
Attacks and Defense on Normal-Form Games and Markov Games

by

Young Wu

submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Computer Science)

at the

UNIVERSITY OF WISCONSIN–MADISON

12/22/2023

Date of final oral examination: 12/08/2023

The dissertation is approved by the following members of the Final Oral Committee:
Xiaojin (Jerry) Zhu, Professor, Computer Sciences
Qiaomin Xie, Assistant Professor, Industrial and Systems Engineering
Yudong Chen, Associate Professor, Computer Sciences
Josiah Hanna, Assistant Professor, Computer Sciences

i

contents

contents i

list of tables iv

list of figures v

1 Introduction 1

2 Related Work 4

3 Online Reward Poisoning for Bandit Games to Install a Dominant
Strategy Equilibrium 9
3.1 Introduction 9
3.2 Formal Definition 11
3.3 Assumption: No-Regret Players 13
3.4 Game Redesign Algorithms 15
3.5 Experiments 20
3.6 Conclusion 28

4 Offline Reward Poisoning for General-Sum Games to Install a
Dominant Strategy Equilibrium 29
4.1 Introduction 29
4.2 Preliminaries 33
4.3 Poisoning Framework 38
4.4 Cost Analysis 45
4.5 Conclusion 50

5 Offline Reward Poisoning for Zero-Sum Games to Install a Nash
Equilibrium 52
5.1 Introduction 52

ii

5.2 Offline Attack on a Normal-form Game 55
5.3 Offline Attack on a Markov Game 63
5.4 Experiments 71
5.5 Conclusion 72

6 Planning Setting, Reward Poisoning for Zero-Sum Games to In-
stall a Mixed-Strategy Nash Equilibrium 75
6.1 Introduction 75
6.2 Related Work 78
6.3 Modifying Normal Form Games 79
6.4 Markov Games Modification 89
6.5 Experiments 94
6.6 Conclusion 97

7 Future Work 98

A Online Reward Poisoning for Bandit Games to Install a Dominant
Strategy Equilibrium 102
A.1 Exact Form of the Theoretical Upper Bounds 112
A.2 Minimum Cumulative Design Cost 114

B Offline Reward Poisoning for General-Sum Games to Install a
Dominant Strategy Equilibrium 115
B.1 Compatibility with Pessimistic/Optimistic Offline MARL Algo-

rithms 115
B.2 Feasibility Proofs 120
B.3 Linear Program Formulations 130
B.4 Optimal Cost Analysis 133

C Offline Reward Poisoning for Zero-Sum Games to Install a Nash
Equilibrium 152
C.1 Supplementary Material 152

iii

D Planning Setting, Reward Poisoning for Zero-Sum Games to In-
stall a Mixed-Strategy Nash Equilibrium 164
D.1 Appendix 164

References 193

iv

list of tables

3.1 The loss function ℓoi for individual player i in VD. 22
3.2 The redesigned loss function ℓi for player i in VD. 22
3.3 The redesigned RPS games ℓt for selected t (with ϵ = 0.3).

Note the target entry a† = (R,P) converges toward (1,−1). . . 24
3.4 Instantiation of discrete design on the same games as in Ta-

ble 3.3. The redesigned loss lies in L = {−1, 0, 1}. 25
3.5 Interior redesign on Prisoner’s Dilemma. 25

4.1 Single-agent attack reduction example 38
4.2 Single-agent attack reduction 38
4.3 MLE R̂h(s, ·) before attack . 47
4.4 MLE R̂h(s, ·) after attack . 47

5.1 A Feasible Attack . 71
5.2 The original dataset generation distributions 71
5.3 The RPS game. 71
5.4 The original dataset. 71
5.5 The poisoned dataset. 71
5.6 Cost comparison between different attacks 73

6.1 R eRPS when k = 1 (left) and k ⩾ 2 (right). 85

D.1 The R eRPS game when k ⩾ 2, i.e. (p, q) is a mixed strategy . . . 170

v

list of figures

3.1 Interior design on PD. The dashed line is the theoretical upper
bound. 21

3.2 Interior design on TC. The dashed line is the theoretical upper
bound. At a† = (10, 10), the loss is unchanged. 21

3.3 Interior design on VD with M = 3. The dashed lines are theo-
retical upper bounds. 23

3.4 Boundary design on RPS. The dashed lines are the theoretical
upper bound. 26

3.5 Discrete redesign for a† = (R,P) with natural loss values in L.
The dashed lines are the corresponding boundary design. . . . 27

5.1 Attacker’s Problem . 61
5.2 The original distribution of rewards 72
5.3 The distribution of poisoned rewards 73

6.1 Scale Benchmark for Number of Actions 95
6.2 Scale Benchmark for Number of Periods 96

A.1 Number of rounds with at ̸= a†. The dashed lines are the
theoretical upper bound. 113

1

1 introduction

Thesis Statement

There are vulnerabilities in multi-agent systems and attackers can influence
the behavior of players of normal-form games or multi-agent reinforcement
learners through data or environment poisoning.

Introduction

There is a history of adversarial learning, but the vast majority focuses on
supervised learning. As outlined in Wang et al. (2019a); Barreno et al.
(2010), attack can occur in the training phase (causative attacks (Dalvi
et al., 2004; Wittel and Wu, 2004; Adler, 2005; Biggio et al., 2011)), in which
the attacker modifies the training data to mislead the victims to learn an
incorrect model, and in the test phase (exploratory attacks (Szegedy et al.,
2013; Tramèr et al., 2017; Moosavi-Dezfooli et al., 2017; Carlini and Wagner,
2017)), in which the attacker creates adversarial examples that lead to
incorrect predictions based on the victims’ model. Such attacks can be
performed for unsupervised learning (Biggio et al., 2013, 2014) and active
learning (Zhao et al., 2012) as well.

There are relatively fewer research on adversarial reinforcement learn-
ing, in which an attacker disrupts sequential decision making in the train-
ing phase or the test phase. In training-time attacks, an attacker either
modifies the training dataset or the training environment (which we will
call these attacks planning attacks). In reinforcement learning, the envi-
ronment is usually modeled as a Markov decision process, and learning
can occur either online, where the agents obtain state and reward data
through interaction with the environment, or offline, where the agents are
directly given a dataset containing state and reward information based
on some behavioral policy. In test-time attacks, an attacker manipulates

2

the state, action, and reward when the trained policies of the agents are
deployed. We provide a more detailed literature review of adversarial
reinforcement learning in the next chapter.

However, there are vulnerabilities in multi-agent systems that are not
well-addressed in the literature. Understanding adversarial attacks in the
multi-agent setting is critical since many real-life applications are suscep-
tible to these attacks. Some of these real-life applications of multi-agent
reinforcement learning include board games such as GO and Chess (Silver
et al., 2017, 2016), competitive robotics (Gu et al., 2017; Riedmiller et al.,
2009; Kober et al., 2013), finance applications, especially algorithmic or
high-frequency stock or option trading (Lee et al., 2007; Lee and O, 2002),
video games (Vinyals et al., 2019; Jaderberg et al., 2019; Berner et al., 2019),
card games (Brown and Sandholm, 2019; Brown et al., 2017), autonomous
driving (Shalev-Shwartz et al., 2016), automated warehouses (Yang et al.,
2020), and economic policymaking. For all of these applications, the deci-
sion makers are vulnerable to adversarial attacks, including manipulation
of the environment or poisoning of the training datasets.

The training-time adversarial attack methods on single-agent reinforce-
ment learning do not apply directly in the multi-agent setting where the
environment is usually modeled by a normal-form game or a Markov game.
Instead of manipulating the optimal policies in single-agent reinforcement
learning, in the multi-agent setting, there are no optimal policies, so the
attacker has to manipulate equilibrium policies, for example, Nash equi-
librium in normal-form games or Markov perfect equilibrium in Markov
games. This requires new attack algorithms to compute the optimal attack,
where optimality is based on measures such as the costs of manipulating
the environment or the data. All of our work in this document focuses on
training-time attacks on multi-agent reinforcement learning, and similar to
single-agent attacks, we categorize the attack problem as planning, online,
or offline. In all three settings, there is an attacker with a target policy

3

which the attacker would like the victims to learn. For normal-form games,
the target can be a pure-strategy action profile or a mixed-strategy one,
and for Markov games, the target can be a deterministic Markov policy or
a stochastic one. In Chapter 3, we investigate the problem in the online
setting, where the attacker adaptively and minimally modifies the rewards
given to the victims during online learning. In Chapters 4 and 5, we study
the data poisoning problem in the offline setting, where the attacker mini-
mally modifies the offline training data to install the target policy as the
unique dominant strategy equilibrium for general-sum games (Chapter
4) or the unique Nash equilibrium for zero-sum games (Chapter 5). In
Chapter 6, we investigate the problem in the planning setting, the attacker
tries to minimally manipulate the game environment, in particular, the
reward structure, to install a possibly mixed or stochastic policy.

4

2 related work

Single-Agent Planning Setting Adversarial Attacks

The adversarial attack problem in reinforcement learning has been stud-
ied in the planning setting as an application of inverse reinforcement
learning (Choi and Kim, 2011; Lin et al., 2014; Ng et al., 2000) and policy
teaching (Banihashem et al., 2022; Rakhsha et al., 2020, 2021b,a). In this
setting, a single agent (the victim) is given a Markov decision process
(S,A,R,P), where S is the set of states, A is the set of actions, R is the re-
wards and P is the transitions, and the victim computes the optimal policy
based on the given the Markov decision process (there is no training data
in this setting). An attacker has the power to change the original (Ro,Po)

to
(
R†,P†) before giving it to the victim, and would like to do so with

minimal modification and in a way that the victim will find some target
policy π† as the optimal policy,

min
R†,P†

C
(
R†,P†,Ro,Po

)
s.t.
(
R†,P†) has optimal policy π†.

Instead of installing a single target policy as the optimal policy (Liu and Lai,
2021; Rakhsha et al., 2020, 2021b,a; Sun et al., 2020b), there are other models
where the attacker tries to mislead the victims to use one of multiple
targets (Banihashem et al., 2022) or minimize victim reward (Huang and
Zhu, 2019; Sun et al., 2020b). If only the rewards can be modified, and the
transitions Po cannot be changed, the problem is called a reward poisoning
problem.

In the single-agent setting, there always exists an optimal policy that
is deterministic. This is not true in the multi-agent setting. There are
normal-form games where the unique Nash equilibrium is completely
mixed and Markov games where the unique Markov perfect equilibrium is

5

stochastic. This makes the reward poisoning problem more difficult in the
multi-agent setting, where the attacker has the following problem instead,

min
R†

C
(
R†,Ro

)
s.t.
(
R†,Po

)
has the unique equilibrium policy π†.

Chapter 6 studies the problem of installing a stochastic target equilibrium
policy as the unique equilibrium in the planning setting by providing a
characterization of the uniqueness of Nash equilibrium or Markov perfect
equilibrium that can be used as the constraints in the attacker’s problem.

Single-Agent Offline Adversial Attacks

Data poisoning problem in reinforcement learning has also been studied
in the offline setting (Huang and Zhu, 2019; Liu and Lai, 2021; Ma et al.,
2019), where the victim estimates a Markov decision process and computes
its optimal policy π⋆ based on an offline dataset containing states, actions,
and rewards obtained by some behavior policy, for example, in the form,

D = {(so,ao, ro, s ′o)} ,

where r is the reward from choosing action a in state s, and the state
transitions to s ′ after the action is performed.
An attacker then comes in and minimally modifies the dataset to,

D† =
{(

s†,a†, r†, s ′†
)}

,

in a way that the victim will learn the optimal policy π† based on D†.
Reward poisoning is a special type of data poisoning where only re-

wards ro can be manipulated (Banihashem et al., 2022; Huang and Zhu,
2019; Rakhsha et al., 2021b), and there are other settings where the attacker
can also change so and ao (Liu and Lai, 2021; Rakhsha et al., 2021a, 2020;

6

Zhang et al., 2020b; Rangi et al., 2022b). The reward poisoning problem
can be written in a form similar to,

min
r†

C
(
r†, ro

)
s.t.R̂

(
r†
)

has optimal policy π†,

where C is a measure of the cost of modifying the rewards from ro to r†

and R̂ (r) is the expected reward estimated from dataset r.
In the case the R̂ algorithm is known to the attacker, the attack is white

box (Banihashem et al., 2022; Huang and Zhu, 2019; Liu and Lai, 2021;
Rangi et al., 2022b; Zhang et al., 2020b), and if R̂ is unknown, the attack
is black box (Rakhsha et al., 2020, 2021a,b; Rangi et al., 2022b), and the
attacker has to make assumptions about R̂, for example, by constructing
a set of plausible Markov decision processes based on upper and lower
confidence bounds of the reward estimates and make sure all of them have
the same optimal policy π†.

Chapters 4 and 5 study the black-box attack problem of installing a
deterministic target equilibrium policy for general-sum and zero-sum
games in this setting, by providing a characterization of the uniqueness of
a dominant strategy or Nash equilibrium in the form of linear constraints.

Single-Agent Online Adversarial Attacks

Reward poisoning has also been studied in the online setting in which the
attacker modifies the rewards during online learning (Rakhsha et al., 2020,
2021a,b; Rangi et al., 2022b; Sun et al., 2020b; Zhang and Parkes, 2008b;
Zhang et al., 2009, 2020b). The attacker’s reward poisoning problem can

7

usually be written in the form,

min
r†

∑
t

C
(
r†t, ro

)
s.t.at

(
r†
)
(s) = π† (s) for all but sub-linear number of times ,

where at (r) (s) is the online learning algorithm used by the victims in
state s given a history of realized rewards r.

If there are no states s, then the victim is learning a multi-armed bandit
process and is usually assumed to use a no-regret bandit algorithm where
the optimal action is used in all but a sub-linear number of times (Bo-
gunovic et al., 2021; Garcelon et al., 2020; Guan et al., 2020; Jun et al.,
2018; Liu and Shroff, 2019; Lu et al., 2021; Ma et al., 2018; Yang et al., 2021;
Zuo, 2020). This assumption can be used to simplify the constraint, and a
similar technique is applied to bandit games in Chapter 3.

Adversarial Attacks on Multi-Agent System

In the multi-agent setting, Gleave et al. (2019); Guo et al. (2021) study the
poisoning attack on multi-agent reinforcement learners, assuming that
the attacker controls one of the learners. We are not aware of prior work
in adversarial attacks in the multi-agent setting where an external attacker
directly manipulates the environment or the data, and a series of problems
under this assumption is studied in Chapters 3 to 6.

In the end, our work is also related to the game theory literature, such
as the characterization of Nash equilibrium uniqueness (Millham, 1972;
Heuer, 1979; Quintas, 1988), and the mechanism design literature, such
as k-implementation (Anderson et al., 2010; Monderer and Tennenholtz,
2004), and dynamic mechanism design (Bergemann and Välimäki, 2019;
Pavan et al., 2014). The mechanism design problem has similar goals of
installing a dominant strategy equilibrium or a Bayesian Nash equilibrium

8

by modifying the rewards from each action profile, but it differs from
poisoning attacks mainly due to the existence of private types of victims
that affect the victims’ rewards but are unknown to the attacker. For
example, in the multi-agent reinforcement learning setting, it could be that
the attacker either cannot observe the state or is not allowed to modify the
reward differently in different states and in this case, the state would be a
private type of the victims. In the problems we study in Chapters 3 and 6,
the attacker has full information about the states and transitions, so they
could be considered simplified versions of the general mechanism design
problem. In Chapter 7, we discuss potential future work that expands the
data poisoning problem that better connects with the mechanism design
literature.

9

3 online reward poisoning for bandit games to
install a dominant strategy equilibrium

Contribution Statement. This chapter is a joint work with Yuzhe Ma
and Jerry Zhu. Yuzhe Ma is the main author. My contribution includes
the design of the main algorithms 1 and 2 (but not the proofs) and the
examples used in the experiments. The paper version of this chapter
appears in IJCAI 2021.

3.1 Introduction
In this chapter, we study the online attack problem in a general-sum bandit
game environment, where a single attacker tries to minimally modify the
rewards so that no-regret learners would use a deterministic target joint
action in the majority of the rounds. We formulate the attacker’s game
redesign problem as an optimization problem, and we propose a feasible
solution to the problem.

Consider a finite normal-form game with loss function ℓo. This is the
“original game.” As an example, the Volunteer’s Dilemma (see Table 3.1)
has each player choose whether or not to volunteer for a cause that benefits
all players. It is known that all pure Nash equilibria in this game involve
a subset of the players free-riding the contribution from the remaining
players. M players, who initially do not know ℓo, use no-regret algorithms
to individually choose their action in each of the t = 1 . . . T rounds. The
players receive limited feedback: suppose the chosen action profile in
round t is at = (at

1, . . . ,at
M), then the i-th player only receives her own

loss ℓoi (at) but not the other players’ actions or losses.
Game redesign is the following task. A game designer – not a player

– does not like the solution concept to ℓo. Instead, the designer wants to

10

incentivize a target action profile a†, for example “every player volunteers”.
The designer has the power to redesign the game: before each round t is
played, the designer can change ℓo to some ℓt. The players will receive
new losses ℓti(at), but the designer pays a design cost C(ℓo, ℓt,at) in that
round for deviating from ℓo. The designer’s goal is to make the players
play the target action profile a† in the vast majority (T − o(T)) of rounds,
while incurring o(T) cumulative design cost. Game redesign naturally
emerges in two opposing contexts:

• A benevolent designer (interested party) wants to redesign the game
to improve social welfare, as in the Volunteer’s Dilemma. This is the
motivation behind k-implementation Monderer and Tennenholtz
(2004);

• A malicious designer (attacker) wants to poison the payoffs to force
a nefarious target action profile. This is an extension of reward-
poisoning attacks (previously studied on bandits Jun et al. (2018);
Liu and Shroff (2019); Ma et al. (2018); Yang et al. (2021); Guan et al.
(2020); Garcelon et al. (2020); Bogunovic et al. (2021); Zuo (2020);
Lu et al. (2021) and reinforcement learning Zhang et al. (2020b); Ma
et al. (2019); Rakhsha et al. (2020); Sun et al. (2020b); Huang and
Zhu (2019)) to game playing.

For both contexts the mathematical question is the same. Since the design
costs are measured by deviations from the original game ℓo, the designer
is not totally free in creating new games. Our idea for successful game
redesign is:

1. Do not change the loss of the target action profile, i.e. let ℓt(a†) =

ℓo(a†), ∀t. If game redesign is indeed successful, then a† will be
played for T − o(T) rounds. As we will see, ℓt(a†) = ℓo(a†) means
there is no design cost in those rounds under our definition of C.
The remaining rounds incur at most o(T) cumulative design cost.

11

2. The target action profile a† forms a strictly dominant strategy equilib-
rium. This ensures no-regret players will eventually learn to prefer
a† over any other action profiles.

Game redesign is closely related to the k-implementation problem Mon-
derer and Tennenholtz (2004). Both aim to manipulate player behav-
iors by changing the payoff. However, there are major differences: k-
implementation assumes players know the game, while in our case the
players have to learn the game; k-implementation only allows increase
to existing payoffs, while we allow both positive (subsidy) and negative
(tax) changes. Our interior design (Algorithm 1) indeed produces a 0-
implementation in their terminology because we keep the payoff of the
desired strategy profile unchanged. Nonetheless, our players have to dis-
cover this strategy profile by exploration, meaning that the designer will
still incur costs especially in earlier rounds.

More broadly, game redesign is related to, but distinct from, con-
strained mechanism design. The players in game redesign are no-regret
learners, not rational (best-response) players of a repeated game.

3.2 Formal Definition
We first describe the original game without the designer. There are M

players. Let Ai be the finite action space of player i, and let Ai = |Ai|.
The original game is defined by the loss function ℓo : A1 × . . .AM 7→ RM.
The players do not know ℓo. Instead, we assume they play the game for
T rounds using no-regret algorithms. This may be the case, for example,
if the players are learning an approximate Nash equilibrium in zero-sum
ℓo or coarse correlated equilibrium in general sum ℓo. In running the no-
regret algorithm, the players maintain their own action selection policies
πt
i ∈ ∆Ai over time, where ∆Ai is the probability simplex over Ai. In each

round t, every player i samples an action at
i according to policy πt

i . This

12

forms an action profile at = (at
1, . . . ,at

M). The original game produces the
loss vector ℓo(at) = (ℓo1 (a

t), ..., ℓoM(at)). However, player i only observes
her own loss value ℓoi (a

t), not the other players’ losses or their actions. All
players then update their policy according to their no-regret algorithms.

We now bring in the designer. The designer knows ℓo and wants players
to frequently play an arbitrary but fixed target action profile a†. We stress
that a† does not need to coincide with any solution concept in ℓo. At the
beginning of round t, the designer commits to a potentially different loss
function ℓt. Note this involves preparing the loss vector ℓt(a) for all action
profiles a (i.e. “cells” in the payoff matrix). The players then choose their
action profile at. Importantly, the players receive losses ℓt(at), not ℓo(at).
For example, in games involving money such as the volunteer game, the
designer may achieve ℓt(at) via taxes or subsidies, and in zero-sum games
such as the rock-paper-scissors game, the designer essentially “makes up”
a new outcome and tell each player whether they win, tie, or lose via
ℓti(a

t); The designer incurs a cost C(ℓo, ℓt,at) for deviating from ℓo. The
interaction among the designer and the players is summarized as below.

Protocol: Game Redesign
Designer knows ℓo, a†, M, A1:M, and player no-regret rate α

for t = 1, . . . , T do
Designer prepares new loss function ℓt.
Players form action profile at = (at

1, ...,at
M), where at

i ∼ πt
i ,∀i ∈ [M].

Player i observes its loss ℓti(at), updates policy πt
i .

Designer incurs cost C(ℓo, ℓt,at).

The designer has two goals simultaneously:

1. To incentivize the players to frequently choose the target action pro-
file a† (which may not coincide with any solution concept of ℓo). Let
NT (a) =

∑T
t=1 1 [a

t = a] be the number of times an action profilea is
chosen in T rounds, then this goal is to achieve E

[
NT (a†)

]
= T−o(T).

13

2. To have a small cumulative design cost CT :=
∑T

t=1 C(ℓ
o, ℓt,at),

specifically E
[
CT
]
= o(T).

The per-round design cost C(ℓo, ℓt,a) is application dependent. One
plausible is to account for the overall cost in all action profiles, not just
what is actually chosen: an example is C(ℓo, ℓt,at) =

∑
a ∥ℓo(a) − ℓt(a)∥1.

Note that it ignores the at argument. In many applications, though, only
the chosen action profile costs the designer (the implementation cost
in Monderer and Tennenholtz (2004)). An example is C(ℓo, ℓt,at) =

∥ℓo(at) − ℓt(at)∥1. We use a slight generalization of the latter cost:

Assumption 3.1. The non-negative designer cost function C satisfies ∀t,∀at,
C(ℓo, ℓt,at) ⩽ η∥ℓo(at) − ℓt(at)∥p for some Lipschitz constant η and norm
p ⩾ 1.

This implies no design cost if the losses are not modified, i.e., when
ℓo(at) = ℓt(at), C(ℓo, ℓt,at) = 0 .

3.3 Assumption: No-Regret Players
The designer assumes that the players are each running a no-regret learn-
ing algorithm like EXP3.P Bubeck and Cesa-Bianchi (2012). It is well-
known that for two-player (M = 2) zero-sum games, no-regret learners
can find an approximate Nash Equilibrium Blum and Mansour (2007).
More general results suggest that for multi-player (M ⩾ 2) general-sum
games, no-regret learners can find an approximate Coarse Correlated Equi-
librium Hart and Mas-Colell (2000). We first define the player’s regret.
We use at

−i to denote the actions selected by all players except player i in
round t.

14

Definition 3.1. (Regret). For any player i, the best-in-hindsight regret with
respect to a sequence of loss functions ℓti(·,at

−i), t ∈ [T], is defined as

RT
i =

T∑
t=1

ℓti(a
t
i ,at

−i) − min
ai∈Ai

T∑
t=1

ℓti(ai,at
−i). (3.1)

The expected regret is defined as E
[
RT
i

]
, where the expectation is taken with

respect to the randomness in the selection of actions at, t ∈ [T] over all players.

Remark 3.2. The loss functions ℓti(·,at
−i), t ∈ [T] depend on the actions selected

by the other players at
−i, while at

−i further depends on a1, ...,at−1 of all players in
the first t− 1 rounds. Therefore, ℓti(·,at

−i) depends on a1
i, ...,at−1

i . That means,
from player i’s perspective, the player is faced with a non-oblivious (adaptive)
adversary Slivkins (2019).

Remark 3.3. Note that a∗
i := argminai∈Ai

∑T
t=1 ℓ

t
i(ai,at

−i) in (3.1) would
have meant a baseline in which player i always plays the best-in-hindsight action
a∗
i in all rounds t ∈ [T]. Such baseline action should have caused all other players

to change their plays away from a1
−i, ...,aT

−i. However, we are disregarding this
fact in (3.1). For this reason, (3.1) is not fully counterfactual, and is called the
best-in-hindsight regret Bubeck and Cesa-Bianchi (2012). The same is true when
we define the expected regret.

Our key assumption is that the learners achieve sublinear expected
regret. This assumption is satisfied by standard bandit algorithms such as
EXP3.P Bubeck and Cesa-Bianchi (2012).

Assumption 3.2. (No-regret Learner) We assume the players apply no-regret
learning algorithm that achieves expected regret E

[
RT
i

]
= O(Tα),∀i for some

α ∈ [0, 1).

15

3.4 Game Redesign Algorithms
There is an important consideration regarding the allowed values of ℓt.
The original game ℓo has a set of “natural loss values” L. For example, in
the rock-paper-scissors game L = {−1, 0, 1} for the player wins (recall the
value is the loss), ties, and loses, respectively; while for games involving
money it is often reasonable to assume L as some interval [L,U]. Ideally,
ℓt should take values in L to match the semantics of the game or to avoid
suspicion (in the attack context). Our designer can work with discrete L

(section 3.4); but for exposition we will first allow ℓt to take real values in
L̃ = [L,U], where L = minx∈L x and U = maxx∈L x. We assume U and L

are the same for all players and U > L, which is satisfied when L contains
at least two distinct values.

Algorithm: Interior Design

The name refers to the narrow applicability of Algorithm 1: the original
loss values for the target action profile ℓo(a†) must all be in the interior
of L̃. Formally, we require ∃ρ ∈ (0, U−L

2], ∀i, ℓoi (a†) ∈ [L + ρ,U − ρ]. In
Algorithm 1, we present the interior design. The key insight is to keep
ℓo(a†) unchanged: If the designer is successful, a† will be played in T−o(T)

rounds. In these rounds, the designer cost is zero. The other o(T) rounds
each incur bounded cost. Overall, this ensures sublinear design cost. For
the design to be successful, the designer can make a† the strictly dominant
strategy. The designer can do this by judiciously increasing or decreasing
the loss of other action profiles in ℓo: there is enough room because ℓo(a†)

is in the interior. In fact, the designer can design a time-invariant game
ℓt = ℓ as Algorithm 1 shows.

Lemma 3.4. The redesigned game (3.2) satisfies:

1. ∀i,a, ℓi(a) ∈ L̃, thus ℓ is valid.

16

Algorithm 1 Interior Design
Input: the target action profile a†; the original game ℓo.
Output: a time-invariant game ℓ constructed as follows:

∀i,a, ℓi(a) =
{

ℓoi (a
†) − (1 − d(a)

M
)ρ if ai = a†

i ,
ℓoi (a

†) + d(a)
M

ρ if ai ̸= a†
i ,

(3.2)

where d(a) =
∑M

j=1 1
[
aj = a†

j

]
.

2. For every player i, the target action a†
i strictly dominates any other action

by (1− 1
M
)ρ, i.e., ℓi(ai,a−i) = ℓi(a

†
i ,a−i)+ (1− 1

M
)ρ,∀i,ai ̸= a†

i ,a−i.

3. ℓ(a†) = ℓo(a†).

4. If the original loss for the target action profile ℓo(a†) is zero-sum, then the
redesigned game ℓ is also zero-sum.

Our main result is that Algorithm 1 achieves the design goal with
sublinear cumulative design cost. It is worth noting that although many
entries in the redesigned game ℓ can appear to be quite different than the
original game ℓo, their contribution to the design cost is small because the
design discourages them from being played often.

Theorem 3.5. Using Algorithm 1, the designer can achieve E
[
NT (a†)

]
= T −

O(MTα)while incurring expected cumulative design cost E
[
CT
]
= O(ηM1+ 1

pTα).

Corollary 3.6. If the players use EXP3.P, the designer can achieve E
[
NT (a†)

]
=

T−O(MT
1
2)while incurring expected cumulative design cost E

[
CT
]
= O(ηM1+ 1

pT
1
2).

If the original game ℓo is two-player zero-sum, then under redesign,
players will think that a† is a Nash equilibrium.

Corollary 3.7. Assume M = 2 and ℓo is zero-sum. Then with the redesigned
game (3.2), the expected averaged policy E

[
π̄T
i

]
= E

[1
T

∑
t π

t
i

]
converges to a

point mass on a†
i .

17

Boundary Design

When ℓo(a†) has some values hitting the boundary of L̃, the designer
cannot apply Algorithm 1 directly because the loss of other action profiles
cannot be increased or decreased further to make a† a dominant strategy.
However, a time-varying design can still achieve the design goals with
sublinear design cost. In Algorithm 2, we present the boundary design
which is applicable to both boundary and interior ℓo(a†) values.

Algorithm 2 Boundary Design
Input: the target action profile a†; a loss vector v ∈ RM whose elements

are in the interior, i.e., ∀i, vi ∈ [L+ ρ,U− ρ] for some ρ > 0; the regret
rate α; ϵ ∈ (0, 1 − α);

Output: a time-varying game with loss ℓt, t ∈ [T].
1: Use v in place of ℓo(a†) in (3.2) and apply the interior design 1. Call

the resulting game the “source game” ℓ.
2: Define a “destination game” ℓ where ℓ(a) = ℓo(a†), ∀a.
3: Interpolate the source and destination games:

ℓt = wtℓ+ (1 −wt)ℓ (3.3)

where wt = tα+ϵ−1.

The designer can choose any loss vector v as long as v lies in the interior
of L̃. We give two exemplary choices of v.

1. Let the average player cost of a† be ℓ̄(a†) =
∑M

i=1 ℓ
o
i (a

†)/M, then if
ℓ̄(a†) ∈ (L,U), one could choose v to be a constant vector with value
ℓ̄(a†). The nice property about this choice is that if ℓo is zero-sum,
then v is zero-sum, thus property 4 is satisfied and the redesigned
game is zero-sum. However, note that when ℓ̄(a†) does hit the bound-
ary, the designer cannot choose this v.

2. Choose v to be a constant vector with value (L+U)/2. This choice
is always valid, but may not preserve the zero-sum property of the

18

original game unless L = −U.

The designer applies the interior design on v to obtain a “source game”
ℓ. Note that the target action profile a† strictly dominates in the source
game. The designer also creates a “destination game” ℓ(a) by repeating
the ℓo(a†) entry everywhere. The boundary algorithm then interpolates
between the source and destination games with a decaying weight wt.
Note after interpolation (3.3), the target a† still dominates by roughly wt.
We design the weight wt = tα+ϵ−1 so that cumulatively, the sum of wt

grows with rate α+ϵ, which is faster than the regret rate α. This is a critical
consideration to enforce frequent play of a†. Also note that asymptotically,
ℓt converges toward the destination game. Therefore, in the long run,
when a† is played the designer incurs diminishing cost, resulting in o(T)

cumulative design cost.

Lemma 3.8. The redesigned game (3.3) satisfies:

1. ∀i,a, ℓti(a) ∈ L̃, thus the loss function is valid.

2. For every player i, the target action a†
i strictly dominates any other action

by (1− 1
M
)ρwt, i.e., ℓti(ai,a−i) = ℓti(a

†
i ,a−i)+ (1− 1

M
)ρwt,∀i, t,ai ̸=

a†
i ,a−i.

3. ∀t,C(ℓo, ℓt,a†) ⩽ η(U− L)M
1
pwt

4. If the original loss for the target action profile ℓo(a†) and the vector v are
both zero-sum, then ∀t, ℓt is zero-sum.

Given Lemma 3.8, we provide our second main result.

Theorem 3.9. Using Algorithm 2, the designer can achieve E
[
NT (a†)

]
=

T − O(MT 1−ϵ) while incurring expected cumulative design cost E
[
CT
]
=

O(M1+ 1
pT 1−ϵ +M

1
pTα+ϵ).

19

Remark 3.10. By choosing a larger ϵ in Theorem 3.9, the designer increases
E
[
NT (a†)

]
. However, the design cost can grow. When ϵ = 1−α

2 , the design cost
attains the minimum order O

(
T

1+α
2

)
and E

[
NT (a†)

]
= T −O(T

1+α
2)

Corollary 3.11. Assume the no-regret learning algorithm is EXP3.P. The de-
signer can achieve expected number of target plays E

[
NT (a†)

]
= T −O(MT

3
4)

while incurring E
[
CT
]
= O

(
M

1
p (1 +M)T

3
4

)
design cost.

Discrete Design

In previous sections, we assumed the games ℓt can take arbitrary con-
tinuous values in the relaxed loss range L̃ = [L,U]. However, there are
many real-world situations where continuous loss does not have a natural
interpretation. For example, in the rock-paper-scissors game, the loss is
interpreted as win, lose or tie, thus ℓt should only take value in the original
loss value set L = {−1, 0, 1}. We now provide a discrete redesign to convert
any game ℓt with values in L̃ into a game ℓ̂t only involving loss values L
and U, which are both in L. Specifically, the discrete design is illustrated
in Algorithm 3.

Algorithm 3 Discrete Design
Input: the target action profile a†; a loss vector v ∈ RM whose elements

are in the interior, i.e., ∀i, vi ∈ [L+ ρ,U− ρ] for some ρ > 0; the regret
rate α; ϵ ∈ (0, 1 − α);

Output: a time-varying game with loss ℓ̂t ∈ L as below:

∀t, i,a, ℓ̂ti(a) =
{

U with probability ℓti(a)−L

U−L

L with probability U−ℓti(a)

U−L
.

(3.4)

It is easy to verify E
[
ℓ̂t
]
= ℓt. In experiments we show such discrete

games also achieve the design goals.

20

Thresholding the Redesigned Game

For all designs in previous sections, the designer could impose an addi-
tional min or max operator to threshold on the original game loss, e.g., for
the interior design, the redesigned game loss after thresholding becomes
∀i,a,

ℓi(a) =

{
min{ℓoi (a†) − (1 − d(a)

M
)ρ, ℓo(a)} if ai = a†

i ,
max{ℓoi (a†) + d(a)

M
ρ, ℓo(a)} if ai ̸= a†

i .
(3.5)

We point out a few differences between (3.5) and (3.2). First, (3.5) guar-
antees a dominance gap of “at least” (instead of exactly) (1 − 1

M
)ρ. As

a result, the thresholded game can induce a larger NT (a†) because the
target action a† is redesigned to stand out even more. Second, one can
easily show that (3.5) incurs less design cost CT compared to (3.2) due to
thresholding. Therefore, Theorem 3.5 still holds. However, thresholding
no longer preserves the zero-sum property.

3.5 Experiments
We perform empirical evaluations of game redesign algorithms on four
games — the volunteer’s dilemma (VD), tragedy of the commons (TC),
prisoner’s dilemma (PD) and rock-paper-scissors (RPS). Throughout
the experiments, we use EXP3.P Bubeck and Cesa-Bianchi (2012) as the
no-regret learner. The concrete form of the regret bound for EXP3.P
is illustrated in the appendix A.1. Based on that, we derive the exact
form of our theoretical upper bounds for Theorem 3.5 and Theorem 3.9
(see (A.34)-(A.37)), and we show the theoretical value for comparison
in our experiments. We let the designer cost function be C(ℓo, ℓt,at) =

∥ℓo(at) − ℓt(at)∥p with p = 1. For VD, TC and PD, the original game is
not zero-sum, and we apply the thresholding (3.5) to slightly improve the

21

(a) Total rounds at ̸= a†. (b) Cumulative design cost.

Figure 3.1: Interior design on PD. The dashed line is the theoretical upper bound.

(a) Total rounds at ̸= a†. (b) Cumulative design cost. (c) Loss change.

Figure 3.2: Interior design on TC. The dashed line is the theoretical upper bound. At
a† = (10, 10), the loss is unchanged.

redesign performance. For the RPS game, we apply the design without
thresholding to preserve the zero-sum property. The results we show in
all the plots are produced by taking the average of 5 trials.

Volunteer’s Dilemma (VD)

In volunteer’s dilemma (Table 3.1) there are M players. Each player has
two actions: volunteer or not. When there exists at least one volunteer,
those players who do not volunteer gain 1 (i.e. a −1 loss). The volunteers
receive zero payoff. On the other hand, if no players volunteer, then every
player loss 10.

22

Other players
exists a volunteer no volunteer exists

Player i volunteer 0 0
not volunteer −1 10

Table 3.1: The loss function ℓoi for individual player i in VD.

As mentioned earlier, all pure Nash equilibria involve free-riders. The
designer aims at encouraging all players to volunteer, i.e., the target action
profile a†

i is “volunteer” for any player i. Note that ∀i, ℓoi (a†) = 0, which
lies in the interior of L = [−1, 10]. Therefore, the designer could apply
the interior design Algorithm 1. The margin parameter is ρ = 1. We let
M = 3. In table 3.2, we show the redesigned game ℓ. Note that when all
three players volunteer (i.e., at a†), the loss is unchanged compared to
ℓo. Furthermore, regardless of the other players, the action “volunteer”
strictly dominates the action “not volunteer” by at least (1 − 1

M
)ρ = 2

3 for
every player. When there is no other volunteers, the dominance gap is 32

3 ⩾

(1− 1
M
)ρ, which is due to the thresholding in (3.5). We simulated play for

Number of other volunteers
0 1 2

Player i volunteer −2/3 −1/3 0
not volunteer 10 1/3 2/3

Table 3.2: The redesigned loss function ℓi for player i in VD.

T = 104, 105, 106, 107, respectively on this redesigned game ℓ. In Figure 3.3a,
we show T − NT (a†) against T . The plot is in log scale. The standard
deviation estimated from 5 trials is less than 3% of the corresponding
value and is hard to see in log-scale plot, thus we do not show that. We
also plot our theoretical upper bound in dashed lines for comparison. Note
that the theoretical value indeed upper bounds our empirical results. In
Figure 3.3b, we show CT against T . Again, the theoretical upper bound
holds. As our theory predicts, for the four T ’s the designer increasingly

23

enforces a† in 60%, 82%, 94%, and 98% of the rounds, respectively; The per-
round design costs CT/T decreases at 0.98, 0.44, 0.15, and 0.05, respectively.

(a) Number of rounds with at ̸= a†

grows sublinearly.
(b) The cumulative design cost
grows sublinearly too.

Figure 3.3: Interior design on VD with M = 3. The dashed lines are theoretical upper
bounds.

Tragedy of the Commons (TC)

Our second example is the tragedy of the commons (TC). There are M = 2
farmers who share the same pasture to graze sheep. Each farmer i is
allowed to graze at most 15 sheep, i.e., the action space is Ai = {0, 1, ..., 15}.
The more sheep are grazed, the less well fed they are, and thus less price
on market. We assume the price of each sheep is p(a) =

√
30 −

∑2
i=1 ai,

where ai is the number of sheep that farmer i grazes. The loss function of
farmer i is then ℓoi (a) = −p(a)ai, i.e. negating the total price of the sheep
that farmer i owns. The Nash equilibrium strategy of this game is that
every farmer grazes a∗

i = 12 sheep.
It is well-known that this Nash equilibrium is suboptimal. Instead,

the designer hopes to maximize social welfare: p(a)(a1 + a2), which is
achieved when a1 + a2 = 20. Moreover, to promote equity the designer
desires that the two farmers graze the same number of sheep. Thus the
target action profile is a†

i = 10,∀i. Note that the original loss function
takes value in [−15

√
15, 0] while ℓoi (a

†) = −10
√

10, thus this is the interior

24

R P S
R −0.5, 0.5 0, 0 −0.5, 0.5
P 0, 0 0.5,−0.5 0, 0
S 0, 0 0.5,−0.5 0, 0

(a) ℓt(t = 1).

R P S
R 0.62,−0.62 0.75,−0.75 0.62,−0.62
P 0.75,−0.75 0.87,−0.87 0.75,−0.75
S 0.75,−0.75 0.87,−0.87 0.75,−0.75

(b) ℓt(t = 103).

R P S
R 0.94,−0.94 0.96,−0.96 0.94,−0.94
P 0.96,−0.96 0.98,−0.98 0.96,−0.96
S 0.96,−0.96 0.98,−0.98 0.96,−0.96

(c) ℓt(t = 107).
Table 3.3: The redesigned RPS games ℓt for selected t (with ϵ = 0.3). Note the
target entry a† = (R,P) converges toward (1,−1).

design scenario. Due to the large number of entries, we only visualize the
difference ℓ1(a) − ℓo1 (a) for player 1 in Figure 3.2c; the other player is the
same. We observe three patterns of loss change. For most a’s, e.g., a1 ⩽ 6
or a2 ⩾ 11, the original loss ℓo1 (a) is already sufficiently large and satisfies
the dominance gap in Lemma 3.4, thus the loss remains unchanged. For
those a’s where a†

1 = 10, the designer reduces the loss to make the target
action more profitable. For those a’s close to the bottom left (a1 > a†

1 and
a2 ⩽ 10), the designer increases the loss to enforce the gap (1 − 1

M
)ρ.

We simulated play for T = 104, 105, 106 and 107 and show the results
in Figure 3.2. Again the game redesign is successful: the figures confirm
T −O(T) target action play and o(T) cumulative design cost. Numerically,
for the four T ’s the designer enforces a† in 41%, 77%, 92%, and 98% of
rounds, and the per-round design costs are 9.4, 4.2, 1.4, and 0.5.

Prisoner’s Dilemma (PD)

Out third example is the prisoner’s dilemma (PD). There are two pris-
oners, each can stay mum or fink. The original loss function ℓo is given

25

R P S

R 0, 0 1,−1 −1, 1
P −1, 1 0, 0 1,−1
S 1,−1 −1, 1 0, 0

(a) The original loss ℓo.

R P S

R 1, 1 1, 1 −1, 1
P −1,−1 1,−1 −1,−1
S −1, 1 −1,−1 −1,−1

(b) ℓ̂t(t = 1).

R P S

R 1,−1 1, 1 −1,−1
P 1,−1 1,−1 1,−1
S 1,−1 1,−1 1, 1

(c) ℓ̂t(t = 103).

R P S

R 1,−1 1,−1 1,−1
P 1,−1 1,−1 1,−1
S 1,−1 1,−1 1,−1

(d) ℓ̂t(t = 107).
Table 3.4: Instantiation of discrete design on the same games as in Table 3.3. The
redesigned loss lies in L = {−1, 0, 1}.

mum fink
mum 2, 2 5, 1
fink 1, 5 4, 4

(a) The original loss ℓo of PD.

mum fink
mum 2, 2 1.5, 2.5
fink 2.5, 1.5 4, 4

(b) The redesigned loss ℓ of PD.

Table 3.5: Interior redesign on Prisoner’s Dilemma.

in Table 3.5a. The Nash equilibrium strategy of this game is that both
prisoners fink. Suppose a mafia designer hopes to force a† =(mum, mum)
by sabotaging the losses. Note that ∀i, ℓoi (a†) = 2, which lies in the interior
of the loss range L = [1, 5]. Therefore, this is again an interior design
scenario. In Table 3.5b we show the redesigned game ℓ. Note that when
both prisoners stay mum or both fink, the designer does not change the
loss. On the other hand, when one prisoner stays mum and the other finks,
the designer reduces the loss for the mum prisoner and increases the loss
for the betrayer. We simulated plays for T = 104, 105, 106, and 107, respec-
tively. In Figure 3.1 we plot the number of non-target action selections
T − NT (a†) and the cumulative design cost CT . Both grow sublinearly.
The designer enforces a† in 85%, 94%, 98%, and 99% of rounds, and the
per-round design costs are 0.71, 0.28, 0.09, and 0.03, respectively.

26

(a) Number of rounds at ̸= a†. (b) The cumulative design cost.

Figure 3.4: Boundary design on RPS. The dashed lines are the theoretical upper
bound.

Rock-Paper-Scissors (RPS)

Our last example is the RPS game, as shown in Table 3.4a.
Boundary Design. Suppose the target profile is a† = (R,P). Since

ℓo(a†) = (1,−1) hits the boundary of loss range L̃ = [−1, 1], the designer
must use the boundary design. For simplicity we choose v with vi =
U+L

2 , ∀i. This choice of v preserves the zero-sum property. Table 3.3 shows
the redesigned games at t = 1, 103 and 107 under ϵ = 0.3. Note that the
designer maintains the zero-sum property of the games. Also note that the
redesigned loss function guarantees strict dominance of a† for all t, but the
dominance gap decreases as t grows. Finally, the loss of the target action
a† = (R,P) converges to the original loss ℓo(a†) = (1,−1) asymptotically,
thus the designer incurs diminishing cost.

We ran Algorithm 2 for ϵ = 0.1, 0.2, 0.3, 0.4. For each ϵ we simulated
game play for T = 104, 105, 106 and 107. In Figure 3.4a, we show T −

NT (a†) under different ϵ (solid lines) and the theoretical upper bounds
of Theorem 3.9 (dashed lines) for comparison. In Figure 3.4b, we show
the cumulative design cost CT and the upper bounds. Note that both
T − NT (a†) and CT grow sublinearly. For ϵ = 0.3, for the four T ’s the
designer forces a† in 34%, 60%, 76%, and 88% rounds. The per-round

27

(a) Number of rounds at ̸= a†. (b) The cumulative design cost.

Figure 3.5: Discrete redesign for a† = (R,P) with natural loss values in L. The
dashed lines are the corresponding boundary design.

design costs are 1.7, 1.2, 0.73 and 0.40. The results are similar for the
other ϵ’s. We note that empirically the cumulative design cost achieves the
minimum at some ϵ ∈ (0.3, 0.4) while Theorem 3.9 suggests the minimum
at ϵ∗ = 0.25. We investigate this inconsistency in appendix A.2.

Discrete Design. We now compare the performance of discrete design
(Algorithm 3) with the boundary design. The target profile is still a† =

(R,P). Recall the purpose of discrete design is to only use natural game
loss values, in the RPS case L = {−1, 0, 1}. Figure 3.5 shows that the
performance of the discrete design nearly matches the boundary design.
When ϵ = 0.3, for the four T ’s discrete design enforces a† 35%, 59%,75%
and 88% of the time. The per-round design costs are 1.7, 1.2, 0.79, and 0.41.
Overall, discrete design does not lose much performance. Table 3.4 shows
the redesigned “random” games at t = 1, 103 and 107 under ϵ = 0.3. As t
increases, the redesigned loss function converges to a constant function
that takes the target loss value ℓo(a†).

28

3.6 Conclusion
We studied the game redesign problem where players apply no-regret
algorithms to play the game. We show that a designer can enforce a
target action profile in T − o(T) rounds while incurring o(T) cumulative
design cost. Experiments demonstrate the performance of our redesign
algorithms.

In the next chapter, we investigate the extension of the problem on
Markov games, and in the offline data poisoning setting. The approach
to installing a dominant strategy equilibrium is similar to the one in this
chapter, but we have to deal with the additional complication that the
learners estimate the Markov game using confidence-based algorithms
based on an offline dataset.

29

4 offline reward poisoning for general-sum
games to install a dominant strategy equilibrium

Contribution Statement. This chapter is a joint work with Jeremy McMa-
han, Jerry Zhu, and Qiaomin Xie. I am the main author. My contribution
includes the statements and proofs of the main propositions and theorems
1 to 3 and the writing of the paper. The paper version of this chapter
appears in AAAI 2023.

4.1 Introduction
In this chapter, we study the offline data poisoning problem in a general-
sum Markov game environment, where a single attacker tries to minimally
modify the offline rewards so that learners that compute the Markov
perfect dominant strategy equilibrium of a Markov game within some
confidence region around the maximum likelihood estimate of the Markov
game based on the offline rewards would find a deterministic target joint
policy as the unique equilibrium. We formulate the attacker’s reward
poisoning problem as a linear program, which can be solved efficiently,
and we provide sufficient conditions for the feasibility of such an attack.

Multi-agent reinforcement learning (MARL) has achieved tremendous
empirical success across a variety of tasks such as autonomous driving, co-
operative robotics, economic policy-making, and video games. In MARL,
several agents interact with each other and the underlying environment,
and each of them aims to optimize their individual long-term reward
Zhang et al. (2021a). Such problems are often formulated under the frame-
work of Markov Games Shapley (1953), which generalizes the Markov
Decision Process model from single-agent RL. In offline MARL, the agents
aim to learn a good policy by exploiting a pre-collected dataset without

30

further interactions with the environment or other agents Pan et al. (2022);
Jiang and Lu (2021); Cui and Du (2022b); Zhong et al. (2022). The optimal
solution in MARL typically involves equilibria concepts.

While the above empirical success is encouraging, MARL algorithms
are susceptible to data poisoning attacks: the agents can reach the wrong
equilibria if an exogenous attacker manipulates the feedback to agents. For
example, a third-party attacker may want to interfere with traffic to cause
autonomous vehicles to behave abnormally; teach robots an incorrect pro-
cedure so that they fail at certain tasks; misinform economic agents about
the state of the economy and guide them to make irrational investments
or saving decisions; or cause the non-player characters in a video game
to behave improperly to benefit certain human players. In this paper, we
study the security threat posed by reward-poisoning attacks on offline
MARL. Here, the attacker wants the agents to learn a target policy π† of the
attacker’s choosing (π† does not need to be an equilibrium in the original
Markov Game). Meanwhile, the attacker wants to minimize the amount
of dataset manipulation to avoid detection and accruing high cost. This
paper studies optimal offline MARL reward-poisoning attacks. Our work
serves as a first step toward eventual defense against reward-poisoning
attacks.

Our Contributions

We introduce reward-poisoning attacks in offline MARL. We show that
any attack that reduces to attacking single-agent RL separately must be
suboptimal. Consequently, new innovations are necessary to attack ef-
fectively. We present a reward-poisoning framework that guarantees the
target policy π† becomes a Markov Perfect Dominant Strategy Equilibrium
(MPDSE) for the underlying Markov Game. Since any rational agent will
follow an MPDSE if it exists, this ensures the agents adopt the target policy
π†. We also show the attack can be efficiently constructed using a linear

31

program.
The attack framework has several important features. First, it is effec-

tive against a large class of offline MARL learners rather than a specific
learning algorithm. Second, the framework allows partially decentralized
agents who can only access their own individual rewards rather than the
joint reward vectors of all agents. Lastly, the framework only makes the
minimal assumption on the rationality of the learners that they will not
take dominated actions.

We also give interpretable bounds on the minimal cost to poison an
arbitrary dataset. These bounds relate the minimal attack cost to the
structure of the underlying Markov Game. Using these bounds, we derive
classes of games that are especially cheap or expensive for the attacker to
poison. These results show which games may be more susceptible to an
attacker, while also giving insight to the structure of multi-agent attacks.

In the right hands, our framework could be used by a benevolent entity
to coordinate agents in a way that improves social welfare. However, a
malicious attacker could exploit the framework to harm learners and only
benefit themselves. Consequently, our work paves the way for future study
of MARL defense algorithms.

Related Work

Online Reward-Poisoning: Reward poisoning problem has been stud-
ied in various settings, including online single-agent reinforcement learn-
ers Banihashem et al. (2022); Huang and Zhu (2019); Liu and Lai (2021);
Rakhsha et al. (2021a,b, 2020); Sun et al. (2020b); Zhang et al. (2020b),
as well as online bandits Bogunovic et al. (2021); Garcelon et al. (2020);
Guan et al. (2020); Jun et al. (2018); Liu and Shroff (2019); Lu et al. (2021);
Ma et al. (2018); Yang et al. (2021); Zuo (2020). Online reward poisoning
for multiple learners is recently studied as a game redesign problem in
Ma et al. (2021).

32

Offline Reward Poisoning: Ma et al. (2019); Rakhsha et al. (2020, 2021a);
Rangi et al. (2022b); Zhang and Parkes (2008b); Zhang et al. (2009) focus
on adversarial attack on offline single-agent reinforcement learners. Gleave
et al. (2019); Guo et al. (2021) study the poisoning attack on multi-agent
reinforcement learners, assuming that the attacker controls one of the
learners. Our model instead assumes that the attacker is not one of the
learners, and the attacker wants to and is able to poison the rewards of all
learners at the same time. Our model pertains to many applications such
as autonomous driving, robotics, traffic control, and economic analysis,
in which there is a central controller whose interests are not aligned with
any of the agents and can modify the rewards and therefore manipulate
all agents at the same time.

Constrained Mechanism Design: Our paper is also related to the mech-
anism design literature, in particular, the K-implementation problem
in Monderer and Tennenholtz (2004); Anderson et al. (2010). Our model
differs mainly in that the attacker, unlike a mechanism designer, does not
alter the game/environment directly, but instead modifies the training data,
from which the learners infer the underlying game and compute their pol-
icy accordingly. In practical applications, rewards are often stochastic due
to imprecise measurement and state observation, hence the mechanism
design approach is not directly applicable to MARL reward poisoning.
Conversely, constrained mechanism design can be viewed as a special case
when the rewards are deterministic and the training data has uniform
coverage of all period-state-action tuples.

Defense against Attacks on Reinforcement Learning: There is also
recent work on defending against reward poisoning or adversarial attacks
on reinforcement learning; examples include Banihashem et al. (2021);
Lykouris et al. (2021); Rangi et al. (2022a); Wei et al. (2022); Wu et al.
(2022); Zhang et al. (2021b,c). These work focus on the single-agent setting

33

where attackers have limited ability to modify the training data. We are
not aware of defenses against reward poisoning in our offline multi-agent
setting. Given the numerous real-world applications of offline MARL, we
believe it is important to study the multi-agent version of the problem.

4.2 Preliminaries
Markov Games. A finite-horizon general-sum n-player Markov Game is
given by a tuple G = (S,A,P,R,H,µ) Littman (1994). Here S is the finite
state space, and A = A1 × · · · × An is the finite joint action space. We
use a = (a1, . . . ,an) ∈ A to represent a joint action of the n learners; we
sometimes write a = (ai,a−i) to emphasize that learner i takes action ai

and the other n− 1 learners take joint action a−i. For each period h ∈ [H],
Ph : S × A → ∆(S) is the transition function, where ∆(S) denotes the
probability simplex on S, and Ph(s

′|s,a) is the probability that the state
is s ′ in period h+ 1 given the state is s and the joint action is a in period
h. Rh : S×A→ Rn is the mean reward function for the n players, where
Ri,h(s,a) denotes the scalar mean reward for player i in state s and period
h when the joint action a is taken. The initial state distribution is µ.

Policies and value functions. We use π to denote a deterministic Marko-
vian policy for the n players, where πh : S → A is the policy in period h

and πh(s) specifies the joint action in state s and period h. We write
πh = (πi,h,π−i,h), where πi,h(s) is the action taken by learner i and
π−i,h(s) is the joint action taken by learners other than i in state s pe-
riod h. The value of a policy π represents the expected cumulative rewards
of the game assuming learners take actions according to π. Formally, the
Q value of learner i in state s in period h under a joint action a is given

34

recursively by

Qπ
i,H (s,a) = Ri,H (s,a) ,

Qπ
i,h (s,a) = Ri,h (s,a) +

∑
s ′∈S

Ph (s ′|s,a)Vπ
i,h+1 (s

′) .

The value of learner i in state s in period h under policy π is given by
Vπ
i,h (s) = Qπ

i,h (s,πh (s)), and we use Vπ
h(s) ∈ Rn to denote the vector of

values for all learners in state s in period h under policy π.

Offline MARL. In offline MARL, the learners are given a fixed batch
dataset D that records historical plays of n agents under some behav-
ior policies, and no further sampling is allowed. We assume that D ={(

s
(k)
h ,a(k)

h , r0,(k)
h

)H
h=1

}K

k=1 contains K episodes of length H. The data tuple
in period h of episode k consists of the state s(k)h ∈ S, the joint action profile
a
(k)
h ∈ A, and reward vector r0,(k)

h ∈ Rn, where the superscript 0 denotes
the original rewards before any attack. The next state s

(k)
h+1 can be found

in the next tuple. Given the shared data D, each learner independently
constructs a policy πi to maximize their own cumulative reward. They
then behave according to the resulting joint policy π = (π1, . . . ,πn) in
future deployment. Note that in a multi-agent setting, the learners’ op-
timal solution concept is typically an approximate Nash equilibrium or
Dominant Strategy Equilibrium Cui and Du (2022b); Zhong et al. (2022).

An agent’s access to D may be limited, for example, due to privacy
reasons. There are multiple levels of accessibility. In the first level, the
agents can only access data that directly involves itself: instead of the tuple
(sh,ah, rh), agent i would only be able to see (sh,ai,h, ri,h). In the second
level, agent i can see the joint action but only its own reward: (sh,ah, ri,h).
In the third level, agent i can see the whole (sh,ah, rh). We focus on the
second level in this paper.

Let Nh (s,a) =
∑K

k=1 1
{s

(k)
h =s,a(k)

h =a}
be the total number of episodes

35

containing (s,a, ·) in period h. We consider a dataset D that satisfies the
following coverage assumption.

Assumption 4.1. (Full Coverage) For each (s,a) and h, Nh (s,a) > 0.

While this assumption might appear strong, we later show that it is
necessary to effectively poison the dataset.

Attack Model

We assume that the attacker has access to the original dataset D. The
attacker has a pre-specified target policy π† and attempts to poison the
rewards in D with the goal of forcing the learners to learn π† from the
poisoned dataset. The attacker also desires that the attack has a minimal
cost. We let C(r0, r†) denote the cost of a specific poisoning, where r0 ={(

r
0,(k)
h

)H
h=1

}K

k=1 are the original rewards and r† =
{(

r
†,(k)
h

)H
h=1

}K

k=1 are
the poisoned rewards. We focus on the L1-norm cost C(r0, r†) = ∥r0 − r†∥1.

Rationality. For generality, the attacker makes minimal assumptions
about the learners’ rationality. Namely, the attacker only assumes that
the learners never take dominated actions Monderer and Tennenholtz
(2004). For technical reasons, we strengthen this assumption slightly
by introducing an arbitrarily small margin ι > 0 (e.g. representing the
learners’ numerical resolution).

Definition 4.1. A ι-strict Markov perfect dominant strategy equilibrium (ι-
MPDSE) of a Markov Game G is a policy π satisfying that for all learners i ∈ [n],
periods h ∈ [H], and states s ∈ S,

∀ai ∈ Ai,ai ̸= πi,h(s),a−i ∈ A−i :

Qπ
i,h (s, (πi,h(s),a−i)) ⩾ Qπ

i,h (s, (ai,a−i)) + ι.

Note that a strict MPDSE, if exists, must be unique.

36

Assumption 4.2. (Rationality) The learners will play an ι-MPDSE should one
exist.

Uncertainty-aware attack. State-of-the-art MARL algorithms are typi-
cally uncertainty-aware Cui and Du (2022b); Zhong et al. (2022), meaning
that learners are cognizant of the model uncertainty due to finite, ran-
dom data and will calibrate their learning procedure accordingly. The
attacker accounts for such uncertainty-aware learners but does not know
the learners’ specific algorithm or internal parameters. It only assumes
that the policies computed by the learners are solutions to some game that
is plausible given the dataset. Accordingly, the attacker aims to poison the
dataset in such a way that the target policy is an ι-MPDSE for every game
that is plausible for the poisoned dataset.

To formally define the set of plausible Markov Games for a given dataset
D, we first need a few definitions.

Definition 4.2. (Confidence Game Set) The confidence set on the transition
function Ph (s,a) has the form:

CIPh (s,a) :=
{
Ph (s,a) ∈ ∆ (A) :

∥Ph (s,a) − P̂h (s,a) ∥1 ⩽ ρP
h (s,a)

}
where

P̂h(s
′|s,a) := 1

Nh(s,a)
∑K

k=1 1
{s

(k)
h+1=s ′,s(k)h =s,a(k)

h =a}
is the maximum likeli-

hood estimate (MLE) of the true transition probability. Similarly, the confidence
set on the reward function Ri,h (s,a) has the form:

CIRi,h (s,a) :=
{
Ri,h (s,a) ∈ [−b,b] :

|Ri,h (s,a) − R̂i,h (s,a) | ⩽ ρR
h (s,a)

}
,

where

37

R̂i,h(s,a) := 1
Nh(s,a)

∑K
k=1 r

0,(k)
i,h 1

{s
(k)
h =s,a(k)

h =a}
is the MLE of the reward.

Then, the set of all plausible Markov Games consistent with D, denoted by CIG,
is defined to be:

CIG :=
{
G = (S,A,P,R,H,µ) : Ph (s,a) ∈ CIPh (s,a) ,

Ri,h (s,a) ∈ CIRi,h (s,a) , ∀ i,h, s,a
}

.

Note that both the attacker and the learners know that all of the rewards
are bounded within [−b,b] (we allow b = ∞). The values of ρP

h (s,a) and
ρR
h (s,a) are typically given by concentration inequalities. One standard

choice takes the Hoeffding-type form ρP
h (s,a) ∝ 1/

√
max{Nh(s,a), 1},

and ρR
h (s,a) ∝ 1/

√
max{Nh(s,a), 1}, where we recall that Nh(s,a) is the

visitation count of the state-action pair (s,a) Xie et al. (2020); Cui and
Du (2022b); Zhong et al. (2022). We remark that with proper choice
of ρP

h and ρR
h, CIG contains the game constructed by optimistic MARL

algorithms with upper confidence bounds Xie et al. (2020), as well as
that by pessimistic algorithms with lower confidence bounds Cui and Du
(2022b); Zhong et al. (2022). See the appendix for details.

With the above definition, we consider an attacker that attempts to
modify the original dataset D into D† so that π† is an ι-MPDSE for every
plausible game in CIG induced by the poisoned D†. This would guarantee
the learners adopt π†.

The full coverage Assumption 4.1 is necessary for the above attack goal,
as shown in the following proposition. We defer the proof to the appendix.

Proposition 4.1. If Nh (s,a) = 0 for some (h, s,a), then there exist MARL
learners for which the attacker’s problem is infeasible.

38

A1 \ A2 1 2
1 (3, 3) (1, 2)
2 (2, 1) (0, 0)

Table 4.1: Single-agent attack reduction example

Ai r

1 {3, 1}
2 {2, 0}

Table 4.2: Single-agent attack reduction

4.3 Poisoning Framework
In this section, we first argue that naively applying single-agent poisoning
attacks separately to each agent results in suboptimal attack cost. We then
present a new optimal poisoning framework that accounts for multiple
agents and thereby allows for efficiently solving the attack problem.

Suboptimality of single-agent attack reduction. As a first attempt, the
attacker could try to use existing single-agent RL reward poisoning meth-
ods. However, this approach is doomed to be suboptimal. Consider the
game in Table 4.1 with n = 2 learners, one period, and one state.

Suppose that the original dataset D has full coverage. For simplicity,
we assume that each (s,a) pair appears sufficiently many times so that ρR

is small. In this case, the target policy π† = (1, 1) is already an MPDSE,
so no reward modification is needed. However, if we use a single-agent
approach, each learner i will observe the dataset in Table 4.2. In this case,
to learner i it is not immediately clear which of the two actions is strictly
better, for example, when 1, 2 appears relatively more often than 3, 0. To
ensure that both players take action 1, the attacker needs to modify at least
one of the rewards for each player, thus incurring a nonzero (and thus
suboptimal) attack cost.

The example above shows that a new approach is needed to construct

39

an optimal poisoning framework tailored to the multi-agent setting. Below
we develop such a framework, first for the simple Bandit Game setting,
which is then generalized to Markov Games.

Bandit Game Setting

As a stepping stone, we start with a subclass of Markov Games with |S| = 1
and H = 1, which are sometimes called bandit games. A bandit game
consists of a single-stage normal-form game. For now, we also pretend
that the learners simply use the data to compute an MLE point estimate Ĝ

of the game and then solve the estimated game Ĝ. This is unrealistic, but it
highlights the attacker’s strategy to enforce that π† is an ι-strict DSE in Ĝ.

Suppose the original dataset is D =
{
(a(k), r0,(k))

}K

k=1 (recall we no
longer have state or period). Also, let N(a) :=

∑K
k=1 1{a(k)=a} be the action

counts. The attacker’s problem can be formulated as a convex optimization
problem given in (4.1).

min
r†

C
(
r0, r†

)
s.t. R†(a) :=

1
N(a)

K∑
k=1

r†,(k)1{a(k)=a}, ∀a;

R†
i

(
π†
i ,a−i

)
⩾ R†

i (ai,a−i) + ι,∀ i,a−i,ai ̸= π†
i ;

r†,(k) ∈ [−b,b]n , ∀ k.

(4.1)

The first constraint in (4.1) models the learners’ MLE Ĝ after poisoning.
The second constraint enforces that π† is an ι-strict DSE of Ĝ by definition.
We observe that:

1. The problem is feasible if ι ⩽ 2b, since the attacker can always set,
for each agent, the reward to be b for the target action and −b for all
other actions;

40

2. If the cost function C(·, ·) is the L1-norm, the problem is a linear
program (LP) with nK variables and (A− 1)An−1 + 2nK inequality
constraints (assuming each learner has |Ai| = A actions);

3. After the attack, learner i only needs to see its own rewards to be
convinced that π†

i is a dominant strategy; learner i does not need to
observe other learners’ rewards.

This simple formulation serves as an asymptotic approximation to the
attack problem for confidence-bound-based learners. In particular, when
N(a) is large for all a, the confidence intervals on P and R are usually
small.

With the above idea in place, we can consider more realistic learners
that are uncertainty-aware. For these learners, the attacker attempts to
enforce an ι separation between the lower bound of the target action’s
reward and the upper bounds of all other actions’ rewards (similar to arm
elimination in bandits). With such separation, all plausible games in CIG

would have the target action profile as the dominant strategy equilibrium.
This approach can be formulated as a slightly more complex optimiza-
tion problem (4.2), where the second and third constraints enforce the
desired ι separation. The formulation (4.2) can be solved using standard
optimization solvers, hence the optimal attack can be computed efficiently.

41

min
r†

C(r0, r†)

s.t. R†(a) :=
1

N(a)

K∑
k=1

r†,(k)1{a(k)=a}, ∀ a;

CIR†

i (a) :=
{
Ri(a) ∈ [−b,b] :

∣∣Ri(a) − R†
i(a)

∣∣
⩽ ρR(a)

}
, ∀ i,a;

min
Ri∈CIR†i (π†

i ,a−i)

Ri ⩾ max
Ri∈CIR†i (ai,a−i)

Ri + ι,

∀ i,a−i,ai ̸= π†
i ;

r†,(k) ∈ [−b,b]n ,∀ k.

(4.2)

We next consider whether this formulation has a feasible solution.
Below we characterize the feasibility of the attack in terms of the margin
parameter ι and the confidence bounds.

Proposition 4.2. The attacker’s problem (4.2) is feasible if ι ⩽ 2b−2ρR (a) , ∀ a ∈
A.

Proposition 4.2 is a special case of the general Theorem 4.1 with H =

|S| = 1. We note that the condition in Proposition 4.2 has an equivalent
form that relates to the structure of the dataset. We later present this form
for a more general case.

When an L1-norm cost function is used, we show in the appendix that
the formulation (4.2) can also be efficiently solved.

Proposition 4.3. With L1-norm cost function C (·, ·), the problem (4.2) can be
formulated as a linear program.

Markov Game Setting

We now generalize the ideas from the bandit setting to derive a poisoning
framework for arbitrary Markov Games. With multiple states and periods,
there are two main complications:

42

1. In each period h, the learners’ decision depends on Qh, which in-
volves both the immediate reward Rh and the future return Qh+1;

2. The uncertainty in Qh amplifies as it propagates backward in h.

Accordingly, the attacker needs to design the poisoning attack recursively.
Our main technical innovation is an attack formulation based on Q

confidence-bound backward induction. The attacker maintains confidence
upper and lower bounds on the learners’ Q function, Q, and Q, with
backward induction. To ensure π† becomes an ι-MPDSE, the attacker
again attempts to ι-separate the lower bound of the target action and the
upper bound of all other actions, at all states and periods.

Recall Definition 4.2: given the training dataset D, one can compute
the MLEs Rh and corresponding confidence sets CIRi,h for the reward.
The attacker aims to poison D into D† so that the MLEs and confidence
sets become R†

h and CIR†

i,h, under which π† is the unique ι-MPDSE for all
plausible games in the corresponding confidence game set. The attacker
finds the minimum cost way of doing so by solving a Q confidence-bound
backward induction optimization problem, given in (4.3)–(4.7).

min
r†

C
(
r0, r†

)
(4.3)

s.t. R†
i,h (s,a) := 1

Nh (s,a)

K∑
k=1

r
†,(k)
i,h 1{

s
(k)
h =s,a(k)

h =a
},

∀ h, s, i,a

CIR†

i,h (s,a) :=
{
Ri,h (s,a) ∈ [−b,b]

:
∣∣Ri,h (s,a) − R†

i,h (s,a)
∣∣ ⩽ ρR

h (s,a)
}

,

∀ h, s, i,a

43

Q
i,H (s,a) := min

Ri,H∈CIR†i,H(s,a)

Ri,H,∀ s, i,a

Q
i,h (s,a) := min

Ri,h∈CIR†i,h(s,a)

Ri,h

+ min
Ph∈CIPh(s,a)

∑
s ′∈S

Ph (s ′)Q
i,h+1

(
s ′,π†

h+1 (s
′)
)

,

∀ h < H, s, i,a (4.4)

Qi,H (s,a) := max
Ri,H∈CIR†i,H(s,a)

Ri,H,∀ s, i,a

Qi,h (s,a) := max
Ri,h∈CIR†i,h(s,a)

Ri,h

+ max
Ph∈CIPh(s,a)

∑
s ′∈S

Ph (s ′)Qi,h+1

(
s ′,π†

h+1 (s
′)
)

,

∀ h < H, s, i,a (4.5)

Q
i,h

(
s,
(
π†
i,h(s),a−i

))
⩾ Qi,h (s, (ai,a−i)) + ι,

∀ h, s, i,a−i,ai ̸= π†
i,h (s) (4.6)

r
†,(k)
h ∈ [−b,b]n ,∀ h,k. (4.7)

The backward induction steps (4.4) and (4.5) ensure that Q and Q are
valid lower and upper bounds for the Q function for all plausible Markov
Games in CIG, for all periods. The margin constraints (4.6) enforce an
ι-separation between the target action and other actions at all states and
periods. We emphasize that the agents need not consider Q at all in their
learning algorithm; Q only appears in the optimization due to its presence
in the definition of MPDSE.

Again, pairing an efficient optimization solver with the above formu-
lation gives an efficient algorithm for constructing the poisoning. We
now answer the important questions of whether this formulation admits
a feasible solution and whether these solutions yield successful attacks.
The lemma below provides a positive answer to the second question.

44

Lemma 4.1. If the attack formulation (4.3)–(4.7) is feasible, π† is the unique
ι-MPDSE of every Markov Game G ∈ CIG.

Moreover, the attack formulation admits feasible solutions under mild
conditions on the dataset.

Theorem 4.1. The attacker formulation (4.3)–(4.7) is feasible if the following
condition holds:

ι ⩽ 2b− (H+ 1) ρR
h (s,a) , ∀ h ∈ [H] , s ∈ S,a ∈ A.

We remark that the learners know the upper bound b and may use it to
exclude implausible games. The accumulation of confidence intervals over
the H periods results in the extra factor (H+1) on ρR

h. Theorem 4.1 implies
that the problem is feasible so long as the dataset is sufficiently populated;
that is, each (s,a) pair should appear frequently enough to have a small
confidence interval half-width ρR

h. The following corollary provides a
precise condition on the visit accounts that guarantees feasibility.

Corollary 4.1. Given a confidence probability δ and the confidence interval
half-width ρR

h (s,a) = f(1
Nh(s,a)) for some strictly increasing function f, the

condition in Theorem 4.1 holds if

Nh(s,a) ⩾
(
f−1(2b− ι

H+ 1
))−1

.

In particular, for the natural choice of Hoeffding-type,

ρR
h (s,a) = 2b

√
log ((H |S| |A|) /δ)

max {Nh (s,a) , 1} , it suffices that,

Nh(s,a) ⩾ 4b2 (H+ 1)2 log ((H |S| |A|) /δ)

(2b− ι)
2 .

45

Despite the inner min and max in the problem (4.3)–(4.7), the problem
can be formulated as an LP, thanks to LP duality.

Theorem 4.2. With L1-norm cost function C(·, ·), problem (4.3)–(4.7) can be
formulated as an LP.

The proofs of the above results can be found in the appendix.

4.4 Cost Analysis
Now that we know how the attacker can poison the dataset in the multi-
agent setting, we can study the structure of attacks. The structure is most
easily seen by analyzing the minimal attack cost. To this end, we give
general bounds that relate the minimal attack cost to the structure of the
underlying Markov Game. The attack cost upper bounds show which
games are particularly susceptible to poison, and the attack cost lower
bounds demonstrate that some games are expensive to poison.

Overview of results: Specifically, we shall present two types of up-
per/lower bounds on the attack cost: (i) universal bounds that hold for all
attack problem instances simultaneously; (ii) instance-dependent bounds
that are stated in terms of certain properties of the instance. We also dis-
cuss problem instances under which these two types of bounds are tight
and coincide with each other.

We note that all bounds presented here are with respect to the L1-cost,
but many of them generalize to other cost functions, especially the L∞-cost.
The proofs of the results presented in this section are provided in the
appendix.

Setup: Let I = (D,π†, ρR, ρP, ι) denote an instance of the attack prob-
lem, and Ĝ denote the corresponding MLE of the Markov Game derived
from D. We denote by Ih = (Dh,π†

h, ρR
h, ρP

h, ι) the restriction of the in-
stance to period h. In particular, R̂h(s) derived from Dh is exactly the

46

normal-form game at state s and period h of Ĝ. We define C∗(I) to be
the optimal L1-poisoning cost for the instance I; that is, C∗(I) is the op-
timal value of the optimization problem (4.3)–(4.7) evaluated on I. We
say the attack instance I is feasible if this optimization problem is feasi-
ble. If I is infeasible, we define C∗(I) = ∞. WLOG, we assume that
|A1| = · · · = |An| = A. In addition, we define the minimum visit count for
each period h in D as Nh := mins∈S mina∈A Nh (s,a), and the minimum
over all periods as N := minh∈H Nh. We similarly define the maximum
visit counts as Nh = maxs∈S maxa∈A Nh (s,a) and N = maxh Nh. Lastly,
we define ρ = minh,s,a ρR

h(s,a) and ρ = maxh,s,a ρR
h(s,a), the minimum

and maximum confidence half-width.

Universal Cost Bounds

With the above definitions, we present universal attack cost bounds that
hold simultaneously for all attack instances.

Theorem 4.3. For any feasible attack instance I, we have that,

0 ⩽ C∗(I) ⩽ NH|S|nAn2b.

As these upper and lower bounds hold for all instances, they are typically
loose. However, they are nearly tight. If π† is already an ι-MPDSE for all
plausible games, then no change to the rewards is needed and the attack
cost is 0, hence the lower bound is tight for such instances. We can also
construct a high-cost instance to show the near-tightness of the upper
bound.

Specifically, consider the dataset for a bandit game,D =
{
(a(k), r0,(k))

}K

k=1,
where A = An and each action appears exactly N times, i.e., N = N = N

and K = NAn. The target policy is π† = (1, . . . , 1). The dataset is con-
structed so that r0,(k)

i = −b if a(k)
i = π†

i,h (s) and r
0,(k)
i = b otherwise.

These rewards are essentially the extreme opposite of what the attacker

47

A1/A2 1 2 ... |A2|

1 −b,−b −b,b ... −b,b
2 b,−b b,b ... b,b
...
|A1| b,−b b,b ... b,b

Table 4.3: MLE R̂h(s, ·) before attack

A1/A2 1 . . . 2, ..., |A2|

1 b,b . . . b,b−2ρ−ι
...

2, ..., |A1| b−2ρ−ι,b . . . b−2ρ−ι,b−2ρ−ι

Table 4.4: MLE R̂h(s, ·) after attack

needs to ensure π† is an ι-DSE. Note, the dataset induces the MLE of the
game shown in Table 4.3 for the special case with n = 2 players.

For simplicity, suppose that the same confidence half-width ρR (a) =

ρ < b is used for all a. Let ι ∈ (0,b) be arbitrary. For this instance, to install
π† as the ι-DSE, the attacker can flip all rewards in a way that is illustrated
in Table 4.4, inducing a cost as the upper bound in Theorem 4.3. The
situation is the same for n ⩾ 2 learners. Our instance-dependent lower
bound, presented later in Theorem 4.5, implies that any attack on this
instance must have cost at least NnAn−1(2b+ 2ρ+ ι). This lower bound
matches the refined upper bound in the proof of Theorem 4.4, implying
the refined bounds are tight for this instance. Noticing that the universal
bound in Theorem 4.3 only differs by an O(A)-factor implies it is nearly
tight.

Instance-Dependent Cost Bounds

Next, we derive general bounds on the attack cost that depends on the
structure of the underlying instance. Our strategy is to reduce the problem
of bounding Markov Game costs to the easier problem of bounding Bandit

48

Game costs. We begin by showing that the cost of poisoning a Markov
Game dataset can be bounded in terms of the cost of poisoning the datasets
corresponding to its individual period games.

Theorem 4.4. For any feasible attack instance I, we have that C∗(IH) ⩽ C∗(I)

and,

C∗(I) ⩽
H∑

h=1

C∗(Ih) + 2bnH|S|N+H2ρ|S|nAnN

Here we see the effect of the learner’s uncertainty. If ρR is small, then
poisoning costs slightly more than poisoning each bandit instance inde-
pendently. This is desirable since it allows the attacker to solve the much
easier bandit instances instead of the full problem.

The lower bound is valid for all Markov Games, but it is weak in that
it only uses the last period cost. However, this is the most general lower
bound one can obtain without additional assumptions on the structure of
the game. If we assume additional structure on the dataset, then the above
lower bound can be extended beyond the last period, forcing a higher
attack cost.

Lemma 4.2. Let I be any feasible attack instance containing at least one uniform
transition in CIPh for each period h, i.e., there is some P̂h(s

′ | s,a) ∈ CIPh with
P̂h(s

′ | s,a) = 1/|S|,∀h, s ′, s,a. Then, we have that

C∗(I) ⩾
H∑

h=1

C∗(Ih).

In words, for these instances the optimal cost for poisoning is not too far off
from the optimal cost of poisoning each period game independently. We
note this is where the effects of ρP show themselves. If the dataset is highly
uncertain on the transitions, it becomes likely that a uniform transition
exists in CIP. Thus, a higher ρP leads to a higher cost and effectively
devolves the set of plausible games into a series of independent games.

49

Now that we have the above relationships, we can focus on bounding
the attack cost for bandit games. To be precise, we bound the cost of
poisoning a period game instance Ih. To this end, we define ι-dominance
gaps.

Definition 4.3. (Dominance Gaps) For every h ∈ [H] , s ∈ S, i ∈ [n] and
a−i ∈ A−i, the ι-dominance gap, dι

i,h(s,a−i), is defined as

dι
i,h (s,a−i) :=[

max
ai ̸=π

†
i,h(s)

[
R̂i,h

(
s, (ai,a−i)

)
+ ρR

h

(
s, (ai,a−i)

)]
− R̂i,h

(
s,
(
π†
i,h(s),a−i

))
+ ρR

h

(
s,
(
π†
i,h(s),a−i

))
+ ι
]
+

where R̂ is the MLE w.r.t. the original dataset D.

The dominance gaps measure the minimum amount by which the attacker
would have to increase the reward for learner i while others are playing
a−i, so that the action π†

i,h (s) becomes ι-dominant for learner i. We then
consolidate all the dominance gaps for period h into the variable ∆h(ι),

∆h(ι) :=
∑
s∈S

n∑
i=1

∑
a−i

(
dι
i,h(s,a−i) + διi,h(s,a−i)

)
Where διi,h(s,a−i) is a minor overflow term defined in the appendix. With
all this machinery set up, we can give precise bounds on the minimal cost
needed to attack a single-period game.

Lemma 4.3. The optimal attack cost for Ih satisfies

Nh∆h(ι) ⩽ C∗(Ih) ⩽ Nh∆h(ι).

Combining these bounds with Theorem 4.4 gives complete attack cost
bounds for general Markov game instances.

50

The lower bounds in both Lemma 4.2 and Lemma 4.3 expose an ex-
ponential dependency on n, the number of players, for some datasets
D. These instances essentially require the attacker to modify R̂i,h(s,a)
for every a ∈ A. A concrete instance can be constructed by taking the
high-cost dataset derived as the tight example before and extending it into
a general Markov Game. We simply do this by giving the game several
identical states and uniform transitions. In terms of the dataset, each
episode consists of independent plays of the same normal-form game,
possibly with a different state observed. For this dataset the ι-dominance
gap can be shown to be dι

i,h (s,a−i) = 2b+ 2ρ+ ι. A direct application of
Lemma 4.2 gives the following explicit lower bound.

Theorem 4.5. There exists a feasible attack instance I for which it holds that

C∗(I) ⩾ NH |S|nAn−1 (2b+ 2ρ+ ι) .

Recall the attacker wants to assume little about the learners and there-
fore chooses to install an ι-MPDSE (instead of making stronger assump-
tions on the learners and installing a Nash equilibrium or a non-Markov
perfect equilibrium). On some datasets D, the exponential poisoning cost
is the price the attacker pays for this flexibility.

4.5 Conclusion
We studied a security threat to offline MARL where an attacker can force
learners into executing an arbitrary Dominant Strategy Equilibrium by
minimally poisoning historical data. We showed that the attack problem
can be formulated as a linear program, and provided an analysis on the
attack feasibility and cost. This paper thus helps to raise awareness of
the trustworthiness of multi-agent learning. We encourage the commu-

51

nity to study defense against such attacks, e.g. via robust statistics and
reinforcement learning.

In the next chapter, we investigate the problem of installing a Markov
perfect Nash equilibrium, which would require fewer data points and
incur a smaller data modification cost; however, characterization of the
uniqueness of Nash equilibrium for general-sum games is difficult, so
we focus on the problem for two-player zero-sum games. We provide a
more general adversarial attack framework on Markov games in the next
chapter and derive similar efficiency and feasibility results to the ones in
this chapter.

52

5 offline reward poisoning for zero-sum games
to install a nash equilibrium

Contribution Statement. This chapter is a joint work with Jeremy McMa-
han, Jerry Zhu, and Qiaomin Xie. I am the main author. My contribution in-
cludes the statements and proofs of all the propositions and theorems and
the writing of the paper.

5.1 Introduction
In this chapter, we study the offline data poisoning problem in a zero-sum
Markov game environment, where a single attacker tries to minimally
modify the offline rewards so that learners that compute the Markov
perfect Nash equilibrium of a Markov game within some confidence region
around the maximum likelihood estimate of the Markov game based on the
offline rewards would find a deterministic target joint policy as the unique
equilibrium. We formulate the attacker’s reward poisoning problem as a
linear program, which can be solved efficiently, and we provide sufficient
conditions for the feasibility of such an attack.

Data poisoning attacks have been well studied in supervised learning
(intentionally forcing the learner to train a wrong classifier) and rein-
forcement learning (wrong policy) Banihashem et al. (2022); Huang and
Zhu (2019); Liu and Lai (2021); Rakhsha et al. (2021a,b, 2020); Sun et al.
(2020b); Zhang et al. (2020b); Ma et al. (2019); Rangi et al. (2022b); Zhang
and Parkes (2008b); Zhang et al. (2009). Can data poisoning attacks be a
threat to Markov Games, too? This paper answers this question in the af-
firmative: Under mild conditions, an attacker can force two game-playing
agents to adopt any fictitious Nash Equilibrium (NE), which does not need
to be a true NE of the original Markov Game. Furthermore, the attacker

53

can achieve this goal while minimizing its attack cost, which we define
below. Clearly, such power poses a threat to the security of Multi-Agent
Reinforcement Learning (MARL).

Formally, we study two-player zero-sum Markov game offline data
poisoning, stated as the following.

Problem Statement: Offline Data Poisoning.
Let D be a dataset {(s(k), a(k), r(k))}Kk=1 with K tuples of state s, joint

action a = (a1,a2), rewards (r,−r). The attacker’s target NE is an arbitrary
pure strategy pair π† := (π†

1,π†
2). The attacker can poison D into another

dataset D† by paying cost C(D,D†). Two MARL agents then receive D†

instead of D. The attacker aims to enforce that the agents learn the target
NE π† from D† while minimizing C.

This problem is not well studied in the literature. Naive approaches –
such as modifying all the actions in the dataset to those specified by the
target policy (π†

1,π†
2) – might not achieve the attack goal for MARL learners

who assign penalties due to the lack of data coverage. Modifying all the
rewards in the dataset that coincide with the target policy to the reward
upper bound might be feasible, but would not be optimal in terms of attack
costC. Results on data poisoning against single-agent RL cannot be directly
applied to the multi-agent case. In particular, there are no optimal policies
in MARL, and equilibrium policies are computed instead. There could
be multiple equilibria that are significantly different, and consequently,
installing a target policy as the unique equilibrium is difficult. To resolve
this issue, we provide a novel characterization of when a zero-sum Markov
game has a unique Markov perfect Nash equilibrium.

Our framework can be summarized by the mnemonic “ToM moves
to the UN”. (i) UN stands for the Unique Nash set, which is the set of Q
functions that make the target π† the unique NE. Uniqueness is crucial
for the attacker to ensure that MARL agents choose the target NE with
certainty, without breaking ties arbitrarily among multiple NEs. (ii) ToM

54

stands for the attacker’s Theory of Mind of the MARL agents, namely the
plausible set of Q functions that the attacker believes the agents will enter-
tain upon receiving the poisoned dataset D†. (iii) The attack is successful
if, by controlling D†, the ToM set is moved inside the UN set. A successful
attack with the smallest cost C(D,D†) is optimal.

Adversarial attacks on MARL have been studied in some recent work Ma
et al. (2021); Gleave et al. (2019); Guo et al. (2021), but we are only aware
of one previous work Wu et al. (2023b) on offline reward poisoning against
MARL. Nonetheless, they require a strong assumption of full data cover-
age, and that the learners compute the Dominant Strategy Markov Perfect
Equilibrium (DSMPE). In contrast, we do not require full coverage, and we
consider a weaker solution concept, Markov Perfect Equilibrium (MPE).
Our general attack framework also accommodates other forms of data
poisoning.

Understanding adversarial attacks in the multi-agent setting is critical
since many real-life applications of MARL problems are susceptible to
adversarial attacks. Examples of two-player zero-sum games include
board games such as GO and Chess Silver et al. (2017, 2016), where the
learners use historical game plays as training data and an attacker can
potentially alter the data to change the behavior of the trained agents. In
the case of competitive robotics, for example, robot soccer Gu et al. (2017);
Riedmiller et al. (2009); Kober et al. (2013), they are trained on offline
datasets and the attacker can mislead the trained policies by modifying
the training sets. For finance applications, especially algorithmic or high-
frequency stock or option trading Lee et al. (2007); Lee and O (2002) that
are usually trained on historical prices, if the database is corrupted by an
attacker, the learned trading strategies can be sub-optimal as well. There
are also examples of multi-player games that have two-player games as
special cases, for example, video games Vinyals et al. (2019); Jaderberg
et al. (2019); Berner et al. (2019), card games Brown and Sandholm (2019);

55

Brown et al. (2017), autonomous driving Shalev-Shwartz et al. (2016),
automated warehouses Yang et al. (2020), and economic policymaking,
which can all be trained on offline datasets and become vulnerable to
adversarial attacks. In all of the above MARL applications, the threat of
adversarial attacks has not been investigated.

Our contributions include a unified framework for offline data poison-
ing attacks, and in particular, a linear program formulation that efficiently
solves the reward poisoning problem for two-player zero-sum Markov
games. On the technical side, we present a geometric characterization
of a deterministic policy being the unique Markov perfect Nash equilib-
rium of zero-sum Markov games. In addition, we demonstrate that for a
class of MARL learners that compute equilibrium policies based on games
within confidence regions around a point estimate of the Q function of the
Markov game, an attack with appropriate parameters on these learners
would success on most of the model-based and model-free offline MARL
learners proposed in the literature.

5.2 Offline Attack on a Normal-form Game

The Unique Nash Set (UN) of a Normal-form Game

We present the main components of our approach with a normal-form
game, in particular, a two-player zero-sum game is a tuple (A,R), where
A = A1 × A2 is the joint action space and R : A → [−b,b] is the mean
reward function. We use b = ∞ in the case of unbounded rewards. Given
A, we denote the set of reward functions by R = {R : A→ R}.

A pure strategy profile π = (π1,π2) is a pair of actions, where πi ∈ Ai

specifies the action for agent i ∈ {1, 2}. We focus on pure strategies, but
we allow mixed strategies in which case we use the notation πi (ai) to
represent the probability of i using the action ai ∈ Ai, and R computes

56

the expected reward R (π) :=
∑

a1∈A1,a2∈A2

π1 (a1)π2 (a2)R ((a1,a2)).

Definition 5.1 (Nash Equilibrium). A Nash equilibrium (NE) of a normal-
form game (A,R) is a mixed strategy profile π that satisfies,

R ((π1,a2)) = R (π) = R ((a1,π2)) ,

∀ a1 : π1 (a1) > 0,a2 : π2 (a2) > 0,

R ((π1,a2)) ⩽ R (π) ⩽ R ((a1,π2)) ,

∀ a1 : π2 (a1) = 0,a2 : π2 (a1) = 0,

in particular, for a pure strategy profile π, it is a Nash equilibrium if,

R ((π1,a2)) ⩽ R (π) ⩽ R ((a1,π2)) , (5.1)

∀ a1 ̸= π1,a2 ̸= π2.

We define N (R) := {π : π is an NE of (A,R)} to be the set of all Nash equilibria
of a normal-form game (A,R).

Now, we define the inverse image of N from a single pure strategy
profile π back to the space of reward functions to be the unique Nash set.

Definition 5.2 (Unique Nash). The unique Nash set of a pure strategy profile
π is the set of reward functions R such that (A,R) has a unique Nash equilibrium
π,

U (π) := N−1 ({π}) = {R ∈ R : N (R) = {π}} . (5.2)

To characterize U (π), we note that for normal-form games, a pure
strategy profile π is the unique Nash equilibrium of a game if and only if it
is a strict Nash equilibrium, which is defined as a policyπ that satisfies (5.1)
with strict inequalities.

57

Proposition 5.1 (Unique Nash Polytope). For any pure strategy profile π,

U (π) = {R ∈ R : π is a strict NE of (A,R)}

= {R ∈ R : R ((π1,a2)) < R (π) < R ((a1,π2)) ,

∀ a1 ̸= π1,a2 ̸= π2} . (5.3)

Here, the uniqueness is among all Nash equilibria including mixed-
strategy Nash equilibria. The proof of the equivalence between (5.2)
and (5.3) is in the appendix. We restrict our attention to pure-strategy
equilibria and defer the discussion of mixed strategy profiles to the last
section.

To avoid working with strict inequalities, we define a closed subset
of U (π) of reward functions that lead to strict Nash equilibria with an ι

reward gap, which means all strict inequalities in (5.3) are satisfied with
a gap of at least ι, for some ι > 0.

Definition 5.3 (Iota Strict Unique Nash). For ι > 0, the ι strict unique Nash
set of a pure strategy profile π is, U (π; ι) :=

{R ∈ R : R ((π1,a2)) + ι ⩽ R (π) ⩽ R ((a1,π2)) − ι,

∀ a1 ̸= π1,a2 ̸= π2} . (5.4)

For every pure strategy profile π and ι > 0, we have U (π; ι) ⊂ U (π),
and the set is a polytope in R.

The Attacker’s Theory of Mind (ToM) for Offline
Normal-form Game Learners

We provide a model of the attacker’s theory of mind of the victim, which is
the attacker’s belief about the learning algorithm the victim uses. Formally,
we define the theory-of-mind set as the set of plausible rewards that the

58

victim uses based on the given training dataset, and we assume that the
victims compute the Nash equilibria based on the reward functions esti-
mated from a dataset D ∈ D, where D is the set of possible datasets with
K episodes in the form

{(
a(k), r(k)

)}K

k=1 , with a(k) ∈ A and r(k) ∈ [−b,b]
for every k ∈ [K].

Definition 5.4 (Theory of Mind). Given a dataset D ∈ D, the theory-of-mind
set T (D) ⊆ R is the set of plausible reward functions that the victims estimate
based on D to compute their equilibria. In particular, if the victims learn an action
profile π, then π ∈

⋃
R∈T(D)

N (R).

The theory-of-mind sets can be arbitrary and could be difficult to work
with. We define an outer approximation the set that is a hypercube in R.

Definition 5.5 (Outer Approximation of Theory of Mind). An outer ap-
proximation of T (D) is a set denoted by T (D) that satisfies T (D) ⊆ T (D) for
every D ∈ D, and can be written in the form, T (D) :={

R ∈ R :
∣∣∣R (a) − R̂ (a)

∣∣∣ ⩽ ρ(R) (a) ,∀ a ∈ A
}

, (5.5)

for some point estimate R̂ and radius ρ(R).
We call T (D) a linear outer approximation if R̂ is linear in

{
r(k)

}K.
k=1

We present a few examples of the theory-of-mind sets as follows.

Example 5.1 (Theory of Mind for Maximum Likelihood Victims). Given
a dataset D ∈ D, if the attacker believes the victims are maximum likelihood

59

learners, then T (D) is a singleton R MLE , where, for every a ∈ A,

R MLE (a|r) :=

1

N (a)

K∑
k=1

r(k)I{a(k)=a} if N (a) > 0

0 if N (a) = 0

N (a) :=
K∑

k=1

I{a(k)=a}. (5.6)

The smallest outer approximation T (D) can be specified using R̂ = R MLE and
ρ(R) = 0, and T is linear since (5.6) is linear in

{
r(k)

}K

k=1 .

Example 5.2 (Theory of Mind for Pessimistic Optimistic Victims). Given a
dataset D ∈ D, if the attacker believes the victims are learners that use pessimism
and optimism by adding and subtracting bonus terms and estimating one or two
games, as in Cui and Du (2022a), then T (D) may contain two reward functions
R and R, where for every a ∈ A,

R (a|r) := R MLE (a|r) − β (a)

R (a|r) := R MLE (a|r) + β (a) , (5.7)

with β (a) = c√
N (a)

being the bonus term, for some constant c.

The smallest outer approximation T (D) can be specified using R̂ = R MLE and
ρ(R) (a) = β (a) for every a ∈ A, and T is linear since (5.6) and (5.7) are both
linear in

{
r(k)

}K

k=1 .

Example 5.3 (Theory of Mind for Data Splitting Victims). Given a dataset
D ∈ D, if the attacker believes the victims use maximum likelihood estimates
on a subsample of the D, similar to the data-splitting procedure in Cui and Du
(2022a), then T (D) could be viewed as a high-probability set of rewards that the
victims are estimating and ρ(R) would be half of the confidence interval width for
the mean of the subsample around the mean of the complete dataset R MLE .

60

The Cheapest Way to Move ToM into UN for Normal-form
Games

The goal of the attacker is to install a specific action profile as the unique
Nash equilibrium of the game learned by the victim while minimally
modifying the training data. We consider a general attacker’s cost as a
function C : D ×D → R+ where C

(
D,D†) is the cost of modifying the

dataset from D to D†. Given the original data set D ∈ D, the attacker’s
attack modality D (D) is the set of datasets the attacker is allowed to
modify the original dataset to. For the reward poisoning problem, where
D(R) (D) is all possible datasets in which only rewards are modified from
r(k) to r†,(k), we consider the following cost function.

Example 5.4 (L1 Cost Function). For reward poisoning problems, we define
the L1 cost of modifying the dataset from D =

{(
a(k), r(k)

)}K

k=1 to D† ={(
a(k), r†,(k))}K

k=1 by C(1) (D,D†) := K∑
k=1

∣∣r(k) − r†,(k)∣∣.
Now, given the original datasetD and the attacker’s target action profile

π†, we formally state the attacker’s problem as finding the cheapest way
to move T (D) into U

(
π†).

Definition 5.6 (Attacker’s Problem). The attacker’s problem with the target
action profile π† is,

inf
D†∈D(D)

C
(
D,D†) (5.8)

s.t. T
(
D†) ⊆ U

(
π†) .

In general, (5.8) cannot be solved efficiently, but for reward poison-
ing problems with L1 cost objective, we can relax the attacker’s problem
using ι strict unique Nash sets, which is a polytope described by (5.4),
and a linear outer approximation of the theory-of-mind set, a hypercube

61

D : Space of Datasets R : Space of Rewards

U
(
π†)

Unique Nash

U
(
π†)D

D†

Theory of Mind

Theory of Mind

minC
(
D,D†)

T (D)

T (D)

ToM moves to the UN

T
(
D†)

T
(
D†)

Figure 5.1: Attacker’s Problem

described by (5.5), which can be converted into a linear program and
solved efficiently. We state this observation as the following proposition
and depict the relationship between the sets in Figure 5.1.

Proposition 5.2 (Reward Poisoning Linear Program). Given ι > 0 and a
linear T, the following problem is a relaxation of the attacker’s reward poisoning
problem and can be converted into a linear program,

min
D†∈D(R)(D)

C(1) (D,D†) (5.9)

s.t. T
(
D†) ⊆ U

(
π†; ι

)
.

In Figure 5.1, given a dataset D, the general attacker’s problem (5.8)
of moving T (D) (light green) to T

(
D†) (light red) such that it is inside

U
(
π†) (light blue) while minimizing the distance from D to D† is often

intractable. We construct a relaxed problem (5.9) of moving T (D) (green)
to T

(
D†) (red) such that it is inside U

(
π†) (blue), in which all sets are

polytopes and thus can be converted to a linear program for linear costs
and linear theory-of-mind mappings.

62

In the appendix, we provide the complete linear program and show
that the solution of (5.9) is feasible for (5.8). The optimality of the linear
program solution depends on how close the outer approximation of the
theory-of-mind set is, and in the case when the theory-of-mind set is
already a hypercube, the infimum in (5.8) can be achieved by taking the
limit as ι→ 0.

Example 5.5 (Maximum Likelihood Centered Linear Program). In the case
R̂ = R MLE in the theory-of-mind set, (5.9) is given by,

min
r†∈[−b,b]K

K∑
k=1

∣∣r(k) − r†,(k)∣∣ (5.10)

s.t. R MLE (r†) is linear in r† satisfying (5.6)

R
(
r†
)

and R
(
r†
)

satisfying (5.5)

are upper and lower bounds of T
(
r†
)[

R
(
r†
)

,R
(
r†
)]

is in U
(
π†) satisfying (5.4)

Since T
(
r†
)

is a hypercube and U
(
π†) is a polytope, the fact that the corners

of the hypercube are inside the unique Nash set if and only if every element in
the hypercube is in the unique Nash set implies that the constraint in (5.9) is
satisfied. Technically, we only require one corner of the hypercube to be inside
the unique Nash polytope, as shown in Figure 5.1, and we leave the details to the
proof of Proposition 5.2 in the appendix. Then, because the objective and all of
the constraints in (5.10) are linear in r†,R,R and R MLE , this problem is a linear
program.

63

5.3 Offline Attack on a Markov Game

The Unique Nash Set (UN) of a Markov Game

We now consider the attacker’s problem for Markov games. A finite-
horizon two-player zero-sum Markov game G is a tuple (S,A,P,R,H),
where S is the finite state space; A = A1 × A2 is the joint action space;
P = {Ph : S×A→ ∆S}

H
h=1 is the transition function with the initial state

distribution P0 ∈ ∆S; and R = {Rh : S×A→ [−b,b]}Hh=1 is the mean re-
ward function; and H is the finite time horizon.

A deterministic Markovian policy π = (π1,π2) is a pair of policies,
where πi = {πi,h : S→ Ai}

H
h=1 for i ∈ {1, 2}, and πi,h (s) specifies the action

used in period h and state s. Again, we focus on deterministic policies,
but we allow stochastic policies in which case we use the notation πi =

{πi,h : S→ ∆Ai}
H
h=1 for i ∈ {1, 2}, and πi,h (s) (ai) represent the probability

of i using the action ai ∈ Ai in period h state s.
The Q function is defined as, for every h ∈ [H] , s ∈ S, a ∈ A, we write

Qh (s, a) := Rh (s, a)

+
∑
s ′∈S

Ph (s ′|s, a) max
π1∈∆A1

min
π2∈∆A2

Qh+1 (s
′,π) , (5.11)

with the convention QH+1 (s, a) = 0, and in the case π is stochastic, we
write, Qh (s,πh (s)) :=∑

a1∈A1

∑
a2∈A2

π1,h (s) (a1)π2,h (s) (a2)Qh (s, (a1,a2)) .

Given S,A,H, we denote the set of Q functions byQ =
{
{Qh : S×A→ R}Hh=1

}
.

Technically, Q is not the set of proper Q functions of Markov games since
both the reward functions and the transition functions do not have to be
proper, and given Q ∈ Q, we may not be able to construct a Markov game

64

that induces Q. This choice is made to accommodate both model-based
and model-free victims who may or may not estimate the rewards and
transitions explicitly from the dataset.

A stage game of a Markov game G in period h ∈ [H], state s ∈ S under
policy π is a normal form game (A,Qh (s)), where A is the joint action
space of G; and Qh (s) is the mean reward function, meaning the reward
from action profile a ∈ A is Qh (s, a). We define Markov perfect equilibria
as policies in which the action profile used in every stage game is a Nash
equilibrium.

Definition 5.7 (Markov Perfect Equilibrium). A Markov perfect equilibrium
(MPE) policy π is a policy such that πh (s) is a Nash equilibrium in the stage
game (A,Qh (s)) .
We define the set of all Markov perfect equilibria policies of a Markov game that
induces Q ∈ Q by

M (Q) = {π : π is an MPE of a Markov game with Q function Q} .

We note that Nash equilibria for Markov games can also be defined
by converting the Markov game into a single normal-form game, but we
only consider Markov perfect equilibria since Nash equilibria that are not
Markov perfect require coordination and commitment to policies in stage
games that are not visited along equilibrium paths, which is not realistic
in the MARL setting.

We define the unique Nash set for Markov games as follows.

Definition 5.8 (Unique Nash). The unique Nash set of a deterministic Marko-
vian policy π for a Markov game G is the set of Q functions such that π is the
unique Markov perfect equilibrium under policy π,

U (π) := M−1 ({π}) = {Q ∈ Q : M (Q) = {π}} . (5.12)

Next, we extend the characterization of the unique Nash set for normal-
form games to the Markov game setting.

65

Theorem 5.1 (Unique Nash Polytope). For any deterministic policy π,

U (π) = {Q ∈ Q : πh (s) is a strict NE of (A,Qh (s)) ,

∀ h ∈ [H] , s ∈ S}

= {Q ∈ Q : Qh (s, (π1,h (s) ,a2)) < Qh (s,π (s))

< Qh (s, (a1,π2,h (s))) ,∀ a1 ̸= π1,h (s) ,

,a2 ̸= π2,h (s) ,h ∈ [H] , s ∈ S} , (5.13)

We show the equivalence between (5.12) and (5.13) in the proof of
Theorem 5.1 in the appendix. To avoid working with strict inequalities
in (5.13), we again define the ι strict version of the unique Nash polytope.

Definition 5.9 (Iota Strict Unique Nash). For ι > 0, the ι strict unique Nash
set of a deterministic policy π is, U (π; ι) :=

:= {Q ∈ Q : Qh (s, (π1,h (s) ,a2)) + ι ⩽ Qh (s,π (s))

⩽ Qh (s, (a1,π2,h (s))) − ι,∀ a1 ̸= π1,h (s) ,

a2 ̸= π2,h (s) ,h ∈ [H] , s ∈ S} . (5.14)

For every deterministic policy π and ι > 0, we have U (π; ι) ⊂ U (π),
and the set is a polytope in Q.

The Attacker’s Theory of Mind (ToM) for Offline
Multi-Agent Reinforcement Learners

Similar to the theory-of-mind set for normal-form game learners, we define
the set for Markov game learners in the Q space. Here, D is the set of

datasets with K episodes in the form
{{(

s
(k)
h , a(k)

h , r(k)h

)}H

h=1

}K

k=1
with

s
(k)
h ∈ S, a(k)

h ∈ A and r
(k)
h ∈ [−b,b] for every k ∈ [K], and the victims

66

compute the Markov perfect equilibria based on the Q functions estimated
from such datasets.

Definition 5.10 (Theory of Mind). Given a dataset D ∈ D, the theory-of-mind
set T (D) ⊆ Q is the set of Q functions that the victims estimate based on D

to compute their equilibria. In particular, if the victims learn a policy π, then
π ∈

⋃
Q∈T(D)

M (Q) .

Example 5.6 (Theory of Mind for Maximum Likelihood Victims). To extend
Example 5.1 in the Markov game setting, we define R MLE the same way and P MLE

as follows, if Nh (s,a) :=
K∑

k=1

I{
s
(k)
h =s,a(k)h =a

} > 0,

R MLE
h (s,a|r) :=

K∑
k=1

r
(k)
h I{

s
(k)
h =s,a(k)h =a

}
Nh (s,a) (5.15)

P MLE
h (s ′|s,a) :=

K∑
k=1

I{
s
(k)
h+1=s ′,s(k)h =s,a(k)h =a

}
Nh (s,a) (5.16)

P MLE
0 (s) :=

1
K

K∑
k=1

I{
s
(k)
1 =s

},

and if Nh (s,a) = 0, we define R MLE
h (s,a|r) := 0 and P MLE

h (s ′|s,a) := 1
|S|

.
We can construct Q MLE based on R MLE and P MLE according to (5.11), and

since all Nash equilibria have the same value for zero-sum games, Q MLE is unique
for every Markov perfect equilibrium of the Markov game with rewards R MLE

and transitions P MLE . Then we have that T (D) is a singleton Q MLE .

Example 5.7 (Theory of Mind for Confidence Bound Victims). Given a
dataset D ∈ D, if the attacker believes the victims estimate the Markov game by
estimating the rewards and transitions within some confidence region around some

67

point estimates such as the maximum likelihood estimates, as described in Wu et al.
(2023b), then T (D) would be a polytope with Q functions induced by the Markov
games (S,A,P,R,H) with P and R satisfying, for every h ∈ [H] , s ∈ S,a ∈ A,

Rh (s,a|r) ∈ C
(R)
h (s,a|r) (5.17)

C
(R)
h (s,a|r) :=

{
R ∈ R :

∣∣∣R− R̂h (s,a|r)
∣∣∣ ⩽ ρ

(R)
h (s,a)

}
,

Ph (s,a) ∈ C
(P)
h (s,a) (5.18)

C
(P)
h (s,a) :=

{
P ∈ ∆S :

∥∥∥P − P̂h (s,a)
∥∥∥

1
⩽ ρ

(P)
h (s,a)

}
,

for some point estimates P̂, R̂, and radii ρ(R) and ρ(P). We note that T (D) is a
polytope in Q, but it has an exponential number of vertices. We can construct a
tight hypercube around this polytope and call it the outer approximation of T (D).
It contains all the Q functions in the following set, for every h ∈ [H] , s ∈ S,a ∈
A,

Qh (s,a|r) ∈
[
Q

h
(s,a|r) ,Qh (s,a|r)

]
, (5.19)

Q
h
(s,a|r) := min

R∈C
(R)
h (s,a|r)

R

+ min
P∈C

(P)
h (s,a)

∑
s ′∈S

P (s ′) max
π1∈∆A1

min
π2∈∆A2

Q
h+1 (s

′,π) ,

Qh (s,a|r) := max
R∈C

(R)
h (s,a|r)

R

+ max
P∈C

(P)
h (s,a)

∑
s ′∈S

P (s ′) max
π1∈∆A1

min
π2∈∆A2

Qh+1 (s
′,π) .

We omit Example 5.2 and Example 5.3 for Markov games since the con-
structions are identical, except it is done for every stage game. As described
in Example 5.7, we define Q̂h (s, a|r) :=

1
2

(
Qh (s, a|r) +Q

h
(s, a|r)

)
and

ρ
(Q)
h (s, a|r) :=

1
2

(
Qh (s, a|r) −Q

h
(s, a|r)

)
, and we formally define the

outer approximation of the theory-of-mind set for Markov games as fol-

68

lows.

Definition 5.11 (Outer Approximation of Theory of Mind). An outer ap-
proximation of T (D) is a set denoted by T (D) that satisfies T (D) ⊆ T (D) for
every D ∈ D, and can be written in the form,

T (D) =
{
Q ∈ Q :

∣∣∣Qh (s,a) − Q̂h (s,a|r)
∣∣∣ ⩽ ρ

(Q)
h (s,a|r) ,

∀ a ∈ A,h ∈ [H] , s ∈ S} , (5.20)

for some point estimate Q̂ and radius ρ(Q).

We call T (D) a linear outer approximation if Q̂ is linear in
{{

r
(k)
h

}H

h=1

}K

k=1
.

The Cheapest Way to Move ToM into UN for Markov
Games

In this subsection, we restate the attacker’s problem for multi-agent rein-
forcement learners.

Definition 5.12 (Attacker’s Problem). The attacker’s problem with target
policy π† is,

inf
D†∈D(D)

C
(
D,D†) (5.21)

s.t. T
(
D†) ⊆ U

(
π†) .

For reward poisoning problems, we consider the following L1 cost.

Example 5.8 (L1 Cost Function). For reward poisoning problem, whereD(R) (D)

is all possible datasets in the form D† =

{{(
s
(k)
h ,a(k)

h , r†,(k)
h

)}H

h=1

}K

k=1
that

69

are modified from D =

{{(
s
(k)
h ,a(k)

h , r(k)h

)}H

h=1

}K

k=1
, we define the L1 cost by

C(1) (D,D†) = K∑
k=1

H∑
h=1

∣∣∣r(k)h − r
†,(k)
h

∣∣∣ .
We use the same ι strictness relaxation of the unique Nash set and the

linear outer approximation of the theory-of-mind set to convert (5.21) into
a linear program, which can be solved efficiently. We state this observation
as the following theorem.

Theorem 5.2 (Reward Poisoning Linear Program). Given ι > 0 and a linear
T, the following problem is a relaxation of the attacker’s reward poisoning problem
and can be converted into a linear program,

min
D†∈D(R)(D)

C(1) (D,D†) (5.22)

s.t. T
(
D†) ⊆ U

(
π†; ι

)
.

Example 5.9 (Maximum Likelihood Centered Linear Program). In the
case R̂ = R MLE and P̂ = P MLE , and we construct T (D) as described in Exam-
ple 5.7, (5.22) can be converted into a linear program even without explicitly
constructing the T (D) set. We provide an intuition here and the formal construc-

70

tion in the proof of Theorem 5.2,

min
r†∈[−b,b]K

K∑
k=1

H∑
h=1

∣∣∣r(k)h − r
†,(k)
h

∣∣∣ (5.23)

s.t. R MLE (r†) is linear in r† satisfying (5.15)

P MLE is independent of r† satisfying (5.16)

Q MLE (r†) satisfying (5.11)

is linear in R MLE (r†) thus r†

Q
(
r†
)

and Q
(
r†
)

satisfying (5.19)

are upper and lower bounds of T
(
r†
)[

Q
(
r†
)

,Q
(
r†
)]

is in U
(
π†) satisfying (5.14)

We move the hypercube T
(
r†
)

into the polytope U
(
π†) by moving one of the

corners into the polytope. Note that if Q and Q are not constructed directly as
linear functions of r†, and are computed by (5.19), then these constraints are not
linear in r†. We avoid this problem by using the dual linear program of (5.19).
We present the details in the appendix in the proof of Theorem 5.2. All other
constraints are linear in r†, and as a result, (5.23) is a linear program.

In the end, we present a sufficient but not necessary condition for the
feasibility of (5.22) and (5.21). This condition applies directly to normal-
form games with H = 1.

Theorem 5.3 (Reward Poisoning Linear Program Feasibility). For ι > 0,
T (D) with Q̂ = Q MLE , and Nh(s,a) > 0 for every h ∈ [H] , s ∈ S,a ∈ A

where either a1 = π†
1,h (s) or a2 = π†

2,h (s), the attacker’s reward poisoning
problem is feasible if for every h ∈ [H] , s ∈ S,a ∈ A,

ρ
(R)
h (s,a) ⩽ b− ι

4H . (5.24)

71

A1 \A2 1† 2 3
1† 0 b b

2 −b - -
3 −b - -

Table 5.1: A Feasible Attack

A1 \A2 H T

H U [0, 1] U [−1, 0]
T U [−1, 0] U [0, 1]

Table 5.2: The original dataset generation
distributions

To construct a feasible attack under (5.24), we use the poisoned rewards
similar to the one shown in Table 5.1, which is an example where each agent
has three actions and the target action profile being action (1, 1). With
this r†, the maximum likelihood estimate of the game has a unique Nash
equilibrium π†

h (s) with a value of 0 in every stage (h, s). Furthermore, if
either the radius of rewards or the radius of Q functions for the theory-of-
mind set is less than b−ι

4H , we can show inductively that π†
h (s) remains the

unique Nash equilibrium in every stage (h, s), thus showing that every Q
function in the theory-of-mind set is also in the unique Nash set, which
means the attack is feasible. The complete proof is in the appendix.

5.4 Experiments

Rock Paper Scissors

We start with a simple toy dataset for the Rock Paper Scissors (RPS) game,
shown in Table 5.3 with partial coverage, where each entry appears once
in the dataset, and the target action profile is π† = (R,R), leading to a tie.

R P S

R 0 −1 1
P 1 0 −1
S −1 1 0

Table 5.3: The RPS game.

R P S

R 0 −1 1
P 1 - -
S −1 - -

Table 5.4: The original
dataset.

R P S

R 0 0.01 1
P −0.01 - -
S −1 - -

Table 5.5: The poisoned
dataset.

Given the original dataset with 5 entries described in Table 5.4, our
algorithm with ρ = 0 and ι = 0.01 leads to the poisoned dataset described

72

HH HT TH TT

−1

0

1

Figure 5.2: The original distribution of rewards

in Table 5.5. The attack cost is 2.02, whereas the attack cost from the
feasible attack described in Table 5.1 with b = 1 is 4. In addition, note that
given the partial coverage, the attack described in Wu et al. (2023b) is not
feasible due to their full coverage requirement.

Stochastic Matching Penny

We follow up with the matching penny game, which is also the penalty
kick game in soccer, and the rewards are usually estimated by random data
points. We generate the datasets randomly with Uniform distributions
summarized in Table 5.2. The attacker would like to install a target action
profile of (H,H), and in the context of the penalty kick game, the attacker’s
motivation might be to increase or decrease the total number of goals.

We summarize the before-vs-after box plots in Figure 5.2 for then = 100
case. The cost comparison of our attack, the feasible attack in Table 5.1
with b = 1, and the Dominant Strategy Equilibrium (DSE) attack in Wu
et al. (2023b), is given in Table 5.6.

5.5 Conclusion
We discuss a few extensions. Faking a unique mixed strategy Nash equilib-
rium is in general impossible due to the sensitivity of mixing probabilities

73

Average costs n = 1 n = 10 n = 100
Our attack 1.06 9.09 99.47

Feasible attack 2.12 16.08 250.46
DSE attack 2.06 18.31 198.38

Table 5.6: Cost comparison between different attacks

HH HT TH TT

−2

0

2

Figure 5.3: The distribution of poisoned rewards

from small perturbations of the reward function, and as long as the theory-
of-mind set has non-zero volume, it is impossible to install a mixed strategy
profile (or stochastic policy for Markov games) as the unique equilibrium.
Faking a unique optimal policy for single-agent reinforcement learners can
be easily adapted from our linear program (5.22). Faking a unique coarse
correlated equilibrium in every stage game is equivalent to our problem as
well since for a two-player zero-sum game, a policy is the unique Markov
perfect coarse correlated equilibrium if and only if it is the unique Markov
perfect Nash equilibrium.

In the next chapter, we study the problem of installing a stochastic
Markov perfect Nash equilibrium, which is impossible for data poisoning
with reward uncertainty, as discussed in this chapter, and as a result, we
focus on the planning setting instead. We provide characterization of
uniqueness of a mixed strategy Nash equilibrium in the a zero-sum game,
and we formulate the attacker’s reward poisoning problem as a convex
optimization problem, and derive similar efficiency and feasibility results

74

like the ones in this chapter.

75

6 planning setting, reward poisoning for
zero-sum games to install a mixed-strategy nash
equilibrium

Contribution Statement. This chapter is a joint work with Jeremy McMa-
han, Yiding Chen, Yudong Chen, Jerry Zhu, and Qiaomin Xie. I am the
main author. My contribution includes the statements and proofs of the
main theorems 2 and 3, their corollaries, the main algorithms, and the
writing of the paper.

6.1 Introduction
In this chapter, we study the offline data poisoning problem in a zero-
sum Markov game environment, where a single attacker tries to minimally
modify the rewards so that learners that compute the Markov perfect Nash
equilibrium of a Markov game based on the reward matrices provided
by the attacker would find a stochastic target joint policy as the unique
equilibrium. We formulate the attacker’s reward poisoning problem as
a convex program, for which we provide an efficient relax-and-perturb
algorithm to solve for a near-optimal feasible solution, and we provide
sufficient conditions for the feasibility of such an attack.

Consider a two-player zero-sum Markov game G◦ = (R◦,P◦) with
payoff matrices R◦ and transition probability matrices P◦. Let S be the
finite state space, Ai the finite set of actions for player i ∈ {1, 2}, and H is
the horizon. It is well known that such a game has at least one Markov
Perfect (Nash) Equilibrium (MPE)1 (p◦, q◦), where p◦ is the Markov policy
for player 1 and q◦ for player 2 (Maskin and Tirole, 2001). Furthermore,

1In the special case where the Markov game has H = 1 stage, it reduces to a matrix
normal form game; the Markov Perfect Equilibrium reduces to a Nash Equilibrium (NE).

76

all the MPEs of G◦ have the same game value v◦, which is the expected
payoff for player 1 and loss for player 2 at equilibrium.

There may be reasons for a third party to prefer an outcome with a
different MPE and/or game value. For instance, a benevolent third party
may want to achieve fairness. Many games are unfair in that v◦ ̸= 0 (an
example, two-finger Morra, is given in the experiment section). The third
party can modify the payoffs R◦ into R such that the new game given to the
players is fair with value v = 0. Similarly, many games have non-intuitive
MPEs, and players with bounded rationality (e.g., average people) may
fail to find them. For the benefit of such players, the third party may seek
a new game whose MPE (p, q) is an intuitive strategy profile, such as
uniform randomization among actions.

In addition, one often desires an MPE consisting of stochastic policies
(i.e., a mixed strategy equilibrium). If actions represent resources (roads,
advertisement slots, etc), the game designer might want all resources
to be utilized; if actions represent customers, requests or demand, the
designer might want all of them to be served; if a board/video game is
concerned, the designer might want the agents to take diverse actions so
that the game is more entertaining. Conversely, a malicious third party
may want to trick the players into playing an MPE (p, q) of its choice. As
most games have mixed equilibria, the players may get suspicious if the
modified game turns out to have a pure strategy MPE, whereas a mixed
equilibrium is harder to detect. Furthermore, the adversary may want
to control the game value v to favor one player over the other—this is
the analogue of adversarial attacks in supervised learning. Regardless
of intention, such modification typically incurs a cost to the third party,
who seeks to minimize it. We assume that the cost is measured by an
appropriate loss function ℓ(R,R◦) (e.g., ℓ(R,R◦) = ∥R− R◦∥ for some norm
∥ · ∥).

It is important to understand when efficient modification is possible,

77

and to understand malicious attacks so as to develop effective defense.
This motivates us to study the following Game Modification problem.

Definition 6.1 (Game Modification). A game modification problem is specified
by the tuple (R◦,P◦,b, (p, q), [v, v], ℓ). Here R◦ and P◦ are the payoff and tran-
sition matrices, respectively, of the original Markov game. A valid payoff value
must be in [−b,b]. The third party has in mind an arbitrary (and potentially
stochastic) target MPE (p, q), which is typically not the unique MPE of R◦. The
third party also has in mind a target game value range [v, v]. It is possible that
b = ∞, v = −∞ or v = ∞. Game modification is the following optimization
problem:

inf
R

ℓ(R,R◦) (6.1)

s.t. (p, q) is the unique MPE of (R,P◦)

value(R,P◦) ∈ [v, v], R has entries in [−b,b].

It is important to require that the modified game (R,P◦) has a unique
MPE. In this case, no matter what solver the players use, they will inevitably
find (p, q) and not some other MPEs of R. Henceforth, we refer to a
Markov game simply by its payoff matrices R and suppress reference to
the transition matrices P◦, which cannot be changed by the third party.

To the best of our knowledge, the Game Modification problem in the
generality of Definition 6.1 has not been studied in the literature. The main
challenge is to ensure uniqueness of the MPE. We present a complete char-
acterization of games with a unique MPE and give an efficient algorithm
to find the solution. We will first study the special case of normal form
games in Section 6.3, followed by Markov games in Section 6.4.

78

6.2 Related Work
Reward modification in single-agent reinforcement learning has been
studied in Banihashem et al. (2022); Huang and Zhu (2019); Rakhsha et al.
(2021a,b, 2020); Zhang et al. (2020b). In this setting, there always exists a
deterministic optimal policy. Generalizing to the multi-agent setting, even
in the zero-sum case, involves the additional complication of multiple
equilibria and the non-existence of deterministic equilibrium policies.

Adversarial attacks on multi-agent reinforcement learners are studied
in Wu et al. (2023c); Ma et al. (2021), who consider the setting where
an attacker installs a target dominant strategy equilibrium by modifying
the underlying bandit or Markov game. In general, mixed strategies that
assign positive probabilities to multiple actions cannot be dominant (they
are not dominated by at least one of the actions in the support). Therefore,
the approach in Wu et al. (2023c); Ma et al. (2021) cannot be directly
applied in our setting targeting at a mixed strategy equilibrium.

Our model is similar to Wu et al. (2023a), where an attacker installs
a target Nash equilibrium by poisoning the training data set. Their work
requires the target equilibrium to be a deterministic action profile, and
they assume the victims estimate confidence regions of the game payoff
matrices based on a noisy data set. Since it is in general impossible for
all games in the confidence region to have the same mixed strategy Nash
equilibrium, the modification goal in our setting is infeasible under their
setting. Instead, we consider the problem in which the players are provided
with the precise payoff matrix by the game designer so that it is possible
to install a mixed strategy as the unique equilibrium of the modified game.
For a similar reason, data poisoning techniques in Ma et al. (2019); Rangi
et al. (2022b); Zhang and Parkes (2008b); Zhang et al. (2009) are not
applicable to our setting.

Monderer and Tennenholtz (2003); Anderson et al. (2010) explore
the problem of installing a pure strategy equilibrium while minimizing

79

the cost of modification, but their method does not directly extend to
mixed-strategy equilibria. Previous work also studied games with a spe-
cific mixed strategy profile as the unique Nash equilibrium (Millham,
1972; Heuer, 1979; Quintas, 1988). However, these works do not provide
conditions that can be easily converted into constraints in an optimization
problem for minimizing the modification cost, nor do they provide algo-
rithms for finding such games given a target equilibrium. In our work,
we provide new conditions for NE uniqueness, which can be used as
constraints in a cost-minimization optimization formulation that can be
solved efficiently. Our conditions are related to results on the uniqueness
of optimal solutions to linear programs (Mangasarian, 1978; Appa, 2002;
Szilágyi, 2006); these results do not provide operational characterizations
for our purpose. Our results and algorithms generalize to Markov games,
whereas the aforementioned work focuses on normal-form games.

6.3 Modifying Normal Form Games
We begin with matrix normal form games, a special case Markov Game
with horizon H = 1.

Preliminaries

Consider a finite two-player zero-sum game with action space A = A1×A2

and a b-bounded payoff matrix R ∈ [−b,b]|A1|×|A2|. When a joint action
(i, j) ∈ A1×A2 is played, player 1 receives reward [R]ij and player 2 receives
reward −[R]ij. Let (p, q) denote a (possibly mixed) strategy profile, where
p ∈ ∆A1 and q ∈ ∆A2 , with ∆D denoting the probability simplex on D.
The expected reward for player 1 is given by p⊤Rq.

A standard characterization of Nash Equilibrium is in terms of the lack
of incentive for unilateral deviation:

80

Definition 6.2 (Nash Equilibrium). (p, q) is a Nash Equilibrium (NE) of a
game R if and only if

p⊤Rq ⩾ p ′⊤Rq, ∀ p ′ ∈ ∆A1 ,

p⊤Rq ⩽ p⊤Rq ′, ∀ q ′ ∈ ∆A2 .

A finite two-player zero-sum game has at least one NE and possibly
more (Nash Jr, 1950). We denote the set of NEs of a game R by

NE(R) := {(p, q) ∈ ∆A1 × ∆A2 :

(p, q) is an NE of game R} .

Definition 6.3 (Inverse Nash Function). Given an arbitrary set of strategy
profiles Π ⊂ ∆A1 × ∆A2 , we define the inverse Nash function

NE−1(Π) :=
{
R ∈ [−b,b]|A1|×|A2| : NE(R) = Π

}
,

which gives games with Π as the exact set of NEs.

Example 6.1. Suppose A1 = {0} ,A2 = {1, 2}, and the payoff matrix is R =[
R01 R02

]
. Consider the pure strategy (p, q) = ((1) , (1, 0)), where player 1

plays action 0 and player 2 plays action 1. For the singleton set Π = {(p, q)}, we
have NE−1(Π) = {R ∈ [−b,b]2 : R01 > R02}, so there are infinitely many games
with (p, q) as the unique NE. However, games like R = [0, 0] are not in NE−1(Π);
see next example.

Example 6.2. Under the same setting as above, let Π = {((1), q) : q ∈ ∆A2},
which is the set of all strategy profiles. Then NE−1(Π) = {R ∈ [−b,b]2 : R01 =

R02}.

Example 6.3. Continuing, let (p, q) =
(
(1) ,

(1
2 , 1

2

))
and Π = {(p, q)}. Then

NE−1(Π) = ∅. To see this, note tthat the second inequality in Definition 6.2
implies 1

2R01 +
1
2R02 ⩽ q ′R01 + (1 − q ′)R02 for all q ′ ∈ [0, 1]. Setting q ′ = 0

81

and q ′ = 1 separately, we obtain R01 = R02. However, the last example shows
that (p, q) is not the unique NE of such games.

As mentioned in the Introduction, the game designer seeks games with
a given (p, q) as the unique NE, that is, games in the set NE−1({(p, q)}).
However, the last example shows that for certain (p, q), the set NE−1({(p, q)})
may be empty. We will soon completely characterize when this set is
nonempty: it turns out p and q must have equal support sizes.

To this end, we exploit the well-established connection between Nash
equilibrium and linear program duality. In particular, any (p, q) ∈ NE(R)
is an optimal solution pair to the following pair of primal-dual linear
programs (LPs), and vice versa (Dantzig, 1963).

Definition 6.4 (Linear Programs for NE).

(Primal) max
p ′∈∆A1,v

v

s.t. p ′⊤R ⩾ v1⊤
|J|

(6.2)

(Dual) min
q ′∈∆A2,v

v

s.t. Rq ′ ⩽ v1|I|

(6.3)

The inequalities are elementwise.

The optimal values of the two linear programs both equal v∗, the value
of the game.

We emphasize that these LPs are used only for characterizing the
properties of NE(R) and its uniqueness. We do not assume that the players
must use LP to find an NE: they can use any other solvers and may find
any one of the NEs if there are multiple ones. This reflects how NE solvers
typically work in practice.

82

Necessary and Sufficient Conditions for Unique NE

As mentioned, a key question in Game Modification is to characterize
when the NE is unique. We provide a complete and operational answer to
this question.

For a given strategy profile (p, q), let I = supp(p), J = supp(q) denote
the supports. Denote by ei the canonical (one-hot) vector in appropriate
dimension corresponding to the ith action. Our characterization of NE
uniqueness is based on two conditions.

Condition 6.1 (SIISOW: Switch-In Indifferent, Switch-Out Worse). A game
R satisfies SIISOW with respect to (p, q) if

e⊤
i Rq = p⊤Rq, ∀i ∈ I, (6.4)

p⊤Rej = p⊤Rq, ∀j ∈ J, (6.5)

e⊤
i Rq < p⊤Rq, ∀i /∈ I, (6.6)

p⊤Rej > p⊤Rq, ∀j /∈ J. (6.7)

Let us parse this condition. If the strict inequalities above were changed
to weak inequalities, then the four equations would be equivalent to the
Definition 6.2 of an NE (Osborne, 2004). Therefore, the SIISOW condition
implies that (p, q) is an NE of R. Moreover, given that one player plays
at this NE, if the other player switches to any pure strategy outside its
NE support, its reward will be strictly worse by equations (6.6) and (6.7)
(“switch-out worse”); if the other player uses any pure strategy within its
support, it will achieve the same game value by equations (6.4) and (6.5)
(known as the “switch-in indifference” principle).

To state the second condition, some notations are needed. We use [R]IJ
or RIJ to denote the |I|× |J| submatrix of R with rows in I and columns in
J. We write RI• for the |I|× |A2| submatrix with rows in I, and R•J for the
|A1|× |J| submatrix with columns in J. Denotes by 1|I| the |I|-dimensional

83

all-one vector.

Condition 6.2 (INV: Invertability). A game R satisfies INV with respect to

(p, q) if the matrix

[
RIJ −1|I|

1⊤
|J| 0

]
is invertible.

We now present the first main theorem of this paper: a sufficient and
necessary condition for a game R to admit a given (p, q) as the unique NE.

Theorem 6.1 (Uniqueness of NE). R ∈ NE−1 ({(p, q)}) if and only if R satisfies
both SIISOW (Condition 6.1) and INV (Condition 6.2) with respect to (p, q).

With Theorem 6.1, the Game Modification problem (6.1) for a normal
form game can be instantiated as an optimization problem with linear and
spectral constraints as follows.

Definition 6.5 (Game Modification for Two-Player Zero-Sum Normal Form
Game). Given the cost function ℓ, the target policy (p, q) with supports I, J, and
target game value range [v, v], the game modification problem for normal form
games can be written as the following optimization problem:

inf
R,v

ℓ (R,R◦)

s.t. RI•q = v1|I| [row SII]

p⊤R•J = v1⊤
|J| [column SII]

RA1\I•q < v1|A1\I| [row SOW]

p⊤R•A2\J > v1⊤
|A2\J|

[column SOW]

σmin

([
RIJ −1|I|

1⊤
|J| 0

])
>0 [INV]

v ⩽ v ⩽ v [value range]

− b⩽Rij⩽b,∀(i, j) ∈ A [reward bound]

(6.8)

where σmin(·) denotes the smallest singular value.

84

Feasibility of Game Modification

We now show that Game Modification in normal form games, as formu-
lated in Definition 6.5, is feasible as long as |I| = |J| and the intervals [v, v]
and (−b,b) has non-empty intersection. Our proof is constructive. We
present a special matrix game, which we call the Extended Rock-Paper-
Scissors (eRPS), with the desired (p, q) as the unique NE. This game can
be defined for arbitrary strategy space sizes |A1| and |A2|. The standard
rock paper scissors game is a special case when the sizes are 3, hence the
name.

Definition 6.6 (Extended Rock-Paper-Scissors Game). Given strategy spaces
A1,A2, and target strategy profile (p, q) ∈ ∆A1 × ∆A2 with equal supports
I = J = {0, . . . ,k− 1}, where 1 ⩽ k ⩽ min(|A1|, |A2|), the Extended Rock Paper
Scissors Game R eRPS (p,q) is:

R
eRPS (p,q)
ij =

−
c

piqj

if k>1,i,j<k
j=(i+1) mod k

c

piqj

if k>1,i,j<k
j=(i+2) mod k

1 if i < k, j ⩾ k

−1 if i ⩾ k, j < k

0 otherwise ,

(6.9)

where c = mini∈I

(
piq(i+1 mod k), piq(i+2 mod k)

)
is a normalizing constant

ensuring that all the entries of R eRPS are between −1 and 1.

For support size k = 1, namely (p, q) is a pure strategy profile, the
R eRPS game is visualized in Table 6.1. It is easy to check that the upper left
corner (0, 0) is indeed the unique pure Nash equilibrium.

For support size k ⩾ 2, namely (p, q) is a mixed strategy profile, the
R eRPS game is visualized in Table 6.1. As a special case, for p = q =

(1/3, 1/3, 1/3), R eRPS is the standard Rock-Paper-Scissors game.

85

0 1 ... 1
−1 0 ... 0
...
−1 0 ... 0

Table 6.1: R eRPS when k = 1 (left) and k ⩾ 2 (right).

Lemma 6.1. Given any (p, q) with equal support sizes, the Extended Rock-
Paper-Scissors Game R eRPS (p,q) in Definition 6.6 has (p, q) as the unique Nash
equilibrium, and its game value is 0.

Note that applying any positive affine transformation to the reward
matrix preserves the set of Nash equilibria of the game (Tewolde, 2023).
Therefore, if we want the game R to be bounded between [−b,b] for b > 0,
we can simply scale R eRPS by b. More generally, for each ι > 0 and v ∈ R,
the game ιR eRPS + v has entries in [v− ι, v+ ι] and (p, q) as the unique
Nash equilibrium with value v.

Combining the above observation and Theorem 6.1, we provide a
complete characterization of when there exists a game admitting a given
strategy profile (p, q) as the unique NE and satisfying the given value and
reward bounds.

Theorem 6.2 (Feasibility of Game Modification). The Game Modification
problem in Definition 6.5 for normal-form games is feasible if and only if (p, q)
satisfies |I| = |J| and (−b,b) ∩ [v, v] ̸= ∅.

Here, the equal-support condition |I| = |J| arises due to the INV con-
dition, which requires RIJ to be a square matrix. The game value cannot
equal b or −b due to the SIISOW condition, which requires a strictly posi-

86

tive gap between the value of the game and the value of the off-support
actions. The complete proof is provided in the appendix.

An Efficient Algorithm for Game Modification in Normal
Form Games

We now describe an efficient algorithm to approximately solve Game Mod-
ification in normal form games. Thanks to Theorem 6.1, the unique NE
requirement R ∈ NE−1 ({(p, q)}) can be fulfilled by the equivalent SIISOW
and the INV conditions, as done in the Game Modification formulation in
Definition 6.5. If we ignore the INV condition therein for a moment and
tighten the strict inequalities, we obtain an optimization problem with
linear constraints:

min
R

ℓ (R,R◦) (6.10a)

s.t. RI•q = v1|I| (6.10b)

p⊤R•J = v1⊤
|J| (6.10c)

RA1\I•q ⩽ (v− ι) 1|A1\I| (6.10d)

p⊤R•A2\J ⩾ (v+ ι) 1⊤
|A2\J|

(6.10e)

v ⩽ v ⩽ v (6.10f)

− b+ λ ⩽ Rij ⩽ b− λ, ∀ (i, j) ∈ A. (6.10g)

In the above, the first four constraints (6.10b)–(6.10e) encode the SI-
ISOW condition. Notice we introduced a small SIISOW margin parameter
ι > 0 in (6.10d), (6.10e). This is a tightening of the strict inequalities in
Definition 6.5 and ensures that the feasible set is closed. A margin λ is also
added to the reward bound (6.10g) for reasons that would become clear
momentarily.

One can readily solve the program (6.10) for a solution R. To ensure
R has a unique NE, it remains to satisfy the INV condition, i.e., the ma-

87

trix
[
RIJ −1|I|

1⊤
|J| 0

]
must be invertible. However, enforcing INV directly by

constraining the smallest singular value of the matrix leads to a nonlinear,
nonconvex optimization problem that is difficult to solve.

We adopt an alternative approach: we take the solution R ′ to the pro-
gram (6.10)—which may not satisfy the INV condition—and add a small
special random matrix to R ′ in such a way that: (1) the resulting matrix R

is invertible with probability 1; (2) R still has (p, q) as its unique NE and
satisfies the value constraint v ∈ [v, v] in (6.10f). Note that by introducing a
small margin λ in the reward bound (6.10g) and using a sufficiently small
perturbation, we ensure that the perturbed rewards remain in the original
designated range [−b,b]. Specifically, the matrix we add is εR eRPS , where ε
is a random number in [−λ, λ] and R eRPS the Extended Rock-Paper-Scissors
game matrix, which has entries in [−1, 1].

Putting together the above ingredients, we have approximately solved
the Game Modification problem, provably satisfying the constraints with
probability 1 and achieving a near minimal cost ℓ (R,R◦) as long as the
random perturbation is small (Proposition 6.1).

We present the complete procedure, Relax And Perturb (RAP), in
Algorithm 4.

Algorithm 4 Relax And Perturb (RAP)
Input: original game R◦, cost function ℓ, target policy (p, q), target value
range [v, v], reward bound b ∈ R+ ∪ {∞}.
Parameters: margins ι ∈ R+ and λ ∈ R+.
Output: modified game R.

1: Solve the problem (6.10). Call the solution R ′.
2: Sample ε ∼ uniform[−λ, λ]
3: Return R = R ′ + εR eRPS (p,q).

When the cost function ℓ is convex, the problem (6.10) is a convex
program with linear constraints, for which efficient solvers exist (Wright,

88

2006). When ℓ is piecewise linear, (6.10) is further reduced to a linear
program, as shown in the following examples.

Example 6.4 (L1 Cost). One may measure the cost of modifying the game from
R◦ to R by the L1 norm ∥R− R◦∥1; explicitly,

ℓ (R,R◦) =
∑

i∈A1,j∈A2

∣∣Rij − R◦
ij

∣∣ .
Example 6.5 (Occupancy Weighted Cost). If the cost of modifying an entry
is proportional to how often it is visited by the players at Nash equilibrium, we
can use the following cost function:

ℓ (R,R◦) =
∑

i∈A1,j∈A2

piqj

∣∣Rij − R◦
ij

∣∣ . (6.11)

Note that it is costless to modify the entries outside the product of the supports of
p, q. Applications of this weighted cost include online reward poisoning in multi-
agent reinforcement learning, where an attacker pays for the modified reward
entry only when the corresponding action profile is used by the online learners.

Below we show that the RAP Algorithm has the desired feasibility and
near optimality properties.

Proposition 6.1 (Feasibility and Optimality of RAP Algorithm). Suppose
that the parameters ι, λ of Algorithm 4 satisfy λ+ ι < min {b+ v,b− v} and let
R (ι, λ) = R ′ + εR eRPS be the output of the algorithm. The following hold.

• (Existence) The solution R ′ to (6.10) exists.

• (Feasibility) With probability 1, R (ι, λ) is feasible for the original Game
Modification problem in Definition 6.5.

• (Optimality) Assume in addition that the cost function ℓ is Lipschitz
with constant L, (i.e. |ℓ (R,R◦) − ℓ (R ′,R◦)| ⩽ L ∥R− R ′∥1 , ∀R,R ′.) Then

89

R (ι, λ) is near-optimal with respect to the optimal objective value C⋆ in
Definition 6.5, in the sense that limmax{ι,λ}→0 ℓ (R (ι, λ) ,R◦) = C⋆.

In the result above, existence follows from Theorem 6.2. Feasibility
holds because the matrix sum[

R ′
IJ −1|I|

1⊤
|J| 0

]
+ ε

[
ReRPS
IJ −1|I|

1⊤
|J| 0

]

is invertible with probability 1, as ε is a continuous random variable and
the second matrix above is invertible. To prove optimality, we take a
feasible solution R(ε) to the original game modification problem (6.8)
with a cost at most C⋆ + ε, and then slightly modify its entries to get a
new solution R ′(ε) so that (i) the reward bound (6.10g) with λ margin is
satisfied, (ii) the SIISOW properties (6.10b)–(6.10e) are preserved, and
(iii) the game value is the same. The costs of R ′(ε) and R(ε) are close
thanks to the Lipschitz property of the cost. In particular, we show that
ℓ
(
R ′(ε),R◦) = ℓ

(
R(ε),R◦)+O (max {ι, λ}), hence the cost suboptimality can

be made small by using small margins ι, λ. We provide the details in the
appendix.

6.4 Markov Games Modification
In this section, we generalize our algorithm and theoretical results to
Markov games.

Preliminaries

A finite-horizon two-player zero-sum Markov game can be described by
a pair (P,R), given the finite state space S, the finite joint action space
A = A1 ×A2, and horizon H. Here P =

{
Ph : S× S→ [0, 1]|A1|×|A2|

}H

h=1 is
the transition probabilities, P0 : S→ [0, 1] is the initial state distribution,

90

and R =
{
Rh : S → [−b,b]|A1|×|A2|

}H

h=1 is the mean reward function. In
particular, for each h ∈ [H] , s ∈ S, we treat Rh(s) as an |A1|× |A2| matrix,
where [Rh(s)]ij is the reward when joint action profile (i, j) ∈ A1 ×A2 is
applied. Similarly, the transition probabilities are given by a |A1| × |A2|

matrix Ph (s ′|s), where [Ph(s
′|s)]ij is the probability of transitioning from

state s ∈ S in period h ∈ [H] to state s ′ ∈ S when the joint action profile
(i, j) is used. P0(s) is the probability that the game starts in state s ∈ S. The
above matrix representations are chosen to follow the convention used in
the last section for normal form matrix games.

A Markovian policy (p, q) consists of a pair of policies for the two
players: p = {ph : S → ∆A1}

H
h=1 and q = {qh : S → ∆A2}

H
h=1. Here ph(s)

and qh(s) are probability vectors; in period h ∈ [H], state s ∈ S, [ph(s)]i

specifies the probability that player 1 takes action i ∈ A1, and [qh(s)]j

specifies the probability that player 2 takes action j ∈ A2.

Remark 6.1. A Markovian policy above is also called a behavioral policy, where
the two players use independent randomization in each stage game. This is in
contrast to so-called mixed strategies, where the players randomize upfront (before
period 0) among multiple deterministic policies. Due to Kuhn’s Theorem for
Markov games (Heinrich, Lanctot, and Silver, 2015; Lu and Yan, 2020), these
two class of policies are payoff-equivalent: given a mixed strategy, we can find a
behavioral strategy that leads to the same expected total rewards for both players.
Consequently, we focus on the setting where the target policy (p, q) is given as a
Markovian policy, omiting the generalization to mixed policies.

Each zero-sum Markov game has at least one Markov perfect equilib-
rium and a unique Nash value. The action-value or Q function of the
MPE, denoted by Q⋆, satisfies the following Bellman equations: for each

91

h ∈ [H] , s ∈ S, (i, j) ∈ A,

Q⋆
h (s, (i, j)) := Rh (s, (i, j))+ (6.12)∑
s ′∈S

Ph (s ′|s, (i, j)) max
p ′∈∆A1

min
q ′∈∆A2

Q⋆
h+1 (s

′, (p ′,q ′)) ,

where for a possibly stochastic strategy profile (p ′,q ′) ∈ ∆A1 × ∆A2 , we
define

Q⋆
h (s, (p ′,q ′)) :=

∑
i∈A1,j∈A2

p ′
iq

′
jQ

⋆
h (s, (i, j)) . (6.13)

We use the convention Q⋆
H+1 (s, (i, j)) = 0,∀s, i, j.

Under an MPE policy, the stage game of the Markov game in each
period h ∈ [H] and state s ∈ S is a normal form game with payoff matrix
Qh (s), where

[Qh (s)]ij := Q⋆
h (s, (i, j)) (6.14)

gives the payoff under the action profile (i, j) ∈ A. Consequently, an MPE
can be defined recursively as the Nash equilibrium for every stage game.

Definition 6.7 (Markov Perfect Equilibrium). A Markov perfect equilibrium
policy (p, q) is a policy that satisfies, for every h ∈ [H] , s ∈ S,

(ph(s), qh(s)) ∈ NE (Qh(s)) ,

where Qh(s) is defined by equations (6.12)–(6.14).

An alternative approach to study the equilibria of a Markov games is by
converting it to a single big normal-form game and considering the NEs of
the latter. A Nash equilibrium defined in this way is in general not Markov
perfect—it requires coordination and commitment to policies in stage
games that are not visited along equilibrium paths. Such policies are often
not realistic. Moreover, it is computationally intractable to manipulate
such a big normal-form game. Therefore, we focus on MPE and make use

92

of its recursive characterization through Bellman equations.

An Efficient Algorithm for Game Modification in Markov
Games

A two-player zero-sum Markov game has a unique MPE if and only if
every stage game Qh(s) has a unique NE. Our results on the uniqueness
of NE for normal form games (Theorem 6.1) apply to each stage game of
the Markov game. Combining these two observations and the Bellman
equations for Qh(s)’s, the Game Modification problem (Definition 6.1)
can be instantiated to a Markov game as an optimization problem similar
to (6.8), where SIISOW (Condition 6.1), INV (Condition 6.2) and the
Bellman equations are imposed as constraints for every stage game. Due
to space limit, this optimization problem is provided in the appendix.

Similarly to normal form games, we can characterize the feasibility
of the above Game Modification problem in Markov games, done in the
corollary below. Let Ih(s) = supp(ph(s)) and Jh(s) = supp(qh(s)).

Corollary 6.1 (Feasibility of Markov Game Modification). The Game Mod-
ification problem in Definition 6.1 for Markov games is feasible if and only if
|Ih (s)| = |Jh (s)| for every h ∈ [H] , s ∈ S, and (−Hb,Hb)

⋂
[v, v] ̸= ∅.

The conditions above are sufficient and necessary for feasibility. In
particular, sufficiency is proved by explicitly constructing a feasible Markov
game, recursively using the Extended Rock-Paper-Scissors game.

To develop an efficient algorithm, we follow a similar strategy as in
normal form games: we ignore the INV (invertibility) condition and retain
only the linear constraints for the Markov game modification problem,
and add small margins ι, λ to the SIISOW and reward bound constraints so
that random perturbation can be added later. Doing so leads to a linearly
constrained optimization problem, given in (6.15), which generalizes the
program (6.10) for normal form games.

93

Remark 6.2. If there is no value range constraint and the cost function ℓ(R,R◦) is
decomposable across the states and periods (e.g., L1 cost), then the program (6.15)
can be broken into H |S| smaller optimization problems, one for each stage game,
that can be solved sequentially by backward induction.

min
R,v,Q

ℓ (R,R◦) (6.15)

s.t. [Qh (s)]Ih(s)• qh (s) = vh (s) 1|Ih(s)|

∀ h ∈ [H] , s ∈ S [row SII]

p⊤
h (s) [Qh (s)]•Jh(s)

= vh (s) 1⊤
|Jh(s)|

∀ h ∈ [H] , s ∈ S [column SII]

[Qh (s)]A1\Ih(s)• qh (s) ⩽ (vh (s) − ι) 1|A1\Ih(s)|

∀ h ∈ [H] , s ∈ S [row SOW]

p⊤
h (s) [Qh (s)]•A2\Jh(s)

⩾ (vh (s) + ι) 1⊤
|A2\Jh(s)|

∀ h ∈ [H] , s ∈ S [column SOW]

Qh (s) = Rh (s) +
∑
s ′∈S

Ph (s ′|s) vh+1 (s
′)

∀ h ∈ [H− 1] , s ∈ S [Bellman]

QH (s) = RH (s) , ∀ s ∈ S

v ⩽
∑
s∈S

P0 (s) v1 (s) ⩽ v [value range]

− b+ λ ⩽ [Rh (s)]ij ⩽ b− λ

∀ (i, j) ∈ A,h ∈ [H] , s ∈ S [reward bound]

We present our algorithm, Relax And Perturb for Markov Games (RAP-
MG), in Algorithm 5. The algorithm adds random perturbation to the
reward matrix of every stage game. Consequently, the feasibility and opti-
mality results for Algorithm 5 are similar to those for the RAP algorithm

94

for normal form games in Proposition 6.1, though the proofs are compli-
cated by the dependency across the stage games. These results and proofs
are provided in the appendix.

Algorithm 5 Relax And Perturb for Markov Games (RAP-MG)
Input: original game (R◦,P), cost function ℓ, target policy (p, q), target
value range [v, v], reward bound b ∈ R+ ∪ {∞}.
Parameters: margins ι ∈ R+ and λ ∈ R+.
Output: modified game (R,P).

1: Solve the problem (6.15). Call the solution R ′.
2: for h ∈ [H] , s ∈ S do
3: Sample ε ∼ uniform[−λ, λ]
4: Perturb the reward matrix in stage (h, s):
5: Rh (s) = R ′

h (s) + εR eRPS (ph(s),qh(s)).
6: Return (R,P).

6.5 Experiments
We numerically evaluate our game design algorithms. Additional experi-
ments are given in the appendix.

Two Finger Morra

The simplified two-finger morra game (Good, 1965) is given by the payoff
matrix on the left below, which has a unique NE (p, q) = (7

12 , 5
12) and value

− 1
12 . We aim to modify the game to keep the same unique NE minimally

but make the game fair with a value of 0. The redesigned game is given
below.

Original:
(

2 −3
−3 4

)
Modified:

(
2.04 −2.86
−2.86 4

)

95

Figure 6.1: Scale Benchmark for Number of Actions

Rock-Paper-Scissors-Fire-Water

Given on the left below is a generalization of the RPS game to five ac-
tions (Tagiew, 2009). The unique NE is p = q = (1

9 , 1
9 , 1

9 , 1
3 , 1

3) and has
value 0. We desire the NE to be simpler for humans, so we redesign the
game to have a uniformly mixed NE p = q = (1

5 , 1
5 , 1

5 , 1
5 , 1

5). The resultant
game is given below.

Original Modified
0 −1 1 −1 1
1 0 −1 −1 1
−1 1 0 −1 1
1 1 1 0 −1
−1 −1 −1 1 0

0 −1 1 −1 1
1 0 −1 −1 1
−1 1 0 −1 1
1 1 1 0 −3
−1 −1 −1 3 0

Note that an alternative 5-action game Rock-Paper-Scissors-Spock-

Lizard also has the desired NE. However, our modification has a lower
modification cost 4, compared to the cost 8 for using the alternative game.

96

Figure 6.2: Scale Benchmark for Number of Periods

Markov Game Scale Benchmark

We run Algorithm 4 and Algorithm 5 on several games to illustrate the
efficacy of our techniques. We know our algorithm succeeds by checking
that (p, q) satisfies the SIISOW and INV (invertibility) conditions for R†.
By Theorem 6.1, satisfying these conditions implies (p, q) is the unique
NE for R†.

We first show how our methods scale with the number of actions.
For each m ∈ {2, 4, 8, . . . , 512} we generate N = 5 random matrices R◦ ∼

uniform[−1, 1]m×m. For each matrix, we also generate 3 random (p, q) ∼
Dirichlet(1, . . . , 1) with support size (i) k = 1, (ii) k = m/2, and (iii)
k = m (full support). We run Algorithm 4 on each instance and report
the worst running time (in seconds) and the worst cost encountered for
each m in Figures 6.1. We see that the solving time grows linearly in the
log and so the runtime is polynomial in the actions. Using the Gurobi
LP solver, even on a laptop computer the algorithm handles millions of
variables (5122) in roughly 10 seconds. The L1 costs also appear to grow
linearly though with different slopes. We observed that both SIISOW and
INV always holds after perturbation.

Next, we show how our methods scale with the horizon. We consider
Markov games with S = 10, A = 2, random transitions and random

97

reward matrices. Formally, for each H ∈ {1, 2, 4, . . . , 512}, we generate
N = 5 random Markov games and corresponding target NE pairs with
full support. For any fixed H, we generate Rh(s) ∈ uniform[−1, 1]2×2 for
each h and s, and choose Ph(s,a) ∼ Dirichlet(1, . . . 1) for each (h, s,a). We
run Algorithm 4 on each instance and report the worst running time and
cost encountered for each H in Figures 6.2. We observe the solutions are
correct and again the algorithm is efficient.

6.6 Conclusion
Our work points to several directions of future research: (i) It is of interest
to study Markov game modification problems where the transition proba-
bilities can also be changed, and to generalize to general-sum, multi-agent
games and other equilibrium concepts. (ii) In many games, the rewards
are constrained to take integer (e.g., −1, 0, 1) or other discrete values. The
feasibility and tractability of such constrained game modification problems
require further investigation. (iii) Extending our results to data poisoning
problems, where the players learn the true game from observational data,
lead to interesting theoretical and algorithmic questions.

98

7 future work

Infinite State and Action Spaces

The approach we used in our work is mostly only applicable to normal-
form games or tabular Markov games with finite state and action spaces.
One immediate extension is to study adversarial attacks when the number
of states or actions is infinite. Installing a dominant strategy equilibrium
in the planning setting becomes the following problem,

min
R

C (R,Ro)

s.t. R (s)
(
a†
i (s) ,a−i

)
> R (s) (ai,a−i) , ∀ ai ̸= a†

i (s) ,∀ a−i,∀ s, i,

which has an infinite number of constraints, and the resulting optimiza-
tion problem could not be solved efficiently. Installing other equilibrium
concepts in the other setting is similarly intractable. One possibility is to
make smoothness assumptions and discretize the state and action spaces.
Another possibility is to impose further linear or quadratic assumptions
on the R as a function of the actions and states, for example,

R (s) (a) = sTAs+ aT
i Bai − aT

−iCa−i,

whose Nash equilibria can be characterized by linear functions of s and a,
and can be used as constraints in our attacker’s problem. More generally,
we can paramterize R by θ and a feature function φ (s,a),

Rθ (s) (a) = θTφ (s,a) ,

or more flexibly implement Rθ (s) (a) as a non-linear neural network with
weights θ. Under convexity assumptions of φ (s,a), we could write the

99

derivative conditions as the constraints in our attacker’s problem,

min
R

C (R,Ro)

s.t.θT ∂

∂ai

φ
(
s,ai = a†

i (s) ,a−i

)
= 0,∀ i.

Model-Free Victim Algorithms

We also did not directly address the case when the victims do not use
model-based algorithms, and we always have the attacker simulate model-
based victims who estimate the normal-form or Markov game reward
and transition matrices first, then solve for the equilibria based on the
estimated game. In the offline setting, we have been using the following
form of the attacker’s problem,

min
r

C (r, ro)

s.t.R̂ (r) has a unique equilibrium π†,

where R̂ (r) is the game rewards estimated from r, and we further assume
that the estimation function R̂ is linear in r. However, some algorithms are
model-free, for example, the victims can estimate the value functions or the
equilibrium policies directly from the reward data, without estimating the
game. In those cases, our approaches may not directly apply. Given that
many of these model-free algorithms have high-probability guarantees to
find the equilibria of the underlying game that generates the data, it could
be possible that we can show our attacks would still be successful if the
victims use these algorithms. Alternatively, we could formulate the attack
problem without assuming the form of R̂, which likely would require more

100

knowledge of the victim’s algorithm,

min
r

C (r, ro)

s.t.π⋆ (r) =
{
π†} ,

where π⋆ is the victims’ algorithm to compute the equilibrium based on a
dataset r.

Victims with Private Types

We are also interested in solving the adversarial attack problem in which
the victims have private information for private types. For example, if the
attacker cannot observe the state information in the offline training data or
during online training, but the victims can access the information, then the
states can be viewed as private types of the victims. The resulting problem
under information asymmetry is closely related to dynamic mechanism
design, where in addition to incentivizing the victims to use a specific
action over others, the attacker must also modify the environment or data
in a way that separates the victims with different types. In the private
state example, the attacker could compute a modification function ∆R that
is independent of the state and solves the following optimization,

min
∆R
∥∆R∥

s.t.R̂ (s)
(
a†
i (s) ,a−i

)
+ ∆R

(
a†
i (s) ,a−i

)
> R̂ (s) (ai,a−i) + ∆R (ai,a−i) ,

∀ ai ̸= a†
i (s) ,∀ ai,∀ s, i,

where ∆R (a,a−i) specifies the additional transfer (possibly negative)
made to the victim i, when the action profile (a,a−i) is used, that is the
same for every state s. This problem is not always feasible, but under some
monotonicity conditions of R̂, we might be able to apply techniques from
mechanism design and solve the problem.

101

Defense Against Adversarial Attacks

In the longer term, I would investigate the defense problem in the multi-
agent reinforcement learning setting. We have pointed out vulnerabilities
of these learning algorithms if they were given modified environments
and datasets, so it is natural to study possible ways to defend against data
poisoning, for example, using more robust learning algorithms that can
detect or correct poisoned data. There can be a few directions to approach
the defense problem:

• Suppose the victim can inspect a fixed number of entries in the
reward matrix or training data at a cost, then the victim might be
able to strategically select the number of entries to randomly verify,
or strategically specify which entries to verify and confirm the policy
is indeed an equilibrium of the original game. The attack fails if
the victim inspects an entry that is changed by an amount larger
than some threshold. Given the victim’s ability to inspect data, the
attacker might choose to attack differently to minimize the failure
probability, and we can model the interaction as a sequential or
Stackelberg game.

• If the victims cannot verify entries, but they have information about
the attacker’s payoffs from the policies used by the victims, then
the victims can select robust policies that are the worst-case best
responses based on the attacker’s payoff matrices. Even without pre-
cise information about the attacker’s payoffs, based on the poisoned
environment or data, the victims might be able to infer the attacker’s
payoff structure and react accordingly.

102

a online reward poisoning for bandit games to
install a dominant strategy equilibrium

Appendix
Lemma 3.4. The redesigned game (3.2) satisfies:

1. ∀i,a, ℓi(a) ∈ L̃, thus ℓ is valid.

2. For every player i, the target action a†
i strictly dominates any other action

by (1− 1
M
)ρ, i.e., ℓi(ai,a−i) = ℓi(a

†
i ,a−i)+ (1− 1

M
)ρ,∀i,ai ̸= a†

i ,a−i.

3. ℓ(a†) = ℓo(a†).

4. If the original loss for the target action profile ℓo(a†) is zero-sum, then the
redesigned game ℓ is also zero-sum.

Proof. The redesigned game (3.2) is given by

∀i,a, ℓi(a) =
{

ℓoi (a
†) − (1 − d(a)

M
)ρ if ai = a†

i ,
ℓoi (a

†) + d(a)
M

ρ if ai ̸= a†
i ,

(A.1)

where d(a) =
∑M

j=1 1
[
aj = a†

j

]
.

1. Both branches of ℓi(a) are lower bounded by L:

ℓoi (a
†) − (1 −

d(a)

M
)ρ ⩾ ℓoi (a

†) − ρ ⩾ L. (A.2)

ℓoi (a
†) +

d(a)

M
ρ ⩾ ℓoi (a

†) ⩾ L. (A.3)

Both branches are upper bounded by U:

ℓoi (a
†) − (1 −

d(a)

M
)ρ ⩽ ℓoi (a

†) ⩽ U. (A.4)

103

ℓoi (a
†) +

d(a)

M
ρ ⩽ ℓoi (a

†) + ρ ⩽ U. (A.5)

Therefore, ℓi(a) ∈ [L,U] = L̃.

2. Fix i ∈ [M]. ∀a−i, let a = (ai,a−i) for some ai ̸= a†
i , and b =

(a†
i ,a−i), then we have d(b) = d(a) + 1, thus

ℓi(a) − ℓi(b) = ℓoi (a
†) +

d(a)

M
ρ− ℓoi (a

†) + (1 −
d(b)

M
)ρ

= (1 −
1
M

)ρ.
(A.6)

Therefore, for player i the target action a†
i strictly dominates any

other actions by (1 − 1
M
)ρ.

3. When a = a†, we have d(a) = M, thus by our design, we have ∀i,

ℓi(a
†) = ℓoi (a

†) − (1 −
d(a)

M
)ρ

= ℓoi (a
†) − (1 −

M

M
)ρ = ℓoi (a

†).
(A.7)

4. Fix a, we sum over all players to obtain

M∑
i=1

ℓi(a) =
∑

i:ai=a
†
i

(
ℓoi (a

†) − (1 −
d(a)

M
)ρ

)
+

∑
i:ai ̸=a

†
i

(
ℓoi (a

†) +
d(a)

M
ρ

)

=
∑
i

ℓoi (a
†) − d(a)(1 −

d(a)

M
)ρ

+ (M− d(a))
d(a)

M
ρ

=

M∑
i=1

ℓoi (a
† = 0.

(A.8)

104

Theorem 3.5. Using Algorithm 1, the designer can achieve ENT (a†) = T −

O(MTα)while incurring expected cumulative design costECT = O(1⊤
|A1|×1M

1+ 1
pTα).

Proof. Since the designer perturbs ℓo(·) to ℓ(·), the players are equivalently
running no-regret algorithms under loss function ℓ. Note that according
to Lemma 3.4 property 2, a†

i is the optimal action for player i, and taking
a non-target action results in (1 − 1

M
)ρ regret regardless of a−i, thus the

expected regret of player i is

ERT
i = E

T∑
t=1

1
[
at
i ̸= a†

i

]
(1 −

1
M

)ρ

= (1 −
1
M

)ρ
(
T − ENT

i (a
†
i)
) (A.9)

Rearranging, we have

∀i,ENT
i (a

†
i) = T −

M

(M− 1)ρER
T
i (A.10)

105

Applying a union bound over M players,

T − ENT (a†) = E
T∑

t=1

1
[
at ̸= a†]

= E
T∑

t=1

1
[
at
j ̸= a†

j for some j
]

⩽ E
T∑

t=1

M∑
j=1

1
[
at
j ̸= a†

j

]

=

M∑
j=1

E
T∑

t=1

1
[
at
j ̸= a†

j

]

=

M∑
j=1

(
T − ENj(a

†
j)
)

=

M∑
j=1

M

(M− 1)ρER
T
i

= O(MTα).

(A.11)

where the second-to-last equation is due to the no-regret assumption of
the learner. Therefore, we have ENT (a†) = T −O(MTα).

Next we bound the expected cumulative design cost. Note that by
design ℓo(a†) = ℓ(a†), thus when at = a† by our assumption on the cost
function we haveC(ℓo, ℓ,at) = 0. On the other hand, whenat ̸= a† by Lips-
chitz condition on the cost function we haveC(ℓo, ℓ,at) ⩽ 1⊤

|A1|×1M
1
p (U−L).

106

Therefore, the expected cumulative design cost is

ECT = E
T∑

t=1

C(ℓo, ℓ,at)

⩽ 1⊤
|A1|×1M

1
p (U− L)E

T∑
t=1

1
[
at ̸= a†]

= 1⊤
|A1|×1M

1
p (U− L)

(
T − ENT (a†)

)
= 1⊤

|A1|×1M
1
p (U− L)

M∑
j=1

M

(M− 1)ρER
T
i

= O(1⊤
|A1|×1M

1+ 1
pTα),

(A.12)

where the last equality used (A.11).

Corollary 3.7. Assume M = 2 and ℓo is zero-sum. Then with the redesigned
game (3.2), the expected averaged policy Eπ̄T

i = E 1
T

∑
t π

t
i converges to a point

mass on a†
i .

Proof. The new game ℓ is also a two-player zero-sum game. The players ap-
plying no-regret algorithm will have their average actions Eπ̄T converging
to an approximate Nash equilibrium. We use πt

i(a) to denote the proba-
bility of player i choosing action a at round t. Next we compute Eπ̄T

i (a
†).

Note that this expectation is with respect to all the randomness during
game playing, including the selected actions a1:T and policies π1:T . For any
t, when we condition on πt, we have E1 [at

i = a] | πt = πt
i(a). Therefore,

107

we have ∀i

Eπ̄T
i (a

†
i) =

1
T
E

T∑
t=1

πt
i(a

†
i)

=
1
T
Eπ1:T

T∑
t=1

Eat1
[
at
i = a†

i

]
| πt

=
1
T
Eπ1:TEa1:T

T∑
t=1

1
[
at
i = a†

i

]
| π1:T

=
1
T
Eπ1:TEa1:TNT

i (a
†
i) | π

1:T

=
1
T
ENT

i (a
†
i) =

T −O(Tα)

T
→ 1.

(A.13)

Therefore, asymptotically the players believe that a†
i , i ∈ [M] form a Nash

equilibrium.

Lemma 3.8. The redesigned game (3.3) satisfies:

1. ∀i,a, ℓti(a) ∈ L̃, thus the loss function is valid.

2. For every player i, the target action a†
i strictly dominates any other action

by (1− 1
M
)ρwt, i.e., ℓti(ai,a−i) = ℓti(a

†
i ,a−i)+ (1− 1

M
)ρwt,∀i, t,ai ̸=

a†
i ,a−i.

3. ∀t,C(ℓo, ℓt,a†) ⩽ 1⊤
|A1|×1(U− L)M

1
pwt

4. If the original loss for the target action profile ℓo(a†) and the vector v are
both zero-sum, then ∀t, ℓt is zero-sum.

Proof. The redesigned game (3.3) is given by

ℓt = wtℓ+ (1 −wt)ℓ (A.14)

where
wt = tα+ϵ−1 (A.15)

108

1. Note that ℓ is valid, as we have proved in Lemma 3.4 property 1, thus
ℓ ∈ [L,U]. Also note that ℓ ∈ [L,U]. Therefore, ℓt = wtℓ+(1−wt)ℓ ∈
[L,U].

2. ∀i and ∀a−i, let a = (ai,a−i) for some ai ̸= a†
i , and let b = (a†

i ,a−i),
then according to Lemma 3.4 property 2, we have

ℓ(a) − ℓ(b) = (1 −
1
M

)ρ. (A.16)

Therefore, we have ℓt(a) − ℓt(b) =

(1 −wt)ℓ(a) +wtℓ(a) − (1 −wt)ℓ(b) +wtℓ(b)

= (1 −wt)ℓ
o(a†) +wtℓ(a) − (1 −wt)ℓ

o(a†) +wtℓ(b)

= wt (ℓ(a) − ℓ(b)) = (1 −
1
M

)ρwt.

(A.17)

3. Note that we have

ℓo(a†) − ℓt(a†) = ℓo(a†) −
(
wtℓ(a

†) + (1 −wt)ℓ
o(a†)

)
= wt

(
ℓo(a†) − ℓ(a†)

)
.

(A.18)

Therefore, we have

C(ℓo, ℓt,a†) ⩽ 1⊤
|A1|×1∥ℓo(a†) − ℓt(a†)∥p

= 1⊤
|A1|×1wt∥ℓo(a†) − ℓ(a†)∥p

⩽ 1⊤
|A1|×1(U− L)M

1
pwt.

(A.19)

4. If the loss vector v is zero-sum, then by Lemma 3.4 property 4 ℓ is a

109

zero-sum game. If ℓo(a†) is also zero-sum, then we have

M∑
i=1

ℓti(a) =

M∑
i=1

(
wtℓi(a) + (1 −wt)ℓ

o
i (a

†)
)

= wt

N∑
i=1

ℓi(a) + (1 −wt)

M∑
i=1

ℓoi (a
†)

= 0.

(A.20)

Theorem 3.9. Using Algorithm 2, the designer can achieve ENT (a†) = T −

O(MT 1−ϵ)while incurring expected cumulative design costECT = O(M1+ 1
pT 1−ϵ+

M
1
pTα+ϵ).

Proof. Under game redesign, the players are equivalently running no-
regret algorithms over the game sequence ℓ1, . . . , ℓT instead of ℓo(·). By Lemma 3.8
property 2, a†

i is always the optimal action for player i, and taking a non-
target action results in (1 − 1/M)ρwt regret regardless of a−i, thus the
expected regret of player i is

ERT
i = E

T∑
t=1

1
[
at
i ̸= a†

i

]
(1 −

1
M

)ρwt

= (1 −
1
M

)ρE
T∑

t=1

1
[
at
i ̸= a†

i

]
wt.

(A.21)

Now note that wt = tα+ϵ−1 is monotonically decreasing as t grows, thus
we have

T∑
t=1

1
[
at
i ̸= a†

i

]
wt ⩾

T∑
t=Ni(a

†
i)+1

tα+ϵ−1

=

T∑
t=1

tα+ϵ−1 −

Ni(a
†
i)∑

t=1

tα+ϵ−1.

(A.22)

110

Next, by examining the area under curve, we obtain

T∑
t=1

tα+ϵ−1 ⩾
∫T

1
tα+ϵ−1dt =

1
α+ ϵ

Tα+ϵ −
1

α+ ϵ
. (A.23)

Similarly, we can also derive

Ni(a
†
i)∑

t=1

tα+ϵ−1 ⩽
∫Ni(a

†
i)

0
tα+ϵ−1dt =

1
α+ ϵ

(
NT

i (a
†
i)
)α+ϵ

. (A.24)

Therefore, we have
∑T

t=1 1
[
at
i ̸= a†

i

]
wt ⩾

1
α+ ϵ

(
Tα+ϵ −

(
NT

i (a
†
i)
)α+ϵ

)
−

1
α+ ϵ

=
1

α+ ϵ
Tα+ϵ

(
1 − (1 −

T −NT
i (a

†
i)

T
)α+ϵ

)
−

1
α+ ϵ

⩾
1

α+ ϵ
Tα+ϵT −NT

i (a
†
i)

T
(α+ ϵ) −

1
α+ ϵ

= Tα+ϵ − Tα+ϵ−1NT
i (a

†
i) −

1
α+ ϵ

.

(A.25)

The inequality follows from the fact (1− x)c ⩽ 1− cx for x, c ∈ (0, 1). Plug
back in (A.21) we have

ERT
i = (1 −

1
M

)ρE
T∑

t=1

1
[
at
i ̸= a†

i

]
wt

⩾ (1 −
1
M

)ρE
(
Tα+ϵ − Tα+ϵ−1NT

i (a
†
i) −

1
α+ ϵ

)
= (1 −

1
M

)ρ

(
Tα+ϵ − Tα+ϵ−1ENT

i (a
†
i) −

1
α+ ϵ

) (A.26)

111

As a result, we have ∀i,ENT
i (a

†
i) ⩾

T −
M

(M− 1)ρER
T
i T

1−α−ϵ −
1

α+ ϵ
T 1−α−ϵ

= T −
M

(M− 1)ρO(Tα)T 1−α−ϵ −
1

α+ ϵ
T 1−α−ϵ

= T −O(T 1−ϵ) −O(T 1−α−ϵ)

= T −O(T 1−ϵ).

(A.27)

By a union bound similar to (A.11), we have ENT (a†) = T −O(MT 1−ϵ).
We now analyze the cumulative design cost. Note that by Lemma 3.8

property 3, when at = a†, C(ℓo, ℓt,at) ⩽ 1⊤
|A1|×1(U − L)M

1
pwt. On the

other hand, when at ̸= a†, we have

C(ℓo, ℓt,at) ⩽ 1⊤
|A1|×1∥ℓo(at) − ℓt(at)∥p ⩽ 1⊤

|A1|×1(U− L)M
1
p . (A.28)

Therefore, the expected cumulative design cost is

ECT ⩽1⊤
|A1|×1(U− L)M

1
pE

T∑
t=1

1
[
at ̸= a†]

+ 1⊤
|A1|×1(U− L)M

1
pE

T∑
t=1

1
[
at = a†]wt

⩽ 1⊤
|A1|×1(U− L)M

1
p (T − ENT (a†))

+ 1⊤
|A1|×1(U− L)M

1
p

T∑
t=1

wt.

(A.29)

T − ENT (a†) = O(MT 1−ϵ) is already proved. Also note that

T∑
t=1

wt =

T∑
t=1

tα+ϵ−1 ⩽
∫T

t=0
tα+ϵ−1 =

1
α+ ϵ

Tα+ϵ. (A.30)

112

Therefore, we have

ECT ⩽ (U− L)1⊤
|A1|×1M

1
pO(MT 1−ϵ) +

1⊤
|A1|×1(U− L)

α+ ϵ
M

1
pTα+ϵ

= O(M1+ 1
pT 1−ϵ +M

1
pTα+ϵ).

(A.31)

A.1 Exact Form of the Theoretical Upper
Bounds

According to Theorem 3.4 in Bubeck and Cesa-Bianchi (2012), the EXP3.P
achieves expected regret bound

ERT ⩽ 5.15
√

TAi logAi +

√
TAi

logAi

. (A.32)

where Ai = |Ai| is the size of the action space of player i. Note that,
however, Bubeck and Cesa-Bianchi (2012) assumes the loss takes value in
[0, 1], while we assume the loss lies in [L,U]. Therefore, the regret bound
should boost by U− L, i.e., we have

∀i,ERT
i ⩽ (U− L)

(
5.15

√
TAi logAi +

√
TAi

logAi

)
. (A.33)

Plug the above regret bound into the proofs of Theorem 3.5 and The-
orem 3.9, we obtain the following exact form of the theoretical upper
bounds.

113

For the interior design Algorithm 1, we have

T − ENT (a†) ⩽
M∑
j=1

M

(M− 1)ρER
T
i

=
M(U− L)

(M− 1)ρ

M∑
i=1

(
5.15

√
TAi logAi +

√
TAi

logAi

) (A.34)

and

ECT ⩽ 1⊤
|A1|×1M

1
p (U− L)

M∑
j=1

M

(M− 1)ρER
T
i

=
1⊤
|A1|×1M

1+ 1
p (U− L)2

(M− 1)ρ

M∑
i=1

(
5.15

√
TAi logAi +

√
TAi

logAi

) (A.35)

For the boundary design, we have T − ENT (a†) ⩽

M∑
i=1

(
M

(M− 1)ρER
T
i T

1−α−ϵ +
1

α+ ϵ
T 1−α−ϵ

)
=(

M(U− L)

(M− 1)ρ

M∑
i=1

(
5.15

√
TAi logAi +

√
TAi

logAi

)
+

M

α+ ϵ

)
T 1−α−ϵ.

(A.36)

Figure A.1: Number of rounds with at ̸= a†. The dashed lines are the theoretical
upper bound.

114

and

ECT ⩽ 1⊤
|A1|×1(U− L)M

1
p (T − ENT (a†)) + 1⊤

|A1|×1(U− L)M
1
p

T∑
t=1

wt

⩽ 1⊤
|A1|×1(U− L)M

1
p × (A.36) +

1⊤
|A1|×1(U− L)M

1
p

α+ ϵ
Tα+ϵ.

(A.37)

A.2 Minimum Cumulative Design Cost
Theorem 3.9 suggests that the minimum cost is achieved at ϵ∗ = 1−α

2 =

0.25, while Figure 3.4b implies that the cost is minimum at some ϵ ∈
(0.3, 0.4). We believe the inconsistency is due to not large enough horizon
T . We now experiment with slightly larger T for the RPS game with a† =

(R,P). Specifically, we let T = 106, 107, 108 and ϵ = 0.1, 0.2, 0.25, 0.3, 0.4. In
Figure A.1, we plot log(T − NT (a†)) against logCT and we marked out
the corresponding ϵ values on the curve. Note that for different T , the
pattern remains the same – as ϵ grows, log(T − logNT (a†)) decreases
monotonically, while logCT first reduces and then increases. We also note
that as T becomes larger, the ϵ with the minimum cumulative design cost
becomes closer to ϵ∗ = 0.25. We anticipate that as T grows even larger
(e.g., 1010), the cumulative design cost will achieve the minimum at exactly
ϵ∗ = 0.25.

115

b offline reward poisoning for general-sum
games to install a dominant strategy equilibrium

B.1 Compatibility with Pessimistic/Optimistic
Offline MARL Algorithms

There is growing literature on offline RL with theoretical guarantees Jin
et al. (2021b); Cui and Du (2022b); Zhong et al. (2022). In particular, to
address the uncertainty due to the limited coverage of the offline dataset,
prior work leverages the principle of pessimism — it uses uncertainty-
based confidence bounds to penalize the value function on states/actions
less covered — to design offline RL algorithms. This principle has been
implemented and analyzed for single-agent offline RL Jin et al. (2021b).
Recent work extends the pessimism principle to offline multi-agent RL,
focusing on finding the NE in two-player zero-sum MG: Cui and Du (2022b)
considers tabular setting, while Zhong et al. (2022) considers linear MG.

While we are not aware of existing work on provably efficient offline
algorithms for the general setting considered in this paper, namely multi-
player general-sum MGs, we expect that an appropriate form of pessimism
continues to apply in such settings. We note that the above algorithms are
model-free approaches, i.e., the confidence bounds are applied to the value
functions. In comparison, our attack formulation is developed under the
assumption that the learners build confidence bounds for the MG model
(i.e., the reward and transition kernel).

In this section, we show that our formulation is in fact compatible
with existing model-free offline algorithms and hence our attack works
on state-of-the-art learners that use such algorithms. To this end, we con-
sider below a general class of model-free offline MARL algorithms, called
Pessimistic-Optimistic Value Iteration (POVI), which is a generalization

116

of the existing pessimistic algorithms from Jin et al. (2021b); Cui and
Du (2022b); Zhong et al. (2022). When specialized to two-player zero-
sum MGs, this algorithm class recovers the pessimistic offline algorithms
from Cui and Du (2022b); Zhong et al. (2022). We emphasize that our
goal is not to provide a theoretical analysis of POVI as an offline learning
algorithm. Rather, we aim to show that our attack is guaranteed to be
successful if the learners use any instantiation of POVI.

We now describe the POVI algorithm. Denote by f : S→ R an arbitrary
value function. Define the true Bellman operator B∗

i,h : R|S| → R|S|×|A| by

(
B∗
i,hf
)
(s,a1) = R∗

i,h(s,a1) + ⟨P∗
h(·|s,a1), f(·)⟩ , (B.1)

where R∗
i,h and P∗

h are the true reward function for agent i and the tran-
sition kernel at period h, respectively. Based on the offline dataset D ={
(skh,ak

h, rkh)
}
h∈[H],k∈[K]

, the learner constructs the empirical Bellman op-
erator B̂i,h : R|S| → R|S|×|A| by(

B̂i,hf
)
(s,a1) = R̂i,h(s,a1) +

〈
P̂h(·|s,a1), f(·)

〉
, (B.2)

where R̂i,h and P̂h are the empirical estimates (i.e., MLEs) of the reward
function of agent i and the transition kernel at period h, respectively. With
these notations, the POVI algorithm, independently run by each agent i,
is given below.

In the above algorithm, Γi,h(s,a1) is a bonus term (a.k.a. uncertainty
quantifier) that plays the role of confidence width for the value function.
A typical choice of this bonus, suggested by concentration inequalities,
takes the form |Γi,h(s,a1)| ∝ 1√

Nh(s,a1)+1
, where we recall that Nh(s,a1) is

the visit count of the state-action pair (s,a1). Note that we allow Γi,h(s,a1)

to take an arbitrary sign, with a positive (resp., negative) Γi,h(s,a1) corre-
sponding to pessimism (resp., optimism).

Recall that in our attack formulation, confidence intervals CIRi,h(s,a1)

117

Algorithm 6 Pessimistic-Optimistic Value Iteration (POVI)
Input: Offline dataset D =

{
(skh,ak

h, rkh)
}
h∈[H],k∈[K]

Initialization: Vi,H+1(·)← 0 for all i
for h = H,H− 1, . . . , 1 do

Let Q̃i,h(s,a1)←
(
B̂i,hVi,h+1

)
(s,a1), i ∈ [n] // empirical Q

estimate
Let Q

i,h(s,a1)← Q̃i,h(s,a1) − Γi,h(s,a1), i ∈ [n] // bonus

Let πh(·|s)← NE
(
Q1,h(s, ·), . . . ,Q

n,h(s, ·)
)

// NE policy
Let Vi,h(s)← ⟨πh(·|s),Qi,h(s, ·)⟩, i ∈ [n] // V function

return π = (πh)
H
i=1

and CIPh(s,a1), with confidence widths ρR
h(s,a1) and ρP

h(s,a1), are con-
structed for the reward and transition, respectively (cf. Definition 4.2).
We impose the following assumption on the relationship between these
confidence widths and the bonus Γi,h(s,a1) used in POVI.

Assumption B.1 (Relationship between CIs). The above CIs satisfy

|Γi,h(s,a1)| ⩽ ρR
h(s,a1) + max

U∈R|S|:
∑

s ′ U(s ′)=0
∥U∥1⩽ρP

h(s,a1)

〈
U,Vi,h+1

〉

for all (i, s,a1,h) ∈ [n]× S×A× [H].

Under this assumption, we have the following theorem, which states
that the Q/value functions computed by POVI correspond to the NE of
some plausible Markov Game in the confidence set of our attack formula-
tion. Recall our attack is guaranteed to be successful in installing the target
policy π† as the unique ι-strict MPDSE (hence also the unique NE) for all
plausible games in the confidence set (see Lemma 4.1). Combined with
Theorem B.1, we conclude that our attack will also successfully install π†

as the output of any instantiation of POVI.

118

Theorem B.1 (Compatibility). Under Assumption B.1, there exist some reward
function and transition kernel (Rh,Ph)h∈[H] for which the following hold:

1. For all (i, s,a1,h) ∈ [n]× S×A× [H]:

Ri,h(s,a1) ∈ CIRi,h(s,a1),

Ph(· | s,a1) ∈ CIPh(s,a1).

2. For all (i, s,a1,h) ∈ [n]× S×A× [H]:

Q
i,h(s,a1) = Ri,h(s,a1) +

〈
Ph(· | s,a1),Vi,h+1(·)

〉
,

Vi,h(s) = ⟨πh(·|s),Qi,h(s, ·)⟩,

where πh(·|s) = NE
(
Q1,h(s, ·), . . . ,Q

n,h(s, ·)
)

.

That is, Q
h

and Vh are the Q and value functions of the NE of the Markov
Game G = (S,A,R,P,H).

Proof of Theorem B.1. Fix an arbitrary tuple (i, s,a1,h) ∈ [n]× S×A× [H].
By Assumption B.1, there exists a u ∈ R and a U ∈ R|S| satisfying |u| ⩽

ρR
h(s,a1),

∑
s ′ U(s ′) = 0, ∥U∥1 ⩽ ρP

h(s,a1) and

Γi,h(s,a1) = u+
〈
U,Vi,h+1

〉
. (B.3)

Let

Ri,h(s,a1) = R̂i,h(s,a1) − u,

Ph(· | s,a1) = P̂h(· | s,a1) −U.

By construction it is clear that Ri,h(s,a1) ∈ CIRi,h(s,a1) and Ph(· | s,a1) ∈

119

CIPh(s,a1), hence part 1 of the theorem holds. Moreover, we have

Q
i,h(s,a1)

(i)
=
(
B̂i,hVi,h+1

)
(s,a1) − Γi,h(s,a1)

(ii)
= R̂i,h(s,a1) +

〈
P̂h(· | s,a1),Vi,h+1(·)

〉
− u−

〈
U,Vi,h+1

〉
(iii)
= Ri,h(s,a1) +

〈
Ph(· | s,a1),Vi,h+1(·)

〉
,

where step (i) follows from Line 4 in Algorithm 6, step (ii) follows from
the definition of B̂i,h in (B.2) and the expression of Γi,h(s,a1) in (B.3), and
step (iii) follows from the above construction of Ri,h(s,a1) and Ph(· | s,a1).
This proves the first equation in Part 2 of the theorem. The remaining
equations in Part 2 are from the POVI algorithm specification.

Remark B.1. Below we discuss when Assumption B.1 holds and how it is related
to common choices of the confidence widths Γh, ρR

h, ρP
h.

• A sufficient condition for Assumption B.1 is

|Γi,h(s,a1)| ⩽ ρR
h(s,a1), ∀i, s,a1,h. (B.4)

This condition becomes equivalent to Assumption B.1 when Vi,h+1 is a
constant function, i.e., Vi,h+1(s

′) = Vi,h+1(s
′′),∀s ′, s ′′ ∈ S.

• The sufficient condition (B.4) and in turn Assumption B.1 are satisfied for

120

the following choices of the bonus term and CI widths:

|Γi,h(s,a1)| = H

√
β

Nh(s,a1) + 1,

ρR
h(s,a1) = H

√
β

Nh(s,a1) + 1,

ρP
h(s,a1) =

√
|S|β

Nh(s,a1) + 1.

where β denotes a logarithmic term of the form β := c log(|S| |A|HNδ−1),
with c being a universal constant, N := |D| =

∑
s,a,h Nh(s,a1) and δ

the desired failure probability. Note that the above choice of Γi,h(s,a1)

is similar to those used in existing work on offline MARL Cui and Du
(2022b); Zhong et al. (2022). The above choices of ρR

h(s,a1) and ρP
h(s,a1),

given by Hoeffding-type concentration inequalities, are also similar to those
typically used in existing model-based RL algorithms.

B.2 Feasibility Proofs

Proof of Proposition 4.1

Proof. When Nh (s,a1) = 0, the learners may assume arbitrary default
values for the missing entries, and the attacker has no way of modifying
such entries. In particular, the learners may assume values such as b or
−b, and if the default values for R̂i,h (s,a1) = −b when a1 = π†

h (s) or
R̂i,h (s,a1) when a1 ̸= π†

h (s), the attacker will not be able to install π†
h (s)

as the dominant-strategy in the stage.

121

Proof of Proposition 4.2

We remark that Proposition 4.2 is a special case of the general Theorem 4.1.
We refer the readers to the proof of Theorem 4.1 for details.

Proof of Lemma 4.1

Proof. Given G ∈ CIG, we have, for every i ∈ [n] ,h ∈ [H] , s ∈ S, and
a1 ∈ A,

Ri,h (s,a1) ∈ CIR†

h (s,a1) ,

Ph (s,a1) ∈ CIPh (s,a1) ,

where we abuse the notation Ri,h (s,a1) to represent the mean reward
after the attack, and we compute the Q values based on Ri,h (s,a1) and the
target policy π†.

In period H,for every i ∈ [n] ,h ∈ [H] , s ∈ S, and a1 ∈ A, we have,

Qi,H (s,a1) = Ri,H (s,a1) ⩽ max
Ri,H∈CIR†i,H(s,a1)

Ri,H = Qi,H (s,a1) ,

and

Qi,H (s,a1) = Ri,H (s,a1) ⩾ min
Ri,H∈CIR†i,H(s,a1)

Ri,H = Q
i,H (s,a1) .

As a result, we have, for any i ∈ [n] , s ∈ S,a−i,ai ̸= π†
i,H (s),

Qi,H

(
s,
(
π†
i,H (s) ,a−i

))
⩾ Q

i,H

(
s,
(
π†
i,H (s) ,a−i

)
⩾ Qi,H (s, (ai,a−i)) + ι

⩾ Qi,H (s, (ai,a−i)) + ι.

Therefore, we have, in period H, and every s ∈ S,π†
H (s) is a ι-strict domi-

122

nant strategy equilibrium.
We continue by induction, and assume in period h+ 1, for every s ∈ S,

we have
Qi,h+1 (s,a1) ∈

[
Q

i,h+1 (s,a1) ,Qi,h+1 (s,a1)
]

, (B.5)

and π†
h+1 (s) is a ι-strict dominant strategy equilibrium. Then, we have in

period h, for every i ∈ [n] , s ∈ S,a1 ∈ A,

Qi,h (s,a1)

= Ri,h (s,a1) +
∑
s ′∈S

Ph (s ′|s,a1)Qi,h+1

(
s ′,π†

h+1 (s
′)
)

⩽ Ri,h (s,a1) +
∑
s ′∈S

Ph (s ′|s,a1)Qi,h+1

(
s ′,π†

h+1 (s
′)
)

⩽ max
Ri,h∈CIR†h (s,a1)

Ri,h

+ max
Ph∈CIPh(s,a1)

∑
s ′∈S

Ph (s ′)Qi,h+1

(
s ′,π†

h+1 (s
′)
)

= Qi,h (s,a1) ,

and,

Qi,h (s,a1)

= Ri,h (s,a1) +
∑
s ′∈S

Ph (s ′|s,a1)Qi,h+1

(
s ′,π†

h+1 (s
′)
)

⩾ Ri,h (s,a1) +
∑
s ′∈S

Ph (s ′|s,a1)Qi,h+1

(
s ′,π†

h+1 (s
′)
)

⩾ min
Ri,h∈CIR†h (s,a1)

Ri,h

+ min
Ph∈CIPh(s,a1)

∑
s ′∈S

Ph (s ′)Q
i,h+1

(
s ′,π†

h+1 (s
′)
)

= Q
i,h (s,a1) .

123

As a result, we have, for any a−i,ai ̸= π†
i,h (s),

Qi,h

(
s,
(
π†
i,h (s) ,a−i

))
⩾ Q

i,h

(
s,
(
π†
i,h (s) ,a−i

))
⩾ Qi,h (s, (ai,a−i)) + ι

⩾ Qi,h (s, (ai,a−i)) + ι.

Therefore, π†
h (s) is the ι-strict dominant strategy equilibrium in period h,

state s.
Since π† is a Markov policy, it is the ι-strict Markov perfect dominant

strategy equilibrium.

Proof of Theorem 4.1

Proof. We restate the constraints in the attacker’s problem,

R†
i,h (s,a1) =

1
Nh (s,a1)

K∑
k=1

r
†,(k)
i,h 1{

s
(k)
h =s,a(k)h =a1

} (B.6)

∀ h, s, i,a1

Q
i,h (s,a1) = min

Rh∈CIR†h (s,a1)

Rh (B.7)

+ 1h<H min
Ph∈CIPh(s,a1)

∑
s ′∈S

Ph (s ′)Q
i,h+1

(
s ′,π†

h+1 (s
′)
)

∀ h, s, i,a1,

Qi,h (s,a1) = max
Rh∈CIR†h (s,a1)

Rh (B.8)

+ 1h<H max
Ph∈CIPh(s,a1)

∑
s ′∈S

Ph (s ′)Qi,h+1

(
s ′,π†

h+1 (s
′)
)

,

∀ h, s, i,a1,

124

Q
i,h

(
s,
(
π†
i,h (s) ,a−i

))
⩾ Qi,h (s, (ai,a−i)) + ι (B.9)

∀ h, s, i,a−i,ai ̸= π†
i,h (s) ,

r
†,(k)
i,h ∈ [−b,b] , ∀ h,k, i. (B.10)

Consider the attack defined by,

r
†,(k)
i,h = b1{

a
(k)
i,h=π

†
i,h(s(k))

} − b1{
a
(k)
i,h ̸=π

†
i,h(s(k))

}

For each h, k, and i. Given this attack, (B.6) implies,

R†
i,h (s,a1) =

1
Nh (s,a1)

K∑
k=1

r
†,(k)
i,h 1{

s
(k)
h =s,a(k)h =a1

}
= b1{ai=π

†
i,h(s)}

− b1{ai ̸=π
†
i,h(s)}

,∀ h, s, i,a1.

Then (B.7) implies, in period H,

Q
i,H

(
s,π†

h (s)
)
= min

Ri,h∈CIR†i,H(s,π†
h(s))

Ri,h

= R†
i,H

(
s,π†

H (s)
)
− ρ

(R)
H

(
s,π†

H (s)
)

⩾ b−
b−

ι

2
(H+ 1) /2,∀ s, i,

(B.11)

and forh < H, assumeQ
i,h+1

(
s,π†

h (s)
)
⩾ (H− h)

b−
b−

ι

2
(H+ 1) /2

 , ∀ s, i,

125

we have

Q
i,h

(
s,π†

h (s)
)

= min
Ri,h∈CIR†i,H(s,π†

h(s))
Ri,h

+ min
Ph∈CIPh(s,π†

h(s))

∑
s ′∈S

Ph (s ′)Q
i,h+1

(
s ′,π†

h+1 (s
′)
)

= R†
i,h

(
s,π†

h (s)
)
− ρ

(R)
h

(
s,π†

h (s)
)

+ min
Ph∈CIPh(s,π†

h(s))

∑
s ′∈S

Ph (s ′)Q
i,h+1

(
s ′,π†

h+1 (s
′)
)

⩾ b−
b−

ι

2
(H+ 1) /2

+ min
Ph∈CIPh(s,π†

h(s))

∑
s ′∈S

Ph (s ′) (H− h)

b−
b−

ι

2
(H+ 1) /2

= (H− h+ 1)

b−
b−

ι

2
(H+ 1) /2

 , ∀ h, s, i.

(B.12)

Similarly, in period H, due to reward bound (B.10),

Qi,H

(
s,π†

H (s)
)
= max

Ri,H∈CIR†i,H(s,π†
H(s))

Ri,H

= min
{
b,b+ ρ

(R)
H

(
s,π†

H (s)
)}

= b, ∀ s, i,

(B.13)

and for h < H, assume Qi,h+1

(
s,π†

h (s)
)

= (H− h)b,∀ s, i, using the

126

reward bound (B.10) again, we have,

Qi,h

(
s,π†

h (s)
)

= max
Ri,h∈CIR†i,h(s,π†

H(s))
Ri,h

+ max
Ph∈CIPh(s,π†

h(s))

∑
s ′∈S

Ph (s ′)Qi,h+1

(
s ′,π†

h+1 (s
′)
)

= min
{
b,b+ ρ

(R)
h

(
s,π†

h (s)
)}

+ max
Ph∈CIPh(s,π†

h(s))

∑
s ′∈S

Ph (s ′)Qi,h+1

(
s ′,π†

h+1 (s
′)
)

⩾ b+ max
Ph∈CIPh(s,π†

h(s))

∑
s ′∈S

Ph (s ′) (H− h)b

= (H− h+ 1)b.

On the other hand, (B.8) implies, in period H,ai ̸= π†
i,H (s),

Qi,H (s,a1) = max
Ri,H∈CIR†i,H(s,a1)

Ri,H

= R†
i,H (s,a1) + ρ

(R)
H (s,a1)

⩽ −b+
b−

ι

2
(H+ 1) /2, ∀ s, i,

(B.14)

127

and for h < H,

Qi,h (s,a1)

= max
Ri,h∈CIR†i,h(s,a1)

Ri,h

+ max
Ph∈CIPh(s,a1)

∑
s ′∈S

Ph (s ′)Qi,h+1

(
s ′,π†

h+1 (s
′)
)

= R†
i,h (s,a1) + ρ

(R)
h (s,a1)

+ max
Ph∈CIPh(s,a1)

∑
s ′∈S

Ph (s ′)Qi,h+1

(
s ′,π†

h+1 (s
′)
)

⩽ −b+
b−

ι

2
(H+ 1) /2

+ max
Ph∈CIPh(s,a1)

∑
s ′∈S

Ph (s ′) (H− h)b

= (H− h− 1)b+
b−

ι

2
(H+ 1) /2, ∀ h, s, i.

(B.15)

128

Then (B.9) is satisfied since,

Qi,h (s, (ai,a−i)) + ι

⩽ (H− h− 1)b+
b−

ι

2
(H+ 1) /2 + ι

= (H− h+ 1)

b−
b−

ι

2
(H+ 1) /2

+ (H− h+ 2)

b−
ι

2
(H+ 1) /2 − (2b− ι)

= (H− h+ 1)

b−
b−

ι

2
(H+ 1) /2

+

(
H− h+ 2
H+ 1 − 1

) b−
ι

2
1/2 ,h ⩾ 1

⩽ (H− h+ 1)

b−
b−

ι

2
(H+ 1) /2

+

(
H+ 1
H+ 1 − 1

) b−
ι

2
1/2

= (H− h+ 1)

b−
b−

ι

2
(H+ 1) /2

⩽ Q

i,h

(
s,
(
π†
i,h (s) ,a−i

))
,

∀ h, s, i,a−i ̸= π†
−i,h (s) ,ai ̸= π†

i,h (s) .

(B.16)

Finally, (B.10) holds by definition,

r
†,(k)
i,h = b1{

a
(k)
i,h=π

†
i,h(s(k))

} − b1{
a
(k)
i,h ̸=π

†
i,h(s(k))

}
∈ [−b,b] ,∀ h,k, i.

(B.17)

129

Proof of Corollary 4.1

Proof. Given ρ
(R)
h (s,a1) = f

(
1

Nh (s,a1)

)
for some strictly increasing func-

tion f, the feasibility condition can be written as, for all h ∈ [H] , s ∈ S,a1 ∈
A,

ι ⩽ 2b− (H+ 1) f
(

1
Nh (s,a1)

)
.

⇒ f

(
1

Nh (s,a1)

)
⩽

2b− ι

H+ 1

⇒ 1
Nh (s,a1)

⩽ f−1
(

2b− ι

H+ 1

)
⇒ Nh (s,a1) ⩾

(
f−1
(

2b− ι

H+ 1

))−1

.

In particular, ρ(R)
h (s,a1) = 2b

√√√√√ log

(
H |S| |A|

δ

)
max {Nh (s,a1) , 1} is strictly increasing in

1
Nh (s,a1)

, we have,

2b

√√√√√ log
(
H |S| |A|

δ

)
max {Nh (s,a1) , 1} ⩽

2b− ι

H+ 1

⇒ Nh (s,a1) ⩾
4b2 (H+ 1)2 log

(
H |S| |A|

δ

)
(2b− ι)

2 .

This completes the proof.

130

B.3 Linear Program Formulations

Bandit Game Maximum Likelihood Learners

The problem (4.1) can be converted into the following linear program:

min
r†,t,R†

n∑
i=1

K∑
k=1

t
(k)
i

such that r†,(k)
i − r

0,(k)
i ⩽ t

(k)
i ,∀ k, i

r
0,(k)
i − r

†,(k)
i ⩽ −t

(k)
i ,∀ k, i

R
†
i (a1) =

1
N (a1)

K∑
k=1

r
†,(k)
i 1{a(k)=a1}

, ∀ a1, i

R
†
i (ai,a−i) − R

†
i

(
π
†
i ,a−i

)
⩽ −ι,∀ i,a−i,ai ̸= π

†
i

r
†,(k)
i ⩽ b, ∀ k, i

− r
†,(k)
i ⩽ −b,∀ k, i.

(B.18)

To linearize the L1 -norm, we introduce slack variables t, and rewrite the
objective min

r†

∥∥r† − r0∥∥
1 as:

min
t,r†

eT t

such that − t ⩽ r† − r0 ⩽ t.
(B.19)

Confidence Bound Learners

Bandit Game Confidence Bound Learners

Proof of Proposition 4.3. The problem (4.2) can be converted into the
linear program in (B.20).
The same linearization is done to the L1 -norm objective. To linearize the
max and min, we introduce slack variables m−,m+,m−,m+ to rewrite
the constraints,

max {−b,R1 − ρ1} ⩾ min {b,R2 + ρ2}+ ι,

131

as follows:

min {−b,R1 − ρ1}+ |R1 − ρ1 + b|

⩾ max {b,R2 + ρ2}− |R2 + ρ2 − b|+ ι,

which can then be converted to the following set of linear constraints:

−b+m− +m+ ⩾ b−m− −m+ + ι

R1 − ρ1 +m− +m+ ⩾ R2 + ρ2 −m− −m+ + ι

−b+m− +m+ ⩾ R2 + ρ2 −m− −m+ + ι

R1 − ρ1 +m− +m+ ⩾ b−m− −m+ + ι

m− ⩾ −R1 − ρ1 − b

m+ ⩾ R1 − ρ1 + b

m− ⩾ −R2 − ρ2 + b

m+ ⩾ R2 + ρ2 − b

m−,m+,m−,m+ ⩾ 0.

(B.21)

We do the same conversion for each a1 ∈ A to obtain the above linear
problem.

Markov Game Confidence Bound Learners

Proof of Theorem 4.2. The problem (4.3)− (4.7) can be converted into
the linear program in (B.22).
The same linearization is done to the L1-norm objective. We ignore the

boundary clipping on the confidence bounds for this problem to simplify
the notations. To linearize the inner optimizations, we find the dual of the
following problem and substitute it into the original optimization,

max
Ph∈CIPh(s,a1)

∑
s ′∈S

Ph (s ′)Qi,h+1

(
s ′,π†

h+1 (s
′)
)

,

132

where,

CIPh (s,a1) ={
Ph ∈ ∆(A) :

∥∥Ph − P̂h (s,a1)
∥∥

1 ⩽ ρ
(P)
h (s,a1)

}
.

We treat Ph as a vector of size |S| with [Ph]s ′ = Ph (s ′), and we define
Qi,h+1

(
π†
h+1

)
as a vector of size |S|with

[
Qi,h+1

(
π†
h+1

)]
s ′
= Qi,h+1

(
s ′,π†

h+1 (s
′)
)

,
and write the constrained optimization as:

max
Ph

Ph ·Qi,h+1

(
π
†
h+1

)
such that Ph ⩽ P̂h (s,a1) + ρ

(P)
h (s,a1)

Ph ⩾ P̂h (s,a1) − ρ
(P)
h (s,a1)

Ph · e|S| = 1

Ph ⩾ 0,

(B.23)

and in the standard form,
min
Ph

Q
T
i,h+1

(
π
†
h+1

)
Ph

such that
[
I|S|

−I|S|

]
Ph ⩽

[
P̂h (s,a1) + ρ

(P)
h (s,a1)

−P̂h (s,a1) + ρ
(P)
h (s,a1)

]
eT|S|Ph = 1

Ph ⩾ 0,

(B.24)

where the notation In is the n× n identity matrix and en is the vector of
n ones.

We use the linear programming duality to get the following dual prob-

133

lem:

min
u,v,w

P̂h (s,a1) + ρ

(P)
h (s,a1)

−P̂h (s,a1) + ρ
(P)
h (s,a1) 1T

uv
w

such that

 I|S|

−I|S|

eT|S|

T uv

w

 ⩾ Qi,h+1

(
π†
h+1

)
[
u

v

]
⩾ 0,

(B.25)

which is equivalent to the following:

min
u,v,w

∑
s ′∈S

P̂h

(
s ′|s,a1

)
(us ′ − vs ′ + ρ

(P)
h (s,a1)(us ′ + vs ′) +w

such that us ′ − vs ′ +w ⩾ Qi,h+1
(
s ′,π†

h+1(s
′)
)
,∀ s ′ ∈ S.

us ′ , vs ′ ⩾ 0,∀ s ′ ∈ S,

(B.26)

where u ∈ R|S|, v ∈ R|S|,w ∈ R.
The same problem needs to be solved for Q

i,h+1, and for each h in [H] , s ∈
S, i ∈ [n], and a1 in A.

B.4 Optimal Cost Analysis
Outline. In order to understand the attack cost, we make two critical
reductions. The first is relating the attack cost for an entire instance I to
the attack costs of each period game Ih. Each period game is essentially
just a bandit game, so this reduces the task of analyzing the cost for a
full Markov Game instance down to the task of analyzing a bandit game
instance. Then, we reduce solving a bandit game instance to a mechanism
design problem. In particular, we show that the cost of poisoned rewards

134

r† is closely related to the cost of its corresponding MLE R†. Thus, we can
focus on optimizing the MLE rewards, which is just a mechanism design
problem. Most of the results then follow from constructing particular
mechanisms for normal-form games; including an optimal mechanism
for installing a large margin-DSE in normal-form games. This optimal
mechanism is equivalent to solving the bandit attack problem for the
special case when N = N = 1, but its cost is much easier to see. We
present these ideas in reverse order to build up from the easier problems
to the harder ones.

First, note that the L1 cost function for a specific poisoning r†, C
(
r0, r†

)
can be written as,

H∑
h=1

n∑
i=1

∑
s∈S

∑
a1∈A

K∑
k=1

1{
s
(k)
h =s,a(k)h =a1

} ∣∣∣r†,(k)
i,h − r

(k)
i,h

∣∣∣
When clear from the context, we just refer to this quantity as C. We see
that C is defined by sums over the parameters h, i, s, a1, and k. For any
choice of parameters p1, . . . ,pj, we let Cp1,...,pj

denote the cost function
with those parameters fixed. For example, Ci,h,s,a1 denotes the inner-
most sum

∑K
k=1 1{

s
(k)
h =s,a(k)h =a1

} ∣∣∣r†,(k)
i,h − r

(k)
i,h

∣∣∣. We then always have that
C =

∑
p1

. . .
∑

pj
Cp1,...,pj

.
Now, we can similarly define the cost associated with changing the

MLE rewards from R̂ to R†. We denote this cost by CM
(
R̂,R†

)
, which can

be written as,

H∑
h=1

n∑
i=1

∑
s∈S

∑
a1∈A

∣∣∣R†
i,h(s,a1) − R̂i,h(s,a1)

∣∣∣
When clear from the context, we just refer to this quantity as CM. We can
partition this cost function by parameter just as we did with C.

We start by showing solving the attack problem can be reduced to

135

mechanism design.

Lemma B.1. For each h, let R†
h : S×A→ [−b,b]n. Then, for every choice of

bounded rewards r† whose MLE is R†, we have that,

H∑
h=1

NhC
M
h (R̂,R†) ⩽ C(r0, r†)

Also, there exists a choice of r† whose MLE is R† and that satisfies,

C(r†, r0) ⩽
H∑

h=1

NhC
M
h (R̂,R†)

Proof. Fix any h, i, s, a1, and any rewards r† whose MLE is R†. By the
definition of MLEs and the triangle inequality, we have that,

CM
i,h,s,a1

=
∣∣∣R†

i,h (s,a1) − R̂i,h (s,a1)
∣∣∣

=
∣∣∣ 1
Nh (s,a1)

K∑
k=1

1{
s
(k)
h =s,a(k)h =a1

}r†,(k)
i,h

−
1

Nh (s,a1)

K∑
k=1

1{
s
(k)
h =s,a(k)h =a1

}r(k)i,h

∣∣∣
=

1
Nh (s,a1)

∣∣∣∣∣
K∑

k=1

1{
s
(k)
h =s,a(k)h =a1

} (r†,(k)
i,h − r

(k)
i,h

)∣∣∣∣∣
⩽

1
Nh (s,a1)

K∑
k=1

1{
s
(k)
h =s,a(k)h =a1

} ∣∣∣r†,(k)
i,h − r

(k)
i,h

∣∣∣
=

1
Nh (s,a1)

Ci,h,s,a1

136

Thus,

C(r0, r†) =
∑

i,h,s,a1

Ci,h,s,a1

⩾
∑

i,h,s,a1

Nh(s,a1)C
M
i,h,s,a1

⩾
∑
h

NhC
M
h (R̂,R†)

This proves the first claim.
For the second claim, we construct specific rewards r†. Let Eh(s,a1) =

{k | s
(k)
h = s, a(k)

h = a1}. For each k, s, and a1 with s
(k)
h = s and a(k)

h = a1,
we define r†,(k)

i,h depending on the value of r = R†
i,h(s,a1)− R̂i,h(s,a1)+r

(k)
i,h ,

1. If r ∈ [−b,b], then we set r†,(k)
i,h := r

2. If r > b, then we set r†,(k)
i,h := b

3. If r < −b, then we set r†,(k)
i,h := −b

Clearly, this is a feasible choice of rewards. It is easy to see that the MLE of
r† is R†. We also claim that max

k∈Eh(s,a1)
|r†i,h − r0

i,h| ⩽ |R†
i,h(s,a1) − R̂i,h(s,a1)|.

We show this depending on case.

1. If r ∈ [−b,b], then by definition we have that,

|r
†,(k)
i,h − r

(k)
i,h | = |r− r

(k)
i,h | = |R†

i,h(s,a1) − R̂i,h(s,a1)|

2. If r > b, then by definition we have that,

R†
i,h(s,a1) − R̂i,h(s,a1) + r

(k)
i,h > b

=⇒ b− r
(k)
i,h < R†

i,h(s,a1) − R̂i,h(s,a1)

137

Also, since all rewards are bounded above by b, we know that b−

r
(k)
i,h ⩾ 0 and so b− r

(k)
i,h = |b− r

(k)
i,h |. Thus,

|r
†,(k)
i,h − r

(k)
i,h | = |b− r

(k)
i,h | = b− r

(k)
i,h

< R†
i,h(s,a1) − R̂i,h(s,a1)

⩽ |R†
i,h(s,a1) − R̂i,h(s,a1)|

3. If r < −b, then by definition we have that,

R†
i,h(s,a1) − R̂i,h(s,a1) + r

(k)
i,h < −b

=⇒ b+ r
(k)
i,h < R̂i,h(s,a1) − R†

i,h(s,a1)

Also, since all rewards are bounded below by −b, we know that
b+ r

(k)
i,h ⩾ 0 and so b+ r

(k)
i,h = |b+ r

(k)
i,h |. Thus,

|r
†,(k)
i,h − r

(k)
i,h | = |b+ r

(k)
i,h | = b+ r

(k)
i,h

< R̂i,h(s,a1) − R†
i,h(s,a1)

⩽ |R†
i,h(s,a1) − R̂i,h(s,a1)|

We then see for this choice of r†,

Ci,h =
∑
s∈S

∑
a1∈A

K∑
k=1

1{
s
(k)
h =s,a(k)h =a1

} ∣∣∣r†,(k)
i,h − r

(k)
i,h

∣∣∣
⩽

∑
s∈S

∑
a1∈A

Nh(s,a1) max
k∈Eh(s,a1)

∣∣∣r†,(k)
i,h − r

(k)
i,h

∣∣∣
⩽ Nh

∑
s∈S

∑
a1∈A

|R†
i,h(s,a1) − Ri,h(s,a1)|

= NhC
M
i,h

138

Overall, we have,

C(r0, r†) =
∑
h

∑
i

Ch,i

⩽
∑
h

∑
i

NhC
M
i,h

=
∑
h

NhC
M
h (R̂,R†)

This proves the second claim.

Equipped with this lemma we can focus on poisoning normal-form
games and ignore the complexities of the dataset. Define ϵι

i,h(s, (ai,a−i)) =

ρ
(R)
h (s, (ai,a−i))+ρ

(R)
h (s, (π†

i,h(s),a−i))+ι. Then the dominance gap takes
the form,

dι
i,h (s,a−i) := max

ai ̸=π
†
i,h(s)

[
R̂i,h (s, (ai,a−i))

− R̂i,h

(
s,
(
π†
i,h(s),a−i

))
+ ϵι

i,h(s, (ai,a−i))
]
+

Recall, the intuition behind dominance gaps is that they measure how
much R̂i,h

(
s,
(
π†
i,h(s),a−i

))
would need to be increased in order to satisfy

the ι-dominance constraint. We also define Iιi,h(s,a−i) = {ai | R̂i,h(s, (ai,a−i)) >

b− ϵι
i,h(s, (ai,a−i)))} and διi,h(s,a−i) :=∑

ai ̸=π
†
i,h(s),

ai∈Iιi,h(s,a−i)

(
R̂i,h(s, (ai,a−i)) − b+ ϵι

i,h(s, (ai,a−i))
)

In contrast to dominance gaps which focus on increasing the rewards for
actions that intersect π†, δ measures how much we have to decrease actions
disjoint from π† to ensure the ι-dominance constraint holds for extremal
reward actions. We then consolidate all these quantities for period h into

139

the variable ∆h(ι),

∆h(ι) :=
∑
s∈S

n∑
i=1

∑
a−i

(
dι
i,h(s,a−i) + διi,h(s,a−i)

)
Now, consider the following algorithm, ATK.

Algorithm 7 ATK(Ih)
1: for s ∈ S, i ∈ [n],a−i ∈ A−i do
2: R†

i,h(s,π†
i,h(s),a−i)← min{R̂i,h(s,π†

i,h(s),a−i) + dι
i,h(s,a−i), b}

3: for ai ̸= π†
i,h(s) with R̂i,h(s, (ai,a−i)) > b− ϵι

i,h(s, (ai,a−i)) do
4: R†

i,h(s, (ai,a−i))← b− ϵι
i,h(s, (ai,a−i))

5: return R†
h

This is the optimal mechanism for poisoning the MLEs of a bandit
game and, in particular, for poisoning Ih. We use this algorithm to help
prove Lemma 4.3. We also remark that this procedure gives an alternative
algorithm to the LP when N = N = 1. The surprising fact that we need
to only increase rewards for actions intersecting π† and decrease other
disjoint rewards is an artifact of using the L1-norm cost.

Proof of Lemma 4.3.

Proof. We first note that by definition of ATK, CM
h (R̂,R†) = ∆h(ι). This

solution is feasible since line 2 forcibly satisfies the ι-dominance constraint
unless the upper bound of b is hit. In which case, we push the reward up
to b and decrease the other reward so that the ι-dominance constraint is
satisfied. Thus, by Lemma B.1 we have that C∗(Ih) ⩽ C(r0, r†) ⩽ Nh∆h(ι).

For the lower bound, the intuition is that R†
i,h(s, (π†

i,h(s),a−i)) must be
increased to be large enough to satisfy the ι-dominance constraint. The
amount of increase required is exactly the ι-dominance gap. This gives the
first term in ∆h(ι). The second term arises from actions not intersecting

140

π† that must be decreased since their rewards are too close to b. Fix s ∈ S,
i, and a−i.

We start by showing the cost is lower-bounded by the first term in
∆h(ι), dι

i,h(s,a−i). We define a∗
i ti be the action,

argmax
ai ̸=π

†
i,h(s)

{
R̂i,h (s, (ai,a−i)) + ρ

(R)
h (s, (ai,a−i)) + ι

}
.

We then let,

a⋆ : = (a⋆
i ,a−i) ,

a† : =
(
π†
i,h (s) ,a−i

)
.

If,

R̂i,h (s,a⋆) + ρ
(R)
h (s,a⋆)

− R̂i,h
(
s,a†)+ ρ

(R)
h

(
s,a†)+ ι ⩽ 0,

then,

dι
i,h (s,a−i) = 0,

and we have, ∣∣∣R†
i,h
(
s,a†)− R̂i,h

(
s,a†)∣∣∣

+
∣∣∣R†

i,h (s,a⋆) − R̂i,h (s,a⋆)
∣∣∣

⩾ 0 = dι
i,h (s,a−i) .

141

Otherwise, the triangle inequality implies,∣∣∣R†
i,h
(
s,a†)− R̂i,h

(
s,a†)∣∣∣+ ∣∣∣R†

i,h (s,a⋆) − R̂i,h (s,a⋆)
∣∣∣

⩾
∣∣∣R†

i,h
(
s,a†)− R†

i,h (s,a⋆) − R̂i,h
(
s,a†)+ R̂i,h (s,a⋆)

∣∣∣
⩾ R†

i,h
(
s,a†)− R†

i,h (s,a⋆) − R̂i,h
(
s,a†)+ R̂i,h (s,a⋆)

⩾ R̂i,h (s,a⋆) + ρ
(R)
h (s,a⋆) − R̂i,h

(
s,a†)+ ρ

(R)
h

(
s,a†)+ ι

= dι
i,h (s,a−i) .

The first inequality comes from the triangle inequality, the second comes
from, and removing absolute values, and the third from the ι-dominance
constraint. Specifically, the ι-dominance constraint is,

R†
i,h

(
s,
(
π†
i,h (s) ,a−i

))
− ρ

(R)
h

(
s,
(
π†
i,h (s) ,a−i

))
⩾ R†

i,h (s, (ai,a−i)) + ρ
(R)
h (s, (ai,a−i)) + ι.

and the third inequality comes from moving the ρ terms to the RHS and
moving the R† terms to the LHS. The equality is from the definition of the
dominance gap when it is not 0. The takeaway is that in either case, we
have, ∣∣∣R†

i,h
(
s,a†)− R̂i,h

(
s,a†)∣∣∣+ ∣∣∣R†

i,h (s,a⋆) − R̂i,h (s,a⋆)
∣∣∣

⩾ dι
i,h(s,a−i)

Next, we show the cost is lower-bounded by the second term in ∆h(ι),
διi,h(s,a−i). Consider any actionai ∈ Iιi,h(s,a−i). Note, by the ι-dominance
constraint, it must be the case that R†

i,h(s,ai,a−i) ⩽ b− ϵι
i,h(s, (ai,a−i)),

i.e., it was necessary to reduce this reward. Otherwise, we have by the
bound constraint R†

i,h(s,π†
i,h(s),a−i) ⩽ b and so R†

i,h(s,π†
i,h(s),a−i) −

R†
i,h(s,ai,a−i) < b − (b − ϵι

i,h(s, (ai,a−i))) = ϵι
i,h(s, (ai,a−i)) which

would contradict the ι-dominance constraint. Thus, we have that for such

142

ai ∈ Iιi,h(s,a−i),

|R†
i,h(s,ai,a−i) − R̂i,h(s, (ai,a−i))|

= R̂i,h(s, (ai,a−i)) − R†
i,h(s,ai,a−i)

⩾ R̂i,h(s, (ai,a−i)) − b+ ϵι
i,h(s, (ai,a−i))

Summing over all ai ∈ Iιi,h(s,a−i), we have th cost is bounded below by
διi,h(s,a−i).

Lastly, we mention an action could partake in both the dι
i,h(s,a−i)

term and διi,h(s,a−i) part of a term in ∆h(ι). If this were the case, for the
ι-dominance constraint to hold it must be the a† part was increased to b

and the a⋆ part was decreased as above and so both lower bounds appear
simultaneously (so there is no issue with double counting). Overall, we
see that summing over all s, i, and a−i gives CM

h (R̂,R†) ⩾ ∆h(ι) for any
choice of R†. By Lemma B.1 we have that C∗(Ih) ⩾ Nh∆h(ι).

Now that we have characterized the cost of bandit game instances and
better understood their structure through the optimal algorithm, we can
move on to general Markov game instances.

Proof of Theorem 4.4.

Proof. For the lower bound, we note that the optimization problem for I
includes the optimization problem for optimally poisoning IH as a special
case. Thus, the minimum cost to poison the entire instance I could never
be less than the minimum cost to poison the last period instance IH.

For the upper bound, fix a period h. Fix any minimum cost solution,
r⋆h, to the attack problem for Ih. Let R̂⋆

h be the corresponding MLE. Note
for any s, we can increase the rewards R̂⋆

h(s,π†
h(s)) to be (b, . . . ,b) without

effecting feasibility. Specifically, if π†
h(s) is a ι-DSE in the normal-form

143

game R̂⋆
h(s, ·), then it remains one if we increase the rewards for each player

in this cell; increasing the rewards only increases the margin of dominance.
To change the data to get such an MLE, we can simply change each

of the Nh(s,π†
h(s)) data points to have reward vector (b, . . . ,b). The total

cost to do this is at most 2bnNh(s,π†
h(s)). We may also need to modify

each MLE reward by (H − h + 1)ρ to mitigate accumulating errors. We
discuss this more in the next paragraph, but for now, we observe the cost
for such changes is at most NHρnAn. Summing over all states, we see that
the total cost of this new solution for Ih is C∗(Ih) + |S|2bnN+NHρ|S|nAn.
By summing over all h, we get the stated upper bound.

Now, we argue that combining these solutions for each h gives a fea-
sible solution for the overall instance I. Note in this new solution, we
always have that R†

h(s,π†(s)) = (b, . . . ,b). As argued before by induction
in the feasibility proof, we have Qi,h(s,a) = (H − h + 1)b. Also, since

min
Ri,h∈CIR†i,h(s,a1)

Ri,h ⩾ b−ρ, we have that by inductionQ
i,h(s, (π†

i,h(s),a−i)) ⩾

(H− h+ 1)(b− ρ). We then have,

Q
i,h

(
s,a†)−Qi,h (s,a1)

⩾ min
Ri,h∈CIR†i,h(s,a†)

Ri,h − max
Ri,h∈CIR†i,h(s,a1)

Ri,h

+ (H− h)(b− ρ) − (H− h)b

= min
Ri,h∈CIR†i,h(s,a†)

Ri,h − max
Ri,h∈CIR†i,h(s,a1)

Ri,h − (H− h)ρ

We also know that for r∗h the difference will be at least ι. However, to
ensure feasibility for the overall instance we need the difference to be at
least ι + (H − h)ρ. So long as ρ ⩽ 2b−ι

H−h+1 , r∗h can be modified to attain
feasibility for I without breaking the reward bounds, i.e. the dominance
margin is attainable. Since this condition is captured by the feasibility
condition, we know such a modification is possible. In fact, the most
wasteful such option is to simply reduce every action not intersecting

144

with π†
h(s) by (H− h)ρ without going below −b and similarly increase all

entries that do intersect by (H− h)ρ without going above b. This can be
seen as a feasible solution to Ih that has the larger dominance parameter
ι+ (H− h)ρ instead of just ι. Hence, there is a feasible solution that has
exactly the cost of the above. Consequently, we have that

C∗(I) ⩽
H∑

h=1

C∗(Ih) + 2bnH|S|N+H2ρ|S|nAnN

So, we see a prominent effect from ρ. If the uncertainty of the learners
is small, then poisoning is slightly more than poisoning bandit instances
independently. This is desirable since it allows us to solve the much easier
bandit instances separately instead of the complicated full LP. On the other
hand, if the uncertainty is high, then very little can be said about the cost
of the solution through relative bounds. Thus, we turn to the universal
bounds.

Proof of Theorem 4.3. We now move to the proof of Theorem 4.3 which
gives concrete bounds on the cost of any instance.

Proof. The lower bound follows immediately from using any non-negative
cost function, the L1-norm in our case. For the upper bound, we consider
a specific solution. Fix a period h and state s and consider the solution,

1. R†
i,h(s,a1) = b, if ai = π†

i,h(s)

2. R†
i,h(s,a1) = −b, if ai ̸= π†

i,h(s)

This is the most extreme attack. If any attack is feasible so is this one.
For any feasible solution, we can perturb the solution to this one while
maintaining feasibility. Specifically, increasing rewards of dominating

145

actions can only increase the margin of domination and similarly by re-
ducing dominated actions. Hence, this solution is feasible if I is a feasible
instance. The cost of this attack is bound simply. For each h, s, i, and
a1, |R†

i,h(s,a1) − R̂i,h(s,a1)| ⩽ 2b. Thus, CM(R̂,R†) ⩽ H|S|nAn2b. Then,
applying Lemma B.1 implies that C∗(I) ⩽ NH|S|nAn2b.

Now that we have a good grasp of the cost to poison in general, we
look at more structured instances. We show that a very simple structural
assumption can tell us a good deal about the cost.

Proof of Lemma 4.2.

Proof. Fix h < H, s, i, ai, and some a−i. We use the notation

a† :=
(
π†
i,h (s) ,a−i

)
.

By assumption, we know that some uniform transition U ∈ CIPh(s,a1)

for each s and a1. Being uniform, U(s ′ | s,a1) = 1
|S|

for all s ′. For the
particular choice of Ph = U, we get an upper bound on the minimum over
all transitions in the equation defining Q and thus an upper bound on
Q. Similarly, this choice of Ph gives a lower bound on the max over all
transitions in the equation defining Q and thus an upper bound on Q. In
symbols, these bounds are,

Q
i,h (s,a1) ⩽ min

Ri,h∈CIR†i,h(s,a1)

Ri,h

+
∑
s ′∈S

1
|S|

Q
i,h+1

(
s ′,π†

h+1 (s
′)
)

146

Qi,h (s,a1) ⩾ max
Ri,h∈CIR†i,h(s,a1)

Ri,h

+
∑
s ′∈S

1
|S|

Qi,h+1

(
s ′,π†

h+1 (s
′)
)

Consequently, we have that,

min
Ri,h∈CIR†i,h(s,a†)

Ri,h − max
Ri,h∈CIR†i,h(s,a1)

Ri,h

⩾ min
Ri,h∈CIR†i,h(s,a†)

Ri,h − max
Ri,h∈CIR†i,h(s,a1)

Ri,h

+
∑
s ′∈S

1
|S|

(Q
i,h+1(s

′,π†
h+1 (s

′)) −Qi,h+1(s
′,π†

h+1 (s
′)))

= min
Ri,h∈CIR†i,h(s,a†)

Ri,h +
∑
s ′∈S

1
|S|

Q
i,h+1

(
s ′,π†

h+1 (s
′)
)

− max
Ri,h∈CIR†i,h(s,a1)

Ri,h +
∑
s ′∈S

1
|S|

Qi,h+1

(
s ′,π†

h+1 (s
′)
)

⩾ Q
i,h

(
s,a†)−Qi,h (s,a1)

⩾ ι

The first inequality uses the fact that by definition, Qi,h+1

(
s ′,π†

h+1 (s
′)
)
⩾

Q
i,h+1

(
s ′,π†

h+1 (s
′)
)

for all s ′ and so we have added a non-positive term.
The second inequality uses the bounds on Q

i,h and Qi,h we derived above.
The last inequality uses the ι-dominance constraint of the attack problem.

For the last period H, the definition of the attack problem is exactly
the definition of the attack problem for IH. Thus, we see that any feasible
solution to the instance I implies all the constraints defining the attack
problem for the period instance Ih are satisfied; namely, the ι-dominance
constraint and the reward bound constraints. This implies that a feasible

147

A1 \ A2 1 2 ... A2
1 −b,−b −b,b ... −b,b
2 b,−b b,b ... b,b
...
A1 b,−b b,b ... b,b

solution to I consists of feasible solutions to each Ih. Consequently,

C∗(I) ⩾
H∑

h=1

C∗(Ih)

as was to be shown.

We see that uniform transitions cause the instance to effectively de-
couple into independent period instances. In fact, when ρ(R) = ρ(P) = 0
and the MLE transition of the data is uniform, the proof above along with
the proof of the instance-dependent upper bound actually implies that
the minimum cost is exactly the sum of the minimum costs of the period
instances. Aside from that observation, we can use the above result to
derive a particularly high-cost instance.

Proof of Theorem 4.5.

Proof. Consider the Markov game with the same stage game in all periods
h ∈ [H] in all states s ∈ S, given by the following reward matrix, with
uniform transitions, meaning,

P̂h (s ′|s,a1) =
1
|S|

,∀ h ∈ [H] , s ′, s ∈ S,a1 ∈ A.

148

Given ρ
(R)
h (s,a1) = ρ for each h ∈ [H] , s ∈ S and a1 ∈ A, dι

i,h (s,a−i) is,

max
ai ̸=π

†
i,h(s)

R̂i,h (s, (ai,a−i)) + ρ

(R)
h (s, (ai,a−i))

− R̂i,h

(
s,
(
π†
i,H (s) ,a−i

))
+ ρ

(R)
h

(
s,
(
π†
i,H (s) ,a−i

))
+ ι

= max

ai ̸=π
†
i,h(s)

{b+ ρ− (−b) + ρ+ ι}

= 2b+ 2ρ+ ι,

and thus, by Lemma 4.2 and Lemma 4.3,

C∗(I) ⩾
H∑

h=1

C∗(Ih)

⩾
H∑

h=1

Nh∆h(ι)

⩾ N

H∑
h=1

∑
s∈S

n∑
i=1

∑
a−i∈A−i

(2b+ 2ρ+ ι)

= H |S|NnAn−1 (2b+ 2ρ+ ι) .

In fact, we can generalize this example to a family of instances having
high costs. We can shift each entry from b to some b− ϵ and still maintain
exponential cost. Even further, it can be shown that uniformly random
games have exponential costs in expectation. This follows since uniformly
random games have a large “spread” of values and so many entries must
be shifted significantly to ensure dominance. Formally, consider a normal-
form matrix game and note thatE[|x−y| | x > y] = 1

3bwhen x,y ∼ U[−b,b].
Also, Pr[x > y] = 1

2 . The expected dominance gap for some i and a−i is at

149

least
E[|x− y| | x > y]Pr[x > y] + 0Pr[x ⩽ y] =

1
6b

So, appealing to the lower bound on poisoning bandit games via domi-
nance gaps, we have the expected cost for an ι-DSE attack on a uniformly
random matrix game is at least

n∑
i=1

∑
a−i

1
6b = n|A|n−1b

6

Thus, many games are costly to attack using the strong solution concept of
ι-MPDSE. We encourage that in future work, different solution concepts
be considered, such as unique Nash equilibrium.

150

min
r†,R†,t,m

n∑
i=1

K∑
k=1

t
(k)
i

such that r†,(k)
i − r

0,(k)
i ⩽ t

(k)
i , ∀ k, i

r
0,(k)
i − r

†,(k)
i ⩽ −t

(k)
i ,∀ k, i

R†
i (a1) =

1
N (a1)

K∑
k=1

r
†,(k)
i 1{a(k)=a1}, ∀ a1, i

−m−
i

(
π†
i ,a−i

)
−m+

i

(
π†
i ,a−i

)
−m−

i (ai,a−i) −m+
i (ai,a−i)

⩽ −2b− ι, ∀ i,a−i,ai ̸= π†
i

−m−
i

(
π†
i ,a−i

)
−m+

i

(
π†
i ,a−i

)
−m−

i (ai,a−i) −m+
i (ai,a−i)

+ R†
i

(
π†
i ,a−i

)
− R†

i (ai,a−i)

⩽ −ρ(R)
(
π†
i ,a−i

)
− ρ(R) (ai,a−i) − ι,∀ i,a−i,ai ̸= π†

i

−m−
i

(
π†
i ,a−i

)
−m+

i

(
π†
i ,a−i

)
−m−

i (ai,a−i) −m+
i (ai,a−i) + R†

i

(
π†
i ,a−i

)
⩽ −b− ρ(R)

(
π†
i ,a−i

)
− ι,∀ i,a−i,ai ̸= π†

i

−m−
i

(
π†
i ,a−i

)
−m+

i

(
π†
i ,a−i

)
−m−

i (ai,a−i) −m+
i (ai,a−i) − R†

i (ai,a−i)

⩽ −ρ(R) (ai,a−i) − b− ι,∀ i,a−i,ai ̸= π†
i

−m−
i

(
π†
i ,a−i

)
− R†

i

(
π†
i ,a−i

)
⩽ ρ(R)

(
π†
i ,a−i

)
− b,∀ i,a−i,ai ̸= π†

i

−m+
i

(
π†
i ,a−i

)
+ R†

i

(
π†
i ,a−i

)
⩽ −ρ(R)

(
π†
i ,a−i

)
+ b,∀ i,a−i,ai ̸= π†

i

−m−
i (ai,a−i) + R†

i

(
π†
i ,a−i

)
⩽ −ρ(R) (ai,a−i) + b,∀ i,a−i,ai ̸= π†

i

−m+
i (ai,a−i) − R†

i

(
π†
i ,a−i

)
⩽ ρ(R) (ai,a−i) − b,∀ i,a−i,ai ̸= π†

i

r
†,(k)
i ⩽ b, ∀ k, i
− r

†,(k)
i ⩽ −b,∀ k, i

m−
i

(
π†
i ,a−i

)
,m+

i

(
π†
i ,a−i

)
,m−

i (ai,a−i) ,m+
i (ai,a−i) ⩾ 0,∀ i,a−i,ai ̸= π†

i .
(B.20)

151

min
r†,t,u,v,w

n∑
i=1

K∑
k=1

K∑
k=1

t
(k)
i,h

such that r†,(k)
i,h − r

(k)
i,h ⩽ t

(k)
i,h ,∀ h,k, i

r
(k)
i,h ⩽ −t

(k)
i,h ,∀ h,k, i

R†
i,h (s,a1) =

1
Nh (s,a1)

K∑
k=1

r
†,(k)
i,h 1{

s
(k)
h =s,a(k)h =a1

},∀ h, s, i,a1

Q
i,H (s,a1) = R†

i,H (s,a1) − ρ
(R)
H (s,a1) ,∀ s, i,a1

Qi,H (s,a1) = R†
i,H (s,a1) + ρ

(R)
H (s,a1) ,∀ s, i,a1

Q
i,h (s,a1) = R†

i,h (s,a1) − ρ
(R)
h (s,a1)

−
∑
s ′∈S

P̂h (s ′|s,a1)
[
ui,h (s,a1) − vi,h (s,a1)

]
s ′

−

{∑
s ′∈S

ρ
(P)
h (s,a1)

[
ui,h (s,a1) + vi,h (s,a1)

]
s ′

}
−wi,h (s,a1) , ∀ a1

Qi,h (s,a1) = R†
i,h (s,a1) + ρ

(R)
h (s,a1)

+
∑
s ′∈S

P̂h (s ′|s,a1) [ui,h (s,a1) − vi,h (s,a1)]s ′

+

{∑
s ′∈S

ρ
(P)
h (s,a1) [ui,h (s,a1) + vi,h (s,a1)]s ′

}
+wi,h (s,a1) ,∀ a1

−Q
i,h+1

(
s ′,π†

h+1 (s
′)
)
⩽
[
ui,h (s,a1) − vi,h (s,a1) +wi,h (s,a1)

]
s ′ ,∀ h, s, s ′, i,a1

Qi,h+1

(
s ′,π†

h+1 (s
′)
)
⩽ [ui,h (s,a1) − vi,h (s,a1) +wi,h (s,a1)]s ′ ,∀ h, s, s ′, i,a1

Qi,h (s, (ai,a−i)) −Q
i,h

(
s,
(
π†
i,h (s) ,a−i

))
⩽ −ι,∀ h, s, i,a−i,ai ̸= π†

i,h (s)

r
†,(k)
i,h ⩽ b, ∀ h,k, i
− r

†,(k)
i,h ⩽ −b,∀ h,k, i[

ui,h (s,a1)
]
s ′ ,
[
vi,h (s,a1)

]
s ′ , [ui,h (s,a1)]s ′ , [vi,h (s,a1)]s ′ ⩾ 0,∀ h, s, s ′, i,a1

(B.22)

152

c offline reward poisoning for zero-sum games
to install a nash equilibrium

C.1 Supplementary Material

Proof of Proposition 5.1 and Theorem 5.1

We show that for zero-sum games, strict MPEs are MPEs and they are
unique. We use the following definition of MPE and strict MPE for zero-
sum games rewritten in terms of Q functions. Proposition 5.1 is a special
case of Theorem 5.1 with H = |S| = 1.

Definition C.1. (Markov Perfect Equilibrium for Zero-sum Games)π† is a MPE
if for each h ∈ [H] , s ∈ S,

Qπ†

h

(
s,π†

h (s)
)
⩾ Qπ†

h

(
s,
(
a1,π†

2,h (s)
))

, ∀ a1 ̸= π†
1,h (s) , (C.1)

Qπ†

h

(
s,π†

h (s)
)
⩽ Qπ†

h

(
s,
(
π†

1,h (s) ,a2

))
,∀ a2 ̸= π†

2,h (s) . (C.2)

Definition C.2. (Strict Markov Perfect Equilibrium for Zero-sum Games)π† is
a strict MPE if for each h ∈ [H] , s ∈ S,

Qπ†

h

(
s,π†

h (s)
)
> Qπ†

h

(
s,
(
a1,π†

2,h (s)
))

,∀ a1 ̸= π†
1,h (s) , (C.3)

Qπ†

h

(
s,π†

h (s)
)
< Qπ†

h

(
s,
(
π†

1,h (s) ,a2

))
,∀ a2 ̸= π†

2,h (s) . (C.4)

Proof. Fix a period h ∈ [H], and assume in periods h+ 1,h+ 2, ...,H,π† is
the unique NE in every state s ∈ S. This is vacuously true in period H.
First, π†

h (s) is a NE since (C.3) implies (C.1) and (C.4) implies (C.2).
Now, for a contradiction, assume

(
a

′

1,a ′

2
)
̸= π†

h (s) is another NE in the

153

stage game in period h in some state s ∈ S, then,

Qπ†

h

(
s,
(
a

′

1,a ′

2

))
⩾ Qπ†

h

(
s,
(
π†

1,h (s) ,a ′

2

))
, (C.5)

Qπ†

h

(
s,
(
a

′

1,a ′

2

))
⩽ Qπ†

h

(
s,
(
a

′

1,π†
2,h (s)

))
. (C.6)

From the strict MPE conditions,

Qπ†

h

(
s,π†

h (s)
) (C.3)

> Qπ†

h

(
s,
(
π†

1,h (s) ,a ′

2

))
, (C.7)

Qπ†

h

(
s,π†

h (s)
) (C.4)

< Qπ†

h

(
s,
(
a

′

1,π†
2,h (s)

))
. (C.8)

Combine the above inequalities, we get,

Qπ†

h

(
s,π†

h (s)
) (C.5), (C.7)

> Qπ†

h

(
s,
(
a

′

1,a ′

2

))
, (C.9)

Qπ†

h

(
s,π†

h (s)
) (C.6), (C.8)

< Qπ†

h

(
s,
(
a

′

1,a ′

2

))
, (C.10)

which is a contradiction.
Therefore, π† is the unique NE in period h, state s. Since h and s are
arbitrary, π† is the unique MPE.

Proof of Proposition 5.2 and Theorem 5.2

We first write out the complete optimization problem for (5.23) in Exam-
ple 5.9, then we show that the optimization is a relaxation by showing
for any Qπ† ∈

[
Qπ† ,Qπ†]

elememtwise, π† is a strict MPE, and as a result
Theorem 5.1 implies its uniqueness. The proof that the problem can be
converted into a linear program is similar to LP conversions in (Wu et al.,
2023b). We do not write out the complete LP, and instead we show that
each constraint can be converted into a linear constraint. Theorem 5.2
is a special case of (5.23) with given Qπ† and Q

π†

that are not derived

154

from the rewards and transitions, and Proposition 5.2 is a special case of
Theorem 5.2 when H = |S| = 1.

min
r†∈[0,1]HK

K∑
k=1

H∑
h=1

∣∣∣r†,(k)
h − r

(k)
h

∣∣∣

subject to Rh (s, a) =

K∑
k=1

H∑
h=1

r
†,(k)
h I{

s
(k)
h =s,a(k)h =a

}
max {Nh (s, a) , 1} , (C.11)

∀ h ∈ [H] , s ∈ S, a ∈ A, (C.12)

Ph (s ′|s, a) =

K∑
k=1

I{
s
(k)
h+1=s ′,s(k)h =s,a(k)h =a

}
Nh (s, a) or 1

|S|
if Nh (s, a) = 0,

(C.13)

∀ h ∈ [H] , s ∈ S, a ∈ A, (C.14)

Qπ†

h
(s, a) = min

R∈C
(R)
i,h (s,a)

R+ min
P∈C

(P)
h (s,a)

∑
s ′∈S

P (s ′)Qπ†

h+1

(
s ′,π†

h+1 (s
′)
)

,

(C.15)

∀ h ∈ [H] , s ∈ S, a ∈ A, (C.16)

Q
π†

h (s, a) = max
R∈C

(R)
i,h (s,a)

R+ max
P∈C

(P)
h (s,a)

∑
s ′∈S

P (s ′)Q
π†

h+1

(
s ′,π†

h+1 (s
′)
)

,

(C.17)

∀ h ∈ [H] , s ∈ S, a ∈ A, (C.18)

Qπ†

H+1 (s, a) = Q
π†

H+1 (s, a) = 0, ∀ s ∈ S, a ∈ A,

Qπ†

h

(
s,π†

h (s)
)
⩾ Q

π†

h

(
s,
(
a1,π†

2,h (s)
))

+ ι, (C.19)

∀ h ∈ [H] , s ∈ S,a1 ̸= π†
1,h (s) , (C.20)

Q
π†

h

(
s,π†

h (s)
)
⩽ Qπ†

h

(
s,
(
π†

1,h (s) ,a2

))
− ι, (C.21)

∀ h ∈ [H] , s ∈ S,a2 ̸= π†
2,h (s) . (C.22)

155

Since we evaluate the Q and Q functions on the policy π†, we add super-
script π† on Q and Q inside the optimization for clarity.

Proof. Take any R ∈ C(R) and P ∈ C(P), due to the definition of Qπ† and
Q

π†

, which are replicated in (C.16) and (C.18), we know that, for each
h ∈ [H] , s ∈ S, a ∈ A,

Qπ†

h
(s, a) ⩽ Qπ†

h (s, a) ⩽ Q
π†

h (s, a) . (C.23)

Fix period h ∈ [H], and assume in periods h+ 1,h+ 2, ...,H,π† is the Nash
equilibrium in every state s ∈ S. This is vacuously true in period H.
For a fixed s ∈ S, for any a1 ̸= π†

1,h (s),

Qπ†

h

(
s,π†

h (s)
) (C.23)

⩾ Qπ†

h

(
s,π†

h (s)
)

(C.20)
⩾ Q

π†

h

(
s,
(
a1,π†

2,h (s)
))

+ ι

(C.23)
⩾ Qπ†

h

(
s,
(
a1,π†

2,h (s)
))

+ ι, (C.24)

and for any a2 ̸= π†
2,h (s),

Qπ†

h

(
s,π†

h (s)
) (C.23)

⩽ Q
π†

h

(
s,π†

h (s)
)

(C.22)
⩽ Qπ†

h

(
s,
(
π†

1,h (s) ,a2

))
− ι

(C.23)
⩾ Qπ†

h

(
s,
(
π†

2,h (s) ,a2

))
− ι, (C.25)

(C.24) and (C.25) imply that π†
h (s) is the Nash equilibrium in period h

state s.
Therefore, Qπ† ∈ U

(
π†; ι

)
, and by Theorem 5.1, π† is the unique MPE.

Now, to show that the problem can be converted into an LP, we note that
(C.12) is linear in r†, (C.14) is independent of r†, (C.20) and (C.22) are

156

linear in Q and Q. Therefore, we only have to convert (C.16) and (C.18),
which define Q and Q into linear constraints in r†, in particular, we convert
the following linear program, for some h ∈ [H] , s ∈ S, a ∈ A,

min
P

∑
s ′∈S

P (s ′)Qπ†

h+1

(
s ′,π†

h+1 (s
′)
)

subject to P (s ′) ⩽ P̂h (s ′|s, a) + ρ
(P)
h (s, a) ,∀ s ′ ∈ S,

P (s ′) ⩾ P̂h (s ′|s, a) − ρ(P) (s, a) ,∀ s ′ ∈ S,∑
s ′∈S

P (s ′) = 1,

P (s ′) ⩾ 0,∀ s ′ ∈ S,

into its dual problem,

max
u∈RS,v∈RS,w∈R

∑
s ′∈S

P̂h (s ′|s, a) (us ′ − vs ′) + ρ
(P)
h (s, a) (us ′ + vs ′) +w

subject to us ′ − vs ′ +w ⩾ −Qπ†

h+1

(
s ′,π†

h+1 (s
′)
)

,∀ s ′ ∈ S,

us ′ ⩾ 0, vs ′ ⩾ 0,∀ s ′ ∈ S.

Therefore, (C.16) can be rewritten as the following linear constraints,

Qπ†

h
(s, a) = Rh (s, a) − ρ

(R)
h (s, a) +

∑
s ′∈S

P̂h (s ′|s, a) (us ′ − vs ′) + ρ
(P)
h (s, a) (us ′ + vs ′) +w,

us ′ − vs ′ +w ⩾ −Qπ†

h+1

(
s ′,π†

h+1 (s
′)
)

, ∀ s ′ ∈ S,

us ′ ⩾ 0, vs ′ ⩾ 0,∀ s ′ ∈ S.

157

The similar dual problem can be written out for the Q to replace (C.18),

Q
π†

h (s, a) = Rh (s, a) + ρ
(R)
h (s, a) +

∑
s ′∈S

P̂h (s ′|s, a) (us ′ − vs ′) + ρ
(P)
h (s, a) (us ′ + vs ′) +w,

us ′ − vs ′ +w ⩾ Q
π†

h+1

(
s ′,π†

h+1 (s
′)
)

, ∀ s ′ ∈ S,

us ′ ⩾ 0, vs ′ ⩾ 0,∀ s ′ ∈ S.

The linearization of the other Q and Q constraints are similar.

Proof of Theorem 5.3

Again, we write the proof for (5.23) in Example 5.9, and Theorem 5.3 is a
special case with given Qπ† and Q

π†

that are not derived from the rewards
and transitions. In particular, setting ρ(Q) = ρ(R) and ρ(P) = 0 would like
to the result stated in Theorem 5.3. We first provide the intuition behind
the proofs. The proof is at the end of this subsection.

Suppose the target action profile is (1, 1) in some state s in period
h, we show that the target action profile (1, 1) is the unique NE for any
Qh (s, ·) ∈

[
Q

h
(s, ·) ,Qh (s, ·)

]
under the following attack,

r
†,(k)
h =

−b if a(k)
1,h ̸= π†

1,h

(
s
(k)
h

)
,a(k)

2,h = π†
2,h

(
s
(k)
h

)
0 if a(k)

1,h = π†
1,h

(
s
(k)
h

)
,a(k)

2,h = π†
2,h

(
s
(k)
h

)
b if a(k)

1,h = π†
1,h

(
s
(k)
h

)
,a(k)

2,h ̸= π†
2,h

(
s
(k)
h

)
r
(k)
h otherwise

. (C.26)

To simplify the notations, we define the bounds on the cumulative Q value

158

in period h+ 1,h+ 2, ...,H as,

Sh =

H∑
h ′=h+1

min
s ′∈S

Q
h ′

(
s ′,π†

h ′ (s
′)
)

Sh =

H∑
h ′=h+1

max
s ′∈S

Qh ′

(
s ′,π†

h ′ (s
′)
)

Q
h
(s) is lower bounded by,

A1 \A2 1 2 ... |A2|

1 0 − ρ
(R)
h (s, (1, 1)) + Sh b− ρ

(R)
h (s, (1, 2)) + Sh ... b− ρ

(R)
h (s, (1, |A2|)) + Sh

2 −b− ρ
(R)
h (s, (2, 1)) + Sh ? ... ?

...
|A1| −b− ρ

(R)
h (s, (|A1| , 1)) + Sh ? ... ?

Qh (s) is upper bounded by,

A1 \A2 1 2 ... |A2|

1 0 + ρ
(R)
h (s, (1, 1)) + Sh b+ ρ

(R)
h (s, (1, 2)) + Sh ... b+ ρ

(R)
h (s, (1, |A2|)) + Sh

2 −b+ ρ
(R)
h (s, (2, 1)) + Sh ? ... ?

...
|A1| −b+ ρ

(R)
h (s, (|A1| , 1)) + Sh ? ... ?

For (1, 1) to be the ι strict, thus unique, Nash equilibrium for allQ ∈
[
Q,Q

]
,

sufficient conditions are, for a1 ̸= 1 and a2 ̸= 1,

−ρ
(R)
h (s, (1, 1)) + Sh −

ι

2 ⩾ −
b

2H (H− h+ 1) ⩾ −b+ ρ
(R)
h (s, (a1, 1)) + Sh +

ι

2,

ρ
(R)
h (s, (1, 1)) + Sh +

ι

2 ⩽
b

2H (H− h+ 1) ⩽ b− ρ
(R)
h (s, (1,a2)) + Sh −

ι

2,

which would be true in period 1 if the following is satisfied for a such that
either a1 = π†

1,h (s) or a2 = π†
2,h (s),

ρ
(R)
h (s, a) ⩽ b− ι

4H ⩽
b

2H −
ι

2,

159

which in turn implies,

Sh ⩾ −
b

2H (H− h+ 1) + b

4H ,

Sh ⩽
b

2H (H− h+ 1) − b

4H .

We provide the formal proof below.

Proof. We assume is satisfied, meaning, for each h ∈ [H] , s ∈ S, a ∈ A,

ρ
(R)
h (s, a) ⩽ b− ι

4H ⩽
b

2H −
ι

2. (C.27)

In addition, take R ∈ C(R), based on (C.26), we can compute R̂ using
(C.12), and for each h ∈ [H] , s ∈ S,

−ρ
(R)
h

(
s,π†

h (s)
)
⩽ Rh

(
s,π†

h (s)
)
⩽ ρ

(R)
h

(
s,π†

h (s)
)

, (C.28)

−b− ρ
(R)
h

(
s,
(
a1,π†

2,h (s)
))

⩽ Rh

(
s,
(
a1,π†

2,h (s)
))

⩽ −b+ ρ
(R)
h

(
s,
(
a1,π†

2,h (s)
))

, (C.29)

b− ρ
(R)
h

(
s,
(
π†

1,h (s) ,a2

))
⩽ Rh

(
s,
(
π†

1,h (s) ,a2

))
⩽ b+ ρ

(R)
h

(
s,
(
π†

1,h (s) ,a2

))
. (C.30)

160

We proceed by induction. In period H, for a1 ̸= π†
1,H (s),

Qπ†

H

(
s,π†

H (s)
)
−

ι

2 = RH

(
s,π†

H (s)
)
−

ι

2
(C.28)
⩾ −ρ

(R)
h

(
s,π†

H (s)
)
−

ι

2
(C.27)
⩾ −

b

2H (C.31)

⩾ −b+
b

2H
(C.27)
⩾ −b+ ρ

(R)
h

(
s,
(
a1,π†

2,H (s)
))

+
ι

2
(C.29)
⩾ RH

(
s,
(
a1,π†

2,H (s)
))

+
ι

2
= Qπ†

h

(
s,
(
a1,π†

2,H (s)
))

+
ι

2,

and for a2 ̸= π†
2,H (s),

Qπ†

H

(
s,π†

H (s)
)
+

ι

2 = RH

(
s,π†

H (s)
)
+

ι

2
(C.28)
⩽ ρ

(R)
h

(
s,π†

H (s)
)
+

ι

2
(C.27)
⩽

b

2H (C.32)

⩽ b−
b

2H
(C.27)
⩽ b− ρ

(R)
h

(
s,
(
a1,π†

2,H (s)
))

−
ι

2
(C.29)
⩽ RH

(
s,
(
π†

1,H (s) ,a2

))
−

ι

2
= Qπ†

H

(
s,
(
π†

1,H (s) ,a2

))
−

ι

2.

Now, fix a period h < H, we assume in periods h ′ ∈ {h+ 1,h+ 2, ...,H},

161

in every state s ∈ S,π† is the Nash equilibrium, and,

−
b

2 (H− h ′ + 1) ⩽ Qπ†

h ′

(
s,π†

h ′ (s)
)
⩽

b

2 (H− h ′ + 1) . (C.33)

This is true in period H due to (C.31) and (C.32).
Now in period h, for a fixed s ∈ S, for any a1 ̸= π†

1,h (s),

Qπ†

h

(
s,π†

h (s)
)
−

ι

2
= Rh

(
s,π†

h (s)
)
+

∑
s ′∈S

Ph

(
s ′|s,π†

h (s)
)
Qπ†

h+1

(
s ′,π†

h+1 (s
′)
)
−

ι

2

⩾ Rh

(
s,π†

h (s)
)
+ min

s ′∈S
Qπ†

h+1

(
s ′,π†

h+1 (s
′)
)
−

ι

2
(C.33)
⩾ Rh

(
s,π†

h (s)
)
−

b

2 (H− h) −
ι

2
(C.28)
⩾ −ρ

(R)
h

(
s,π†

h (s)
)
−

b

2H (H− h) −
ι

2
(C.27)
⩾ −

b

2H −
b

2H (H− h)

⩾ −
b

2H (H− h+ 1) (C.34)

⩾ −b+
b

2H +
b

2H (H− h)

(C.27)
⩾ −b+ ρ

(R)
h

(
s,
(
a1,π†

2,h (s)
))

+
b

2H (H− h) +
ι

2
(C.29)
⩾ Rh

(
s,
(
a1,π†

2,h (s)
))

+
b

2H (H− h) +
ι

2
(C.33)
⩾ Rh

(
s,
(
a1,π†

2,h (s)
))

+ max
s ′∈S

Qπ†

h+1

(
s ′,
(
a1,π†

h+1 (s
′)
))

+
ι

2
⩾ Rh

(
s,
(
a1,π†

2,h (s)
))

+
∑
s ′∈S

Ph

(
s ′|s,

(
a1,π†

2,h (s)
))

Qπ†

h+1

(
s ′,
(
a1,π†

h+1 (s
′)
))

+
ι

2

= Qπ†

h

(
s,
(
a1,π†

2,h (s)
))

+
ι

2,

162

and for a2 ̸= π†
2,h (s),

Qπ†

h

(
s,π†

h (s)
)
+

ι

2
= Rh

(
s,π†

h (s)
)
+

∑
s ′∈S

Ph

(
s ′|s,π†

h (s)
)
Qπ†

h+1

(
s ′,π†

h+1 (s
′)
)
+

ι

2

⩽ Rh

(
s,π†

h (s)
)
+ max

s ′∈S
Qπ†

h+1

(
s ′,π†

h+1 (s
′)
)
+

ι

2
(C.33)
⩽ Rh

(
s,π†

h (s)
)
+

b

2H (H− h) +
ι

2
(C.28)
⩽ ρ

(R)
h

(
s,π†

h (s)
)
+

b

2H (H−H) +
ι

2
(C.27)
⩽

b

2H +
b

2H (H− h)

=
b

2H (H− h+ 1) (C.35)

⩽ b−
b

2H −
b

2H (H− h)

(C.27)
⩽ b+ ρ

(R)
h

(
s,
(
a1,π†

2,h (s)
))

−
b

2H (H− h) −
ι

2
(C.29)
⩽ Rh

(
s,
(
π†

1,h (s) ,a2

))
−

b

2H (H− h) −
ι

2
(C.33)
⩽ Rh

(
s,
(
π†

1,h (s) ,a2

))
+ min

s ′∈S
Qπ†

h+1

(
s ′,
(
π†

1,h (s) ,a2

))
−

ι

2
⩽ Rh

(
s,
(
π†

1,h (s) ,a2

))
+

∑
s ′∈S

Ph

(
s ′|s,

(
π†

1,h (s) ,a2

))
Qπ†

h+1

(
s ′,
(
π†

1,h (s) ,a2

))
−

ι

2

= Qπ†

h

(
s,
(
π†

1,h (s) ,a2

))
−

ι

2.

Therefore, π† is the Nash equilibrium in period h state s, and (C.34) and
(C.35) are consistent (C.33). By induction, π† is a strict, thus unique, Nash
equilibrium in every stage game, making π† the unique MPE.

163

Code Details

We conducted our experiments using standard python3 libraries. The only
exception being we used the gurobi LP solver. We provide our code in a
jupyter notebook with an associated database file so that our experiments
can be easily reproduced. The notebook already reads in the database by
default so no file management is needed. Simply ensure the notebook is
in the same directory as the database folder.

164

d planning setting, reward poisoning for
zero-sum games to install a mixed-strategy nash
equilibrium

D.1 Appendix
In this appendix we provide omitted proofs and additional experiments.

Proof of Theorem 6.1

Proof. Theorem 6.1 states that the SIISOW and INV conditions are suffi-
cient and necessary for (p, q) to be the unique NE of the game R. We prove
sufficiency and necessity separately.

Conditions⇒ unique NE: We have already argued that (p, q) is an
NE; see the discussion after the definition of SIISOW. Suppose (r, s) is
another NE. We show that it must be the case r = p, s = q.

First of all, it is easy to see that supp(r) ⊆ I, supp(s) ⊆ J. Suppose
there is a violation ∃i ∈ supp(r), i /∈ I. By (6.6), e⊤

i Rq < p⊤Rq = v∗ which
leads to r⊤Rq < v∗. But since (r, s) is another NE in a two-player zero-sum
game, (r, q) is a third NE with r⊤Rq = v∗ , a contradiction. The case for s
is similar.

Because (r, s) is an NE, it satisfies the primal-dual LP in Definition 6.4.
Now with the support constraints, they satisfy the reduced LPs where the
vectors and matrices are restricted to the appropriate support:

max
r ′I∈∆I,v

v s.t. r ′⊤
I RI· ⩾ v1⊤

|J| (D.1)

min
s ′J∈∆J,v

v s.t. R·Js ′
J ⩽ v1|I|. (D.2)

We now show this must mean s = q. Consider two cases on the dual
restricted LP:

165

(Case 1) At the solution (s, v∗), all constraints in RIJsJ ⩽ v∗ are active,
i.e. they are equalities RIJsJ = v∗. Also sJ sums to 1. We may write the
two as a linear system: [

RIJ −1
1 0

][
sJ
v∗

]
=

[
0
1

]
. (D.3)

By the invertability condition, sJ has a unique solution and it must equal
qJ because qJ is also a solution to this linear system. The rest of s and q
are both zeros. Thus s = q.

(Case 2) At least one constraint in RIJsJ ⩽ v∗ is inactive. Then there
exists slack variables ξ ∈ R|J|, ξ ⩾ 0 with at least one positive entry, such
that

RIJsJ = v∗1 − ξ.

Recall (p, q) is an NE. By the assumption that (r, s) is an NE, and the
property of two-player zero-sum games, (p, s) is also an NE with the same
value v∗. But p⊤Rs = p⊤

I RIJsJ = v∗ − p⊤
I ξ < v∗, because all terms in pI

are positive and at least one term in ξ is positive. This is a contradiction.
So case 2 will not happen.

Taken together, s = q. Similarly, one can show r = p.
Unique NE⇒ conditions: Let (p, q) be the unique NE of R with value

v∗, and let I, J be their support.
We first show SIISOW. Equations (6.4) and (6.5) are immediate from

NE definition. Since (p, q) is the only NE of the game, it satisfies Goldman
and Tucker Corollary 3A. The corollary states that

∀i ∈ A1, (e⊤
i Rq = v∗)⇒ (i ∈ I) (D.4)

∀j ∈ A2, (p⊤Rej = v∗)⇒ (j ∈ J). (D.5)

166

Their contraposition is

∀i ∈ A1, (i /∈ I)⇒ (e⊤
i Rq ̸= v∗) (D.6)

∀j ∈ A2, (j /∈ J)⇒ (p⊤Rej ̸= v∗). (D.7)

But since v∗ is the NE game value, these imply

∀i ∈ A1, (i /∈ I)⇒ (e⊤
i Rq < v∗) (D.8)

∀j ∈ A2, (j /∈ J)⇒ (p⊤Rej < v∗). (D.9)

Therefore, (p, q) satisfies the SIISOW condition.
We next show invertability by contradition. Suppose the matrix in

Definition 6.2 is not invertable. Then either (i) |I| < |J|, (ii) |I| > |J|, or
(iii) |I| = |J| ⩾ 2. Case (iii) is due to the fact that should |I| = |J| = 1,

RIJ is a scalar and the matrix
[
RIJ −1
1 0

]
with determinant 1 is always

invertible. We show that any one of the three cases leads to a second NE,
contradicting the uniqueness of (p, q). In what follows we give the proof
for (i) or (iii); case (ii) is similar to (i) but with respect to R⊤

IJ and p, and
is omitted.

In cases (i) or (iii) the following homogeneous linear system has a
nonzero solution: [

RIJ −1|I|

1⊤
|J| 0

][
δ

x

]
= 0, (D.10)

where δ ∈ R|J|, x ∈ R. This nonzero solution (δ, x) has some useful
properties:

• δ sums to zero:
1⊤δ = 0. (D.11)

This follows directly from the second equality of (D.10).

167

• δ ̸= 0. This follows from the first equality of (D.10)

RIJδ = x1, (D.12)

otherwise both δ and x would be zero, contradicting a nonzero solu-
tion.

• x = 0 and
RIJδ = 0. (D.13)

We first show x = 0. Consider

p⊤R

[
δ

0|A2|−|J|

]
(D.14)

=
∑
j∈J

p⊤Rejδj (D.15)

=
∑
j∈J

v∗δj (D.16)

= 0, (D.17)

where the second equality follows from the SIISOW condition p⊤Rej =

p⊤Rq = v∗, ∀j ∈ J. But at the same time, by the support of p

p⊤R

[
δ

0|A2|−|J|

]
(D.18)

= p⊤
I RIJδ (D.19)

= p⊤
I x1 = x. (D.20)

Therefore x = 0. Then use (D.12) to obtain (D.13).

We use this δ to construct another NE with the following steps:

1. We scale δ so its magnitute is sufficiently small. The desired scale is
determined by two constants:

168

a) Since we are under cases (i) or (iii), |J| ⩾ 2. Thus the entries of
qJ cannot be 0 or 1: ∃c1 > 0 : c1 ⩽ qj ⩽ 1 − c1, ∀j ∈ J.

b) By the SIISOW condition, e⊤
i Rq < v∗ for i /∈ I. Let c2 = v∗ −

maxi/∈I e⊤
i Rq.

We choose the scale

c = min
(

c1

∥δ∥∞ , min
i/∈I

c2

|RiJδ|

)
. (D.21)

2. Set r = q +

[
cδ

0

]
.

We claim (p, r) is another NE:

• Since δ sums to zero, qJ + cδ remains normalized; since c ⩽ c1
∥δ∥∞ ,

all entries of qJ + cδ remains in [0, 1]. Therefore r ∈ ∆A2 is a proper
strategy.

• r is a best response to p:

p⊤Rr = p⊤Rq + p⊤R

[
cδ

0

]
= v∗, (D.22)

where we used (D.14). Therefore, p⊤Rr = v∗ ⩽ p⊤Rq ′,∀q ′ ∈ ∆A2

because p is part of an NE.

169

• p is a best response to r: ∀p ′ ∈ ∆A1 ,

p ′⊤Rr (D.23)

=
∑
i∈I

p ′
ie⊤

i Rq + p ′
I
⊤
RIJcδ+

∑
i/∈I

p ′
i

(
e⊤
i Rq + e⊤

i R

[
cδ

0

])

=
∑
i∈I

p ′
ie⊤

i Rq +
∑
i/∈I

p ′
i

(
e⊤
i Rq + e⊤

i R

[
cδ

0

])

=
∑
i∈I

p ′
iv

∗ +
∑
i/∈I

p ′
i

(
e⊤
i Rq + e⊤

i R

[
cδ

0

])

⩽
∑
i∈I

p ′
iv

∗ +
∑
i/∈I

p ′
i

(
v∗ − c2 + e⊤

i R

[
cδ

0

])
=

∑
i∈I

p ′
iv

∗ +
∑
i/∈I

p ′
i (v

∗ − c2 + cRiJδ) . (D.24)

where the second equality follows from (D.13), the next two lines
from SIISOW. Because c ⩽ mini/∈I

c2
|RiJδ|

,

p ′⊤Rr (D.25)

⩽
∑
i∈I

p ′
iv

∗ +
∑
i/∈I

p ′
i (v

∗ − c2 + c2) = v∗ = p⊤Rr.

Because δ ̸= 0, r ̸= q. Thus (p, r) ̸= (p, q) is indeed a second NE, contra-
dicting uniqueness.

Proof of Lemma 6.1

For ease of understanding, in Table D.1 we illusrate the reward matrix
R eRPS (p,q) for the extended Rock-Paper-Scissors game when k ⩾ 2.

170

A1 \ A2 0 1 2 3 ... k− 2 k− 1 k ... |A2|− 1
0 0 − c

p0q1
c

p0q2
0 ... 0 0 1 ... 1

1 0 0 − c
p1q2

c
p1q3

... 0 0 1 ... 1
2 0 0 0 − c

p2q3
... 0 0 1 ... 1

3 0 0 0 0 ... 0 0 1 ... 1
...

k− 2 c
pk−2q0

0 0 0 ... 0 − c
pk−2qk−1

1 ... 1
k− 1 − c

pk−1q0
c

pk−1q1
0 0 ... 0 0 1 ... 1

k −1 −1 −1 −1 ... −1 −1 0 ... 0
...

|A1|− 1 −1 −1 −1 −1 ... −1 −1 0 ... 0

Table D.1: The R eRPS game when k ⩾ 2, i.e. (p, q) is a mixed strategy

Proof. To show uniqueness, we check that the conditions in Theorem 6.1
is satisfied,

e⊤
i Rq = 0 = p⊤Rq,∀ i ∈ I,

e⊤
i Rq = −1 < 0 = p⊤Rq, ∀ i /∈ I,

p⊤Rej = 0 = p⊤Rq,∀ j ∈ J,

p⊤Rej = 1 > 0 = p⊤Rq, ∀ j /∈ J,

(D.26)

and we have
[
RIJ −1|I|

1⊤
|J| 0

]
is invertible.

To simplify the notations, we omit the modulo k operation for the
indices of p and q. Observe that

e⊤
i Rq = −

c

piqi+1
qi+1 +

c

piqi+2
qi+2 = 0,∀ i ∈ I,

e⊤
i Rq =

∑
j∈J

−1qj = −1,∀ i /∈ I,
(D.27)

171

and similarly,

p⊤Rej =
c

pj−2qj

pj−2 −
c

pj−1qj

pj−1 = 0,∀ j ∈ J,

p⊤Rej =
∑
i∈I

1pi = 1,∀ j /∈ J.
(D.28)

In addition, we have,

p⊤Rq =
∑
i∈I

pi

(
e⊤
i Rq

)
= 0. (D.29)

Therefore, the SIISOW conditions are satisfied.

We now turn to the invertibility condition. For k = 1,
[

0 −1
1 0

]
is

invertible. For fixed p, q, for k = 2, we have,

det

c

p0q0
−

c

p0q1
−1

−
c

p1q0

c

p1q1
−1

1 1 0

= det

1
p0

0 0

0 1
p1

0

0 0 1
c

det

 1 −1 p0

−1 1 p1

q0 q1 0

det

1
q0

0 0

0 1
q1

0

0 0 1
c

= c (p0 + p1)

q0 + q1

p0p1q0q1

> 0,

(D.30)

172

therefore it is invertible, similarly for k = 3,

det

0 −
c

p0q1

c

p0q2
−1

c

p1q0
0 −

c

p1q2
−1

−
c

p2q0

c

p2q1
0 −1

1 1 1 0

= det

1
p0

0 0 0

0 1
p1

0 0

0 0 1
p2

0

0 0 0 1
c

det

0 −1 1 −p0

1 0 −1 −p1

−1 1 0 −p2

q0 q1 q2 0

det

1
q0

0 0 0

0 1
q1

0 0

0 0 1
q2

0

0 0 0 1
c

= c2 (p0 + p1 + p2) (q0 + q1 + q2)

p0p1p2q0q1q2

> 0,
(D.31)

173

and for k = 4,

det

0 −
c

p0q1

c

p0q2
0 −1

0 0 −
c

p1q2

c

p1q3
−1

c

p2q0
0 0 −

c

p2q3
−1

−
c

p3q0

c

p3q1
0 0 −1

1 1 1 1 0

= det

1
p0

0 0 0 0

0 1
p1

0 0 0

0 0 1
p2

0 0

0 0 0 1
p3

0

0 0 0 0 1
c

det

0 −1 1 0 −p0

0 0 −1 1 −p1

1 0 0 −1 −p2

−1 1 0 0 −p3

q0 q1 q2 q3 0

det

1
q0

0 0 0 0

0 1
q1

0 0 0

0 0 1
q2

0 0

0 0 0 1
q3

0

0 0 0 0 1
c

= c3 (p0 + p1 + p2 + p3) (q0 + q1 + q2 + q3)

p0p1p2p3q0q1q2q3

> 0,
(D.32)

and in general, we can write
[
RIJ −1|I|

1⊤
|J| 0

]
as the product of diag

(
1
p1

, 1
p2

, ..., 1
pk

, 1
c

)
,
[
R ′ p
q⊤ 0

]
, and diag

(
1
q1

, 1
q2

, ..., 1
qk

, 1
c

)
, where R ′ is a matrix with entries,

R ′
ij =

−1 if j = (i+ 1) mod k

1 if j = (i+ 2) mod k

0 otherwise

, (D.33)

with the above examples provided for k = 2, 3, 4,

174

and the determinant is given by,

det
[
RIJ −1|I|

1⊤
|J| 0

]

= det diag
(

1
p1

, 1
p2

, ..., 1
pk

, 1
c

)
det

[
R ′ p
q⊤ 0

]
det diag

(
1
q1

, 1
q2

, ..., 1
qk

, 1
c

)

= ck−1

k∑
i=1

pi

k∑
j=1

qj

k∏
i=1

pi

k∏
j=1

qj

> 0.
(D.34)

This verifies the INV condition and completes the proof.

The Markov Game Modification Problem as An
Optimization Problem

Here we instantiate the general Game Modification problem (Defini-
tion 6.1) to Markov games as an optimization problem.

Definition D.1 (Game Modification for Two-Player Zero-Sum Markov
Game). Given the cost function ℓ, the target policy (p, q) with supports I, J,
target value range [v, v], the game modification for Markov games can be written

175

as the following optimization problem,

inf
R,v,Q

ℓ (R,R◦)

s.t. [Qh (s)]Ih(s)• qh (s) = vh (s) 1|Ih(s)|

∀ h ∈ [H] , s ∈ S

p⊤
h (s) [Qh (s)]•Jh(s)

= vh (s) 1⊤
|Jh(s)|

∀ h ∈ [H] , s ∈ S

[Qh (s)]A1\Ih(s)• qh (s) < vh (s) 1|A1\Ih(s)|

∀ h ∈ [H] , s ∈ S

p⊤
h (s) [Qh (s)]•A2\Jh(s)

> vh (s) 1⊤
|A2\Jh(s)|

∀ h ∈ [H] , s ∈ S

σmin

([
[Qh (s)]Ih(s)Jh(s)

−1|Ih(s)|

1⊤
|Jh(s)|

0

])
> 0

∀ h ∈ [H] , s ∈ S

Qh (s) = Rh (s) +
∑
s ′∈S

Ph (s ′|s) vh+1 (s
′)

∀ h ∈ [H− 1] , s ∈ S

QH (s) = RH (s) ,∀ s ∈ S

v ⩽
∑
s∈S

P0 (s) v1 (s) ⩽ v

− b ⩽ [Rh (s)]ij ⩽ b

∀ (i, j) ∈ A,h ∈ [H] , s ∈ S.

(D.35)

Proof of Theorem 6.2 and Corollary 6.1

Theorem 6.2 concerns the feasibility of modifying normal-form games
in Definition 6.5, and Corollary 6.1 concerns the feasibility of modifying
H-period Markov games in Definition D.1. Below we prove Corollary 6.1,
from which Theorem 6.2 follows as an special case with H = 1.

176

Direction⇒. If π = (p, q) is the unique Nash in stage game in period

h ∈ [H], state s ∈ S, then by Theorem 6.1,
[
RIh(s)Jh(s) −1Ih(s)

1⊤
Jh(s)

0

]
is an

invertible square matrix, therefore, |Ih (s)| = |Jh (s)|.
Now to show that (−Hb,Hb) ∩ [v, v] = empty leads to infeasibility, note
that either,

v ⩾ Hb, (D.36)

or,
v ⩽ −Hb, (D.37)

meaning the value of at least one stage game at least b or at most −b, and
the SIISOW conditions imply that there are some entries of Rh (s) that are
strictly larger than b or strictly smaller than −b, which contradicts the
reward bound conditions.

Direction⇐. Fix a stage game in period h ∈ [H], state s ∈ S, if |Ih (s)| =

|Jh (s)| = k for some k, then without loss of generality, we can rename the
actions so that Ih (s) = Jh (s) = {0, 1, 2, ...,k− 1} and Lemma 6.1 provides
a game with the unique Nash equilibrium (ph (s) , qh (s)). Note that since
the value of R eRPS is 0, all stage games have value 0, so we have, for every
h ∈ [H] , s ∈ S,

Qh (s) = Rh (s) . (D.38)

The (−Hb,Hb) ∩ [v, v] ̸= ∅ condition guarantees the existence of some
v⋆ ∈ [v, v] that satisfies,

−Hb < v⋆ < Hb. (D.39)

Now consider the Markov game (R,P) with rewards defined by,

Rh (s) = R eRPS (ph(s),qh(s)) +
1
H
v⋆. (D.40)

This implies that the Q matrices can be computed as recursively for h =

177

H− 1,H− 2, ..., 1,

vh (s) =
H− h+ 1

H
v⋆,

Qh (s) = Rh (s) +
∑
s ′∈S

Ph (s ′|s) vh+1 (s)

= Rh (s) +
∑
s ′∈S

Ph (s ′|s)
H− h

H
v⋆

= Rh (s) +
H− h

H
v⋆

= R eRPS (ph(s),qh(s)) +
H− h+ 1

H
v⋆,

(D.41)

which is an affine transformation ofR eRPS , so it has unique Nash (ph (s) , qh (s))

with value H− h+ 1
H

v⋆. In particular, the value of this game is given by,

v0 :=
∑
s∈S

P0 (s) v1 (s)

=
∑
s∈S

P0 (s)
H− 1 + 1

H
v⋆

= v⋆,

(D.42)

which satisfies the value range constraint.

Proof of Feasibility/Optimality for RAP and RAP-MG
Algorithms (Proposition 6.1 and Corollary D.1)

Proposition 6.1 concerns the feasibility and optimality of the RAP algo-
rithm for normal form games. This result is a special case of Corollary D.1
below for the RAP-MG algorithm for Markov games.

Corollary D.1 (Feasibility and Optimality of the RAP-MG Algorithm).

178

The output R (ι, λ) = R ′+ εR eRPS of Algorithm 5 with parameters ι, λ satisfying,

λ+ ι <
1
H

min {Hb+ v,Hb− v} (D.43)

has the following properties,

• (Existence) The solution R ′ to (6.15) exists.

• (Feasibility) R (ι, λ) is feasible for the original game modification problem
in Definition 6.1 with probability 1.

• (Optimality) Under the additional assumption that ℓ is Lipschitz with
constant L,

|ℓ (R,R◦) − ℓ (R ′,R◦)| ⩽ L ∥R− R ′∥1 , (D.44)

R (ι, λ) is near-optimal in the following sense,

lim
max{ι,λ}→0

ℓ (R (ι, λ) ,R◦) = C⋆, (D.45)

where C⋆ is the optimal objective value in Definition D.1.

Proof. We show the general result for H-period Markov games, and Theo-
rem 6.1 is the special case when H = 1.

Existence. Existence of a solution is implied by Corollary 6.1 with
value bounds [−Hb+Hλ,Hb−Hλ], and due to (D.43), we have,

(−Hb+Hλ,Hb−Hλ) ∩ [v, v] ̸= ∅, (D.46)

and therefore, Corollary 6.1 implies the feasible of the problem thus exis-
tence of a solution.

Feasibility. We only have to check the INV constraints since ι, λ > 0
implies that the other constraints in the original problem are satisfied.
We check that for every stage game Q in period h ∈ [H] , s ∈ S, we have

179

Qh (s) = Q ′
h (s) + εR eRPS (ph(s),qh(s)) satisfies INV, where Q ′

h (s) is the so-
lution to the optimization. To simplify the notations, we drop the (h, s)
indices.

We use the following properties of R eRPS from the proof of Lemma 6.1,

R eRPS
I• q = 0|I|,

p⊤R eRPS
•J = 0|J|,

R eRPS
A1\I•q = −1|A1\I|,

p⊤R eRPS
•A2\J

= 1|A2\J|.

(D.47)

Now we check the three conditions of the attacker’s problem are satisfied.
We have

QI•q = Q ′
Iq + εR eRPS

I• q

= v1|I|

= v ′1|I|,

(D.48)

and similarly,
p⊤Q•J = p⊤Q ′

•J + εpR eRPS
•J

= v1|J|

= v ′1|J|.

(D.49)

We also have
QA1\I•q = Q ′

A1\I•q + εR eRPS
A1\I

q

< v1|A1\I| − ε1|A1\I|

< v ′1|A1\I|.

(D.50)

and similarly,
p⊤Q•A2\J = p⊤Q ′

•A2\J
+ εR eRPS

A2\J
q

> v1|A2\J| + ε1|A2\J|

> v ′1|A2\J|.

(D.51)

180

Next we show that
[
QIJ −1|I|

1⊤
|J| 0

]
is invertible with probability 1, in par-

ticular, since
[
R eRPS −1|I|

1⊤
|J| 0

]
is invertible by Lemma 6.1, we can write its

singular value decomposition,[
R eRPS −1|I|

1⊤
|J| 0

]
= UΣV⊤, (D.52)

for some orthonormal U,V ∈ R(|I|+1)×(|J|+1) and nonsingular diagonal

matrix Σ ∈ R(|I|+1)×(|J|+1). Consider the event
[
QIJ −1|I|

1⊤
|J| 0

]
is singular.

181

Then the following matrix is also singular:

Σ−1/2U⊤

[
QIJ −1|I|

1⊤
|J| 0

]
VΣ−1/2

= Σ−1/2U⊤

([
Q ′

IJ −1|I|

1⊤
|J| 0

]
+ ε

[
R eRPS −1|I|

1⊤
|J| 0

])
VΣ−1/2

= Σ−1/2U⊤

[
Q ′

IJ + εR eRPS −(1 + ε) 1|I|

(1 + ε) 1⊤
|J| 0

]
VΣ−1/2

= Σ−1/2U⊤

Q ′
IJ +

ε ′

1 − ε ′R
eRPS −

1
1 − ε ′1|I|

1
1 − ε ′1

⊤
|J| 0

VΣ−1/2

where ε ′ :=
ε

1 + ε
= 1 −

1
1 + ε

,

which implies ε =
1

1 − ε ′ − 1 =
ε ′

1 − ε ′ ,

=
1

1 − ε ′Σ
−1/2U⊤

[
(1 − ε ′)Q ′

IJ + ε ′R eRPS −1|I|

1⊤
|J| 0

]
VΣ−1/2

= Σ−1/2U⊤

[
Q ′

IJ −1|I|

1⊤
|J| 0

]
VΣ−1/2

+
ε ′

1 − ε ′Σ
−1/2U⊤

[
R eRPS
IJ −1|I|

1⊤
|J| 0

]
VΣ−1/2

= Σ−1/2U⊤

[
Q ′

IJ −1|I|

1⊤
|J| 0

]
VΣ−1/2 + εI.

(D.53)

Consequently, there exists a nonzero vector x ∈ R|I|+1 = R|J|+1 such that,

Σ−1/2U⊤

[
Q ′

IJ −1|I|

1⊤
|J| 0

]
VΣ−1/2x = −εx. (D.54)

182

This means that −ε is an eigenvalue of the following deterministic matrix,

Σ−1/2U⊤

[
Q ′

IJ −1|I|

1⊤
|J| 0

]
VΣ−1/2, (D.55)

which happens with probability 0 since ε ∼ Unif [−λ, λ] is continuous.
Optimality. Fix ε > 0. Consider a feasible solution to (D.35),

(
R(ε), v(ε)

)
,

that satisfies
ℓ
(
R(ε),R◦)− C⋆ <

ε

2. (D.56)

In particular, feasibility of R(ε) implies, for every h ∈ [H] , s ∈ S,[
Q

(ε)
h (s)

]
I•

q = v
(ε)
h (s) 1|I|

p⊤
[
Q

(ε)
h (s)

]
•J

= v
(ε)
h (s) 1⊤

|J|[
Q

(ε)
h (s)

]
A1\I•

q < v
(ε)
h (s) 1|A1\I|

p⊤
[
Q

(ε)
h (s)

]
•A2\J

> v
(ε)
h (s) 1|A2\J|

σmin

([
Q

(ε)
h (s) IJ

−1|I| 1|J|

]
0
)

> 0

Q
(ε)
h (s) = R

(ε)
h (s) +

∑
s ′∈S

Ph (s ′|s) v
(ε)
h+1 (s

′)

−b ⩽
[
R
(ε)
h (s)

]
ij
⩽ b,∀ (i, j) ∈ A.

(D.57)

Due to the strict SOW inequality in (D.35), we can find the ι(ε) > 0 such
that the SOW conditions in (6.15) is also satisfied,

ι(ε) := min
(h∈[H],s∈S)

{
v
(ε)
h (s) 1|A1\I| −

[
Q

(ε)
h (s)

]
A1\I•

q,

p⊤
[
Q

(ε)
h (s)

]
•A2\J

− v
(ε)
h (s) 1|A2\J|

}
,

(D.58)

where the min is element-wise for the vectors.

183

Since v(ε) ∈ (−Hb,Hb), we can find the value gap λ(ε) > 0,

λ(ε) := b− min
h∈[H],s∈S,(i,j)∈A

|vh (s) − Pij (s
′|s) vh+1 (s

′)| , (D.59)

by noting that if λ(ε) = 0, then
∣∣v(ε)∣∣ ⩾ Hb which contradicts our assump-

tion.
Now we define the following δ,

δ := min
{
ι(ε)

2 , ελ(ε)

2LbH (H+ 1) |S| |A|

}
. (D.60)

Note that R(ε) does not satisfy (6.15) due the tighter bounds on the entries,
meaning −b + λ ⩽

[
R
(ε)
h (s)

]
ij

⩽ b − λ may not be satisfied for some

h ∈ [H] , s ∈ S, (i, j) ∈ A. We define R ′(ε) as follows and show that(
R ′(ε), v(ε)

)
is feasible to (6.15), for every h ∈ [H] , s ∈ S, (i, j) ∈ A,

[
R

′(ε)
h (s)

]
ij
:=

(
1 −

δ

λ(ε)

)[
Q

(ε)
h (s)

]
ij
+

v
(ε)
h (s) δ

λ(ε)

−
∑
s ′∈S

[Ph (s ′|s)]ij v
(ε)
h+1 (s

′) if i ∈ Ih (s) , j ∈ Jh (s)

min
{

max
{[

R
(ε)
h (s)

]
ij

,−b+ δ

}
,b− δ

}
otherwise

.

(D.61)
In particular, we have for i ∈ Ih (s) , j ∈ Jh (s),

[
Q

′(ε)
h (s)

]
ij
=

(
1 −

δ

λ(ε)

)[
Q

(ε)
h (s)

]
ij
+

v
(ε)
h (s) δ

λ(ε)
. (D.62)

Now, to check the feasibility of
(
R ′(ε), v(ε)

)
to (6.15), fix h ∈ [H] , s ∈ S. To

184

simplify the notations, we drop the (h, s) indices. Observe that

Q
′(ε)
I• q =

((
1 −

δ

λ(ε)

)
Q

(ε)
I• +

v(ε)δ

λ(ε)

)
q, since qA2\J = 0|A2\J|

=

(
1 −

δ

λ(ε)

)
Q

(ε)
I• q +

v(ε)δ

λ(ε)
1IJq

=

(
1 −

δ

λ(ε)

)
v(ε)1|I| +

v(ε)δ

λ(ε)
1IJq, since

(
R(ε), v(ε)

)
is feasible

=

(
1 −

δ

λ(ε)

)
v(ε) +

v(ε)δ

λ(ε)

= v(ε),
(D.63)

and similarly,

p⊤Q
′(ε)
•J = p⊤

((
1 −

δ

λ(ε)

)
Q

(ε)
•J +

v(ε)δ

λ(ε)

)
=

(
1 −

δ

λ(ε)

)
v(ε) +

v(ε)δ

λ(ε)

= v(ε).

(D.64)

Consider any ι < δ, we have,

Q
′(ε)
A1\I•q ⩽

(
Q

(ε)
A1\I• +

ι(ε)

2

)
q

⩽ Q
(ε)
A1\I•q +

ι(ε)

2 1|A1\I|

⩽
(
v(ε) − ι(ε)

)
1|A1\I| +

ι(ε)

2 1|A1\I|

⩽

(
v(ε) −

ι(ε)

2

)
1|A1\I|

⩽
(
v(ε) − δ

)
1|A1\I|

⩽
(
v(ε) − ι

)
1|A1\I|,

(D.65)

185

and similarly,

p⊤Q
′(ε)
•A2\J

⩾ p⊤
(
Q

(ε)
•A2\J

−
ι(ε)

2

)
⩾
(
v(ε) + ι(ε)

)
1|A2\J| −

ι(ε)

2 1|A2\J|

⩾

(
v(ε) +

ι(ε)

2

)
1|A2\J|

⩾
(
v(ε) + ι

)
1|A2\J|.

(D.66)

Now to show that
[
Q

′(ε)
IJ −1|J|

1⊤
|I| 0

]
is invertible, since

[
Q

(ε)
IJ −1|J|

1⊤
|I| 0

]
is invert-

186

ible, there exists vector
[
x

t

]
̸= 0|J|+1, such that

[
Q

(ε)
IJ −1|J|

1⊤
|I| 0

][
x

t

]
= 0|J|+1

⇒

Q
(ε)
IJ x− t1|J| = 0|J|

1⊤
|I|x = 0

⇒

(

1 −
δ

λ(ε)

)
Q

(ε)
IJ x−

(
1 −

δ

λ(ε)

)
t1|J| = 0|J|

1⊤
|I|x = 0

⇒

(

1 −
δ

λ(ε)

)
Q

(ε)
IJ x+

v(ε)δ

λ(ε)
1IJx−

(
1 −

δ

λ(ε)

)
t1|J| = 0|J|

1⊤
|I|x = 0

, since 1⊤
|I|x = 0

⇒

((

1 −
δ

λ(ε)

)
Q

(ε)
IJ +

v(ε)δ

λ(ε)

)
x−

(
1 −

δ

λ(ε)

)
t1|J| = 0|J|

1⊤
|I|x = 0

⇒

Q
′(ε)
IJ x−

(
1 −

δ

λ(ε)

)
t1|J| = 0|J|

1⊤
|I|x = 0

⇒

[
Q

′(ε)
IJ −1|J|

1⊤
|I| 0

] x(
1 −

δ

λ(ε)

)
t

 = 0|J|+1.

(D.67)

Since

 x(
1 −

δ

λ(ε)

)
t

 ̸= 0|J|+1, we have
[
Q

′(ε)
IJ −1|J|

1⊤
|I| 0

]
is invertible.

Since we did not change the value v(ε), the value range constraint is
still satisfied,

v ⩽ v(ε) ⩽ v. (D.68)

187

For the range condition, we use the short-hand notation,

∆ijv
(ε)
h (s) := v

(ε)
h (s) −

∑
s ′∈S

[Ph (s ′|s)]ij v
(ε)
h+1 (s

′) . (D.69)

Note that we have,

R
′(ε)
h (s) = Q

′(ε)
h (s) −

∑
s ′∈S

Ph (s ′|s) v
(ε)
h+1 (s

′)

=

(
1 −

δ

λ(ε)

)
Q

(ε)
h (s) + v

(ε)
h (s)

δ

λ(ε)
−

∑
s ′∈S

Ph (s ′|s) v
(ε)
h+1 (s

′)

=

(
1 −

δ

λ(ε)

)(
R
(ε)
h (s) +

∑
s ′∈S

Pv
(ε)
h+1 (s

′)

)

+ v
(ε)
h (s)

δ

λ(ε)
−

∑
s ′∈S

Ph (s ′|s) v
(ε)
h+1 (s

′)

=

(
1 −

δ

λ(ε)

)
R(ε) +

(
v
(ε)
h (s) −

∑
s ′∈S

Ph (s ′|s) v
(ε)
h+1 (s

′)

)
δ

λ(ε)

=

(
1 −

δ

λ(ε)

)
R(ε) + ∆v

(ε)
h (s)

δ

λ(ε)
,

(D.70)
where we drop the indices (h, s) as before. Now for any λ < δ, we have,

188

for every i ∈ I, j ∈ J,

− b ⩽ R
(ε)
ij ⩽ b

⇒
(

1 −
δ

λ(ε)

)
(−b) +

δ

λ(ε)
∆ijv

(ε) ⩽

(
1 −

δ

λ(ε)

)
R
(ε)
ij +

δ

λ(ε)
∆ijv

(ε)

⩽

(
1 −

δ

λ(ε)

)
b+

δ

λ(ε)
∆ijv

(ε)

⇒ −b+ δ
b+ ∆ijv

(ε)

λ(ε)
⩽ R

′(ε)
ij ⩽ b− δ

b− ∆ijv
(ε)

λ(ε)

⇒ −b+ δ
b+ ∆ijv

(ε)

b− min
i ′j ′

∣∣∆i ′j ′v
(ε)
∣∣ ⩽ R

′(ε)
ij ⩽ b− δ

b− ∆ijv
(ε)

b− min
i ′j ′

∣∣∆i ′j ′v
(ε)
∣∣

⇒ −b+ δ ⩽ R
′(ε)
ij ⩽ b− δ, since b+ ∆ijv

(ε) ⩾ b− min
i ′j ′

∣∣∆i ′j ′v
(ε)
∣∣ ⩾ b− ∆ijv

(ε),

⇒ −b+ λ ⩽ R
′(ε)
ij ⩽ b− λ,

(D.71)
and for any other (i, j) ∈ A,

− b+ δ ⩽ min
{

max
{
R
(ε)
ij ,−b+ δ

}
,b− δ

}
⩽ b− δ

⇒ −b+ δ ⩽ R
′(ε)
ij ⩽ b− δ

⇒ −b+ λ ⩽ R
′(ε)
ij ⩽ b− λ.

(D.72)

In addition, we show that each entry changes by less than ε

2LH |S| |A|
, for

189

i ∈ I, j ∈ J. In particular, we have∣∣∣R ′(ε)
ij − R

(ε)
ij

∣∣∣
⩽
∣∣∣Q ′(ε)

ij −Q
(ε)
ij

∣∣∣
⩽

∣∣∣∣(1 −
δ

λ(ε)

)
Q

(ε)
ij +

v(ε)δ

λ(ε)
−Q

(ε)
ij

∣∣∣∣
=

∣∣∣∣− δ

λ(ε)
Q

(ε)
ij +

v(ε)δ

λ(ε)

∣∣∣∣
⩽

∣∣∣∣ δ

λ(ε)
Q

(ε)
ij

∣∣∣∣+ ∣∣∣∣v(ε)δλ(ε)

∣∣∣∣
⩽

∣∣∣∣bHδ

λ(ε)

∣∣∣∣+ ∣∣∣∣ bδλ(ε)

∣∣∣∣
⩽

(H+ 1)b
λ(ε)

ε

LH (H+ 1) |S| |A|

1
2
λ(ε)

b
, due to the definition of δ,

=
ε

2LH |S| |A|
,

(D.73)

and for other (i, j) ∈ A,∣∣∣R ′(ε)
ij − R

(ε)
ij

∣∣∣
⩽
∣∣∣min

{
max

{
R
(ε)
ij ,−b

}
,b

}
− R

(ε)
ij

∣∣∣
⩽ δ

⩽
ελ(ε)

2LbH (H+ 1) |S| |A|

⩽
ε

2LH |S| |A|
, since λ(ε) ⩽ b.

(D.74)

190

Therefore we have,

ℓ (R⋆) − C⋆ ⩽ ℓ
(
R ′(ε))− C⋆

⩽ ℓ
(
R ′(ε) − R(ε) + R(ε)

)
− C⋆

⩽ ℓ
(
R(ε)

)
− C⋆ + L

∥∥R ′(ε) − R(ε)
∥∥

1

⩽
ε

2 − C⋆ + LH |S| |A|
ε

2LH |S| |A|

⩽
ε

2 + L
ε

2L
= ε,

(D.75)

which concludes the proof.

Additional Experiments

Code Details. We conducted our experiments using standard python3
libraries and the gurobi optimization package. We provide our code in
a jupyter notebook with an associated database folder so that our ex-
periments can be easily reproduced. The notebook already reads in the
database by default so no file management is needed. Simply ensure the
notebook is in the same directory as the database folder (like we have
arranged in our uploaded zip). We note that for our benchmark tests, the
database was too large to upload directly. Instead we will upload that
database on github. However, the scale experiments can be reproduced
by using the generation code we included in the notebook.

Classic Two-finger Morra. Consider the classic Two-finger Morra game.
The game’s payoff matrix is described in (D.76). Note that this game is
different from the simplified two-finger morra game considered in the

191

main text.

TFM :=

0 2 −3 0
−2 0 0 3
3 0 0 −4
0 −3 4 0

 (D.76)

TFW has infinitely many NEs: each player’s strategy can be any con-
vex combination of (0, 4/7, 3/7, 0)⊤ and (0, 3/5, 2/5, 0)⊤. Since people of-
ten naively use uniform mixing, it may be desirable to derive a similar
game where uniform mixing is NE. Applying Algorithm 4 with p = q =

(1/4, 1/4, 1/4, 1/4)⊤ produces the new payoff matrix (D.77).

TFM† :=

0 2 −3 0
−2 0 −2 3
3 0 0 −4
−2 −3 4 0

 (D.77)

Observe that TFW† is an unfair game with value −.25, unlike the origi-
nal game whose value was 0. The total cost for the change was 4.

5-action RPSSL. Consider the generalization of the rock-paper-scissors
(RPS) game where each player now has 5 strategies rock, paper, scissors,
spock, and lizard (RPSSL) that we mentioned in the main text. The game’s
payoff matrix is described in (D.78). Note that this game is different from
the 5-action Rock-Paper-Scissor-Fire-Water (RPSFW) game considered in
the main text.

RPSSL :=

0 −1 1 −1 1
1 0 −1 1 −1
−1 1 0 −1 1
1 −1 1 0 −1
−1 1 −1 1 0

 (D.78)

Similar to RPS, the unique NE for RPSSL is the uniformly mixed strat-

192

egy pair p = q = (1/5, 1/5, 1/5, 1/5, 1/5)⊤. Suppose that instead, we wish
to skew the distribution to favor the new actions, spock and lizard. Specif-
ically, if p = q = (1/9, 1/9, 1/9, 1/3, 1/3)⊤, running Algorithm 4 produces
the new payoff matrix (D.79).

RPSSL† :=

0 −1 1 −1 1
1 0 −1 1 −1
−1 1 0 −1 1
1 −1 1 0 −1/3
−1 1 −1 1/3 0

 (D.79)

We observe the resultant NE is fair with value 0. The total cost for the
change is 1.33.

193

references

Abbeel, Pieter, and Andrew Y Ng. 2004. Apprenticeship learning via in-
verse reinforcement learning. In Proceedings of the twenty-first international
conference on machine learning, 1.

Adler, Andy. 2005. Vulnerabilities in biometric encryption systems. In In-
ternational conference on audio-and video-based biometric person authentication,
1100–1109. Springer.

Akchurina, Natalia. 2009. Multiagent reinforcement learning: algorithm
converging to nash equilibrium in general-sum discounted stochastic
games. In Proceedings of the 8th international conference on autonomous
agents and multiagent systems-volume 2, 725–732.

Anderson, Ashton, Yoav Shoham, and Alon Altman. 2010. Internal imple-
mentation. In Proceedings of the 9th international conference on autonomous
agents and multiagent systems: volume 1-volume 1, 191–198. Citeseer.

Appa, Gautam. 2002. On the uniqueness of solutions to linear programs.
Journal of the Operational Research Society 53:1127–1132.

Auer, Peter, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire.
2002. The nonstochastic multiarmed bandit problem. SIAM journal on
computing 32(1):48–77.

Bab, Avraham, and Ronen I Brafman. 2008. Multi-agent reinforcement
learning in common interest and fixed sum stochastic games: An experi-
mental study. Journal of Machine Learning Research 9(12).

Banihashem, Kiarash, Adish Singla, Jiarui Gan, and Goran Radanovic.
2022. Admissible policy teaching through reward design. arXiv preprint
arXiv:2201.02185.

194

Banihashem, Kiarash, Adish Singla, and Goran Radanovic. 2021. Defense
against reward poisoning attacks in reinforcement learning. arXiv preprint
arXiv:2102.05776.

Barreno, Marco, Blaine Nelson, Anthony D Joseph, and J Doug Tygar.
2010. The security of machine learning. Machine Learning 81:121–148.

Behzadan, Vahid, and Arslan Munir. 2017. Vulnerability of deep rein-
forcement learning to policy induction attacks. In International conference
on machine learning and data mining in pattern recognition, 262–275. Springer.

Bergemann, Dirk, and Juuso Välimäki. 2019. Dynamic mechanism design:
An introduction. Journal of Economic Literature 57(2):235–274.

Berner, Christopher, Greg Brockman, Brooke Chan, Vicki Cheung, Prze-
myslaw Dkebiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq
Hashme, Chris Hesse, et al. 2019. Dota 2 with large scale deep reinforce-
ment learning. arXiv preprint arXiv:1912.06680.

Biggio, Battista, Blaine Nelson, and Pavel Laskov. 2011. Support vector
machines under adversarial label noise. In Asian conference on machine
learning, 97–112. PMLR.

Biggio, Battista, Ignazio Pillai, Samuel Rota Bulò, Davide Ariu, Marcello
Pelillo, and Fabio Roli. 2013. Is data clustering in adversarial settings
secure? In Proceedings of the 2013 acm workshop on artificial intelligence and
security, 87–98.

Biggio, Battista, Konrad Rieck, Davide Ariu, Christian Wressnegger, Igino
Corona, Giorgio Giacinto, and Fabio Roli. 2014. Poisoning behavioral mal-
ware clustering. In Proceedings of the 2014 workshop on artificial intelligent
and security workshop, 27–36.

Blum, Avrim, and Yishay Mansour. 2007. Learning, regret minimization,
and equilibria. Algorithmic Game Theory.

195

Bogunovic, Ilija, Arpan Losalka, Andreas Krause, and Jonathan Scarlett.
2021. Stochastic linear bandits robust to adversarial attacks. In Interna-
tional conference on artificial intelligence and statistics, 991–999. PMLR.

Bouville, Mathieu. 2008. Crime and punishment in scientific research.
0803.4058.

Bowling, Michael. 2000. Convergence problems of general-sum multia-
gent reinforcement learning. In Icml, 89–94.

Bowling, Michael, and Manuela Veloso. 2001. Rational and convergent
learning in stochastic games. In International joint conference on artificial
intelligence, vol. 17, 1021–1026. Lawrence Erlbaum Associates Ltd.

Brandfonbrener, David, Will Whitney, Rajesh Ranganath, and Joan Bruna.
2021. Offline rl without off-policy evaluation. Advances in Neural Informa-
tion Processing Systems 34:4933–4946.

Brown, Noam, and Tuomas Sandholm. 2019. Superhuman ai for multi-
player poker. Science 365(6456):885–890.

Brown, Noam, Tuomas Sandholm, and Strategic Machine. 2017. Libratus:
The superhuman ai for no-limit poker. In Ijcai, 5226–5228.

Bubeck, Sébastien, and Nicolò Cesa-Bianchi. 2012. Regret analysis of
stochastic and nonstochastic multi-armed bandit problems. Foundations
and Trends® in Machine Learning 5(1):1–122.

Carlini, Nicholas, and David Wagner. 2017. Towards evaluating the
robustness of neural networks. In 2017 ieee symposium on security and
privacy (sp), 39–57. Ieee.

Choi, Jae-Deug, and Kee-Eung Kim. 2011. Inverse reinforcement learning
in partially observable environments. Journal of Machine Learning Research
12:691–730.

0803.4058

196

Clancey, William J. 1979. Transfer of Rule-Based Expertise through a
Tutorial Dialogue. Ph.D. diss., Dept. of Computer Science, Stanford Univ.,
Stanford, Calif.

———. 1983. Communication, Simulation, and Intelligent Agents: Im-
plications of Personal Intelligent Machines for Medical Education. In
Proceedings of the eighth international joint conference on artificial intelligence
(IJCAI-83), 556–560. Menlo Park, Calif: IJCAI Organization.

———. 1984. Classification Problem Solving. In Proceedings of the fourth
national conference on artificial intelligence, 45–54. Menlo Park, Calif.: AAAI
Press.

———. 2021. The Engineering of Qualitative Models. Forthcoming.

Cui, Qiwen, and Simon S Du. 2022a. When is offline two-player zero-sum
markov game solvable? arXiv preprint arXiv:2201.03522.

———. 2022b. When is offline two-player zero-sum Markov game solv-
able? arXiv preprint arXiv:2201.03522.

Dalvi, Nilesh, Pedro Domingos, Mausam, Sumit Sanghai, and Deepak
Verma. 2004. Adversarial classification. In Proceedings of the tenth acm
sigkdd international conference on knowledge discovery and data mining, 99–
108.

Dantzig, George. 1963. Linear programming and extensions. Princeton
university press.

Dudek, Gregory, Michael RM Jenkin, Evangelos Milios, and David Wilkes.
1996. A taxonomy for multi-agent robotics. Autonomous Robots 3(4):375–
397.

Engelmore, Robert, and Anthony Morgan, eds. 1986. Blackboard systems.
Reading, Mass.: Addison-Wesley.

197

Fu, Wei, Chao Yu, Zelai Xu, Jiaqi Yang, and Yi Wu. 2022. Revisiting some
common practices in cooperative multi-agent reinforcement learning.
arXiv preprint arXiv:2206.07505.

Garcelon, Evrard, Baptiste Roziere, Laurent Meunier, Olivier Teytaud,
Alessandro Lazaric, and Matteo Pirotta. 2020. Adversarial attacks on
linear contextual bandits. arXiv preprint arXiv:2002.03839.

Gleave, Adam, Michael Dennis, Cody Wild, Neel Kant, Sergey Levine,
and Stuart Russell. 2019. Adversarial policies: Attacking deep reinforce-
ment learning. arXiv preprint arXiv:1905.10615.

Good, RA. 1965. f-finger morra. SIAM Review 7(1):81–87.

Gu, Shixiang, Ethan Holly, Timothy Lillicrap, and Sergey Levine. 2017.
Deep reinforcement learning for robotic manipulation with asynchronous
off-policy updates. In 2017 ieee international conference on robotics and
automation (icra), 3389–3396. IEEE.

Guan, Ziwei, Kaiyi Ji, Donald J Bucci Jr, Timothy Y Hu, Joseph Palombo,
Michael Liston, and Yingbin Liang. 2020. Robust stochastic bandit algo-
rithms under probabilistic unbounded adversarial attack. In Proceedings
of the aaai conference on artificial intelligence, vol. 34, 4036–4043.

Guo, Wenbo, Xian Wu, Sui Huang, and Xinyu Xing. 2021. Adversarial
policy learning in two-player competitive games. In International conference
on machine learning, 3910–3919. PMLR.

Hart, Sergiu, and Andreu Mas-Colell. 2000. A simple adaptive procedure
leading to correlated equilibrium. Econometrica 68(5):1127–1150.

Hasling, Diane Warner, William J. Clancey, and Glenn Rennels. 1984.
Strategic explanations for a diagnostic consultation system. International
Journal of Man-Machine Studies 20(1):3–19.

198

Hasling, Diane Warner, William J. Clancey, Glenn R. Rennels, and Thomas
Test. 1983. Strategic Explanations in Consultation—Duplicate. The Inter-
national Journal of Man-Machine Studies 20(1):3–19.

Heinrich, Johannes, Marc Lanctot, and David Silver. 2015. Fictitious
self-play in extensive-form games. In International conference on machine
learning, 805–813. PMLR.

Hernandez-Leal, Pablo, and Michael Kaisers. 2017. Towards a fast detec-
tion of opponents in repeated stochastic games. In International conference
on autonomous agents and multiagent systems, 239–257. Springer.

Heuer, GA. 1979. Uniqueness of equilibrium points in bimatrix games.
International Journal of Game Theory 8:13–25.

Hu, Junling, and Michael P Wellman. 2003. Nash q-learning for general-
sum stochastic games. Journal of machine learning research 4(Nov):1039–
1069.

Huang, Sandy, Nicolas Papernot, Ian Goodfellow, Yan Duan, and Pieter
Abbeel. 2017a. Adversarial attacks on neural network policies. arXiv
preprint arXiv:1702.02284.

———. 2017b. Adversarial attacks on neural network policies.

Huang, Yunhan, and Quanyan Zhu. 2019. Deceptive reinforcement learn-
ing under adversarial manipulations on cost signals. In International
conference on decision and game theory for security, 217–237. Springer.

Jaderberg, Max, Wojciech M Czarnecki, Iain Dunning, Luke Marris, Guy
Lever, Antonio Garcia Castaneda, Charles Beattie, Neil C Rabinowitz,
Ari S Morcos, Avraham Ruderman, et al. 2019. Human-level performance
in 3d multiplayer games with population-based reinforcement learning.
Science 364(6443):859–865.

199

Jiang, Jiechuan, and Zongqing Lu. 2021. Offline decentralized multi-agent
reinforcement learning. arXiv preprint arXiv:2108.01832.

Jin, Ying, Zhuoran Yang, and Zhaoran Wang. 2021a. Is pessimism prov-
ably efficient for offline rl? In International conference on machine learning,
5084–5096. PMLR.

———. 2021b. Is pessimism provably efficient for offline rl? In Interna-
tional conference on machine learning, 5084–5096. PMLR.

Jun, Kwang-Sung, Lihong Li, Yuzhe Ma, and Jerry Zhu. 2018. Adversarial
attacks on stochastic bandits. Advances in Neural Information Processing
Systems 31:3640–3649.

Kiourti, Panagiota, Kacper Wardega, Susmit Jha, and Wenchao Li. 2020.
Trojdrl: evaluation of backdoor attacks on deep reinforcement learning.
In 2020 57th acm/ieee design automation conference (dac), 1–6. IEEE.

Kober, Jens, J Andrew Bagnell, and Jan Peters. 2013. Reinforcement
learning in robotics: A survey. The International Journal of Robotics Research
32(11):1238–1274.

Kos, Jernej, and Dawn Song. 2017a. Delving into adversarial attacks on
deep policies. arXiv preprint arXiv:1705.06452.

———. 2017b. Delving into adversarial attacks on deep policies.

Kutschinski, Erich, Thomas Uthmann, and Daniel Polani. 2003. Learning
competitive pricing strategies by multi-agent reinforcement learning.
Journal of Economic Dynamics and Control 27(11-12):2207–2218.

Lee, Jae Won, and Jangmin O. 2002. A multi-agent q-learning framework
for optimizing stock trading systems. In International conference on database
and expert systems applications, 153–162. Springer.

200

Lee, Jae Won, Jonghun Park, O Jangmin, Jongwoo Lee, and Euyseok
Hong. 2007. A multiagent approach to q-learning for daily stock trading.
IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and
Humans 37(6):864–877.

Leibo, Joel Z, Vinicius Zambaldi, Marc Lanctot, Janusz Marecki, and
Thore Graepel. 2017. Multi-agent reinforcement learning in sequential
social dilemmas. arXiv preprint arXiv:1702.03037.

Lin, Xiaomin, Stephen C Adams, and Peter A Beling. 2019a. Multi-agent
inverse reinforcement learning for certain general-sum stochastic games.
Journal of Artificial Intelligence Research 66:473–502.

Lin, Xiaomin, Stephen C. Adams, and Peter A. Beling. 2019b. Multi-agent
inverse reinforcement learning for certain general-sum stochastic games.
Journal of Artificial Intelligence Research 66:473–502.

Lin, Xiaomin, Peter A Beling, and Randy Cogill. 2014. Multi-agent
inverse reinforcement learning for zero-sum games. arXiv preprint
arXiv:1403.6508.

———. 2017a. Multiagent inverse reinforcement learning for two-person
zero-sum games. IEEE Transactions on Games 10(1):56–68.

Lin, Yen-Chen, Zhang-Wei Hong, Yuan-Hong Liao, Meng-Li Shih, Ming-
Yu Liu, and Min Sun. 2017b. Tactics of adversarial attack on deep rein-
forcement learning agents. arXiv preprint arXiv:1703.06748.

Littman, Michael L. 1994. Markov games as a framework for multi-agent
reinforcement learning. In Machine learning proceedings 1994, 157–163.
Elsevier.

Liu, Fang, and Ness Shroff. 2019. Data poisoning attacks on stochastic
bandits. In International conference on machine learning, 4042–4050. PMLR.

201

Liu, Guanlin, and Lifeng Lai. 2020. Action-manipulation attacks on
stochastic bandits. In Icassp 2020-2020 ieee international conference on acous-
tics, speech and signal processing (icassp), 3112–3116. IEEE.

———. 2021. Provably efficient black-box action poisoning attacks against
reinforcement learning. Advances in Neural Information Processing Systems
34.

Liu, Yong, Yujing Hu, Yang Gao, Yingfeng Chen, and Changjie Fan. 2019.
Value function transfer for deep multi-agent reinforcement learning based
on n-step returns. In Ijcai, 457–463.

Lu, Shiyin, Guanghui Wang, and Lijun Zhang. 2021. Stochastic graphical
bandits with adversarial corruptions. In Proceedings of the aaai conference
on artificial intelligence, vol. 35, 8749–8757.

Lu, Yunlong, and Kai Yan. 2020. Algorithms in multi-agent systems: a
holistic perspective from reinforcement learning and game theory. arXiv
preprint arXiv:2001.06487.

Lykouris, Thodoris, Max Simchowitz, Alex Slivkins, and Wen Sun. 2021.
Corruption-robust exploration in episodic reinforcement learning. In
Conference on learning theory, 3242–3245. PMLR.

Ma, Yuzhe, Kwang-Sung Jun, Lihong Li, and Xiaojin Zhu. 2018. Data
poisoning attacks in contextual bandits. In International conference on
decision and game theory for security, 186–204. Springer.

Ma, Yuzhe, Young Wu, and Xiaojin Zhu. 2021. Game redesign in no-regret
game playing. arXiv preprint arXiv:2110.11763.

Ma, Yuzhe, Xuezhou Zhang, Wen Sun, and Jerry Zhu. 2019. Policy
poisoning in batch reinforcement learning and control. Advances in Neural
Information Processing Systems 32:14570–14580.

202

MacDermed, Liam, Charles Isbell, and Lora Weiss. 2011. Markov games
of incomplete information for multi-agent reinforcement learning. In
Workshops at the twenty-fifth aaai conference on artificial intelligence.

Mangasarian, Olvi. 1978. Uniqueness of solution in linear programming.
Tech. Rep., University of Wisconsin-Madison Department of Computer
Sciences.

Mannion, Patrick, Karl Mason, Sam Devlin, Jim Duggan, and Enda How-
ley. 2016. Dynamic economic emissions dispatch optimisation using
multi-agent reinforcement learning. In Proceedings of the adaptive and
learning agents workshop (at aamas 2016).

Maskin, Eric, and Jean Tirole. 2001. Markov perfect equilibrium: I. ob-
servable actions. Journal of Economic Theory 100(2):191–219.

Meng, Linghui, Muning Wen, Yaodong Yang, Chenyang Le, Xiyun Li,
Weinan Zhang, Ying Wen, Haifeng Zhang, Jun Wang, and Bo Xu. 2021.
Offline pre-trained multi-agent decision transformer: One big sequence
model conquers all starcraftii tasks. arXiv preprint arXiv:2112.02845.

Millham, CB. 1972. Constructing bimatrix games with special properties.
Naval Research Logistics Quarterly 19(4):709–714.

Minagawa, Junichi. 2020. On the uniqueness of nash equilibrium in
strategic-form games. Journal of Dynamics & Games 7(2):97.

Mohanty, Sharada, Erik Nygren, Florian Laurent, Manuel Schneider,
Christian Scheller, Nilabha Bhattacharya, Jeremy Watson, Adrian Egli,
Christian Eichenberger, Christian Baumberger, et al. 2020. Flatland-
rl: Multi-agent reinforcement learning on trains. arXiv preprint
arXiv:2012.05893.

Monderer, Dov, and Moshe Tennenholtz. 2003. k-implementation. In
Proceedings of the 4th acm conference on electronic commerce, 19–28.

203

———. 2004. k-implementation. Journal of Artificial Intelligence Research
21:37–62.

Moosavi-Dezfooli, Seyed-Mohsen, Alhussein Fawzi, Omar Fawzi, and
Pascal Frossard. 2017. Universal adversarial perturbations. In Proceedings
of the ieee conference on computer vision and pattern recognition, 1765–1773.

NASA. 2015. Pluto: The ’other’ red planet. Accessed: 2018-12-06.

Nash Jr, John F. 1950. Equilibrium points in n-person games. Proceedings
of the national academy of sciences 36(1):48–49.

Ng, Andrew Y, Stuart Russell, et al. 2000. Algorithms for inverse rein-
forcement learning. In Icml, vol. 1, 2.

Ono, Norihiko, and Kenji Fukumoto. 1997. A modular approach to multi-
agent reinforcement learning. In Workshop on learning in distributed artificial
intelligence systems, workshop on learning, interaction, and organization in
multiagent environments, 25–39. Springer, Berlin, Heidelberg.

Osborne, Martin J. 2004. An introduction to game theory, vol. 3. Oxford
university press New York.

Pan, Ling, Longbo Huang, Tengyu Ma, and Huazhe Xu. 2022. Plan better
amid conservatism: Offline multi-agent reinforcement learning with actor
rectification. In International conference on machine learning, 17221–17237.
PMLR.

Pattanaik, Anay, Zhenyi Tang, Shuijing Liu, Gautham Bommannan, and
Girish Chowdhary. 2017. Robust deep reinforcement learning with ad-
versarial attacks. arXiv preprint arXiv:1712.03632.

Pavan, Alessandro, Ilya Segal, and Juuso Toikka. 2014. Dynamic mecha-
nism design: A myersonian approach. Econometrica 82(2):601–653.

204

Prasad, HL, and Shalabh Bhatnagar. 2015. A study of gradient
descent schemes for general-sum stochastic games. arXiv preprint
arXiv:1507.00093.

Prasad, HL, Prashanth LA, and Shalabh Bhatnagar. 2015. Two-timescale
algorithms for learning nash equilibria in general-sum stochastic games.
In Proceedings of the 2015 international conference on autonomous agents and
multiagent systems, 1371–1379.

Quintas, Luis G. 1988. Uniqueness of Nash equilibrium points in bimatrix
games. Center for Mathematical Studies in Economics and Management
Science.

Raghavan, TES. 1994. Zero-sum two-person games. Handbook of game
theory with economic applications 2:735–768.

Rakhsha, Amin, Goran Radanovic, Rati Devidze, Xiaojin Zhu, and Adish
Singla. 2020. Policy teaching via environment poisoning: Training-time
adversarial attacks against reinforcement learning. In International confer-
ence on machine learning, 7974–7984. PMLR.

———. 2021a. Policy teaching in reinforcement learning via environment
poisoning attacks. Journal of Machine Learning Research 22(210):1–45.

Rakhsha, Amin, Xuezhou Zhang, Xiaojin Zhu, and Adish Singla. 2021b.
Reward poisoning in reinforcement learning: Attacks against unknown
learners in unknown environments. arXiv preprint arXiv:2102.08492.

Ramachandran, Deepak, and Eyal Amir. 2007. Bayesian inverse reinforce-
ment learning. In Ijcai, vol. 7, 2586–2591.

Rangi, Anshuka, Long Tran-Thanh, Haifeng Xu, and Massimo
Franceschetti. 2022a. Saving stochastic bandits from poisoning attacks
via limited data verification. In Proceedings of the aaai conference on artificial
intelligence, vol. 36, 8054–8061.

205

Rangi, Anshuka, Haifeng Xu, Long Tran-Thanh, and Massimo
Franceschetti. 2022b. Understanding the limits of poisoning attacks in
episodic reinforcement learning. In Proceedings of the thirty-first interna-
tional joint conference on artificial intelligence, IJCAI-22, ed. Lud De Raedt,
3394–3400. International Joint Conferences on Artificial Intelligence Or-
ganization. Main Track.

Reddy, Tummalapalli Sudhamsh, Vamsikrishna Gopikrishna, Gergely
Zaruba, and Manfred Huber. 2012. Inverse reinforcement learning for de-
centralized non-cooperative multiagent systems. In 2012 ieee international
conference on systems, man, and cybernetics (smc), 1930–1935. IEEE.

Rice, James. 1986. Poligon: A System for Parallel Problem Solving. Tech-
nical Report KSL-86-19, Dept. of Computer Science, Stanford Univ.

Riedmiller, Martin, Thomas Gabel, Roland Hafner, and Sascha Lange.
2009. Reinforcement learning for robot soccer. Autonomous Robots 27:
55–73.

Robinson, Arthur L. 1980a. New ways to make microcircuits smaller. Sci-
ence 208(4447):1019–1022. https://science.sciencemag.org/content/
208/4447/1019.full.pdf.

———. 1980b. New Ways to Make Microcircuits Smaller—Duplicate
Entry. Science 208:1019–1026.

Shalev-Shwartz, Shai, Shaked Shammah, and Amnon Shashua. 2016.
Safe, multi-agent, reinforcement learning for autonomous driving. arXiv
preprint arXiv:1610.03295.

Shapley, Lloyd S. 1953. Stochastic games. Proceedings of the national
academy of sciences 39(10):1095–1100.

Silver, David, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,
George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou,

https://science.sciencemag.org/content/208/4447/1019.full.pdf
https://science.sciencemag.org/content/208/4447/1019.full.pdf

206

Veda Panneershelvam, Marc Lanctot, et al. 2016. Mastering the game of
go with deep neural networks and tree search. nature 529(7587):484–489.

Silver, David, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou,
Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai,
and Adrian Bolton. 2017. Mastering the game of go without human
knowledge. nature 550(7676):354–359.

Slivkins, Aleksandrs. 2019. Introduction to multi-armed bandits. arXiv
preprint arXiv:1904.07272.

Suematsu, Nobuo, and Akira Hayashi. 2002. A multiagent reinforcement
learning algorithm using extended optimal response. In Proceedings of
the first international joint conference on autonomous agents and multiagent
systems: Part 1, 370–377.

Sun, Jianwen, Tianwei Zhang, Xiaofei Xie, Lei Ma, Yan Zheng, Kangjie
Chen, and Yang Liu. 2020a. Stealthy and efficient adversarial attacks
against deep reinforcement learning. In Proceedings of the aaai conference
on artificial intelligence, vol. 34, 5883–5891.

Sun, Yanchao, Da Huo, and Furong Huang. 2020b. Vulnerability-aware
poisoning mechanism for online rl with unknown dynamics. arXiv
preprint arXiv:2009.00774.

Sun, Yanchao, Ruijie Zheng, Yongyuan Liang, and Furong Huang. 2021.
Who is the strongest enemy? towards optimal and efficient evasion attacks
in deep rl. arXiv preprint arXiv:2106.05087.

Szegedy, Christian, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Du-
mitru Erhan, Ian Goodfellow, and Rob Fergus. 2013. Intriguing properties
of neural networks. arXiv preprint arXiv:1312.6199.

207

Szilágyi, Peter. 2006. On the uniqueness of the optimal solution in linear
programming. Revue d’analyse numérique et de théorie de l’approximation
35(2):225–244.

Tagiew, Rustam. 2009. Hypotheses about typical general human strategic
behavior in a concrete case. In Congress of the italian association for artificial
intelligence, 476–485. Springer.

Tan, Ming. 1993. Multi-agent reinforcement learning: Independent vs.
cooperative agents. In Proceedings of the tenth international conference on
machine learning, 330–337.

Terry, J, Benjamin Black, Nathaniel Grammel, Mario Jayakumar, Ananth
Hari, Ryan Sullivan, Luis S Santos, Clemens Dieffendahl, Caroline Horsch,
Rodrigo Perez-Vicente, et al. 2021. Pettingzoo: Gym for multi-agent
reinforcement learning. Advances in Neural Information Processing Systems
34:15032–15043.

Tewolde, Emanuel. 2023. Game transformations that preserve Nash
equilibria or best response sets. arxiv preprint arXiv:2111.00076.

Tramèr, Florian, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan
Boneh, and Patrick McDaniel. 2017. Ensemble adversarial training: At-
tacks and defenses. arXiv preprint arXiv:1705.07204.

Vinyals, Oriol, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu,
Andrew Dudzik, Junyoung Chung, David H Choi, Richard Powell, Timo
Ewalds, and Petko Georgiev. 2019. Grandmaster level in starcraft ii using
multi-agent reinforcement learning. Nature 575(7782):350–354.

Vorotnikov, Sergey, Konstantin Ermishin, Anaid Nazarova, and Arkady
Yuschenko. 2018. Multi-agent robotic systems in collaborative robotics.
In International conference on interactive collaborative robotics, 270–279.
Springer.

208

Wang, Lun, Zaynah Javed, Xian Wu, Wenbo Guo, Xinyu Xing, and Dawn
Song. 2021. Backdoorl: Backdoor attack against competitive reinforce-
ment learning. arXiv preprint arXiv:2105.00579.

Wang, Xianmin, Jing Li, Xiaohui Kuang, Yu-an Tan, and Jin Li. 2019a. The
security of machine learning in an adversarial setting: A survey. Journal
of Parallel and Distributed Computing 130:12–23.

Wang, Xingyu, and Diego Klabjan. 2018. Competitive multi-agent inverse
reinforcement learning with sub-optimal demonstrations. In International
conference on machine learning, 5143–5151. PMLR.

Wang, Yining, Ruosong Wang, Simon S Du, and Akshay Krishnamurthy.
2019b. Optimism in reinforcement learning with generalized linear func-
tion approximation. arXiv preprint arXiv:1912.04136.

Wei, Chen-Yu, Christoph Dann, and Julian Zimmert. 2022. A model
selection approach for corruption robust reinforcement learning. In
International conference on algorithmic learning theory, 1043–1096. PMLR.

Wikipedia contributors. 2021. Volunteer’s dilemma — Wikipedia, the
free encyclopedia. [Online; accessed 16-September-2021].

Wittel, Gregory L, and Shyhtsun Felix Wu. 2004. On attacking statistical
spam filters. In Ceas.

Wright, Stephen J. 2006. Numerical optimization. New York, NY: Wiley.

Wu, Fan, Linyi Li, Zijian Huang, Yevgeniy Vorobeychik, Ding Zhao, and
Bo Li. 2021. Crop: Certifying robust policies for reinforcement learning
through functional smoothing. arXiv preprint arXiv:2106.09292.

Wu, Fan, Linyi Li, Chejian Xu, Huan Zhang, Bhavya Kailkhura, Krish-
naram Kenthapadi, Ding Zhao, and Bo Li. 2022. Copa: Certifying robust

209

policies for offline reinforcement learning against poisoning attacks. arXiv
preprint arXiv:2203.08398.

Wu, Young, Jeremy McMahan, Xiaojin Zhu, and Qiaomin Xie. 2023a. On
faking a Nash equilibrium. arXiv preprint arXiv:2306.08041.

———. 2023b. Reward poisoning attacks on offline multi-agent reinforce-
ment learning. In The thirty-seventh aaai conference on artificial intelligence
(aaai).

———. 2023c. Reward poisoning attacks on offline multi-agent reinforce-
ment learning. In Proceedings of the aaai conference on artificial intelligence,
vol. 37, 10426–10434.

Xie, Qiaomin, Yudong Chen, Zhaoran Wang, and Zhuoran Yang. 2020.
Learning zero-sum simultaneous-move markov games using function
approximation and correlated equilibrium. In Conference on learning theory,
3674–3682. PMLR.

Yang, Lin, Mohammad Hajiesmaili, Mohammad Sadegh Talebi, John
Lui, and Wing Shing Wong. 2021. Adversarial bandits with corruptions:
Regret lower bound and no-regret algorithm. In Advances in neural infor-
mation processing systems (neurips).

Yang, Yang, Li Juntao, and Peng Lingling. 2020. Multi-robot path planning
based on a deep reinforcement learning dqn algorithm. CAAI Transactions
on Intelligence Technology 5(3):177–183.

Yu, Lantao, Jiaming Song, and Stefano Ermon. 2019. Multi-agent ad-
versarial inverse reinforcement learning. In Proceedings of the 36th in-
ternational conference on machine learning, ed. Kamalika Chaudhuri and
Ruslan Salakhutdinov, vol. 97 of Proceedings of Machine Learning Research,
7194–7201. PMLR.

210

Zhang, Haoqi, and David Parkes. 2008a. Value-based policy teaching
with active indirect elicitation. In Proceedings of the 23rd national conference
on artificial intelligence - volume 1, 208–214. AAAI’08, AAAI Press.

Zhang, Haoqi, and David C Parkes. 2008b. Value-based policy teaching
with active indirect elicitation. In Aaai, vol. 8, 208–214.

Zhang, Haoqi, David C Parkes, and Yiling Chen. 2009. Policy teaching
through reward function learning. In Proceedings of the 10th acm conference
on electronic commerce, 295–304.

Zhang, Huan, Hongge Chen, Chaowei Xiao, Bo Li, Mingyan Liu, Duane
Boning, and Cho-Jui Hsieh. 2020a. Robust deep reinforcement learning
against adversarial perturbations on state observations. Advances in Neural
Information Processing Systems 33:21024–21037.

Zhang, Kaiqing, Zhuoran Yang, and Tamer Başar. 2021a. Multi-agent
reinforcement learning: A selective overview of theories and algorithms.
Handbook of Reinforcement Learning and Control 321–384.

Zhang, Xuezhou, Yiding Chen, Jerry Zhu, and Wen Sun. 2021b.
Corruption-robust offline reinforcement learning. arXiv preprint
arXiv:2106.06630.

Zhang, Xuezhou, Yiding Chen, Xiaojin Zhu, and Wen Sun. 2021c. Robust
policy gradient against strong data corruption. In International conference
on machine learning, 12391–12401. PMLR.

Zhang, Xuezhou, Yuzhe Ma, Adish Singla, and Xiaojin Zhu. 2020b. Adap-
tive reward-poisoning attacks against reinforcement learning. In Interna-
tional conference on machine learning, 11225–11234. PMLR.

Zhao, Wentao, Jun Long, Jianping Yin, Zhiping Cai, and Geming Xia. 2012.
Sampling attack against active learning in adversarial environment. In

211

Modeling decisions for artificial intelligence: 9th international conference, mdai
2012, girona, catalonia, spain, november 21-23, 2012. proceedings 9, 222–233.
Springer.

Zheng, Stephan, Alexander Trott, Sunil Srinivasa, Nikhil Naik, Melvin
Gruesbeck, David C Parkes, and Richard Socher. 2020. The ai economist:
Improving equality and productivity with ai-driven tax policies. arXiv
preprint arXiv:2004.13332.

Zhong, Han, Wei Xiong, Jiyuan Tan, Liwei Wang, Tong Zhang, Zhao-
ran Wang, and Zhuoran Yang. 2022. Pessimistic minimax value itera-
tion: Provably efficient equilibrium learning from offline datasets. arXiv
preprint arXiv:2202.07511.

Zuo, Shiliang. 2020. Near optimal adversarial attack on ucb bandits. arXiv
preprint arXiv:2008.09312.

