideration of data corruption. The Median-of-
Means estimator achieves the same rate as Theorem 6.5.4 for ε = 0. Their truncated
empirical mean estimator requires the uncentered moment EX∼P

[
|X|1+γ

]
to be

bounded by some constant u, which increases as µ moves away from 0. However,
this assumption leads to their error bound blowing up as u increases. In contrast,
our algorithm handles data corruption and the error bound in Theorem 6.5.4 is
translation invariant w.r.t. µ, which makes it significantly stronger.

Importantly, Theorem 17 is minimax optimal up-to some constant:

Theorem 6.5.6 (Error lower bound of the learning problem in Theorem 6.5.4). Given
any learning algorithm A , σ > 0, ε > 0 and sufficiently large N ∈ Z+, there exists a
distribution P with bounded (1 + γ)-th centered moment and an adversary satisfying the
constraints in Definition 6.5.3, s.t. any learning algorithm, given N data points from P
with ε-fraction of corruption, will suffer an error at least Ω

(
σε

γ
1+γ + σN−

γ
1+γ
)

with at least
constant probability.

When ε = 0, Theorem 6.5.6 implies the following error lower bound for mean
estimation problem with i.i.d. data from a distribution with bounded (1 + γ)-th
centered moment:

Corollary 6.5.1. Given any σ and sufficiently large N , there exists a distribution D with
bounded (1 + γ)-th centered moment, s.t. given N i.i.d. samples from the distribution,
any learning algorithm will suffer an error at least Ω

(
σN−

γ
1+γ
)

with at least constant
probability.

Lugosi and Mendelson (2021) guarantees an error Õ(σ
√
ε+ σ/

√
N) for the case

when γ = 1, which is captured by Theorem 6.5.4. When γ < 1, our Theorem 6.5.4

85
provides a larger bias term ofO

(
σε

γ
1+γ
)

and a slower convergence rate ofO(σN−
γ

1+γ).
As shown in Theorem 6.5.6, these discrepancies are consequences of the inherent
difficulty of the learning problem. The weaker moment assumption makes the
estimation more challenging, leading to a larger error.

Proof sketch of Theorem 6.5.4

Algorithm 17 chooses ε̃ = Õ(ε+ 1/N) as the trimming portion. It first splits the
sample into two batches: D1 and D2. The trimming threshold α, β are set to be the
ε̃ and (1− ε̃)-quantile of D1. The algorithm use α, β to define a clipping function
φα,β(·), s.t. φα,β(x) = β if x > β; φα,β(x) = x if α ≤ x ≤ β; φα,β(x) = α if x < α. The
algorithm simply returns the truncated mean of D2: µ̂ = 1

|D2|
∑
x∈D2 φα,β(x).

In the proof of Theorem 6.5.4, we derive a novel Bernstein’s inequality under
weak moment assumption as a key lemma and conduct a refined analysis on the
quantile of the heavy-tailed distribution. The remaining parts of the proof of
Theorem 6.5.4 follow the main steps in Proof of Theorem 1 in Lugosi and Mendelson
(2021). We first present the variant of Bernstein’s inequality below:

Lemma 6.5.1 (Bernstein’s inequality under weak moment assumption). Suppose
Xj , j = 1, . . . , n is a sequence of independent zero-mean random variable bounded by
|Xj| ≤M and there exists γ ∈ (0, 1], s.t.

E |Xj|1+γ ≤ σ1+γ, for all j = 1, . . . , n.

then there exists Aγ ≥ 1 (depending only on γ) s.t.:

P

 1
n

n∑
j=1

Xj > t

 ≤ exp

− n

Aγ

t
γ+1
γ

σ
1+γ
γ +Mt

1
γ

.
Let D̃1 ∪ D̃2 be the uncorrupted dataset. The estimation error of µ̂ can be

86
decomposed as:

|µ̂− µ| ≤

∣∣∣∣∣∣ 1
|D2|

∑
x∈D2

φα,β(x)− 1∣∣∣D̃2

∣∣∣
∑
x∈D̃2

φα,β(x)

∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1∣∣∣D̃2

∣∣∣
∑
x∈D̃2

φα,β(x)− EX∼P [φα,β(X)]

∣∣∣∣∣∣
+ |EX∼P [φα,β(X)]− µ|

=:B1 +B2 +B3

Because D̃2 and D2 differ by at most 2ε |D2| entries,

B1 ≤ 2εmax
x,y∈R

|φα,β(x)− φα,β(y)| = 2ε(β − α).

Because
{
φα,β(x) : x ∈ D̃2

}
consists i.i.d samples from a distribution with bounded

(1 + γ)-th centered moment and support bounded between [α, β], by Lemma D.7.1:

B2 ≤ Õ

(
σ

N
γ

1+γ
+ |β − α|

N

)

By concentration of Bernoulli random variables, α and β are close to the ε̃ and
(1 − ε̃)-quantile of distribution P . Furthermore, we can show that the truncated
random variable φα,β(X), where X ∼ P , has a mean close to the original random
variable:

B3 ≤ O
(
σε̃

γ
1+γ
)
.

We finish the proof by combining these together.

87
6.6 Comparison between Different Optimality

Conditions

In Section 6.4. we derive an optimality condition based on the suboptimal gap of
actions in Theorem 6.4.2. Alternatively, we can get another optimality condition
with the following observation: π̂ is optimal if the suboptimality gap SubOpt(π̂) is
less than the policy gap ∆Π

min. Formally, we can get the following sufficient condition
for optimality with Theorem 6.4.1:

Proposition 6.6.1 (Optimality condition). Under the conditions in Theorem 6.4.1,
if 2Hb < ∆Π

min, then SubOpt(π̂) = 0 with probability at least 1− δ.

By Proposition 6.3.1, the action gap ∆Amin ≤ ∆Π
min and the difference can be large.

This means the condition in Proposition 6.6.1 is usually more conservative and
thus less preferable than that in Theorem 6.4.2. In the following, we use contextual
bandit as an illustrative example to show that why utilizing the action gap idea
leads to a better sufficient condition.

WhenH = 1, MDP is specialized to contextual bandit. And Algorithm 8 returns
a policy π̂ that chooses the action with the largest lower confidence bound (LCB)
in each state. Similar to the discussion above, we can make sure π̂ is optimal by
comparing either the action gap or policy gap. We will show that utilizing the
action gap is preferable.

In contextual bandit, the action gap can be written as:

∆Amin = min
(s,a)∈C

(r1(s, π∗(s))− r1(s, a)),

where π∗ is an optimal policy and

C := {(s, a) : s ∈ supp (p0), r1(s, a) 6= r1(s, π∗(s))}.

Because the best suboptimal policy should only choose a suboptimal action in one

88
state, we can write the policy gap as:

∆Π
min = min

(s,a)∈C
p0(s)(r1(s, π∗(s))− r1(s, a)).

Because p0(s) can be very small for some state s, the policy gap ∆Π
min can be much

smaller than the action gap ∆Amin.
Since there is no state transition in contextual bandits, b2

1(·, ·) = 0 and the value
function estimation in Algorithm 8 can be written as:

Q1(s, a) = max{0, r̂1(s, a)− b1
1(s, a)} ∀s, a (6.8)

By the definition of π̂ and the fact that b1(·, ·) is a proper confidence bound, with
probability at least 1− δ/4, the suboptimality of π̂ at any s can be bounded by:

V ∗1 (s)−Q1(s, π̂(s)) = r1(s, π∗(s))− r1(s, π̂(s))

≤r1(s, π∗(s))−Q1(s, π̂(s)) ≤ r1(s, π∗(s))−Q1(s, π∗(s))

=r1(s, π∗(s))−max{0, r̂1(s, π∗(s))− b1
1(s, π∗(s))}

≤2b1
1(s, π∗(s)), (6.9)

where π∗ is an optimal policy. Thus under the conditions in Theorem 6.4.1, the
suboptimality gap of π̂ can be bounded by:

SubOpt(π̂) =Es∼p0 [V ∗1 (s)−Q1(s, π̂(s))]

≤Es∼p0

[
2b1

1(s, π∗(s))
]
≤ 2b. (6.10)

We can ensure the optimality of π̂ by using either the action gap or policy gap:

• on one hand, by (6.9), if 2b1(s, π∗(s)) ≤ 2b < ∆Amin for all s ∈ S, then for all
s ∈ S, π̂ chooses an optimal action and thus achieves the optimal value;

• on the other hand, by (6.10), if 2b < ∆Π
min, then π̂ achieve the optimal value.

However, the condition 2b < ∆Π
min is more conservative than 2b < ∆Amin because

89
∆Π

min can be much smaller than ∆Amin. Similarly, in the more general MDP setting,
∆Amin and ∆Π

min differ by at least a factor of state occupancy probability as shown in
Proposition 6.3.1, thus Theorem 6.4.2 provides a more desirable optimality condition
than Proposition 6.6.1.

6.7 Conclusion

We provided a new optimality condition for corruption-robust offline RL with
heavy-tailed rewards. We show that if Õ

(
Hσε

γ
1+γ + εH2

)
< ∆Amin, then a modified

pessimistic value iteration algorithm can obtain a policy with the optimal value
even under data corruption.

Future work should answer the question: what is the sufficient and necessary
condition for learners to get a policy with optimal value? A less fundamental but
equally interesting direction is to strengthen the sample complexity in this paper.

90
7 perturbation stability in two-player zero-sum games

In this chapter, we extend the instance-dependent analysis to multi-agent setting.
Two-player zero-sum games are fundamentally different from tabular MDPs: tabu-
lar MDPs always have deterministic optimal policy while some two-player zero-sum
games may have only mixed strategy Nash equilibria, which makes it impossible to
learn an exact Nash in some cases. As a starting point, we study the perturbation
stability of the two-player zero-sum games and the recovery of Nash equilibrium
(NE) when learning on a perturbed game matrix. We provide the sufficient and
necessary conditions for the learner to get an exact NE by learning on the perturbed
game. When it’s impossible to learn the exact NE, we provide conditions for NE
support recovery as a compromise. In robust offline learning setting, the estimation
for the game matrix is a perturbed game of the expected pay-off matrix. Using our
results on the perturbation-stability, we further establish gap-dependent analysis
and certifiable guarantees.

7.1 Introduction

Nash equilibrium is a fundamental concept in game theory that explores the behav-
ior of rational players Nash Jr (1996). It finds numerous applications in economics
Kreps (1990), network security Roy et al. (2010), supply chain management Leng
and Parlar (2005), and more. However, a drawback of the current framework is that
game models are often approximations of the real game, introducing estimation
errors. When planning based on the estimated environment, it becomes unclear
how far the chosen strategy is from the actual Nash equilibrium. To address this
issue, perturbation stability emerges as a valuable property for Nash equilibrium
learning.

Perturbation-stability characterizes the property that, if the entries of the game
matrix are only changed slightly, the NE of the perturbed game is not far away from
the original game. Perturbation-stable games, as described in Balcan and Braver-

91
man (2017), can model practical situations such as public good games, matching
pennies, and identical interest games. Perturbations exist because game matrices
are abstractions of reality. Without perturbation stability, learning an NE far from
the real NE is possible, which hampers understanding of the game structure Balcan
and Braverman (2017); Lipton and Mehta (2006). Perturbation-stable games offer
interesting properties, enabling guarantees beyond worst-case analysis in terms
of computational and statistical aspects. They facilitate more efficient algorithm
design for equilibrium computation Balcan and Braverman (2017).

Perturbation stability also provides insights into the learning of optimal policy
in Multi-armed Bandits (MABs) and more generally, tabular Markov Decision
Processes (MDPs). In MABs and tabular MDPs, there exist optimal deterministic
policies Lattimore and Szepesvári (2020); Sutton and Barto (2018). So it’s suf-
ficient to consider the set of deterministic policies, which is a discrete set. As a
result, MABs and tabular MDPs are perturbation-stable and planning on a slightly
different environment could still lead to an optimal policy. For example, in the
offline learning setting, the suboptimality gap of the policy π̂ returned by the PEVI
algorithm can be bounded by Õ(N− 1

2), where N is the size of the dataset Jin et al.
(2021). When the upper bound Õ(N− 1

2) is smaller than the suboptimality of the
best suboptimal policy, it’s guaranteed that π̂ is optimal due to discreteness. Similar
gap-dependent analysis has been used in MABs, offline reinforcement learning (RL)
and online RL Lattimore and Szepesvári (2020); Wang et al. (2022); Simchowitz
and Jamieson (2019). However, it’s not clear how gap-dependent analysis can be
applied to two-player zero-sum games because: on one hand, it’s not clear what’s
the proper gap notion here; on the other hand, there are games with only mixed
Nash equilibria Nash Jr (1996), which might breaks the perturbation stability as
it’s no longer sufficient to consider only the set of pure strategies when learning the
NE.

Most recent work in multi-agent reinforcement learning (MARL) Xie et al.
(2020); Cui and Du (2022) chooses the duality gap as a performance metric, guar-
anteeing value-related results. However, the resulting strategy may deviate sig-
nificantly from the NE of the real game. Studies by Cohen (1986); Troutt (1990)

92
examine game sensitivity using the derivative of NE, but they offer limited insight
into perturbation in the game space. Furthermore, they focus only on fully mixed
NE games, which is restrictive.

In this paper, we study the perturbation stability of two-player zero-sum games
and NE recovery in the offline learning setting. We demonstrate that under suitable
conditions, slight perturbations yield some extent of NE recovery. Consequently,
even with finite and potentially corrupted data, NE recovery might be feasible. Our
contributions are as follows:

1. We propose three levels of NE robustness for two-player zero-sum games:
exact-NE-robust, subset-NE-robust, and NE-support-robust. These notions
of NE robustness correspond to different levels of perturbation-stability;

2. We introduce the switch-out gap as a key property for perturbation-stability.
Built upon this, we derive the sufficient and necessary conditions for both
exact-NE-robust and subset-NE-robust. We also present a sufficient condi-
tion for NE-support-robust;

3. We apply our results to corruption-robust offline learning setting. By using
Trimmed-Mean estimation, we reduce the robust offline learning problem
to perturbation problem. We first present a set of gap-dependent results,
which translate to sample complexity for NE (support) recovery. We then
present certifiable results, which provide some computable criteria serving
as certification for NE (support) recovery.

7.2 Related Works

Perturbation Stability of Games Lipton et al. Lipton and Mehta (2006) analyze
stability in game theory and economics when subjected to perturbations in the
input. Troutt et al. Troutt (1986) and Kimura et al. Kimura et al. (2000) explored
perturbation effects in game theory, with a specific focus on perturbations with
particular structures. Cohen (1986); Troutt (1990) investigated the sensitivity and

93
local perturbations in fully mixed games. They examined the derivative of matrix
entries to gain a deeper understanding of the perturbation effects. It is important
to note that their analysis primarily concentrated on games with fully mixed Nash
equilibria, where the equilibria have full support on all rows and columns. Balcan
and Braverman (2017); Awasthi et al. (2010) proposed more efficient algorithms
for Nash equilibrium computation in perturbation-stable games.

RL and MARL Reinforcement Learning (RL) is a field that investigates the learn-
ing and planning processes in unknown environments Sutton and Barto (2018).
Gap-independent results focus on the value space. Those results study the regret in
the online setting Jin et al. (2020b) and suboptimality gap in the offline setting Jin
et al. (2021). Gap-dependent analysis refine the gap-independent analysis with
a notion of gap. It achieves logarithmic regret in the online setting Simchowitz
and Jamieson (2019); Lattimore and Szepesvári (2020) and provide sample com-
plexity bound for optimal policy identification in the offline setting Wang et al.
(2022). However, the gap-dependent results and optimality policy recovery are
mainly derived for single-agent RL. In the context of multi-agent reinforcement
learning (MARL), the emphasis in recent studies has been on the duality gap as a
performance measure, primarily focusing on the value space Xie et al. (2020); Cui
and Du (2022). In this paper, we extend the gap-dependent analysis and optimal
policy identification to two-player zero-sum matrix game, which is a special case of
MARL.

7.3 Preliminary

We consider the two-player zero-sum matrix game. Let A ∈ Rm×n be the payoff
matrix, [m] be the action space of the row player, and [n] be the action space of the
column player. The payoff of the game when the row player chooses action i and
the column player chooses action j is given by e>i Aej , where ei and ej are one-hot
vectors of the appropriate dimensions.

94
The strategy space is a probability distribution over pure strategies (actions). We

denote the strategy space of the row player as ∆([m]), which represents the prob-
ability simplex over all rows of A, and the strategy space of the column player
as ∆([n]), representing the probability simplex over all columns. The payoff of
a strategy pair π := (p,q) ∈ ∆([m]) × ∆([n]) is given by p>Aq. The row player
aims to maximize the payoff, while the column player aims to minimize it. A
strategy pair π∗ := (p∗,q∗) is a Nash equilibrium (NE) of game A if for all i ∈ [m],
e>i Aq∗ ≤ p∗>Aq∗ and for all j ∈ [n], p∗>Aej ≥ p∗>Aq∗. At an NE, no player can
achieve a better payoff by unilaterally choosing another strategy. The value of A
is denoted as v∗ := p∗>Aq∗. It is known that the NE of a two-player zero-sum
game can be found using linear programming Nisan et al. (2007). We use NE(A)
to denote the set of NE of game A. We use P and Q to denote the sets of optimal
strategies of row and column players, i.e.:

P :={p ∈ ∆([m]) : ∃q ∈ ∆([n]), s.t. (p,q) ∈ NE(A)}

Q :={q ∈ ∆([n]) : ∃p ∈ ∆([m]), s.t. (p,q) ∈ NE(A)}.

We use IA and JA to denote the NE support of the row and column players:

IA :=
⋃

p∈P
supp (p), JA :=

⋃
q∈Q

supp (q).

Given IA and JA, we define the switch-out gap as the uniform lower bound of
sub-optimality incurred by switching from NE to a pure strategy outside IA or JA:

Definition 7.3.1 (Switch-out gap). The switch-out gap is defined to be:

∆IA := min
q∈Q

min
i/∈IA

(
v∗ − e>i Aq

)
,

∆JA := min
p∈P

min
j /∈JA

(
p>Aej − v∗

)
,

where v∗ is the value of A. When IA = [m] (or JA = [n]), ∆IA (or ∆JA) is defined
to be∞.

95
An approximate Nash equilibrium, or α-approximate NE, is defined similarly,

where the players have only a small incentive to deviate. Specifically, π = (p,q) is
an α-approximate NE of A if for all i ∈ [m], e>i Aq ≤ p>Aq + α, and for all j ∈ [n],
p>Aej ≥ p>Aq − α.

In this paper, we investigate learning the Nash equilibrium with a perturbed
game matrix denoted as A+ Γ where Γ ∈ Rm×n is a perturbation matrix. Standard
results Cui and Du (2022) typically focus on duality gap of a strategy pair as the
performance metric in the value space1. The duality gap Gap(·; ·) of a strategy
pair π = (p,q) on game A is defined to be: Gap(π;A) := br(q)>Aq − p>Abr(p),
where br(·) denotes the best response of a strategy in game A. In other words,
br(p) ∈ argminq′ p>Aq′, br(q) ∈ argmaxp′ p′

>Aq.
However, the main focus of this paper is the recovery of Nash equilibrium in

the strategy space. Facing the perturbation, we are interested in finding strategy
pairs not only with small duality gap but also close to the NE of the original game.
In this regard, we present the following criteria for Nash equilibrium recovery.

Recovery Criteria

The best result one can hope for is to exactly recover the set of NEs by planning on
the perturbed game. With such property, the player can safely deploy the strategy
in the real environment and get the full NE structure of the original game. We
introduce the following exact-NE-robust criterion:

Definition 7.3.2 (Exact-NE-robust). Game A is said to be exact-NE-robust within
radius γ if ∀Γ : ‖Γ‖IA∪JA := max(i,j)∈(IA×[n])∪([m]×JA)

∣∣∣e>i Γej
∣∣∣ ≤ γ, we have NE(A +

Γ) = NE(A).

As shown later, it’s sufficient to consider the perturbation on the (IA×[n]) ∪
([m]×JA) for NE recovery. This is similar to the unilateral concentration assumption
in Cui and Du (2022).

1For completeness, we include the discussion about the duality gap guarantee in the appendix.

96
When it is not practical to find all NE of the original game, one may hope to

recover at least a subset of the NE as a safety guarantee:

Definition 7.3.3 (Subset-NE-robust). GameA is said to be subset-NE-robust within
radius γ if ∀Γ : ‖Γ‖IA∪JA ≤ γ, NE(A+ Γ) ⊆ NE(A).

In many cases, it may not be possible to recover any NE by learning on the
perturbed game. As a compromise, we seek to find all of the actions chosen by the
NE strategy, i.e. NE support recovery:

Definition 7.3.4 (NE-support-robust). Game A is said to be NE-support-robust
within radius γ if ∀Γ : ‖Γ‖IA∪JA ≤ γ, and for all Nash equilibrium π′ of A+ Γ, there
exists π, a Nash equilibrium of A, s.t. supp (π′) = supp (π).

7.4 Main Results: Conditions for Nash Recovery

In this section, we present conditions for different levels of NE recoveries introduced
in Section 7.3. For exact-NE-robust and subset-NE-robust, we provide the sufficient
and necessary conditions, i.e. the minimum conditions allowing NE recovery. We
provide a sufficient condition for NE-support-robust, which also guarantees small
distance to the NE of the original game.

To facilitate the discussion, we introduce the following pure base NE assumption,
which is crucial for subset-NE-robust:

Assumption 7.4.1 (Pure Base NE). AIA,JA is a constant matrix.

In other words, Assumption 7.4.1 implies that the each NE of A is some convex
combination of pure NEs. Under Assumption 7.4.1, the switch-out gap can be
characterized by the switch-out gap of pure NEs:

Lemma 7.4.1. If A satisfies Assumption 7.4.1, then

∆IA = min
j∈JA

min
i/∈IA

(
v∗ − e>i Aej

)
,

∆JA = min
i∈IA

min
j /∈JA

(
e>i Aej − v∗

)
.

97
The pure base NE assumption and a positive switch-out gap are indeed sufficient

and necessary for subset-NE-robust:

Theorem 7.4.2. Suppose γ > 0, A is subset-NE-robust within radius γ if and only if

1. A satisfies Assumption 7.4.1;

2. γ < 1
2 min{∆IA ,∆JA}.

Implication of Subset-NE robust Subset-NE robust is useful in practice. For ex-
ample, one may estimate the game by learning on a finite dataset. The estimation
may differ from the original game up to some estimation error. However, Theo-
rem 7.4.2 demonstrates that as long as the original game satisfies the pure base
NE assumption and the estimation error is smaller than the switch-out gap, then
the learner will learn an NE despite the estimation error. We defer the detailed
discussion to Section 7.5.

The gap condition By Lemma 7.4.1, the gap condition γ < 1
2 min{∆IA ,∆JA}

guarantees that after the perturbation, both players have no incentive to choose
actions outside the NE support. In this case, the switch-out gaps ∆IA and ∆JA
share a similar functionality with ∆min, the action gap in Multi-armed Bandits
(MABs) Lattimore and Szepesvári (2020): when planning on a slightly different
environment, one can still get the optimal strategy due to the fault tolerance.

We now present two examples showing that when the gap condition in Theo-
rem 7.4.2 does not hold, game A is no longer subset-NE-robust:

Example 7.4.1 (1
2 min{∆IA ,∆JA} = 0). In game

0 0
0 1

, π1 = (e1, e1), π2 = (e2, e1)

and any convex combinations of π1 and π2 are NEs. We have IA = {1, 2} and
JA = {1}. In this game, the switch-out gaps are ∆IA = ∞ and ∆JA = 0. As a
result, an arbitrarily small perturbation will create a new NE and thus violate the

subset-NE-robust criterion. Consider the perturbed game matrix:
 0 0
−γ 1

, where

98
γ > 0 can be arbitrarily close to 0. One can verify that π′ =

(
e1,

(
1

1+γ ,
γ

1+γ

))
is an

NE of the perturbed game but not the original game.

Example 7.4.2 (1
2 min{∆IA ,∆JA} = ‖Γ‖IA∪JA). In game

(
−1 1

)
, π = (e1, e1) is

the unique NE and we have IA = JA = {1}, ∆IA = ∞ and ∆JA = 2. After
perturbation

(
1 −1

)
, the game matrix becomes

(
0 0

)
. Any strategy pairs are NEs

of the perturbed game, which violates the subset-NE robust criterion.

The Pure Base NE assumption Perturbation may result in slight changes on NEs.
The pure base NE assumption provides tolerance for such changes. Specifically, it
makes sure that as long as the NE support of the perturbed game is a subset of that
of the original game, the NE of the perturbed game will be NE of the original game.

Example 7.4.3 (Game with only mixed NE). Game
 1 −1
−1 1

 has a unique mixed

NE π =
((

1
2 ,

1
2

)
,
(

1
2 ,

1
2

))
. It has infinite switch-gap ∆IA = ∆JA = ∞ but does not

satisfy Assumption 7.4.1. As a result, an arbitrarily small perturbation will create a

new NE. Consider the perturbed game matrix:
 1 + γ −1
−1− γ 1

, where γ > 0 can

be arbitrarily close to 0. The perturbed game has a unique NE
((

1
2 ,

1
2

)
,
(

1
2+γ ,

1+γ
2+γ

))
,

which is different from π.

These examples informally demonstrate that the conditions in Theorem 7.4.2
are necessary. We defer the detailed proof of necessity to the appendix and present
the proof of sufficiency below:

Proof of “⇐” in Theorem 7.4.2. We only need to show that under the condition in
Theorem 7.4.2, any NE of A+ Γ has support only on IA and JA. Then, by Assump-
tion 7.4.1, any NE of A+ Γ is also NE of A.

We first show that the NE of the subgame defined by (A + Γ)IA,JA is also NE
of A+ Γ. Let

(
p∗IA ,q

∗
JA

)
be NE of the subgame (A+ Γ)IA,JA . By Assumption 7.4.1,

99(
p∗IA ,q

∗
JA

)
is NE of A. For all i /∈ IA:

e>i (A+ Γ)q∗JA ≤e>i Aq∗JA + γe>i 11>q∗JA
=e>i Aq∗JA + γ

≤p∗>IAAq∗JA −∆IA + γ

(By definition of ∆IA)

=p∗>IA(A+ Γ)q∗JA −∆IA + γ − p∗>IAΓq∗JA
≤p∗>IA(A+ Γ)q∗JA −∆IA + 2γ

<p∗>IA(A+ Γ)q∗JA (7.1)

(Because ∆IA > 2γ)

Because
(
p∗IA ,q

∗
JA

)
is the NE of (A+ Γ)IA,JA , for all i ∈ IA,

e>i (A+ Γ)q∗JA ≤ p∗>IA(A+ Γ)q∗JA (7.2)

By (7.1), (7.2) and similar argument on p∗IA ,
(
p∗IA ,q

∗
JA

)
is NE of A+ Γ.

We now prove that NE of A+ Γ has support only on IA and JA by contradiction.
Suppose (p,q) is an NE of A+ Γ, s.t. supp (p) \ IA 6= ∅, then (p,q∗JA) is also NE of
A + Γ. By (7.1), p>(A + Γ)q∗JA < p∗>IA(A + Γ)q∗JA , which contradicts with the fact
that NEs of game have the same payoff. Thus supp (p) ⊆ IA. Similarly, we can
show that supp (q) ⊆ JA.

Exact-NE-robust requires the NE sets of the perturbed game and original game
to be exactly equal and is thus a special case of subset-NE-robust. As a result, it
also requires a strictly stronger sufficient and necessary condition:

Theorem 7.4.3. Suppose γ > 0, A is exact-NE-robust within radius γ if and only if A
satisfies:

1. A satisfies: |IA| = |JA| = 1;

2. γ < 1
2 min{∆IA ,∆JA}.

100
Compared to Theorem 7.4.2, Theorem 7.4.3 further requires game A and the

perturbed game to have a unique pure NE. On one hand, |NE(A)| = |NE(A+ Γ)| = 1
and NE(A + Γ) ⊆ NE(A) implies NE(A + Γ) = NE(A); on the other hand, the
new condition is indeed necessary because if the game satisfies the pure base NE
assumption but has multiple NEs, the perturbation can easily shrink the NE set
and violate the criterion for exact-NE-robust:

Example 7.4.4. Game
0 0

0 0

 satisfies the pure base NE assumption and any strat-

egy pairs are NE. After a small perturbation, the perturbed game
 0 γ

−γ 0

 has

a unique NE (e1, e1), where γ > 0 can be arbitrarily close to 0. This violates the
criterion of exact-NE-robust.

By Theorem 7.4.2 and 7.4.3, the recovery of (at least one) NEs requires the
original game to satisfy the pure base NE assumption. For more general games,
we have to relax the recovery criterion. We thus consider the NE-supp-robust in
Definition 7.3.4 instead. We require the NE of the perturbed game to have the same
support as that of the original game but allow the mixing probability to be slightly
different.

We provide a sufficient condition for support-robust for the games with unique
but potentially mixed NE:

Theorem 7.4.4. If A has a unique NE π∗ = (p∗,q∗), then there exists γA, CA > 0 s.t.:

1. A is NE-support-robust within radius γ for all γ < γA;

2. ∀ ‖Γ‖IA∪JA < γA, A+ Γ has a unique NE π = (p,q) and

‖π∗ − π‖1 := max{‖p− p∗‖1 , ‖q − q∗‖1} ≤ CA ‖Γ‖IA∪JA .

Theorem 7.4.4 demonstrates that when game A has a unique NE, there is a
safe zone around A, such that any game nearby has a unique NE that shares the
same support with NE(A). Additionally, the distance between NEs of A and the

101
perturbed game A+ Γ is Lipschitz in the perturbation magnitude, which means
NE of A+ Γ converges to NE of A as ‖Γ‖IA∪JA → 0.

Balcan and Braverman (2017) studies the computation of approximate NE for
games with (ε,∆)-perturbation stability. Theorem 7.4.4 shows that any two-player
zero-sum game A with unique NE is (γ, CAγ)-perturbation stable for γ < γA.

7.5 Applications to Corruption-Robust Offline
Learning

Section 7.4 presents conditions for NE recovery when planning on a perturbed
game matrix. We allow perturbations from any source as long as the perturbations
and the game matrices satisfy the corresponding conditions.

In this section, we consider the corruption robust offline learning setting. Given
a potentially corrupted offline dataset generated by a stochastic game with mean
B, we use trimmed-mean to get an estimation B̂ with confidence bound Σ and
calculate NE of B̂ ± Σ. Using trimmed-mean estimation, we reduce the learning
problem to a planning problem with perturbation coming from both finite data
and data corruption. We apply the results in Section 7.4 from two different aspects
and get two different sets of results:

• by interpreting the true game matrix B as the original game A in Section 7.4,
we get a set of gap-dependent results with a sample complexity bound;

• We also get a certification for NE (support) recovery when planning on B̂ ± Σ
by alternatively interpreting the estimated game B̂ ± Σ as the original game
A and B as the perturbed game A+ Γ.

Corruption-Robust Offline Learning Setting and Classic Results

We start by introducing the corruption-robust offline learning setting. Consider
a stochastic matrix game whose payoff is specified by a family of distributions
D[m]×[n]. Suppose the expected payoff matrix is B ∈ Rm×n and the variance of

102
payoff is bounded by σ2 for some σ > 0. Specifically, for each (i, j) ∈ [m]×[n],
Ex∼Di,j [x] = e>i Bej and Vx∼Di,j [x] ≤ σ2.

Suppose there is a data collector that uses an exploration policy µ ∈ ∆([m]×[n])
to collect data. It takes a pair of pure strategy (ei, ej) drawn from µ and observe
x̃i,j , an instantiation of the stochastic payoff Di,j . This process is repeated for N
times and results in an offline dataset: X̃ :=

{
(ik, jk, x̃kik,jk)

}N
k=1

. On top of this,
we consider the ε-corruption model, where the adversary can inspect the dataset
X̃ and replace the payoff entry xkik,jk with arbitrary value. The only constraint is,
for any (i, j) ∈ [m]×[n], there are at most ε-fraction of corrupted rewards. We use
X :=

{
(ik, jk, xkik,jk)

}N
k=1

to denote the corrupted dataset.
Our goal is to learn the NE of game B given the corrupted offline dataset X .
We assume that the behavior policy µ has uniform coverage on the extended

NE support (IB×[n]) ∪ ([m]×JB):

Assumption 7.5.1. The behavior policy µ satisfies

C := min
(i,j)∈(IB×[n])∪([m]×JB)

µi,j > 0.

We present our algorithm in Algorithm 9, which uses Trimmed-Mean (the
Univariate mean estimator in Lugosi and Mendelson (2021)) as a subroutine in
the pessimistic algorithm (see PNVI in Cui and Du (2022)). It estimates B̂, the
mean payoff of the game using the offline dataset, and designs the pessimistic
bonuses Σ based on the error guarantee of the trimmed mean estimator. Due to
the outlier removal step, Trimmed-Mean requires a minimum amount of samples
to get a meaningful error upper bound. So we simply set the entries of Γ to +∞
as a generic upper bound if there are no sufficient data. By concentration and
coverage assumption Assumption 7.5.1, there would be sufficient data on (IB×[n])∪
([m]×JB) to obtain a meaningful estimation given N large enough. The algorithm
then constructs two pessimistically estimated games for both row and column
players using estimation B̂ and bonus Σ. The algorithm then computes (p,q) as a
conservative approximation for the NE of A.

103
Algorithm 9 Robust-PN

Input: Corrupted offline dataset X , corruption level ε, upper bound of variance
σ2, confidence level δ
for all (i, j) ∈ [m]×[n], let N(i, j) be the count of (i, j) pair in X .
for (i, j) ∈ [m]×[n] do
B̂i,j ← Trimmed-Mean

(⋃
(i′,j′):(i′,j′,x′)∈X{x′}

)
if N(i, j) > 96 log 8mn

δ
then

Σi,j ← 48σ
√
ε+ 86σ

√
log 8mn

δ

N(i,j)
else

Σi,j ← +∞
end if

end for
Compute the NE of B̂ − Σ as (p,q)
Compute the NE of B̂ + Σ as (p,q)
Return: π̂ = (p,q).

We first present an upper bound on the duality gap as a universal guarantee
in the value space. This can be viewed as the worst-case gap-independent result,
which holds with high probability, regardless of the game matrix:

Proposition 7.5.1. Suppose Assumption 7.5.1 holds. If

ε < 1/32andN > 768
(

log 8mn
δ

)
,

then with probability at least 1− δ, Algorithm 9 outputs a strategy pair π̂, s.t.

Gap(π̂;B) = O

(
σ
√
ε+ σ

log mn
δ√

CN

)
(7.3)

Similar results also appear in Cui and Du (2022). At a high level, (7.3) includes a
bias term σ

√
ε as the effect of data corruption and a statistical error term decreasing

at the rate of 1√
N

. However, this result only guarantees the strategy achieves a good
value but does not provide further insight regarding the game structure or NE
recovery.

104
The Trimmed-Mean indeed reduces the problem of NE learning with data cor-

ruption to the problem of planning on the pessimistically estimated game matrices.
In the following, we apply the results in Section 7.4 to show NE (support) recovery.
The perturbation between B and B̂ − Σ or B̂ + Σ composes of the estimation error
and the bonus matrix Σ. Interpreting B as the original game or perturbed leads to
the following gap-dependent results and certifiable guarantees.

Prior Guarantee: Gap-dependent Results

The expected game matrix B can be viewed as the “original” game matrix and the
estimated matrix B̂ − Σ or B̂ + Σ can be viewed as the perturbed matrices. By
concentration and the error guarantee of Trimmed-Mean, with probability at least
1− δ, for all (i, j) ∈ (IB×[n]) ∪ ([m]×JB),

∣∣∣Bi,j − B̂i,j

∣∣∣ ≤48σ
√
ε+ 86σ

√√√√ log 8mn
δ

N(i, j)

≤48σ
√
ε+ 258σ

log 8mn
δ√

CN
.

This means, with probability at least 1− δ, the perturbation is bounded by:

∥∥∥B̂ + Σ−B
∥∥∥
IB∪JB

≤2 ‖Σ‖IB∪JB

≤96σ
√
ε+ 516σ

log 8mn
δ√

CN
=: γ1.

Similarly,

∥∥∥B̂ − Σ−B
∥∥∥
IB∪JB

≤ γ1.

According to Theorem 7.4.2, ifB satisfies the pure base NE assumption and γ1 <
1
2 min{∆IB ,∆JB}, then π̂ outputted by Algorithm 9 is NE of B. We can similarly
apply conditions for exact-NE-robust and NE-support-robust. More formally, we
have

105
Corollary 7.5.1. Suppose Assumption 7.5.1 holds, ε < 1/32 and N > 768

(
log 8mn

δ

)
. If

• B satisfies Assumption 7.4.1 and γ1 <
1
2 min{∆IB ,∆JB};

• OR |IB| = |JB| = 1 and γ1 <
1
2 min{∆IB ,∆JB};

• OR B has a unique NE π∗and γ1 < γB (defined in Theorem 7.4.4),

then π̂ outputted by Algorithm 9 satisfies:

• Pr[π̂ ∈ NE(B)] ≥ 1− δ;

• OR Pr[NE(B) = {π̂}] ≥ 1− δ;

• OR Pr[supp (π∗) = supp (π̂), ‖π∗ − π̂‖1 ≤ CBγ1] ≥ 1 − δ, where CB is defined
in Theorem 7.4.4.

Corollary 7.5.1 shows that, if we have some prior knowledge on the expected
payoff matrix B, then we can utilize this information to plan beforehand. For
example, if we know that A satisfies the pure base NE assumption and 96σ

√
ε <

1
2 min{∆IB ,∆IB}, then Corollary 7.5.1 provides a sample complexity bound: if

N >

 516σ log 8mn
δ√

C
(

1
2 min{∆IB ,∆IB} − 96σ

√
ε
)
2

,

then with probability at least 1− δ, Algorithm 9 outputs a NE of B. As a result, we
also improve the bound in Proposition 7.5.1 to Gap(π̂;B) = 0. This means, even if
the dataset is corrupted, as long as B satisfies the pure base NE assumption and
96σ
√
ε < 1

2 min{∆IB ,∆IB}, we can still learn a NE of B given sufficient data. We
can similarly establish sample complexity for exact NE set recovery and NE support
recovery. Wang et al. (2022) provides similar results for offline RL with an i.i.d.
dataset.

106
Posterior Guarantee: Certifiable Results

Alternatively, we can also treat B̂ −Σ and B̂ + Σ as the “original” game matrix and
treat B as the perturbed game matrix. Different from Corollary 7.5.1, we get a set
of certifiable guarantees:

Corollary 7.5.2. If ε < 1/32, then π̂ outputted by Algorithm 9 satisfies:

Pr[if E1
cond holds, then NE(B) = {π̂}] ≥ 1− δ,

Pr[if E2
cond holds, then E2

result] ≥ 1− δ,

where

E1
cond := E1

1 ∩ E1
2 ∩ E1

3 ,

E1
1 :=

{∣∣∣I
B̂+Σ

∣∣∣ =
∣∣∣J

B̂+Σ

∣∣∣ =
∣∣∣I
B̂−Σ

∣∣∣ =
∣∣∣J

B̂−Σ

∣∣∣ = 1
}
,

E1
2 :=

{
‖Σ‖I

B̂+Σ
∪J

B̂+Σ
<

1
4 min

{
∆I

B̂+Σ
,∆J

B̂+Σ

}}
,

E1
3 :=

{
‖Σ‖I

B̂−Σ
∪J

B̂−Σ
<

1
4 min

{
∆I

B̂−Σ
,∆J

B̂−Σ

}}
,

E2
cond := E2

1 ∩ E2
2 ∩ E2

3 ∩ E2
4 ,

E2
1 :=

{
B̂ + Σ has a unique NE

}
,

E2
2 :=

{
B̂ − Σ has a unique NE

}
,

E2
3 :=

{
‖Σ‖I

B̂+Σ
∪J

B̂+Σ
< 1

2γB̂+Σ

}
,

E2
4 :=

{
‖Σ‖I

B̂−Σ
∪J

B̂−Σ
< 1

2γB̂−Σ

}
,

E2
result := E2

5 ∩ E2
6 ∩ E2

7 ∩ E2
8 ,

E2
5 := {A has a unique NE π∗ = (p∗,q∗)},

E2
6 := {supp (π∗) = supp (π̂)},

E2
7 :=

{∥∥∥p− p∗
∥∥∥

1
≤ 2C

B̂−Σ ‖Σ‖I
B̂−Σ

∪J
B̂−Σ

}
,

E2
8 :=

{
‖q − q∗‖1 ≤ 2C

B̂+Σ ‖Σ‖I
B̂+Σ

∪J
B̂+Σ

}
.

107
The expressions in Corollary 7.5.1 and 7.5.2 are slightly different because the

conditions E1
cond and E2

cond are stochastic events. Other than that, the conditions
and results in Corollary 7.5.2 look similar to that in Corollary 7.5.1, but here is
a key difference: the condition E1

cond and E2
cond in Corollary 7.5.2 can be verified

numerically because both B̂ and Σ are computable for the learning agent. E1
cond and

E2
cond thus serve as certifications for exact NE recovery and NE support recovery.

Such results are meant to be used at the end of the learning process: after obtaining
B̂, Σ and π̂, one can verify whether π̂ is NE of B by checking if E1

cond or E2
cond holds.

7.6 Conclusion

We study the perturbation-stability of NEs in two-player zero-sum games. We
propose three levels of criteria for NE-robust. Our main results provide sufficient
and necessary conditions or sufficient conditions for these criteria. We apply these
conditions to corruption-robust offline learning settings, resulting in gap-dependent
results and certifiable guarantees. Future research directions include extending the
results to games with multiple mixed NEs and general-sum games.

108
8 mechanism design in normal mean estimation

In the robust decision-making problem, an adversary corrupts the data to manipu-
late the learning process. Fortunately, we’ve seen that robust statistics is an effective
approach in decision-making problems against data corruption. However, when
all agents seek to improve their own individual benefits without adversarial intent,
the situation becomes much different. In this chapter, we establish a collaborative
learning mechanism, serving as an alternative to robust statistics. Instead of detect-
ing for data corruption, our mechanism incentivizes truthful data-sharing. As a
result, empirical mean estimation is already sufficient for the problem.

8.1 Introduction

With the rise in popularity of machine learning, data is becoming an increasingly
valuable resource for businesses, scientific organizations, and government insti-
tutions. However, data collection is often costly. For instance, to collect data,
businesses may need to carry out market research, scientists may need to conduct
experiments, and government institutions may need to perform surveys on public
services. However, once data has been generated, it can be freely replicated and
used by many organizations (Jones and Tonetti, 2020). Hence, instead of simply
collecting and learning from their own data, by sharing data with each other, or-
ganizations can mutually reduce their own data collection costs and improve the
utility they derive from data (Kairouz et al., 2021). In fact, there are already several
platforms to facilitate data sharing among businesses (goo; Zheng et al., 2019),
scientific organizations (pub; 53 and 68, 2013), and public institutions (Flores et al.,
2021; Sheller et al., 2019).

However, simply pooling everyone’s data and sharing with each other can
lead to free-riding (Karimireddy et al., 2022; Sim et al., 2020). For instance, if an
agent (e.g an organization) sees that other agents are already contributing a large
amount of data, then, the cost she incurs to collect her own dataset may not offset

109
the marginal improvement in her own learned model due to diminishing returns
of increasing dataset sizes (we describe this rigorously in Section 8.2). Hence,
while she benefits from others’ data, she has no incentive to collect and contribute
data to the pool. A seemingly simple fix to this free-riding problem is to only
return the datasets of the others if an agent submits a large enough dataset herself.
However, this can be easily manipulated by a strategic agent who submits a large
fabricated (fake) dataset without incurring any cost, receives the others’ data, and
then discards her fabricated dataset when learning. While the agent has benefited
by this bad behavior, other agents who may use this fabricated dataset are worse
off. Moreover, a naive test by the mechanism to check if the agent has fabricated
data can be sidestepped by agents who collect only a small dataset and fabricate a
larger dataset using this small dataset (e.g by fitting a model to the small dataset
and then sampling from this fitted model).

In this work, we study these challenges in data sharing in one of the most foun-
dational statistical problems, normal mean estimation, where the goal is to estimate
the mean µ of a normal distribution N (µ, σ2) with known variance σ2. We wish to
design mechanisms for data sharing that satisfy the three fundamental desiderata of
mechanism design; Nash incentive compatibility (NIC): agents have incentive to col-
lect a sufficiently large amount of data and share it truthfully provided that all other
agents are doing so; individual rationality (IR): agents are better off participating in
the mechanism than working on their own; and efficiency: the mechanism leads to
outcomes with small estimation error and data collection costs for all agents.

Contributions: (i) In Section 8.2, we formalize collaborative normal mean es-
timation in the presence of strategic agents. (ii) In Section 8.3, we design an NIC
and IR mechanism for this problem to prevent free-riding and data fabrication
and show that its social penalty, i.e sum of all agents’ estimation errors and data
collection costs, is at most twice that of the global minimum. (iii) In Appendix F.5,
we study the same mechanism in high dimensional settings and relax the Gaussian
assumption to distributions with bounded variance. We show that the mechanism
retains its properties, with only a slight weakening of the NIC and efficiency guar-
antees. (iv) In Section 8.4, we consider two special cases where we impose natural

110
restrictions on the agents’ strategy space. We show that it is possible to design
mechanisms which essentially achieve the global minimum social penalty in both
settings. Next, we will summarize our primary mechanism and the associated
theorem in Section 8.3.

Summary of main results

Formalism: We assume that all agents have a fixed cost for collecting one sample,
and define an agent’s penalty (negative utility) as the sum of her estimation error
and the cost she incurred to collect data. To make the problem well-defined, for the
estimation error, we find it necessary to consider the maximum risk, i.e maximum
expected error over all µ ∈ R. A mechanism asks agents to collect data, and then
shares the data among the agents in an appropriate manner to achieve the three
desiderata. An agent’s strategy space consists of three components: how much data
she wishes to collect, what she chooses to submit after collecting the data, and how
she estimates the mean µ using the dataset she collected, the dataset she submitted,
and the information she received from the mechanism.

Mechanism and theoretical result: In our mechanism, which we call C3D (Cross-
Check and Corrupt based on Difference), each agent i collects a dataset Xi and
submits a possibly fabricated or altered version Yi to the mechanism. The mech-
anism then determines agent i’s allocation in the following manner. It pools the
data from the other agents and splits them into two subsets Zi, Z ′i. Then, Zi is
returned as is, while Z ′i is corrupted by adding noise that is proportional to the
difference between Yi and Zi. If an agent collects less or fabricates, she risks looking
different to the others, and will receive a dataset Z ′i of poorer quality. We show
that this mechanism has a Nash equilibrium where all agents collect a sufficiently
large amount of data, submit it truthfully, and use a carefully weighted average of
the three datasets Xi, Zi, and Z ′i as their estimate for µ. The weighting uses some
additional side information that the mechanism provides to each agent. Below,
we state an informal version of the main theoretical result of this paper, which
summarizes the properties of our mechanism.

111
Theorem 8.3.1 (informal): The above mechanism is Nash incentive compatible, indi-

vidually rational, and achieves a social penalty that is at most twice the globally minimum
social penalty.

Corruption is the first of two ingredients to achieving NIC. The second is the
design of the weighted average estimator which is (minimax) optimal after corrup-
tion. To illustrate why this is important, say that the mechanism had assumed that
the agents will use any other sub-optimal estimator (e.g a simple average). Then it
will need to lower the amount of corruption to ensure IR and efficiency. However, a
strategic agent will realize that she can achieve a lower maximum risk with a better
estimator (instead of collecting more data herself and/or receiving less corrupt
data from the mechanism). She can leverage this insight to collect less data and
lower her overall penalty.

Proof techniques: The most challenging part of our analysis is to show NIC,
First, to show minimax optimality of our estimator, we construct a sequence of
normal priors for µ and show that the minimum Bayes’ risk converges to the
maximum risk of the weighted average estimator. However, when compared to
typical minimax proofs, we face more significant challenges. The first of these
is that the combined dataset Xi ∪ Zi ∪ Z ′i is neither independent nor identically
distributed as the corruption is data-dependent. The second is that the agent’s
submission Yi also determines the degree of corruption, so we cannot look at the
estimator in isolation when computing the minimum Bayes’ risk; we should also
consider the space of functions an agent may use to determine Yi from Xi. The
third is that the expressions for the minimum Bayes’ risk do not have closed form
solutions and require non-trivial algebraic manipulations. To complete the NIC
proof, we show that due to the carefully chosen amount of corruption, the agent
should collect a sufficient amount of data to avoid excessive corruption, but not too
much so as to increase her data collection costs.

112
Related Work

Mechanism design is one of the core areas of research in game theory (Vickrey, 1961;
Groves, 1979; Clarke, 1971). Our work here is more related to mechanism design
without payments, which has seen applications in fair division Procaccia (2013),
matching markets (Roth, 1986), and kidney exchange (Roth et al., 2004) to name
a few. There is a long history of work in the intersection of machine learning and
mechanism design, although the overwhelming majority apply learning techniques
when there is incomplete information about the mechanism or agent preferences,
(e.g (Amin et al., 2013; Mansour et al., 2015; Athey and Segal, 2013; Nazerzadeh
et al., 2008; Kakade et al., 2010)). On the flip side, some work have designed data
marketplaces, where customers may purchase data from contributors (Agarwal
et al., 2020c, 2019b; Jia et al., 2019; Wang et al., 2020b). These differ from our focus
where we wish to incentivize agents to collaborate without payments.

Due to the popularity of shared data platforms (pub; Flores et al., 2021; Sheller
et al., 2019; goo) and federated learning (Kairouz et al., 2021), there has been a recent
interest in designing mechanisms for data sharing. Sim et al. (2020) and Xu et al.
(2021b) study fairness in collaborative data sharing, where the goal is to reward
agents according to the amount of data they contribute. However, their mechanisms
do not apply when strategic agents may try to manipulate a mechanism. Blum et al.
(2021) and Karimireddy et al. (2022) study collaboration in federated learning.
However, the strategy space of an agent is restricted to how much data they collect
and their mechanism rewards each agent according to the quantity of the data she
submitted. The above four works recognize that free-riding can be detrimental to
data sharing, but assume that agents will not fabricate data. As discussed above,
if this assumption is not true, agents can easily manipulate such mechanisms.
Fraboni et al. (2021) and Lin et al. (2019) study federated learning settings where
free-riders may send in fabricated gradients without incurring the computational
cost of computing the gradients. However, their focus is on designing gradient
descent algorithms that are robust to such attacks and not on incentivizing agents
to perform the gradient computations. Some work have designed mechanisms

113
for federated learning so as to elicit private information (such as data collection
costs), but their focus is not on preventing free-riding or fabrication (Ding et al.,
2020b; Liu et al., 2022). Miller et al. Miller et al. (2005) uses scoring systems to
develop mechanisms that prevent signal fabrication. However, the agents in their
settings can only choose to report either their true signal or something else but
can not freely choose how much data to collect. Cai et al. Cai et al. (2015) study
mechanism design where a learner incentivizes agents to collect data via payments.
Their mechanism, which also cross-checks the data submitted by the agents, has
connections to our setting in Section 8.4 where we consider a restricted strategy
space for the agents.

Our approach of using corruption to engender good behaviour draws inspiration
from the robust estimation literature, which design estimators that are robust to
data from malicious agents (Diakonikolas et al., 2016; Lugosi and Mendelson, 2021;
Chen et al., 2023). However, to the best of our knowledge, the specific form of
corruption and the subsequent design of the minimax optimal estimator are new
in this work, and require novel analysis techniques.

8.2 Problem Setup

We will now formally define our problem. We have m agents, who are each able to
collect i.i.d samples from a normal distribution N (µ, σ2), where σ2 is known. They
wish to estimate the mean µ of this distribution. To collect one sample, the agent has
to incur a cost c. We will assume that σ2, c, and m are public information. However,
µ ∈ R is unknown, and no agent has auxiliary information, such as a prior, about µ.
An agent wishes to minimize her estimation error, while simultaneously keeping
the cost of data collection low. While an agent may collect data on her own to
manage this trade-off, by sharing data with other agents, she can reduce costs while
simultaneously improving her estimate. We wish to design mechanisms to facilitate
such sharing of data.

Mechanism: A mechanism receives a dataset from each agent, and in turn returns

114
an allocation Ai to each agent. An agent will use her allocation to estimate µ. This al-
location could be, for instance, a larger dataset obtained with other agents’ datasets.
The mechanism designer is free to choose a space of allocations A to achieve the
desired goals. Formally, we define a mechanism as a tuple M = (A, b) where A
denotes the space of allocations, and b is a procedure to map the datasets collected
from the m agents to m allocations. Denoting the universal set by U , we write the
space of mechanismsM as

M = {M = (A, b) : A ⊂ U , b : (⋃n≥0 Rn)m → Am}. (8.1)

As is customary, we will assume that the mechanism designer will publish the space
of allocations A and the mapping b (the procedure used to obtain the allocations)
ahead of time, so that agents can determine their strategies. However, specific
values computed/realized during the execution of the mechanism are not revealed,
unless the mechanism chooses to do so via the allocation Ai.

Agents’ strategy space: Once the mechanism is published, the agent will choose
a strategy. In our setting, this will be the tuple (ni, fi, hi), which determines how
much data she wishes to collect, what she chooses to submit, and how she wishes
to estimate the mean µ. First, the agent samples ni points to collect her initial
dataset Xi = {xi,j}nij=1, where xi,j ∼ N (µ, σ2), incurring cni cost. She then submits
Yi = {yi,j}j = fi(Xi) to the mechanism. Here fi is a function which maps the
collected dataset to a possibly fabricated or falsified dataset of a potentially different
size. In particular, this fabrication can depend on the data she has collected. For
instance, the agent could collect only a small dataset, fit a Gaussian, and then
sample from it.

Finally, the mechanism returns the agent’s allocationAi, and the agent computes
an estimate hi(Xi, Yi, Ai) for µ using her initial datasetXi, the dataset she submitted
Yi, and the allocation she received Ai. We include Yi as part of the estimate since
an agent’s submission may affect the allocation she receives. Consequently, agents
could try to elicit additional information about µ via a carefully chosen Yi. We
can write the strategy space of an agent as S = N× F ×H, where F is the space

115
of functions mapping the dataset collected to the dataset submitted, andH is the
space of all estimators using all the information she has. We have:

F = {f : ⋃n≥0 Rn → ⋃
n≥0 Rn}, H = {h : ⋃n≥0 Rn × ⋃

n≥0 Rn × A → R}.
(8.2)

One element of interest in F is the identity I which maps a dataset to itself. A
mechanism designer would like an agent to use fi = I, i.e to submit the data that
she collected as is, so that other agents can benefit from her data.

Going forward, when s = {si}i ∈ Sm denotes the strategies of all agents, we
will use s−i = {sj}j 6=i to denote the strategies of all agents except i. Without loss
of generality, we will assume that agent strategies are deterministic. If they are
stochastic, our results will carry through for every realization of any external source
of randomness that the agent uses to determine (ni, fi, hi).

Agent penalty: The agent’s penalty pi (i.e negative utility) is the sum of her squared
estimation error and the cost cni incurred to collect her dataset Xi of ni points. The
agent’s penalty depends on the mechanism M and the strategies s = {sj}j of all
the agents. Making this explicit, pi is defined as:

pi(M, s) = sup
µ∈R

E
[
(hi(Xi, Yi, Ai)− µ)2

∣∣∣µ] + cni (8.3)

The term inside the expectation is the squared difference between the agent’s
estimate and the true mean (conditioned on the true mean µ). The expectation is
with respect to the randomness of all agents’ data and possibly any randomness in
the mechanism. We consider the maximum risk, i.e supremum over µ ∈ R, since the
true mean µ is unknown to the agent a priori, and their strategy should yield good
estimates, and hence small penalty, over all possible values µ. To illustrate this
further, note that when the value of true mean µ is µ′, the optimal strategy for an
agent will always be to not collect any data and choose the estimator hi(·, ·, ·) = µ′

leading to 0 penalty. However, this strategy can be meaningfully realized by an
agent only if she knew that µ = µ′ a priori which renders the problem meaningless1.

1This is akin to the reason why it is customary to study the maximum risk in frequentist

116
Considering the maximum risk accounts for the fact that µ is unknown and makes
the problem well-defined.

Recommended strategies: In addition to publishing the mechanism, the mecha-
nism designer will recommend strategies s? = {s?i }i ∈ Sm for the agents so as to
incentivize collaboration and induce optimal social outcomes.

Desiderata: We can now define the three desiderata for a mechanism:
1. Nash Incentive compatibility (NIC): A mechanism M = (A, b) is said to be NIC

at the recommended strategy profile s? if, for each agent i, and for every other
alternative strategy si ∈ S for that agent, we have pi(M, s?) ≤ pi(M, (si, s?−i)).
That is, s? is a Nash equilibrium so no agent has incentive to deviate if all other
agents are following s?.

2. Individual rationality (IR): We say that a mechanismM is IR at s? if no agent suffers
from a higher penalty by participating in the mechanism than the lowest possible
penalty she could achieve on her own when all other agents are following s?. If
an agent does not participate, she does not submit nor receive any data from
the mechanism; she will simply choose how much data to collect and design
the best possible estimator. Formally, we say that a mechanism M is IR if the
following is true for each agent i:

pi(M, s?) ≤ inf
ni∈N, hi∈H

{
sup
µ∈R

E
[
(hi(Xi,∅,∅)− µ)2 |µ

]
+ cni

}
. (8.4)

3. Efficiency: The social penalty P (M, s) of a mechanismM when agents follow strate-
gies s, is the sum of agent penalties (defined below). We define PR(M, s?) to be
the ratio between the social penalty of a mechanism at the recommended strate-
gies s?, and the lowest possible social penalty among all possible mechanisms

statistics (Lehmann and Casella, 2006; Wald, 1939). An alternative approach is to take a Bayesian
view, considering a prior on µ and using the Bayes’ risk Eµ[E[(hi(Xi, Yi, Ai)− µ)2|µ]] instead of the
maximum risk in pi. While we have adopted a frequentist formalism here, our main proof ideas can
be ported over to the Bayesian setting as well (See Appendix F.6 for more details)

117
and strategies (without NIC or IR constraints). We have:

P (M, s) =
∑
i∈[m]

pi(M, s), PR(M, s?) = P (M, s?)
inf

M ′∈M, s∈Sm
P (M ′, s) (8.5)

Note that PR ≥ 1. We say that a mechanism is efficient if PR(M, s?) = 1 and that
it is approximately efficient if PR(M, s?) is bounded by some constant that does
not depend on m. If s? is a Nash equilibrium, then PR(M, s?) can be viewed as
an upper bound on the price of stability (Anshelevich et al., 2008).

For what follows, we will discuss optimal strategies for agents working on her
own and present a simple mechanism which minimizes the social penalty, but has
a poor Nash equilibrium.

Optimal strategies for an agent working on her own: Recall that, given n samples
{xi}ni=1 from N (µ, σ2), the sample mean is a minimax optimal estimator (Lehmann
and Casella, 2006); i.e among all possible estimators h, the sample mean minimizes
the maximum risk supµ∈R E[(µ − h({xi}ni=1,∅,∅))2 |µ] (note that the agent only
has the dataset she collected). Moreover, its mean squared error is σ2/n for all
µ ∈ R. Hence, an agent acting on her own will choose the sample mean and collect
ni = σ/

√
c samples so as to minimize their penalty; as long as the amount of data is

less than σ/
√
c, an agent has incentive to collect more data since the cost of collecting

one more point is offset by the marginal decrease in estimation error. This can be
seen via the following simple calculation:

inf
ni∈R
hi∈H

(
sup
µ

E
[
(hi(Xi,∅,∅)− µ)2

∣∣∣µ] + cni
)

= min
ni∈R

(σ2

ni
+ cni

)
= 2σ

√
c

∆= pIR
min .

(8.6)

Let pIR
min = 2σ

√
c denote the lowest achievable penalty by an agent working on her

own. If all m agents work independently, then the total social penalty is mpIR
min =

2σm
√
c. Next, we will look at a simple mechanism and an associated set of strategies

which achieve the global minimum penalty. This will show that it is possible for all

118
agents to achieve a significantly lower penalty via collaboration.

A globally optimal mechanism without strategic considerations: The following
simple mechanismMpool, pools all the data from the other agents and gives it back to
an agent. Precisely, it chooses the space of allocation A = ⋃

n≥0 Rn to be datasets of
arbitrary length, and sets agent i’s allocation to be Ai = ⋃

j 6=i Yi. The recommended
strategies spool = {(npool

i , f pool
i , hpool

i)}i asks each agent to collect npool
i = σ/

√
cm

points2, submit it as is f pool
i = I, and use the sample mean of all points as her

estimate hpool
i (Xi, Xi, Ai) = 1

|Xi∪Ai|
∑
z∈Xi∪Ai z. It is straightforward to show that this

minimizes the social penalty if all agents follow spool. After each agent has collected
their datasets {Xi}i, the social penalty is minimized if all agents have access to each
other’s datasets and they all use a minimax optimal estimator: this justifies using
Mpool with f pool

i = I and setting hpool
i to be the sample mean. The following simple

calculation justifies the choice of ∑i n
pool
i :

inf
s∈Sm

m∑
i=1

(
sup
µ

E
[
(hi(Xi, fi, Ai)− µ)2

∣∣∣µ]+ cni

)
= min
{ni}i

(
mσ2∑
i ni

+ c
∑
i

ni

)
= 2σ

√
mc.

However, spool is not a Nash equilibrium of this mechanism, as an agent will find it
beneficial to free-ride. If all other agents are submitting σ/

√
cm points, by collecting

no points, an agent’s penalty is σ
√
mc/(m − 1), as she does not incur any data

collection cost. This is strictly smaller than 2σ
√
c/m when m ≥ 3. In fact, it is not

hard to show that Mpool is at a Nash equilibrium only when the total amount of data
is σ/

√
c; for additional points, the marginal reduction in the estimation error for an

individual agent does not offset her data collection costs. The social penalty at these
equilibria is σ

√
c(m + 1) which is significantly larger than the global minimum

when there are many agents.
A seemingly simple way to fix this mechanism is to only return the datasets of

the other agents if an agent submits at least σ/
√
cm points. However, as we will

see in Section 8.4, such a mechanism can also be manipulated by an agent who
submits a fabricated dataset of σ/

√
cm points without actually collecting any data

2To avoid rounding effects, henceforth we will treat σ/
√
cm, and σ/

√
c as integers.

119
Algorithm 10 MC3D

1: Mechanism designer publishes:
2: The allocation spaceA = ⋃

n≥0 Rn×⋃n≥0 Rn×R+, and the procedure in lines 6–
15.

3: Each agent i:
4: Choose strategy si = (ni, fi, hi). # See (8.8) for recommended strategies.
5: Sample ni points Xi = {xi,j}nij=1 and submit Yi = fi(Xi) to the mechanism.
6: Mechanism:
7: For each agent i ∈ [m]: # can be done simultaneously for all agents
8: Y−i ←

⋃
j 6=i Yj .

9: If m ≤ 4: # Simply pool and return all of the other agents’ data to agent i.
10: Ai ← (Y−i,∅, 0). Return Ai to agent i.
11: Else:
12: Zi ← sample min{|Y−i|, σ/

√
cm} points in Y−i without replacement.

13: η2
i ← α2

(
1
|Yi|

∑
y∈Yi y −

1
|Zi|

∑
z∈Zi z

)2
See (8.7) for α.

14: Z ′i ← {z + εz,i, for all z ∈ Y−i\Zi where εz,i ∼ N (0, η2
i)}

15: Ai ← (Zi, Z ′i, η2
i). Return Ai to agent i.

16: Each agent i:
17: Compute estimate hi(Xi, Yi, Ai). # See (8.8) for recommended estimator.

and incurring any cost and then discarding the fabricated dataset when estimating.
Any naive test to check for the quality of the data can also be sidestepped by agents
who sample only a few points, and use that to fabricate a larger dataset (e.g by
sampling a large number of points from a Gaussian fitted to the small sample).
Next, we will present our mechanism for this problem which satisfies all three
desiderata.

8.3 Method and Results
We have outlined our mechanism MC3D, and its interaction with the agents in

Algorithm 10 in the natural order of events. We will first describe it procedurally,
and then motivate our design choices. Our mechanism uses the following allocation
space, A = ⋃

n≥0 Rn × ⋃n≥0 Rn × R+. An allocation Ai = (Zi, Z ′i, η2
i) ∈ A consists

of an uncorrupted dataset Zi, a corrupted dataset Z ′i, and the variance η2
i of the

120
noise added to Z ′i for corruption. Once the mechanism and the allocation space
are published, agent i chooses her strategy s = (ni, fi, hi). She collects a dataset
Xi = {xi,j}nij=1, where xi,j ∼ N (µ, σ2), and submits Yi = fi(Xi) to the mechanism.

Our mechanism determines agent i’s allocation as follows. LetY−i be the union of
all datasets submitted by the other agents. If there are at most four agents, we simply
return all of the other agents’ data without corruption by setting Ai ← (Y−i,∅, 0).
If there are more agents, the mechanism first chooses a random subset of size
min{|Y−i|, σ/

√
cm} from Y−i; denote this Zi. In line 13, the mechanism individually

adds Gaussian noise to the remaining points Y−i\Zi to obtain Z ′i (line 14). The
variance η2

i of the noise depends on the difference between the sample means of the
subset Zi and the agent’s submission Yi. It is modulated by a value α, which is a
function of c, m, and σ2. Precisely, α is the smallest number larger than

√
σ(cm)−1/4

which satisfies G(α) = 0, where:

G(α) :=
(
m− 4
m− 2

4α2

σ/
√
cm
− 1
)

4α
√
σ(m/c)1/4

−

(
4(m + 1)

α2

σ

√
m/c

− 1

)
√

2π exp

(
σ

√
m/c

8α2

)
Erfc
(√

σ(m/c)1/4

2
√

2α

)
(8.7)

Finally, the mechanism returns the allocation Ai = (Zi, Z ′i, η2
i) to agent i and the

agent estimates µ.

Recommended strategies: The recommended strategy s?i = (n?i , f ?i , h?i) for agent i is
given in (8.8). The agent should collect n?i = σ/(m

√
c) samples if there are at most

four agents, and n?i = σ/
√
cm samples otherwise. She should submit it without

fabrication or alteration fi = I, and then use a weighted average of the datasets
(Xi, Zi, Z

′
i) to estimate µ. The weighting is proportional to the inverse variance of

the data. For Xi and Zi this is simply σ2, but for Z ′i, the variance is σ2 + η2
i since the

mechanism adds Gaussian noise with variance η2
i . We have:

n?i =


σ

m
√
c

if m ≤ 4
σ√
cm

if m > 4
, f ?i = I,

h?i (Xi, Yi, (Zi, Z ′i, η2
i)) =

1
σ2
∑
u∈Xi∪Zi u+ 1

σ2+η2
i

∑
u∈Z′i u

1
σ2 |Xi ∪ Z ′i|+ 1

σ2+η2
i
|Z ′i|

(8.8)

121
Design choices: Next, we will describe our design choices and highlight some key
challenges. When m ≤ 4, it is straightforward to show that the mechanism satisfies
all our desired properties (see beginning of Section 8.3), so we will focus on the
case m > 4. First, recall that the mechanism needs to incentivize agents to collect a
sufficient amount of samples. However, simply counting the number of samples
can be easily manipulated by an agent who simply submits a fabricated dataset of
a large number of points. Instead, Algorithm 10 attempts to infer the quality of the
data submitted by the agents using how well an agent’s submission Yi approximates
µ. Ideally, we would set the variance η2

i of this corruption to be proportional to the
difference (1

|Yi|
∑
y∈Yi y−µ)2, so that the more data she submits, the less the variance

of Z ′i, which in turn yields a more accurate estimate for µ. However, since µ is
unknown, we use a subset Zi obtained from other agents’ data as a proxy for µ, and
set η2

i proportional to (1
|Yi|

∑
y∈Yi y−

1
|Zi|

∑
z∈Zi z)2. If all agents are following s?, then

|Yi|= |Zi|= σ/
√
cm = n?i ; it is sufficient to use only n?i points for validating Yi since

both 1
|Yi|

∑
y∈Yi y and 1

|Zi|
∑
z∈Zi z will have the same order of error in approximating

µ.
The second main challenge is the design of the recommended estimator h?i . In

Section 8.3 we show how splitting Y−i into a clean and corrupted parts Zi, Z ′i allows
us to design a minimax optimal estimator. A minimax optimal estimator is crucial
to achieving NIC. To explain this, say that the mechanism assumes that agents will
use a sub-optimal estimator, e.g sample mean of Xi ∪ Zi ∪ Z ′i. Then, to account
for the larger estimation error, it will need to choose a lower level of corruption η2

i

to minimize the social penalty. However, a smart agent will realize that she can
achieve a lower maximum risk by using a better estimator, such as the weighted
average, instead of collecting more data in order to reduce the amount of corruption
used by the mechanism. She can leverage this insight to collect less data and reduce
her overall penalty.

This concludes the description of our mechanism. The following theorem,
which is the main theoretical result of this paper, states that MC3D achieves the three
desiderata outlined in Section 8.2.

122
Theorem 8.3.1. Let m > 1, α be as defined in (8.7), and s?i be as defined in (8.8). Then,
the following statements are true about the mechanism MC3D in Algorithm 10. (i) The
strategy profile s? is a Nash equilibrium. (ii) The mechanism is individually rational at s?.
(iii) The mechanism is approximately efficient, with PR(MC3D, s

?) ≤ 2.

The mechanism is NIC as, provided that others are following s?i , there is no
reason for any one agent to deviate. Moreover, we achieve low social penalty at
s?i . Other than s?, there is also a set of similar Nash equilibria with the same social
penalty: the agents can each add a same constant to the data points they collect and
subtract the same value from the final estimate. Before we proceed, the expression
for α in (8.7) warrants explanation. If we treat α is a variable, we find that different
choices of α can lead to other Nash equilibria with corresponding bounds on PR.
This specific choice of α leads to a Nash equilibrium where agents collect σ/

√
cm

points, and a small bound on PR. Throughout this manuscript, we will treat α as
the specific value obtained by solving (8.7), and not as a variable.

High dimensional non-Gaussian distributions: In Appendix F.5, we studyMC3D

when applied to d–dimensional distributions. In Theorem F.5.1, we show that under
bounded variance assumptions, s? is an εm-approximate Nash equilibrium and that
PR(MC3D, s

?) ≤ 2 + εm where εm ∈ O(1/m).

Proof sketch of Theorem 8.3.1

When m ≤ 4: First, consider the (easy) case m ≤ 4. At s?i , the total amount of data
collected is σ/

√
c (see n?i in (8.8)), and as there is no corrupted dataset, h?i simply

reduces to the sample mean of Xi ∪ Y−i. The mechanism is IR since an agent’s
penalty will be σ

√
c(1 + 1/m) which is smaller than pIR

min (8.6). It is approximately
efficient since the social penalty is σ

√
c(m + 1) which is at most twice the global

minimum 2σ
√
mc when m ≤ 4. Finally, NIC is guaranteed by the same argument

used in (8.6); as long as the total amount of data is less than σ/
√
c, the cost of

collecting one more point is offset by the marginal decrease in the estimation error;
hence, the agent is incentivized to collect more data. Moreover, as Ai does not

123
depend on fi under these conditions, there is no incentive to fabricate or falsify
data.

When m > 4: We will divide this proof into four parts. We first show that G(α) = 0
in line (6) has a solution α larger than

√
n?i =

√
σ(cm)−1/4. This will also be useful

when analyzing the efficiency.

1. Equation (8.7) has a solution. We derive an asymptotic expansion of Erfc(·)
using integration by parts to analyze the solution to (8.7). When m ≥ 5, we
show that G(

√
n?i)× G(

√
n?i (1 + 8/

√
m)) < 0. By continuity of G, there exists αm ∈

(
√
n?i ,
√
n?i (1 + 8/

√
m)) s.t. G(αm) = 0. For m large enough such that the residual

in the asymptotic expansion is negligible, we show αm ∈ (
√
n?i ,
√
n?i (1 + logm/m))

via an identical technique.

2. The strategies s? in (8.8) is a Nash equilibrium: We show this via the following
two steps. First (2.1), We show that fixing any ni, the maximum risk and thus the
penalty pi is minimized when agent i submits the raw data and uses the weighted
average as specified in (8.8), i.e for all ni,

pi(MC3D, ((ni, f ?i , h?i), s?−i)) ≤ pi(MC3D, ((ni, fi, hi), s?−i)), ∀(ni, fi, hi) ∈ N×F ×H.
(8.9)

Second (2.2), we show that pi is minimized when agent i collects n?i samples under
(f ?i , h?i), i.e.

pi(MC3D, ((n?i , f ?i , h?i), s?−i)) ≤ pi(MC3D, ((ni, f ?i , h?i), s?−i)), ∀ni ∈ N. (8.10)

2.1: Proof of (8.9). As the data collection cost does not change for fixed ni,
it is sufficient to show that (f ?i , h?i) minimizes the maximum risk. Our proof is
inspired by the following well-known recipe for proving minimax optimality of an
estimator Lehmann and Casella (2006): design a sequence of priors {Λ`}`, compute
the minimum Bayes’ risk {R`}` for any estimator, and then show that R` converges
to the maximum risk of the proposed estimator as `→∞.

124
To apply this recipe, we use a sequence of normal priors Λ` = N (0, `2) for µ.

Howeiver, before we proceed, we need to handle two issues. The first of these
concerns the posterior for µ when conditioned on (Xi, Zi, Z

′
i). Since the corruption

terms εz,i added to Z ′i depend on Xi and Zi, this dataset is not independent. More-
over, as the variance η2

i is the difference between two normal random variables, Z ′i
is not normal. Despite these, we are able to show that the posterior µ|(Xi, Zi, Z

′
i) is

normal. The second challenge is that the submission fi also affects the estimation
error as it determines the amount of noise η2

i . We handle this by viewing F ×H as
a rich class of estimators and derive the optimal Bayes’ estimator (fB

i,`, h
B
i,`) ∈ F ×H

under the prior Λ`. We then show that the minimum Bayes’ risk converges to the
maximum risk when using (f ?i , h?i).

Next, under the prior Λ` = N (0, `2), we can minimize the Bayes’ risk with
respect to hi ∈ H by setting hB

i,` to be the posterior mean. Then, the minimum Bayes’
risk R` can be written as,

R` = inf
fi∈F

E


∣∣Z ′i∣∣(σ2 + α2

(1
|Yi|

∑
y∈Yi

y − 1
|Zi|

∑
z∈Zi

z

)2)−1
+ |Xi|+ |Zi|

σ2 + 1
`2

−1


Note that Yi = fi(Xi) depends on fi. Via the Hardy-Littlewood inequality (Bur-
chard, 2009), we can show that the above quantity is minimized when fB

i,` is cho-
sen to be a shrunk version of the agent’s initial dataset Xi, i.e fB

i,`(Xi) = {(1 +
σ2/(|X|`2))−1 x, ∀x ∈ Xi}. This gives us an expression for the minimum Bayes’
risk R` under prior Λ`. To conclude the proof, we note that the minimum Bayes’
risk under any prior is a lower bound on the maximum risk, and show that R`

approaches the maximum risk of (f ?i , h?i) from below. Hence, (f ?i , h?i) is minimax
optimal for any ni. (Above, it is worth noting that fB

i,` → f ?i = I as `→∞. In the
Appendix, we also find that hB

i,` → h?i .)
2.2: Proof of (8.10). We can now write pi(MC3D, ((ni, f ?i , h?i), s?−i)) = R∞ + cni,

where R∞ is the maximum risk of (f ?i , h?i) (and equivalently, the limit of the mini-

125
mum Bayes’ risk):

R∞ := Ex∼N (0,1)

[(
(m− 2)n?i

(
σ2 + α2

(
σ2/ni + σ2/n?i

)
x2
)−1

+ (ni + n?i)σ−2
)−1

]

The term inside the expectation is convex in ni for each fixed x. As expectation
preserves convexity, we can conclude that pi is a convex function of ni. The choice of
α in (8.7) ensures that the derivative is 0 at n? which implies that n? is a minimum
of this function.

3. MC3D is individually rational at s?: This is a direct consequence of step 2 as we
can show that an agent ‘working on her own’ is a valid strategy in MC3D.

4. MC3D is approximately efficient at s?: By observing that the global minimum
penalty is 2σ

√
cm, we use a series of nontrivial algebraic manipulations to show

PR(MC3D, s
?) = 1

2

(
10α2/n?i−1

4(m+1)α2/(mn?i)−1 + 1
)
. As α >

√
n?i , some simple algebra leads to

PR(MC3D, s
?) < 2.

8.4 Special Cases: Restricting the Agents’ Strategy
Space

In this section, we study two special cases motivated by some natural use cases,
where we restrict the agents’ strategy space. In addition to providing better guaran-
tees on the efficiency, this will also help us better illustrate the challenges in our
original setting.

Agents cannot fabricate or falsify data
First, we study a setting where agents are not allowed to fabricate data or falsify
data. Specifically, in (8.2), F is restricted to functions which map a dataset to any
subset. This is applicable when there are regulations preventing such behavior (e.g
government institutions, hospitals)

126
Mechanism: The discussion at the end of Section 8.2 motivates the following

modification to the pooling mechanism. We set the allocation space to be A =⋃
n≥0 Rn, i.e the space of all datasets. If an agent i submits at least σ/

√
cm points,

then give her all the other agents’ datasets, i.e Ai = ∪j 6=iYj ; otherwise, set Ai = ∅.
The recommended strategy s?i = (n?i , f ?i , h?i) of each agent is to collect σ/

√
cm points,

submit it as is f ?i = I, and then use the sample mean of Zi ∪ Ai to estimate µ. The
theorem below, whose proof is straightforward, states the main properties of this
mechanism.

Theorem 8.4.1. The following statements about the mechanism and strategy profile s? in
the paragraph above are true when F is restricted to functions which map a dataset to any
subset: (i) s? is a Nash equilibrium. (ii) The mechanism is individually rational at s?. (iii)
At s?, the mechanism is efficient.

It is not hard to see that this mechanism can be easily manipulated by the agent
if there are no restrictions on F . As the mechanism only checks for the amount of
data submitted, the agent can submit a fabricated dataset of σ/

√
cm points, and

then discard this dataset when computing the estimate, which results in detrimental
free-riding.

Agents accept an estimated value from the mechanism
Our next setting is motivated by use cases where the mechanism may directly
deploy the estimated value for µ in some downstream application for the agent,
i.e the agents are forced to use this value. This is motivated by federated learning,
where agents collect and send data to a server (mechanism), which deploys a model
(estimate) directly on the agent’s device (Blum et al., 2021; Karimireddy et al., 2022).
This requires modifying the agent’s strategy space to S = N× F . Now, an agent
can only choose (ni, fi), how much data she wishes to collect, and how to fabricate
or falsify the dataset. A mechanism is defined as a procedure b : (⋃n≥0 Rn)m → Rm,
which maps m datasets to m estimated mean values.

Algorithm 19 (see Appendix F.4) outlines a family of mechanisms parametrized
by ε > 0 for this setting. As we will see shortly, with parameter ε, the mechanism

127
can achieve a PR of (1 + ε). This mechanism computes agent i’s estimate for µ as
follows. First, let Y−i be the union of all datasets submitted by the other agents.
Similar to Algorithm 10, the algorithm individually adds Gaussian to each Y−i to
obtain Zi (line 10). Unlike before, this noise is added to the entire dataset and the
variance η2

i of this noise depends on the difference between the sample means of the
agent’s submission Yi and all of the other agents’ submissions Y−i. It also depends
on two ε-dependent parameters defined in line 6. Finally, the mechanism deploys
the sample mean of Yi ∪ Zi as the estimate for µ. The recommended strategies
s?i = (n?i , f ?i) for the agents is to simply collect n?i = σ/

√
cm points and submit it as

is f ?i = I. The following theorem states the main properties of the mechanism.

Theorem 8.4.2. Let ε > 0. The following statements about Algorithm 19 and the strategy
profile s? given in the paragraph above are true: (i) s? is a Nash equilibrium. (ii) The
mechanism is individually rational at s?. (iii) At s?, the mechanism is approximately
efficient with PR(M, s?) ≤ 1 + ε.

The above theorem states that it is possible to obtain a social penalty that is
arbitrarily close to the global minimum under the given restriction of the strategy
space. However, this mechanism is not NIC if agents are allowed to design their
own estimator. For instance, if the mechanism returns Ai = Zi (line 10), then using
a weighted average of the data in Xi and Zi yields a lower estimation error than
simple average used by the mechanism (see Appendix F.4). An agent can leverage
this insight to collect and submit less data and obtain a lower overall penalty at
the expense of other agents. Cai et al. (2015) study a setting where agents are
incentivized to collect data and submit it truthfully via payments. Interestingly,
their corruption method can be viewed as a special case of Algorithm 19 with kε = 1
and only achieves a 1.5× factor of the global minimum social penalty. Moreover,
when applied to the more general strategy space, it shares the same shortcomings
as the mechanism in Theorem 8.4.2.

128
8.5 Conclusion

We studied collaborative normal mean estimation in the presence of strategic agents.
Naive mechanisms which only look at the quantity of the dataset submitted, can be
manipulated by agents who under-collect and/or fabricate data, leaving all agents
worse off. To address this issue, when sharing the others’ data with an agent, our
mechanism MC3D corrupts this dataset proportional to how much the data reported
by the agent differs from the other agents. We design minimax optimal estimators
for this corrupted dataset to achieve a socially desirable Nash equilibrium.

Future directions: We believe that designing mechanisms for other collabo-
rative learning settings may require relaxing the exact NIC guarantees to make
the analysis tractable. For many learning problems, it is difficult to design exactly
optimal estimators, and it is common to settle for rate-optimal (i.e up to constants)
estimators (Lehmann and Casella, 2006). For instance, even simply relaxing to
high dimensional distributions with bounded variance, MC3D can only provide an
approximate NIC guarantee.

129
9 future work

This work opens up new research directions along multiple lines.

Robust RL: in Chapter 3 and 4, we provide both upper and lower bounds on the
suboptimality gap in the robust online and offline RL settings. However, the upper
and low bounds match in neither of these two settings. We believe closing this gap
in robust online and offline RL would be an important future research direction.

Byzantine Robust RL: Chapter 5 studies robust mean estimation from heteroge-
neous batches as a sub-problem while the application of such robust mean estimator
goes beyond RL. For example, data batches with dramatically different sizes are
common in applications like crowd-sourcing, which requires the generalization
of the robust mean estimation to supervised learning settings. Before that, it’s
necessary to study the mean estimation problem in high-dimensional settings and
understand the hardness of the problem. However, the information-theoretic limit
of this problem is unknown yet. Because the data batches have different sizes. It’s
necessary to take the difference into consideration when deriving the information-
theoretic lower bound as well as more efficient algorithms. Given an efficient robust
mean estimator that works in high dimensions, we study robust supervised learn-
ing problems using the framework in Zhu et al. (2023). We leave these to future
work.

Perturbation stability of two-player zero-sum games: as shown by Balcan and
Braverman (2017), the approximate Nash equilibria of perturbation-stable games
can be computed more efficiently, so it would be interesting to apply the perturbation-
stability result to improve computation. However, Chapter 7 only studies games
with pure base NEs or unique NE. An intermediate next step is to generalize the per-
turbation stability results to arbitrary two-player zero-sum games or more generally,
general-sum games.

130
Mechanism Design: Chapter 8 studies mechanism design in the most fundamen-
tal mean estimation problem, which opens up multiple research directions. Firstly,
it remains unclear whether the proposed mechanism is optimal, in the sense of
achieving the best possible social penalty. Secondly, in order to apply our mecha-
nism in some real-world scenarios, it’s important to study more general learning
settings, including: 1. when agents have different unit costs; 2. when agents have
access to different distributions; 3. more complicated learning tasks like supervised
learning. To study these problems, the first step is to study a proper strategy com-
bination without consideration for NIC or IR. Then we may apply the technique in
Chapter 8 to enforce the target strategy.

131
references

Ads Data Hub. https://developers.google.com/ads-data-hub/guides/intro.
Accessed: 2022-05-10.

PubChem. https://pubchem.ncbi.nlm.nih.gov/. Accessed: 2022-05-10.

53, Data Coordinating Center Burton Robert 67 Jensen Mark A 53 Kahn Ari 53 Pihl
Todd 53 Pot David 53 Wan Yunhu, and Tissue Source Site Levine Douglas A 68.
2013. The cancer genome atlas pan-cancer analysis project. Nature genetics 45(10):
1113–1120.

Abadi, Martín, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. 2016.
Tensorflow: Large-scale machine learning on heterogeneous distributed systems.
arXiv preprint arXiv:1603.04467.

Abbasi-Yadkori, Yasin, Dávid Pál, and Csaba Szepesvári. 2011. Improved algo-
rithms for linear stochastic bandits. In Nips, vol. 11, 2312–2320.

Agarwal, Alekh, Mikael Henaff, Sham Kakade, and Wen Sun. 2020a. Pc-pg: Policy
cover directed exploration for provable policy gradient learning. arXiv preprint
arXiv:2007.08459.

Agarwal, Alekh, Sham Kakade, Akshay Krishnamurthy, and Wen Sun. 2020b.
Flambe: Structural complexity and representation learning of low rank mdps.
Advances in Neural Information Processing Systems 33.

Agarwal, Alekh, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. 2019a. On the
theory of policy gradient methods: Optimality, approximation, and distribution
shift. arXiv preprint arXiv:1908.00261.

Agarwal, Anish, Munther Dahleh, Thibaut Horel, and Maryann Rui. 2020c. To-
wards data auctions with externalities. arXiv preprint arXiv:2003.08345.

https://developers.google.com/ads-data-hub/guides/intro
https://pubchem.ncbi.nlm.nih.gov/

132
Agarwal, Anish, Munther Dahleh, and Tuhin Sarkar. 2019b. A marketplace for
data: An algorithmic solution. In Proceedings of the 2019 acm conference on economics
and computation, 701–726.

Agarwal, Mridul, Bhargav Ganguly, and Vaneet Aggarwal. 2021. Communication
efficient parallel reinforcement learning. In Uncertainty in artificial intelligence,
247–256. PMLR.

Agarwal, Rishabh, Dale Schuurmans, and Mohammad Norouzi. 2020d. An opti-
mistic perspective on offline reinforcement learning. In International conference on
machine learning, 104–114. PMLR.

Akkaya, Ilge, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob Mc-
Grew, Arthur Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas,
et al. 2019. Solving rubik’s cube with a robot hand. arXiv preprint arXiv:1910.07113.

Amin, Kareem, Afshin Rostamizadeh, and Umar Syed. 2013. Learning Prices
for Repeated Auctions with Strategic Buyers. In Advances in neural information
processing systems, 1169–1177.

Anscombe, Frank J. 1960. Rejection of outliers. Technometrics 2(2):123–146.

Anshelevich, Elliot, Anirban Dasgupta, Jon Kleinberg, Éva Tardos, Tom Wexler,
and Tim Roughgarden. 2008. The price of stability for network design with fair
cost allocation. SIAM Journal on Computing 38(4):1602–1623.

Arnold, Barry C. 2014. Pareto distribution. Wiley StatsRef: Statistics Reference Online
1–10.

Athey, Susan, and Ilya Segal. 2013. An Efficient Dynamic Mechanism. Econometrica
81(6):2463–2485.

Auer, Peter, Thomas Jaksch, and Ronald Ortner. 2009. Near-optimal regret bounds
for reinforcement learning. In Advances in neural information processing systems,
89–96.

133
Awasthi, Pranjal, Maria-Florina Balcan, Avrim Blum, Or Sheffet, and Santosh
Vempala. 2010. On nash-equilibria of approximation-stable games. In Algorithmic
game theory: Third international symposium, sagt 2010, athens, greece, october 18-20,
2010. proceedings 3, 78–89. Springer.

Ayoub, Alex, Zeyu Jia, Csaba Szepesvari, Mengdi Wang, and Lin F Yang. 2020.
Model-based reinforcement learning with value-targeted regression. arXiv preprint
arXiv:2006.01107.

Azar, Mohammad Gheshlaghi, Ian Osband, and Rémi Munos. 2017. Minimax
regret bounds for reinforcement learning. In International conference on machine
learning, 263–272. PMLR.

Bai, Yu, Tengyang Xie, Nan Jiang, and Yu-Xiang Wang. 2019. Provably efficient q-
learning with low switching cost. Advances in Neural Information Processing Systems
32.

Bakshi, Ainesh, and Adarsh Prasad. 2020. Robust linear regression: Optimal rates
in polynomial time. arXiv preprint arXiv:2007.01394.

Balcan, Maria-Florina, and Mark Braverman. 2017. Nash equilibria in perturbation-
stable games. Theory of Computing.

Bazzan, Ana LC. 2009. Opportunities for multiagent systems and multiagent
reinforcement learning in traffic control. Autonomous Agents and Multi-Agent
Systems 18(3):342–375.

Behzadan, Vahid, and Arslan Munir. 2017. Vulnerability of deep reinforcement
learning to policy induction attacks. In Machine learning and data mining in pattern
recognition: 13th international conference, mldm 2017, new york, ny, usa, july 15-20,
2017, proceedings 13, 262–275. Springer.

———. 2019. Adversarial reinforcement learning framework for benchmarking
collision avoidance mechanisms in autonomous vehicles. IEEE Intelligent Trans-
portation Systems Magazine 13(2):236–241.

134
Berner, Christopher, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław
Dębiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris
Hesse, et al. 2019. Dota 2 with large scale deep reinforcement learning. arXiv
preprint arXiv:1912.06680.

Blum, Avrim, Nika Haghtalab, Richard Lanas Phillips, and Han Shao. 2021. One for
one, or all for all: Equilibria and optimality of collaboration in federated learning.
In International conference on machine learning, 1005–1014. PMLR.

Borak, Szymon, Wolfgang Härdle, and Rafal Weron. 2005. Stable distributions.
Statistical tools for finance and insurance 1:21–44.

Brown, Tom, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33:1877–1901.

Bubeck, Sébastien, and Nicolo Cesa-Bianchi. 2012. Regret analysis of stochastic
and nonstochastic multi-armed bandit problems. arXiv preprint arXiv:1204.5721.

Bubeck, Sébastien, Nicolo Cesa-Bianchi, and Gábor Lugosi. 2013. Bandits with
heavy tail. IEEE Transactions on Information Theory 59(11):7711–7717.

Buckman, Jacob, Carles Gelada, and Marc G Bellemare. 2020. The importance of
pessimism in fixed-dataset policy optimization. arXiv preprint arXiv:2009.06799.

Burchard, Almut. 2009. A short course on rearrangement inequalities. Lecture
notes, IMDEA Winter School, Madrid.

Cai, Qi, Zhuoran Yang, Chi Jin, and Zhaoran Wang. 2019. Provably efficient
exploration in policy optimization. arXiv preprint arXiv:1912.05830.

———. 2020. Provably efficient exploration in policy optimization. In International
conference on machine learning, 1283–1294. PMLR.

135
Cai, Yang, Constantinos Daskalakis, and Christos Papadimitriou. 2015. Optimum
statistical estimation with strategic data sources. In Conference on learning theory,
280–296. PMLR.

Chan, Siu-On, Ilias Diakonikolas, Paul Valiant, and Gregory Valiant. 2014. Optimal
algorithms for testing closeness of discrete distributions. In Proceedings of the twenty-
fifth annual acm-siam symposium on discrete algorithms, 1193–1203. SIAM.

Charikar, Moses, Jacob Steinhardt, and Gregory Valiant. 2017. Learning from
untrusted data. In Proceedings of the 49th annual acm sigact symposium on theory of
computing, 47–60.

Chen, Sitan, Jerry Li, and Ankur Moitra. 2020. Efficiently learning structured
distributions from untrusted batches. In Proceedings of the 52nd annual acm sigact
symposium on theory of computing, 960–973.

Chen, Tianyi, Kaiqing Zhang, Georgios B Giannakis, and Tamer Basar. 2021a.
Communication-efficient policy gradient methods for distributed reinforcement
learning. IEEE Transactions on Control of Network Systems.

Chen, Yiding, Xuezhou Zhang, Kaiqing Zhang, Mengdi Wang, and Xiaojin Zhu.
2022. Byzantine-robust online and offline distributed reinforcement learning.
arXiv preprint arXiv:2206.00165.

———. 2023. Byzantine-robust online and offline distributed reinforcement learn-
ing. In International conference on artificial intelligence and statistics, 3230–3269. PMLR.

Chen, Yifang, Simon S Du, and Kevin Jamieson. 2021b. Improved corruption robust
algorithms for episodic reinforcement learning. arXiv preprint arXiv:2102.06875.

Chen, Yudong, Lili Su, and Jiaming Xu. 2017. Distributed statistical machine
learning in adversarial settings: Byzantine gradient descent. Proceedings of the
ACM on Measurement and Analysis of Computing Systems 1(2):1–25.

136
Cheung, Wang Chi, David Simchi-Levi, and Ruihao Zhu. 2019. Non-stationary
reinforcement learning: The blessing of (more) optimism. Available at SSRN
3397818.

Clarke, Edward H. 1971. Multipart Pricing of Public Goods. Public Choice.

Cohen, Joel E. 1986. Perturbation theory of completely mixed matrix games. Linear
algebra and its applications 79:153–162.

Cui, Qiwen, and Simon S Du. 2022. When are offline two-player zero-sum markov
games solvable? Advances in Neural Information Processing Systems 35:25779–25791.

Dann, Christoph, and Emma Brunskill. 2015. Sample complexity of episodic
fixed-horizon reinforcement learning. In Advances in neural information processing
systems, 2818–2826.

Dann, Christoph, Tor Lattimore, and Emma Brunskill. 2017. Unifying pac and
regret: Uniform pac bounds for episodic reinforcement learning. Advances in
Neural Information Processing Systems 30.

Dann, Christoph, Teodor Vanislavov Marinov, Mehryar Mohri, and Julian Zimmert.
2021. Beyond value-function gaps: Improved instance-dependent regret bounds
for episodic reinforcement learning. Advances in Neural Information Processing
Systems 34:1–12.

Derman, Esther, Daniel Mankowitz, Timothy Mann, and Shie Mannor. 2020. A
bayesian approach to robust reinforcement learning. In Uncertainty in artificial
intelligence, 648–658. PMLR.

Diakonikolas, I, G Kamath, DM Kane, J Li, A Moitra, and A Stewart. 2016. Robust
estimators in high dimensions without the computational intractability. In 2016
ieee 57th annual symposium on foundations of computer science (focs), 655–664.

Diakonikolas, Ilias, Gautam Kamath, Daniel Kane, Jerry Li, Ankur Moitra, and
Alistair Stewart. 2019a. Robust estimators in high-dimensions without the compu-
tational intractability. SIAM Journal on Computing 48(2):742–864.

137
Diakonikolas, Ilias, Gautam Kamath, Daniel Kane, Jerry Li, Jacob Steinhardt, and
Alistair Stewart. 2019b. Sever: A robust meta-algorithm for stochastic optimization.
In International conference on machine learning, 1596–1606. PMLR.

Diakonikolas, Ilias, Gautam Kamath, Daniel M Kane, Jerry Li, Ankur Moitra, and
Alistair Stewart. 2017. Being robust (in high dimensions) can be practical. In
International conference on machine learning, 999–1008. PMLR.

Diakonikolas, Ilias, and Daniel M Kane. 2019. Recent advances in algorithmic
high-dimensional robust statistics. arXiv preprint arXiv:1911.05911.

———. 2023. Algorithmic high-dimensional robust statistics. Cambridge university
press.

Diakonikolas, Ilias, Daniel M Kane, and Ankit Pensia. 2020. Outlier robust mean
estimation with subgaussian rates via stability. Advances in Neural Information
Processing Systems 33:1830–1840.

Diakonikolas, Ilias, Weihao Kong, and Alistair Stewart. 2019c. Efficient algorithms
and lower bounds for robust linear regression. In Proceedings of the thirtieth annual
acm-siam symposium on discrete algorithms, 2745–2754. SIAM.

Ding, Guohui, Joewie J Koh, Kelly Merckaert, Bram Vanderborght, Marco M Nico-
tra, Christoffer Heckman, Alessandro Roncone, and Lijun Chen. 2020a. Distributed
reinforcement learning for cooperative multi-robot object manipulation. arXiv
preprint arXiv:2003.09540.

Ding, Ningning, Zhixuan Fang, and Jianwei Huang. 2020b. Incentive mechanism
design for federated learning with multi-dimensional private information. In
2020 18th international symposium on modeling and optimization in mobile, ad hoc, and
wireless networks (wiopt), 1–8. IEEE.

Domingues, Omar Darwiche, Pierre Ménard, Matteo Pirotta, Emilie Kaufmann,
and Michal Valko. 2020. A kernel-based approach to non-stationary reinforcement
learning in metric spaces. arXiv preprint arXiv:2007.05078.

138
Du, Simon S, Yuping Luo, Ruosong Wang, and Hanrui Zhang. 2019. Provably effi-
cient q-learning with function approximation via distribution shift error checking
oracle. In Advances in neural information processing systems, 8060–8070.

Dubey, Abhimanyu, and Alex Pentland. 2020. Private and byzantine-proof coop-
erative decision-making. In Aamas, 357–365.

———. 2021. Provably efficient cooperative multi-agent reinforcement learning
with function approximation. arXiv preprint arXiv:2103.04972.

Dubey, Abhimanyu, et al. 2020. Cooperative multi-agent bandits with heavy tails.
In International conference on machine learning, 2730–2739. PMLR.

Espeholt, Lasse, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom
Ward, Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. 2018. Impala:
Scalable distributed deep-rl with importance weighted actor-learner architectures.
In International conference on machine learning, 1407–1416. PMLR.

Even-Dar, Eyal, Sham M Kakade, and Yishay Mansour. 2009. Online markov
decision processes. Mathematics of Operations Research 34(3):726–736.

Eykholt, Kevin, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei
Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Song. 2018. Robust physical-
world attacks on deep learning visual classification. In Proceedings of the ieee
conference on computer vision and pattern recognition, 1625–1634.

Fan, Xiaofeng, Yining Ma, Zhongxiang Dai, Wei Jing, Cheston Tan, and Bryan
Kian Hsiang Low. 2021. Fault-tolerant federated reinforcement learning with
theoretical guarantee. Advances in Neural Information Processing Systems 34.

Flores, Mona, Ittai Dayan, Holger Roth, Aoxiao Zhong, Ahmed Harouni, Amilcare
Gentili, Anas Abidin, Andrew Liu, Anthony Costa, Bradford Wood, et al. 2021.
Federated learning used for predicting outcomes in sars-cov-2 patients. Research
Square.

139
Fraboni, Yann, Richard Vidal, and Marco Lorenzi. 2021. Free-rider attacks on
model aggregation in federated learning. In International conference on artificial
intelligence and statistics, 1846–1854. PMLR.

Freedman, David A. 1975. On tail probabilities for martingales. the Annals of
Probability 100–118.

Fujimoto, Scott, David Meger, and Doina Precup. 2019. Off-policy deep reinforce-
ment learning without exploration. In International conference on machine learning,
2052–2062. PMLR.

Gao, Minbo, Tianle Xie, Simon S Du, and Lin F Yang. 2021. A provably efficient
algorithm for linear markov decision process with low switching cost. arXiv
preprint arXiv:2101.00494.

Goldman, Alan J, and Albert W Tucker. 2016. 4. theory of linear programming. In
Linear inequalities and related systems.(am-38), volume 38, 53–98. Princeton University
Press.

Goyal, Priya, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski,
Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. 2017. Accurate,
large minibatch sgd: Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677.

Groves, Theodore. 1979. Efficient Collective Choice when Compensation is Possible.
The Review of Economic Studies.

Gupta, Anupam, Tomer Koren, and Kunal Talwar. 2019. Better algorithms for
stochastic bandits with adversarial corruptions. arXiv preprint arXiv:1902.08647.

HOPKINS, SAMUEL B. 2020. Mean estimation with sub-gaussian rates in polyno-
mial time. The Annals of Statistics 48(2):1193–1213.

Horgan, Dan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel,
Hado Van Hasselt, and David Silver. 2018. Distributed prioritized experience
replay. arXiv preprint arXiv:1803.00933.

140
Hu, Yichun, Nathan Kallus, and Masatoshi Uehara. 2021. Fast rates for the regret
of offline reinforcement learning. arXiv preprint arXiv:2102.00479.

Huang, Sandy, Nicolas Papernot, Ian Goodfellow, Yan Duan, and Pieter
Abbeel. 2017. Adversarial attacks on neural network policies. arXiv preprint
arXiv:1702.02284.

Huber, Peter J. 1992. Robust estimation of a location parameter. In Breakthroughs
in statistics, 492–518. Springer.

Huber, Peter J, et al. 1967. The behavior of maximum likelihood estimates under
nonstandard conditions. In Proceedings of the fifth berkeley symposium on mathematical
statistics and probability, vol. 1, 221–233. University of California Press.

Jadbabaie, Ali, Haochuan Li, Jian Qian, and Yi Tian. 2022. Byzantine-robust
federated linear bandits. arXiv preprint arXiv:2204.01155.

Jain, Ayush, and Alon Orlitsky. 2021. Robust density estimation from batches: The
best things in life are (nearly) free. In International conference on machine learning,
4698–4708. PMLR.

Jia, Ruoxi, David Dao, Boxin Wang, Frances Ann Hubis, Nick Hynes, Nezihe Merve
Gürel, Bo Li, Ce Zhang, Dawn Song, and Costas J Spanos. 2019. Towards efficient
data valuation based on the shapley value. In The 22nd international conference on
artificial intelligence and statistics, 1167–1176. PMLR.

Jiang, Nan. 2020. Notes on tabular methods.

Jiang, Nan, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E
Schapire. 2017. Contextual decision processes with low bellman rank are pac-
learnable. In International conference on machine learning, 1704–1713. PMLR.

Jin, Chi, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. 2018. Is
q-learning provably efficient? Advances in neural information processing systems 31.

141
Jin, Chi, Tiancheng Jin, Haipeng Luo, Suvrit Sra, and Tiancheng Yu. 2020a. Learn-
ing adversarial markov decision processes with bandit feedback and unknown
transition. In International conference on machine learning, 4860–4869. PMLR.

Jin, Chi, Praneeth Netrapalli, Rong Ge, Sham M Kakade, and Michael I Jordan. 2019.
A short note on concentration inequalities for random vectors with subgaussian
norm. arXiv preprint arXiv:1902.03736.

Jin, Chi, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. 2020b. Provably
efficient reinforcement learning with linear function approximation. In Conference
on learning theory, 2137–2143. PMLR.

Jin, Tiancheng, and Haipeng Luo. 2020. Simultaneously learning stochastic and
adversarial episodic mdps with known transition. arXiv preprint arXiv:2006.05606.

Jin, Ying, Zhuoran Yang, and Zhaoran Wang. 2020c. Is pessimism provably efficient
for offline rl? arXiv preprint arXiv:2012.15085.

———. 2021. Is pessimism provably efficient for offline rl? In International conference
on machine learning, 5084–5096. PMLR.

Jones, Charles I, and Christopher Tonetti. 2020. Nonrivalry and the economics of
data. American Economic Review 110(9):2819–58.

Jonsson, Anders, Emilie Kaufmann, Pierre Ménard, Omar Darwiche Domingues,
Edouard Leurent, and Michal Valko. 2020. Planning in markov decision processes
with gap-dependent sample complexity. Advances in Neural Information Processing
Systems 33:1253–1263.

Kairouz, Peter, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Ben-
nis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode,
Rachel Cummings, et al. 2021. Advances and open problems in federated learning.
Foundations and Trends® in Machine Learning 14(1–2):1–210.

142
Kakade, Sham, Akshay Krishnamurthy, Kendall Lowrey, Motoya Ohnishi, and
Wen Sun. 2020. Information theoretic regret bounds for online nonlinear control.
Advances in Neural Information Processing Systems 33.

Kakade, Sham, and John Langford. 2002. Approximately optimal approximate
reinforcement learning. In Icml, vol. 2, 267–274.

Kakade, Sham M. 2001. A natural policy gradient. Advances in neural information
processing systems 14:1531–1538.

Kakade, Sham M, Ilan Lobel, and Hamid Nazerzadeh. 2010. An Optimal Dynamic
Mechanism for Multi-armed Bandit Processes. arXiv preprint arXiv:1001.4598.

Kapoor, Sayash, Kumar Kshitij Patel, and Purushottam Kar. 2019. Corruption-
tolerant bandit learning. Machine Learning 108(4):687–715.

Karimireddy, Sai Praneeth, Wenshuo Guo, and Michael I Jordan. 2022. Mechanisms
that incentivize data sharing in federated learning. arXiv preprint arXiv:2207.04557.

Kidambi, Rahul, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims.
2020. Morel: Model-based offline reinforcement learning. arXiv preprint
arXiv:2005.05951.

Kimura, Yutaka, Yoichi Sawasaki, and Kensuke Tanaka. 2000. A perturbation
on two-person zero-sum games. In Advances in dynamic games and applications,
279–288. Birkhäuser Boston.

Klivans, Adam, Pravesh K Kothari, and Raghu Meka. 2018. Efficient algorithms
for outlier-robust regression. In Conference on learning theory, 1420–1430. PMLR.

Kreps, David M. 1990. Game theory and economic modelling. Oxford University
Press.

Kretchmar, R Matthew. 2002. Parallel reinforcement learning. In The 6th world
conference on systemics, cybernetics, and informatics. Citeseer.

143
Kumar, Aviral, Justin Fu, George Tucker, and Sergey Levine. 2019. Stabi-
lizing off-policy q-learning via bootstrapping error reduction. arXiv preprint
arXiv:1906.00949.

Kumar, Aviral, Aurick Zhou, George Tucker, and Sergey Levine. 2020. Conservative
q-learning for offline reinforcement learning. arXiv preprint arXiv:2006.04779.

Lai, Kevin A, Anup B Rao, and Santosh Vempala. 2016. Agnostic estimation of
mean and covariance. In 2016 ieee 57th annual symposium on foundations of computer
science (focs), 665–674. IEEE.

LAMPORT, LESLIE, ROBERT SHOSTAK, and MARSHALL PEASE. 1982. The
byzantine generals problem. ACM Transactions on Programming Languages and
Systems 4(3):382–401.

Lange, Sascha, Thomas Gabel, and Martin Riedmiller. 2012. Batch reinforcement
learning. In Reinforcement learning, 45–73. Springer.

Laroche, Romain, Paul Trichelair, and Remi Tachet Des Combes. 2019. Safe policy
improvement with baseline bootstrapping. In International conference on machine
learning, 3652–3661. PMLR.

Lattimore, Tor, and Csaba Szepesvári. 2020. Bandit algorithms. Cambridge Univer-
sity Press.

Lee, Chung-Wei, Haipeng Luo, Chen-Yu Wei, and Mengxiao Zhang. 2020. Bias no
more: high-probability data-dependent regret bounds for adversarial bandits and
mdps. Advances in Neural Information Processing Systems 33.

Lehmann, Erich L, and George Casella. 2006. Theory of point estimation. Springer
Science & Business Media.

Leng, Mingming, and Mahmut Parlar. 2005. Game theoretic applications in supply
chain management: a review. INFOR: Information Systems and Operational Research
43(3):187–220.

144
Levine, Sergey, Aviral Kumar, George Tucker, and Justin Fu. 2020. Offline rein-
forcement learning: Tutorial, review, and perspectives on open problems. arXiv
preprint arXiv:2005.01643.

Liebeherr, Jörg, Almut Burchard, and Florin Ciucu. 2012. Delay bounds in com-
munication networks with heavy-tailed and self-similar traffic. IEEE Transactions
on Information Theory 58(2):1010–1024.

Lin, Jierui, Min Du, and Jian Liu. 2019. Free-riders in federated learning: Attacks
and defenses. arXiv preprint arXiv:1911.12560.

Lipton, Richard J, and Aranyak Mehta. 2006. On stability properties of economic
solution concepts.

Liu, Ximeng, Robert H Deng, Kim-Kwang Raymond Choo, and Yang Yang. 2019.
Privacy-preserving reinforcement learning design for patient-centric dynamic
treatment regimes. IEEE Transactions on Emerging Topics in Computing 9(1):456–
470.

Liu, Yao, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. 2020. Prov-
ably good batch reinforcement learning without great exploration. arXiv preprint
arXiv:2007.08202.

Liu, Yuan, Mengmeng Tian, Yuxin Chen, Zehui Xiong, Cyril Leung, and Chunyan
Miao. 2022. A contract theory based incentive mechanism for federated learning.
In Federated and transfer learning, 117–137. Springer.

Lugosi, Gábor, and Shahar Mendelson. 2019a. Mean estimation and regression un-
der heavy-tailed distributions: A survey. Foundations of Computational Mathematics
19(5):1145–1190.

———. 2019b. Sub-gaussian estimators of the mean of a random vector. The Annals
of Statistics 47(2):783–794.

Lugosi, Gabor, and Shahar Mendelson. 2021. Robust multivariate mean estimation:
the optimality of trimmed mean. The Annals of Statistics 49(1):393–410.

145
Lykouris, Thodoris, Vahab Mirrokni, and Renato Paes Leme. 2018. Stochastic
bandits robust to adversarial corruptions. In Proceedings of the 50th annual acm
sigact symposium on theory of computing, 114–122.

Lykouris, Thodoris, Max Simchowitz, Aleksandrs Slivkins, and Wen Sun. 2019.
Corruption robust exploration in episodic reinforcement learning. arXiv preprint
arXiv:1911.08689.

Lykouris, Thodoris, Max Simchowitz, Alex Slivkins, and Wen Sun. 2021.
Corruption-robust exploration in episodic reinforcement learning. In Conference
on learning theory, 3242–3245. PMLR.

Ma, Yuzhe, J Sharp, Ruizhe Wang, Earlence Fernandes, and Xiaojin Zhu. 2021.
Adversarial attacks on kalman filter-based forward collision warning systems. In
The thirty-fifth aaai conference on artificial intelligence.

Ma, Yuzhe, Xuezhou Zhang, Wen Sun, and Jerry Zhu. 2019. Policy poisoning in
batch reinforcement learning and control. Advances in Neural Information Processing
Systems 32.

Mansour, Yishay, Aleksandrs Slivkins, and Vasilis Syrgkanis. 2015. Bayesian
Incentive-compatible Bandit Exploration. In Proceedings of the sixteenth acm confer-
ence on economics and computation, 565–582.

Medina, Andres Munoz, and Scott Yang. 2016. No-regret algorithms for heavy-
tailed linear bandits. In International conference on machine learning, 1642–1650.
PMLR.

Miller, Nolan, Paul Resnick, and Richard Zeckhauser. 2005. Eliciting informative
feedback: The peer-prediction method. Management Science 51(9):1359–1373.

Nash Jr, John. 1996. Non-cooperative games. In Essays on game theory, 22–33.
Edward Elgar Publishing.

146
Nazerzadeh, Hamid, Amin Saberi, and Rakesh Vohra. 2008. Dynamic Cost-per-
action Mechanisms and Applications to Online Advertising. In Proceedings of the
17th international conference on world wide web, 179–188.

Neff, Gina. 2016. Talking to bots: Symbiotic agency and the case of tay. International
Journal of Communication.

Neff, Gina, and Peter Nagy. 2016. Automation, algorithms, and politics| talking to
bots: Symbiotic agency and the case of tay. International Journal of Communication
10:17.

Neu, Gergely, András György, and Csaba Szepesvári. 2010. The online loop-free
stochastic shortest-path problem. In Colt, vol. 2010, 231–243. Citeseer.

Neu, Gergely, Andras Gyorgy, and Csaba Szepesvári. 2012. The adversarial stochas-
tic shortest path problem with unknown transition probabilities. In Artificial
intelligence and statistics, 805–813.

Neu, Gergely, and Julia Olkhovskaya. 2020. Online learning in mdps with linear
function approximation and bandit feedback. arXiv preprint arXiv:2007.01612.

Nisan, Noam, Tim Roughgarden, Eva Tardos, and Vijay V Vazirani. 2007. Algorith-
mic game theory. Cambridge university press.

Niss, Laura, and Ambuj Tewari. 2020. What you see may not be what you get:
Ucb bandit algorithms robust to ε-contamination. In Conference on uncertainty in
artificial intelligence, 450–459. PMLR.

Ornik, Melkior, and Ufuk Topcu. 2019. Learning and planning for time-varying
mdps using maximum likelihood estimation. arXiv preprint arXiv:1911.12976.

Ortner, Ronald, Pratik Gajane, and Peter Auer. 2019. Variational regret bounds for
reinforcement learning. In Uai, 16.

147
Osband, Ian, and Benjamin Van Roy. 2014. Model-based reinforcement learning
and the eluder dimension. Advances in Neural Information Processing Systems 27:
1466–1474.

———. 2016. On lower bounds for regret in reinforcement learning. arXiv preprint
arXiv:1608.02732.

Panaganti, Kishan, Zaiyan Xu, Dileep Kalathil, and Mohammad Ghavamzadeh.
2022. Robust reinforcement learning using offline data. arXiv preprint
arXiv:2208.05129.

Paninski, Liam. 2008. A coincidence-based test for uniformity given very sparsely
sampled discrete data. IEEE Transactions on Information Theory 54(10):4750–4755.

Pensia, Ankit, Varun Jog, and Po-Ling Loh. 2020. Robust regression with co-
variate filtering: Heavy tails and adversarial contamination. arXiv preprint
arXiv:2009.12976.

Petersen, Ian R, Valery A Ugrinovskii, and Andrey V Savkin. 2012. Robust control
design using h-∞ methods. Springer Science & Business Media.

Pinto, Lerrel, James Davidson, Rahul Sukthankar, and Abhinav Gupta. 2017. Ro-
bust adversarial reinforcement learning. In International conference on machine
learning, 2817–2826. PMLR.

Prasad, Adarsh, Arun Sai Suggala, Sivaraman Balakrishnan, and Pradeep Raviku-
mar. 2018. Robust estimation via robust gradient estimation. arXiv preprint
arXiv:1802.06485.

———. 2020. Robust estimation via robust gradient estimation. Journal of the Royal
Statistical Society Series B: Statistical Methodology 82(3):601–627.

Procaccia, Ariel D. 2013. Cake Cutting: Not just Child’s Play. Communications of
the ACM 56(7):78–87.

148
Qiao, Mingda, and Gregory Valiant. 2017. Learning discrete distributions from
untrusted batches. arXiv preprint arXiv:1711.08113.

Rashidinejad, Paria, Banghua Zhu, Cong Ma, Jiantao Jiao, and Stuart Russell.
2021. Bridging offline reinforcement learning and imitation learning: A tale of
pessimism. Advances in Neural Information Processing Systems 34.

Rosenberg, Aviv, and Yishay Mansour. 2019. Online convex optimization in adver-
sarial markov decision processes. arXiv preprint arXiv:1905.07773.

Roth, Alvin E. 1986. On the Allocation of Residents to Rural Hospitals: A General
Property of Two-sided Matching Markets. Econometrica: Journal of the Econometric
Society 425–427.

Roth, Alvin E, Tayfun Sönmez, and M Utku Ünver. 2004. Kidney Exchange. The
Quarterly journal of economics 119(2):457–488.

Roy, Sankardas, Charles Ellis, Sajjan Shiva, Dipankar Dasgupta, Vivek Shandilya,
and Qishi Wu. 2010. A survey of game theory as applied to network security. In
2010 43rd hawaii international conference on system sciences, 1–10. IEEE.

Sakuma, Jun, Shigenobu Kobayashi, and Rebecca N Wright. 2008. Privacy-
preserving reinforcement learning. In Proceedings of the 25th international conference
on machine learning, 864–871.

Schulman, John, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.
2015a. Trust region policy optimization. In International conference on machine
learning, 1889–1897.

Schulman, John, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel.
2015b. High-dimensional continuous control using generalized advantage estima-
tion. arXiv preprint arXiv:1506.02438.

Schulman, John, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347.

149
Shalev-Shwartz, Shai, et al. 2011. Online learning and online convex optimization.
Foundations and trends in Machine Learning 4(2):107–194.

Shao, Han, Xiaotian Yu, Irwin King, and Michael R Lyu. 2018. Almost optimal
algorithms for linear stochastic bandits with heavy-tailed payoffs. Advances in
Neural Information Processing Systems 31.

Sheller, Micah J, G Anthony Reina, Brandon Edwards, Jason Martin, and Spyridon
Bakas. 2019. Multi-institutional deep learning modeling without sharing patient
data: A feasibility study on brain tumor segmentation. In Brainlesion: Glioma,
multiple sclerosis, stroke and traumatic brain injuries: 4th international workshop, brainles
2018, held in conjunction with miccai 2018, granada, spain, september 16, 2018, revised
selected papers, part i 4, 92–104. Springer.

Shi, Laixi, and Yuejie Chi. 2022. Distributionally robust model-based offline
reinforcement learning with near-optimal sample complexity. arXiv preprint
arXiv:2208.05767.

Siegel, Noah Y, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki,
Michael Neunert, Thomas Lampe, Roland Hafner, Nicolas Heess, and Martin
Riedmiller. 2020. Keep doing what worked: Behavioral modelling priors for offline
reinforcement learning. arXiv preprint arXiv:2002.08396.

Sim, Rachael Hwee Ling, Yehong Zhang, Mun Choon Chan, and Bryan
Kian Hsiang Low. 2020. Collaborative machine learning with incentive-aware
model rewards. In International conference on machine learning, 8927–8936. PMLR.

Simchowitz, Max, and Kevin G Jamieson. 2019. Non-asymptotic gap-dependent
regret bounds for tabular mdps. Advances in Neural Information Processing Systems
32.

Sun, Jianwen, Tianwei Zhang, Xiaofei Xie, Lei Ma, Yan Zheng, Kangjie Chen, and
Yang Liu. 2020. Stealthy and efficient adversarial attacks against deep reinforce-
ment learning. In Proceedings of the aaai conference on artificial intelligence, vol. 34,
5883–5891.

150
Sun, Wen, Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, and John Langford.
2019. Model-based rl in contextual decision processes: Pac bounds and exponential
improvements over model-free approaches. In Conference on learning theory, 2898–
2933. PMLR.

Sutton, Richard S, and Andrew G Barto. 2018. Reinforcement learning: An introduc-
tion. MIT press.

Sutton, Richard S, David A McAllester, Satinder P Singh, and Yishay Mansour. 1999.
Policy gradient methods for reinforcement learning with function approximation.
In Advances in neural information processing systems, vol. 99, 1057–1063.

Todorov, Emanuel, Tom Erez, and Yuval Tassa. 2012. Mujoco: A physics engine
for model-based control. In 2012 ieee/rsj international conference on intelligent robots
and systems, 5026–5033. IEEE.

Tropp, Joel A. 2015. An introduction to matrix concentration inequalities. arXiv
preprint arXiv:1501.01571.

Troutt, Marvin D. 1986. A stability concept for matrix game optimal strategies and
its application to linear programming sensitivity analysis. Mathematical program-
ming 36:353–361.

———. 1990. An eigenvalue formula for the radius of stability of a stable game
matrix. SIAM journal on matrix analysis and applications 11(3):369–372.

Tukey, John W. 1960. A survey of sampling from contaminated distributions.
Contributions to probability and statistics 448–485.

Verbraeken, Joost, Matthijs Wolting, Jonathan Katzy, Jeroen Kloppenburg, Tim
Verbelen, and Jan S Rellermeyer. 2020. A survey on distributed machine learning.
ACM Computing Surveys (CSUR) 53(2):1–33.

Vickrey, William. 1961. Counterspeculation, Auctions, and Competitive Sealed
Tenders. The Journal of Finance.

151
Wagenmaker, Andrew J, Max Simchowitz, and Kevin Jamieson. 2022. Beyond no
regret: Instance-dependent pac reinforcement learning. In Conference on learning
theory, 358–418. PMLR.

Wald, Abraham. 1939. Contributions to the theory of statistical estimation and
testing hypotheses. The Annals of Mathematical Statistics 10(4):299–326.

Wang, Ruosong, Dean P Foster, and Sham M Kakade. 2020a. What are the sta-
tistical limits of offline rl with linear function approximation? arXiv preprint
arXiv:2010.11895.

Wang, Tianhao, Johannes Rausch, Ce Zhang, Ruoxi Jia, and Dawn Song. 2020b. A
principled approach to data valuation for federated learning. Federated Learning:
Privacy and Incentive 153–167.

Wang, Xinqi, Qiwen Cui, and Simon S Du. 2022. On gap-dependent bounds for
offline reinforcement learning. Advances in Neural Information Processing Systems
35:14865–14877.

Wei, Chen-Yu, Christoph Dann, and Julian Zimmert. 2022. A model selection
approach for corruption robust reinforcement learning. In International conference
on algorithmic learning theory, 1043–1096. PMLR.

Williams, Ronald J. 1992. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine learning 8(3-4):229–256.

Wu, Yifan, George Tucker, and Ofir Nachum. 2019. Behavior regularized offline
reinforcement learning. arXiv preprint arXiv:1911.11361.

Xie, Qiaomin, Yudong Chen, Zhaoran Wang, and Zhuoran Yang. 2020. Learning
zero-sum simultaneous-move markov games using function approximation and
correlated equilibrium. In Conference on learning theory, 3674–3682. PMLR.

Xie, Tengyang, Nan Jiang, Huan Wang, Caiming Xiong, and Yu Bai. 2021. Policy
finetuning: Bridging sample-efficient offline and online reinforcement learning.
Advances in neural information processing systems 34:27395–27407.

152
Xu, Haike, Tengyu Ma, and Simon Du. 2021a. Fine-grained gap-dependent bounds
for tabular mdps via adaptive multi-step bootstrap. In Conference on learning theory,
4438–4472. PMLR.

Xu, Xinyi, Lingjuan Lyu, Xingjun Ma, Chenglin Miao, Chuan Sheng Foo, and
Bryan Kian Hsiang Low. 2021b. Gradient driven rewards to guarantee fairness in
collaborative machine learning. Advances in Neural Information Processing Systems
34:16104–16117.

Yadkori, Yasin Abbasi, Peter L Bartlett, Varun Kanade, Yevgeny Seldin, and Csaba
Szepesvári. 2013. Online learning in markov decision processes with adversari-
ally chosen transition probability distributions. In Advances in neural information
processing systems, 2508–2516.

Yang, Lin, and Mengdi Wang. 2019a. Sample-optimal parametric q-learning using
linearly additive features. In International conference on machine learning, 6995–7004.
PMLR.

———. 2020. Reinforcement learning in feature space: Matrix bandit, kernels, and
regret bound. In International conference on machine learning, 10746–10756. PMLR.

Yang, Lin F, and Mengdi Wang. 2019b. Reinforcement learning in feature space:
Matrix bandit, kernels, and regret bound. arXiv preprint arXiv:1905.10389.

Yang, Mengjiao, and Ofir Nachum. 2021. Representation matters: Offline pretrain-
ing for sequential decision making. arXiv preprint arXiv:2102.05815.

Yin, Dong, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. 2018.
Byzantine-robust distributed learning: Towards optimal statistical rates. In Inter-
national conference on machine learning, 5650–5659. PMLR.

Yin, Ming, Yu Bai, and Yu-Xiang Wang. 2020. Near optimal provable uniform
convergence in off-policy evaluation for reinforcement learning. arXiv preprint
arXiv:2007.03760.

153
———. 2021. Near-optimal offline reinforcement learning via double variance
reduction. arXiv preprint arXiv:2102.01748.

Yu, Tao, HZ Wang, Bin Zhou, Ka Wing Chan, and J Tang. 2014. Multi-agent
correlated equilibrium q (λ) learning for coordinated smart generation control of
interconnected power grids. IEEE transactions on power systems 30(4):1669–1679.

Yu, Tianhe, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and
Chelsea Finn. 2021. Combo: Conservative offline model-based policy optimization.
arXiv preprint arXiv:2102.08363.

Yu, Tianhe, Garrett Thomas, Lantao Yu, Stefano Ermon, James Zou, Sergey Levine,
Chelsea Finn, and Tengyu Ma. 2020. Mopo: Model-based offline policy optimiza-
tion. arXiv preprint arXiv:2005.13239.

Yu, Xiaotian, Han Shao, Michael R Lyu, and Irwin King. 2018. Pure exploration of
multi-armed bandits with heavy-tailed payoffs. In Uai, 937–946.

Zanette, Andrea, David Brandfonbrener, Emma Brunskill, Matteo Pirotta, and
Alessandro Lazaric. 2020. Frequentist regret bounds for randomized least-squares
value iteration. In International conference on artificial intelligence and statistics, 1954–
1964.

Zanette, Andrea, Ching-An Cheng, and Alekh Agarwal. 2021. Cautiously opti-
mistic policy optimization and exploration with linear function approximation.
arXiv preprint arXiv:2103.12923.

Zhang, Xuezhou, Yiding Chen, Jerry Zhu, and Wen Sun. 2021a. Corruption-robust
offline reinforcement learning. arXiv preprint arXiv:2106.06630.

Zhang, Xuezhou, Yiding Chen, Xiaojin Zhu, and Wen Sun. 2021b. Robust policy
gradient against strong data corruption. In International conference on machine
learning, 12391–12401. PMLR.

———. 2022. Corruption-robust offline reinforcement learning. In International
conference on artificial intelligence and statistics, 5757–5773. PMLR.

154
Zhang, Xuezhou, Yuzhe Ma, Adish Singla, and Xiaojin Zhu. 2020a. Adaptive
reward-poisoning attacks against reinforcement learning. In International conference
on machine learning, 11225–11234. PMLR.

Zhang, Zihan, Yuan Zhou, and Xiangyang Ji. 2020b. Almost optimal model-free
reinforcement learningvia reference-advantage decomposition. Advances in Neural
Information Processing Systems 33:15198–15207.

Zheng, Wenting, Raluca Ada Popa, Joseph E Gonzalez, and Ion Stoica. 2019. Helen:
Maliciously secure coopetitive learning for linear models. In 2019 ieee symposium
on security and privacy (sp), 724–738. IEEE.

Zhou, Dongruo, Jiafan He, and Quanquan Gu. 2020. Provably efficient rein-
forcement learning for discounted mdps with feature mapping. arXiv preprint
arXiv:2006.13165.

Zhou, Kemin, and John Comstock Doyle. 1998. Essentials of robust control, vol. 104.
Prentice hall Upper Saddle River, NJ.

Zhu, Banghua, Lun Wang, Qi Pang, Shuai Wang, Jiantao Jiao, Dawn Song, and
Michael I Jordan. 2023. Byzantine-robust federated learning with optimal statistical
rates. In International conference on artificial intelligence and statistics, 3151–3178.
PMLR.

Zimin, Alexander, and Gergely Neu. 2013. Online learning in episodic marko-
vian decision processes by relative entropy policy search. In Advances in neural
information processing systems, 1583–1591.

155
a appendix for chapter 3

A.1 Additional Related Work

RL in standard MDPs. Learning MDPs with stochastic rewards and transitions is
relatively well-studied for the tabular case (that is, a finite number of states and
actions). For example, in the episodic setting, the UCRL2 algorithm Auer et al.
(2009) achieves O(

√
H4S2AT) regret, where H is the episode length, S is the state

space size, A is the action space size, and T is the total number of steps. Later
the UCBVI algorithm Azar et al. (2017); Dann et al. (2017) achieves the optimal
O(
√
H2SAT) regret matching the lower-bound Osband and Van Roy (2016); Dann

and Brunskill (2015). Recent work extends the analysis to various linear setting Jin
et al. (2020b); Yang and Wang (2019b,a); Zanette et al. (2020); Ayoub et al. (2020);
Zhou et al. (2020); Cai et al. (2019); Du et al. (2019); Kakade et al. (2020) with
known linear feature. For unknown feature, Agarwal et al. (2020b) proposes a
sample efficient algorithm that explicitly learns feature representation under the
assumption that the transition matrix is low rank. Beyond the linear settings, there
are works assuming the function class has low Eluder dimension which so far is
known to be small only for linear functions and generalized linear models Osband
and Van Roy (2014). For more general function approximation, Jiang et al. (2017);
Sun et al. (2019) showed that polynomial sample complexity is achievable as long
as the MDP and the given function class together induce low Bellman rank and
Witness rank, which include almost all prior models such as tabular MDP, linear
MDPs Yang and Wang (2019b); Jin et al. (2020b), Kernelized nonlinear regulators
Kakade et al. (2020), low rank MDP Agarwal et al. (2020b), and Bellman completion
under linear functions Zanette et al. (2020).

156
A.2 Proof for lower bound result

Theorem A.2.1 (Theorem 3.3.1). For any algorithm, there exists an MDP such that the
algorithm fails to find an

(
ε

2(1−γ)

)
-optimal policy under the ε-contamination model with a

probability of at least 1/4.

Proof of Theorem A.2.1. Consider two MDPs M1,M2, both with 3 states and 2
actions, defined as

P1(s2|s1, a1) = 1− ε
2 , P1(s3|s1, a1) = 1 + ε

2 , P1(s3|s1, a2) = P1(s3|s1, a2) = 1
2 (A.1)

P2(s2|s1, a1) = 1 + ε

2 , P2(s3|s1, a1) = 1− ε
2 , P2(s3|s1, a2) = P2(s3|s1, a2) = 1

2 (A.2)

and for both MDPs s2, s3 are absorbing states with constant reward 1 and 0, re-
spectively. So for M1, the optimal policy is π∗1(s1) = a2, and for M2, the optimal
policy is π∗2(s1) = a1. In both cases, choosing the alternative action in s1 will incur a
suboptimality gap of ε

2(1−γ) .
LetN(·) be the probability function of Bernoulli distribution on {s2, s3}: N(x) =1 if x = s2

0 if x = s3

. First of all, notice that an 2ε-oblivious adversary can make the two

MDPs M1,M2 indistinguishable by changing P1(· | s1, a1) to be (1 − 2ε
1+ε)P1(· |

s1, a1) + 2ε
1+εN(·), which is exactly P2(· | s1, a1). Note that 2ε

1+ε ≤ 2ε and thus can be
achieved by a 2ε-oblivious adversary.

When the two MDPs are indistinguishable, any rollout has the same probability
under both MDP, and thus conditioned on any roll-out, the learner can at best
obtain an ε

2(1−γ) -optimal policy with probability 1/2 on both MDP.
What remains to be shown is that with high probability, the ε-contamination

adversary can simulate the oblivious adversary.
Let Xi, Yi be Bernoulli random variables s.t.

Xi =

s2 U ≤ 1−ε
2

s3 o.w.
, Yi =

s2 U ≤ 1+ε
2

s3 o.w.

157
, where U is picked uniformly random in [0, 1]. Then (Xi, Yi) is a coupling with law:
P ((Xi, Yi) = (s2, s2)) = 1−ε

2 , P ((Xi, Yi) = (s2, s3)) = 0, P ((Xi, Yi) = (s3, s2)) = ε,
P ((Xi, Yi) = (s3, s3)) = 1−ε

2 ,Xi and Yi can be thought as the outcome of P1(· | s1, a1),
P2(· | s1, a1) respectively. The ε-contamination adversary can simulate the oblivious
adversary by changing Xi to Yi when X1 6= Yi, which has probability ε. This is
possible when there are at most ε fraction of index i s.t. Xi 6= Yi. Suppose there are
T episodes, then

P

(
T∑
i=1

1{a1 is taken at s1}
1{Xi 6=Yi} ≥ εT

)
≤ P (

T∑
i=1

1{Xi 6=Yi} ≥ Tε) ≤ 1
2 (A.3)

because the median of Binomial(n, p) is at most dnpe. Therefore, the probability
that the adaptive adversary can simulate the oblivious adversary throughout T
episodes is at least 1/2. Assuming that when the adversary fails to simulate, the
learner automatically succeed in finding the optimal policy, then we’ve established
that the learner will still fail to find an

(
ε

2(1−γ)

)
-optimal policy with probability 1/4

on both MDPs.

A.3 Property of Q̂(s, a) sampled from Algorithm 1

To prepare for the analysis that follows, we first show that the Q̂(s, a) sampled from
Algorithm 1 is unbiased and has bounded variance.

Lemma A.3.1. E
[
Q̂π(s, a)

]
= Qπ(s, a), Var(Q̂π(s, a)) ≤ γ

(1−γ)2 + σ2

1−γ . The bound for
variance is tight.

Proof of Lemma A.3.1. In the following, we treat (s0, a0) as deterministic.

E
[
Q̂π(s0, a0)

]
=
∞∑
k=0

E
[
T∑
t=0

r(st, at)
∣∣∣∣∣T = k

]
P (T = k) (by law of total expectation)

=
∞∑
k=0

E
[
k∑
t=0

r(st, at)
]

(1− γ)γk (each r(s, a) is independent of T)

158

=(1− γ)
∞∑
k=0

γk

1− γE [r(ak, sk)]

=Qπ(s0, a0)

Now, we upperbound the variance. Let r̄(s, a) := r(s, a)− e(s, a) be the expected
reward over the zero-mean noise. Because the zero-mean noise is independent of
state transition, we observe that:

E [r(s, a)] =E [r̄(s, a)]

E
[
r(s, a)2

]
=E

[
(r̄(s, a) + e(s, a))2

]
= E

[
r̄(s, a)2

]
+ E

[
e(s, a)2

]
≤E

[
r̄(s, a)2

]
+ σ2

E [r(si, ai)r(sj, aj)] =E [(r̄(si, ai) + e(si, ai))(r̄(sj, aj) + e(sj, aj))]

=E [r̄(si, ai)r̄(sj, aj)] ,

for i 6= j.
Given the above observations, we can bound the variance as follows

Var(Q̂π(s0, a0))

≤ σ2 + E
[
(Q̂π(s0, a0)− r̄(s0, a0))2

]
−
(
E
[
Q̂π(s0, a0)

]
− r̄(s0, a0)

)2

(separate the variance of r(s0, a0))

= σ2 +
∞∑
k=1

(1− γ)γkE
(k∑

t=1
r(st, at)

)2− (E [Q̂π(s0, a0)
]
− r̄(s0, a0)

)2

= σ2 +
∞∑
k=1

(1− γ)γk
 k∑
t=1

E
[
r(st, at)2

]
+ 2

k∑
i=1

k∑
j=i+1

E [r(si, ai)r(sj, aj)]


−
(
E
[
Q̂π(s0, a0)

]
− r̄(s0, a0)

)2

= σ2 +
∞∑
t=1

γtE
[
r(st, at)2

]
+ 2

∞∑
i=1

∞∑
j=i+1

γjE [r(si, ai)r(sj, aj)]

−
(
E
[
Q̂π(s0, a0)

]
− r̄(s0, a0)

)2

159

≤ σ2

1− γ +
∞∑
t=1

γtE
[
r̄(st, at)2

]
+ 2

∞∑
i=1

∞∑
j=i+1

γjE [r̄(si, ai)r̄(sj, aj)]

−
(
E
[
Q̂π(s0, a0)

]
− r̄(s0, a0)

)2

≤ σ2

1− γ +
∞∑
t=1

γtE [r̄(st, at)] + 2
∞∑
i=1

∞∑
j=i+1

γjE [r̄(si, ai)]

−
(
E
[
Q̂π(s0, a0)

]
− r̄(s0, a0)

)2

= σ2

1− γ +
∞∑
t=1

γtE [r̄(st, at)] + 2
∞∑
i=1

γi+1

1− γE [r̄(si, ai)]

−
(
E
[
Q̂π(s0, a0)

]
− r̄(s0, a0)

)2

= σ2

1− γ + 1 + γ

1− γ

∞∑
t=1

γtE [r̄(st, at)]−
(∞∑
t=1

γtE [r̄(st, at)]
)2

= −
(∞∑
t=1

γtE [r̄(st, at)]−
1 + γ

2(1− γ)

)2

+ (1 + γ)2

4(1− γ)2 + σ2

1− γ

≤ −
(∞∑
t=1

γt − 1 + γ

2(1− γ)

)2

+ (1 + γ)2

4(1− γ)2 + σ2

1− γ = γ

(1− γ)2 + σ2

1− γ

The last line is because:
∞∑
t=1

γtE [r̄(st, at)] ≤
∞∑
t=1

γt = γ

1− γ ≤
1 + γ

2(1− γ) .

The equality can be reached by the following reward setting: let P (1 = r̄(s1, a1) =
· · · = r̄(st, at) = · · ·) = 1 and therefore is tight.

A.4 Proofs for Section 3.4.

Lemma A.4.1 (Lemma 3.4.2). Suppose the adversarial rewards are bounded in [0, 1], and
in a particular iteration t, the adversary contaminates ε(t) fraction of the episodes, then
given M episodes, it is guaranteed that with probability at least 1− δ,

Es,a∼d(t)

[(
Qπ(t)(s, a)− φ(s, a)>w(t)

)2]
(A.4)

160

≤ 4
(
W 2 +WH

)ε(t) +
√

8
M

log 4d
δ

 .
where H = (log δ − logM)/log γ is the effective horizon.

Proof of Lemma A.4.1. First of all, observe that since the adversarial reward is
bounded in [0, 1], with probability 1 − δ, the Q̂(s, a) estimates collected in the
adversarial episodes are bounded by H ∆= (log δ − logM)/log γ.

Conditioned on the above event, consider three loss functions f̂ , f † and f ,
representing the loss w.r.t. clean data, corrupted data and underlying distribution
respectively, i.e.

f̂ = 1
M

M∑
i=1

(yi − x>i w)2 (A.5)

f † = 1
M

∑
i∈C

(y†i − x
†>
i w)2 +

∑
i/∈C

(yi − x>i w)2

 (A.6)

f = E(yi − x>i w)2 (A.7)

Then, for all w, we can make the following decomposition

||∇wf
† −∇wf ||≤ ||∇wf

† −∇wf̂ ||+||∇wf̂ −∇wf ||. (A.8)

We next bound each of the two terms in equation A.8. For the first term,

‖∇wf
† −∇wf̂‖ (A.9)

=
∥∥∥∥∥ 2
M

∑
i∈C

[
(x†ix

†>
i − xix>i)w + (y†ix

†
i − yixi)

]∥∥∥∥∥ (A.10)

≤ 4 (W +H) ε(t) (A.11)

where the last step uses the fact that |C|/M ≤ ε(t), and ‖x‖≤ 1, |y†|≤ H and ‖w‖≤ W .
For the second term

||∇wf̂ −∇wf || (A.12)

161

≤ 2
∥∥∥∥∥
(
E[xx>]− 1

M

M∑
i=1

xix
>
i

)
w −

(
E[yx]− 1

M

M∑
i=1

yixi

)∥∥∥∥∥ (A.13)

≤ 2
 2

3M log 4d
δ

+
√

2
M

log 4d
δ

W + 2
√

2
M

log 4d
δ
· 2H (A.14)

≤ 4
√

8
M

log 4d
δ

(W +H) , for M ≥ 2 log 4d
δ
. (A.15)

where in step (A.14) we apply Matrix Bernstein inequality Tropp (2015) on the
first term and vector Hoeffding’s inequality Jin et al. (2019) on the second term.
The constant in Corollary 7 of Jin et al. (2019) is instantiated to be c = 1, because
boundedness means we always have condition 2 in Lemma 2 of Jin et al. (2019).
This condition is all we need throughout the proof for the vector Hoeffding.

Now, let M be sufficiently large, and instantiate w to be wt, i.e. the constrained
linear regression solution w.r.t f †, then our result above implies that for any vector
v such that ||w + v||≤ W , we have∇wf

†(wt)>v/||v||≥ 0, and thus

∇wf(wt)>v/||v||≥ −4 (W +H)
ε(t) +

√
8
M

log 4d
δ

 (A.16)

which by Lemma B.8 of Diakonikolas et al. (2019b) implies that

ε
(t)
stat ≤ 4

(
W 2 +HW

)ε(t) +
√

8
M

log 4d
δ

 , w.p. 1− 2δ. (A.17)

Theorem A.4.1 (Theorem 3.4.1). Under assumptions 4.2.1 (linear Q function) and
3.3.2 (reset distribution with small κ), given a desired optimality gap α, there exists a set
of hyperparameters agnostic to the contamination level ε, such that Algorithm 2 guarantees
with a poly(1/α, 1/(1− γ), |A|,W, σ, κ) sample complexity that under ε-contamination

162
with adversarial rewards bounded in [0, 1], we have

E
[
V ∗(µ0)− V π̂(µ0)

]
≤ Õ

max
α,W

√√√√ |A|κε
(1− γ)3


where π̂ is the uniform mixture of π(1) through π(T).

Proof of Theorem A.4.1. First note that εstat = Es,a∼d(t) [
(
φ(s, a)>(w(t) − w∗)

)2
] ≤

4W 2, because ‖φ(s, a)‖≤ 1 and ‖w(t)‖, ‖w∗‖≤ W . As a result, the high probability
bound in Lemma 3.4.2 can be ready translate into an expected bound:

E
[
Es,a∼d(t)

[(
Qπ(t)(s, a)− φ(s, a)>w(t)

)2]]
(A.18)

≤ 4
(
W 2 +HW

)ε(t) +
√

8
M

log 4d
δ

+ 8δW 2 (A.19)

where δ becomes a free parameter. Plugging this into Lemma 3.4.1, we get

E
[

1
T

T∑
t=1
{V ∗(µ0)− V (t)(µ0)}

]

≤ W

1− γ

√
2 log|A|

T
+ 1
T

T∑
t=1

√√√√4|A|κε(t)stat
(1− γ)3

≤ W

1− γ

√
2 log|A|

T
+ 1
T

T∑
t=1

√√√√√16|A|κ
(
(W 2 +HW)

(
ε(t) +

√
8
M

log 4d
δ

)
+ 2δW 2

)
(1− γ)3

≤ W

1− γ

√
2 log|A|

T
+ 1
T

T∑
t=1

√√√√√16|A|κ
(
(W 2 +HW)

√
8
M

log 4d
δ

+ 2δW 2
)

(1− γ)3

+ 1
T

T∑
t=1

√√√√16|A|κ (W 2 +HW) ε(t)
(1− γ)3

≤ W

1− γ

√
2 log|A|

T
+

√√√√√16|A|κ
(
(W 2 +HW)

√
8
M

log 4d
δ

+ 2δW 2
)

(1− γ)3

163

+

√√√√16|A|κ (W 2 +HW) ε
(1− γ)3

where the last step is by Cauchy Schwarz and the fact that the attacker only has ε
budget to distribute, which implies that ∑T

t=1 ε
(t) = Tε. Setting

T = 2W 2 log|A|
α2(1− γ)2 (A.20)

δ = α2(1− γ)3

32W 2|A|κ
(A.21)

M = 512|A|2W 2(W +H)2κ2

α4(1− γ)6 log 4d
δ
, (A.22)

we get

E
[

1
T

T∑
t=1
{V ∗(µ0)− V (t)(µ0)}

]
≤ 3α +

√√√√16|A|κ (W 2 +HW) ε
(1− γ)3 . (A.23)

with sample complexity

TM = 1024|A|2log|A|W 4(W +H)2κ2

α6(1− γ)8 log 128W 2|A|κd
α2(1− γ)3 . (A.24)

A.5 A modified analysis for SEVER

In this section, we will derive an expected error bound for SEVER Diakonikolas
et al. (2019b) when applied to a linear regression problem. The high level idea is to
use the results of Diakonikolas et al. (2020) to show the existence of a stable set and
change the probabilistic argument in Diakonikolas et al. (2019b) to an expectation
argument. We note that the original result in Diakonikolas et al. (2019b) works
only with probability 9/10, and there is no direct way of translating it into either a
high-probability argument or an expectation argument.

164
In the following, we consider a robust linear regression problem. We observe

pairs (Xi, Yi) ∈ Rd × R for i ∈ [n], where Xi’s are drawn i.i.d. from a distribution
Dx and Yi = w∗>Xi + ei for some unknown w∗ ∈ Rd. ei’s are i.i.d, noise from some
distribution De|x. Note that here ei and Xi may not be independent. We let Dxy

be the joint distribution of (X, Y). Let fi(w) = (Yi − w>Xi)2. Given a multiset of
observations {(Xi, Yi)}ni=1, our goal is to minimize the objective function

f̄(w) = E(X,Y)∼Dxy [(Y − w>X)2] (A.25)

on a convex feasible set H. Let r := maxw∈H‖w‖ be the `2-radius of H. In the
following, we use ‖·‖ to denote the spectral norm of a matrix and the 2-norm of a
vector. We use Cov to denote the covariance matrix of a random vector: Cov[X] =
E
[
(X − EX)(X − EX)>

]
. When S is a set, we use ES and CovS to denote the

expectation and covariance over the empirical distribution on S. We allow for an
ε-fraction of the observations to be arbitrary outliers. The ε-corruption model is
defined in more detail in the Appendix A of Diakonikolas et al. (2019b).

Due to our application, we make assumptions on the linear regression model
that is slight different from Assumption E.1 in Diakonikolas et al. (2019b):

Assumption A.5.1. Given the model for linear regression described above, assume the
following conditions for De|x and Dx:

• E [e|X] = 0;

• E [e2|X] ≤ ξ;

• EX∼Dx [XX>] � s2I for some s > 0;

• There is a constant C > 0, such that for all unit vectors v, EX∼Dx [〈v,X〉4] ≤ Cs4.

In Diakonikolas et al. (2019b), the noise term e and X are independent. We
weaken the assumption on e and bound its first and second moments conditional
on X .

165
Stability with subgaussian rate

We first note that the gradient of fi, ∇fi(w) has bounded covariance matrix. We
will show this by following the proof of Lemma E.3 in Diakonikolas et al. (2019b),
but make minor changes as we do not assume e and X are independent:

Lemma A.5.1 (A variant of Lemma E.3 in Diakonikolas et al. (2019b)). Suppose Dxy

satisfies the conditions of Assumption A.5.1. Then for all unit vectors v ∈ Rd, we have

v> Cov
(Xi,Yi)∼Dxy

[∇fi(w)]v ≤ 4s2ξ + 4Cs4‖w∗ − w‖2. (A.26)

Proof of Lemma A.5.1. We first note that fi(w) = (Yi − w>Xi)2 and ∇fi(w) =
−2((w∗−w)>Xi+ei)Xi. By the property of conditional expectation, for any function
g(·), h(·), we have

E [g(X)h(e)] = EX
[
Eh(e)|X [g(X)h(e)|X]

]
= EX

[
g(X)Eh(e)|X [h(e)|X]

]
.

Then

E
[
∇fi(w)∇fi(w)>

]
= 4E

[
((w∗ − w)>Xi + ei)2XiX

>
i

]
= 4E

[
((w∗ − w)>Xi)2XiX

>
i

]
+ 4E

[
e2
iXiX

>
i

]
+ 4E

[
2(w∗ − w)>XieiXiX

>
i

]
= 4E

[
((w∗ − w)>Xi)2XiX

>
i

]
+ 4E

[
XiX

>
i E

[
e2
i

∣∣∣Xi

]]
By Assumption A.5.1, for all unit vectors v ∈ Rd, we have

v>E
[
((w∗ − w)>Xi)2XiX

>
i

]
v = E

[
((w∗ − w)>Xi)2(v>Xi)2

]
(A.27)

≤
√
E [((w∗ − w)>Xi)4]E [(v>Xi)4] (A.28)

≤ Cs4‖w∗ − w‖2 (A.29)

and
v>E

[
XiX

>
i E

[
e2
i

∣∣∣Xi

]]
v ≤ ξv>E

[
XiX

>
i

]
v ≤ s2ξ (A.30)

166
Thus for all unit vectors v ∈ Rd, we have

v> Cov
(Xi,Yi)∼Dxy

[∇fi(w)]v ≤ v>E
[
∇fi(w)∇fi(w)>

]
v ≤ 4s2ξ + 4Cs4‖w∗ − w‖2.(A.31)

We then use the following Theorem A.5.1 to show that the observations f1, . . . , fn

satisfies the Assumption A.5.2 with high probability:

Theorem A.5.1 (Theorem 1.4 in Diakonikolas et al. (2020)). Fix any 0 < τ < 1. Let
S be a multiset of n i.i.d. samples from a distribution on Rd with mean µ and covariance Σ.
Let ε′ = C̃ (log(1/τ)/n+ ε) = O(1), for some constant C̃ > 0. Then, with probability at
least 1− τ , there exists a subset S ′ ⊆ S such that |S ′|≥ (1− ε′)n and for every S ′′ ⊆ S ′

with |S ′′|≥ (1− 2ε′)|S ′|, the following conditions hold: (i) ‖µS′′ − µ‖≤
√
‖Σ‖δ, and (ii)

‖ΣS′′ − ‖Σ‖I‖≤ ‖Σ‖δ2/(2ε′), for δ = O
(√

(d log d)/n+
√
ε+

√
log(1/τ)/n

)
.

where µS′′ = 1
|S′′|

∑
x∈S′′ x and ΣS′′ = 1

|S′′|
∑
x∈S′′(x− µ)(x− µ)>.

We use a notion of stability similar to that in Diakonikolas et al. (2019b) but
allow the parameter to depend on the confidence level and sample size:

Assumption A.5.2 (A variant of Assumption B.1 in Diakonikolas et al. (2019b)). Fix
0 < ε < 1/2. With probability at least 1− τ , there exists an unknown set Igood ⊆ [n] with
|Igood|≥ (1− ε)n of “good” functions {fi}i∈Igood and parameters σ, α(ε, n, τ), β(ε, n, τ) ∈
R+ such that for all w ∈ H:

∥∥∥∥∥∥ 1
|Igood|

∑
i∈Igood

∇fi(w)−∇f̄(w)

∥∥∥∥∥∥ ≤ σα(ε, n, τ) (A.32)

and ∥∥∥∥∥ 1
|Igood|

(∇fi(w)−∇f̄(w))(∇fi(w)−∇f̄(w))>
∥∥∥∥∥ ≤ σ2β(ε, n, τ) (A.33)

We can then equivalently write Theorem A.5.1 as the following Proposition:

167
Proposition A.5.1. Given a linear regression model fi(w) = (Yi − w>Xi)2 sat-
isfying Assumption A.5.1, Xi ∼ Dx, De ∼ De, with probability at least 1 − τ ,
{fi}i∈[n] satisfies Assumption A.5.2 with σ = 2s

√
ξ + 2

√
Cs2‖w∗ − w‖, α(ε, n, τ) =

O
(√

(d log d)/n+
√
ε+

√
log(1/τ)/n

)
and β(ε, n, τ) =

(
d log d

log(1/τ)+nε + 1
)
.

Proof of Proposition A.5.1. By Theorem A.5.1 and Lemma A.5.1, with probability
at least 1− τ , there exist an unknown set Igood ⊆ [n] with |Igood|≥ (1− ε′)n, s.t.

∥∥∥∥∥ 1
|Igood|

(∇fi(w)−∇f̄(w))(∇fi(w)−∇f̄(w))>
∥∥∥∥∥

≤
∥∥∥∥∥ 1
|Igood|

(∇fi(w)−∇f̄(w))(∇fi(w)−∇f̄(w))> −
∥∥∥∥Cov
f∈p∗

[∇f]
∥∥∥∥ I
∥∥∥∥∥+

∥∥∥∥Cov
f∈p∗

[∇f]
∥∥∥∥

≤
(
4s2ξ + 4Cs4‖w∗ − w‖2

)
O

(
d log d

log(1/τ) + nε
+ 1

)

≤
(

2s
√
ξ + 2

√
Cs2‖w∗ − w‖

)2
O

(
d log d

log(1/τ) + nε
+ 1

)
=: σ2β(ε, n, τ).

‖∇f̂(w)−∇f̄(w)‖ ≤ σO
(√

(d log d)/n+
√
ε+

√
log(1/τ)/n

)
=: σα(ε, n, τ).

The expected optimality gap

In order to prove the expected optimality gap, we first state a slightly modified ver-
sion of the main theorem in Diakonikolas et al. (2019b) by specifying the probability
of success;

Theorem A.5.2 (Theorem B.2 in Diakonikolas et al. (2019b)). Let the corruption
level ε ∈ [0, c], for some small enough c > 0. Suppose that the functions f1, . . . , fn, f̄ :
H → R are bounded below, and that Assumption A.5.2 is satisfied. Then SEVER applied
to f1, . . . , fn returns a point w ∈ H that, fix p ≥

√
ε, with probability at least 1 − p, is

a O
(
σ
(
α(ε, n, τ) +

√
α(ε, n, τ)2 + β(ε, n, τ)

√
ε/p

))
-approximate critical point of f̄ , i.e.

168
for all unit vectors v where w + λv ∈ H for arbitrarily small positive λ, we have that
v · ∇f(w) ≥ −O

(
σ
(
α(ε, n, τ) +

√
α(ε, n, τ)2 + β(ε, n, τ)

√
ε/p

))
.

if f̄ is convex, we have the following optimality gap. Recall r is the radius of the
convex setH where w∗ belongs.

Corollary A.5.1 (Corollary B.3 in Diakonikolas et al. (2019b)). Let the corruption
level ε ∈ [0, c], for some small enough c > 0. For functions f1, . . . , fn : H → R, suppose
that Assumption A.5.2 holds and thatH is convex. Then, fix p ≥

√
ε, with probability at

least 1− p, the output of SEVER satisfies the following: if f̄ is convex, the algorithm finds a
w ∈ H such that f̄(w)− f̄(w∗) = O

(
rσ
(
α(ε, n, τ) +

√
α(ε, n, τ)2 + β(ε, n, τ)

√
ε/p

))
Given Theorem A.5.1, we can prove the following expected optimality gap:

Theorem A.5.3 (expected optimality gap). Let the corruption level ε ∈ [0, c], for some
small enough c > 0. Let H be a convex set. Given n samples from a linear regression
model f(w) = (Y − w>X)2 satisfying Assumption A.5.1, where X ∼ Dx, e ∼ De,
Y = w∗>X + e for some unknown w∗ ∈ H, SEVER will find a w ∈ H, such that

E
[
f̄(w)− f̄(w∗)

]
= O

((
sr
√
ξ + s2r2

)(
τ +

√
(d log d)/n+

√
ε+

√
log(1/τ)/n

))
.

where the expectation above is over both the randomness of SEVER and (Xi, Yi) pairs.

Proof of Theorem A.5.3. In the following, we useα and β as shorthands ofα(ε, n, τ)
and β(ε, n, τ). We first show that f̄(w)− f̄(w∗) is upper bounded:

f̄(w)− f̄(w∗) = EX,Y
[
(Y − w>X)2 − (Y − w∗>X)2

]
(A.34)

= EX,e
[
(w∗ − w)>X + e)2 − e2

]
(A.35)

= (w∗ − w)>EX [XX>](w∗ − w) ≤ s2(w − w∗)2 ≤ 4s2r2.(A.36)

For some constant M > 0, define x1 := Mrσ
(
α/
√
ε+
√
α2 + β

)√
ε. Let A1, A2, A3

be the following events

A1 = {Assumption A.5.2 holds}

169
A2 = {SEVER removes less than (1 + 1/

√
ε)εn points}

A3 =
{
f̄(w)− f̄(w∗) > Mrσ

(
α +

√
α2 + β

√
ε/p

)}
.

Then, ∀0 ≤ p <
√
ε

P (A2, A3(p) | A1) = 0. (A.37)

By Corollary A.5.1, ∀
√
ε ≤ p ≤ 1

P (A2, A3(p) | A1) ≤ p. (A.38)

By Proposition A.5.1,
P (A1) ≥ 1− τ. (A.39)

By Lemma A.5.3,
P (A2 | A1) ≥ 1−

√
ε, (A.40)

and thus
1− P (A1, A2) = 1− P (A2 | A1)P (A1) ≤ τ +

√
ε. (A.41)

Then, we have:

P
(
f̄(w)− f̄(w∗) > x1/

√
p | A1, A2

)
(A.42)

≤P (A3(p) | A1, A2) = P (A2, A3(p) | A1)/P (A2 | A1) (A.43)

≤

0 0 ≤ p <
√
ε

p
1−
√
ε

√
ε ≤ p ≤ 1

. (A.44)

Let x = x1/
√
p, we have:

P
(
f̄(w)− f̄(w∗) > x

∣∣∣A1, A2
)
≤


0 x ≥ x1ε

−1/4

1
1−
√
ε

x2
1
x2 x1 ≤ x < x1ε

−1/4

1 0 ≤ x < x1

. (A.45)

By Proposition A.5.1 and law of total expectation, we can bound the expected

170
optimality gap by:

E
[
f̄(w)− f̄(w∗)

]
≤ E

[
f̄(w)− f̄(w∗)

∣∣∣A1, A2
]
P (A1, A2) + 4s2r2(1− P (A1, A2))

≤
∫ ∞

0
P
(
f̄(w)− f̄(w∗) > x

∣∣∣A1, A2
)
dx+ 4s2r2(τ +

√
ε)

=
∫ x1

0
1dx+ 1

1−
√
ε

∫ x1ε−1/4

x1

x2
1
x2dx+ 4s2r2(τ +

√
ε)

≤ 2x1 + 4s2r2(τ +
√
ε)

= 2Mrσ
(
α/
√
ε+

√
α2 + β

)√
ε+ 4s2r2(τ +

√
ε)

= O
((
sr
√
ξ + s2r2

)(
τ +

√
(d log d)/n+

√
ε+

√
log(1/τ)/n

))

Note that the expectation above is over both the randomness of SEVER and (Xi, Yi)
pairs.

Proof of Theorem A.5.2

In this proof, we mainly follow the steps in Diakonikolas et al. (2019b) but use our
notion of stability in Assumption A.5.2. We also allow the success probability to
vary, so that we can give an expected error bound later on.

We first restate the SEVER algorithm in Algorithm 11 and Algorithm 12.
Throughout this proof we let Igood be as in Assumption A.5.2. We require the
following three lemmas. Roughly speaking, the first states that with high probability,
we will not remove too many points throughtout the process, the second states
that on average, we remove more corrupted points than uncorrupted points, and
the third states that at termination, and if we have not removed too many points,
then we have reached a point at which the empirical gradient is close to the true
gradient. Formally:

Lemma A.5.2. If the samples satisfy Assumption A.5.2, |S|≥ c1n, and the filtering thresh-
old is at least

2(1− ε)σ2

c1 − 2ε
(
α(ε, n, τ)2 + β(ε, n, τ)

)
(A.46)

171
Algorithm 11 Sever(f1:n,L, σ)

1: Input: Sample functions f1, . . . , fn : H → R, bounded below on a closed
domainH, γ-approximate learner L, and parameter σ ∈ R+.

2: Initialize S ← {1, . . . , n}.
3: repeat
4: w ← L({fi}i∈S). . Run approximate learner on points in S.
5: Let ∇̂ = 1

|S|
∑
i∈S∇fi(w).

6: Let G = [∇fi(w)− ∇̂]i∈S be the |S|×d matrix of centered gradients.
7: Let v be the top right singular vector of G.
8: Compute the vector τ of outlier scores defined via τi =

(
(∇fi(w)− ∇̂) · v

)2
.

9: S ′ ← S
10: S ← Filter(S ′, τ, σ) . Remove some i’s with the largest scores τi from S; see

Algorithm 12.
11: until S = S ′.
12: Return w.

Algorithm 12 Filter(S, τ, σ)
1: Input: Set S ⊆ [n], vector τ of outlier scores, and parameter σ ∈ R+.
2: If 1

|S|
∑
i∈S τi ≤ c0 · σ2, for some constant c0 > 1, return S . We only filter out

points if the variance is larger than an appropriately chosen threshold.
3: Draw T from the uniform distribution on [0,maxi τi].
4: Return {i ∈ S : τi < T}.

then if S ′ is the output of Filter(S, τ, σ), we have that

E[|Igood ∩ (S\S ′)|] ≤ E[|([n]\Igood) ∩ (S\S ′)|]. (A.47)

Lemma A.5.3 (Revised version of Lemma 6 in Diakonikolas et al. (2019b)). Assume
filtering threshold is 4(α(ε, n, τ)2 + β(ε, n, τ))σ2, ε ≤ 1/16, then we have that for any
given p ≥

√
ε, with probability at least 1 − p, n − |S|≤ (1 + 1/p)εn when the filtering

algorithm terminates.

Lemma A.5.4. If the samples satisfy Assumption A.5.2, Filter(S, τ, σ) = S, and n−|S|≤

172
(1 + 1/p)εn, for p ≥

√
ε, then

∥∥∥∥∥∇f̄(w)− 1
|Igood|

∑
i∈S
∇fi(w)

∥∥∥∥∥
2

≤ O
(
σ
(
α(ε, n, τ) +

√
α(ε, n, τ)2 + β(ε, n, τ)

√
ε/p

))
(A.48)

Before we prove these lemmata, we show how together they imply Theorem A.5.2.

Proof of Theorem A.5.2 assuming Lemma A.5.3 and Lemma A.5.4. First, we note
that the algorithm must terminate in at most n iterations. This is easy to see as each
iteration of the main loop except for the last must decrease the size of S by at least
1.

It thus suffices to prove correctness. Note that Lemma A.5.3 says that with
probability at least 1− p, SEVER will not remove too many points, this will allow
us to apply Lemma A.5.4 to complete the proof, using the fact that w is a critical
point of 1

|Igood|
∑
i∈S∇fi(w).

Thus it suffices to prove these three lemmata.

Proof of Lemma A.5.2. Let Sgood = S ∩ Igood and Sbad = S\Igood. We wish to show
that the expected number of elements thrown out ofSbad is at least the expected num-
ber thrown out of Sgood. We note that our result holds trivially if Filter(S, τ, σ) = S.
Thus, we can assume that Ei∈S[τi] ≥ 2(1−ε)σ2

c1−2ε (α(ε, n, τ)2 + β(ε, n, τ)).
It is easy to see that the expected number of elements thrown out of Sbad is

proportional to ∑i∈Sbad τi, while the number removed from Sgood is proportional
to ∑

i∈Sgood τi (with the same proportionality). Hence, it suffices to show that∑
i∈Sbad τi ≥

∑
i∈Sgood τi.

We first note that since Covi∈Igood [∇fi(w)] � σ2I , we have that

Cov
i∈Sgood

[v · ∇fi(w)] ≤ 1− ε
c1 − ε

Cov
i∈Igood

[v · ∇fi(w)] (since |Sgood|≥ c1−ε
1−ε |Igood|) (A.49)

= 1− ε
c1 − ε

 1
|Igood|

∑
i∈Igood

(v · (∇fi(w)− f̄(w)))2 − (f̄(w)− Ei∈Igood [v · ∇fi(w)])2


(A.50)

173

≤ (1− ε)σ2

c1 − ε
(
α(ε, n, τ)2 + β(ε, n, τ)

)
(By Assumption A.5.2), (A.51)

Let µgood = Ei∈Sgood [v · ∇fi(w)] and µ = Ei∈S[v · ∇fi(w)]. Note that

Ei∈Sgood [τi] = Cov
i∈Sgood

[v · ∇fi(w)] + (µ− µgood)2 (A.52)

≤(1− ε)σ2

c1 − ε
(
α(ε, n, τ)2 + β(ε, n, τ)

)
+ (µ− µgood)2 . (A.53)

We now split into two cases.
Firstly, if

(µ− µgood)2 ≥ ε

c1 − 2ε
(1− ε)σ2

c1 − ε
(
α(ε, n, τ)2 + β(ε, n, τ)

)
, (A.54)

we let µbad = Ei∈Sbad [v · ∇fi(w)], and note that |µ − µbad||Sbad|= |µ − µgood||Sgood|.
We then have that

Ei∈Sbad [τi] = Cov
i∈Sbad

[v · ∇fi(w)] + (µ− µbad)2 ≥ (µ− µbad)2 (A.55)

= (µ− µgood)2
(
|Sgood|
|Sbad|

)2

(A.56)

≥ |Sgood|
|Sbad|

c1 − ε
ε

(µ− µgood)2 (because |Sgood|≥ (c1 − ε)n and |Sbad|≤ εn)

(A.57)

= |Sgood|
|Sbad|

(
c1 − 2ε
ε

(µ− µgood)2 + (µ− µgood)2
)

(A.58)

≥ |Sgood|
|Sbad|

(
(1− ε)σ2

c1 − ε
(
α(ε, n, τ)2 + β(ε, n, τ)

)
+ (µ− µgood)2

)
(A.59)

(by (A.54)) (A.60)

≥ |Sgood|
|Sbad|

Ei∈Sgood [τi] (by (A.52)). (A.61)

Hence, ∑i∈Sbad τi ≥
∑
i∈Sgood τi.

On the other hand, if (µ − µgood)2 ≤ ε
c1−2ε

(1−ε)σ2

c1−ε (α(ε, n, τ)2 + β(ε, n, τ)), then

174
Ei∈Sgood [τi] ≤

(
1 + ε

c−2ε

)
(1−ε)σ2

c1−ε (α(ε, n, τ)2 + β(ε, n, τ)) ≤ Ei∈S[τi]/2. Therefore

∑
i∈Sbad

τi ≥
∑

i∈Sgood

τi

once again. This completes our proof.

Proof of Lemma A.5.3. Define the event

A = {n− |S|≤ (1 + 1/p)εn}, (A.62)

and we want to lower-boundP (A). Given that ε ≤ 1/16, the threshold is 4(α(ε, n, τ)2+
β(ε, n, τ))σ2 and p ≥

√
ε, and conditioned on the event A, it can be verified that the

asusumption of Lemma A.5.2 is satisfied. In particular, simple calculation shows
that given c1 = 1− (1 + 1/p)ε, ε ≤ 1/16, p ≥

√
ε, we have

4σ2 ≥ 2(1− ε)σ2

c1 − 2ε (A.63)

And Lemma A.5.2 implies that |([n]\Igood) ∩ S|+|Igood\S| is a supermartingale.
Since its initial size is at most εn, with probability at least 1−p, it never exceeds εn/p,
and therefore at the end of the algorithm, we must have that n−|S|≤ εn+|Igood\S|≤
(1 + 1/p)εn.

We now prove Lemma A.5.4.

Proof of Lemma A.5.4. We note that∥∥∥∥∥∑
i∈S

(∇fi(w)−∇f̄(w))
∥∥∥∥∥

2

(A.64)

≤

∥∥∥∥∥∥
∑

i∈Igood

(∇fi(w)−∇f̄(w))

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
∑

i∈(Igood\S)
(∇fi(w)−∇f̄(w))

∥∥∥∥∥∥
2

(A.65)

+

∥∥∥∥∥∥
∑

i∈(S\Igood)
(∇fi(w)−∇f̄(w))

∥∥∥∥∥∥
2

(A.66)

175

≤

∥∥∥∥∥∥
∑

i∈(Igood\S)
(∇fi(w)−∇f̄(w))

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
∑

i∈(S\Igood)
(∇fi(w)−∇f̄(w))

∥∥∥∥∥∥
2

+ nσα(ε, n, τ).

(A.67)

First we analyze ∥∥∥∥∥∥
∑

i∈(Igood\S)
(∇fi(w)−∇f̄(w))

∥∥∥∥∥∥
2

. (A.68)

This is the supremum over unit vectors v of

∑
i∈(Igood\S)

v · (∇fi(w)−∇f̄(w)). (A.69)

However, we note that

∑
i∈Igood

(v · (∇fi(w)−∇f̄(w)))2 ≤ nσ2β(ε, n, τ). (A.70)

Since |Igood\S|≤ (1 + 1/p)εn, we have by Cauchy-Schwarz that

∑
i∈(Igood\S)

v · (∇fi(w)−∇f̄(w)) =
√

(nσ2β(ε, n, τ))((1 + 1/p)εn) (A.71)

=nσ
√
β(ε, n, τ)(1 + 1/p)ε, (A.72)

as desired.
Let

∆ :=
∥∥∥∥∥∑
i∈S

(∇fi(w)−∇f̄(w))
∥∥∥∥∥

2

. (A.73)

Because our Filter algorithm terminates with n− |S|≤ (1 + 1/p)εn, and the stop-
ping condition is set as ‖ 1

|S|
∑
i∈S(∇fi(w)−∇f̂(w))(∇fi(w)−∇f̂(w))>‖≤ 4(α(ε, n, τ)2+

β(ε, n, τ))σ2, we note that since for any such v that

∑
i∈S

(v · (∇fi(w)−∇f̄(w)))2 (A.74)

176
=

∑
i∈S

(v · (∇fi(w)−∇f̂(w)))2 + |S|(v · (∇f̂(w)−∇f̄(w)))2 (A.75)

≤
∑
i∈S

(v · (∇fi(w)−∇f̂(w)))2 + ∆2/|S| (A.76)

≤ n4(α(ε, n, τ)2 + β(ε, n, τ))σ2 + ∆2/((1− (1 + 1/p)ε)n) (A.77)

and since |S\Igood|≤ (1 + 1/p)εn, and so we have similarly that
∥∥∥∥∥∥

∑
i∈(S\Igood)

∇fi(w)−∇f̄(w)

∥∥∥∥∥∥
2

(A.78)

≤ 2nσ
√
α(ε, n, τ)2 + β(ε, n, τ)

√
(1 + 1/p)ε+ ∆

√√√√ (1 + 1/p)ε
1− (1 + 1/p)ε. (A.79)

Combining with the above we have that

∆
n
≤σα(ε, n, τ) + σ

√
β(ε, n, τ)(1 + 1/p)ε+ 2σ

√
α(ε, n, τ)2 + β(ε, n, τ)

√
(1 + 1/p)ε

(A.80)

+ ∆
n

√√√√ (1 + 1/p)ε
1− (1 + 1/p)ε, (A.81)

Thus

∆
n
≤ 1

1−
√

(1+1/p)ε
1−(1+1/p)ε

(
σα(ε, n, τ) + 6σ

√
α(ε, n, τ)2 + β(ε, n, τ)

√
ε/p

)
(A.82)

and therefore, ∆
n

= O
(
σ
(
α(ε, n, τ) +

√
α(ε, n, τ)2 + β(ε, n, τ)

√
ε/p

))
as desired.

A.6 Proofs for Section 3.5

Lemma A.6.1 (Lemma 3.5.1). Suppose the adversarial rewards are unbounded, and in a
particular iteration t, the adversarial contaminate ε(t) fraction of the episodes, then given M
episodes, it is guaranteed that if ε(t) ≤ c, for some absolute constant c, and any constant

177
τ ∈ [0, 1], we have

E
[
Es,a∼d(t)

[(
Qπ(t)(s, a)− φ(s, a)>w(t)

)2]]
(A.83)

≤ O

((
W 2 + σW

1− γ

)(√
ε(t) + f(d, τ)M− 1

2 + τ
))

.

where f(d, τ) =
√
d log d+

√
log(1/τ).

Proof of Lemma A.6.1. The proof of Lemma 3.5.1 follows by instantiating Theorem
A.5.3 to our specific linear regression problem instance. To specify the constants in
Theorem A.5.3, we make the following observations

1. By Lemma A.3.1, we have that ξ = 1
(1−γ)2 + σ2

1−γ .

2. Since ‖X‖≤ 1, EX∼Dx
[
XX>

]
≤ I , and thus s = 1.

3. max‖v‖=1 E
[
(v>X)4

]
≤ E [‖v‖4‖X‖4] ≤ 1, thus C = 1.

Plugging in the above instantiation to Theorem A.5.3 concludes the proof.

Theorem A.6.1 (Theorem 3.5.1). Under assumptions 4.2.1 and 3.3.2, given a desired
optimality gap α, there exists a set of hyperparameters agnostic to the contamination level ε,
such that Algorithm 2, using Algorithm 3 as the linear regression solver, guarantees with a
poly(1/α, 1/(1− γ), |A|,W, σ, κ) sample complexity that under ε-contamination, we have

E
[
V ∗(µ0)− V π̂(µ0)

]
(A.84)

≤ Õ

max
α,

√√√√ |A|κ (W 2 + σW)
(1− γ)4 ε1/4

 .
where π̂ is the uniform mixture of π(1) through π(T).

Proof of Theorem A.6.1. Denote z := 2W and again εstat ≤ (2W)2 = z2. Denote(
W 2 + σW

1−γ

)
= b. Notice that Lemma 3.5.1 only holds when ε(t) ≤ c for some

absolute constant c, and there are at most εT/c iterations in which ε(t) > c, which

178
incurs at most εstat ≤ z2 error. Given this observation we can now plugging Lemma
3.5.1 into Lemma 3.4.1, and we get

E
[

1
T

T∑
t=1
{V ∗(µ0)− V (t)(µ0)}

]

≤ W

1− γ

√
2 log|A|

T
+ 1
T

T∑
t=1

√√√√4|A|κε(t)stat
(1− γ)3

≤ W

1− γ

√
2 log|A|

T
+ z2

c
ε

+ 1
T

T∑
t=1

√√√√√4|A|κb
(√

ε(t) +
√

(d log d)/M +
√

log(1/τ)/M + τ
)

(1− γ)3

≤ W

1− γ

√
2 log|A|

T
+ z2

c
ε+

√√√√√4|A|κb
(√

(d log d)/M +
√

log(1/τ)/M + τ
)

(1− γ)3

+ 1
T

T∑
t=1

√√√√4|A|κb
√
ε(t)

(1− γ)3

≤ W

1− γ

√
2 log|A|

T
+ z2

c
ε+

√√√√√4|A|κb
(√

(d log d)/M +
√

log(1/τ)/M + τ
)

(1− γ)3

+

√√√√ 4|A|κb
(1− γ)3 ε

1/4

where the last two steps are by Cauchy Schwarz and the fact that the attacker only
has ε budget to distribute, which implies that ∑T

t=1 ε
(t) = Tε. Setting

T = 2W 2 log|A|
α2(1− γ)2 (A.85)

τ = α2(1− γ)3

4|A|bκ (A.86)

M = 16|A|2b2κ2

α4(1− γ)6 max [d log d, log(1/τ)] (A.87)

179
we get

E
[

1
T

T∑
t=1
{V ∗(µ0)− V (t)(µ0)}

]
≤ O

α +

√√√√ |A|κb
(1− γ)3 ε

1/4

 . (A.88)

with sample complexity

TM = 32W 2|A|2log|A|b2κ2

α6(1− γ)8 max [d log d, log(1/τ)] . (A.89)

A.7 Implementation Details of FPG-TRPO

In the experiment, we use a TRPO variant of FPG implementation, which differs
from Alg. 2 in several ways:

1. Most existing TRPO implementation uses the conjugate gradient (CG) method
instead of linear regression to solve for the matrix inverse vector product
problem. We follow this convention and design FPG-TRPO to use a filtered
conjugate gradient (FCG) subroutine to replace the standard CG produce.
The FPG procedure is detailed in Alg. 14. At a high level FCG performs a
filtering algorithm (a.k.a. outlier removal) on the residues of CG with respect
to each data point.

2. Again following existing TRPO implementations, FPG-TRPO builds another
network to estimate the value function for the purpose of variance reduction,
effectively resulting in an actor-critic algorithm. Instead of performing robust
learning procedure on both policy and value function learning, we perform
the main filtering algorithm on the policy learning procedure (the CG step
discussed above), which also returns a filtered subset of data as a by-product.
We then use this filtered subset of data to perform the rest of the learning
procedure, including value function update and the sample loss estimation

180
Algorithm 13 FPG-TRPO

1: Input: initial policy parameter θ0; initial value function parameter φ0.
2: Hyperparameters: KL-divergence limit δ; backtracking coefficient α; maximum

number of backtracking steps K; upper-bound of corruption level ε; episode
length H ; batch size M .

3: for k = 0, 1, . . . do
4: Collect set of M trajectories Dk = {τi}1:M by running policy πk = π(θk) in the

environment.
5: Compute rewards-to-go R̂t,i = ∑H

h=t γ
h−trh,i.

6: Using GAE to compute advantage estimate Ât,i based on the current value
function Vφk .

7: Compute and save ĝt,i = ∇θ log πθ(at,i, st,i)|θk for all t = 1 : H and i = 1 : M .
8: Call the filtered conjugate gradient algorithm in Alg. 14 to get Sk ⊂ [M] ×

[H], x̂k = FCG(ĝt,i, Ât,i).
9: Compute policy gradient estimate ĝk = 1

|Sk|
∑

(t,i)∈Sk ĝt,iÂt,i.
10: Update the policy by backtracking line search with

θk+1 = θk + αj
√

2δ
x̂kĝk

x̂k (A.90)

where j ∈ {0, 1, 2, ..., K} is the smallest value which improves the sample
loss and satisfies the sample KL-divergence constraint.

11: Fit the value function by regression on mean-squared error on the filtered
trajectories Sk:

φk+1 = argmin
φ

1
|Sk|

∑
(t,i)∈Sk

(
Vφ(st,i)− R̂t,i

)2
(A.91)

In practice, one often only take a few gradient steps in each iteration k, instead
of optimizing to convergence.

12: end for

in backtracking line search. This allows us to perform the robust learning
procedure only once per PG iteration.

3. FPG-TRPO uses a deterministic variant of the filtering algorithm suggested in
Diakonikolas et al. (2019b), which empirically performs better and is simpler

181
Algorithm 14 Filtered Conjugate Gradient (FCG)

1: Input: ĝt,i, Ât,i
2: Hyperparameters: Number of iterations r (default r = 4), fraction of data

filtered in each iteration p (default p = ε/2, i.e. filter out 2ε data in total).
3: Initialize S = {1, 2, . . . ,M}.
4: for k = 1, . . . , r do
5: Call standard CG to solve for x̂ = F̂−1ĝ, where F̂ = 1

S

∑
(t,i)∈S ĝt,iĝ

>
t,i and

ĝ = 1
S

∑
(t,i)∈S ĝt,iÂt,i.

6: Compute the residues rt,i = ĝt,iĝ
>
t,ix̂− ĝt,iÂt,i for (t, i) ∈ S and save in a matrix

G of size d× |S|.
7: Let v be the top right singular vector of G.
8: Compute the vector τ of outlier scores defined via τt,i =

(
r>t,iv

)2
.

9: Remove (HMp) number of (t, i) pair with the largest outlier scores from S.
10: end for
11: Call standard CG one more time and return (S, x̂).

to implement than the stochastic variant used for theoretical analysis. Specifi-
cally, the filtering algorithm will simply remove a fixed fraction of points with
the largest deviation along the top singular value direction (step 9 of Alg. 14).

The pseudo-code of FPG-TRPO can be found in Alg. 13. Similar to the NPG variant
of FPG, the only difference between Alg. 13 and a standard TRPO implementation
is the replacement of the CG subroutine with the FCG subroutine. This modular
implementation allows one to easily replace Alg. 14 with any state-of-the-art robust
CG procedure in the future. Table A.1 lists all the hyper-parameters we used in our
experiments, which are taken from open-source implementations of TRPO tuned
for the MuJoCo environments. Our code to reproduce the experiment result is
included in the supplementary material and will be open-sourced. Finally, Figure
A.1 presents the detailed results on all experiments, completing the partial results
shown in Figure 3.3.

182

Parameters Values Description
γ 0.995 discounting factor.
λ 0.97 GAE parameter Schulman et al. (2015b).
l2-reg 0.001 L2 regularization weight in value loss.
δ 0.01 KL constraint in TRPO.
damping 0.1 damping factor in conjugate gradient.
batch-size 25000 number of time steps per policy gradient iteration.
α 0.5 backtracking coefficient.
K 10 maximum number of backtracking steps.

Table A.1: Hyperparameters for FPG-TRPO.

183

0 50 100 150 200
iterations

0

100

200

300

Re
wa

rd
s

(a) TRPO on Swimmer

0 50 100 150 200
iterations

100

150

200

250

300

350

Re
wa

rd
s

(b) FPG on Swimmer

0 50 100 150 200
iterations

0.0

0.2

0.4

0.6

0.8

1.0

de
te

ct
io

n
Ra

tio

= 1
= 1
= 2
= 4
= 8
= 16
= 32
= 64

(c) Detection Ratio on Swimmer

0 50 100 150 200
iterations

0

500

1000

1500

2000

2500

3000

Re
wa

rd
s

(d) TRPO on Hopper

0 50 100 150 200
iterations

500

1000

1500

2000

2500

3000

Re
wa

rd
s

(e) FPG on Hopper

0 50 100 150 200
iterations

0.0

0.2

0.4

0.6

0.8

1.0

de
te

ct
io

n
Ra

tio

= 1
= 1
= 2
= 4
= 8
= 16
= 32
= 64

(f) Detection Ratio on Hopper

0 100 200 300 400 500
iterations

0

1000

2000

3000

4000

Re
wa

rd
s

(g) TRPO on Walker2d

0 100 200 300 400 500
iterations

1000

2000

3000

4000

Re
wa

rd
s

(h) FPG on Walker2d

0 100 200 300 400 500
iterations

0.0

0.2

0.4

0.6

0.8

1.0

de
te

ct
io

n
Ra

tio

= 1
= 1
= 2
= 4
= 8
= 16
= 32
= 64

(i) Detection Ratio on Walker2d

0 100 200 300 400 500
iterations

0

1000

2000

3000

4000

Re
wa

rd
s

(j) TRPO on HalfCheetah

0 100 200 300 400 500
iterations

1000

2000

3000

4000

Re
wa

rd
s

(k) FPG on HalfCheetah

0 100 200 300 400 500
iterations

0.0

0.2

0.4

0.6

0.8

1.0

de
te

ct
io

n
Ra

tio

= 1
= 1
= 2
= 4
= 8
= 16
= 32
= 64

(l) Detection Ratio on HalfCheetah

0 200 400 600 800 1000
iterations

1000

1500

2000

2500

3000

Re
wa

rd
s

(m) TRPO on Ant

0 200 400 600 800 1000
iterations

1000

1500

2000

2500

3000

Re
wa

rd
s

(n) FPG on Ant

0 200 400 600 800 1000
iterations

0.0

0.2

0.4

0.6

0.8

1.0

de
te

ct
io

n
Ra

tio

= 1
= 1
= 2
= 4
= 8
= 16
= 32
= 64

(o) Detection Ratio on Ant

0 200 400 600 800 1000
iterations

0

1000

2000

3000

4000

5000

Re
wa

rd
s

(p) TRPO on Humanoid

0 200 400 600 800 1000
iterations

1000

2000

3000

4000

5000

Re
wa

rd
s

(q) FPG on Humanoid

0 200 400 600 800 1000
iterations

0.0

0.2

0.4

0.6

0.8

1.0

de
te

ct
io

n
Ra

tio

= 1
= 1
= 2
= 4
= 8
= 16
= 32
= 64

(r) Detection Ratio on Humanoid

Figure A.1: Detailed Results on the MuJoCo benchmarks.

184
b appendix for chapter 4

B.1 Basics

Lemma B.1.1. ‖w∗h‖≤ H
√
d for all h.

Proof. By definition, we have

w∗h = θ +
∫
S
V̂h+1(s′)µh(s′)ds′ (B.1)

and thus

‖w∗h‖ ≤ ‖θ‖+‖
∫
S
V̂h+1(s′)µh(s′)ds′‖ (B.2)

≤ ‖θ‖+
∫
S
‖V̂h+1(s′)µh(s′)‖ds′ (B.3)

≤
√
d+ (H − h+ 1)

√
d (B.4)

≤ H
√
d. (B.5)

Lemma B.1.2. Note that E[[(r(s, a) + V̂ (s′))− (BhV̂)(s, a)]2|s, a] ≤ γ2 = (σ +H/2)2

Proof.

V ar(X + Y) =V ar(X) + V ar(Y) + 2Cov(X, Y) (B.6)

≤V ar(X) + V ar(Y) + 2
√
V ar(X)V ar(Y) (B.7)

Because 0 ≤ V̂ (s′) ≤ H ,

E[(V̂ (s′)− E[V̂ (s′)|s, a])2|s, a] = E[V̂ (s′)2|s, a]− E[V̂ (s′)|s, a]2 (B.8)

≤HE[V̂ (s′)|s, a]− E[V̂ (s′)|s, a]2 ≤ H2

4 . (B.9)

185
E[[(r(s, a) + V̂ (s′))− (BhV̂)(s, a)]2|s, a] (B.10)

=E[[(r(s, a) + V̂ (s′))− E[r(s, a) + V̂ (s′)|s, a]]2|s, a] (B.11)

=E[(r(s, a)− E[r(s, a)|s, a])2|s, a] + E[(V̂ (s′)− E[V̂ (s′)|s, a])2|s, a] (B.12)

+ 2E[(r(s, a)− E[r(s, a)|s, a])(V̂ (s′)− E[V̂ (s′)|s, a])|s, a] (B.13)

≤E[(r(s, a)− E[r(s, a)|s, a])2|s, a] + E[(V̂ (s′)− E[V̂ (s′)|s, a])2|s, a] (B.14)

+ 2
√
E[(r(s, a)− E[r(s, a)|s, a])2|s, a]E[(V̂ (s′)− E[V̂ (s′)|s, a])2|s, a] (B.15)

(By Cauchy’s Ineq) (B.16)

=V ar(r(s, a) | (s, a)) + V ar(V̂ (s′) | (s, a)) (B.17)

+ 2
√
V ar(r(s, a) | (s, a))V ar(V̂ (s′) | (s, a)) (B.18)

=
(√

V ar(r(s, a) | (s, a)) +
√
V ar(V̂ (s′) | (s, a))

)2
≤ (σ +H/2)2 (B.19)

B.2 Proof of the Minimax Lower-bound

Proof of Theorem 4.3.1. Given any dimension d, time horizonH , consider a tabular
MDP with action space sizeA > 2 and state space size S ≤

(
A
2

)H/2
s.t. SA = d. Con-

sider a “tree” with self-loops, which hasS nodes and depth dlogA/2
(
S
(
A
2 − 1

)
+ 1

)
e.

There is 1 node at the first level, A2 nodes at the second level,
(
A
2

)2
nodes at the third

level, …,
(
A
2

)dlogA/2(S(A2 −1)+1)e−2
nodes at the second to last level. The rest nodes

are all at the last level. Define the MDP induced by this graph, where each state
corresponds to a node, and each action corresponds to an edge. The agent always
starts from the first level. For each state at the first dlogA/2

(
S
(
A
2 − 1

)
+ 1

)
e − 2

levels, there are A/2 actions that lead to child nodes, and the rest leads back to that
state, i.e. self-loops. The leaf states are absorbing state, i.e. all actions lead to self-
loops. Denote this transition structure as P . Let’s consider two MDPs with the same
transition structure and different reward function, i.e. M = (P,R), M ′ = (P,R′).

For MDP M , define R(s∗, a∗) = Bernoulli(SAε/2) on one particular (s∗, a∗) pair,

186
where s∗ is a leaf state at the last level, a∗ is a self-loop action. Every other (s, a) pair
receive reward 0. Let (s′, a′) = argmin(s,a) ν(s, a) be the state-action pair appears
least often in the data collecting distribution. For MCP M ′, define R′(s∗, a∗) =
Bernoulli(SAε/2), R′(s′, a′) = Bernoulli(SAε) and 0 everywhere else. Then, it can
be easily verified that: on M , the expected cumulative reward of the optimal policy
is
(
H − dlogA/2

(
S
(
A
2 − 1

)
+ 1

)
e
)
SAε/2; onM ′, the expected cumulative reward of

the optimal policy is at least
(
H − dlogA/2

(
S
(
A
2 − 1

)
+ 1

)
e
)
SAε; no policy can be

simultaneously better than
(
H − dlogA/2

(
S
(
A
2 − 1

)
+ 1

)
e
)
SAε/4-optimal on both

M and M ′. Note that because S ≤
(
A
2

)H/2
,

(
H − dlogA/2

(
S
(
A

2 − 1
)

+ 1
)
e
)
SAε/4 = Ω(HSAε). (B.20)

With probability at least 1/2, we have N(s′, a′) ≤ Tν(s′, a′) ≤ T/SA by the
pigeonhole principle. Conditioning on N(s′, a′) ≤ T/SA, with probability at least
1/2, the amount of positive reward r(s′, a′) will not exceed SAεN(s′, a′) ≤ εT , and
thus an ε-contamination adversary can perturb all the positive rewards on (s′, a′) to
0. In other words, with probability 1/4, the learner will observe a dataset whose
likelihood under M and (M ′ + ε-contamination) are exactly the same, and thus the
learner must suffer at least Ω(HSAε) regret on one of the MDPs.

B.3 Proof of Upper-bounds

Proof of Lemma C.4.1. Applying Lemma B.6.2 with π = π̂, π′ = π̃, and {Q̂h}Hh=1

being the Q-functions constructed by the meta-algorithm, we have

V̂1(s)− V π̃
1 (s) =

H∑
h=1

Eπ̃
[
〈Q̂h(sh, ·), π̂h(·|sh)− π̃h(·|sh)〉A|s1 = s

]

+
H∑
h=1

Eπ̃
[
Q̂h(sh, ah)− (BhV̂h+1)(sh, ah)|s1 = s

]
(B.21)

187
Similarly, applying Lemma B.6.2 with π = π′ = π̂, we have

V̂1(s)− V π̂
1 (s) =

H∑
h=1

Eπ̂
[
Q̂h(sh, ah)− (BhV̂h+1)(sh, ah)|s1 = s

]
(B.22)

Then, we have

SubOpt(π̂, π̃) =
(
V π̂

1 (µ)− V̂1(µ)
)

+
(
V̂1(µ)− V π̂

1 (µ)
)

(B.23)

=−
H∑
h=1

Eπ̃
[
(BhV̂h+1)− Q̂h

]
+

H∑
h=1

Eπ̃
[
(BhV̂h+1)− Q̂h

]
(B.24)

+
H∑
h=1

Eπ̃
[
〈Q̂h(sh, ·), π̃h(·|sh)− π̂h(·|sh)〉A

]
(B.25)

≤0 + 2
H∑
h=1

Eπ̃[Γh(s, a)] + 0 (B.26)

=2
H∑
h=1

Eπ̃[Γh(s, a)] (B.27)

as needed.

Proof of Theorem 4.3.3. To simplify the notation, below we use M for the number
of data points per time step, i.e. M ∆= N/H . We first show that

|Q̂h(s, a)− (BhV̂h+1)(s, a)|≤ Γ(s, a). (B.28)

The robust least-square oracle guarantees

Eν
(
‖x>(ŵ − w∗)‖2

2

)
≤ c2(δ) ·

(
γ2poly(d)

M
+ γ2ε

)
(B.29)

=⇒ ‖ŵh − w∗h‖2
Σ ≤ c2(δ) ·

(
γ2poly(d)

M
+ γ2ε

)
(B.30)

=⇒ ‖ŵh − w∗h‖2
Σ+(2ε+λ)I ≤ c2(δ) ·

(
γ2poly(d)

M
+ γ2ε+ (2ε+ λ)H2d

)
(B.31)

188
Then,

|Q̂h(s, a)− (BhV̂h+1)(s, a)|= |φ(s, a)(ŵh − w∗h)| (B.32)

≤ ‖ŵh − w∗h‖(Σ+(2ε+λ)I)‖φ(s, a)‖(Σ+(2ε+λ)I)−1 (B.33)

≤

√√√√c2(δ) ·
(
γ2poly(d)

M
+ γ2ε+ (2ε+ λ)H2d

)
‖φ(s, a)‖(Σ+(2ε+λ)I)−1 (B.34)

≤
√
c2(δ) ·

(
γpoly(d)√

M
+ (γ + 2H

√
d)
√
ε+H

√
dλ)

)
‖φ(s, a)‖Λ−1 (B.35)

where the last step are due to W ≤ H
√
d and

Λ =3
5

(
1
M

M∑
i=1

φiφ
>
i + (ε+ λ) · I

)
(B.36)

�3
5

(
1
M

M∑
i=1

φ̃iφ̃
>
i + (2ε+ λ) · I

)
(B.37)

� (Σ + (2ε+ λ) · I) (B.38)

where φ̃ denotes the clean data and the last step applies Lemma B.6.3 because
M(2ε+ λ) ≥ Ω(d log(M/δ)) due to the definition of λ and ε ≥ 0.

Next, we show that Algorithm 4 achieves the desired optimality gap. By Lemma
C.4.1, we have

SubOpt(π̂) ≤ 2HEπ∗ [Γ(s, a)] (B.39)

≤
√
c2(δ) ·

(
γHpoly(d)√

N
+ (Hγ + 2H2

√
d)
√
ε+H2

√
dλ

)
Eπ∗ [‖φ(s, a)‖Λ−1] (B.40)

Focusing on the last term, applying Lemma B.6.3 again, we have

Ed∗ [‖φ(s, a)‖Λ−1] ≤Ed∗ [‖φ(s, a)‖(1
5 (Σ+λI))−1] (B.41)

=Ed∗

√φ>(1
5(Σ + λI))−1φ

 (B.42)

189

≤
√
Ed∗ [φ>(1

5(Σ + λI))−1φ] (B.43)

≤
√
tr
(

Σ∗(
1
5(Σ + λI))−1

)
(B.44)

≤
√
κtr

(
Σ(1

5(Σ + λI))−1
)

(B.45)

≤

√√√√5κ
d∑
i=1

σi
σi + λ

(B.46)

≤
√

5dκ (B.47)

Combining the two terms give the desired results.

B.4 Proof of uncorrupted learning results

In this section, we prove the conclusion in Corollary 4.3.1 and 4.3.2. The proof
follows closely the classic analysis of Least Squared Value Iteration (LSVI) methods
with the only difference being the data splitting, which allows us to ditch the
covering argument and obtain a tighter bound. Such a trick is only possible in the
offline setting where the data are assumed to be i.i.d. For completeness, we specify
the uncorrupted algorithm in Alg. 15.

190
Algorithm 15 Uncorrupted Least-Square Value Iteration (LSVI)

1: Input: Dataset D = {(si, ai, ri, s′i)}1:N ; pessimism bonus Γh(s, a) ≥ 0, λ > 0.
2: Split the dataset randomly into H subset: Dh = {(shi , ahi , rhi , s′hi)}1:(N/H), for
h ∈ [H].

3: Initialization: Set V̂H+1(s)← 0.
4: for step h = H,H − 1, . . . , 1 do
5: Set Λh ← H

M

∑N/H
i=1 φ(shi , ahi)φ(shi , ahi)> + λ · I .

6: Set ŵh ← Λ−1
h (H

N

∑N/H
i=1 φ(shi , ahi) · (rhi + V̂h+1(sh+1

i))).
7: Set Q̂h(s, a)← φ(s, a)>ŵh − Γh(s, a), clipped within [0, H − h+ 1].
8: Set π̂h(a|s)← argmaxa Q̂h(s, a) and V̂h(s)← maxa Q̂h(s, a).
9: end for

10: Output: {π̂h}Hh=1.

We first prove the following lemma:

Lemma B.4.1 (Bound on the Bellman Error). Under assumption 4.2.1, given a dataset
of size N , Algorithm 4 achieves

|(BhV̂h+1)(s, a)− Q̂h(s, a)|≤ H

√d · λ+
√
Hd log(N/δλ)

N

 ·√φ(x, a)>Λ−1
h φ(x, a)

for all (s, a, h) ∈ S ×A× [H], with probability at least 1− δ.

Proof. We start by applying the following decomposition

(BhV̂h+1)(s, a)− Q̂h(s, a) (B.48)

=(BhV̂h+1)(s, a)− (B̂hV̂h+1)(s, a) (B.49)

=φ(s, a)>wh − φ(s, a)>Λ−1
h

H
N

N/H∑
i=1

φ(si, ai) · (BhV̂h+1)(si, ai)


︸ ︷︷ ︸
(i)

− (B.50)

φ(s, a)>Λ−1
h

H
N

N/H∑
i=1

φ(si, ai) ·
(
ri + V̂h+1(s′i)− (BhV̂h+1)(si, ai)

)
︸ ︷︷ ︸

(ii)

(B.51)

191
Therefore, by triangle inequality we have

|(BhV̂h+1)(s, a)− Q̂h(s, a)|≤ |(i)|+|(ii)| (B.52)

Then, we bound the two terms separately:

|(i)| =

∣∣∣∣∣∣φ(s, a)>wh − φ(s, a)>Λ−1
h

H
N

N/H∑
i=1

φ(si, ai) · φ(si, ai)>wh

∣∣∣∣∣∣
=
∣∣∣φ(s, a)>wh − φ(s, a)>Λ−1

h (Λh − λ · I)wh| = λ · |φ(s, a)>Λ−1
h wh

∣∣∣
≤ λ · ‖wh‖Λ−1

h
·‖φ(s, a)‖Λ−1

h
≤ H
√
d · λ ·

√
φ(s, a)>Λ−1

h φ(s, a).

For the second term, define

εhi (V) = rhi + V (sh′i)− (BhV)(shi , ahi) (B.53)

Then, we have

|(ii)| =

∣∣∣∣∣∣φ(s, a)>Λ−1
h

H
N

N/H∑
i=1

φ(si, ai) · εhi (V̂h+1)
∣∣∣∣∣∣

≤
∥∥∥H
N

N/H∑
i=1

φ(si, ai) · εhi (V̂h+1)
∥∥∥

Λ−1
h︸ ︷︷ ︸

(iii)

·
√
φ(x, a)>Λ−1

h φ(x, a). (B.54)

From here, because of our data splitting, V̂h+1 is independent from Dh, and thus
we can bypass the covering argument and directly apply matrix concentrations. In
particular, by applying Lemma B.6.1, we have that with probability at least 1− δ

(iii) ≤ H

√
Hd log(1 +N/Hλ) + 2H log(1/δ)

N
(B.55)

192
Combining the two terms gives

|(BhV̂h+1)(s, a)− Q̂h(s, a)|≤ H

√d · λ+
√
Hd log(N/δλ)

N

 ·√φ(x, a)>Λ−1
h φ(x, a)

(B.56)

Now, given Lemma B.4.1, applying Lemma C.4.1, we have

SubOpt(π̂, π̃) ≤ 2
H∑
h=1

Edπ̃ [Γh(s, a)] (B.57)

≤2H2

√d · λ+
√
Hd log(N/δλ)

N

 · Edπ̃ [
√
φ(x, a)>Λ−1

h φ(x, a)] (B.58)

The last step would be to bound Edπ̃ [
√
φ(x, a)>Λ−1

h φ(x, a)], similar to the last
section. In particular, applying Lemma B.6.3, we have

Edπ̃
[√
φ(x, a)>Λ−1

h φ(x, a)
]
≤Edπ̃

[√
3φ(x, a)>(Σ + λI)φ(x, a)

]
(B.59)

≤
√

3Edπ̃ [φ(x, a)>(Σ + λ · I)φ(x, a)] (B.60)

≤
√

3dκ (B.61)

where step B.59 requires λ ≥ HΩ(d log(N/δ))/N . Thus,

SubOpt(π̂, π̃) ≤2H2
(√

d · λ+
√
Hd log(N/δλ)

)√3dκ
N

(B.62)

≤Õ

H2
(
d
√

log(N/δ) +
√
Hd log(N/(dδ))

)√3dκ
N

 (B.63)

B.5 Lower-bound on best-of-both-world results

Proof of Theorem 4.3.4. Consider two instances of the offline RL problem, with
two MDPs, M and M ′, both of which are actually simple two-arm bandit problems,

193
along with their data generating distribution ν and ν ′, defined below.

1. Instance 1: Bandit M has r1 = Bernoulli(1
2 + ε

2p) and r2 = Bernoulli(1
2). The

data generating distribution is ν(a1) = p and ν(a2) = 1 − p. The relative
condition number is 1/p.

2. Instance 2: Bandit M has r1 = Bernoulli(1
2 −

ε
2p) and r2 = Bernoulli(1

2). The
data generating distribution is ν(a1) = p and ν(a2) = 1− p, same as instance
1. The relative condition number is 1/(1− p).

Let D and D′ be i.i.d. datasets of size N generated by instances 1 and 2, respectively,
generated by the following coupling process. First, the actions are sampled from ν

and shared across instances, e.g. ND(a1) = ND′(a1) and ND(a2) = ND′(a2). Then,
the rewards of a2 are sampled from Bernoulli(1

2) and shared across tasks, e.g.
ND(a2, 0) = ND′(a2, 0) and ND(a2, 1) = ND′(a2, 1).

Finally, let Xi, Yi be Bernoulli random variables s.t. Xi =

0 U ≤ 1
2 −

ε
2p

1 o.w.
,

Yi =

0 U ≤ 1
2 + ε

2p

1 o.w.
, where U is picked uniformly random in [0, 1]. Then (Xi, Yi)

is a coupling with law: P ((Xi, Yi) = (0, 0)) = 1
2 −

ε
2p , P ((Xi, Yi) = (1, 0)) = 0,

P ((Xi, Yi) = (0, 1)) = ε
2p , P ((Xi, Yi) = (s3, s3)) = 1

2 −
ε

2p , Xi and Yi can be thought
as the outcome of Bernoulli(1

2 + ε
2p), Bernoulli(1

2 + ε
2p) respectively. Then, let the

rewards of a1 of the two instances be generated by Yi and Xi respectively. We then
have

P (
N(a1)∑
i=1

1IXi 6= Yi) ≥ P (N(a1) ≤ pN) · P (
pN∑
i=1

1IXi 6= Yi) ≥
1
2 ·

1
2 = 1

4 (B.64)

In other words, with probability at least 1
4 , instance 1 and 2 are indistinguish-

able under ε-contamination, in particular the adversary can replace at most εN
of (a1, 0) with (a1, 1) in D′ to replicate D. Therefore, instance 1 and (instance 2 +
ε-contamination) are with probability at least 1/4 indistinguishable. Now, if an
algorithm wants to achieve best of both world guarantee, it must return a1 as the

194
optimal arm with high probability when observing a dataset generated as above, in
which case it will suffer a suboptimality of ε

2p if the data is generated by (instance 2
+ ε-contamination). As p ≥ ε ≥ 0 goes to 0, this gap blows up, while the relative
condition number 1/(1− p) remains bounded, thus contradiction.

B.6 Technical Lemmas

Lemma B.6.1 (Concentration of Self-Normalized Processes (Abbasi-Yadkori et al.,
2011)). Let {εt}∞t=1 be a real-valued stochastic process that is adaptive to a filtration {Ft}∞t=0.
That is, εt is Ft-measurable for all t ≥ 1. Moreover, we assume that, for any t ≥ 1,
conditioning on Ft−1, εt is a zero-mean and σ-subGaussian random variable such that

E[εt|Ft−1] = 0 and E[exp(λεt)|Ft−1] ≤ exp(λ2σ2/2), ∀λ ∈ R. (B.65)

Besides, let {φt}∞t=1 be an Rd-valued stochastic process such that φt is Ft−1-measurable for
all t ≥ 1. Let M0 ∈ Rd×d be a deterministic and positive-definite matrix, and we define
Mt = M0 +∑t

s=1 φsφ
>
s for all t ≥ 1. Then for any δ > 0, with probability at least 1− δ,

we have for all t ≥ 1 that

∥∥∥ t∑
s=1

φs · εs
∥∥∥2

M−1
t

≤ 2σ2 · log
(det(Mt)1/2 det(M0)−1/2

δ

)
.

Lemma B.6.2 (Extended Value Difference (Cai et al., 2020)). Let π = {πh}Hh=1 and
π′ = {π′h}Hh=1 be two arbitrary policies and let {Q̂h}Hh=1 be any given Q-functions. For any
h ∈ [H], we define a value function V̂h:S → R by letting V̂h(x) = 〈Q̂h(x, ·), πh(·|x)〉A for
all s ∈ S. Then for all s ∈ S, we have

V̂1(s)− V π′

1 (s) =
H∑
h=1

Eπ′
[
〈Q̂h(sh, ·), πh(·|sh)− π′h(·|sh)〉A|s1 = s

]
(B.66)

195

+
H∑
h=1

Eπ′
[
Q̂h(sh, ah)− (BhV̂h+1)(sh, ah)|s1 = s

]
, (B.67)

where the expectation Eπ′ is taken with respect to the trajectory generated by π′, and Bh is
the Bellman operator.

Lemma B.6.3 (Concentration of Covariances (Zanette et al., 2021)). Let {φi}1:N ⊂
Rd be i.i.d. samples from an underlying bounded distribution ν, with ‖φi‖i≤ 1 and
covariance Σ. Define

Λ =
N∑
i=1

φiφ
>
i + λ · I (B.68)

for some λ ≥ Ω(d log(N/δ)). Then, we have that with probability at least (1− δ),

1
3(NΣ + λI) � Λ � 5

3(NΣ + λI) (B.69)

Proof. See (Zanette et al., 2021) Lemma 39 for a detailed proof.

196
c appendix for chapter 5

C.1 More Discussion on page 56:COW

Impossibility Result

Theorem C.1.1 (impossibility result). There exists a distribution D, s.t. given m data
batches

{{
xij
}nj
i=1

}
j∈[m]

generated under page 54, every robust mean estimation algorithm
A suffers an error of at least

Ω
(

1√
N

)
(C.1)

even A knows some of the batches are clean, where N is the sum of sizes of the smallest
(1− 2α)m good batches.

Proof of Theorem C.1.1. Let D be Bernoulli distribution with parameter 1
2 . W.l.o.g.,

assume G = [(1 − α)m], n1 ≤ · · · ≤ n(1−α)m and B = {(1− α)m+ 1, . . . ,m}. We
assume algorithm A knows [(1− 2α)m] is a subset of the good batches.

Let η = 1
2
√
N

= 1

2
√∑(1−2α)m

j=1 nj

. Let the bad batches B be i.i.d. samples from D′,

a Bernoulli distribution with parameter 1
2 + η. By Theorem 4 of (Paninski, 2008;

Chan et al., 2014), no algorithm can distinguish if the batches

{
xi1
}n1

i=1
, . . . ,

{
xi(1−2α)m

}n(1−2α)m

i=1

are sampled from D or D′. I.e. no algorithm can distinguish if

{(1− 2α)m+ 1, . . . , (1− α)m}

are good batches or B are good batches.
This means, given m data batches

{{
xij
}nj
i=1

}
j∈[m]

, every robust mean estimation

algorithm suffers an error at least Ω
(

1√
N

)
.

197
Adaption To Good Batch Perturbation And Distributed Learning

Compared to page 56, page 197 enlarges the confidence interval by ε on both
endpoints due to the perturbation and only requires some sufficient statistics from
the batches, instead of the whole dataset. When ncut > 0, meaning there are at least
2αm+ 1 non-empty batches, page 197 runs a modified COW algorithm to calculate
the mean estimation and the error upper bound . When ncut = 0, page 197 returns
0 and a trivial error upper bound.

Algorithm 16 Pert-COW
Require: Batch empirical means: µ̂1, . . . , µ̂m; batch sizes: n1, . . . , nm; subGaussian

parameter σ; corruption level α; confidence level δ
1: ncut ← the (2αm+ 1)-th largest batch size
2: if ncut ≤ 0 then
3: Error←∞
4: return µ̂← 0, Error
5: end if
6: Ij ←

[
µ̂j − σ√

ñj

√
2 log 2m

δ
− ε, µ̂j + σ√

ñj

√
2 log 2m

δ
+ ε

]
, ∀j ∈ [m]

7: C∗ ← argmaxC⊆[m]:
⋂
j∈C Ij 6=∅|C|

8: ñj ← min(nj, ncut),∀j ∈ [m]
9: µ̂← 1∑

j∈C∗ ñj

∑
j∈C∗ ñjµ̂j ,

10: Error← RHS of page 199
11: return µ̂, Error

C.2 Proof of Theorem 5.3.1

To prove Theorem 5.3.1, we show page 56 holds under some concentration event
while the event happens with high probability. We consider a slightly more general
setting where there could be perturbations to even good batches:

Definition C.2.1 (Robust mean estimation from batches). There aremdata providers
indexed by: {1, 2, . . . ,m} =: [m]. Among these providers, we denote the indexes of
uncorrupted providers by G and the indexes of corrupted providers by B, where

198
B ∪ G = [m], B ∩ G = ∅, |B| = αm. Any uncorrupted providers have access to
perturbed samples from a sub-Gaussian distribution D with mean µ and variance
proxy σ2 (i.e. EX∼D[X] = µ and EX∼D [exp (s (X − µ))] ≤ exp (σ2s2/2), ∀s ∈ R.).
For each j ∈ G, a data batch

{
x̃ij
}nj
i=1

is drawn from D, while a perturbed version{
xij
}nj
i=1

is sent to the learner, where nj can be arbitrary and
∣∣∣xij − x̃ij∣∣∣ ≤ ε for some

ε ≥ 0. For j ∈ B,
{
xij
}nj
i=1

can be arbitrary.

One can easily recover page 54 by letting ε = 0. page 197 only requires the
empirical mean µ̂j := 1

nj

∑nj
i=1 x

i
j and size nj of each batch j ∈ [m].. We first define

the concentration event as follows:

Definition C.2.2 (Concentration event). For all j ∈ G, define the event that the
empirical mean of clean batches is close to the population mean as:

Ej :=

|µ̂j − µ| ≤ σ
√
nj

√
2 log 2m

δ
+ ε

 (C.2)

Define the event that the weighted average of empirical means of clean batches is
close to the population mean as:

Ewa :=


∣∣∣∣∣∣ 1∑

j∈G ñj

∑
j∈G

ñjµ̂j − µ

∣∣∣∣∣∣ ≤ σ√∑
j∈G ñj

√
2 log 2

δ
+ ε

 (C.3)

Let Econc be the event that the events above happen together:

Econc := Ewa ∩
⋂
j∈G
Ej (C.4)

We can show Econc happens with high probability using Hoeffding’s inequality:

Lemma C.2.1. P (Econc) ≥ 1− 2δ.

Proof. See proof in page 199.

Under event Econc, we can give an upper bound on the estimation error:

199
Lemma C.2.2. Under event Econc, if ncut > 0, page 197 outputs a µ̂ with

|µ̂− µ| ≤ 2√∑
j∈[m] ñj

σ

√
2 log 2

δ
+ 8αm

√
ncut∑

j∈[m] ñj
σ

√
2 log 2m

δ
+ 5ε (C.5)

Proof. See proof in page 202.

Proof of Theorem 5.3.1. Consider ε = 0, i.e. no perturbation involved. By page 198
and page 199, with probability at least 1− 2δ,

|µ̂− µ| ≤ 2√∑
j∈[m] ñj

σ

√
2 log 2

δ
+ 8αm

√
ncut∑

j∈[m] ñj
σ

√
2 log 2m

δ
(C.6)

Proof of Lemma C.2.1

To prove page 198,

1. we first show that the perturbation changes the empirical mean of batches by
at most ε;

2. we can show the concentration bound of empirical means and weighted means
for the unperturbed samples;

3. we can conclude by using the two results above and triangular inequality.

The Probability Of Event
⋂
j∈G Ej : For all j ∈ G, let x̄j be the empirical mean of

unperturbed samples in batch j:

µ̄j := 1
nj

nj∑
i=1

x̃ij (C.7)

200
By triangular inequality:

|µ̄j − µ̂j| =
∣∣∣∣∣ 1
nj

nj∑
i=1

(xij − x̃ij)
∣∣∣∣∣ ≤ 1

nj

nj∑
i=1

ε = ε (C.8)

Since D is sub-Gaussian distribution, we can show the concentration of unper-
turbed samples mean µ̄j : for all good batch j ∈ G,

P (|µ̄j − µ| > t) ≤ 2 exp
(
−njt

2

2σ2

)
(C.9)

By union bound, with probability at least 1− δ, ∀j ∈ G,

|µ̄j − µ| ≤
σ
√
nj

√
2 log 2 |G|

δ
≤ σ
√
nj

√
2 log 2m

δ
(C.10)

By triangular inequality, with probability at least 1− δ, ∀j ∈ G,

|µ̂j − µ| ≤ |µ̂j − µ̄j|+ |µ̄j − µ| ≤
σ
√
nj

√
2 log 2m

δ
+ ε (C.11)

I.e. P
(⋂

j∈G Ej
)
≥ 1− δ.

The Probability Of Event Ewa: We first show the weighted average of empir-
ical mean of the unperturbed sample i.e., 1∑

j′∈G ñj′

∑
j∈G ñjµ̄j is a sub-Gaussian

random variable: firstly, note that the mean of the weighted average is µ, i.e.
E
[

1∑
j′∈G ñj′

∑
j∈G ñjµ̄j

]
= µ. By definition, we know for good batch j ∈ G, x̃1

j , . . . , x̃
nj
j

are i.i.d. sub-Gaussian random variable with mean µ and variance proxy σ2, i.e.

E
[
exp

(
s
(
x̃ij − µ

))]
≤ exp

(
σ2s2

2

)
∀s ∈ R. (C.12)

201
Since µ̄j = 1

nj

∑nj
i=1 x̃

i
j : for all s ∈ R,

E

exp
s

 1∑
j′∈G ñj′

∑
j∈G

ñjµ̄j − µ

 =
∏
j∈G

E
[
exp

(
s

(
1∑

j′∈G ñj′
ñj(µ̄j − µ)

))]

(C.13)

=
∏
j∈G

∏
i∈[nj]

E
[
exp

(
s∑

j′∈G ñj′

ñj
nj

(x̃ij − µ)
)]
≤
∏
j∈G

∏
i∈[nj]

exp
σ2

2

(
s∑

j′∈G ñj′

ñj
nj

)2


(C.14)

≤ exp
σ2

2

(
s∑

j′∈G ñj′

)2 ∑
j∈G

∑
i∈[nj]

(
ñj
nj

)2
 = exp

σ2

2

(
s∑

j′∈G ñj′

)2 ∑
j∈G

ñj
nj
ñj


(C.15)

≤ exp
σ2

2

(
s∑

j′∈G ñj′

)2 ∑
j∈G

ñj

 = exp

s2

2

 σ√∑
j′∈G ñj′

2
 (C.16)

This means 1∑
j′∈G ñj′

∑
j′∈G ñj′µ̄j is a sub-Gaussian random variable with variance

proxy σ2∑
j′∈G ñj′

. Thus ∀t > 0,

P

∣∣∣∣∣∣ 1∑
j′∈G ñj′

∑
j∈G

ñjµ̄j − µ

∣∣∣∣∣∣ > t

 ≤ 2 exp
(
−
∑
j′∈G ñj′t

2

2σ2

)
(C.17)

Thus with probability at least 1− δ:
∣∣∣∣∣∣ 1∑

j′∈G ñj′

∑
j∈G

ñjµ̄j − µ

∣∣∣∣∣∣ ≤ σ√∑
j′∈G ñj′

√
2 log 2

δ
(C.18)

This means:∣∣∣∣∣∣ 1∑
j′∈G ñj′

∑
j∈G

ñjµ̂j − µ

∣∣∣∣∣∣ (C.19)

202

≤

∣∣∣∣∣∣ 1∑
j′∈G ñj′

∑
j∈G

ñjµ̄j − µ

∣∣∣∣∣∣+
∣∣∣∣∣∣ 1∑

j′∈G ñj′

∑
j∈G

ñjµ̄j −
1∑

j′∈G ñj′

∑
j∈G

ñjµ̂j

∣∣∣∣∣∣ (C.20)

≤ σ√∑
j′∈G ñj′

√
2 log 2

δ
+ ε (C.21)

I.e. P (Ewa) ≥ 1− δ.
By union bound P (Econc) = P

(
Ewa ∩

⋂
j∈G Ej

)
≥ 1− 2δ.

Proof of Lemma C.2.2

By page 198, we know the weighted average of the empirical mean of good batches
is a proper estimation for the population mean. Compared to G, the C∗ returned
in page 197 in page 197 may remove some good batches and include some bad
batches. Even though, as long as we can show:

1. page 197 will not remove too many good batches and will not include too
many bad batches;

2. the bad batches included in C∗ will not be significant

then we can show that the x̂ returned in page 197 is a reasonable estimation for µ.

The Structure Of C∗: C∗ is the largest subset of batches with confidence interval
intersection. The confidence intervals of all the good batches intersect under event⋂
j∈G Ej , thus C∗ should be at least as large as G, thus it is not possible to remove

too many good batches. Furthermore, we can also show that we will significantly
reduce the total number of samples. Later on, we can show that the statistical rate
will not be affected too much. We make these ideas precise below.

Under event ⋂j∈G Ej ,
µ ∈

⋂
j∈G

Ij, (C.22)

where Ij is the confidence interval defined in page 197. Thus ⋂j∈G Ij 6= ∅.

203
Because C∗ maximizes

max
C s.t. ∅6=

⋂
j∈C Ij
|C|, (C.23)

we know |C∗|≥ |G|= (1− α)m. Furthermore, C∗ can include at most αm batches,
this means C∗ includes at least (1− 2αm) good batches. Formally:

|C∗ ∩ G|= |C∗ \ B|≥ |C∗|−|B|≥ (1− 2α)m. (C.24)

Now we show C∗ is not losing too much information, i.e. ∑j∈C∗ ñj ≥ 1
2
∑
j∈[m] ñj .

By definition of ncut, there are at least 2αm + 1 batches in [m] such that ñj = ncut.
Because C∗ removes at more αm batches, there are at least αm + 1 batches in C∗

such that ñj = ncut. I.e.

∣∣∣{j ∈ C∗ : ñj = ncut
}∣∣∣ =

∣∣∣{j ∈ [m] : ñj = ncut
}∣∣∣− ∣∣∣{j ∈ [m] \ C∗ : ñj = ncut

}∣∣∣
(C.25)

≥
∣∣∣{j ∈ [m] : ñj = ncut

}∣∣∣− |[m] \ C∗| (C.26)

≥2αm+ 1− αm = αm+ 1 (C.27)

This means the information loss ∑j∈[m]\G ñj can be bounded by ∑j∈C∗ ñj , formally:

2
∑
j∈C∗

ñj −
∑
j∈[m]

ñj =
∑
j∈C∗

ñj +
∑
j∈C∗

ñj −
∑

j∈[m]∩C∗
ñj −

∑
j∈[m]\C∗

ñj (C.28)

=
∑
j∈C∗

ñj −
∑

j∈[m]\C∗
ñj ≥ (αm+ 1)ncut − αmncut ≥ 0 (C.29)

Thus we have: ∑
j∈C∗

ñj ≥
1
2
∑
j∈[m]

ñj. (C.30)

Bad Batches In C∗: In order for a bad batch i to survive in C∗, its confidence
interval Ii must intersect with each good batch’s confidence interval in C∗. In
particular, Ii must intersect with the good batch in C∗ with the largest ñj . By
definition, there are at least αm + 1 good batches with ñj = ncut. Because C∗

204
excludes at most αm good batches, there is at least one good batch (denote by j∗),
s.t. ñj∗ = ncut.

Thus ∀j ∈ C∗ ∩ B, Ii ∩ Ij∗ 6= ∅. This means, there exists some point x, s.t.
x ∈ Ii ∩ Ij∗ , thus

|µ̂i − µ̂j∗| ≤ |µ̂i − x|+ |x− µ̂j∗| (C.31)

≤ σ
√
ni

√
2 log 2m

δ
+ ε+ σ

√
nj∗

√
2 log 2m

δ
+ ε (C.32)

≤
(

1√
ñi

+ 1√
ncut

)
σ

√
2 log 2m

δ
+ 2ε. (C.33)

Furthermore, under event ⋂j∈G Ej ,
|µ̂j∗ − µ| ≤

σ
√
nj∗

√
2 log 2m

δ
+ ε ≤ σ√

ncut

√
2 log 2m

δ
+ ε (C.34)

By triangular inequality, µ̂i will not be too far away from µ:

|µ̂i − µ| ≤ |µ̂i − µ̂j∗|+ |µ̂j∗ − µ| =
(

1√
ñi

+ 2√
ncut

)
σ

√
2 log 2m

δ
+ 3ε (C.35)

Error Decomposition: As mentioned earlier, we can decompose the estimation
of µ̂ returned by page 197 by: statistical error (with potential information loss),
term A1 in page 205; error coming from including bad batches, term A2 in page 205;
error coming from removing good batches, term A3 in page 205. Specifically:

|µ̂− µ| = 1∑
j∈C∗ ñj

∣∣∣∣∣∣
∑
j∈C∗

ñj(µ̂j − µ)

∣∣∣∣∣∣ (C.36)

= 1∑
j∈C∗ ñj

∣∣∣∣∣∣
∑
j∈G

+
∑

j∈C∗∩B
−

∑
j∈G\C∗

 ñj(µ̂j − µ)

∣∣∣∣∣∣ (C.37)

≤ 1∑
j∈C∗ ñj

∣∣∣∣∣∣
∑
j∈G

ñj(µ̂j − µ)

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑

j∈C∗∩B
ñj(µ̂j − µ)

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑

j∈G\C∗
ñj(µ̂j − µ)

∣∣∣∣∣∣
 (C.38)

205
(this is by triangular inequality) (C.39)

=:A1 + A2 + A3 (C.40)

We can bound the first term A1 by page 203 under event Ewa:

A1 = 1∑
j∈C∗ ñj

∣∣∣∣∣∣
∑
j∈G

ñj(µ̂j − µ)

∣∣∣∣∣∣ =
∑
j∈G ñj∑
j∈C∗ ñj

∣∣∣∣∣∣ 1∑
j∈G ñj

∑
j∈G

ñj(µ̂j − µ)

∣∣∣∣∣∣ (C.41)

=
∑
j∈G ñj∑
j∈C∗ ñj

∣∣∣∣∣∣ 1∑
j∈G ñj

∑
j∈G

ñjµ̂j − µ

∣∣∣∣∣∣ (C.42)

≤
∑
j∈G ñj∑
j∈C∗ ñj

 σ√∑
j∈G ñj

√
2 log 2

δ
+ ε

 (By event Ewa) (C.43)

=

√∑
j∈G ñj∑

j∈C∗ ñj
σ

√
2 log 2

δ
+
∑
j∈G ñj∑
j∈C∗ ñj

ε (C.44)

≤2

√∑
j∈G ñj∑

j∈[m] ñj
σ

√
2 log 2

δ
+
∑
j∈G ñj∑
j∈C∗ ñj

ε (By page 203) (C.45)

≤2

√∑
j∈[m] ñj∑
j∈[m] ñj

σ

√
2 log 2

δ
+
∑
j∈G ñj∑
j∈C∗ ñj

ε (By G ⊆ [m]) (C.46)

= 2√∑
j∈[m] ñj

σ

√
2 log 2

δ
+
∑
j∈G ñj∑
j∈C∗ ñj

ε (C.47)

By page 204, we can bound the second term A2 by:

A2 = 1∑
j∈C∗ ñj

∣∣∣∣∣∣
∑

j∈C∗∩B
ñj(µ̂j − µ)

∣∣∣∣∣∣ ≤ 1∑
j∈C∗ ñj

∑
j∈C∗∩B

ñj |µ̂j − µ| (C.48)

(By triangular ineq) (C.49)

≤ 1∑
j∈C∗ ñj

∑
j∈C∗∩B

ñj

(1
√
ñj

+ 2√
ncut

)
σ

√
2 log 2m

δ
+ 3ε

 (By page 204)

(C.50)

≤ 1∑
j∈C∗ ñj

∑
j∈C∗∩B

(√
ñj + 2ñj√

ncut

)
σ

√
2 log 2m

δ
+
∑
j∈C∗∩B ñj∑
j∈C∗ ñj

3ε (C.51)

206

≤ 1∑
j∈C∗ ñj

∑
j∈C∗∩B

3
√
ncutσ

√
2 log 2m

δ
+
∑
j∈C∗∩B ñj∑
j∈C∗ ñj

3ε (By ñj ≤ ncut) (C.52)

≤3αm
√
ncut∑

j∈C∗ ñj
σ

√
2 log 2m

δ
+
∑
j∈C∗∩B ñj∑
j∈C∗ ñj

3ε (C∗ includes at most αm bad batches)

(C.53)

We can bound the third term A3 by:

A3 = 1∑
j∈C∗ ñj

∣∣∣∣∣∣
∑

j∈G\C∗
ñj(µ̂j − µ)

∣∣∣∣∣∣ ≤ 1∑
j∈C∗ ñj

∑
j∈G\C∗

ñj |µ̂j − µ| (C.54)

(By triangular ineq) (C.55)

≤ 1∑
j∈C∗ ñj

∑
j∈G\C∗

ñj

 σ
√
nj

√
2 log 2m

δ
+ ε

 (
By event ⋂j∈G Ej) (C.56)

≤ 1∑
j∈C∗ ñj

∑
j∈G\C∗

ñj

 σ
√
ñj

√
2 log 2m

δ
+ ε

 (C.57)

= 1∑
j∈C∗ ñj

∑
j∈G\C∗

σ
√
ñj

√
2 log 2m

δ
+
∑
j∈G\C∗ ñj∑
j∈C∗ ñj

ε (C.58)

≤αm
√
ncut∑

j∈C∗ ñj
σ

√
2 log 2m

δ
+
∑
j∈G\C∗ ñj∑
j∈C∗ ñj

ε (C.59)

(Because C∗ excludes at most αm good batches and ñj ≤ ncut) (C.60)

Note that the above upper bounds for A2 and A3 are still valid even if some of the
ñj’s are zero.

In conclusion, we can bound the estimation error by:

|µ̂− µ| ≤A1 + A2 + A3 (C.61)

≤

 2√∑
j∈[m] ñj

σ

√
2 log 2

δ
+
∑
j∈G ñj∑
j∈C∗ ñj

ε

 (C.62)

+
3αm

√
ncut∑

j∈C∗ ñj
σ

√
2 log 2m

δ
+
∑
j∈C∗∩B ñj∑
j∈C∗ ñj

3ε
 (C.63)

207

+
αm√ncut∑

j∈C∗ ñj
σ

√
2 log 2m

δ
+
∑
j∈G\C∗ ñj∑
j∈C∗ ñj

ε

 (C.64)

= 2√∑
j∈[m] ñj

σ

√
2 log 2

δ
+ 4αm

√
ncut∑

j∈C∗ ñj
σ

√
2 log 2m

δ
(C.65)

+

(∑
j∈G +∑

j∈C∗∩B

)
ñj∑

j∈C∗ ñj
ε+

∑
j∈C∗∩B ñj∑
j∈C∗ ñj

2ε+
∑
j∈G\C∗ ñj∑
j∈C∗ ñj

ε (C.66)

≤ 2√∑
j∈[m] ñj

σ

√
2 log 2

δ
+ 4αm

√
ncut∑

j∈C∗ ñj
σ

√
2 log 2m

δ
(C.67)

+
∑
j∈[m] ñj∑
j∈C∗ ñj

ε+ αmncut∑
j∈C∗ ñj

2ε+ αmncut∑
j∈C∗ ñj

ε (C.68)

(By G ∪ (C∗ ∩ B) ⊆ [m], |C∗ ∩ B|≤ αm, |G \ C∗|≤ αm) (C.69)

≤ 2√∑
j∈[m] ñj

σ

√
2 log 2

δ
+ 8αm

√
ncut∑

j∈[m] ñj
σ

√
2 log 2m

δ
+ 5ε (C.70)

(By page 203 and page 203) (C.71)

C.3 Proof of Theorem 5.5.1

By following standard regret decomposition for UCB type of algorithm (see (Jin
et al., 2020b)), under the event that the estimation error of the Bellman operator is
bounded by bonus terms, we can decompose the regret by:

1. the cumulative bonus term occurred in the trajectories of each good agent

2. a term that can be easier bounded by Azuma-Hoeffding’s inequalities.

By page 199 and replacing page 198 with a variant for martingale, we can show
the event mentioned above happens with high probability. Unlike standard regret
bound for tabular settings, we cannot directly use the telescoping series to estimate
the cumulative bonuses. Instead, we first need to show that because each good
agent is using the same policy in every episode, their trajectories have a lot of

208
overlaps, meaning the (s, a, h) counts of all good agents do not differ by too much.
Given that, we can simplify the bound in page 199 and use the telescoping series.

We start by restating page 61:

Theorem C.3.1 (Regret bound, page 61). If α ≤ 1
3

(
1− 1

m

)
, for all δ < 1

4 , with
probability at least 1− 3δ:

K∑
k=1

∑
j∈G

(
V ∗1 (s1)− V π̂k

1 (s1)
)

= Õ

(1 + α
√
m)SH2

√
AKm log 1

δ

 (C.72)

We first give the high-level idea of our proof:

1. We give an analysis under the intersection of three “good events”:

• event E : the estimation error of Bellman operator is upper-bounded by
bonus (See page 215, page 216);

• event Eeven: if the total count ∑j∈G N
j,k
h (s, a, h) on some (s, a, h) is large,

then the counts of each agent differ by at most 2 times (See page 230,
page 230);

• event EAzmua: an error term in the regret decomposition is bounded by
Azmua-Hoeffding bound.

2. Under event E , we can decompose the regret into two terms (see page 225,
page 227):

• a martingale with bounded difference which is controlled by Hoeffding
bound under event EAzmua;

• the cumulative bonus term, which can be bounded by telescoping series
under event Eeven.

We use Q̄k
h, Q̂k

h, π̂kh, V̂ k
h , B̂kh, Γkh to denote the variables used in the k-th episode.

When synchronization happens in episode k, those variables are the updated ones
after the synchronization; when there is no synchronization in episode k, those
variables remain the same as in the last episode. Let N j,k

h (s, a) be the counts on

209
(s, a, h) tuples in episode k after the counts update. Formally, We start by restating
the data collection process and counts on (s, a, h) tuples of each good agent j ∈ G:
during the data collection process, we allow all of the agents to collect data together.
In the k-th episode, agent j collects a multi-set of transition tuples using policy dπ̂k :{(
sj,kh , a

j,k
h , r

j,k
h , sj,kh+1

)}
h∈[H]

.

Dj,k :=
⋃

h∈[H]
Dh
j,k :=

⋃
h∈[H]

⋃
k′≤k

{(
sj,k

′

h , aj,k
′

h , rj,k
′

h , sj,k
′

h+1

)}
(C.73)

N j,k
h (s, a) is given by:

N j,k
h (s, a) =

H∑
h=1

∑
(s̃,ã,r̃,s̃′)∈Dh

j,k

1 {(s, a) = (s̃, ã)} (C.74)

We give the formal definition of good events below:

Definition C.3.1.

EAzmua :=


K∑
k=1

∑
j∈G

H∑
h=1

(
Es′∼Ph(·|sj,k

h
,aj,k
h

)

[
V̂ k
h+1(s′)− V π̂k

h+1(s′)
]

(C.75)

−
(
V̂ k
h+1(sj,kh+1)− V π̂k

h+1(sj,kh+1)
))
≤
√

8mKH3 log 2
δ

 (C.76)

E :=

 ⋂
(s,a,h,k,f)∈S×A×H×K×[0,1]S

{∣∣∣(B̂khf) (s, a)− (Bhf) (s, a)
∣∣∣ ≤ Γkh(s, a)

} (C.77)

For any (s, a, h, k) ∈ S ×A× [H]× [K], we define the following event:

Eeven(s, a, h, k) (C.78)

:=
{

if ∑j∈G N
j,k
h (s, a) ≥ 400m log 2mKSAH

δ
, then maxi,j∈G

Nj,k
h

(s,a)
N i,k
h

(s,a)
≤ 2

}
(C.79)

210
And define

Eeven :=
⋂

s,a,h,K

Eeven(s, a, h, k). (C.80)

Proof of Theorem 5.5.1. By Azuma-Hoeffding inequality:

P
(
EAzmua

)
≤ δ (C.81)

Then by union bound: Lemma C.3.1 and Lemma C.3.7 together implies for all
0 < δ < 1

4 :

P
(
E ∪ Eeven ∪ EAzmua

)
≤ P

(
E
)

+ P
(
Eeven

)
+ P

(
EAzmua

)
≤ 3δ (C.82)

which means E ∩ Eeven ∩ EAzmua happens with probability at least 1− 3δ.
We now upper bound the regret under event E∩Eeven∩EAzmua. By Lemma C.3.6

we can decompose the regret by:

K∑
k=1

∑
j∈G

(
V ∗1 (s1)− V π̂k

1 (s1)
)

(C.83)

≤2
K∑
k=1

∑
j∈G

H∑
h=1

Γkh(s
j,k
h , a

j,k
h) (C.84)

+
K∑
k=1

∑
j∈G

H∑
h=1

(
Es′∼Ph(·|sk

h
,ak
h

)

[
V̂ k
h+1(s′)− V π̂k

h+1(s′)
]
−
(
V̂ k
h+1(sj,kh+1)− V π̂k

h+1(sj,kh+1)
))

(C.85)

(Under event E) (C.86)

≤2
K∑
k=1

∑
j∈G

H∑
h=1

Γkh(s
j,k
h , a

j,k
h) +

√
8mKH3 log 2

δ
(C.87)

(
Under event EAzmua

)
(C.88)

We only need to upper bound the cumulative bonus. Suppose the policy is updated
at the beginning of k0 +1, k1 +1, k2 +1, . . . , kl+1-th episodes, with the data collected
in the first k0, k1, k2, . . . , kl-th episodes, with k1 = 1. To simplify the notation, we

211
define k0 = 0, kl+1 = K.

For convenience, in the following, we use Nk
h (s, a) to denote the total count on

(s, a, h) tuples up to episode k over all good agents:

Nk
h (s, a) :=

∑
j∈G

N j,k
h (s, a), (C.89)

where N0
h(s, a) = 0. We can rearrange the cumulative bonus by summing over (s, a)

pairs:

K∑
k=1

∑
j∈G

H∑
h=1

Γkh(s
j,k
h , a

j,k
h) =

H∑
h=1

∑
(s,a)∈S×A

l+1∑
t=1

Γkt−1+1
h (s, a)

(
Nkt
h (s, a)−Nkt−1

h (s, a)
)

(C.90)

When there are less than (2αm + 1) agents have coverage on some (s, a, h) tuple,
the bonus term Γkh(s, a) is trivially set to be H − h+ 1. In the following, we show
that under the event Eeven, in (C.90), for each (s, a, h) tuple, there are at most 2N0

bonus term such that Γh(s, a) = H − h+ 1, where

N0 := 400m log 2mKSAH
δ

. (C.91)

For any (s, a, h), let l0(s, a, h) be such that:

N
kl0(s,a,h)−1
h (s, a) < N0 ≤ N

kl0(s,a,h)
h (s, a). (C.92)

This means when running the policy update at episode kl0(s,a,h) + 1, the total counts
for (s, a, h), i.e. Nkl0(s,a,h)

h (s, a), is larger than N0. For any k ≥ kl0(s,a,h), we have

∑
j∈G

N j,k
h (s, a) = Nk

h (s, a) ≥ N
kl0(s,a,h)
h (s, a) ≥ N0. (C.93)

212
By definition of Eeven, for any k ≥ kl0(s,a,h)

max
i,j∈G

N j,k
h (s, a)

N i,k
h (s, a)

≤ 2 (C.94)

this means for any k ≥ kl0(s,a,h), N j,k
h (s, a) > 0,∀j ∈ G, meaning all of the good

agents have coverage on (s, a, h), this means there are at least (1− α)m ≥ 2αm+ 1
agents have coverage, and thus:

• Trivial bonus can only happens at k ≤ kl0(s,a,h), i.e.

Γkh(s, a) = H − h+ 1 only if k ≤ kl0(s,a,h). (C.95)

Furthermore, in the algorithm, the agents synchronize and update their policy
when or before any (s, a, h) counts for a good agent doubles. I.e.: for all
(s, a, h, j, i) ∈ S ×A× [H]× G × [l]:

Nkt
h (s, a) ≤ 2Nkt−1

h (s, a) (C.96)

This means
N
kl0(s,a,h)
h (s, a) ≤ 2Nkl0(s,a,h)−1

h (s, a) < 2N0. (C.97)

Thus for each (s, a, h) tuple, there are at most 2N0 bonus terms such that
Γh(s, a) = H − h+ 1.

• for any k ≥ kl0(s,a,h) + 1

Γkh(s, a) = 6
SAHKm

+ 2(H − h+ 1)√∑
j∈[m] Ñ

j,k−1
h (s, a)

√
2 log 2(SAHKm)3S

δ
(C.98)

+
8αm

√
N cut,k−1
h (s, a)∑

j∈[m] Ñ
j,k−1
h (s, a)

(H − h+ 1)
√

2 log 2m(SAHKm)3S

δ
(C.99)

213
Where N cut,k−1

h (s, a) is the (2αm+ 1)-largest among
{
N j,k−1
h (s, a)

}
and

Ñ j,k−1
h (s, a) = max

(
N cut,k−1
h (s, a), N j,k−1

h (s, a)
)

; (C.100)

For any k − 1 ≥ kl0(s,a,h), maxi,j∈G
Nj,k−1
h

(s,a)
N i,k−1
h

(s,a)
≤ 2 implies ∀j, Ñ j,k−1

h (s, a) ≥
1
2N

j,k−1
h (s, a) and Ñ j,k−1

h (s, a) ≥ 1
2N

cut,k−1
h (s, a).

This means for any k ≥ kl0(s,a,h) + 1

1√∑
j∈[m] Ñ

j,k−1
h (s, a)

≤
√

2√∑
j∈[m] N

j,k−1
h (s, a)

=
√

2√
Nk−1
h (s, a)

(C.101)

m
√
N cut,k−1
h (s, a)∑

j∈[m] Ñ
j,k−1
h (s, a)

=
√
m
√∑

j∈[m] N
cut,k−1
h (s, a)∑

j∈[m] Ñ
j,k−1
h (s, a)

(C.102)

≤
√
m
√

2∑j∈[m] Ñ
j,k−1
h (s, a)∑

j∈[m] Ñ
j,k−1
h (s, a)

≤ 2
√
m√

Nk−1
h (s, a)

(C.103)

Thus

Γkh(s, a) ≤4 + 16
√

2α
√
m√

Nk−1
h (s, a)

H

√
log 2m(SAHKm)3S

δ
+ 6
SAHKm

(C.104)

We are now ready to bound the cumulative bonus:

K∑
k=1

∑
j∈G

H∑
h=1

Γkh(s
j,k
h , a

j,k
h) =

H∑
h=1

∑
(s,a)∈S×A

l+1∑
t=1

Γkt−1+1
h (s, a)

(
Nkt
h (s, a)−Nkt−1

h (s, a)
)

(C.105)

=
H∑
h=1

∑
(s,a)∈S×A

l0(s,a,h)∑
t=1

Γkt−1+1
h (s, a)

(
Nkt
h (s, a)−Nkt−1

h (s, a)
)

(C.106)

+
l+1∑

t=l0(s,a,h)+1
Γkt−1+1
h (s, a)

(
Nkt
h (s, a)−Nkt−1

h (s, a)
) (C.107)

214

≤
H∑
h=1

∑
(s,a)∈S×A

l0(s,a,h)∑
t=1

Γkt−1+1
h (s, a)

(
Nkt
h (s, a)−Nkt−1

h (s, a)
)

(C.108)

+
l+1∑

t=l0(s,a,h)+1

4 + 16
√

2α
√
m√

Nk−1
h (s, a)

H

√
log 2m(SAHKm)3S

δ

(
Nkt
h (s, a)−Nkt−1

h (s, a)
)

(C.109)

+
l+1∑

t=l0(s,a,h)+1

6
SAHKm

(
Nkt
h (s, a)−Nkt−1

h (s, a)
) (C.110)

(By page 213) (C.111)

=:A1 + A2 + A3. (C.112)

By (C.95) and (C.97),

A1 ≤ SAH2N
kl0(s,a,h)
h (s, a) ≤ 2SAH2N0. (C.113)

Because kl+1 = K,

A3 ≤
6

SAHKm

H∑
h=1

∑
(s,a)∈S×A

NK
h (s, a) = 6

SA
(C.114)

By (C.96),

l+1∑
t=l0(s,a,h)+1

Nkt
h (s, a)−Nkt−1

h (s, a)√
N
kt−1
h (s, a)

(C.115)

≤(
√

2 + 1)
l+1∑

t=l0(s,a,h)+1

Nkt
h (s, a)−Nkt−1

h (s, a)√
Nkt
h (s, a) +

√
N
kt−1
h (s, a)

(C.116)

=(
√

2 + 1)
l+1∑

t=l0(s,a,h)+1

(√
Nkt
h (s, a)−

√
N
kt−1
h (s, a)

)
≤ (
√

2 + 1)
√
NK
h (s, a) (C.117)

By Cauchy–Schwarz inequality,

∑
(s,a)∈S×A

√
NK
h (s, a) ≤

√ ∑
(s,a)∈S×A

1
∑

(s,a)∈S×A
NK
h (s, a) =

√
SAKm (C.118)

215
Thus

A2 ≤(
√

2 + 1)(4 + 16
√

2α
√
m)H2

√
SAKm

√
log 2m(SAHKm)3S

δ
(C.119)

=O
(1 + α

√
m)H2S

√
AKm

√
log SAHKm

δ

 (C.120)

Thus

A1 + A2 + A3 ≤O

(1 + α
√
m)H2S

√
AKm

√
log SAHKm

δ

 (C.121)

+O
(
SAH2m log 2mKSAH

δ

)
(C.122)

In conclusion:

K∑
k=1

∑
j∈G

(
V ∗1 (s1)− V π̂k

1 (s1)
)
≤2

K∑
k=1

∑
j∈G

H∑
h=1

Γkh(s
j,k
h , a

j,k
h) +

√
8mKH3 log 2

δ
(C.123)

=Õ
(1 + α

√
m)SH2

√
AKm log 1

δ

 (C.124)

The Good Event E

We first show that our bonus is upper confidence bound for the estimated Bellman
operator. Recall that our bonus term used in k-th episode is calculated based on
the data collected in the first k − 1-episodes. The bonus is given by:

• If |j ∈ [m] : N j,k−1
h (s, a) > 0|< 2αm+ 1

Γkh(s, a) = H − h+ 1; (C.125)

216
• If |j ∈ [m] : N j,k−1

h (s, a) > 0|≥ 2αm+ 1

Γkh(s, a) := 6
SAHKm

+ 2(H − h+ 1)√∑
j∈[m] Ñ

j,k−1
h (s, a)

√
2 log 2(SAHKm)3S

δ
(C.126)

+
8αm

√
N cut,k−1
h (s, a)∑

j∈[m] Ñ
j,k−1
h (s, a)

(H − h+ 1)
√

2 log 2m(SAHKm)3S

δ

(C.127)

Where N cut,k−1
h (s, a) is the (2αm+ 1)-largest among

{
N j,k−1
h (s, a)

}
and

Ñ j,k−1
h (s, a) = max

(
N cut,k−1
h (s, a), N j,k−1

h (s, a)
)
. (C.128)

To be precise:

Lemma C.3.1 (Valid bonus). Let E be the following event:

E =

 ⋂
(s,a,h,k,f)∈S×A×H×K×[0,1]S

{∣∣∣(B̂khf) (s, a)− (Bhf) (s, a)
∣∣∣ ≤ Γkh(s, a)

} (C.129)

Then, we have
P (E) ≥ 1− δ (C.130)

To show that E is a high probability event, we seek to utilize the result of page 55.
Since there are two obstacles, we need to make some modifications:

1. Because the transition tuples are collected sequentially, they are no longer
i.i.d., which means page 198 does not hold trivially. To resolve this, we use
the concentration of martingale (see page 219);

2. Event E shows the concentration property of B̂ holds uniformly for infinitely
many f ’s. Thus a direct union bound does not apply. Instead, we need to
use a cover number argument for all possible f ’s, which is standard (see (Jin
et al., 2020b)).

217
Proof of Lemma C.3.1. Let E ′ be the following event:

E ′ =
{
N cut,k−1
h (s, a) > 0

}
. (C.131)

In the following, we decompose E by:

E =
(
E ∩ E ′

)
∪ (E ∩ E ′) (C.132)

and bound P (E) by law of total probability.
If N cut,k−1

h (s, a) = 0, because
(
B̂khf

)
(s, a) = 0 and (Bhf) (s, a) ≤ H − h+ 1, with

probability 1, ∀(s, a, h, k, f) ∈ S ×A×H ×K × [0, 1]S ,

∣∣∣(B̂khf) (s, a)− (Bhf) (s, a)
∣∣∣ ≤ Γkh(s, a) (C.133)

This means
P
(
E ∩ E ′

)
= P

(
E|E ′

)
P
(
E ′
)

= P
(
E ′
)

(C.134)

If N cut,k−1
h (s, a) > 0, we use a covering number argument and union bound to

bound the probability of event E .
Consider Vε :=

{
1
d1/εe ,

2
d1/εe , . . . ,

Hd1/εe
d1/εe

}S
, an ε cover of [0, H]S , in the sense of

∞-norm. We can bound the cover number by |Vε| ≤
(
H
(

1
ε

+ 1
))S

. This means
∀f ∈ [0, H]S , we can find an Vf ∈ Vε, s.t. ‖f − Vf‖∞:= maxx∈S |f(x)− Vf (x)|≤ ε. In
other words,

[0, H]S =
⋃

fε∈Vε
{f : ‖f − fε‖∞≤ ε} . (C.135)

Importantly, unlike the model-based method without bad agents, our B̂ is not a
linear operator, meaning we cannot trivially upper bound

∣∣∣(B̂khf) (s, a)−
(
B̂khVf

)
(s, a)

∣∣∣
in the cover number argument. Instead, we need to use the continuity of error
bound of our robust mean estimation Algorithm 16, meaning as long as each data
point collected by each agent is not perturbed too much, then the estimation error

218
bound does not increase too much.

Recall that in Algorithm 6, at episode k, if the agents decide to synchronize, then
at each step h, given any function f , the clean agents will calculate the empirical
mean for {

r + f(s′) : (s, a, r, s′) ∈ Dj,k
h

}
. (C.136)

Let fε be an element in Vε, s.t. ‖fε − f‖∞≤ ε, this means set (C.136) is a perturbed
version (by at most ε) of

{
r + fε(s′) : (s, a, r, s′) ∈ Dj,k

h

}
. (C.137)

This means given an fε ∈ Vε, for any f , s.t. ‖f − fε‖∞≤ ε, Algorithm 16 can be
used to robustly estimate (Bhfε) (s, a), given set (C.136). Furthermore, choosing
ε = 1

SAHKm
, by Lemma C.3.2, Lemma C.3.3 and page 199, given any s, a, h, k, fε,

and any f , s.t. ‖f − fε‖∞≤ ε, with probability at least 1− δ
(SAHKm)3S/(2mK) ,

∣∣∣(B̂khf) (s, a)− (Bhfε) (s, a)
∣∣∣ ≤ Γkh(s, a)− 1

SAHKm
. (C.138)

We can bound the
∣∣∣(B̂khf) (s, a)− (Bhf) (s, a)

∣∣∣ by:

∣∣∣(B̂khf) (s, a)− (Bhf) (s, a)
∣∣∣ (C.139)

≤
∣∣∣(B̂khf) (s, a)− (Bhfε) (s, a)

∣∣∣+ |(Bhfε) (s, a)− (Bhf) (s, a)| (C.140)

≤
∣∣∣(B̂khf) (s, a)− (Bhfε) (s, a)

∣∣∣+ 1
SAHKm

(C.141)

Then

P

 ⋃
s,a,h,k,f

{∣∣∣(B̂khf) (s, a)− (Bhf) (s, a)
∣∣∣ > Γkh(s, a)

} (C.142)

≤
∑
s,a,h,k

P

 ⋃
f∈[0,H]S

{∣∣∣(B̂khf) (s, a)− (Bhf) (s, a)
∣∣∣ > Γkh(s, a)

} (C.143)

219

≤
∑
s,a,h,k

P

 ⋃
fε∈Vε

⋃
f :‖f−fε‖∞≤ε

{∣∣∣(B̂khf) (s, a)− (Bhfε) (s, a)
∣∣∣+ 1

SAHKm
> Γkh(s, a)

}
(C.144)

≤
∑
s,a,h,k

∑
fε∈Vε

P

 ⋃
f :‖f−fε‖∞≤ε

{∣∣∣(B̂khf) (s, a)− (Bhfε) (s, a)
∣∣∣+ 1

SAHKm
> Γkh(s, a)

}
(C.145)

≤SAHK(H(1 +HSAKm))S δ

(SAHKm)3S/(2mK) ≤ δ (C.146)

This means

P (E ∩ E ′) = P (E|E ′)P (E ′) ≥ (1− δ)P (E ′) ≥ P (E ′)− δ (C.147)

In conclusion,

P (E) = P (E ∩ E ′) + P
(
E ∩ E ′

)
≥ P (E) + P (E ′)− δ = 1− δ. (C.148)

Concentration Of Estimation From Good Agents

Lemma C.3.2. Let:

(
B̂j,kh f

)
(s, a) := 1

N j,k
h (s, a)

∑
(s,a,r,s′)∈Dj,k

h

r + f(s′), (C.149)

where we define 0
0 = 0. For any f : S 7→ [H], and for any (s, a, h, k) ∈ S×A×[H]×[K]

with probability at least 1− δ/2, Econc−seq(s, a, h, k) happens, where

Econc−seq(s, a, h, k) =
⋂
j∈G
Ec−seq(s, a, h, j, k), (C.150)

220
and

Ec−seq(s, a, h, j, k) :=

∣∣∣(B̂j,kh f) (s, a)− (Bhf) (s, a)
∣∣∣ ≤ H − h+ 1√

Ñ j,k
h (s, a)

√
2 log 4Km

δ


(C.151)

Proof of Lemma C.3.2. We use the martingale stopping time argument in Lemma 4.3
of (Jin et al., 2018).

For each fixed (s, a, h, j) ∈ S×A×[H]×G: for all t ∈ [K], define

Ft := σ

⋃
t′≤t

⋃
j∈[m]

{(
sj,t
′

h , aj,t
′

h , rj,t
′

h , sj,t
′

h+1

)}H
h=1

 . (C.152)

Let
Xt =

∑
(s,a,r,s′)∈Dj,t

h

(r + f(s′)− (Bhf) (s, a)) (C.153)

Then {(Ft, Xt)}Kt=1 is a martingale. One observation is Xt1 = Xt2 if agent j did not
visit (s, a, h) in t1 + 1, t1 + 2, . . . , t2-th episodes. Thus we can use the stopping time
idea to shorten the martingale sequence.

Define the following sequence of ti’s: t0 := 0,

ti := min
({
t′ ∈ [K] : t′ > ti−1 and (sj,t

′

h , aj,t
′

h) = (s, a)
}
∪ {K + 1}

)
. (C.154)

Intuitively, ti is the episode when (s, a, h) is visited by agent j for the i-th time. If
agent j visit (s, a, h) for less than i times, then ti = K + 1. By definition, ti is a
stopping time w.r.t. {Ft}Kt=1.

By optional sampling theorem, {(Fti , Xti)}
K
i=1 is a martingale.

By Azuma-Hoeffding’s inequality: for any τ ≤ K

P (|Xtτ | ≥ β) ≤ 2 exp
(
− 2β2

4τ(H − h+ 1)2

)
(C.155)

Let δ
2mK = 2 exp

(
− 2β2

4τ(H−h+1)2

)
, we get: for any (s, a, h, j), for any τ ≤ K, with

221
probability at least 1− δ

2mK :
∣∣∣∣∣∣∣

∑
(s,a,r,s′)∈Dj,tτ

h

(r + f(s′)− (Bhf) (s, a))

∣∣∣∣∣∣∣ <
√
τ(H − h+ 1)

√
2 log 4mK

δ
. (C.156)

By union bound, for any (s, a, h, j), with probability at least 1− δ
mK

, for any τ ≤ K:
∣∣∣∣∣∣∣

∑
(s,a,r,s′)∈Dj,tτ

h

(r + f(s′)− (Bhf) (s, a))

∣∣∣∣∣∣∣ <
√
τ(H − h+ 1)

√
2 log 4mK

δ
. (C.157)

This means for any (s, a, h, j, k) and any τ ≤ k

P
(
Ec−seq(s, a, h, j, k)

∣∣∣N j,k
h (s, a) = τ

)
(C.158)

≤P

∣∣∣(B̂j,kh f) (s, a)− (Bhf) (s, a)
∣∣∣ ≥ H − h+ 1√

N j,k
h (s, a)

√
2 log 4Km

δ

∣∣∣∣∣∣N j,k
h (s, a) = τ


(C.159)

≤ δ

mK
(C.160)

Thus

P
(
Ec−seq(s, a, h, j, k)

)
=

k∑
τ=0

P
(
Ec−seq(s, a, h, j, k)

∣∣∣N j,k
h (s, a) = τ

)
P
(
N j,k
h (s, a) = τ

)
(C.161)

≤ δ

2mK (C.162)

By union bound

P (Econc−seq(s, a, h, k)) ≥ 1− δ

2 . (C.163)

222
Lemma C.3.3. Let:

(
B̂j,kh f

)
(s, a) := 1

N j,k
h (s, a)

∑
(s,a,r,s′)∈Dj,k

h

r + f(s′), (C.164)

(
B̂G,kh f

)
(s, a) := 1∑

j∈G Ñ
j,k
h (s, a)

∑
j∈G

Ñ j,k
h (s, a)

(
B̂j,kh f

)
(s, a), (C.165)

where we define 0
0 = 0. For any f : S 7→ [H], with probability at least 1−δ/2, Ect(s, a, h, k)

happens, where

Ect(s, a, h, k) :=

∣∣∣(B̂G,kh f
)

(s, a)− (Bhf) (s, a)
∣∣∣ ≤ H − h+ 1√∑

j∈G Ñ
j,k
h (s, a)

√
2 log 4mK

δ


(C.166)

Proof of Lemma C.3.3. During the data-collecting process, the agents are allowed to
collect data simultaneously. For analysis purposes, we artificially order the data in
the following sequence:

E1,1, E2,1, . . . , Em,1, E1,2, . . . , Em,2, . . . , E1,K , . . . , Em,K (C.167)

where Ej,k :=
{(
sj,kh , a

j,k
h , r

j,k
h , sj,kh+1

)}H
h=1

. Let

Ft = σ

 ⋃
j,k s.t. m(k−1)+j≤t

Ej,k

 . (C.168)

Then {Ft}mKt=0 forms a valid filtration. Let
{
{γj,k}j∈[m]

}
k∈[K]

be a fixed set of scalar,
s.t. 0 ≤ γj,k ≤ 1, for all j, k.

For each fixed (s, a, h) ∈ S×A×[H]: for all t ∈ [mK], Let

Xt =
∑

(s,a,r,s′)∈
⋃

(j,k)∈G×[K] s.t. m(k−1)+j≤t
Ej,k

γj,k (r + f(s′)− (Bhf) (s, a)) (C.169)

Then {(Ft, Xt)}mKt=1 is a martingale. As we can see, if good agent j did not visit (s, a, h)

223
in episode k, then Xm(k−1)+j = Xm(k−1)+j−1 a.s. Thus we can use the stopping time
idea to shorten the martingale sequence.

Define the following functions to map from sequence index to agent index and
episode index:

J (t) := t−m (dt/me − 1) , K(t) := dt/me (C.170)

For any n1, . . . , nm, define the following sequence of ti’s: t0 := 0,

ti := min
({
t′ ∈ [mK] : t′ > ti−1 and (sJ (t′),K(t′)

h , a
J (t′),K(t′)
h) = (s, a) (C.171)

and for all j ≤ J (t′), N j,K(t′)
h ≤ nj; j > J (t′), N j,K(t′)−1

h ≤ nj
}
∪ {K + 1}

)
.

(C.172)

Intuitively, ti is the episode when (s, a, h) is visited in sequence page 222 for the i-th
time. And for all j, agent j have not collected nj (s, a, h) tuples. If (s, a, h) is visited
for less than i times or there exists agent j visiting (s, a, h) more than nj times, then
ti = K + 1. By definition, ti is a stopping time w.r.t. {Ft}mKt=1 .

In particular, let ncut be the (2αm+ 1)th-largest of all nj’s and ñj = min(ncut, nj).
We choose γj,k := ñj

nj
≤ 1.

By optional sampling theorem, {(Fti , Xti)}
mK
i=1 is a martingale.

By Azuma-Hoeffding’s inequality: for any τ := ∑
j∈[m] nj ≤ mK

P (|Xtτ | ≥ β) ≤ 2 exp
− 2β2

4(H − h+ 1)2∑τ
t=1 γ

2
J (t),K(t)

 (C.173)

Let δ
2mK = 2 exp

(
− 2β2

4(H−h+1)2
∑τ

t=1 γ
2
J (t),K(t)

)
, we get: for any (s, a, h), for any τ ≤ mK,

with probability at least 1− δ
2mK :

|Xtτ | <

√√√√ τ∑
t=1

γ2
J (t),K(t)(H − h+ 1)

√
2 log 4mK

δ
. (C.174)

224
By union bound, for any (s, a, h), with probability at least 1− δ

2 , for any τ ≤ mK:

|Xtτ | <

√√√√ τ∑
t=1

γ2
J (t),K(t)(H − h+ 1)

√
2 log 4mK

δ
. (C.175)

This means for any (s, a, h, k) ∈ S×A×[H]×[K] and any τ ≤ mk

P
(
Ect(s, a, h, k)

∣∣∣N j,k
h (s, a) = nj,∀j

)
(C.176)

≤P


∣∣∣(B̂G,kh f

)
(s, a)− (Bhf) (s, a)

∣∣∣ ≥ (H − h+ 1)
√∑τ

t=1
Ñ
J (t),K(t)
h

(s,a)
N
J (t),K(t)
h

(s,a)∑
j∈G Ñ

j,k
h (s, a)

(C.177)

·
√

2 log 4SAHmK2

δ

∣∣∣∣∣∣N j,k
h (s, a) = nj, ∀j

 (C.178)

≤P


∣∣∣(B̂G,kh f

)
(s, a)− (Bhf) (s, a)

∣∣∣ ≥ (H − h+ 1)
√∑τ

t=1

(
Ñ
J (t),K(t)
h

(s,a)
N
J (t),K(t)
h

(s,a)

)2

∑
j∈G Ñ

j,k
h (s, a)

(C.179)

·
√

2 log 4SAHmK2

δ

∣∣∣∣∣∣N j,k
h (s, a) = nj, ∀j

 (C.180)

≤δ2

(
By γj,k = Ñj,k

h
(s,a)

Nj,k
h

(s,a)

)
(C.181)

Thus

P
(
Ect(s, a, h, k)

)
=

∑
(n1,...,nm)∈[K]m

P
(
Ect(s, a, h, k)

∣∣∣N j,k
h (s, a) = nj,∀j

)
(C.182)

P
(
N j,k
h (s, a) = nj, ∀j

)
(C.183)

≤δ2 (C.184)

225
The Regret Decomposition For UCB Style Algorithm

We follow the regret decomposition strategy in (Jin et al., 2020b) under event E , i.e.
the estimation error for the Bellman operator is bounded by the bonus term.

The estimated Bellman operator can be used to approximate the Q function:

Lemma C.3.4. Under event E , for any (s, a, h, k) ∈ S ×A×H ×K, and any policy π′

∣∣∣(B̂khV̂ k
h+1

)
(s, a)−Qπ′

h (s, a)− Es′∼Ph(·|s,a)
[
V̂ k
h+1(s′)− V π′

h+1(s′)
]∣∣∣ ≤ Γkh(s, a) (C.185)

Proof of Lemma C.3.4.

∣∣∣(B̂khV̂ k
h+1

)
(s, a)−Qπ′

h (s, a)− Es′∼Ph(·|s,a)
[
V̂ k
h+1(s′)− V π′

h+1(s′)
]∣∣∣ (C.186)

≤
∣∣∣(B̂khV̂ k

h+1

)
(s, a)−

(
BhV̂ k

h+1

)
(s, a)

∣∣∣ (C.187)

+
∣∣∣(BhV̂ k

h+1

)
(s, a)−

(
BhV π′

h+1

)
(s, a)− Es′∼Ph(·|s,a)

[
V̂ k
h+1(s′)− V π′

h+1(s′)
]∣∣∣ (C.188)(

By triangular inequality and the fact that
(
BhV π′

h+1

)
(s, a) = Qπ′

h (s, a).
)

(C.189)

≤Γkh(s, a) (C.190)

(We can bound the first term by the definition of event E , (C.191)

and the second term is zero by the definition of Bellman operator.) (C.192)

Under event E we can upper bound the value function and Q function of the
optimal policy by the estimated value function and Q function of policy π̂k:

Lemma C.3.5 (Optimism). Under event E , ∀s, a, h, k:

Q̂k
h(s, a) ≥ Q∗h(s, a), V̂ k

h (s) ≥ V ∗h (s) (C.193)

Proof of Lemma C.3.5. We prove this by induction on h. Before that, note that, for
any h, k, s, if

Q̂k
h(s, a) ≥ Q∗h(s, a), ∀a (C.194)

226
then because π̂k is chosen by maximizing Q̂k

h(s, a), we know

V̂ k
h (s) = max

a
Q̂k
h(s, a) ≥ Q̂k

h(s, π∗h(a)) ≥ Q∗h(s, π∗h(a)) = V ∗h (s) (C.195)

This means for any h, k, s:

{
∀a, Q̂k

h(s, a) ≥ Q∗h(s, a)
}

=⇒
{
V̂ k
h (s) ≥ V ∗h (s)

}
(C.196)

We now begin our induction:

• For the base case, our goal is to show for any s, a, k, in the last step H ,

Q̂k
H(s, a) ≥ Q∗H(s, a), V̂ k

H(s) ≥ V ∗H(s) (C.197)

First note that V̂H+1 = V ∗H+1 = 0. By Lemma C.3.4 and choose π′ = π∗,

∣∣∣(B̂kH V̂ k
H+1

)
(s, a)−Q∗h(s, a)

∣∣∣ ≤ ΓkH(s, a) (C.198)

By definition of Q̂k
H(s, a), and the fact that Q∗h(s, a) only contains the reward at

step H , which is bounded by 1:

Q̂k
H(s, a) = min

((
B̂kH V̂ k

H+1

)
(s, a) + ΓkH(s, a), 1

)
≥ Q∗H(s, a) (C.199)

By (C.196), V̂ k
H(s) ≥ V ∗H(s),∀s.

• Suppose for any s, a, k, the statement holds for step h+ 1, i.e.

Q̂k
h+1(s, a) ≥ Q∗h+1(s, a), V̂ k

h+1(s) ≥ V ∗h+1(s) (C.200)

our goal is to show ∀s, a, k:

Q̂k
h(s, a) ≥ Q∗h(s, a), V̂ k

h (s) ≥ V ∗h (s) (C.201)

(
B̂khV̂ k

h+1

)
(s, a) + Γkh(s, a) (C.202)

227
≥
(
B̂khV̂ k

h+1

)
(s, a) +

∣∣∣(B̂khV̂ k
h+1

)
(s, a)−Q∗h(s, a)− Es′∼Ph(·|s,a)

[
V̂ k
h+1(s′)− V ∗h+1(s′)

]∣∣∣
(C.203)

(By Lemma C.3.4 and let π′ = π∗) (C.204)

≥Q∗h(s, a) + Es′∼Ph(·|s,a)
[
V̂ k
h+1(s′)− V ∗h+1(s′)

]
(C.205)

(By triangular inequality) (C.206)

≥Q∗h(s, a) (C.207)(
∀s, V̂ k

h+1(s′) ≥ V ∗h+1(s′) by page 226
)

(C.208)

By definition of Q function Q∗h(s, a) ≤ H − h+ 1. Thus

Q̂k
h(s, a) = min

((
B̂khV̂ k

h+1

)
(s, a) + Γkh(s, a), H − h+ 1

)
≥ Q∗h(s, a) (C.209)

By (C.196), V̂ k
h (s) ≥ V ∗h (s),∀s.

We are now ready to prove the regret decomposition lemma:

Lemma C.3.6. Under good event E :

K∑
k=1

∑
j∈G

(
V ∗1 (s1)− V π̂k

1 (s1)
)

(C.210)

≤2
K∑
k=1

∑
j∈G

H∑
h=1

Γkh(s
j,k
h , a

j,k
h) (C.211)

+
K∑
k=1

∑
j∈G

H∑
h=1

(
Es′∼Ph(·|sk

h
,ak
h

)

[
V̂ k
h+1(s′)− V π̂k

h+1(s′)
]
−
(
V̂ k
h+1(sj,kh+1)− V π̂k

h+1(sj,kh+1)
))

(C.212)

Proof of Lemma C.3.6. We start by showing the decomposition of regret after step h
in one episode of a single agent: by Lemma C.3.4 and Lemma C.3.5, under event E ,

228
for any s, k, h

V ∗h (s)− V π̂k

h (s) ≤ V̂ π̂k

h (s)− V π̂k

h (s) (By Lemma C.3.5) (C.213)

=Q̂k
h(s, π̂kh(s))−Qπ̂k

h (s, π̂kh(s)) (C.214)

≤
(
B̂khV̂ k

h+1

)
(s, a) + Γkh(s, a)−Qπ̂k

h (s, π̂kh(s))
(
By definition of Q̂k

h

)
(C.215)

≤
∣∣∣(B̂khV̂ k

h+1

)
(s, π̂kh(s))−Qπ̂k

h (s, π̂kh(s))− Es′∼Ph(·|s,π̂k
h

(s))

[
V̂ k
h+1(s′)− V π̂k

h+1(s′)
]∣∣∣
(C.216)

+
∣∣∣Qπ̂k

h (s, π̂kh(s)) + Es′∼Ph(·|s,π̂k
h

(s))

[
V̂ k
h+1(s′)− V π̂k

h+1(s′)
]∣∣∣ (C.217)

+ Γkh(s, a)−Qπ̂k

h (s, π̂kh(s)) (C.218)

(By using triangular inequality on the first term) (C.219)

≤Γkh(s, π̂kh(s)) +Qπ̂k

h (s, π̂kh(s)) + Es′∼Ph(·|s,π̂k
h

(s))

[
V̂ k
h+1(s′)− V π̂k

h+1(s′)
]

(C.220)

+ Γkh(s, a)−Qπ̂k

h (s, π̂kh(s)) (C.221)(
The first term is by using Lemma C.3.4 with π′ = π̂k, (C.222)

the term inside the absolute in the second is non-negative by Lemma C.3.5)
(C.223)

=2Γkh(s, π̂kh(s)) + Es′∼Ph(·|s,π̂k
h

(s))

[
V̂ k
h+1(s′)− V π̂k

h+1(s′)
]

(C.224)

This indeed gives a recursive formula: for any trajectory
{

(skh, akh, rkh, skh+1)
}
h∈[H]

V̂ π̂k

h (skh)− V π̂k

h (skh) (C.225)

≤2Γkh(skh, π̂kh(skh)) + Es′∼Ph(·|sk
h
,π̂k
h

(sk
h

))

[
V̂ k
h+1(s′)− V π̂k

h+1(s′)
]

(C.226)

=V̂ k
h+1(skh)− V π̂k

h+1(skh) + 2Γkh(skh, π̂kh(skh)) (C.227)

+
(
Es′∼Ph(·|sk

h
,π̂k
h

(sk
h

))

[
V̂ k
h+1(s′)− V π̂k

h+1(s′)
]
−
(
V̂ k
h+1(skh)− V π̂k

h+1(skh)
))

(C.228)

Then, we can show the regret decomposition in one episode of a single agent by
recursion:

for any trajectory
{

(skh, akh, rkh, skh+1)
}
h∈[H]

collected by a clean agent under policy

229
π̂k:

V ∗1 (sk1)− V π̂k

1 (sk1) ≤ V̂ k
1 (sk1)− V π̂k

1 (sk1) (C.229)

≤
(
V̂ k

2 (sk2)− V π̂k

2 (sk2)
)

+ 2Γk1(sk1, ak1) (C.230)

+
(
Es′∼P1(·|sk1 ,ak1)

[
V̂ k

2 (s′)− V π̂k

2 (s′)
]
−
(
V̂ k

2 (sk2)− V π̂k

2 (sk2)
))

(C.231)

≤
(
V̂ k

3 (sk3)− V π̂k

3 (sk3)
)

+
2∑

h=1
2Γkh(skh, akh) (C.232)

+
2∑

h=1

(
Es′∼Ph(·|sk

h
,ak
h

)

[
V̂ k
h+1(s′)− V π̂k

h+1(s′)
]
−
(
V̂ k
h+1(skh+1)− V π̂k

h+1(skh+1)
))

(C.233)

≤ · · · (C.234)

≤
H∑
h=1

2Γkh(skh, akh) (C.235)

+
H∑
h=1

(
Es′∼Ph(·|sk

h
,ak
h

)

[
V̂ k
h+1(s′)− V π̂k

h+1(s′)
]
−
(
V̂ k
h+1(skh+1)− V π̂k

h+1(skh+1)
))

(C.236)

Now we are ready to show the total regret decomposition. For each episode, we
can make the regret decomposition w.r.t. any trajectory collected by a clean agent
following policy π̂k. For convenience, we specialize the trajectories to be exactly
the ones that are collected by the good agents and are used to calculate the bonus
terms. The purpose is, in the future, when we bound the regret, we need to bound
the cumulative bonus used in the trajectory. By decomposing the regret w.r.t. the
trajectory collected in the algorithm, it is naturally guaranteed that the (s, a, h)
tuples that are collected a lot by the good agents have a lower bonus. This is
because, with more data collected, we can narrow down the confidence interval
and design small but still valid bonus terms.

Because in our MDP definition, the MDP has a deterministic initial distribution,
meaning the good agents always have the same starting state:

K∑
k=1

∑
j∈G

(
V ∗1 (s1)− V π̂k

1 (s1)
)

=
K∑
k=1

∑
j∈G

(
V ∗1 (sj,k1)− V π̂k

1 (sj,k1)
)

(C.237)

230

≤2
K∑
k=1

∑
j∈G

H∑
h=1

Γkh(s
j,k
h , a

j,k
h) (C.238)

+
K∑
k=1

∑
j∈G

H∑
h=1

(
Es′∼Ph(·|sj,k

h
,aj,k
h

)

[
V̂ k
h+1(s′)− V π̂k

h+1(s′)
]
−
(
V̂ k
h+1(sj,kh+1)− V π̂k

h+1(sj,kh+1)
))

(C.239)

Evenness Of Clean Agents

We need at least (2αm + 1)-agents to cover (s, a, h) in order to learn the Bellman
operator properly. In this section, we show that the agents have “even” coverage on
the visited (s, a, h) tuples in each (except a relatively small number) of the episodes.
In the following we use m̃ := (1− α)m = |G| to denote the number of good agents.

Formally, we have:

Lemma C.3.7 (Even coverage of good agent). For any (s, a, h, k) ∈ S×A× [H]× [K],
we define the following event:

Eeven(s, a, h, k) :=
{

if ∑j∈G N
j,k
h (s, a) ≥ 400m log 2mKSAH

δ
, then maxi,j∈G

Nj,k
h

(s,a)
N i,k
h

(s,a)
≤ 2

}
(C.240)

then, we have: for all 0 < δ < 1
4

P

 ⋂
(s,a,h,k)∈S×A×[H]×[K]

Eeven(s, a, h, k)
 ≥ 1− 2δ (C.241)

Remark C.3.1 (Intuition of the good event). The event Eeven(s, a, h, k) characterizes
that: if in any episode k, a (s, a, h) tuple gets enough coverage from the clean agents,
then the coverage of each agent are very close.

See proof of Lemma C.3.7 in Section C.3.

231
Proof of Lemma C.3.7

Proof of Lemma C.3.7 depends on the concentration of N j,k
h (s, a):

Lemma C.3.8 (Concentration of counts around empirical mean). For all 0 < δ < 1
4

P

 ⋃
s,a,h,k,j


∣∣∣∣∣∣N j,k

h (s, a)− 1
|G|

∑
j∈G

N j,k
h (s, a)

∣∣∣∣∣∣ (C.242)

> 18 log 2SAHmK
δ

+ 4
√

log 2SAHmK
δ

√√√√ 1
|G|

∑
j∈G

N j,k
h (s, a)


 < 2δ (C.243)

Proof of Lemma C.3.8. See page 233.

Proof of Lemma C.3.7. Let

N0 := 400m log 2mKSAH
δ

(C.244)

For any (s, a, h, k) ∈ S ×A× [H]× [K], define events:

E1(s, a, h, k) :=

∑
j∈G

N j,k
h (s, a) ≥ N0

 (C.245)

E2(s, a, h, k) :=
{

max
i,j∈G

N j,k
h (s, a)

N i,k
h (s, a)

≤ 2
}

(C.246)

Recall:

Eeven(s, a, h, k) (C.247)

:=
{

if ∑j∈G N
j,k
h (s, a) ≥ 400m log 2mKSAH

δ
, then maxi,j∈G

Nj,k
h

(s,a)
N i,k
h

(s,a)
≤ 2

}
(C.248)

Then we can rewrite even Eeven(s, a, h, k) as:

Eeven(s, a, h, k) = E1(s, a, h, k) ∪ E2(s, a, h, k) (C.249)

232
We first show that if there are two N j,k

h ’s, whose ratio exceeds 2, then there must be
some N j,k

h that deviates a lot from the empirical mean of N j,k
h ’s:

E2(s, a, h, k) =
{

max
i,j∈G

N j,k
h (s, a)

N i,k
h (s, a)

> 2
}

(C.250)

⊆
⋃
i∈G

N i,k
h (s, a) > 498

400
1
|G|

∑
j∈G

N j,k
h (s, a)

 ∪ ⋃
i∈G

N i,k
h (s, a) < 302

400
1
|G|

∑
j∈G

N j,k
h (s, a)


(C.251)

=
⋃
i∈G

N i,k
h (s, a)− 1

|G|
∑
j∈G

N j,k
h (s, a) > 98

400
1
|G|

∑
j∈G

N j,k
h (s, a)

 (C.252)

∪
⋃
i∈G

N i,k
h (s, a)− 1

|G|
∑
j∈G

N j,k
h (s, a) < − 98

400
1
|G|

∑
j∈G

N j,k
h (s, a)

 (C.253)

=
⋃
i∈G


∣∣∣∣∣∣N i,k

h (s, a)− 1
|G|

∑
j∈G

N j,k
h (s, a)

∣∣∣∣∣∣ > 98
400

1
|G|

∑
j∈G

N j,k
h (s, a)

 (C.254)

To show that Eeven(s, a, h, k) happens w.h.p.:

P

 ⋃
s,a,h,k

Eeven(s, a, h, k)
 = P

 ⋃
s,a,h,k

E1(s, a, h, k) ∪ E2(s, a, h, k)
 (C.255)

=P

 ⋃
s,a,h,k

E1(s, a, h, k) ∩ E2(s, a, h, k)
 (C.256)

≤P

∃s, a, h, k,∑
j∈G

N j,k
h (s, a) ≥ N0, (C.257)

∃i ∈ G,

∣∣∣∣∣∣N i,k
h (s, a)− 1

|G|
∑
j∈G

N j,k
h (s, a)

∣∣∣∣∣∣ > 98
400

1
|G|

∑
j∈G

N j,k
h (s, a)

 (C.258)

(By (C.254)) (C.259)

≤P

∃s, a, h, k, i
∣∣∣∣∣∣N i,k

h (s, a)− 1
|G|

∑
j∈G

N j,k
h (s, a)

∣∣∣∣∣∣ (C.260)

233

>
18
400

1
|G|

N0 + 4
√

1
400

1
|G|

N0

√√√√ 1
|G|

∑
j∈G

N j,k
h (s, a)

 (C.261)

=P

∃s, a, h, k, i
∣∣∣∣∣∣N i,k

h (s, a)− 1
|G|

∑
j∈G

N j,k
h (s, a)

∣∣∣∣∣∣ (C.262)

> 18 log 2mKSAH
δ

+ 4
√

log 2mKSAH
δ

√√√√ 1
|G|

∑
j∈G

N j,k
h (s, a)

 (C.263)

<2δ (By Lemma C.3.8) (C.264)

Proof of Lemma C.3.8

The high-level ideas are:

1. For each s, a, h,

• for each j ∈ G, define centered N j,k
h (s, a) as a martingale;

• define centered ∑j∈G N
j,k
h (s, a) as a martingale;

2. apply a modified Bernstein type of martingale concentration bound for both
centered N j,k

h (s, a)’s and centered∑j∈G N
j,k
h (s, a) (see page 233 and page 234);

3. because N j,k
h (s, a) and 1

m̃

∑
j∈G N

j,k
h (s, a) have the same mean, we can use tri-

angular inequality to show these two terms are close, and the distance is
bounded by the variance term in Bernstein inequality.

4. Bernstein on 1
m̃

∑
j∈G N

j,k
h (s, a) also allow us to bound its variance in terms of

itself.

5. We can get our result by combining Step 3 and Step 4.

234
Lemma C.3.9 (Concentration of each N j,k

h (s, a)). For all 0 < δ ≤ 1/4, with probability
at least 1− δ, for all (s, a, h, j, k) ∈ S×A×[H]×G×[K]:

∣∣∣∣∣N j,k
h (s, a)−

k∑
t=1

dπ̂
t

h (s, a)
∣∣∣∣∣ < 3 log 2SAHmK

δ
+

√√√√2
k∑
t=1

dπ̂
t

h (s, a) log 2SAHmK
δ

(C.265)

Proof of Lemma C.3.9. See page 235

Lemma C.3.10 (Concentration of each 1
m̃

∑
j∈G N

j,k
h (s, a)). For all 0 < δ ≤ 1/4, with

probability at least 1− δ, for all (s, a, h, k) ∈ S×A×[H]×[K]:

∣∣∣∣∣∣
∑
j∈G

N j,k
h (s, a)− |G|

k∑
t=1

dπ̂
t

h (s, a)

∣∣∣∣∣∣ < 3 log 2SAHmK
δ

+

√√√√2|G|
k∑
t=1

dπ̂
t

h (s, a) log 2SAHmK
δ

(C.266)

Proof of Lemma C.3.10. See page 236

Proof of Lemma C.3.8. Let EN the intersection of the events in page 233 and page 234.
Then by page 233 and page 234, EN happens with probability at least 1 − 2δ. By
page 234,

√√√√ k∑
t=1

dπ̂
t

h (s, a) ≤ 4
√

log 2SAHmK
δ

+
√√√√ 1
|G|

∑
j∈G

N j,k
h (s, a) (C.267)

By page 234 and page 234, for all s, a, h, j, k
∣∣∣∣∣∣ 1
|G|

∑
j′∈G

N j′,k
h (s, a)−N j,k

h (s, a)

∣∣∣∣∣∣ (C.268)

≤
∣∣∣∣∣N j,k

h (s, a)−
k∑
t=1

dπ̂
t

h (s, a)
∣∣∣∣∣+

∣∣∣∣∣∣ 1
|G|

∑
j′∈G

N j′,k
h (s, a)−

k∑
t=1

dπ̂
t

h (s, a)

∣∣∣∣∣∣ (C.269)

≤6 log 2SAHmK
δ

+ 2

√√√√2
k∑
t=1

dπ̂
t

h (s, a) log 2SAHmK
δ

(C.270)

235

≤6 log 2SAHmK
δ

+ 2
√

2 log 2SAHmK
δ

4
√

log 2SAHmK
δ

+
√√√√ 1
|G|

∑
j∈G

N j,k
h (s, a)


(C.271)

≤18 log 2SAHmK
δ

+ 4
√

log 2SAHmK
δ

√√√√ 1
|G|

∑
j∈G

N j,k
h (s, a) (C.272)

Proof of Lemma C.3.9

Proof of Lemma C.3.9. For each fixed (s, a, h, j) ∈ S×A×[H]×G: for all t ∈ [K], de-
fine

Fk := σ

⋃
t≤k

⋃
j∈[m]

{(
sj,th , a

j,t
h , r

j,t
h , s

j,t
h+1

)}H
h=1

 . (C.273)

Let

Sj,kh (s, a) =N j,k
h (s, a)−

k∑
t=1

dπ̂
t

h (s, a) (C.274)

T j,kh (s, a) =
k∑
t=1

dπ̂
t

h (s, a)
(
1− dπ̂th (s, a)

)
(C.275)

Then
{(
Fk, Sj,kh (s, a)

)}K
t=k

is a martingale. Since dπ̂kh (s, a) depends on π̂k, which is
calculated use data in the first k − 1 episodes, then dπ̂kh (s, a) ∈ Fk−1. By page 243,

P

 K⋃
k=1

|Sj,kh (s, a)|≥ 3 log 2SAHmK
δ

+

√√√√2
k∑
t=1

dπ̂
t

h (s, a) log 2SAHmK
δ




(C.276)

≤P

 K⋃
k=1

|Sj,kh (s, a)|≥ 3 log 2SAHmK
δ

+
√

2T j,kh (s, a) log 2SAHmK
δ


 ≤ δ

SAHm

(C.277)

236
By union bound, with probability at least 1− δ, ∀(s, a, h, j, k) ∈ S×A×[H]×G×[K]:

|Sj,kh (s, a)|< 3 log 2SAHmK
δ

+

√√√√2
k∑
t=1

dπ̂
t

h (s, a) log 2SAHmK
δ

(C.278)

Proof of Lemma C.3.10

Proof of Lemma C.3.10. During the data-collecting process, the agents are allowed
to collect data simultaneously. For analysis purposes, we artificially order the data
in the following sequence:

E1,1, E2,1, . . . , Em,1, E1,2, . . . , Em,2, . . . , E1,K , . . . , Em,K (C.279)

where Ej,k :=
{(
sj,kh , a

j,k
h , r

j,k
h , sj,kh+1

)}H
h=1

. Let

Ft = σ

 ⋃
j,k s.t. m(k−1)+j≤t

Ej,k

 . (C.280)

Then {Ft}mKt=0 forms a valid filtration. Define the following functions to map from
sequence index to agent index and episode index:

J (t) := t−m (dt/me − 1) , K(t) := dt/me (C.281)

For each fixed (s, a, h) ∈ S×A×[H], for all t ∈ [mK], we define SG,th (s, a) as the
(centered) total counts of (s, a, h) collected by all good agents up to time t. The t-th
term in page 236 could be in the center of an episode, meaning some agents have
not collected their trajectories yet. So we need to treat the agents differently: Let

SG,th (s, a) =
∑

j∈G,j≤J (t)

N j,K(t)
h (s, a)−

K(t)∑
t=1

dπ̂
t

h (s, a)
 (C.282)

237

+
∑

j∈G,j>J (t)

N j,K(t)−1
h (s, a)−

K(t)−1∑
t=1

dπ̂
t

h (s, a)
 (C.283)

Then
{(
Ft, SG,th (s, a)

)}mK
t=1

is a martingale. Similar to page 233, define

T G,th (s, a) =
∑

j∈G,j≤J (t)

K(t)∑
t=1

dπ̂
t

h (s, a)
(
1− dπ̂th (s, a)

)
(C.284)

+
∑

j∈G,j>J (t)

K(t)−1∑
t=1

dπ̂
t

h (s, a)
(
1− dπ̂th (s, a)

)
(C.285)

Then by page 243,

P

 ⋃
k∈[K]


∣∣∣∣∣∣
∑
j∈G

N j,k
h (s, a)− |G|

k∑
t=1

dπ̂
t

h (s, a)

∣∣∣∣∣∣ ≥ 3 log 2SAHmK
δ

(C.286)

+

√√√√2|G|
k∑
t=1

dπ̂
t

h (s, a) log 2SAHmK
δ


 (C.287)

≤P

 ⋃
k∈[K]


∣∣∣∣∣∣
∑
j∈G

N j,k
h (s, a)− |G|

k∑
t=1

dπ̂
t

h (s, a)

∣∣∣∣∣∣ ≥ 3 log 2SAHmK
δ

(C.288)

+

√√√√2|G|
k∑
t=1

dπ̂
t

h (s, a)
(
1− dπ̂th (s, a)

)
log 2SAHmK

δ


 (C.289)

≤P

mK⋃
k=1

|SG,kh (s, a)|≥ 3 log 2SAHmK
δ

+
√

2T G,kh (s, a) log 2SAHmK
δ


 (C.290)

≤ δ

SAH
(C.291)

By union bound, with probability at least 1− δ, for all (s, a, h, k) ∈ S×A×[H]×[K]:

∣∣∣∣∣∣
∑
j∈G

N j,k
h (s, a)− |G|

k∑
t=1

dπ̂
t

h (s, a)

∣∣∣∣∣∣ < 3 log 2SAHmK
δ

+

√√√√2|G|
k∑
t=1

dπ̂
t

h (s, a) log 2SAHmK
δ

(C.292)

238
C.4 Proof of Theorem 5.6.1

By the following lemma, we can upper bound the suboptimality by the cumulative
bonuses:

Lemma C.4.1. [Suboptimality for Pessimistic Value Iteration, Lemma 3.2 in (Zhang et al.,
2021a) and Theorem 4.2 in (Jin et al., 2021)] Under the event E that the Γh(s, a) satisfies
the required property of bounding the Bellman error, i.e. |Q̂h(s, a) − (BV̂h+1)(s, a)|≤
Γh(s, a),∀h ∈ [H], (s, a) ∈ S ×A then against any comparator policy π̃, it achieves

SubOpt(π̂, π̃) ≤ 2
H∑
h=1

Edπ̃ [Γh(sh, ah)] (C.293)

Recall that for all (s, a, h) ∈ S×A×[H],

N j
h(s, a) :=

∑
k∈[Kj]

1
{

(sj,kh , a
j,k
h) = (s, a)

}
, ∀j ∈ [m]. (C.294)

and N cut
h (s, a) is the (2αm + 1)-largest among

{
N j
h(s, a)

}
j∈[m]

. NG,cut1
h (s, a) is the

(αm+ 1)-th largest of
{
N j
h(s, a)

}
j∈G

and NG,cut2
h (s, a) is the (2αm+ 1)-th largest of{

N j
h(s, a)

}
j∈G

. The bonuses are given by:

• If N cut
h (s, a) = 0

Γh(s, a) = H − h+ 1; (C.295)

• If N cut
h (s, a) > 0

Γh(s, a) := 2(H − h+ 1)√∑
j∈[m] Ñ

j
h(s, a)

√
2 log 2SAH

δ
(C.296)

+
8αm

√
N cut
h (s, a)∑

j∈[m] Ñ
j
h(s, a)

(H − h+ 1)
√

2 log 2mSAH
δ

(C.297)

Where
Ñ j
h(s, a) = max

(
N cut
h (s, a), N j

h(s, a)
)
. (C.298)

239
Proof of Theorem 5.6.1. We first show that with probability at least 1− δ,

|(B̂hV̂h+1)(s, a)− (BhV̂h+1)(s, a)|≤ Γh(s, a), ∀(s, a) ∈ S ×A,∀h ∈ [H] (C.299)

where Γh(s, a) is defined in (C.293).

• if N cut
h (s, a) = 0, by definition, (B̂hV̂h+1)(s, a) = 0. By definition of V̂h and Bh,

(BhV̂h+1)(s, a) ∈ [0, H − h+ 1], thus (C.299) holds;

• if N cut
h (s, a) > 0, for any fixed h ∈ [H], (s, a) ∈ S × A, f : S → [0, H]. Because

(B̂hf)(s, a) is bounded and thus sub-Gaussian, we can use Theorem 5.3.1 to upper
bound |(B̂hf)(s, a)− (Bhf)(s, a)|:

P
(∣∣∣(B̂hf)(s, a)− (Bhf)(s, a)

∣∣∣ ≥ Γh(s, a)
)
≤ δ

HSA
(C.300)

Thus

P
(
|(B̂hV̂h+1)(s, a)− (BhV̂h+1)(s, a)|≥ Γh(s, a)

)
(C.301)

=
∫

[0,H]S
P
(
|(B̂hV̂h+1)(s, a)− (BhV̂h+1)(s, a)|≥ Γh(s, a)

∣∣∣ V̂h+1(·)
)
dP(V̂h+1(·))

(C.302)

≤ δ

HSA
(C.303)

By union bound, with probability at least 1− δ,

|(B̂hV̂h+1)(s, a)− (BhV̂h+1)(s, a)|≤ Γh(s, a), ∀(s, a) ∈ S ×A,∀h ∈ [H] (C.304)

Then, by Lemma C.4.1, with probability at least 1− δ,

SubOpt(π̂, π̃) ≤ 2
H∑
h=1

Edπ̃ [Γh(sh, ah)] (C.305)

=2
H∑
h=1

Edπ̃
[
Γh(sh, ah)1

{
NG,cut2
h (sh, ah) = 0

}]
(C.306)

240

+ 2
H∑
h=1

Edπ̃
[
Γh(sh, ah)1

{
NG,cut2
h (sh, ah) > 0

}]
(C.307)

=:A1 + A2. (C.308)

By definition of pG,0 in page 64,

A1 ≤ 2HpG,0 (C.309)

A2 =2
H∑
h=1

Edπ̃
[
Γh(sh, ah)1

{
NG,cut2
h (sh, ah) > 0

}]
(C.310)

≤2
H∑
h=1

Edπ̃

 2(H − h+ 1)√∑
j∈G Ñ

j
h(s, a)

√
2 log 2SAH

δ
(C.311)

+
8αm

√
N cut
h (s, a)∑

j∈G Ñ
j
h(s, a)

(H − h+ 1)
√

2 log 2mSAH
δ

1
{
NG,cut2
h (sh, ah) > 0

} .
(C.312)

By the definition of κeven in page 65: for a = π̃(s),

1√∑
j∈G Ñ

j
h(s, a)

=

√∑
j∈G N

j
h(s, a)√∑

j∈G Ñ
j
h(s, a)

1√∑
j∈G N

j
h(s, a)

(C.313)

≤

√∑
j∈G N

j
h(s, a)√∑

j∈G Ñ
j,cut2
h (s, a)

1√∑
j∈G N

j
h(s, a)

(C.314)

≤
√
κeven√∑

j∈G N
j
h(s, a)

(C.315)

and

m
√
N cut
h (s, a)∑

j∈G Ñ
j
h(s, a)

≤ 1√
1− α

√√√√∑j∈G N
j
h(s, a)∑

j∈G Ñ
j
h(s, a)

m(1− α)N cut
h (s, a)∑

j∈G Ñ
j
h(s, a)

√
m√∑

j∈G N
j
h(s, a)

(C.316)

241

≤

√√√√ ∑
j∈G N

j
h(s, a)∑

j∈G Ñ
j,cut2
h (s, a)

m(1− α)NG,cut1
h (s, a)∑

j∈G Ñ
j,cut2
h (s, a)

√
2m√∑

j∈G N
j
h(s, a)

(C.317)

≤
√

2κevenm√∑
j∈G N

j
h(s, a)

(C.318)

Thus

A2 ≤2
H∑
h=1

Edπ̃
[ 2√∑

j∈G Ñ
j
h(s, a)

+
8αm

√
N cut
h (s, a)∑

j∈G Ñ
j
h(s, a)

H
√

2 log 2mSAH
δ

(C.319)

1
{
NG,cut2
h (sh, ah) > 0

}]
(C.320)

≤2
H∑
h=1

Edπ̃


(
2 + 8α

√
2m

)√
κeven√∑

j∈G N
j
h(s, a)

H

√
2 log 2mSAH

δ
1
{
NG,cut2
h (sh, ah) > 0

}
(C.321)

≤2
(
2 + 8α

√
2m

)√
κevenH

√
2 log 2mSAH

δ

H∑
h=1

Edπ̃

1
{
NG,cut2
h (sh, ah) > 0

}
√∑

j∈G N
j
h(s, a)


(C.322)

Recall that Ch =
{
s|NG,cut2

h (s, π̃(s)) > 0
}

. By Cauchy–Schwarz inequality and the
definition of κ in page 64,

Edπ̃

1
{
NG,cut2
h (sh, ah) > 0

}
√∑

j∈G N
j
h(s, a)

 ≤
√√√√√Edπ̃

1
{
NG,cut2
h (sh, ah) > 0

}
∑
j∈G N

j
h(s, a)

 (C.323)

=
√√√√∑
s∈Ch

dπ̃h(s)∑
j∈G N

j
h(s, a)

(C.324)

=
√√√√∑
s∈Ch

dπ̃h(s)∑
j∈G N

j
h(s, a)/∑j∈GKj

1∑
j∈GKj

(C.325)

242

≤
√∑
s∈Ch

κ∑
j∈GKj

≤

√√√√ κS∑
j∈GKj

(C.326)

In conclusion,

SubOpt(π̂, π̃) ≤A1 + A2 (C.327)

≤2HpG,0 + 2
(
2 + 8α

√
2m

) √κκevenS√∑
j∈GKj

H2

√
2 log 2mSAH

δ
(C.328)

=2HpG,0 +O

√κκevenH
2
√
S

1 + α
√
m√∑

j∈GKj

√
log mSAH

δ

 (C.329)

C.5 Useful Inequalities

Theorem C.5.1 (Bernstein type of bound for martingale, Theorem 1.6 of (Freedman,
1975)). Let (Ω,F , P) be a probability triple. Let F0 ⊂ F1 ⊂ · · · be an increasing sequence
of sub-σ-fields of F . Let X1, X2, . . . be random variables on (Ω,F , P), such that Xn is Fn
measurable. Let Vn = V [Xn|Fn−1]. Assume |Xn|≤ 1 and E[Xn|Fn−1] = 0. Let

Sn = X1 + · · ·+Xn (C.330)

Tn = V1 + · · ·+ Vn, (C.331)

where S0 = T0 = 0. Then, for any a > 0, b > 0,

P (|Sn|≥ a and Tn ≤ b for some n) ≤ 2 exp
(
− a2

2(a+ b)

)
. (C.332)

By union bound and partition, we can get a more useful version of page 242.
We first present a result, which shows: given,

P (X ≥ t, Y ≤ t) ≤ δ(t) (C.333)

243
We can bound P (X ≥ Y) up to some error.

Lemma C.5.1. Let {An}Nn=1 and {Bn}Nn=1 be two sequences of random variables. We don’t
make any assumptions about independence. Assume

• ∀n, 0 ≤ Bn ≤ nM almost surely;

• ∀δ > 0, fδ : R+ 7→ R+, fδ(·) monotonic increasing,

If for all t > 0,

P
(

N⋃
n=1
{|An|≥ fδ(t), Bn ≤ t}

)
≤ δ (C.334)

Then for any ε > 0,

P
(

N⋃
n=1
{|An|≥ fδ(Bn + ε)}

)
≤ NMd1/εeδ (C.335)

Proof. See proof in page 244.

Corollary C.5.1. Under the assumption of Theorem C.5.1, supposeXn terminate at n = N .
Then, for all 0 < δ < 2exp(−2),

P

 N⋃
n=1

|Sn|≥ 3 log 2N
δ

+
√

2Tn log 2N
δ


 ≤ δ (C.336)

Proof of Corollary C.5.1. Let δ
N

= 2 exp
(
− a2

2(a+b)

)
then

a = log 2N
δ

+
√

log2 2N
δ

+ 2b log 2N
δ

(C.337)

by Theorem C.5.1, For all b > 0,

P

|Sn|≥ log 2N
δ

+
√

log2 2N
δ

+ 2b log 2N
δ
, and Tn ≤ b for some n

 ≤ δ/N

(C.338)
In Lemma C.5.1, let:

244
• An = Sn, Bn = Tn, M = 1

• ε = 1
2 log 2N

δ

• fδ(x) = log 2N
δ

+
√

log2 2N
δ

+ 2x log 2N
δ

Because 0 < δ < 2 exp(−2), ε ≥ 1. then, we get:

P

 N⋃
n=1

|Sn|≥ 3 log 2N
δ

+
√

2Tn log 2N
δ


 (C.339)

≤P

 N⋃
n=1

|Sn|≥ log 2N
δ

+
√

2 log2 2N
δ

+ 2Tn log 2N
δ


 (C.340)

≤Nd1/εe δ
N
≤ δ (C.341)

Proof For Lemma C.5.1

Proof of Lemma C.5.1. For discrete random variables, we can just condition on each
possible value of Bn and use a union bound. Here, because Bn can be a continuous
random variable, we divide the range of Bn into intervals and upper bound the
target by the law of total probability.

For all n, let:

0 < 1
d1/εe <

2
d1/εe < · · · <

nMd1/εe
d1/εe = nM (C.342)

Be a partition of interval [0, nM]. Let Ii :=
[
i−1
d1/εe ,

i
d1/εe

]
, i = 1, . . . , nMd1/εe be a set

of intervals. Note that, ⋃nMd1/εei=1 Ii = [0, nM].
Then

N⋃
n=1
{|An|≥ fδ(Bn + ε)} =

N⋃
n=1

nMd1/εe⋃
i=1

{|An|≥ fδ(Bn + ε), Bn ∈ Ii} (C.343)

245

=
N⋃
n=1

nMd1/εe⋃
i=1

{
|An|≥ fδ(Bn + ε), i− 1

d1/εe ≤ Bn ≤
i

d1/εe

}
(C.344)

⊆
N⋃
n=1

nMd1/εe⋃
i=1

{
|An|≥ fδ(

i

d1/εe), Bn ≤
i

d1/εe

}
(C.345)

⊆
N⋃
n=1

NMd1/εe⋃
i=1

{
|An|≥ fδ(

i

d1/εe), Bn ≤
i

d1/εe

}
(C.346)

=
NMd1/εe⋃

i=1

N⋃
n=1

{
|An|≥ fδ(

i

d1/εe), Bn ≤
i

d1/εe

}
(C.347)

Thus

P
(

N⋃
n=1
{|An|≥ fδ(Bn + ε)}

)
≤

NMd1/εe∑
i=1

P
(

N⋃
n=1

{
|An|≥ fδ(

i

d1/εe), Bn ≤
i

d1/εe

})
(C.348)

≤NMd1/εeδ (By page 243) (C.349)

246
d appendix for chapter 6

D.1 Deferred Algorithms

See Algorithm 17.

Algorithm 17 Trimmed-Mean (Univariate mean estimator in Lugosi and Mendelson
(2021))

Input: Corrupted dataset X1, . . . , XN , corruption level ε, confidence level δ
ε̃← 8ε+ 24

N
log 8

δ

Let X̃1 ≤ · · · ≤ X̃N/2 be a rearrangement of XN
2 +1, . . . XN .

Let α← X̃ε̃N/2, β ← X̃(1−ε̃)N/2
Let φα,β(·) be a clipping function, s.t. φα,β(x) = β if x > β; φα,β(x) = x if
α ≤ x ≤ β; φα,β(x) = α if x < α;
Return: µ̂← 2

N

∑N/2
i=1 φα,β(Xi).

D.2 Proof of Proposition 6.3.1

Proof of Proposition 6.3.1. By definition of ∆Amin, we can find (h′, s′, a′) and an optimal
policy π∗ s.t. ∆h′ (s′, a′) = V ∗h′(s′)−Q∗h′(s′, a′) = ∆Amin and dπ∗h′ (s′, a′) > 0. We choose
such (h′, s′, a′) and π∗ with the smallest dπ∗h′ (s′, a′).

Let π̃∗ be a policy that only differ with π∗ at (h′, s′): for all h,

π̃∗h(s) =

a
′ if (h, s) = (h′, s′)

π∗h(s) o.w.

By definition, π∗ and π̃∗ have the same state occupancy distribution up to step h′

and the same state-action occupancy distribution up to step h′ − 1:

dπ
∗

h (s) = dπ̃
∗

h (s) ∀s ∈ S and h ≤ h′. (D.1)

247
Then the suboptimality of π̃∗h comes from the suboptimal action at (h′, s′):

SubOpt(π̃∗) = V ∗p0 − V
π̃∗

p0 = V π∗

p0 − V
π̃∗

p0

=
E(sh,ah)∼dπ∗

h

h′−1∑
h=1

rh(sh, ah)
+ Esh′∼dπ∗h′

[
V π∗

h′ (sh′)
]

−

E(sh,ah)∼dπ̃∗
h

h′−1∑
h=1

rh(sh, ah)
+ Esh′∼dπ̃∗h′

[
V π̃∗

h′ (sh′)
]

=Esh′∼dπ∗h′
[
V π∗

h′ (sh′)
]
− Esh′∼dπ̃∗h′

[
V π̃∗

h′ (sh′)
]

(the rewards before step h′ cancel out because π̃∗ and π∗ takes the

same actions before h′)

=
∑
s∈S

dπ
∗

h′ (s)(V ∗h′(s)−Q∗h′(s, π̃∗(s)))(
by 1. (D.1); 2. rewrite V π̃∗

h′ using Q∗h′
)

=dπ∗h′ (s′)(V ∗h′(s′)−Q∗h′(s′, a′)))

(by definition of π̃∗, V ∗h′(s) = Q∗h′(s, π̃∗(s)) when s 6= s′)

=dπ∗h′ (s′)∆Amin > 0

(by definition of (s′, a′, h′))

By definition of ∆Π
min, we know ∆Π

min ≤ SubOpt(π̃∗), thus

∆Π
min ≤ SubOpt(π̃∗) = dπ

∗

h′ (s′)∆Amin ≤ ∆Amin.

D.3 Proof of Theorem 6.4.1

We first define the following good events:

Ecb :={∀(s, a, h) ∈ S×A×[H] : |r̂h(s, a)− rh(s, a)| ≤ b1
h(s, a),

248∣∣∣P̂Vh,s,a − P>h,s,aV h+1

∣∣∣ ≤ b2
h(s, a)}

Eb :=
{
∀(s, a, h) ∈ C : b1

h(s, a) + b2
h(s, a) ≤ b

}
,

where C :=
{

(s, a, h) ∈ S×A×[H] : ∃π∗ ∈ Π∗, s.t. dπ∗h (s, a) > 0
}

. By union and the
condition of Theorem 6.4.1, Pr[Ecb] ≥ 1−δ and Pr[Eb] = 1. Thus Pr[Ecb ∩ Eb] ≥ 1−δ
We now show that under event Ecb ∩ Eb, SubOpt(π̂) ≤ 2Hb.

We first note that when the confidence bound is proper, then the Q is a pes-
simistic estimation for Qπ̂:

Lemma D.3.1 (pessimistic estimation). Under event Ecb, for all (s, a, h) ∈ S×A×[H],

Qπ̂
h(s, a) ≥ Q

h
(s, a).

We defer Proof of Lemma D.3.1 to Section D.3.
We can use backward induction to upper bound the difference between V ∗ and

V :

Lemma D.3.2. Under event Ecb ∩ Eb, for all (s, h) ∈ Sh×[H], we have:

V ∗h (s)− V h(s) ≤ 2(H − h+ 1)b.

Recall thatSh :=
{
s ∈ S : ∃π∗ ∈ Π∗, s.t. dπ∗h (s) > 0

}
. We defer Proof of Lemma D.3.2

to Section D.3.
By Lemma D.3.1 and Lemma D.3.2, for all h and s ∈ Sh, we have:

V ∗h (s)−Qπ̂
h(s, π̂h(s)) ≤V ∗h (s)−Q

h
(s, π̂h(s)) = V ∗h (s)− V h(s)

≤2(H − h+ 1)b ≤ 2Hb (D.2)

By definition of S1, we have {s ∈ S : p0(s) > 0} = S1. Thus

SubOpt(π̂) =
∑
s∈S

p0(s)
(
V ∗1 (s)− V π̂

1 (s)
)

=
∑

s:p0(s)>0
p0(s)

(
V ∗1 (s)− V π̂

1 (s)
)

=
∑
s∈S1

p0(s)
(
V ∗1 (s)−Qπ̂

1 (s, π̂1(s))
)
≤ 2Hb (by (D.2))

249
Proof of Lemma D.3.1

Proof of Lemma D.3.1. We prove by backward induction:
For h = H , Qπ̂

H(s, a) = rH(s, a),

Q
H

(s, a) = max
{

0, r̂H(s, a)− b1
H(s, a)

}
≤ max{0, rH(s, a)} = Qπ̂

H(s, a),

where the inequality is because of the definition of Ecb,
Suppose the statement holds for h = k + 1, i.e.:

Qπ̂
k+1(s, a) ≥ Q

k+1(s, a), ∀s, a.

Then we have

V π̂
k+1(s) = Qπ̂

k+1(s, π̂(s)) ≥ Q
k+1(s, π̂(s)) = V k+1(s), ∀s. (D.3)

For all s, a

Q
k
(s, a) = max

{
0, r̂k(s, a) + P̂>k,s,aV k+1 − b1

k(s, a)− b2
k(s, a)

}
≤max

{
0, r̂k(s, a)− b1

k(s, a)
}

+ max
{

0, P̂>k,s,aV k+1 − b2
k(s, a)

}
≤max{0, rk(s, a)}+ max

{
0, P>k,s,aV k+1

}
(By definition of Ecb)

≤rk(s, a) + P>k,s,aV
π̂
k+1 (By (D.3))

=Qπ̂
k(s, a).

Proof of Lemma D.3.2

Proof of D.3.2. We prove by backward induction: Let π∗ be an optimal policy.
For h = H , ∀s ∈ SH ,

V ∗H(s)− V H(s) ≤V ∗H(s)−Q
H

(s, π∗H(s))

250
=rH(s, π∗H(s))−max

{
0, r̂H(s, π∗H(s))− b1

H(s, π∗H(s))
}

≤rH(s, π∗H(s))− r̂H(s, π∗H(s)) + b1
H(s, π∗H(s))

≤2b1
H(s, π∗H(s)) (By definition of Ecb)

≤2b (By definition of Eb).

Suppose the statement holds for h = k + 1, i.e.

V ∗k+1(s)− V k+1(s) ≤ 2(H − k)b, ∀s ∈ Sk+1, (D.4)

then, ∀s ∈ Sk, we have,

V ∗k (s)− V k(s) = V ∗k (s)−Q
k
(s, π̂k(s)) ≤ V ∗k (s)−Q

k
(s, π∗k(s))

=rk(s, π∗k(s)) + P>k,s,π∗
k
(s)V

∗
k+1

−max
{

0, r̂k(s, π∗k(s)) + P̂>k,s,π∗
k
(s)V k+1 − b1

k(s, π∗k(s))− b2
k(s, π∗k(s))

}
≤rk(s, π∗k(s))− r̂k(s, π∗k(s)) + P>k,s,π∗

k
(s)V

∗
k+1 − P̂>k,s,π∗

k
(s)V k+1

+ b1
k(s, π∗k(s)) + b2

k(s, π∗k(s))

=rk(s, π∗k(s))− r̂k(s, π∗k(s)) + P>k,s,π∗
k
(s)

(
V ∗k+1 − V k+1

)
+
(
Pk,s,π∗

k
(s) − P̂k,s,π∗

k
(s)
)>
V k+1

+ b1
k(s, π∗k(s)) + b2

k(s, π∗k(s))

≤2b1
k(s, π∗k(s)) + 2b2

k(s, π∗k(s)) + P>k,s,π∗
k
(s)

(
V ∗k+1 − V k+1

)
(By definition of Ecb)

=2b1
k(s, π∗k(s)) + 2b2

k(s, π∗k(s)) +
∑
s′∈S

Pk(s′ | s, π∗k(s))
(
V ∗k+1(s′)− V k+1(s′)

)
=2b1

k(s, π∗k(s)) + 2b2
k(s, π∗k(s)) +

∑
s′∈Sk+1

Pk(s′ | s, π∗k(s))
(
V ∗k+1(s′)− V k+1(s′)

)
(By definition of Sk+1)

≤2b+
∑

s′∈Sk+1

2(H − k)bPk(s′ | s, π∗k(s)) (by Definition of Eb and (D.4))

=2b+ 2(H − k)b = 2(H − k + 1)b.

251
D.4 Proof of Theorem 6.4.2

We will show that SubOpt(π̂) = 0 under event Ecb ∩ Eb and condition 2Hb < ∆Amin.
By the proof of Theorem 6.4.1, Ecb ∩ Eb happens with probability at least 1− δ and
we finish the proof.

By (D.2), for all h and s ∈ Sh,

V ∗h (s)−Q∗h(s, π̂h(s)) ≤ V ∗h (s)−Qπ̂
h(s, π̂h(s)) ≤ 2Hb.

Because 2Hb < ∆Amin, we have V ∗h (s) − Q∗h(s, π̂h(s)) < ∆Amin. By the definition of
∆Amin, π̂h(s) is an optimal action. This means, for all state s covered by some optimal
policy, π̂ chooses the optimal action. More specifically,

∀h,∀s ∈ Sh, ∃π∗ ∈ Π∗, s.t. π∗h(s) = π̂h(s). (D.5)

and for all h,
V ∗h (s)−Q∗h(s, π̂h(s)) = 0, ∀s ∈ Sh. (D.6)

We now show that π̂ only covers state visited by some optimal policy, i.e. for all
h ∈ [H], {

s ∈ S : dπ̂h(s) > 0
}
⊆ Sh. (D.7)

We prove by contradiction, suppose the following set is nonempty:

{
(s, h) : dπ̂h(s) > 0, s /∈ Sh

}
6= ∅. (D.8)

W.l.o.g., suppose (sh′ , h′) is the element with smallest h in RHS of (D.8),
We have dπ̂h′(sh′) > 0 and

dπ
∗

h′ (sh′) = 0 ∀π∗ ∈ Π∗. (D.9)

Because (sh′ , h′) is such set with smallest h, we have for all h < h′ and s ∈ S , if s
is covered by π̂, then s is also covered by some optimal policy, i.e. for all h < h′, if
dπ̂h(s) > 0, then s ∈ Sh.

252
Because dπ̂h′(sh′) > 0, these exists a state-action sequence

s1, a1, s2, a2, . . . , sh′−1, ah′−1,

s.t.
dπ̂h′(sh′) ≥ p0(s1)P1(s2 | s1, a2) · · ·Ph′−1(sh′ | sh′−1, ah′−1) > 0

and
sh ∈ Sh, π̂h(sh) = ah ∀h = 1, . . . , h′ − 1.

By (D.5), we can find an optimal policy π∗∗ ∈ Π∗, s.t.

π∗∗h (sh) = π̂h(sh) = ah ∀h = 1, . . . , h′ − 1.

Thus
dπ
∗∗

h′ (sh′) ≥ p0(s1)P1(s2 | s1, a2) · · ·Ph′−1(sh′ | sh′−1, ah′−1) > 0,

which contradicts with (D.9). Thus we have proved (D.7).
By performance difference lemma:

SubOpt(π̂) =V ∗p0 − V
π̂
p0 =

H∑
h=1

Es∼dπ̂
h

(s)[V ∗h (s)−Q∗h(s, π̂h(s))]

=
H∑
h=1

∑
s∈Sh

dπ̂h(s)(V ∗h (s)−Q∗h(s, π̂h(s))) (by (D.7))

=0 (by (D.6)).

D.5 Proof of Proposition 6.5.1

By the property of subGaussian random variable and Hoeffding’s inequality: for
all (s, a, h), with probability at least 1− δ

2SAH

∣∣∣r̂emp
h,s,a − rh(s, a)

∣∣∣ ≤σ
√√√√2 log 8SAH

δ

Nh(s, a) = b1,emp
h,s,a , (D.10)

253∣∣∣P̂V
emp
h,s,a − P>h,s,aV h+1

∣∣∣ ≤‖V h+1‖∞

√√√√ log 8SAH
δ

2Nh(s, a) , (D.11)

where (D.11) is obtained by conditioning on V h+1.
Then we only need to show that ‖V h+1‖∞ ≤ H−h ≤ H . We show the statement

by backward induction.
When h = H , V H+1 is set to be 0 by definition.
Suppose ‖V h+1‖∞ ≤ H − h for h = k, i.e. ‖V k+1‖∞ ≤ H − k, then

∣∣∣∣(P̂k,s,a − Pk,s,a)>V k+1

∣∣∣∣ ≤ ‖V h+1‖∞

√√√√ log 8SAH
δ

2Nh(s, a) ≤ H

√√√√ log 8SAH
δ

2Nh(s, a) = b2
k(s, a).

(D.12)
Thus for all s, we have

V k(s) =Q
k
(s, π̂k(s))

= max
{

0, r̂k(s, a) + P̂>k,s,aV k+1 − b1
k(s, a)− b2

k(s, a)
}

≤max
{

0, r̂k(s, a)− b1
k(s, a)

}
+ max

{
0, P̂>k,s,aV k+1 − b2

k(s, a)
}

≤max{0, rk(s, a)}+ max
{

0, P>k,s,aV k+1

}
(the first term is because of (D.10), the second term is by (D.12))

≤1 + ‖V k+1‖∞ ≤ H − k + 1

I.e. ∥∥∥V (k−1)+1

∥∥∥
∞
≤ H − (k − 1).

We have finished the induction.

D.6 Proof of Proposition 6.5.2

We define the following events:

Eemp
cb :={∀(s, a, h) ∈ S×A×[H] :

∣∣∣r̂emp
h,s,a − rh(s, a)

∣∣∣ ≤ b1,emp
h,s,a ,

254∣∣∣P̂V
emp
h,s,a − P>h,s,aV h+1

∣∣∣ ≤ b2,emp
h,s,a }

Eemp
b :=

{
∀(s, a, h) ∈ C : b1,emp

h,s,a + b2,emp
h,s,a ≤ 2(2σ +H)

log 8SAH
δ√

NP

}
,

recall that C :=
{

(s, a, h) ∈ S×A×[H] : ∃π∗ ∈ Π∗, s.t. dπ∗h (s, a) > 0
}

. By Proposi-
tion 6.5.1 and union bound, Pr[Eemp

cb] ≥ 1− δ/2. For Eemp
b :

Pr[Eemp
b] = Pr

∀(s, a, h) ∈ C : σ

√√√√2 log 8SAH
δ

Nh(s, a) +H

√√√√ log 8SAH
δ

2Nh(s, a) ≤ 2(2σ +H)
log 8SAH

δ√
NP


= Pr

[
∀(s, a, h) ∈ C : 1

Nh(s, a) ≤
8 log 8SAH

δ

NP

]
≥ 1− δ

2 ,

where the inequality is by Assumption 6.5.2, Lemma D.8.1 and union bound. Thus
Pr[Eemp

cb ∩ Eemp
b] ≥ 1−δ. Then we finish the proof by using the exact same argument

in the Proof of Theorem 6.4.2, but with events Eemp
cb ∩ Eemp

b .

D.7 Theorem 6.5.4

We follow the main steps in Proof of Theorem 1 in Lugosi and Mendelson (2021)
but apply a novel variant of Bernstein’s inequality for heavy-tailed distribution

We use the following notations:

• Trimming level: ε̃ = 8ε+ 24
N

log 8
δ
;

• Centered versions of X : X := X − µ;

• The quantile: Qp(X) := sup
{
M ∈ R : P

[
X ≥M

]
≥ 1− p

}
, for 0 < p < 1;

• The clean sample: Y1, . . . , YN ;

• The corrupted sample: X1, . . . , XN ;

• error term:

E(η,X) := max
{
E
[∣∣∣X −Qη/2(X)

∣∣∣ I{X ≤ Qη/2(X)
}]
, (D.13)

255
E
[∣∣∣X −Q1−η/2(X)

∣∣∣ I{X ≥ Q1−η/2(X)
}]}

(D.14)

We define the following concentration events:

E1 := E1
1 ∩ E2

1 ∩ E3
1 ∩ E4

1 (D.15)

E2 :=
{ ∣∣∣∣∣∣ 2
N

N∑
i=N/2+1

φα,β(Yi)− µ

∣∣∣∣∣∣
≤ 2σ

(2Aγ
N

log 4
δ

) γ
1+γ

+ 2
(∣∣∣Q1−ε̃/2(X)

∣∣∣+ ∣∣∣Qε̃/2(X)
∣∣∣)2Aγ
N

log 4
δ

+ E(4ε̃, X)
}

(D.16)

where α, β are the clipping points chosen in the algorithm (depending on the
second half of the corrupted samples: XN/2+1, . . . , XN) and

E1
1 :=

{∣∣∣i : Yi ≥ µ+Q1−2ε̃(X), i = N/2 + 1, . . . , N
∣∣∣ ≥ 3

4 ε̃N
}

(D.17)

E2
1 :=

{∣∣∣i : Yi ≤ µ+Q1−ε̃/2(X), i = N/2 + 1, . . . , N
∣∣∣ ≥ (1− 3

4 ε̃
)
N/2

}
(D.18)

E3
1 :=

{∣∣∣i : Yi ≤ µ+Q2ε̃(X), i = N/2 + 1, . . . , N
∣∣∣ ≥ 3

4 ε̃N
}

(D.19)

E4
1 :=

{∣∣∣i : Yi ≥ µ+Qε̃/2(X), i = N/2 + 1, . . . , N
∣∣∣ ≥ (1− 3

4 ε̃
)
N/2

}
(D.20)

We first show that P[E1 ∩ E2] ≥ 1− δ. Let U := I
{
X ≥ Q1−2ε̃(X)

}
. By definition of

quantile, we have: P
[
X ≥ Q1−2ε̃

]
= 2ε̃ and

V[U] ≤ E
[
U2
]

= P
[
X ≥ Q1−2ε̃

]
= 2ε̃. (D.21)

By using Bernstein’s inequality on U , we can show that P[E1
1] ≥ 1− exp(−ε̃N/24).

Similarly, we can show that P[E2
1],P[E3

1],P[E4
1] ≥ 1− exp(−ε̃N/24). By union bound,

P[E1] ≥ 1− 4 exp(−ε̃N/24) ≥ 1− δ

2 . (D.22)

We can bound the clipping point α, β under event E1: First note that ε ≤ ε̃/8.

256
Because XN/2+1, . . . , XN and YN/2+1, . . . , YN differ by at most εN points, we have:

∣∣∣i : Xi ≥ µ+Q1−2ε̃(X), i = N/2 + 1, . . . , N
∣∣∣ ≥ 3

4 ε̃N − εN ≥
3
4 ε̃N −

ε̃

8N ≥
ε̃N

2
(D.23)

∣∣∣i : Xi ≤ µ+Q1−ε̃/2(X), i = N/2 + 1, . . . , N
∣∣∣ ≥ (1− 3

4 ε̃
)
N/2− εN (D.24)

≥
(

1− 3
4 ε̃
)
N/2− ε̃

8N = (1− ε̃)N
2 (D.25)

Because β is chosen to be the (1− ε̃)N/2 largest of XN/2+1, . . . , XN , we have:

µ+Q1−2ε̃(X) ≤ β ≤ µ+Q1−ε̃/2(X). (D.26)

Similarly, we can show that

µ+Qε̃/2(X) ≤ α ≤ µ+Q2ε̃(X). (D.27)

We now show that E2|E1 happens with high probability: We first show that the
expectation of the clipped sample is close to µ:

E[φα,β(Yi)] ≤ E
[
φµ+Q2ε̃(X),∞(Yi)

]
(D.28)

=E
[
YiI
{
Yi ≥ µ+Q2ε̃(X)

}]
+ E

[(
µ+Q2ε̃(X)

)
I
{
Yi < µ+Q2ε̃(X)

}]
(D.29)

=E
[
YiI
{
Yi ≥ µ+Q2ε̃(X)

}]
+ E

[
YiI
{
Yi < µ+Q2ε̃(X)

}]
(D.30)

+ E
[(
µ+Q2ε̃(X)− Yi

)
I
{
Yi < µ+Q2ε̃(X)

}]
(D.31)

≤µ+ E
[∣∣∣X −Q2ε̃(X)

∣∣∣ I{X < Q2ε̃(X)
}]

(D.32)

Similarly,

E[φα,β(Yi)] ≥E
[
φ−∞,µ+Q1−2ε̃(X)(Yi)

]
(D.33)

257
=E

[
YiI
{
Yi ≤ µ+Q1−2ε̃(X)

}]
+ E

[(
µ+Q1−2ε̃(X)

)
I
{
Yi > µ+Q1−2ε̃(X)

}]
(D.34)

=E
[
YiI
{
Yi ≤ µ+Q1−2ε̃(X)

}]
+ E

[
YiI
{
Yi > µ+Q1−2ε̃(X)

}]
(D.35)

+ E
[(
µ+Q1−2ε̃(X)− Yi

)
I
{
Yi > µ+Q2ε̃(X)

}]
(D.36)

≥µ− E
[∣∣∣X −Q1−2ε̃(X)

∣∣∣ I{X > Q1−2ε̃(X)
}]

(D.37)

Thus
|E[φα,β(Yi)]− µ| ≤ E(4ε̃, X) (D.38)

The (1 + γ)-th moment is bounded by:

E
[
|φα,β(Yi)− E[φα,β(Yi)]|1+γ

]
(D.39)

≤E
[
|Yi − E[φα,β(Yi)]|1+γ

]
= E

[
|Yi − µ+ µ− E[φα,β(Yi)]|1+γ

]
(D.40)

≤21+γE
[
|Yi − µ|1+γ

]
+ 21+γ |µ− E[φα,β(Yi)]|1+γ (D.41)

≤21+γσ1+γ + 21+γE(4ε̃, X)1+γ ≤ 2 · 21+γ
(
σ + E(4ε̃, X)

)1+γ
(D.42)

≤
(
4
(
σ + E(4ε̃, X)

))1+γ
(D.43)

Conditioning on E1, φα,β(Yi) is a random variable bounded by

µ+Qε̃/2(X) ≤ α ≤ φα,β(Yi) ≤ β ≤ µ+Q1−ε̃/2(X). (D.44)

Thus, with probability 1, we have

|φα,β(Yi)− E[φα,β(Yi)]| ≤ Q1−ε̃/2(X)−Qε̃/2(X) ≤
∣∣∣Q1−ε̃/2(X)

∣∣∣+ ∣∣∣Qε̃/2(X)
∣∣∣ . (D.45)

By Corollary D.7.1, there exists Aγ , s.t. with probability at least 1− δ
2 we have

∣∣∣∣∣∣ 2
N

N/2∑
i=1

(φα,β(Yi)− E[φα,β(Yi)])

∣∣∣∣∣∣
≤2σ

(2Aγ
N

log 4
δ

) γ
1+γ

+ 2
(∣∣∣Q1−ε̃/2(X)

∣∣∣+ ∣∣∣Qε̃/2(X)
∣∣∣)2Aγ
N

log 4
δ

(D.46)

258
By (D.38) and (D.46),

∣∣∣∣∣∣ 2
N

N/2∑
i=1

φα,β(Yi)− µ

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ 2
N

N/2∑
i=1

(φα,β(Yi)− E[φα,β(Yi)])

∣∣∣∣∣∣+ |E[φα,β(YN)]− µ|

(D.47)

≤2σ
(2Aγ
N

log 4
δ

) γ
1+γ

+ 2
(∣∣∣Q1−ε̃/2(X)

∣∣∣+ ∣∣∣Qε̃/2(X)
∣∣∣)2Aγ
N

log 4
δ

+ E(4ε̃, X) (D.48)

Now we’ve shown that E1 ∩ E2 happens with probability at least 1 − δ. In the
following, we will upper bound the estimation error of the trimmed mean esti-
mation under E1 ∩ E2. Because clipped clean samples φα,β(Y1), . . . , φα,β(YN/2) and
clipped corrupted samples φα,β(X1), . . . , φα,β(XN/2) are all bounded and differ by
at most εN entries, we have∣∣∣∣∣∣ 2

N

N/2∑
i=1

φα,β(Yi)−
2
N

N/2∑
i=1

φα,β(Xi)

∣∣∣∣∣∣ ≤ 2ε
(∣∣∣Q1−ε̃/2(X)

∣∣∣+ ∣∣∣Qε̃/2(X)
∣∣∣). (D.49)

Thus the estimation error of trimmed mean can be bounded by
∣∣∣∣∣∣ 2
N

N/2∑
i=1

φα,β(Xi)− µ

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ 2
N

N/2∑
i=1

φα,β(Yi)−
2
N

N/2∑
i=1

φα,β(Xi)

∣∣∣∣∣∣+
∣∣∣∣∣∣ 2
N

N/2∑
i=1

φα,β(Yi)− µ

∣∣∣∣∣∣
(D.50)

≤2σ
(2Aγ
N

log 4
δ

) γ
1+γ

+ 2
(∣∣∣Q1−ε̃/2(X)

∣∣∣+ ∣∣∣Qε̃/2(X)
∣∣∣)(2Aγ

N
log 4

δ
+ ε

)
+ E(4ε̃, X)

(D.51)

≤2σ
(2Aγ
N

log 4
δ

) γ
1+γ

+ Aγ
(∣∣∣Q1−ε̃/2(X)

∣∣∣+ ∣∣∣Qε̃/2(X)
∣∣∣) ε̃2 + E(4ε̃, X) (D.52)

By Lemma D.7.2,

Aγ
(∣∣∣Q1−ε̃/2(X)

∣∣∣+ ∣∣∣Qε̃/2(X)
∣∣∣) ε̃2 ≤2Aγσ

(
ε̃

2

) γ
1+γ

(D.53)

259
and

E
[∣∣∣X −Q2ε̃(X)

∣∣∣ I{X ≤ Q2ε̃(X)
}]

(D.54)

≤E
[∣∣∣X∣∣∣ I{X ≤ Q2ε̃(X)

}]
+ E

[∣∣∣Q2ε̃(X)
∣∣∣ I{X ≤ Q2ε̃(X)

}]
(D.55)

≤
(
E
[∣∣∣X∣∣∣1+γ

]) 1
1+γ
(
E
[
I
{
X ≤ Q2ε̃(X)

} 1+γ
γ

]) γ
1+γ

+
∣∣∣Q2ε̃(X)

∣∣∣ 2ε̃ (D.56)

≤2σ(2ε̃)
γ

1+γ < 4σε̃
γ

1+γ (D.57)

Similarly,
E
[∣∣∣X −Q1−2ε̃(X)

∣∣∣ I{X ≥ Q1−2ε̃(X)
}]
≤ 4σε̃

γ
1+γ (D.58)

Thus
E(4ε̃, X) ≤ 4σε̃

γ
1+γ (D.59)

We can further upper bound the estimation error by:
∣∣∣∣∣∣ 2
N

N/2∑
i=1

φα,β(Xi)− µ

∣∣∣∣∣∣ ≤2σ
(2Aγ
N

log 4
δ

) γ
1+γ

+ Aγ
(∣∣∣Q1−ε̃/2(X)

∣∣∣+ ∣∣∣Qε̃/2(X)
∣∣∣) ε̃2 (D.60)

+ E(4ε̃, X) (D.61)

≤4Aγσ
(1
N

log 4
δ

) γ
1+γ

+ 2Aγσ
(
ε̃

2

) γ
1+γ

+ 4σε̃
γ

1+γ (D.62)

≤4Aγσ
(1
N

log 4
δ

) γ
1+γ

+ 8Aγσε̃
γ

1+γ (D.63)

=4Aγσ
(1
N

log 4
δ

) γ
1+γ

+ 8Aγσ
(

8ε+ 24
N

log 8
δ

) γ
1+γ

(D.64)

≤4Aγσ
(1
N

log 4
δ

) γ
1+γ

+ 8Aγσ(16ε)
γ

1+γ + 8Aγσ
(48
N

log 8
δ

) γ
1+γ

(D.65)

≤8Aγσ(16ε)
γ

1+γ + 16Aγσ
(48
N

log 8
δ

) γ
1+γ

(D.66)

≤128Aγσε
γ

1+γ + 768Aγσ
(1
N

log 8
δ

) γ
1+γ

(D.67)

260
Auxiliary Lemmas

Lemma D.7.1 (Bernstein’s inequality under weak moment assumption). Suppose
Xj , j = 1, . . . , n is a sequence of independent zero-mean random variable bounded by
|Xj| ≤M and there exists α ∈ (0, 1], s.t.

E |Xj|1+γ ≤ σ1+γ, for all j = 1, . . . , n. (D.68)

then there exists Aγ ≥ 1 (depending only on α) s.t.:

P

 1
n

n∑
j=1

Xj > t

 ≤ exp

− n

Aγ

t
γ+1
γ

σ
1+γ
γ +Mt

1
γ

. (D.69)

This proof is based on the proof of standard Bernstein’s inequality in the notes
at https://www.stat.cmu.edu/ larry/=sml/Concentration.pdf.

Proof. For any s > 0 and any j, we have

E
[
esXj

]
=E

[
1 + sXj +

∞∑
i=2

siX i
j

i!

]
= 1 +

∞∑
i=2

siE
[
X1+γ
j X i−1−γ

j

]
i! (D.70)

≤1 +
∞∑
i=2

siM i−1−γE
[
|Xj|1+γ

]
i! ≤ 1 + σ1+γ

M1+γ

∞∑
i=2

siM i

i! (D.71)

=1 + σ1+γ

M1+γ

(
esM − 1− sM

)
(D.72)

≤ exp
{
σ1+γ

M1+γ

(
esM − 1− sM

)}
. (D.73)

For any t > 0, we have

P

 1
n

n∑
j=1

Xj > t

 =P

 n∑
j=1

Xj > nt

 = P

exp
s n∑

j=1
Xj

 > exp(snt)
 (D.74)

≤ exp(−snt)E
exp

s n∑
j=1

Xj

 = exp(−snt)
n∏
j=1

E[exp(sXj)]

(D.75)

https://www.stat.cmu.edu/~larry/=sml/Concentration.pdf

261

≤ exp(−snt) exp
{
nσ1+γ

M1+γ

(
esM − 1− sM

)}
(D.76)

≤ exp
{
−nσ

1+γ

M1+γ

(
M1+γ

σ1+γ st− e
sM + 1 + sM

)}
(D.77)

Let
s = 1

M
log
(

1 + Mγt

σ1+γ

)
(D.78)

we have

exp
{
−nσ

1+γ

M1+γ

(
M1+γ

σ1+γ st− e
sM + 1 + sM

)}
(D.79)

= exp
{
−nσ

1+γ

M1+γ

(
M1+γ

σ1+γ t
1
M

log
(

1 + Mγt

σ1+γ

)
− 1− Mγt

σ1+γ + 1 + log
(

1 + Mγt

σ1+γ

))}
(D.80)

= exp
{
−nσ

1+γ

M1+γ

((
1 + Mγt

σ1+γ

)
log
(

1 + Mγt

σ1+γ

)
− Mγt

σ1+γ

)}
(D.81)

=: exp
{
−nσ

1+γ

M1+γ h
(
Mγt

σ1+γ

)}
, (D.82)

where
h(x) = (1 + x) log(1 + x)− x (D.83)

There exists a Aγ ≥ 1, s.t.

(1 + x) log(1 + x)− x ≥ 1
Aγ

x
γ+1
γ

1 + x
1
γ

(D.84)

Then

P

 1
n

n∑
j=1

Xj > t

 ≤ exp
{
−nσ

1+γ

M1+γ h
(
Mγt

σ1+γ

)}
(D.85)

≤ exp

−
nσ1+γ

M1+γ
1
Aγ

(
Mγt
σ1+γ

) γ+1
γ

1 +
(
Mγt
σ1+γ

) 1
γ

 (D.86)

262

= exp

−
n

Aγ

t
γ+1
γ

(
1

σ1+γ

) 1
γ

1 +
(
Mγt
σ1+γ

) 1
γ

 (D.87)

= exp

− n

Aγ

t
γ+1
γ

σ
1+γ
γ +Mt

1
γ

 (D.88)

Corollary D.7.1. Suppose Xj , j = 1, . . . , n is a sequence of independent zero-mean
random variable bounded by |Xj| ≤M and there exists α ∈ (0, 1], s.t.

E |Xj|1+γ ≤ σ1+γ, for all j = 1, . . . , n. (D.89)

then there exists Aγ ≥ 1 (depending only on α) s.t.: W.p. ≥ 1− δ,
∣∣∣∣∣∣ 1n

n∑
j=1

Xj

∣∣∣∣∣∣ ≤ 2σ
(
Aγ
n

log 2
δ

) γ
1+γ

+ 2MAγ
n

log 2
δ

(D.90)

Proof. Let

t = 2σ
(
Aγ
n

log 2
δ

) γ
1+γ

+ 2MAγ
n

log 2
δ

(D.91)

If σ
1+γ
γ ≤Mt

1
γ ,

exp

− n

Aγ

t
γ+1
γ

σ
1+γ
γ +Mt

1
γ

 ≤ exp

− n

Aγ

t
γ+1
γ

2Mt
1
γ

 = exp
{
− n

Aγ

t

2M

}
(D.92)

≤ exp
{
− n

Aγ

1
2M 2MAγ

n
log 2

δ

}
= δ

2 (D.93)

If σ
1+γ
γ ≥Mt

1
γ ,

exp

− n

Aγ

t
γ+1
γ

σ
1+γ
γ +Mt

1
γ

 ≤ exp

− n

Aγ

t
γ+1
γ

2σ
1+γ
γ

 (D.94)

263

≤ exp

− n

Aγ

1
2σ

1+γ
γ

2
γ+1
γ σ

γ+1
γ

(
Aγ
n

log 2
δ

) γ
1+γ

γ+1
γ

 (D.95)

≤ exp
{
− n

Aγ

(
Aγ
n

log 2
δ

)}
= δ

2 (D.96)

By Lemma D.7.1,

P

 1
n

n∑
j=1

Xj ≥ 2σ
(
Aγ
n

log 2
δ

) γ
1+γ

+ 2MAγ
n

log 2
δ

 ≤ δ

2 (D.97)

Similarly,

P

 1
n

n∑
j=1

Xj ≤ −2σ
(
Aγ
n

log 2
δ

) γ
1+γ

+ 2MAγ
n

log 2
δ

 ≤ δ

2 (D.98)

We finish the proof by using union bound.

Properties of Quantiles

Lemma D.7.2. Let X be a zero-mean r.v. with EX∼D
[
|X − µ|1+γ

]
≤ σ1+γ , for some

γ ∈ (0, 1]. Let Qp(X) := sup
{
M ∈ R : P

[
X ≥M

]
≥ 1− p

}
, for 0 < p ≤ 1/2. Then

max
{∣∣∣Qp(X)

∣∣∣ , ∣∣∣Q1−p(X)
∣∣∣} ≤ σp−

1
1+γ (D.99)

Proof. • If 0 < Qp(X) ≤ Q1−p(X), we have

∣∣∣Qp(X)
∣∣∣ p (D.100)

≤
∣∣∣Q1−p(X)

∣∣∣ p = E
[
Q1−p(X)I

{
X ≥ Q1−p(X)

}]
≤ E

[
XI
{
X ≥ Q1−p(X)

}]
(D.101)

=E
[∣∣∣X∣∣∣ I{X ≥ Q1−p(X)

}]
≤
(
E
[∣∣∣X∣∣∣1+γ

]) 1
1+γ

E
[
I
{
X ≥ Q1−p(X)

} 1+γ
γ

] γ
1+γ

(D.102)

264
(By Holder’s inequality) (D.103)

≤σp
γ

1+γ (D.104)

• If Qp(X) ≤ Q1−p(X) < 0, we have

∣∣∣Q1−p(X)
∣∣∣ p (D.105)

≤
∣∣∣Qp(X)

∣∣∣ p = E
[
−Qp(X)I

{
X ≤ Qp(X)

}]
≤ E

[
−XI

{
X ≤ Qp(X)

}]
(D.106)

=E
[∣∣∣X∣∣∣ I{X ≤ Qp(X)

}]
≤
(
E
[∣∣∣X∣∣∣1+γ

]) 1
1+γ

E
[
I
{
X ≤ Qp(X)

} 1+γ
γ

] γ
1+γ

(D.107)

(By Holder’s inequality) (D.108)

≤σp
γ

1+γ (D.109)

• if Qp(X) ≤ 0 ≤ Q1−p(X), we can similarly show that
∣∣∣Qp(X)

∣∣∣ p ≤ σp
γ

1+γ and∣∣∣Q1−p(X)
∣∣∣ p ≤ σp

γ
1+γ .

D.8 Useful results

Lemma D.8.1 (Binomial concentration, Lemma A.1 of Xie et al. (2021)). Suppose
N ∼ Bin(n, p) where n ≥ 1 and p ∈ [0, 1]. Then with probability at least 1− δ, we have

p

max(N, 1) ≤
8 log 1

δ

n
. (D.110)

265
e appendix for chapter 7

E.1 General Guarantee in the Value Space

By using standard analysis, we can demonstrate that learning on A+ Γ leads to a
strategy pair (p,q) with small duality gap defined as

A small duality gap implies that (p,q) is an approximate Nash equilibrium of
A:

Proposition E.1.1. Suppose ‖Γ‖max := maxi,j
∣∣∣e>i Γej

∣∣∣ ≤ γ. If (p,q) is NE of A + Γ,
then the duality gap of (p,q) is bounded by: br(q)>Aq−p>Abr(p) ≤ 2γ and (p,q)
is 2γ-approximate Nash equilibrium of A.

A similar result also appears as an intermediate step in Cui and Du (2022).

Proof of Proposition E.1.1. Suppose (p∗,q∗) is NE ofA. Because (p,q) is NE ofA+Γ,
we have

br(q)>Aq − p>Abr(p) =br(q)>(A+ Γ)q − p>(A+ Γ)br(p)− br(q)>Γq + p>Γbr(p)

≤p>(A+ Γ)q − p>(A+ Γ)q + 2γ

(The last two term is because ‖Γ‖max ≤ γ.)

=2γ. (E.1)

We now show that (p,q) is 2γ-approximate NE: for all p0 ∈ ∆([m]),

p>0 Aq − p>Aq ≤br(q)>Aq − p>Abr(p) ≤ 2γ,

where we use the definition of br(·) in the first step and (E.1) in the second step.

266
E.2 Proof of Lemma 7.4.1

To show ∆IA = minj∈JA mini/∈IA
(
v∗ − e>i Aej

)
, we only need to show:

min
q∈Q

min
i/∈IA

(
−e>i Aq

)
= min

j∈JA
min
i/∈IA

(
−e>i Aej

)
(E.2)

Because under Assumption 7.4.1 {ej : j ∈ JA} ⊆ Q, we have:

min
q∈Q

min
i/∈IA

(
−e>i Aq

)
≤ min

j∈JA
min
i/∈IA

(
−e>i Aej

)
(E.3)

Let q0 ∈ Q, i0 /∈ IA, s.t.

−e>i0Aq0 = min
q∈Q

min
i/∈IA

(
−e>i Aq

)
Let j0 ∈ supp (Q), s.t.

−e>i0Aej0 = min
j∈supp (Q)

(
−e>i0Aej

)
. (E.4)

Then we have:

min
q∈Q

min
i/∈IA

(
−e>i Aq

)
=− e>i0Aq0 = −

∑
j∈supp (Q)

q0,je>i0Aej

≥− e>i0Aej0 (By (E.4))

≥min
j∈JA

min
i/∈IA

(
−e>i Aej

)
(because j0 ∈ supp (Q) ⊆ JA, i0 /∈ IA)

(E.5)

By (E.3) and (E.5), we prove (E.2) and Lemma 7.4.1. We can similarly show
∆JA = mini∈IA minj /∈JA

(
e>i Aej − v∗

)
.

E.3 Proof of Theorem 7.4.2

We now prove the “⇒” direction of Theorem 7.4.2.

267
Pure Base NE

We first show that if A is subset-NE-robust within radius γ, then A satisfies As-
sumption 7.4.1.

At a high level, we first show that if Assumption 7.4.1 does not hold, then game
A has at least a mixed “base NE”. A small perturbation will perturb the mixed NE
and lead to a strategy that is no longer NE of A.

We first formally restate NE as the solution to linear programming and define
the “base NEs”.

Consider the linear programming:

min
(q,v)∈Q

v max
(p,v)∈P

v, (E.6)

where

P :=
{

(p, v) : p ∈ ∆([m]), A>p ≥ v
}

(E.7)

Q :={(q, v) : q ∈ ∆([n]), Aq ≤ v}. (E.8)

Consider the set of vertex of the Q. By the theory of LP, the maximum value of
LP is achieved on some vertices. This means there is a subset of vertices, s.t. v = v∗.
The union of support of such “vertex” q is JA. Similar holds for the row player.
Formally, Let:

P∗ :={p ∈ P : (p, v∗) is vertex of P} (E.9)

Q∗ :={q ∈ Q : (q, v∗) is vertex of Q} (E.10)

Then we have P = conv(P∗). Q = conv(Q∗), IA = ⋃
p∈P∗ supp (p) and JA =⋃

q∈Q∗ supp (q). Recall that P×Q is the set of NEs of A.
We now show that if Assumption 7.4.1 does not hold, then there exists a

mixed “base NE”, i.e. there exists p ∈ P∗, ‖p‖0 > 1 or q ∈ Q∗, ‖q‖0 > 1. We
prove by contradiction, suppose ∀p ∈ P and ∀q ∈ Q, ‖p‖0 = ‖q‖0 = 1. Then for
all (i, j) ∈ IA×JA, (ei, ej) is NE, meaning Ai,j = v∗, thus AIA,JA is constant. Now

268
we’ve proved the statement.

As the next step, we show that the mixed “base NE” can be perturbed by
some perturbation matrix with magnitude upper bounded by γ0 for any γ0 > 0.
We first show that there exists p∗ ∈ P∗, s.t. ‖p∗‖ = minp∈P ‖p‖0. We prove this
by contradiction. Suppose there exists p /∈ P∗, s.t. ‖p‖0 < minp′∈P∗ ‖p′‖0. By
definition of vertex, there exists k > 1 and λ1, . . . , λk ∈ (0, 1), p1, . . . ,pk ∈ P∗ s.t.
p = ∑k

i=1 λkpk. Then we have ‖p‖0 ≥ ‖p1‖0 ≥ minp′∈P∗ ‖p′‖0, which contradicts
the fact that ‖p‖0 < minp′∈P∗ ‖p′‖0. We can prove a similar result for Q∗.

Let (p∗,q∗) ∈ P∗×Q∗, s.t. ‖p∗‖0 = minp∈P ‖p‖0 and ‖q∗‖0 = minq∈Q ‖q‖0.
If ‖p∗‖0 = ‖q∗‖0 = 1, by the results above, there exists p ∈ P∗, s.t. ‖p‖0 > 1 or

there exists q ∈ Q∗, s.t. ‖q‖0 > 1. W.l.o.g., assume there exists q ∈ Q∗, s.t. ‖q‖0 > 1,
I0 := supp (p∗) = {1}, J0 := supp (q) = [l]. Then we have AI0,J0 = v∗1>. Because
(q, v∗) is a vertex of (E.6), we can find I1, s.t.:

1. I0 (I1;

2. |I1| = |J0|

3.
AI1,J0 −1

1 0

 is invertible;

4.
AI1,J0 −1

1 0

qJ0

v∗

 =
0

1

 .
Consider the following two perturbation matrices:

Γ1 =
 Γ1

I1,J0 γ011>

−γ011> 0

 , Γ2 =
 Γ2

I1,J0 γ011>

−γ011> 0

 , (E.11)

where

Γ1
I1,J0 =

(
− (AI1,J0−v

∗)e1γ

e>1 qJ0+γ
(AI1,J0−v

∗)e2γ

e>2 qJ0−γ
0 · · ·0

)
(E.12)

Γ2
I1,J0 =

(
(AI1,J0−v

∗)e1γ

e>1 qJ0−γ
− (AI1,J0−v

∗)e2γ

e>2 qJ0+γ 0 · · ·0
)

(E.13)

269
where γ > 0 is small enough, s.t.:

1. γ ≤ γ0;

2.
AI1,J0 + Γ1

I1,J0 −1
1 0

 and
AI1,J0 + Γ2

I1,J0 −1
1 0

 are invertible;

3.
∥∥∥Γ1
I1,J0

∥∥∥
max
≤ γ0,

∥∥∥Γ2
I1,J0

∥∥∥
max
≤ γ0;

4. γ
∥∥∥AIc1 ,1 − AIc1 ,2∥∥∥∞ ≤ γ0.

We now show that (p∗,q1
0) is an NE inA+Γ1 and (p∗,q2

0) is an NE inA+Γ2, where

e>j q1
0 =


e>j q0 + γ if j = 1

e>j q0 − γ if j = 2

e>j q0 o.w.

, e>j q2
0 =


e>j q0 − γ if j = 1

e>j q0 + γ if j = 2

e>j q0 o.w.

. (E.14)

Then

(A+ Γ1)q1
0 =Aq1

0 + Γ1q1
0 = Aq0 + γ(A·,1 − A·,2) (E.15)

+
−(AI1,J0 − v∗)e1γ + (AI1,J0 − v∗)e2γ

−γ01

 (E.16)

=Aq0 +
 0
γ(AIc1 ,1 − AIc1 ,2)− γ01

 ≤ v∗1 (E.17)

p∗>(A+ Γ1) = A1,· ≥ v∗1 (E.18)

p∗>(A+ Γ1)q1
0 = v∗ (E.19)

thus (p∗,q1
0) is an NE in A + Γ1, similarly, we can show that (p∗,q2

0) is an NE in
A + Γ2. Because 1

2(q1
0 + q2

0) = q and the fact that (q, v∗) is a vertex of (E.6), this

270
means at least one of (q1

0, v
∗) and (q2

0, v
∗) is not feasible in (E.6). Thus at least one

of Γ1 and Γ2 creates a new NE.
If ‖p∗‖0 > ‖q∗‖0 = 1 or 1 = ‖p∗‖0 < ‖q∗‖0 we can add perturbation similarly.
In the following, we deal with the case that ‖p∗‖0 > 1 and ‖q∗‖0 > 1. W.l.o.g.,

assume ‖p∗‖0 ≤ ‖q∗‖0. We will add perturbation step-by-step until the perturbation
creates a new NE. Let I0 := supp (p∗), J0 := supp (q∗).

Consider the first step perturbation:

A+ Γ1 =
(
A·,J0 A·,J c0 + γ011>

)
. (E.20)

Note that

p∗>
(
A·,J0 A·,J c0 + γ01>1

)
≥
(
v∗1 (v∗ + γ0)1

)
≥ v∗1, (E.21)

so the column player should only choose actions in J0 and (p∗,q∗) is still NE of the
perturbed game.

Consider the LP for the row player in game A+ Γ1:

max
(p,v):p∈∆([m]),(A+Γ1)>p≥v

v. (E.22)

Because (p∗,q∗) is an NE of A + Γ1, (p∗, v∗) is an optimal solution of (E.22). If
(p∗, v∗) is not a vertex, then there exists optimal solution (p1, v

∗) and (p2, v
∗) s.t.

p∗ = 1
2p1 + 1

2p2. Because (p∗, v∗) is an optimal vertex of (E.6), at least one of (p1, v
∗)

and (p2, v
∗) is not optimal solution of (E.6), which means at least one of (p1,q∗)

and p2,q∗ is NE of A+ Γ1 but is not NE of A.
By (E.21), the set of active constraints at (p∗, v∗) are:

p∗>A·,J0 = v∗1, 1>p∗ = 1, e>i p∗ = 0,∀i ∈ Ic0. (E.23)

If (p∗, v∗) is a vertex,
AI0,J0 1
−1 0

 has linearly independent rows.

Then there exists I1, s.t.:

271
1. I0 ⊆ I1;

2.
AI1,J0 −1

1 0

 is invertible;

3. AI1,J0q∗ = v∗1.

Consider the second step perturbation:

A+ Γ1 + Γ2 =
 AI1,J0 AI1,J c0 + γ011>

AIc1 ,J0 − γ011> AIc1 ,J c0 + γ011>

 . (E.24)

If I1 = I0, consider the third step pertrubation:

Γ1
3 =

Γ1
I1,J0 0
0 0

 , Γ2
3 =

Γ2
I1,J0 0
0 0

 , (E.25)

where Γ1
I1,J0 and Γ2

I1,J0 has the same format as in (E.12) and (E.13), but γ subjects
to the following additional constraints: γ is small enough, s.t.

1.

p1
I1 :=

(A+ Γ1 + Γ2 + Γ1
3)>I1,J0 −1

1 0

−10
1

 > 0,

p2
I1 :=

(A+ Γ1 + Γ2 + Γ2
3)>I1,J0 −1

1 0

−10
1

 > 0

2. p1>
I1 (A+ Γ1 + Γ2 + Γ1

3)I1,J c0 > v∗, p2>
I1 (A+ Γ1 + Γ2 + Γ1

3)I1,J c0 > v∗

We now show that (p1,q1
0) and (p2,q2

0) are NE ofA+Γ1+Γ2+Γ1
3 andA+Γ1+Γ2+Γ2

3,
respectively, where q1

0,q2
0 are as defined in (E.14) and

e>i p1 =

e>i p1
I1 if i ∈ I1

0 o.w.
, e>i p2 =

e>i p2
I1 if i ∈ I1

0 o.w.
. (E.26)

272
By definition and the fact that γ is small, there exists ṽ,

p1>
I1 (A+ Γ1 + Γ2 + Γ1

3)I1,J0 = 1>ṽ (E.27)

p1>
I1 (A+ Γ1 + Γ2 + Γ1

3)I1,J c0 > 1>v∗ (E.28)

(A+ Γ1 + Γ2 + Γ1
3)I1,J0q1

J0 = 1v∗ (E.29)

(A+ Γ1 + Γ2 + Γ1
3)Ic1 ,J0q1

J0 < 1v∗ (E.30)

This means ṽ = v∗. Then (p1,q1
0) is NE of A+ Γ1 + Γ2 + Γ1

3. We can show the result
for A+ Γ1 + Γ2 + Γ2

3 similarly.
Similarly, because 1

2(q1
0 + q2

0) = q and the fact that (q, v∗) is a vertex of (E.6),
this means at least one of (q1

0, v
∗) and (q2

0, v
∗) is not feasible in (E.6). Thus at least

one of Γ1 and Γ2 creates a new NE.
If I0 (I1: We first show that q∗ is not the unique optimal strategy for the

column player in game A+ Γ1 + Γ2. We prove by contradiction, suppose q∗ is the
unique optimal strategy for the column player in gameA+Γ1 +Γ2. By Corollary 3A
of Goldman and Tucker (2016), there exists p′, s.t. (p′,q∗) is an NE and supp (p′) =
I1. By Theorem E.7.1, (p′,q∗) is the unique NE. This contradicts the fact that (p∗,q∗)
is also an NE. Consider the following LP:

min
(q,v):q∈∆([n]),(A+Γ1+Γ2)q≤v

v. (E.31)

Because q∗ is not the unique optimal strategy for the column player in game A+
Γ1 + Γ2, there exists q′ 6= q∗, s.t. q′ is an optimal vertex of (E.31). By (E.21),
supp (q′) ⊆ J0. If supp (q′) (J0, by definition of J0, (p∗,q′) is NE of A+ Γ1 + Γ2

but is not NE of A. If supp (q′) = J0, because q′ 6= q∗ and both q′ and q∗ are
vertices, q′ and q∗ must have different sets of active constraints. Suppose the active
constraints at q′ are:

(A+ Γ1 + Γ2)I2,·q′ = v∗, 1>q′ = 1, e>j q′ = 0,∀j ∈ J c
0 , (E.32)

273
where I2 6= I1 and I0 (I2. Let i0 ∈ I2 ∩ Ic0, then we have:

(A+ Γ1 + Γ2)i0,·q′ = Ai0,·q′ − γ0 = v∗, (E.33)

thus Ai0,·q′ = v∗ + γ0. Thus (q′, v∗) is not feasible in (E.6). Thus (p∗,q′) is an NE of
A+ Γ1 + Γ2 but is not NE of A.

Perturbation Magnitude

We now show that ifA is subset-NE-robust within radius γ, then γ < 1
2 min{∆IA ,∆JA}.

We prove this by contradiction. We show that for any game A, we can design a
perturbation matrix Γ, s.t. ‖Γ‖IA∪JA = 1

2 min{∆IA ,∆JA} andA+Γ has a NE outside
IA×JA. In Section E.3, we’ve already shown that A has pure base NE.

Without loss of generality, assume:

• ∆JA ≤ ∆IA

• IA = [k], JA = [l]

• ∆JA = e>k Ael+1 − v∗

• Ak−1,l+1 ≥ Ai,l+1 for all i ∈ [k]

Consider the following perturbation on A:

A+ Γ :=


A[k−2]×[l] A[k−2],l+1 A[k−2],[l+2:n]

Ak−1×[l] Ak−1,l+1 + 1
2∆JA Ak−1,[l+2:n]

Ak×[l] + 1
2∆JA Ak,l+1 − 1

2∆JA Ak,[l+2:n]

A[k+1:m]×[l] −1−α
α
A[k+1:m],l + 1

α
v∗ A[k+1:m],[l+2:n]

 ,

where α =
1
2 ∆JA

Ak−1,l+1−v∗+ 1
2 ∆JA

. Because ‖·‖IA∪JA does not restrict the perturbation
magnitude of the submatrix on IAc×JAc, the perturbation above is valid. One can
verify that ((1− α)el + αel+1, ek) is a NE. This NE has support on el+1, which is
outside the NE support. This This means NE(A+ Γ) 6⊆ NE(A).

274
E.4 Proof of Theorem 7.4.3

If A and γ satisfies: |IA| = |JA| = 1; and γ < 1
2 min{∆IA ,∆JA}, then A and Γ also

satisfies the conditions in Theorem 7.4.2. By Theorem 7.4.2, we get ∀Γ : ‖Γ‖IA∪JA ≤
γ, NE(A+ Γ) ⊆ NE(A). Because γ < 1

2 min{∆IA ,∆JA} also implies A has a unique
NE, we have |NE(A+ Γ)| = |NE(A)| = 1 and thus NE(A+Γ) = NE(A). This means
A is exact-NE-robust within radius γ.

If A is exact-NE-robust within radius γ, then A is subset-NE-robust within
radius γ. By Theorem 7.4.2, A satisfies Assumption 7.4.1 and γ < 1

2 min{∆IA ,∆JA}.
We now show that |IA| = |JA| = 1. We prove this by contradiction. Without loss
of generality, assume IA = [k], JA = [l] and l > 1. Let γ0 := 1

4 min{∆IA ,∆JA}.
Consider the following perturbation on A:

A+ Γ :=
(
A·,1 A·,2 + γ0 A·,3 A·,n

)
.

Then (e1, e2) is NE of A but is not NE of A+ Γ, which contradicts with NE(A+ Γ) =
NE(A).

E.5 Proof of Theorem 7.4.4

We first formally restate Theorem 7.4.4:

Theorem E.5.1. Let A ∈ Rm×n be a game matrix, with a unique NE (p∗,q∗). Let IA =
supp (p∗), JA = supp (q∗). Then we have |IA| = |JA| and there exists ∆IA ,∆JA > 0,
s.t.:

e>i Aq∗ ≤ p∗>Aq∗ −∆IA ,∀i /∈ IA (E.34)

p∗>Aej ≥ p∗>Aq∗ + ∆JA ,∀j /∈ JA (E.35)

Let k := |IA| = |JA|, γ := ‖Γ‖IA∪JA , ÃIA,JA := A>IA,JAAIA,JA+11>− 1
k
A>IA,JA11>AIA,JA

and Ã>IA,JA := AIA,JAA
>
IA,JA + 11> − 1

k
AIA,JA11>A>IA,JA . If:

275

• γ < 1
k
σmin, where σmin is the eigenvalue of

AIA,JA −1
1 0

with the smallest absolute

value;

• 4γ ‖AIA,JA‖1 + 2kγ2 < 1
2k3/2

∥∥∥ ˜AIA,JA
−1
∥∥∥

2

min(˜AIA,JA
−1

1)∥∥∥ ˜AIA,JA
−1

1
∥∥∥
∞

• 4γ
∥∥∥A>IA,JA∥∥∥1

+ 2kγ2 < 1

2k3/2
∥∥∥ ˜A>IA,JA

−1∥∥∥
2

min(˜A>IA,JA
−1

1)∥∥∥ ˜A>IA,JA
−1

1
∥∥∥
∞

•

∆IA −
(
‖AIA,JA‖∞ + ‖AIAc,JA‖∞

)
2k3/2

(
4γ ‖AIA,JA‖1 + 2kγ2

)
·
∥∥∥∥ÃIA,JA−1∥∥∥∥

2

∥∥∥∥ÃIA,JA−1
1
∥∥∥∥
∞
− 2γ > 0

•

∆JA −
(∥∥∥A>IA,JA∥∥∥∞ +

∥∥∥A>IA,JAc∥∥∥∞)2k3/2
(
4γ
∥∥∥A>IA,JA∥∥∥1

+ 2kγ2
)

·
∥∥∥∥∥Ã>IA,JA−1

∥∥∥∥∥
2

∥∥∥∥∥Ã>IA,JA−1
1
∥∥∥∥∥
∞
− 2γ > 0

then the perturbed game A+ Γ has a unique NE (p̃, q̃), s.t.:

• supp (p̃) = IA, supp (q̃) = JA;

• dTV(p∗, p̃) ≤ k3/2
(
4γ
∥∥∥A>IA,JA∥∥∥1

+ 2kγ2
) ∥∥∥∥∥Ã>IA,JA−1

∥∥∥∥∥
2

∥∥∥∥∥Ã>IA,JA−1
1
∥∥∥∥∥

1

• dTV(q∗, q̃) ≤ k3/2
(
4γ ‖AIA,JA‖1 + 2kγ2

) ∥∥∥∥ÃIA,JA−1∥∥∥∥
2

∥∥∥∥ÃIA,JA−1
1
∥∥∥∥

1

Proof. We first present a proof sketch:

1. Because (p∗,q∗) is the unique NE of A. According to the proof of Theo-
rem E.7.1, we can write (q∗JA , v

∗) as the unique solution to some linear system;

276
2. With small perturbation, the perturbed linear system is also invertible and

thus has a unique solution (q̃, ṽ), furthermore, the solution is positive: q̃ > 0
and is close to the original solution in TV distance;

3. When the perturbation is small, the perturbed game also has a positive switch-
out gap.

4. By Theorem E.7.1, q̃ and the corresponding p̃ form the unique NE of the
perturbed game, with the following properties:

• (p̃, q̃) and (p∗,q∗) have the same support;

• (p̃, q̃) and (p∗,q∗) are close in TV distance.

We introduce the following notations:

• AIA,JA :=
AIA,JA −1

1 0



• A>IA,JA :=
A>IA,JA −1

1 0



• (A+ Γ)IA,JA :=
AIA,JA + ΓIA,JA −1

1 0



• (A+ Γ)>IA,JA :=
A>IA,JA + Γ>IA,JA −1

1 0


• ˜(A+ Γ)IA,JA := (AIA,JA + ΓIA,JA)>(AIA,JA + ΓIA,JA) + 11> − 1

k
(AIA,JA +

ΓIA,JA)>11>(AIA,JA + ΓIA,JA);

• ˜(A+ Γ)>IA,JA := (AIA,JA + ΓIA,JA)(AIA,JA + ΓIA,JA)> + 11> − 1
k
(AIA,JA +

ΓIA,JA)11>(AIA,JA + ΓIA,JA)>

Invertiblility after perturbation: By Theorem E.7.1 and the fact that q∗ is the
unique NE strategy of the column player, AIA,JA is invertible. By Proposition E.7.1,
(A+ Γ)IA,JA is also invertible.

277
Analytical solution: By Proposition E.7.3, because (A+ Γ)IA,JA is invertible,
˜(A+ Γ)IA,JA is also invertible. Let qJA :=

(
˜(A+ Γ)IA,JA

)−1
1. Let q be

qj =

qj j ∈ JA
0 o.w.

(E.36)

We similarly define p, with pIA :=
(

˜(A+ Γ)>IA,JA
)−1

1.
(p,q) is a valid strategy pair: We first show that q is a valid strategy. By Propo-

sition E.7.3, ∑j∈JA qj = 1, thus ∑
j∈[n]

qj = 1 (E.37)

˜(A+ Γ)IA,JA is a perturbed version of ÃIA,JA :
∥∥∥∥ ˜(A+ Γ)IA,JA − ÃIA,JA

∥∥∥∥
max

(E.38)

=‖A>IA,JAΓIA,JA + Γ>IA,JAAIA,JA + Γ>IA,JAΓIA,JA (E.39)

− 1
k

(
A>IA,JA11>ΓIA,JA + Γ>IA,JA11>AIA,JA + Γ>IA,JA11>ΓIA,JA

)
‖max (E.40)

≤2
∥∥∥A>IA,JAΓIA,JA

∥∥∥
max

+
∥∥∥Γ>IA,JAΓIA,JA

∥∥∥
max

+ 2
k

∥∥∥A>IA,JA11>ΓIA,JA
∥∥∥

max
(E.41)

+ 1
k

∥∥∥Γ>IA,JA11>ΓIA,JA
∥∥∥

max
(E.42)

≤2γ ‖AIA,JA‖1 + kγ2 + 2
k
‖AIA,JA‖1 kγ + 1

k
k2γ2 (E.43)

=4γ ‖AIA,JA‖1 + 2kγ2 (E.44)

By Proposition E.7.2, we have: qJA > 0. Thus q is a valid strategy. Similarly, p is
also a valid strategy.

Constant value in support of NE: By Proposition E.7.3,AIA,JAqJA = A>IA,JApIA =
p>IAAIA,JAqJA1.

278
Switch out gap in perturbed game: By Proposition E.7.2,

∥∥∥q∗JA − qJA
∥∥∥
∞

=
∥∥∥∥∥
(

˜(A+ Γ)IA,JA
)−1

1−
(
ÃIA,JA

)−1
1
∥∥∥∥∥
∞

(E.45)

≤2k3/2
(
4γ ‖AIA,JA‖1 + 2kγ2

) ∥∥∥∥ÃIA,JA−1∥∥∥∥
2

∥∥∥∥ÃIA,JA−1
1
∥∥∥∥
∞

(E.46)

for all i /∈ IA,

∣∣∣e>i Aq∗ − e>i (A+ Γ)q
∣∣∣ ≤ ∣∣∣e>i A(q∗ − q)

∣∣∣+ ∣∣∣e>i Γq
∣∣∣ (E.47)

≤‖AIAc,·(q∗ − q)‖∞ + ‖Γq‖∞ (E.48)

≤‖AIAc,JA‖∞
∥∥∥q∗JA − qJA

∥∥∥
∞

+ γ (E.49)

∣∣∣p∗>Aq∗ − p>(A+ Γ)q
∣∣∣ =

∥∥∥AIA,JAq∗JA − (AIA,JA + ΓIA,JA)qJA
∥∥∥
∞

(E.50)

≤
∥∥∥AIA,JA(q∗JA − qJA)

∥∥∥
∞

+ ‖ΓIA,JAqJA‖∞ (E.51)

≤‖AIA,JA‖∞
∥∥∥q∗JA − qJA

∥∥∥
∞

+ γ (E.52)

p>(A+ Γ)q − e>i (A+ Γ)q (E.53)

=p>(A+ Γ)q − p∗>Aq + p∗>Aq − e>i Aq∗ + e>i Aq∗ − e>i (A+ Γ)q (E.54)

≥−
∣∣∣p>(A+ Γ)q − p∗>Aq∗

∣∣∣+ p∗>Aq∗ − e>i Aq∗ −
∣∣∣e>i Aq∗ − e>i (A+ Γ)q

∣∣∣ (E.55)

≥∆IA −
(
‖AIA,JA‖∞

∥∥∥q∗JA − qJA
∥∥∥
∞

+ γ + ‖AIAc,JA‖∞
∥∥∥q∗JA − qJA

∥∥∥
∞

+ γ
)

(E.56)

=∆IA −
(
‖AIA,JA‖∞ + ‖AIAc,JA‖∞

) ∥∥∥q∗JA − qJA
∥∥∥
∞
− 2γ (E.57)

≥∆IA −
(
‖AIA,JA‖∞ + ‖AIAc,JA‖∞

)
2k3/2

(
4γ ‖AIA,JA‖1 + 2kγ2

)
(E.58)

·
∥∥∥∥ÃIA,JA−1∥∥∥∥

2

∥∥∥∥ÃIA,JA−1
1
∥∥∥∥
∞
− 2γ (E.59)

>0 (E.60)

Similarly, p>(A+ Γ)ej > p>(A+ Γ)q, ∀j /∈ JA Thus (p,q) is NE.
A+ Γ has unique NE: By Theorem E.7.1, (p,q) is the unique NE of A+ Γ and

279
thus (p,q) = (p̃, q̃).

NE recovery: One immediate observation is supp (p̃) = IA, supp (q̃) = JA.
By Proposition E.7.2,

dTV(q∗, q̃) = 1
2 ‖q

∗ − q̃‖1 = 1
2
∥∥∥q∗JA − q̃JA

∥∥∥
1

(E.61)

≤k3/2
(
4γ ‖AIA,JA‖1 + 2kγ2

) ∥∥∥∥ÃIA,JA−1∥∥∥∥
2

∥∥∥∥ÃIA,JA−1
1
∥∥∥∥

1
(E.62)

Similarly,

dTV(p∗, p̃) ≤ k3/2
(
4γ
∥∥∥A>IA,JA∥∥∥1

+ 2kγ2
) ∥∥∥∥∥Ã>IA,JA−1

∥∥∥∥∥
2

∥∥∥∥∥Ã>IA,JA−1
1
∥∥∥∥∥

1
(E.63)

E.6 Proof of Proposition 7.5.1

Proof of Proposition 7.5.1 follows similar steps in Proof of Theorem 4.3 in Cui
and Du (2022) but replaces bonus with the estimation error upper bound of the
trimmed mean estimation in Theorem 1 in Lugosi and Mendelson (2021).

E.7 Useful Results

Matrix Stability and Block Linear System

Proposition E.7.1 (Invertibility). Let A ∈ Rn×n be an invertible matrix. Let E ∈
Rn×n s.t. |Ei,j| ≤ ε. Then if nε < σmin, where σmin is the eigenvalue of A with the
smallest absolute value, then A+ E is invertible.

Proof. Because
det(A+ E) = det(A) det(I + A−1E) (E.64)

280
A+ E is invertible if and only if I + A−1E is invertible.

We prove this by contradiction. Suppose A+ E is not invertible, then I + A−1E

is not invertible. Then there exists x 6= 0, s.t. (I + A−1E)x = 0. I.e. x = −A−1Ex.
But

∥∥∥A−1Ex
∥∥∥

2
≤
∥∥∥A−1E

∥∥∥
2
‖x‖2 ≤

∥∥∥A−1
∥∥∥

2
‖E‖2 ‖x‖2 ≤ σ−1

minn ‖E‖max ‖x‖2 (E.65)

≤σ−1
minnε ‖x‖2 < ‖x‖2 . (E.66)

which is a contradiction.

Lemma E.7.1 (Residue of power series for inverse matrix). If B ∈ Rn×n, ‖B‖2 < 1

∥∥∥B −B2(I +B)−1
∥∥∥
∞
≤
√
n ‖B‖2

1− ‖B‖2
(E.67)

∥∥∥B −B2(I +B)−1
∥∥∥

1
≤
√
n ‖B‖2

1− ‖B‖2
(E.68)

Proof. Let x be the eigenvector of the smallest eigenvalue, σ′ of I +B, then

σ′ =σ′ ‖x‖2 = ‖(I +B)x‖2 ≥ ‖x‖2 − ‖Bx‖2 (E.69)

≥1− ‖B‖2 ‖x‖2 = 1− ‖B‖2 (E.70)

thus

∥∥∥B −B2(I +B)−1
∥∥∥

2
≤‖B‖2 +

∥∥∥B2(I +B)−1
∥∥∥

2
(E.71)

≤‖B‖2 + ‖B‖2
2

∥∥∥(I +B)−1
∥∥∥

2
(E.72)

= ‖B‖2 + ‖B‖2
2

1
σ′

(E.73)

≤‖B‖2 + ‖B‖2
2

1− ‖B‖2
= ‖B‖2

1− ‖B‖2
(E.74)

281
thus

∥∥∥B −B2(I +B)−1
∥∥∥
∞
≤
√
n
∥∥∥B −B2(I +B)−1

∥∥∥
2
≤
√
n ‖B‖2

1− ‖B‖2
(E.75)

∥∥∥B −B2(I +B)−1
∥∥∥

1
≤
√
n
∥∥∥B −B2(I +B)−1

∥∥∥
2
≤
√
n ‖B‖2

1− ‖B‖2
(E.76)

we use min(x) to denote the minimum element of vector x.

Proposition E.7.2 (Support). Suppose

ε <
1

2n3/2 ‖A−1‖2

min(A−11)
‖A−11‖∞

(E.77)

then (A+ E)−11 has only positive entries and

∥∥∥(A+ E)−11− A−11
∥∥∥
∞
≤ 2n3/2ε

∥∥∥A−1
∥∥∥

2

∥∥∥A−11
∥∥∥
∞

(E.78)∥∥∥(A+ E)−11− A−11
∥∥∥

1
≤ 2n3/2ε

∥∥∥A−1
∥∥∥

2

∥∥∥A−11
∥∥∥

1
(E.79)

Proof.

∥∥∥A−1E
∥∥∥

2
≤
∥∥∥A−1

∥∥∥
2
‖E‖2 ≤

∥∥∥A−1
∥∥∥

2
nε <

1
2
√
n

min(A−11)
‖A−11‖∞

≤ 1
2 (E.80)

(A+ E)−11 =(I + A−1E)−1A−11 =
(
I − A−1E + (A−1E)2(I + A−1E)−1

)
A−11

(E.81)

=A−11−
(
A−1E − (A−1E)2(I + A−1E)−1

)
A−11 (E.82)

By Lemma E.7.1,

∥∥∥(A−1E − (A−1E)2(I + A−1E)−1
)
A−11

∥∥∥
∞

(E.83)

≤
∥∥∥A−1E − (A−1E)2(I + A−1E)−1

∥∥∥
∞

∥∥∥A−11
∥∥∥
∞

(E.84)

282

≤
√
n ‖A−1E‖2

1− ‖A−1E‖2

∥∥∥A−11
∥∥∥
∞

(E.85)

<2
√
n
∥∥∥A−1E

∥∥∥
2

∥∥∥A−11
∥∥∥
∞

(E.86)

We have

min
(
A−11−

(
A−1E − (A−1E)2(I + A−1E)−1

)
A−11

)
(E.87)

≥min(A−11)−
∥∥∥(A−1E − (A−1E)2(I + A−1E)−1

)
A−11

∥∥∥
∞

(E.88)

>min(A−11)− 2
√
n
∥∥∥A−1E

∥∥∥
2

∥∥∥A−11
∥∥∥
∞
> 0 (E.89)

I.e. (A+ E)−11 > 0.

∥∥∥(A+ E)−11− A−11
∥∥∥

1
=
∥∥∥(A−1E − (A−1E)2(I + A−1E)−1

)
A−11

∥∥∥
1

(E.90)

≤
∥∥∥(A−1E − (A−1E)2(I + A−1E)−1

)∥∥∥
1

∥∥∥A−11
∥∥∥

1
(E.91)

≤
√
n ‖A−1E‖2

1− ‖A−1E‖2

∥∥∥A−11
∥∥∥

1
(E.92)

<2
√
n
∥∥∥A−1E

∥∥∥
2

∥∥∥A−11
∥∥∥

1
(E.93)

≤2
√
n
∥∥∥A−1

∥∥∥
2
nε
∥∥∥A−11

∥∥∥
1

(E.94)

=2n3/2ε
∥∥∥A−1

∥∥∥
2

∥∥∥A−11
∥∥∥

1
(E.95)

The following result adapts the idea in a stackexchange discussion1:

Proposition E.7.3 (Block linear system). Let A ∈ Rn×n. If
A −1

1> 0

 is invertible

and x, v satisfy A −1
1> 0

x
v

 =
0

1

 , (E.96)

1See https://math.stackexchange.com/questions/411492/inverse-of-a-block-matrix-with-singular-
diagonal-blocks

283
then

x =
(
A>A+ 11> − 1

n
A>11>A

)−1
1. (E.97)

Proof. Let X :=
A −1

1> 0

. Because X is invertible, we have:

X−1 = (X>X)−1X> =
A>A+ 11> −A>1
−1>A n

−1 A> 1
−1> 0

 (E.98)

Because X is invertible, we know X>X is p.d., thus A>A + 11> is p.d. and thus
invertible. Let S := A>A+ 11>− 1

n
A>11>A. By block matrix inversion (with Schur

complement),

X−1 =
S−1 ∗
∗ ∗

 A> 1
−1> 0

 . (E.99)

Thusx
v

 = X−1

0
1

 =
S−1 ∗
∗ ∗

 A> 1
−1> 0

0
1

 =
S−1 ∗
∗ ∗

1
0

 =
S−11
∗


(E.100)

Remark E.7.1. If A is invertible, then

x =
(
A>A+ 11> − 1

n
A>11>A

)−1
1 = 1

1>A−11
A−11. (E.101)

The equation can be derived by:

1
1>A−11

(
A>A+ 11> − 1

n
A>11>A

)
A−11 (E.102)

= 1
1>A−11

(
A> + 11>A−1 − 1

n
A>11>

)
1 (E.103)

= 1
1>A−11

(
A>1 + 11>A−11− 1

n
A>11>1

)
(E.104)

= 1
1>A−11

(
11>A−11

)
= 1. (E.105)

284
Uniqueness of NE

Theorem E.7.1. Let (p∗,q∗) be a strategy pair. Let I = supp (p∗), J = supp (q∗).
Then (p∗,q∗) is the unique NE of A if and only if the following two conditions hold:

• Condition 1:

e>i Aq∗ = p∗>Aq∗,∀i ∈ I (E.106)

p∗>Aej = p∗>Aq∗,∀j ∈ J (E.107)

e>i Aq∗ < p∗>Aq∗,∀i /∈ I (E.108)

p∗>Aej > p∗>Aq∗,∀j /∈ J (E.109)

• Condition 2: the following block matrix is invertible:
AI,J 1

1 0

 . (E.110)

Proof. “⇐”: by Condition 1, we can show that (p∗,q∗) is an NE. Suppose (p,q) is
another NE.

Firstly, we show that supp (p) ⊆ I and supp (q) ⊆ J . We prove this by contra-
diction.

Because (p∗,q∗) and (p,q) are two NEs, p>Aq∗ = p∗>Aq∗ = v∗. Suppose
supp (p) ∩ ([m] \ I) 6= ∅. By Condition 1, p>Aq∗ < p∗>Aq∗, which contradicts
with: p>Aq∗ = p∗>Aq∗. Thus supp (p) ⊆ I. Similarly, we can show supp (q) ⊆ J .

Thus it’s sufficient to consider the following sub-LPs: primal LP for the row
player:

max
v,p′I

v (E.111)

s.t.p′I ∈ ∆(I) (E.112)

A>I,·p′I ≥ v (E.113)

285
dual LP for the column player:

min
v,q′J

v (E.114)

s.t.q′J ∈ ∆(J) (E.115)

A·,Jq′J ≤ v (E.116)

where we use p′I to denote the vector obtained by selecting the entries of p′ from
index set I. q′J is defined similarly. AI,J is a submatrix of A obtained by selecting
the rows in set I and columns in set J .

We now show that (p,q) = (p∗,q∗). We prove this by contradiction.
W.l.o.g., assume q 6= q∗. Consider the dual LP for the column player. Suppose

constraints AI,Jq′J ≤ v are all active at q, i.e. AI,JqJ = v. Then (qJ , v∗) is a
solution to: AI,J −1

1 0

q′J
v

 =
0

1

 (E.117)

By definition (q∗J , v∗) is also a solution to (E.117). By Condition 2, we have qJ = q∗J ,
and thus q = q∗, which leads to a contradiction. Thus constraints AI,Jq′J ≤ v are
not all active at qJ . This means (qJ , v∗) satisfies:

AI,J −1
1 0

qJ
v∗

 =
−α

1

 , (E.118)

where α ≥ 0 and has at least one non-zero entry. Thus

AI,JqJ = 1v∗ −α (E.119)

Because (p∗,q∗) and (p,q) are two NEs, we know (p∗,q) is also an NE. Thus

v∗ = p∗>Aq = p∗>I AI,JqJ = p∗>I (1v∗ −α) = v∗ − p∗>I α (E.120)

because p∗>I > 0 and α has at least one strict positive entry, we have v∗ > v∗−p∗>I α,
which leads to a contradiction. Thus q = q∗.

286
“⇒”: By the definition of NE, we naturally have:

e>i Aq∗ = p∗>Aq∗ = v∗,∀i ∈ I (E.121)

p∗>Aej = p∗>Aq∗ = v∗,∀j ∈ J (E.122)

By Corollary 3A of Goldman and Tucker (2016), there exists an NE (p,q), s.t. if
e>i Aq = v∗, then i ∈ I ; if p>Aej = v∗, then j ∈ J . These together with (E.121) and
(E.122) show that (p,q) satisfies Condition 1. Because (p∗,q∗) is the unique NE,
we have (p∗,q∗) = (p,q), thus (p∗,q∗) satisfies Condition 1.

If |I| = |J | = 1, Condition 2 naturally holds. Suppose Condition 2 does not
hold, i.e. one of the following holds:

• |I| = |J | > 1 and
AI,J 1

1 0

 is not invertible

• |I| < |J |

• |I| > |J |

we can construct another NE. If
AI,J 1

1 0

 is not invertible or |I| < |J | (the case

when |I| > |J | can be analyzed similarly) , homogeneous linear system:
AI,J −1

1 0

∆qJ
∆v

 =
0

0

 (E.123)

has a nonzero solution,
∆q̄J

∆v̄

 (at least one entry of ∆q̄J has to be nonzero,

otherwise, it’s a zero solution).
Because:

1. 0 < q∗j < 1, for all j ∈ J ;

2. e>i Aq∗ < v∗ for all i /∈ I (by Condition 1),

287

we can find an α > 0 small enough, s.t.
∆q̃J

∆ṽ

 := α

∆q̄J
∆v̄

 satisfies:

1. q∗J + ∆q̃J is a valid probability distribution on J and q∗J + ∆q̃J 6= q∗J ;

2. Let ∆q̃ ∈ Rn, s.t. ∆q̃j =

∆q̃j j ∈ J

0 o.w.
, then

e>i A(q∗ + ∆q̃) < v∗, ∀i /∈ I (E.124)

Note that

p∗>A(q∗ + ∆q̃) = v∗+p∗>A∆q̃ = v∗+p∗>I AI,J∆q̃J = v∗+v∗1>∆q̃J = v∗ (E.125)

We now show that (p∗,q∗ + ∆q̃) is also an NE: for all q ∈ ∆(n),

p∗>Aq ≥ v∗ = p∗>A(q∗ + ∆q̃) (E.126)

and for all p ∈ ∆(m), by (E.124),

p>A(q∗ + ∆q̃) ≤ v∗ = p∗>A(q∗ + ∆q̃) (E.127)

288
f appendix for chapter 8

F.1 Proof of Theorem 8.3.1

In this section, we prove Theorem 8.3.1. This section is organized as follows. First,
in Section F.1, we consider the case where m ≤ 4. In the remainder of this section,
we will assumem ≥ 5. First, in Section F.1, we will show that (8.7) can be solved for
α and state some properties about the solution. Then, in Section F.1, we will prove
the Nash incentive compatibility result, in Section F.1 we will prove individual
rationality, and in Section F.1, we will prove the result on efficiency.

When m ≤ 4

First, consider the (easy) case m ≤ 4. At s?i , the total amount of data collected is
σ/
√
c as each agent will be collecting n?i = σ

m
√
c

(see (8.8)). As there is no corrupted
dataset, h?i simply reduces to the sample mean ofXi∪Y−i. The individual rationality
property follows from the following simple calculation:

pi(MC3D, s
?) =

(
1 + 1

m

)√
cσ < 2

√
cσ = pIR

min.

Similarly, the bound on the ratio between the penalties can also be obtained via the
following calculation:

PR =
m
(
1 + 1

m

)√
cσ

2σ
√
cm

<
√
m ≤ 2.

Finally, to show NIC, consider agent i and assume that all other agents have followed
the recommended strategies, i.e collected σ/(m

√
c). Then, the agent will have

an uncorrupted dataset Y−i = ⋃
j 6=iXj of n?−i = (m − 1)σ/(m

√
c) points with no

corruption. Regardless of what she chooses to submit, the best estimator she could
use with the union of this dataset Y−i and the data she collects Xi and will be the
sample mean as it is minimax optimal. The number of points that minimizes her

289
penalty is,

argmin
ni

(
sup
µ

E
[
(hi(Xi, Yi, Y−i)− µ)2

∣∣∣µ] + cni
)

= argmin
ni∈R

(σ2

ni + n?−i
+ cni

)
= σ

m
√
c

Finally, as Ai does not depend on fi under these conditions, there is no incentive to
fabricate or falsify data, i.e choosing anything other than f ? = I does not lower her
utility.

In the remainder of this section, will study the harder case, m ≥ 4.

Existence of a solution to (8.7) and some of its properties

In this section, we show that G
(

σ1/2

(cm)1/4

)
< 0 and G

((
1 + Cm

m

)
σ1/2

(cm)1/4

)
> 0, where

Cm = 20 when m ≤ 20 and Cm = 5 when m > 20. This means equation G(α) = 0
has solution in

(
σ1/2

(cm)1/4 ,
(
1 + Cm

m

)
σ1/2

(cm)1/4

)
.

First, in Lemma F.7.5, we derive an asymptotic expansion of the Gaussian com-
plementary error function, and construct lower and upper bounds for G(α) that
are easier to work with. We have restated these lower (ErfcLB) and upper (ErfcUB)
bounds below.

ErfcUB(x) := 1√
π

(
exp(−x2)

x
− exp(−x2)

2x3 + 3 exp(−x2)
4x5

)
(F.1)

ErfcLB(x) := 1√
π

(
exp(−x2)

x
− exp(−x2)

2x3

)
(F.2)

We can now use this to derive the following lower (GLB) and upper (GUB) bounds
onG. Here, we have used the fact that 4(m+1) α2

σ
√
m/c
−1 > 0 when α ≥ (σ/

√
cm)1/2.

We have:

GLB(α) :=
(
m− 4
m− 2

4α2

σ/
√
cm
− 1

)
4α√

σ(m/c)1/4

−

4(m+ 1) α2

σ
√
m/c

− 1
√2π exp

σ
√
m/c

8α2

ErfcUB

(√
σ(m/c)1/4

2
√

2α

)
,

290

0 100 200 300 400 500

m

10−4

10−2

100

102

m
=

5
m

=
20

G
(
(1 + Cm/m)

√
n∗
)

Figure F.1: Plot for G
((

1 + Cm
m

)
σ1/2

(cm)1/4

)
. See G_em_plot.py. The discontinuity at

m = 20 is due to the different values for Cm when m ≤ 20 and when m > 20.

GUB(α) :=
(
m− 4
m− 2

4α2

σ/
√
cm
− 1

)
4α√

σ(m/c)1/4

−

4(m+ 1) α2

σ
√
m/c

− 1
√2π exp

σ
√
m/c

8α2

ErfcLB

(√
σ(m/c)1/4

2
√

2α

)
.

By first, substituting σ/
√
cm for α in the expressions for GUB and ErfcUB, and then

via a sequence of algebraic manipulations, we can verify that

G

(
σ1/2

(cm)1/4

)
≤ GUB

(
σ1/2

(cm)1/4

)

=
4
(

4(m−4)
m−2 − 1

) (
σ√
cm

)1/2

√
σ
(
m
c

)1/4 −
√

2
4(m+ 1)√

m
c

√
cm
− 1


2
√

2
(

σ√
cm

)1/2

√
σ
(
m
c

)1/4 −
8
√

2
(

σ√
cm

)3/2

σ3/2
(
m
c

)3/4


=− 128

(m− 2)m5/2 < 0.

Next, we will show that G
((

1 + Cm
m

)
σ1/2

(cm)1/4

)
> 0 by studying the lower bound

GLB. For m ∈ [5, 500], we can verify individually that G
((

1 + Cm
m

)
σ1/2

(cm)1/4

)
> 0 (See

Figure F.1). For m > 500, we have:

291

G

((
1 + Cm

m

)
σ1/2

(cm)1/4

)
= G

((
1 + 5

m

)
σ1/2

(cm)1/4

)
≥ GLB

((
1 + 5

m

)
σ1/2

(cm)1/4

)

=
4
(

4(5
m

+1)2
(m−4)

m−2 − 1
)(

5
m

+ 1
) (

σ√
cm

)1/2

√
σ
(
m
c

)1/4

−
√

2

4
(

5
m

+ 1
)2

(m+ 1)√
m
c

√
cm

− 1

(2
√

2
(

5
m

+ 1
) (

σ√
cm

)1/2

√
σ
(
m
c

)1/4 −
8
√

2
(

5
m

+ 1
)3 (

σ√
cm

)3/2

σ3/2
(
m
c

)3/4

+
96
√

2
(

5
m

+ 1
)5 (

σ√
cm

)5/2

σ5/2
(
m
c

)5/4

)

=64(m+ 5)3 (m6 − 191m5 − 1566m4 − 3920m3 + 2100m2 + 19500m+ 15000)
(m− 2)m21/2 .

When m > 500,

m6 − 191m5 − 1566m4 − 3920m3 = m3(m3 − 191m2 − 1566m− 3920)

>m3((200 + 200 + 100)m2 − 191m2 − 1566m− 3920)

>m3(200m2 + 105m+ 2.5× 107 − 191m2 − 1566m− 3920) > 0.

Combining the results from the two previous displays, we have,G
((

1 + Cm
m

)
σ1/2

(cm)1/4

)
>

0 which completes the proof for this section.

Algorithm 10 is Nash incentive compatible

In this section, we will prove the following lemma which states that s?i , as defined
in (8.8) is a Nash equilibrium in MC3D.

Lemma F.1.1 (NIC). The recommended strategies s? = {(n?i , f ?i , h?i)}i as defined in (8.8)
in mechanism MC3D (Algorithm 10) satisfies:

pi(MC3D, s
?) ≤ pi(MC3D, (si, s?−i))

292
for all i ∈ [m] and si ∈ N×F ×H.

The Proof of Lemma F.1.1 relies on the following two lemmas:

Lemma F.1.2 (Optimal Estimation and Submission). For all i ∈ [m] and (ni, fi, hi) ∈
N×F ×H.

pi(MC3D, ((ni, f ?i , h?i), s?−i)) ≤ pi(MC3D, ((ni, fi, hi), s?−i)).

See the Proof of Lemma F.1.2 in Section F.1

Lemma F.1.3 (Optimal Sample Size). For all i ∈ [m] and ni ∈ N.

pi(MC3D, ((n?i , f ?i , h?i), s?−i)) ≤ pi(MC3D, ((ni, f ?i , h?i), s?−i)).

See the Proof of Lemma F.1.3 in Section F.1

Proof of Lemma F.1.1. By Lemma F.1.2 and F.1.3, we have, for all i ∈ [m] and s′i =
(ni, fi, hi) ∈ N×F ×H,

pi(MC3D, s
?) = pi(MC3D, ((n?i , f ?i , h?i), s?−i)) ≤ pi(MC3D, ((ni, f ?i , h?i), s?−i))

≤ pi(MC3D, ((ni, fi, hi), s?−i)) = pi(MC3D, (s′i, s?−i))

Proof of Lemma F.1.2

In this section, we will prove Lemma F.1.2, which, intuitively states that, regardless
of the amount of data collected, agent i should submit the data as is (f ?i = I) and
use the weighted average estimator in (8.8) to estimate µ. We will do so via the
following three step procedure, inspired by well–known techniques for proving
minimax optimality of estimators (e.g see Theorem 1.12, Chapter 5 of Lehmann
and Casella (2006)).

293
1. First, we construct a sequence of prior distributions {Λ`}`≥1 for µ and calculate

the sequence of Bayesian risks under the prior distributions:

R` := inf
fi∈A,hi∈H

Eµ∼Λ`

[
E
[
(hi(Xi, fi(Xi), Ai)− µ)2|µ

]]
, ` ≥ 1.

2. Then, we will show that lim`→∞R` = supµ E[(h?i (Xi, f
?
i (Xi), Ai)− µ)2 |µ].

3. Finally, as the Bayesian risk is a lower bound on maximum risk, we will
conclude that (f ?i , h?i) is minimax optimal.

Without loss of generality, we focus only on the deterministic fi and hi. If either
of them are stochastic, we can condition on the external source of randomness
and treat them as deterministic functions. Our proof holds for any realization of
this external source of randomness, and hence it will hold in expectation as well.
Similarly, Zi is randomly chosen in Algorithm 10. In the following, we condition
on this randomness and the entire proof will carry through.

Note that Yi = fi(Xi). We will use both of them interchangeably in the subse-
quent proof.

Step 1 (Bounding the Bayes’ risk under the sequence of priors): We will use a
sequence of normal priors Λ` := N (0, `2) for all ` ≥ 1. To bound the Bayes’ risk
under these priors, we will first note that for a fixed fi ∈ F ,

x|µ ∼ N (µ, σ2) ∀x ∈ Xi ∪ Zi; (F.3)

x|µ, η2
i ∼ N (µ, σ2 + η2

i) ∀x ∈ Z ′i. (F.4)

Here, recall that η2
i is a function of Yi and Zi. Because both Yi = fi(Xi) and η2

i are
deterministic functions of Xi, Zi when fi is fixed, the posterior distribution for µ
conditioned on (Xi, Yi, Ai) can be calculated as follows:

p(µ|Xi, Yi, Ai) = p
(
µ|Xi, Yi, Zi, Z

′
i, η

2
i

)
= p(µ|Xi, Zi, Z

′
i)

∝ p(µ,Xi, Zi, Z
′
i) = p(Z ′i|Xi, Zi, µ)p(Xi, Zi|µ)p(µ) = p(Z ′i|Xi, Zi, µ)p(Xi|µ)p(Zi|µ)p(µ)

294

∝ exp
− 1

2(σ2 + η2
i)
∑
x∈Z′i

(x− µ)2

 exp
− 1

2σ2

∑
x∈Xi∪Zi

(x− µ)2

 exp
(
− µ

2

2`2

)

∝ exp
(
−1

2

(
|Z ′i|

σ2 + η2
i

+ |Xi|+ |Zi|
σ2 + 1

`2

)
µ2
)

exp
(

1
22
(∑

x∈Z′i x

σ2 + η2
i

+
∑
x∈Xi∪Zi x

σ2

)
µ

)

= exp
(
−1

2

(
1
σ2
`

µ2 − 2µ`
σ2
`

µ

))
∝ exp

(
− 1

2σ2
`

(µ− µ`)2
)
,

where

µ` =

∑
x∈Z′

i
x

σ2+η2
i

+
∑

x∈Xi∪Zi
x

σ2

|Z′i|
σ2+η2

i
+ |Xi|+|Zi|

σ2 + 1
`2

, and σ2
` = 1

|Z′i|
σ2+η2

i
+ |Xi|+|Zi|

σ2 + 1
`2

. (F.5)

We can therefore conclude that (despite the non i.i.d nature of the data), the
posterior for µ is Gaussian with mean and variance as shown above. We have:

µ|Xi, Yi, Ai ∼ N (µ`, σ2
`).

Next, following standard steps (See Corollary 1.2 in Chapter 4 of Lehmann and
Casella (2006)), we know thatEµ

[
(hi(Xi, Yi, Ai)− µ)2|Xi, Yi, Ai

]
is minimized when

hi(Xi, Yi, Ai) = Eµ[µ|Xi, Yi, Ai] = µ`. This shows that for any fi ∈ hi, the optimal hi
is simply the posterior mean of µ under the prior Λ` conditioned on (Xi, fi(Xi), Ai).
We can rewrite the minimum averaged risk over H by switching the order of
expectation:

inf
hi∈H

Eµ∼Λ`

[
E
[
(hi(Xi, Yi, Ai)− µ)2|µ

]]
= inf

hi∈H
EXi,Zi,Z′i

[
Eµ
[
(hi(Xi, Yi, Ai)− µ)2|Xi, Zi, Z

′
i

]]
= EXi,Zi,Z′i

[
Eµ
[
(µ` − µ)2|Xi, Zi, Z

′
i

]]
= EXi,Zi,Z′i

[
σ2
`

]

= EXi,Zi

 1
|Z′i|
σ2+η2

i
+ |Xi|+|Zi|

σ2 + 1
`2

, (F.6)

295
the expectation in the last step involves only Xi, Zi because σ2

` depends only on
Xi, Zi and |Z ′i|, but not the instantiation of Z ′i.

Next, we will show that (F.6) is minimized for the following choice of fi which
shrinks each points in Xi by an amount that depends on the prior Λ`’s variance `2:

fi(Xi) =
{

|Xi| /σ2

|Xi| /σ2 + 1/`2 x , for each x ∈ Xi

}
. (F.7)

Remark F.1.1. An interesting observation (albeit not critical to the proof) here is
that fi in (F.7) converges pointwise to f ?i , i.e. I, as ` → ∞. This shows that the
optimal submission function under the prior converges to f ?i . We can make a similar
observation about the posterior mean in (F.5), where µ` converges to h?i as `→∞.

To prove (F.7), we first define the following quantities.

µ̂(Xi) := 1
|Xi|

∑
x∈Xi

x, µ̂(Yi) := 1
|Yi|

∑
x∈Yi

x, µ̂(Zi) := 1
|Zi|

∑
s∈Zi

x.

We will also find it useful to express η2
i as follows. Here α is as defined in (8.7). We

have:
η2
i = α2(µ̂(Yi)− µ̂(Zi))2

The following calculations show that:
conditioned onXi, µ̂(Zi)−µ and µ− |Xi|/σ2

|Xi|/σ2+1/`2 µ̂(Xi) are independent Gaussian
random variables1:

p(µ̂(Zi)− µ, µ|Xi) ∝ p(µ̂(Zi)− µ, µ,Xi)

=p(µ̂(Zi)− µ,Xi|µ)p(µ) = p(µ̂(Zi)− µ|µ)p(Xi|µ)p(µ)

∝ exp
(
−1

2
|Zi|
σ2 (µ̂(Zi)− µ)2

)
exp

− 1
2σ2

∑
x∈Xi

(x− µ)2

 exp
(
− 1

2`2µ
2
)

1This is akin to the observation that given u, v ∼ N (0, 1), then u− v and u+ v are independent.

296

∝ exp
(
−1

2
|Zi|
σ2 (µ̂(Zi)− µ)2

)
︸ ︷︷ ︸

∝p(µ̂(Zi)−µ|Xi)

exp
−1

2

(
|Xi|
σ2 + 1

`2

)(
µ− |Xi| /σ2

|Xi| /σ2 + 1/`2 µ̂(Xi)
)2


︸ ︷︷ ︸
∝p
(
µ− |Xi|/σ2

|Xi|/σ2+1/`2
µ̂(Xi)|Xi

)
Thus conditioning on Xi, we can write

 µ̂(Zi)− µ
µ− |Xi|/σ2

|Xi|/σ2+1/`2 µ̂(Xi)

 ∼ N
0

0

 ,
 σ2

|Zi| 0
0 1

|Xi|/σ2+1/`2

.
which leads us to

µ̂(Zi)−
|Xi| /σ2

|Xi| /σ2 + 1/`2 µ̂(Xi)
∣∣∣∣∣Xi ∼ N

 0, σ2

|Zi|
+ 1
|Xi| /σ2 + 1/`2︸ ︷︷ ︸

=:σ̃2
`

 (F.8)

Next, we will rewrite the squared difference in η2
i as follows:

η2
i

α2 =(µ̂(Yi)− µ̂(Zi))2

=

µ̂(Zi)−
|Xi| /σ2

|Xi| /σ2 + 1/`2 µ̂(Xi)︸ ︷︷ ︸
=σ̃`e

+

 |Xi| /σ2

|Xi| /σ2 + 1/`2 µ̂(Xi)− µ̂(Yi)︸ ︷︷ ︸
=:φ(Xi,fi)




2

.

Here, we observe that the first part of the RHS above is equal to σ̃`, where e is
a normal noise e|Xi ∼ N (0, 1) and σ̃` is as defined in (F.8). For brevity, we will
denote the second part of the RHS as φ(Xi, fi), which intuitively characterizes
the difference between Xi and Yi. Importantly, φ(Xi, fi) = 0 when fi is chosen to
be (F.7).

297
Using e and φ, we can rewrite (F.6) using conditional expectation:

EXi,Zi

 1
|Z′i|
σ2+η2

i
+ |Xi|+|Zi|

σ2 + 1
`2

 = EXi

EZi|Xi
 1
|Z′i|
σ2+η2

i
+ |Xi|+|Zi|

σ2 + 1
`2




= EXi

Ee|Xi
 1

|Z′i|
σ2+α2(σ̃`e+φ(Xi,fi))2 + |Xi|+|Zi|

σ2 + 1
`2




= EXi


∫ ∞
−∞

1
|Z′i|

σ2+α2σ̃2
`
(e+φ(Xi,fi)/σ̃`)2 + |Xi|+|Zi|

σ2 + 1
`2︸ ︷︷ ︸

=:F1(e+φ(Xi,fi)/σ̃`)

1√
2π

exp
(
−e

2

2

)
︸ ︷︷ ︸

=:F2(e)

de


, (F.9)

where we use the fact that e|Xi ∼ N (0, 1) in the last step. To proceed, we will
consider the inner expectation in the RHS above. For any fixed Xi, F1(·) (as marked
on the RHS) is an even function that monotonically increases on [0,∞) bounded by

σ
|Xi|+|Zi| and F2(·) (as marked on the RHS) is an even function that monotonically
decreases on [0,∞). That means, for any a ∈ R,

∫ ∞
−∞

F1(e− a)F2(e)de ≤
∫ ∞
−∞

σ

|Xi|+ |Zi|
F2(e)de = σ

|Xi|+ |Zi|
<∞.

By a corollary of the Hardy-Littlewood inequality in Lemma F.7.2, we have
∫ ∞
−∞

F1(e+ φ(Xi, fi)/σ̃`)F2(e)de ≥
∫ ∞
−∞

F1(e)F2(e)de, (F.10)

the equality is achieved when φ(Xi, fi)/σ̃` = 0. In particular, the equality holds
when fi is chosen as specified in (F.7).

Now, to complete Step 1, we combine (F.6), (F.9) and (F.10) to obtain

inf
hi∈H

Eµ∼Λ`

[
E
[
(hi(Xi, Yi, Ai)− µ)2|µ

]]
= EXi

[∫ ∞
−∞

F1(e+ φ(Xi, fi)/σ̃`)F2(e)de
]

≥ EXi
[∫ ∞
−∞

F1(e)F2(e)de
]

=
∫ ∞
−∞

F1(e)F2(e)de, (F.11)

298
where the last step is because conditioning on each realization ofXi, the term inside
the expectation is a constant. Using (F.11), we can write the Bayes risk R` under
any prior Λ` as:

R` := inf
fi∈A,hi∈H

Eµ∼Λ`

[
E
[
(hi(Xi, Yi, Ai)− µ)2|µ

]]
=
∫ ∞
−∞

F1(e)F2(e)de

=Ee∼N (0,1)

 1
|Z′i|

σ2+α2σ̃2
`
e2

+ |Xi|+|Zi|
σ2 + 1

`2


Because the term inside the expectation is bounded by σ2

|Xi|+|Zi| and lim`→∞ σ̃
2
` =

σ2

|Zi| + σ2

|Xi| , we can use dominated convergence theorem to show that:

R∞ := lim
`→∞

R` = Ee∼N (0,1)


1

|Z′i|
σ2+α2

(
σ2
|Zi|

+ σ2
|Xi|

)
e2

+ |Xi|+|Zi|
σ2

 (F.12)

Step 2: Maximum risk of (f ?i , h?i): Next, we will compute the maximum risk of
the (f ?i , h?i) (see (8.8)) and show that it is equal to the RHS of (F.12). First note that
we can write, µ̂(Xi)− µ

µ̂(Zi)− µ

 ∼ N
0

0

 ,
 σ2

|Xi| 0
0 σ2

|Zi|

.
By a linear transformation of this Gaussian vector, we obtain

 |Xi|σ2 (µ̂(Xi)− µ) + |Zi|
σ2 (µ̂(Zi)− µ)

µ̂(Xi)− µ̂(Zi)

 =
 |Xi|σ2

|Zi|
σ2

1 −1

µ̂(Xi)− µ
µ̂(Zi)− µ


∼N

0
0

 ,
 |Xi|+|Zi|σ2 0

0 σ2

|Xi| + σ2

|Zi|

,
which means |Xi|

σ2 (µ̂(Xi)− µ) + |Zi|
σ2 (µ̂(Zi)− µ) and ηi

α
= µ̂(Xi) − µ̂(Zi) are inde-

pendent Gaussian random variables. Therefore, the the maximum risk of (f ?i , h?i)

299
is:

sup
µ

E
[
(h?i (Xi, Yi, Ai)− µ)2|µ

]

= sup
µ

Eηi

E


∑

x∈Z′
i
x

σ2+η2
i

+ |Xi|
σ2 µ̂(Xi) + |Zi|

σ2 µ̂(Zi)
|Z′i|
σ2+η2

i
+ |Xi|+|Zi|

σ2

− µ


2∣∣∣∣∣∣∣∣∣ ηi




= sup
µ

Eηi

E


∑

x∈Z′
i
(x−µ)

σ2+η2
i

+ |Xi|
σ2 (µ̂(Xi)− µ) + |Zi|

σ2 (µ̂(Zi)− µ)
|Z′i|
σ2+η2

i
+ |Xi|+|Zi|

σ2


2∣∣∣∣∣∣∣∣∣ ηi




= sup
µ

Eηi


E

(∑x∈Z′
i
(x−µ)

σ2+η2
i

+ |Xi|
σ2 (µ̂(Xi)− µ) + |Zi|

σ2 (µ̂(Zi)− µ)
)2
∣∣∣∣∣∣ ηi


(|Z′i|
σ2+η2

i
+ |Xi|+|Zi|

σ2

)2



= sup
µ

Eηi

 1(|Z′i|
σ2+η2

i
+ |Xi|+|Zi|

σ2

)2

(
|Z ′i| (σ2 + η2

i)
(σ2 + η2

i)2 + |Xi|+ |Zi|
σ2

)

=Eηi

 1
|Z′i|
σ2+η2

i
+ |Xi|+|Zi|

σ2

 = E

 1
|Z′i|

σ2+α2(µ̂(Zi)−µ̂(Xi))2 + |Xi|+|Zi|
σ2


Because µ̂(Zi)− µ̂(Xi) ∼ N

(
0, σ2

|Xi| + σ2

|Zi|

)
, we can further write the maximum risk

as:

sup
µ

E
[
(h?i (Xi, Yi, Ai)− µ)2|µ

]
= Ee∼N (0,1)


1

|Z′i|
σ2+α2

(
σ2
|Zi|

+ σ2
|Xi|

)
e2

+ |Xi|+|Zi|
σ2

 = R∞

Here, we have observed that the final expression in the above equation is exactly
the same as the Bayes’ risk in the limit in (F.12) from Step 1.

300
Step 3: Minimax optimality of (f ?i , h?i): As the maximum is larger than the aver-
age, we can write, for any prior Λ`, and any (fi, hi) ∈ F ×H,

sup
µ

E
[
(hi(Xi, fi(Xi), Ai)− µ)2|µ

]
≥ EΛ`

[
E
[
(hi(Xi, fi(Xi), Ai)− µ)2|µ

]]
≥ R`.

As this is true for all `, by taking the limit we have, for all (fi, hi) ∈ F ×H,

sup
µ

E
[
(hi(Xi, fi(Xi), Ai)− µ)2|µ

]
≥ R∞ = sup

µ
E
[
(h?i (Xi, f

?
i (Xi), Ai)− µ)2|µ

]
.

That is, the recommended (f ?i , h?i) has a smaller maximum risk than all other
(fi, hi) ∈ F ×H. This establishes that for any ni,

pi(MC3D, ((ni, f ?i , h?i), s?−i)) = inf
fi∈A

inf
hi∈H

pi(MC3D, ((ni, fi, hi), s?−i)).

Proof of Lemma F.1.3

In the previous section, we showed that for any ni, the optimal (fi, hi) were (f ?i , h?i)
as given in (8.8). Now, we show that for the given (f ?i , h?i), the optimal number of
samples is n?i = σ/

√
cm. For this, we will show that pi is a convex function of ni

and then show that its gradient is 0 at n?i .
First, noting that

µ̂(Zi)− µ̂(Xi) ∼ N
(

0, σ
2

|Xi|
+ σ2

|Zi|

)
,

we can rewrite the penalty term as:

p(ni) :=pi
(
MC3D, ((ni, f ?i , h?i), s?−i)

)
= E

 1
|Z′i|

σ2+α2(µ̂(Zi)−µ̂(Xi))2 + |Xi|+|Zi|
σ2

+ cni

301

=Ex∼N (0,1)


1

|Z′i|
σ2+α2

(
σ2
|Xi|

+ σ2
|Zi|

)
x2

+ |Xi|+|Zi|
σ2

+ cni

=Ex∼N (0,1)


1

(m−2)n?i
σ2+α2

(
σ2
ni

+ σ2
n?
i

)
x2

+ ni+n?i
σ2︸ ︷︷ ︸

=:l(ni,x;α)


+ cni (F.13)

Convexity of penalty function: To show that p(ni) is convex in ni, let us consider
l(ni, x;α). Fixing α and x, we have

∂

∂ni
l(ni, x;α) = −σ2

1 + (m−2)n?i(
1+α2

(
1
ni

+ 1
n?
i

)
x2
)2

α2x2

n2
i (m−2)n?i

1+α2
(

1
ni

+ 1
n?
i

)
x2

+ ni + n?i

2 = −σ2

1 + (m−2)n?i α
2x2(

ni+α2
(

1+ ni
n?
i

)
x2
)2

 (m−2)n?i
1+α2

(
1
ni

+ 1
n?
i

)
x2

+ ni + n?i

2

(F.14)

As ∂
∂ni
l(ni, x;α) is an increasing function of ni, we have that l(ni, x;α) is a convex

function in ni. As expectation preserves convexity (see Lemma F.7.3), p(ni) is a
convex function.

Penalty is minimized when ni = n?i . Lemma F.7.6 provides an expression for the
derivative of p(ni) (obtained purely via algebraic manipulations). Using this, we
have

p′(n?i) =− σ2

64 α2

m−2
α√
mn?i

mn?i

(
4α√
mn?i

(
4α2m

(m− 2)n?i
− 1

)

− exp
(
mn?i
8α2

)(4α2

mn?i
(m+ 1)− 1

)√
2π Erfc

 1

2
√

2
√

α2

mn?i


)

+ c (By Lemma F.7.6)

302

=− σ2

64 α2

m−2
α√
mn?i

mn?i

(
4α√
mn?i

(
4α2(m− 4)
(m− 2)n?i

− 1
)

− exp
(
mn?i
8α2

)(4α2

mn?i
(m+ 1)− 1

)√
2π Erfc

 1

2
√

2
√

α2

mn?i


)

=G(α) = 0.

Here, the second step uses the fact that n?i = σ√
cm

. Finally, we have observed that
the expression is equal to G(α) as defined in (8.7) which is 0 by our choice of α.
Since p′(n?i) = 0 and p(·) is convex, we can conclude that p(ni) is minimized when
ni = n?i . Therefore,

pi(MC3D, ((n?i , f ?i , h?i), s?−i)) ≤ pi(MC3D, ((ni, f ?i , h?i), s?−i)).

Algorithm 10 is individually rational

As outlined in the main text, the NIC property implies IR since ‘working on her
own’ is a valid strategy in the mechanism. Precisely, if an agent collects any number
of points ni, chooses not to submit anything fi(·) = ∅, and then uses the sample
average of the points she collected hi(Xi,∅, Ai) = |Xi|−1∑

x∈Xi x, then (ni, fi, hi) ∈
S.

Below, we will prove this more formally and also show that the agent’s penalty
is strictly smaller when participating. For any fixed ni, without participating in the
mechanism, the smallest penalty the agent can achieve is by using empirical mean
estimation and the penalty is:

σ2

ni
+ cni

When participating, the agent gets an additional n?i number of clean data along
with some noisy data, provided that all other agents are following s?−i. By using

303
the empirical mean over the clean data, the penalty is:

σ2

ni + n?i
+ cni <

σ2

ni
+ cni

Now, since the weighted average estimator in s?i is minimax optimal, the agent gets
even smaller maximum risk and hence smaller penalty. In other words, for any ni,

pi(MC3D, s
?) ≤ pi(MC3D, ((ni, f ?i , h?i), s?−i)) ≤

σ2

ni + n?i
+ cni <

σ2

ni
+ cni

By minimizing the RHS with respect to ni, we get pi(MC3D, s
?) < pIR

min. Thus Algo-
rithm 10 is IR.

Algorithm 10 is approximately efficient

In this section, we will bound the penalty ratio PR for MC3D at the strategy profiles
s?i .

First, noting thatG(α) = 0 (see (8.7)), we can rearrange the terms in the equation
to obtain:

exp
(
mn?i
8α2

)
Erfc

 1

2
√

2
√

α2

mn?i

 = 1√
2π

4α√
mn?i

(
4α2(m−4)
(m−2)n?i

− 1
)

4α2

mn?i
(m+ 1)− 1

(F.15)

Next, we will use the expression for p(ni) = pi(MC3D, (s?−i, (ni, f ?i , h?i))) in Lemma F.7.6
and the equation in (F.15) to simplify p(n?i) as follows:

p(n?i) =

√
α2

mn?i
σ2

2m
√

2π
√

α2

mn?i
− exp

(
mn?i
8α2

)
(m− 2)π Erfc

 1
2
√

2
√

α2
mn?

i


4
√

2πα2
+ cn?i

(By Lemma F.7.6)

304

=

√
α2

mn?i
σ2

2m
√

2π
√

α2

mn?i
− (m− 2)π 1√

2π

4α√
mn?

i

(
4α2(m−4)
(m−2)n?

i
−1
)

4α2
mn?

i
(m+1)−1


4
√

2πα2
+ cn?i (By (F.15))

=
σ2

m− (m− 2)
4α2(m−4)
(m−2)n?

i
−1

4α2
mn?

i
(m+1)−1


2mn?i

+ cn?i

= σ2

2mn?i

4α2

n?i
(m+ 1)−m− 4α2

n?i
(m− 4) + (m− 2)

4α2

n?i

m+1
m
− 1

+ cn?i

= σ2

2mn?i

20α2

n?i
− 2

4α2

n?i

m+1
m
− 1

+ cn?i = σ2

mn?i

10α2

n?i
− 1

4α2

n?i

m+1
m
− 1

+ cn?i

=σ
√
c

m

 10α2

n?i
− 1

4α2

n?i

m+1
m
− 1

+ 1


From our conclusion in Section F.1, we have α2 > σ√
cm

= n?i , i.e. α2

n?i
> 1. Therefore,

we have:

PR(MC3D, s
?) =mp(n?i)

2σ
√
cm

= 1
2

 10α2

n?i
− 1

4α2

n?i

m+1
m
− 1

+ 1


<
1
2

 10α2

n?i
− 1 + 10α2

n?i

1
m

+
(

2α2

n?i

m+1
m
− 2

)
4α2

n?i

m+1
m
− 1

+ 1

 = 2.

F.2 Proof of Theorem 8.4.1

We will use MPCS to denote the mechanism in Section 8.4, as it pools the datsets, but
checks for the size of the dataset submitted by each agent. For clarity, we have stated
MPCS algorithmically in Algorithm 18. We will also re-state the recommended
strategies s?i = {(n?i , f ?i , h?i)}i below:

n?i = σ√
cm

, f ?i = I, h?i (Xi, Yi, Ai) = 1
|Xi ∪ Ai|

∑
u∈Xi∪Ai

u (F.16)

305
Algorithm 18 MPCS

1: Mechanism designer publishes:
2: The allocation space A = ⋃

n≥0 Rn, and the procedure in lines 6 –11.
3: Each agent i:
4: Choose strategy si = (ni, fi, hi).
5: Sample ni points Xi = {xi,j}nij=1 and submit Yi = fi(Xi) to the mechanism.
6: Mechanism:
7: For each agent i ∈ [m]: # can be done simultaneously for all agents
8: Ai ←

⋃
j 6=i Yj if |Yi|≥ σ/

√
cm, Ai ← ∅ otherwise.

9: Return Ai to each agent.
10: Each agent i:
11: Compute estimate hi(Xi, Yi, Ai).

Throughout this section, s?i will refer to (F.16) (and not (8.8)).
We will first prove that s?i is a Nash equilibrium. Because the sample mean

achieves minimax error for Normal mean estimation Lehmann and Casella (2006),
we immediately have, for all (ni, fi, hi) ∈ S.

pi(MPCS, ((ni, fi, h?i), s?−i)) ≤ pi(MPCS, ((ni, fi, hi), s?−i)).

Because the agent can only submit the raw dataset or a subset, and the agent’s
allocation only depends on the size of the dataset, the size of the dataset she receives
can always be maximized by submittng the whole data set she collects, i.e. chooses
fi = I. Therefore, we have for all (ni, fi, hi) ∈ S,

pi(MPCS, ((ni, f ?i , h?i), s?−i)) ≤ pi(MPCS, ((ni, fi, h?i), s?−i)) ≤ pi(MPCS, ((ni, fi, hi), s?−i)).

Finally, we can use the fact that the maximum risk of the sample mean estimator
using npoints is σ2/n to show that the penalty is minimized when ni = n?i = σ/

√
cm.

In particular, we have that if ni < σ/
√
cm,

pi(MPCS, ((ni, f ?i , h?i), s?−i)) = σ2

ni
+ cni > 2σ

√
c.

306
And if ni ≥ σ/

√
cm,

pi(MPCS, ((ni, f ?i , h?i), s?−i)) = σ2

ni + (m− 1)σ/
√
cm

+ cni ≥ 2σ
√
c

m

Because 2σ
√
c ≥ 2σ

√
c/m, pi(MPCS, ((ni, f ?i , h?i), s?−i)) is minimized when ni =

σ/
√
cm. We thus conclude that s? is a Nash equilibrium. That is, for all (ni, fi, hi) ∈

N×F ×H
pi(MPCS, s

?) ≤ pi(MPCS, ((ni, fi, hi), s?−i)).

Next, the IR and efficiency properties follow trivially from the fact that pi(MPCS, s
?) =

2σ
√
c/m for each agent i. In particular, pi(MPCS, s

?) < pIR
min and P (MPCS, s

?) =
2σ
√
cm.

F.3 Proof of Theorem 8.4.2

We will use MCDED to denote our mechanism in Section 8.4, as it corrupts the de-
ployed estimate based on the difference. We have stated this mechanism formally in
Algorithm 19. We will also re-state the recommended strategies s?i = {(n?i , f ?i)}i
below:

n?i = σ√
cm

, f ?i = I. (F.17)

Throughout this section, s?i will refer to (F.17) (and not (8.8) or (F.16)).
We will now present the proof of Theorem 8.4.2. First, in Section F.3, we show

that s? is a Nash equilibrium of MCDED as the Nash incentive compatibility result.
Then, in Section F.3, we show individual rationality at s?i . In Section F.3, we conclude
by showing that MCDED is approximately efficient by showing that its social penalty
at most a (1 + ε) factor of the global minimum.

307
Algorithm 19 is Nash incentive compatible

Step 1. We will first show that fixing any ni, the best strategy is to submit the raw
data, i.e. for all (ni, fi) ∈ N×F .

pi(MCDED, ((ni, f ?i), s?−i)) ≤ pi(MCDED, ((ni, fi), s?−i)). (F.18)

Let ez,i = εz,i/ηi, where ηi, and εz,i are as given in lines 9 and 10 respectively. We
have that ez,i’s are i.i.d. standard Normal samples. Because the cost term cni is fixed
when ni is fixed, we only need to consider the risk term. We will first define,

µ̂(Xi) := 1
|Xi|

∑
x∈Xi

x, µ̂(Yi) := 1
|Yi|

∑
x∈Yi

x, µ̂(Y−i) := 1
|Y−i|

∑
x∈Y−i

x. (F.19)

Via some algebraic manipulations, we can express the maximum risk as:

sup
µ

E


 1
|Yi|+ (m− 1)n?i

∑
y∈Yi

(y − µ) +
∑
z∈Y−i

(z + ez,iηi − µ)
2

∣∣∣∣∣∣∣µ


= 1
(|Yi|+ (m− 1)n?i)

2 sup
µ

E


∑
y∈Yi

(y − µ)
2

+
 ∑
z∈Y−i

(z + ez,iηi − µ)
2
∣∣∣∣∣∣∣µ


= 1
(|Yi|+ (m− 1)n?i)

2 sup
µ

E
[
(|Yi| (µ̂(Yi)− µ))2 +

 ∑
z∈Y−i

(z − µ)
2

+
 ∑
z∈Y−i

ez,iηi

2∣∣∣∣µ]

= 1
(|Yi|+ (m− 1)n?i)

2 sup
µ

E
[
(|Yi| (µ̂(Yi)− µ))2 + (m− 1)n?iβ2

ε (µ̂(Yi)− µ̂(Y−i))2kε
∣∣∣µ]

+ (m− 1)n?iσ2

(|Yi|+ (m− 1)n?i)
2

Recall that βε also involves |Yi|. Note that as we have fixed ni and s−i = s?−i, the
maximum risk depends only on |Yi| and µ̂(Yi), that is, the agent’s maximum risk
and hence penalty only depends on the number of points she submitted, and their

308
average value. Hence, to find the optimal submission Yi, we will first fix the size of
the agent’s submission |Yi| and optimize for the sample mean µ̂(Yi) (step 1.1), and
then we will optimize for |Yi| (step 1.2).

Step 1.1. Since the other agents have each collected σ/
√
cm = n?i points and

submitted it truthfully, we have µ̂(Y−i) ∼ N
(
µ, σ2

(m−1)n?i

)
. Via a binomial expansion ,

we can write,

E
[
(µ̂(Yi)− µ̂(Y−i))2kε

]
=E

[
((µ̂(Yi)− µ)− (µ̂(Y−i)− µ))2kε

]
=

2kε∑
j=0

(−1)j
(

2kε
j

)
E
[
(µ̂(Yi)− µ)j

]
E
[
(µ̂(Y−i)− µ)2kε−j

]

=
kε∑
j=0

(
2kε
2j

)
E
[
(µ̂(Yi)− µ)2j

]
E
[
(µ̂(Y−i)− µ)2kε−2j

]

Thus the maximum risk can be written as:

sup
µ

E

 kε∑
j=0

Aj(µ̂(Yi)− µ)2j

∣∣∣∣∣∣µ
 (F.20)

where A0, . . . , Akε is a sequence of positive coefficients.
Similar to the proof of Theorem 8.3.1, we construct a lower bound on the maxi-

mum risk using a sequence of Bayesian risks. Let Λ` := N (0, `2), ` = 1, 2, . . . be a
sequence of prior for µ. For fixed `, the posterior distribution is:

p(µ|Xi) ∝p(Xi|µ)p(µ) ∝ exp
− 1

2σ2

∑
x∈Xi

(x− µ)2

 exp
(
− 1

2`2µ
2
)

∝ exp
(
−1

2

(
ni
σ2 + 1

`2

)
µ2 + 1

22
∑
x∈Xi x

σ2 µ
)
.

This means the posterior of µ given Xi is Gaussian with:

µ|Xi ∼ N
(
niµ̂(Xi)/σ2

ni/σ2 + 1/`2 ,
1

ni/σ2 + 1/`2

)
=: N

(
µ`, σ

2
`

)
.

309
Algorithm 19 MCDED

Require: Approximation parameter ε > 0 # to obtain a 1 + ε bound on PR.
1: Mechanism designer publishes: The procedure in lines 5 –11.
2: Each agent i:
3: Choose strategy si = (ni, fi).
4: Sample ni points Xi = {xi,j}nij=1 and submit Yi = fi(Xi) to the mechanism.
5: Mechanism:

6: kε ← d 1
2εe, βε ←

√
(∑m

i=1|Yi|)
2
(m−1)kε−1

kε(2kε−1)!!σkεc
kε−2

2 m3kε/2

7: For each agent i ∈ [m]: # can be done simultaneously for all agents
8: Y−i ←

⋃
j 6=i Yj .

9: η2
i ← β2

ε

(
1
|Yi|

∑
y∈Yi y −

1
|Y−i|

∑
y∈Y−i y

)2kε .
10: Zi ← {z + εz,i, for all z ∈ Y−i where εz,i ∼ N (0, η2

i)}
11: Deploy estimate

(
1

|Yi∪Zi|
∑
u∈Yi∪Zi u

)
for agent i.

Therefore, the posterior risk is:

E

 kε∑
j=0

Aj(µ̂(Yi)− µ)2j

∣∣∣∣∣∣Xi

 =E

 kε∑
j=0

Aj((µ̂(Yi)− µ`)− (µ− µ`))2j

∣∣∣∣∣∣Xi


=
∫ ∞
−∞

kε∑
j=0

Aj(e− (µ̂(Yi)− µ`))2j

︸ ︷︷ ︸
=:F1(e−(µ̂(Yi)−µ`))

1
σ`
√

2π
exp

(
− e2

2σ2
`

)
︸ ︷︷ ︸

=:F2(e)

de

Because:

• F1(·) is even function and increases on [0,∞);

• F2(·) is even function and decreases on [0,∞, and
∫
R F2(e)de <∞

• For any a ∈ R,
∫
R F1(e− a)F2(e)de <∞,

By the corollary of Hardy-Littlewood inequality in Lemma F.7.2,
∫
R
F1(e− a)F2(e)de ≥

∫
R
F1(e)F2(e)de,

310
which means the posterior risk is minimized when µ̂(Yi) = µ`. In Lemma F.7.4, we
have stated expressions for the expected value of the power of a normal random
variable. Using this, we can write the Bayes risk as:

R` := E

 kε∑
j=0

AjE
[
(µ− µ`)2j

∣∣∣Xi

] =
kε∑
j=0

Aj(2j − 1)! !σ2j
`

and the limit of Bayesian risk as `→∞ is

R∞ := lim
`→∞

kε∑
j=0

Aj(2j − 1)! ! σ
2j

nji

When µ̂(Yi) = µ̂(Xi), the maximum risk is:

sup
µ

E

 kε∑
j=0

Aj(µ̂(Yi)− µ)2j

∣∣∣∣∣∣µ
 = sup

µ
E

 kε∑
j=0

Aj(µ̂(Xi)− µ)2j

∣∣∣∣∣∣µ


=
kε∑
j=0

Aj(2j − 1)! !σ2jn−ji = R∞.

This means, fixing ni and |Yi|, agent i achieves minimax risk when choosing µ̂(Yi) =
µ̂(Xi); as the maximum is larger than the average, this follows using a similar
argument to Step 3 in Section F.1.

Step 1.2. Next, we will show that the best size of the submission is |Yi| = |Xi| =
ni, assuming µ̂(Yi) = µ̂(Xi). For this, we will first use n?i to rewrite β2

ε as

β2
ε = n?i

kε−2(m− 1)kε−1(|Yi|+ (m− 1)n?i)
2

kε(2kε − 1)! !mkε+1σ2kε−2 .

Because
µ̂(Xi)− µ̂(Y−i) ∼ N

(
0,
(

1
ni

+ 1
(m− 1)n?i

)
σ2
)
,

311
the risk term in the penalty can be rewritten and lower bounded as follows:

1
(|Yi|+ (m− 1)n?i)

2

|Yi|2 σ2/ni + (m− 1)n?iβ2
ε (2kε − 1)! !

(
1
ni

+ 1
(m− 1)n?i

)kε
σ2kε


+ (m− 1)n?iσ2

(|Yi|+ (m− 1)n?i)
2

=
|Yi|2 σ2

ni
+ (m− 1)n?iσ2

(|Yi|+ (m− 1)n?i)
2 + n?i

kε−1(m− 1)kε
kεmkε+1

(
1
ni

+ 1
(m− 1)n?i

)kε
σ2

≥ σ2

ni + (m− 1)n?i
+ n?i

kε−1(m− 1)kε
kεmkε+1

(
1
ni

+ 1
(m− 1)n?i

)kε
σ2.

Here, the last step follows from the fact that

|Yi|2 σ2

ni
+ (m− 1)n?iσ2

(|Yi|+ (m− 1)n?i)
2 =

|Yi|2 σ2

ni
+ (m− 1)n?iσ2

ni
|Yi|2
ni

+ 2 |Yi| (m− 1)n?i + (m− 1)2n?i
2

≥
|Yi|2 σ2

ni
+ (m− 1)n?iσ2

ni
|Yi|2
ni

+
(
ni + |Yi|2

ni

)
(m− 1)n?i + (m− 1)2n?i

2
=

|Yi|2 σ2

ni
+ (m− 1)n?iσ2

(ni + (m− 1)n?i)
(
|Yi|2
ni

+ (m− 1)n?i
)

= σ2

ni + (m− 1)n?i
.

Equality holds in this inequality if and only if |Yi| = ni.
In conclusion, fixing ni, the agent can minimize her penalty by submitting ni

points with the same sample mean as the dataset Xi she collected. One way to
achieve this is set fi = I. This completes the proof of (F.18).

Step 2: Our next step is to show that the agent’s best strategy is to collect n?i
data points. That is, we will show for all ni ∈ N.

pi(MCDED, ((n?i , f ?i), s?−i)) ≤ pi(MCDED, ((ni, f ?i), s?−i)). (F.21)

In the following, we will use p(ni) as a shorthand for pi(MCDED, ((ni, f ?i), s?−i)). The

312
penalty can be rewritten as:

p(ni) = σ2

ni + (m− 1)n?i
+ n?i

kε−1(m− 1)kε
kεmkε+1

(
1
ni

+ 1
(m− 1)n?i

)kε
σ2 + cni

We need to show that pi(ni) achieves minimum at ni = n?i . The derivative of pi(·) is:

p′(ni) =− σ2

(ni + (m− 1)n?i)2 + n?i
kε−1(m− 1)kε
mkε+1

(
1
ni

+ 1
(m− 1)n?i

)kε−1

σ2
(
− 1
n2
i

)
+ c

Because p′(ni) increase in ni, p(ni) is convex. Moreover, because

p′(n?i) =− σ2

m2n?i
2 + n?i

kε−1(m− 1)kε
mkε+1

(
1
n?i

+ 1
(m− 1)n?i

)kε−1

σ2
(
− 1
n?i

2

)
+ c

=− σ2

m2n?i
2 −

(m− 1)σ2

m2n?i
2 + c = − σ2

mn?i
2 + c = 0,

we know p(ni) reaches minimum at ni = n?i . This concludes the proof for (F.21).

Algorithm 19 is individually rational

The penalty of an agent at the recommended strategies can be expressed as:

pi(MCDED, s
?
i) = p(n?i) = σ2

mn?i
+ n?i

kε−1(m− 1)kε
kεmkε+1

(
1
n?i

+ 1
(m− 1)n?i

)kε
σ2 + cn?i

= σ2

mn?i
+ n?i

kε−1(m− 1)kε
kεmkε+1

mkε

n?i
kε(m− 1)kε

σ2 + cn?i

= σ2

mn?i
+ 1
kε

σ2

mn?i
+ cn?i =

(
2 + 1

kε

)
σ
√
c√
m
. (F.22)

We have that MCDED is IR when m ≥ 2, via the following simple calculation:

(
2 + 1

kε

)
σ
√
c√
m
≤
(

2 + 1
2

)
σ
√
c√

2
< 2σ

√
c = pIR

min

313
Algorithm 19 is approximately efficient

Using the expression for pi(MCDED, s
?
i) in (F.22), the penalty ratio can be bounded

by:

PR(MCDED, s
?) =

(
2 + 1

kε

)
σ
√
cm

2σ
√
cm

= 1 + 1
2kε
≤ 1 + ε.

F.4 Additional Materials for Section 8.4

Mechanism detail

See Algorithm 19.

Using a weighted average under the original strategy space from
Section 8.2

In this section, we will consider a variation of MCDED when applied to our original
strategy space N×F ×H. For this, we will assume that MCDED will return Ai = Zi

as the agent’s allocation, and then an agent can use Xi, Yi, Zi to estimate µ. In this
situation, below we show that the agent can achieve a smaller penalty using a
weighted average over Xi ∪ Zi instead of the sample mean used by the mechanism.
Here, the weights are proportional to the inverse of the variance of each data point.
(Our mechanism purposefully uses the sub-optimal sample mean in the restricted
strategy space N×F as a way to shape the agent’s penalty and incentivize good
behavior.)

This shows that MCDED (with the above modification) is not NIC in this more
general strategy space. The agent can obtain a lower penalty using a better estimator
(such as the weighted average we show over here) and achieve a lower penalty.
More importantly, as the agent knows that she can achieve a lower estimation error
via a better estimator instead of more data, she can leverage this insight to collect
less data and reduce her penalty even further.

314
We should emphasize that it is unclear if this weighted average is minimax

optimal. It is also unclear if there exists a Nash equilibrium for MCDED (or any
straightforward modification of MCDED) in the expanded strategy space.

The weighted average estimator: We will now present the weighted average
estimator that achieves a lower maximum risk. To show this, first note that for all
x ∈ Xi, V[x] = σ2; when (ni, fi) = (n?i , f ?i), for all x ∈ Zi,

V[x] =E
[
(z + εz,i − µ)2

]
= σ2 + β2

εE
[
(µ̂(Xi)− µ̂(Y−i))2kε

]
=σ2 + n?i

kε−2(m− 1)kε−1(mn?i)
2

kε(2kε − 1)! !mkε+1σ2kε−2 (2kε − 1)! !
(

1
n?i

+ 1
(m− 1)n?i

)kε
σ2kε

=σ2 + n?i
kε(m− 1)kε−1

kεmkε−1
mkε

(m− 1)kεn?i kε
σ2

=σ2 + 1
kε

m

m− 1σ
2

Consider the following weighted-average estimator:

hi(Xi, Yi, (Zi, η2
i)) =

1
σ2
∑
x∈Xi x+ 1

σ2+ 1
kε

m
m−1σ

2

∑
x∈Zi x

n?i
σ2 + (m−1)n?i

σ2+ 1
kε

m
m−1σ

2

The maximum risk of hi is

E
[(
hi(Xi, Yi, (Zi, η2

i))− µ
)2
]

= 1
n?i
σ2 + (m−1)n?i

σ2+ 1
kε

m
m−1σ

2

= 1
1 + m−1

1+ 1
kε

m
m−1

σ2

n?i
=

1 + 1
kε

m
m−1

m+ 1
kε

m
m−1

σ2

n?i

<

(
1 + 1

kε

)(
1 + 1

kε
1

m−1

)
m+ 1

kε
m
m−1

σ2

n?i
=
(

1 + 1
kε

)
σ2

mn?i
(F.23)

Note that the RHS of (F.23) is the risk of the sample average deployed by MCDED.
This means, suppose all other agents choose s?, then agent i can choose a weighted
average to reduce her penalty without collecting more data.

315
F.5 High dimensional mean estimation with

bounded variance

In this section, we will study estimating a d–dimensional mean µ(θ) ∈ Rd for
distributions θ with bounded variance. We will focus on our original setting in
Section 8.2, but will outline the modifications to the formalism to accommodate the
generality. For x ∈ Rd, let x(i) denote the ith dimension.

Modifications to the setting in Section 8.2: First, we should change the definitions
of F ,H andM in equations 8.1 and (8.2) to account for the fact that the data is d
dimensional. For instance, the space of functions mapping the dataset collected
to the dataset submitted should be defined as F = {f : ⋃n≥0 Rd×n → ⋃

n≥0 Rd×n}.
Next, let Θ = {θ; supp (θ) ⊂ Rd, Ex∼θ

[
(x(i) − µ(θ)(i))2

]
≤ σ2, ∀ i ∈ [d]} be the

class of all d–dimensional distributions where the variance along each dimension is
bounded by σ2. Here, the maximum variance σ2 is known and is public information.
Note that we do not assume that the individual dimensions are independent. An
agent’s penalty pi is defined similar to (8.3) but considers the maximum risk over
Θ, i.e

pi(M, s) = sup
θ∈Θ

E[‖hi(Xi, Yi, Ai)− µ(θ)‖2
2 | θ] + cni. (F.24)

Finally, the social penalty and ratio PR are as defined in (8.5), but with the above
definition for pi.

Mechanism: Our mechanism for this problem is the same as the one outlined
in Algorithm 10, with the following cosmetic modifications. First, the allocation
space should now be A = ⋃

n≥0 Rd×n × ⋃n≥0 Rd×n × Rd
+. The noise modulating

parameter α is determined by a similar equation as in (8.7), but with c replaced
with c/d. In line 12 of Algorithm 10, we should set the size of the dataset Zi
to be min{|Y−i|, σ

√
d/(cm)}. Finally, the operations in lines 13 and 14 should be

interpreted as d–dimensional operations that are performed elementwise. The

316
recommended strategy s?i = (n?i , f ?i , h?i) for agent i is as follows:

n?i =


σ
m

√
d
c

if m ≤ 4,

σ
√

d
cm

if m ≥ 5
, f ?i = I, (F.25)

h?i (Xi, Yi, (Zi, Z ′i, η2
i)) =

1
σ2
∑
u∈Xi∪Zi u+ 1

σ2+τ2
i

∑
u∈Z′i u

1
σ2 |Xi ∪ Z ′i|+ 1

σ2+τ2
i
|Z ′i|

, where, τ 2
i = 2α2σ2

n?i
∈ R+.

Above, one difference worth highlighting is the change in the recommended esti-
mator h?i . Previously, the weighting used the η2

i term returned by the mechanism,
which is a function of Yi and Zi. This data-dependent weighting was necessary
to obtain an exactly (i.e including constants) minimax optimal estimator for the
corrupted dataset, which in turn was necessary to achieve an exact Nash equi-
librium. However, bounding the risk when using a data-dependent weighting is
challenging when the Gaussian assumption does not hold. Instead, here we use
a deterministic weighting via the quantity τ 2

i . While this is not exactly minimax
optimal, we can show that its maximum risk is very close to a lower bound, which
helps us obtain an approximate Nash equilibrium. It is worth pointing out that
designing exactly minimax optimal estimators, even under i.i.d assumptions, is
challenging for general classes of distributions (Lehmann and Casella, 2006).

The following theorem states the main properties of this mechanism.

Theorem F.5.1. The following statements are true about the mechanism MC3D in Algo-
rithm 10 with the above modifications. (i) The strategy profile s? as defined in (F.25) is
an approximate Nash equilibrium, i.e if all agents except i are following s?, then for any
alternative strategy si for agent i, we have pi(MC3D, s

?) ≤ pi(MC3D, (s?−i, si))(1 + 5/m)
(ii) The mechanism is individually rational at s?. (iii) The mechanism is approximately
efficient at s?i , with PR(MC3D, s

?) < 2 + 10/m.

We see that even under this more general setting, our mechanism retains its main
properties with only a slight weakening of the results. We now have approximate,
instead of exact, NIC, with the benefit of deviation diminishing as there are more

317
agents. Similarly, the bound on the efficiency is only slightly weaker than the one
in Theorem 8.3.1.

Proof of Theorem F.5.1

When m ≤ 4, the claims follow using the exact steps in Section F.1. Therefore, we
focus on the case m ≥ 5. Moreover, some of the key steps of this proof follows
along similar lines to Theorem 8.3.1, so we will provide an outline and focus on the
differences.

Approximate Nash incentive compatibility. We will first prove the statement
(i) of Theorem F.5.1, which states that s?i , as defined in (F.25), is an approximate
Nash equilibrium for MC3D. That is, we will show that the maximum possible
reduction in penalty for an agent i when deviating from s?i is small, provided that
all other agents are following s?−i.

For this, we will first lower bound the penalty pi (F.24) using the family of
independent Gaussian distributions. Let ΘN =

{
N (µ, σ2Id) : µ ∈ Rd

}
denote the

space of d–dimensional normal distributions with identity covariance matrix. For
any mechanism M and strategy profile s ∈ Sm, we define the penalty of agent i
restricted to ΘN as:

pNi (M, s) = sup
θ∈ΘN

E[‖hi(Xi, Yi, Ai)− µ(θ)‖2
2 | θ] + cni.

Since ΘN ⊂ Θ, it is straightforward to see that for all M ∈M and s ∈ Sm,

pNi (M, s) ≤ pi(M, s). (F.26)

We will now use this result to lower bound the penalty of an agent for any other
alternative strategy. First note that, by independence, the mean estimation problem
on ΘN can be viewed as d independent copies of the univariate normal mean
estimation problem considered in Theorem 8.3.1 but with c replaced with c/d. Let
h̃?i be the weighted average that applies the estimator in (8.8) along each dimension.
And let s̃?i = (n?i , f ?i , h̃?i). We can now lower bound the penalty of agent i when

318
following any (alternative) strategy si ∈ S , provided that other agents are following
s?−i. We have:

pi(MC3D, (si, s?−i)) = pi
(
MC3D,

(
si,
(
n?−i, f

?
−i, h

?
−i

)))
≥ pNi

(
MC3D,

(
si,
(
n?−i, f

?
−i, h

?
−i

)))
(By (F.26))

= pNi
(
MC3D,

(
si,
(
n?−i, f

?
−i, h̃

?
−i

)))
(As agent i’s penalty will not be affected by other

agents’ estimators)

≥ pNi
(
MC3D,

((
n?i , f

?
i , h̃

?
i

)
,
(
n?−i, f

?
−i, h̃

?
−i

)))
(By adapting the analysis in Section F.1.)

= pNi (MC3D, s̃
?) (F.27)

Above, the second step uses (F.26) and the third step uses the fact that other
agent’s estimator will not affect agent i’s penalty. The fourth step uses the fact that
for estimation problems in ΘN , the strategy profile s̃? = {(n?i , f ?i , h̃?i)}i is a Nash
equilibrium; in Section F.1, we showed this for the one dimensional case, but this
proof can be easily adapted to d dimensions since we are assuming an identity
covariance matrix in ΘN . Finally, by adapting the analysis in Section F.1, we can
obtain the following expression for agent i’s penalty pNi (MC3D, s̃

?) in ΘN :

pNi (MC3D, s̃
?) = dσ

√
c/d

m

 10α2

n?i
− 1

4α2

n?i

m+1
m
− 1

+ 1
 (F.28)

To state the approximate NIC result, we will now upper bound the penalty of
the agent when following s?i . Using the bounded variance assumption, we have:

pi(M, s?) = sup
θ∈Θ

E


∥∥∥∥∥∥

1
σ2
∑
u∈Xi∪Zi u+ 1

σ2+τ2
i

∑
u∈Z′i u

1
σ2 |Xi ∪ Z ′i|+ 1

σ2+τ2
i
|Z ′i|

− µ(θ)

∥∥∥∥∥∥
2

2

∣∣∣∣∣∣∣ θ
+ cn?i

319

= sup
θ∈Θ

d∑
k=1

E


 1

σ2
∑
u∈Xi∪Zi

(
u(k) − µ(θ)(k)

)
+ 1

σ2+τ2
i

∑
u∈Z′i

(
u(k) − µ(θ)(k)

)
1
σ2 |Xi ∪ Z ′i|+ 1

σ2+τ2
i
|Z ′i|


2∣∣∣∣∣∣∣ θ

+ cn?i

= sup
θ∈Θ

d∑
k=1

1
σ2
∑
u∈Xi∪Zi E

[(
u(k) − µ(θ)(k)

)]
+ 1

σ2+τ2
i

∑
u∈Z′i E

[(
u(k) − µ(θ)(k)

)]
1
σ2 |Xi ∪ Z ′i|+ 1

σ2+τ2
i
|Z ′i|

+ cn?i

(F.29)

≤ d
2n?i
σ2 + (m−2)n?i

σ2+ 2α2σ2
n?
i

+ cn?i = σ2

n?i

d

2 + m−2
1+ 2α2

n?
i

+ cn?i = σ

√
cd

m

 m

2 + m−2
1+ 2α2

n?
i

+ 1

, (F.30)

where (F.29) is because: for all k ∈ [d], ∀x(k)
1 , x

(k)
2 ∈ Xi ∪ Zi, ∀z(k)

1 , z
(k)
2 ∈ Z ′i, x

(k)
1 −

µ(k), x
(k)
2 − µ(k), z

(k)
1 − µ(k), z

(k)
2 − µ(k) are uncorrelated pairwise. The final inequality

is due to the bounded variance assumption.
Next, for brevity, let us write Am := α√

n?i
where α is as defined in (8.7). By

adapting the analysis in Section F.1, we can show that

Am := α√
n?i
∈
(

1, 1 + Cm
m

)
, where, Cm =

20, if m ≤ 20

5, if m > 20
. (F.31)

By combining the results in (F.27), (F.30), and (F.31), we obtain the following
bound:

pi(MC3D, s
?)

infsi pi(MC3D, (si, s?−i))
− 1 ≤ pi(MC3D, s

?)
pNi (MC3D, s̃?)

− 1

≤
σ
√

cd
m

(
m

2+ m−2
1+2A2

m

+ 1
)

dσ
√

c/d
m

(
10A2

m−1
4A2

m
m+1
m
−1 + 1

) − 1 =

m
2+ m−2

1+ 2α2
n?
i

+ 1

10α2
n?
i
−1

4α2
n?
i

m+1
m
−1

+ 1
− 1

= 4A2
m((A2

m − 1)m+ 1− 4A2
m)m

(4A2
m +m)((7A2

m − 1)m+ 2A2
m) =: E(m). (F.32)

LetE(m) denote the final upper bound obtained above. Next, we will proveE(m) <

320

0 100 200 300 400 500

m

10−2

10−1

100

m=5

5/m

E(m)

Figure F.2: E(m) plot. See G_em_plot.py.

5/m. When m ∈ [5, 500], this can be individually verified for each value of E(m)
(see Figure F.2). When m ≥ 500, we have Am ≤ 1.01 (see (F.31)). From this we can
conclude,

E(m) ≤
4× 1.012 × (2.01× 5

m
m− 3)m

6m2 <
5
m
. (F.33)

Combining the results in (F.32) and (F.33), we obtain the following approximate
NIC result:

∀ i ∈ [m], si ∈ S, pi(MC3D, s
?) ≤ pi(MC3D, (si, s?−i))

(
1 + 5

m

)
.

Individual rationality: This proof is very similar to the proof in Section F.1. In
particular, using calculations similar to (F.30), we can show that regardless of the
choice of ni, the agent’s penalty is strictly smaller when using the uncorrupted (Zi)
and corrupted (Z ′i) datasets along with the weighted average in (F.25).

Approximate efficiency: To bound the penalty ratio, first note that by (F.28)
and using the same reasoning as Section F.1, we have that

∑
i p
N
i (MC3D, s̃

?)
infM∈M,s∈Sm

∑
i p
N
i (M, s) = mpNi (MC3D, s̃

?)
infM∈M,s∈Sm

∑
i p
N
i (M, s) = mpNi (MC3D, s̃

?)
2σ
√
cmd

≤ 2.

(F.34)

321
Next, as ΘN ⊂ Θ, and noting that P (M, s) = ∑

i pi(M, s) for all M, s, we can also
write,

inf
M∈M,s∈Sm

∑
i

pNi (M, s) ≤ inf
M∈M,s∈Sm

P (M, s). (F.35)

We can combine the above results to obtain the following upper bound on PR:

PR(MC3D, s
?) = P (MC3D, s

?)
infM∈M,s∈Sm P (M, s) ≤

mpi(MC3D, s
?)

infM∈M,s∈Sm
∑
i p
N
i (M, s) (By (F.35))

= mpNi (MC3D, s̃
?)

infM∈M,s∈Sm
∑
i p
N
i (M, s)

pi(MC3D, s
?)

pNi (MC3D, s̃?)

≤ 2 pi(MC3D, s
?)

pNi (MC3D, s̃?)
(By (F.34))

= 2(1 + E(m))) (By definition of E(m), see (F.32))

< 2 + 10
m
. (By (F.33))

This establishes approximate efficiency for MC3D for the high dimensional setting.

F.6 Application to Bayesian Settings

While our results study the Normal mean estimation in frequentist statistics, the
main ideas can also be applied to the Bayesian setting. When the Normal mean ad-
mits a zero-mean normal prior, the major proof steps remain the same. Specifically,
our current analysis constructs a sequence of Gaussian priors and takes the limit to
prove the minimax optimality. In the Bayesian setting, one can simply skip the step
in (F.12), which takes the limit w.r.t. the prior sequence. The other steps remain
the same.

322
F.7 Useful Results

In this section, we will state some useful results that we have used throughout this
proof.

Lemma F.7.1 (Hardy-Littlewood inequality, Lemma 1.6 in Burchard (2009)). Let f
and g be non-negative measurable functions that vanish at infinity. Let f ∗ and g∗ to denote
the symmetric decreasing rearrangement of f and g. If

∫
f ∗g∗ <∞, then,

∫
fg ≤

∫
f ∗g∗.

Next, we will use the above result to derive a corollary that will be useful in our
proofs.

Lemma F.7.2 (A corollary of Hardy-Littlewood). Let f , g be nonnegative even func-
tions such that,

• f is monotonically increasing on [0,∞).

• g is monotonically decreasing on [0,∞), and has a finite integral
∫
R g(x)dx <∞.

• ∀a,
∫
R f(x− a)g(x)dx <∞.

Then for all a, ∫
R
f(x)g(x)dx ≤

∫
R
f(x− a)g(x)dx

Proof. We will break this proof into two cases. The first is when sup f <∞ and the
second is when sup f =∞. First consider the case sup f <∞. Let

M := lim
x→∞

f(x).

By using Lemma F.7.1, ∀a,
∫
R
(M − f(x))g(x)dx ≥

∫
R
(M − f(x− a))g(x)dx.

The result follows after rearrangement.

323
If sup f =∞, let fn(x) := min{f(x), n}. For all n and a, by Lemma F.7.1,

∫
R
(n− fn(x))g(x)dx ≥

∫
R
(n− fn(x− a))g(x)dx,

thus ∫
R
fn(x)g(x)dx ≤

∫
R
fn(x− a)g(x)dx.

Note that |fn(x)g(x)| ≤ f(x)g(x), the result follows by letting n→∞ on both sides
and using dominated convergence theorem.

Below, we provide a brief example on using Lemma F.7.2 to calculate the Bayes
risk in a normal mean estimation problem with i.i.d data. While it is not necessary
to use Hardy-Littlewood for this problem, this example will illustrate how we have
used it in our proofs.

Example F.7.1. Consider the Normal mean estimation problem given samples
X[n] ∼ N (µ, σ2), where µ admits a prior distribution N (0, `2). The goal is to mini-
mize the average risk:

Eµ∼N (0,`2)
[
EX[n]∼N (µ,σ2)[L(µ̂− µ)|µ]

]
,

where the loss function, L(·), is an even function that increases on [0,∞). By a
standard argument, one can show that the posterior distribution of µ conditioned
on X[n] is Gaussian with data-dependent parameters µ̄, σ̄2:

µ|X[n] ∼ N (µ, σ2).

The posterior risk is:

Eµ|X[n] [L(µ̂− µ)] = Eµ|X[n] [L((µ− µ) + (µ− µ̂))] =
∫
R
L(x+ (µ− µ̂))︸ ︷︷ ︸

=:f(x+(µ−µ̂))

exp
(
− x2

2σ2

)
σ
√

2π︸ ︷︷ ︸
=:g(x)

dx

324
By applying Lemma F.7.2 with f and g, the posterior risk above is minimized when
µ̂ = µ. So is the average risk.

The next Lemma shows that convexity is preserved under expectation under
certain conditions.

Lemma F.7.3. Let y be a random variable and f(x, y) be a function s.t.

• f(x, y) is convex in x;

• Ey[|f(x, y)|] <∞ for all x.

Then Ey[f(x, y)] is also convex in x.

Proof. For any x1, x2, we have

Ey[f(x1, y)] + Ey[f(x2, y)]
2 =Ey

[
f(x1, y) + f(x2, y)

2

]
≥ Ey

[
f
(
x1 + x2

2 , y
)]

Lemma F.7.4 (Centered moments of normal random variable). Let X ∼ N (µ, σ2)
be a normal random variable and p ∈ Z+, then

E[(X − µ)p] =

0 if p is odd

σp(p− 1)! ! if p is even
.

Some technical results

Next, we will state some technical results that were obtained purely using algebraic
manipulations and are not central to the main proof ideas. The first result states
upper and lower bounds on the Gaussian complementary error function using an
asymptotic expansion.

325
Lemma F.7.5 (Erfc bound). For all x > 0,

Erfc(x) ≤ 1√
π

(
exp(−x2)

x
− exp(−x2)

2x3 + 3 exp(−x2)
4x5

)
(F.36)

Erfc(x) ≥ 1√
π

(
exp(−x2)

x
− exp(−x2)

2x3

)
(F.37)

Proof. By integration by parts:

√
π

2 Erfc(x) =
∫ ∞
x

exp
(
−t2

)
dt =

(
−exp(−t2)

2t

)∣∣∣∣∣
∞

x

−
∫ ∞
x

exp(−t2)
2t2 dt

=exp(−x2)
2x −

((
−exp(−t2)

4t3

)∣∣∣∣∣
∞

x

−
∫ ∞
x

3 exp(−t2)
4t4 dt

)

=exp(−x2)
2x − exp(−x2)

4x3 +
∫ ∞
x

3 exp(−t2)
4t4 dt︸ ︷︷ ︸
≥0

(F.38)

=exp(−x2)
2x − exp(−x2)

4x3 +
(
−3 exp(−t2)

8t5

)∣∣∣∣∣
∞

x

−
∫ ∞
x

15 exp(−t2)
8t6 dt

=exp(−x2)
2x − exp(−x2)

4x3 + 3 exp(−x2)
8x5 −

∫ ∞
x

15 exp(−t2)
8t6 dt︸ ︷︷ ︸

≤0

(F.39)

The results follow by (F.38) and (F.39).

Our next result, states an expression for the function p(ni) and its derivative as
defined in (F.13).

Lemma F.7.6 (Value and derivative of penalty function at s?). Let

p(ni) = pi(MC3D, ((ni, f ?i , h?i), s?−i))

(see (F.13)) and s?i , f ?i , h?i be as specified in (8.8). The penalty of agent i in Algorithm 10

326
satisfies:

p(n?i) =

√
α2

mn?i
σ2

2m
√

2π
√

α2

mn?i
− exp

(
mn?i
8α2

)
(m− 2)π Erfc

 1
2
√

2
√

α2
mn?

i


4
√

2πα2
+ cn?i

(F.40)

p′(n?i) =− σ2

64 α2

m−2
α√
mn?i

mn?i

(
4α√
mn?i

(
4α2m

(m− 2)n?i
− 1

)

− exp
(
mn?i
8α2

)(4α2

mn?i
(m+ 1)− 1

)√
2π Erfc

 1

2
√

2
√

α2

mn?i


)

+ c. (F.41)

This proof involves several algebraic manipulations, so we will provide an
outline of our proof strategy. First, we will rearrange the denominator inside the
expectation in (F.13), to write the LHS of (F.40) as J + KE

[
1

L+x2

]
, and the LHS

of (F.41) as J ′ +K ′E
[

1
L+x2

]
+K ′′E

[
1

(L+x2)2

]
, where the expectation is with respect

to a standard normalN (0, 1) variable, J,K,K ′, K ′′, L are quantities that depend on
ni,m, c, σ

2, α2, and importantly, L is strictly larger than 0. Using properties of the
normal distribution, in Lemma F.7.7, we prove the following result:

E
[1
L+ x2

]
=
√
π

2L exp
(
L

2

)
Erfc

√L
2

 (F.42)

E
[

1
(L+ x2)2

]
=

√
π

2
√

2L3/2
(1− L) exp

(
L

2

)
Erfc

√L
2

+ 1
2L (F.43)

By plugging in these expressions and then substituting ni = n?i , we obtain (F.40)
and (F.41).

Proof of Lemma F.7.6. We will rewrite p(n?i) and p′(n?i) as the Gaussian integral of

327
rational functions and use (F.42) to calculate their values. By (F.13),

p(n?i) =Ex∼N (0,1)

 1
(m−2)n?i

σ2+α2
(
σ2
n?
i

+ σ2
n?
i

)
x2

+ n?i+n?i
σ2

+ cn?i

=Ex∼N (0,1)

 1
(m−2)n?i

σ2+α2 2σ2
n?
i
x2

+ 2n?i
σ2

+ cn?i = σ2

n?i
Ex∼N (0,1)

 1
m−2

1+ 2α2
n?
i
x2

+ 2

+ cn?i

=σ
2

n?i
Ex∼N (0,1)

1
2 −

m− 2
2

1
4α2

n?i
x2 +m

+ cn?i

= σ2

2n?i
− σ2

n?i

m− 2
2

n?i
4α2Ex∼N (0,1)

 1
x2 + mn?i

4α2

+ cn?i

= σ2

2n?i
− σ2

4α2
m− 2

2 exp
(
mn?i
8α2

)
Erfc

√mn?i
8α2

√ π
mn?i
2α2

+ cn?i(
In (F.42), let L = mn?i

4α2

)
=RHS of (F.40).

To prove the second statement of Lemma F.7.6, by (F.14) and the dominated con-
vergence theorem, we have:

p′(n?i) = Ex∼N (0,1)

−σ
2

1 + (m−2)n?i(
1+α2

(
1
n?
i

+ 1
n?
i

)
x2
)2

α2x2

n?i
2

 (m−2)n?i
1+α2

(
1
n?
i

+ 1
n?
i

)
x2

+ n?i + n?i

2

+ c

(By (F.14) and dominated convergence theorem)

=− σ2Ex∼N (0,1)


1 + (m−2)n?i(

1+ 2α2
n?
i
x2
)2

α2x2

n?i
2

(
(m−2)n?i
1+ 2α2

n?
i
x2

+ 2n?i
)2

+ c

328

=− σ2

n?i
2Ex∼N (0,1)


1 + (m−2)n?i α

2x2

(n?i+2α2x2)2((m−2)n?i
n?i+2α2x2 + 2

)2

+ c

=− σ2

4n?i 2Ex∼N (0,1)

[
4(n?i + 2α2x2)2 + 4(m− 2)n?iα2x2

((m− 2)n?i + 2(n?i + 2α2x2))2

]
+ c

=− σ2

4n?i 2Ex∼N (0,1)

[
1 + −(m− 2)2n?i

2 − 4(m− 2)n?i (n?i + 2α2x2) + 4(m− 2)n?iα2x2

((m− 2)n?i + 2(n?i + 2α2x2))2

]
+ c

=− σ2

4n?i 2Ex∼N (0,1)

[
1 + (m− 2)n?i

−(m− 2)n?i − 4(n?i + 2α2x2) + 4α2x2

(4α2x2 +mn?i)
2

]
+ c

=− σ2

4n?i 2Ex∼N (0,1)

[
1 + (m− 2)n?i

−(m+ 2)n?i − 4α2x2

(4α2x2 +mn?i)
2

]
+ c

=− σ2

4n?i 2 + σ2

4n?i 2 (m− 2)n?iEx∼N (0,1)

[
(4α2x2 +mn?i) + 2n?i

(4α2x2 +mn?i)
2

]
+ c

=− σ2

4n?i 2 + σ2

4n?i 2 (m− 2)n?iEx∼N (0,1)

[
1

4α2x2 +mn?i
+ 2n?i

(4α2x2 +mn?i)
2

]
+ c

=− σ2

4n?i 2 + σ2

4n?i 2 (m− 2)n?iEx∼N (0,1)

 1
4α2

1
x2 + mn?i

4α2

+ 2n?i
16α4

1(
x2 + mn?i

4α2

)2

+ c

=c− σ2

4n?i 2 + σ2

4n?i 2 (m− 2)n?i

 1
4α2 + 2n?i

16α4
1− mn?i

4α2

mn?i
2α2

 exp
(
mn?i
8α2

)
Erfc

√mn?i
8α2

√ π
mn?i
2α2

+ σ2

4n?i 2 (m− 2)n?i
2n?i
16α4

1
mn?i
2α2(

In (F.42) and (F.43) and let L = mn?i
4α2

)
=c− σ2

4n?i 2

(
1− (m− 2)n?i

4α2m

)

+ σ2

4n?i 2 (m− 2)n?i
(1

4α2 + 1
4mα2 −

n?i
16α4

)
exp

(
mn?i
8α2

)
Erfc

√mn?i
8α2

√ π
mn?i
2α2

=c− σ2

4n?i 2

(
1− (m− 2)n?i

4α2m

)

+ σ2

4n?i 2 (m− 2)n?i
α
√

2π√
mn?i

n?i
16α4

(
4α2

mn?i
(m+ 1)− 1

)
exp

(
mn?i
8α2

)
Erfc

√mn?i
8α2



329
=RHS of (F.41)

We will now prove the statements in (F.42) and (F.43). Both statements follow
from the Lemma below by substituting t = 1/2.

Lemma F.7.7. For all t ≥ 0 and some L > 0,

I(t) :=
∫ ∞
−∞

1
L+ x2

1√
2π

exp
(
−tx2

)
dx = exp(Lt) Erfc(

√
Lt)

√
π

2L

J(t) :=
∫ ∞
−∞

1
(L+ x2)2

1√
2π

exp
(
−tx2

)
dx =

√
π

2L

(1
2L − t

)
exp(Lt) Erfc(

√
Lt) +

√
t√

2L

Proof. We derive I(t) and J(t) as the solutions to two ODEs and solve the ODEs to
obtain the results. Firstly, by calculation:

−I ′(t) + LI(t) =
∫ ∞
−∞

x2 + L

L+ x2
1√
2π

exp
(
−tx2

)
dx = 1√

2t
.

and
I(0) =

∫ ∞
−∞

1
L+ x2

1√
2π
dx =

√
π

2L.

This means I(t) satisfies the following ODE:
−I

′(t) + LI(t) = 1√
2t

I(0) =
√

π
2L

. (F.44)

We solve (F.44) by multiplying integrating factor − exp(−Lt):

exp(−Lt)I ′(t)− L exp(−Lt)I(t) = − 1√
2t

exp(−Lt)

Note that the LHS is the derivative of exp(−Lt)I(t), the ODE becomes:

d

dt
(exp(−Lt)I(t)) = − 1√

2t
exp(−Lt)

330
Integrating both sides over t, we get:

exp(−Lt)I(t) =−
∫ 1√

2t
exp(−Lt)dt = −

∫ 2√
2L

exp(−Lt)d
√
Lt

= Erfc(
√
Lt)

√
π

2L + C,

where we use integration by substitution for the last two equalities and C is some
constant that does not depend on t. This means I(t) satisfies the following form:

I(t) = exp(Lt)
(

Erfc(
√
Lt)

√
π

2L + C
)

Using the initial condition I(0) =
√

π
2L and the fact that Erfc(0) = 0, we conclude

that C = 0. Thus
I(t) = exp(Lt) Erfc(

√
Lt)

√
π

2L.

We can similarly derive an ODE for J(t). By calculation:

−J ′(t) + LJ(t) =
∫ ∞
−∞

x2 + L

(L+ x2)2
1√
2π

exp
(
−tx2

)
dx = I(t)

J(0) =
∫ ∞
−∞

1
(L+ x2)2

1√
2π
dx = 1

2L3/2

√
π

2

Thus J(t) satisfies the following ODE:
−J

′(t) + LJ(t) = I(t)

J(0) = 1
2L3/2

√
π
2

. (F.45)

We similarly multiply integrating factor − exp(−Lt) and integrate both sides:

∫ t

0
d exp(−Lx)J(x) = −

∫ t

0
I(x) exp(−Lx)dx = −

∫ t

0
Erfc(

√
Lx)

√
π

2Ldx

=−
(
xErfc(

√
Lx)

√
π

2L

∣∣∣∣t
0

+
∫ t

0
x

exp(−Lx)√
2x

dx

)
(Integration by parts)

331

=− tErfc(
√
Lt)

√
π

2L −
√

2
L3/2

∫ √Lt
0

y2 exp(−y2)dy(
Change of variable: y =

√
Lx
)

=− tErfc(
√
Lt)

√
π

2L +
√

2
L3/2

 1
2y exp(−y2)

∣∣∣∣
√
Lt

0
−
∫ √Lt

0

1
2 exp(−y2)dy


(Integration by parts)

=− tErfc(
√
Lt)

√
π

2L +
√

2
L3/2

1
2
√
Lt exp(−Lt)−

√
2

L3/2

∫ √Lt
0

1
2 exp(−y2)dy

=− tErfc(
√
Lt)

√
π

2L +
√
t√

2L
exp(−Lt)−

√
π

2
√

2L3/2
Erf

(√
Lt
)

(By definition of Erf)

=− tErfc(
√
Lt)

√
π

2L +
√
t√

2L
exp(−Lt)−

√
π

2
√

2L3/2

(
1− Erfc

(√
Lt
))

(By definition of Erfc)

=
(1

2L − t
)

Erfc(
√
Lt)

√
π

2L +
√
t√

2L
exp(−Lt)− J(0)

(By (F.45))

This means:

J(t) = exp(Lt)
(∫ t

0
d exp(−Lx)J(x) + J(0)

)
= exp(Lt)

((1
2L − t

)
Erfc(

√
Lt)

√
π

2L +
√
t√

2L
exp(−Lt)

)

=
√
π

2L

(1
2L − t

)
exp(Lt) Erfc(

√
Lt) +

√
t√

2L

	Contents
	List of Tables
	List of Figures
	Introduction
	The High Level Ideas
	Reinforcement Learning
	Robust Statistics
	Attack and Defense in Reinforcement Learning

	Robust Online Reinforcement Learning
	Introduction
	Related Work
	Problem Definitions
	The natural robustness of NPG against bounded corruption
	FPG: Robust NPG against unbounded corruption
	Experiments
	Discussions

	Robust Offline Reinforcement Learning
	Introduction
	Preliminaries
	Algorithms and Main Results
	Discussions and Conclusion

	Byzantine-Robust Reinforcement Learning
	Introduction
	Related Work
	Robust Mean Estimation From Untruthful Batches
	Byzantine-Robust RL in Parallel MDPS
	Byzantine-Robust Online RL
	Byzantine-Robust Offline RL
	Conclusion

	Robust Gap-Dependent Reinforcement Learning
	Introduction
	Related Work
	Preliminary
	Sufficient Condition for Exact Optimal Policy Recovery in Offline RL
	Case Studies
	Comparison between Different Optimality Conditions
	Conclusion

	Perturbation Stability in Two-player Zero-sum Games
	Introduction
	Related Works
	Preliminary
	Main Results: Conditions for Nash Recovery
	Applications to Corruption-Robust Offline Learning
	Conclusion

	Mechanism Design in Normal Mean Estimation
	Introduction
	Problem Setup
	Method and Results
	Special Cases: Restricting the Agents' Strategy Space
	Conclusion

	Future Work
	References
	Appendix for Chapter 3
	Additional Related Work
	Proof for lower bound result
	Property of (s,a) sampled from Algorithm 1
	Proofs for Section 3.4.
	A modified analysis for SEVER
	Proofs for Section 3.5
	Implementation Details of FPG-TRPO

	Appendix for Chapter 4
	Basics
	Proof of the Minimax Lower-bound
	Proof of Upper-bounds
	Proof of uncorrupted learning results
	Lower-bound on best-of-both-world results
	Technical Lemmas

	Appendix for Chapter 5
	More Discussion on page 56:COW
	Proof of Theorem 5.3.1
	Proof of Theorem 5.5.1
	Proof of Theorem 5.6.1
	Useful Inequalities

	Appendix for Chapter 6
	Deferred Algorithms
	Proof of Proposition 6.3.1
	Proof of Theorem 6.4.1
	Proof of Theorem 6.4.2
	Proof of Proposition 6.5.1
	Proof of Proposition 6.5.2
	Theorem 6.5.4
	Useful results

	Appendix for Chapter 7
	General Guarantee in the Value Space
	Proof of Lemma 7.4.1
	Proof of Theorem 7.4.2
	Proof of Theorem 7.4.3
	Proof of Theorem 7.4.4
	Proof of Proposition 7.5.1
	Useful Results

	Appendix for Chapter 8
	Proof of Theorem 8.3.1
	Proof of Theorem 8.4.1
	Proof of Theorem 8.4.2
	Additional Materials for Section 8.4
	High dimensional mean estimation with bounded variance
	Application to Bayesian Settings
	Useful Results

