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1

1 introduction

Over the past decades, adversarial machine learning (AML) has become a prevalent
topic in a wide range of domains. Of particular interest in AML is the question
of how to adversarially manipulate machine learning algorithms in order to com-
promise the model performance. Studying attacks is not only beneficial to under-
standing the vulnerability of machine learners, but more importantly, provides
guidance and insights into designing effective defense strategies. Existing attacks
against machine learning can be broadly categorized into two classes depending
on when and where the attack happens. In a typical data poisoning attack (a.k.a.
training-time attack) setting, the attacker tampers the training data during training
time to downgrade the utility of the learned model. On the other hand, in adver-
sarial examples (a.k.a test-time attack), the attacker manipulates features of a target
example during test time such that a pre-trained model makes a wrong prediction
for that example.

Both data poisoning attacks and adversarial examples have been substantially
studied in the traditional supervised learning setting (Biggio and Roli, 2018; Huang
et al., 2011; Chakraborty et al., 2018). Due to the iid assumption of data points, the
attack of supervised learners is a relatively easier task. For example, it is shown
in (Mei and Zhu, 2015b) that poisoning a convex learner can be formulated as a
bi-level optimization. One can transform the bi-level optimization into a single-level
optimization using KKT conditions, and then computationally efficient solutions
can be found. Similarly, in adversarial examples, since the test data points are iid,
the attacker can perform one-shot attack on each individual test point to mislead
the model into predicting a target label. A variety of efficient gradient-based attacks
such as fast gradient sign method (FGSM) (Goodfellow et al., 2014) are capable of
finding adversarial examples imperceptible to humans in the image space.

However, in many real-world scenarios, such as online recommendation (Li
et al., 2010a), robotics control (Smart and Kaelbling, 2002; Peters et al., 2003; Gu
et al., 2017), and medical treatment allocation (Yom-Tov et al., 2017; Yu et al., 2019),
the learner needs to actively interact with an unknown environment to obtain
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data in the form of a sequence/trajectory, and learns the optimal action-selection
policy in an online manner. In such sequential decision process, the generated
data are no longer iid due to two reasons. Firstly, future data will depend on the
current state of the learning agent, and the sampled data must respect the state
transition dynamics. Furthermore, the data generation will depend on how the
agent interacts with the environment, i.e., the current action-selection policy of the
agent. Given that the agent’s policy keeps changing during the learning procedure,
the data generation distribution also varies over time. Compared to supervised
learning, the attack on sequential learners is a much harder problem because the
attacker needs to take into account the temporal nature of the problem and the
dependency between data points. For instance, modifying the current state of the
agent may have long-term effect on the agent’s future states. As a result, the attacker
needs to carefully plan the modifications over the entire attack horizon in order
to induce a desired effect in a targeted future time. In this thesis, we focus on the
following research question: How to design attack algorithms that can effectively
compromise the performance of sequential decision making learners? Towards
answering the above question, this thesis conducts a systematic study on typical
sequential decision making learners, including multi-armed bandit, reinforcement
learning, industrial control systems, and also multi-agent game-theoretic learners.

To motivate the general idea behind our attack, we now explain how an attacker
can be interpreted as a controller. Consider training a reinforcement learning
agent. Assume at time t, the agent is at state st and takes action at. After that
the environment generates reward rt and transits the agent to the next state st+1.
The agent consumes sequential data (st,at, rt, st+1) and updates the policy πt
accordingly. One can view the agent as a dynamic system with the policy πt being
its meta state. The sequential data (st,at, rt, st+1) can be viewed as control signals
that guide the policy update, or meta state evolvement, of the agent. Without attack,
the meta state πt evolves towards the optimal policy. However, an attacker can
enter the system and tamper the environmental data. As a result, the attacker takes
over the environment and controls the meta state evolvement of the learning agent.
Therefore, intrinsically the attacker can be viewed as an adversarial controller,
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whose meta action is to perturb the sequential data. For example, in reward-
manipulation attack, the meta action of the attacker is to perturb rt to rt + δt. One
can consider applying standard control theory to solve the optimal attack (Chen
and Zhu, 2019; Ma et al., 2020). However, there are situations where control theory
is not directly applicable (unknown or too complex state transition dynamics) or not
preferred. In these cases, we can either design ad-hoc attack algorithms targeting
specific learners or resort to the more general reinforcement learning framework.

Potential Attack Surfaces in Practice

One real-world example of attacks against sequential decision making systems
is the Microsoft chatbot Tay — a conversational AI system with learning ability.
After Tay was released on Twitter, some malicious users adversarially manipulated
the chatbot into posting inflammatory and offensive tweets. In this example, the
attacker (malicious twitter users) composed adversarial input data (e.g., racist
remarks) and caused the system to corrupt. When design such attacks against real-
world systems, the attacker needs to be aware of potential caveats or vulnerability
of the victim system. In the following, we discuss a few possible attack surfaces for
sequential decision making systems.

The first type of attack is the reward-manipulation attack. In many sequential
decision making systems, the reward signals are generated from human feedbacks.
For example, in online recommendation, the reward can be represented by user
clicks/ratings, webpage duration time, customer reviews, etc. This reward feedback
channel reveals potential security concerns, where adversarial users can provide
fake reward feedback or some insider attacker can change existing user feedbacks. In
both cases, our learning system receives corrupted input data, and the performance
of the learned policy will be compromised. An example is movie rating systems —
a group of malicious users can provide fake movie ratings (e.g., very low ratings)
to manipulate the system into making a wrong decision (e.g., not recommend) on a
target movie.

The other type of attack is the action-manipulation attack, in which the attacker
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changes the actions selected by the decision-making system. More concretely, there
are two separate cases. In the first case, the attacker can directly overwrite the
original system action (as studied in (Liu and Lai, 2020)). However, in practice,
such attack can be difficult to implement. One possibility is in online recommender
systems, the data is usually saved in log files, then an insider attacker can secretly
modify the action information in the log file. The other possibility is that the
system already learned a policy π(·), a function that maps a state s to an action
a. During the deployment phase, assume at time t the agent has state st. Then
without attack, the policy chooses action at = π(st). However, an attacker can
change the state perceived by the agent to s′t, so that the policy chooses a different
action a′t = π(a′t). Such attack can happen on game-play agents, where the agent
state is usually represented as an image. Then an attacker can indirectly modify
the action by perturbing the pixels in the input image. This corresponds to the
adversarial example attack in the context of sequential decision making.

One can also combine reward manipulation and action manipulation together
to form a hybrid attack. The counterpart of such attack in the supervised learning
setting is called the backdoor attack (Chen et al., 2017a), which has not been fully
studied within the sequential decision making scenario.

In multi-agent sequential decision making systems, there are two potential
security threats — external attack and adversarial internal agent.

1. An external attacker directly changes the payoff function to induce a desired
target behavior over the agents. In chapter 7, we study the external attack. We
point out that while we approach the problem from an attack perspective, the
algorithms and the theoretical results developed in chapter 7 also apply to
benign entities who hope to help the sequential decision making systems in
positive ways. For example, the government may hope to encourage citizens
to volunteer for social work. To achieve that, the government gives incentives
to volunteers.

2. In the multi-agent scenario, the environment that each agent is faced with will
be affected by how other agents play. Therefore, an adversarial internal agent
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can perform indirect attacks on the opponent (Gleave et al., 2019) or even the
entire multi-agent system (Figura et al., 2021) by using an adversarial policy
to shape the environment. The internal attack can be more implicit than the
external attack, as it does not directly manipulate the data of the other agents,
thus can be harder to detect.

Apart from the attack surface, there are other practical considerations. The most
prominent one is how to evade detections. Intuitively, a stealthy attack should
not induce remarkable changes to the original data flow. In particular, that could
mean two different things. First, the magnitude of perturbation on any individual
data point cannot be too large. Otherwise, an outlier detector can easily notice
the abnormal data points, and thus the attacker. On the other hand, the attacker
may not want to perform too frequent interventions on the system. This is because
frequent interventions from outside the system can alert the agents. Both large-
magnitude and high-frequency attack will result in heavy attack burden (or attack
effort), which is not desirable to the attacker. Depending on the applications, the
attacker may desire either small-magnitude attack, low-frequency attack, or both.

Thesis Outline

In Chapter 2, we study adversarial attacks against online stochastic bandits. In
particular, we design ad-hoc attack algorithms that mislead bandit players into
always selecting some target action (arm) desired by the attacker. As a result, the
player suffers linear regret under attack. Furthermore, we show that the attacker
only needs to incur sublinear attack cost to achieve this goal, therefore the attack is
efficient.

In Chapter 3, we still focus on the bandit setting. However, we instead investigate
the offline learning scenario, where the bandit player uses a fixed behavior policy
to collect batch dataset, and then updates the policy offline. Such offline learning
mode is widely adopted in real-world large-scale systems, as the policy update
procedure can be very time-consuming thus frequent updates are not practical. In
this situation, we study an attacker who performs one-shot perturbation on the
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entire dataset, and cause the bandit to take a sub-optimal action. The problem
becomes essentially equivalent to poisoning a supervised learner.

In Chapter 4 and 5, we move on to study attacks against reinforcement learners
(RL), which are generalizations of bandit learners. Again, we consider both online
and batch reinforcement learners. In Chapter 4, we target online RL algorithms, and
demonstrate one can formulate the attack itself as another reinforcement learning
problem. This approach takes the control view of the attacker. However, because
the state transition of the victim RL agent is too complex, we cannot directly apply
control theory. A generalization of control to complex (or unknown) state transition
situations is the reinforcement learning framework. Therefore, it is quite natural
to apply RL to solve the attack. In Chapter 5, we show that batch reinforcement
learning is vulnerable to poisoning attacks. We provide theoretical upper bound
on how much perturbation is needed to successfully induce the agent to learn a
target sub-optimal policy. Besides that, we also looked into the linear quadratic
regulator (LQR), a classic method used in state-feedback control systems. We show
that an LQR that performs system identification using batch data is very sensitive
to small error in the dataset. Consequently, an attack can injects tiny small error
into the training data to corrupt the performance of LQR.

In Chapter 6, we examine a more applied example of control system – the
Forward Collision Warning (FCW) system. This system can be found in most
cars today, and it helps detect objects in front of the car during road driving, and
produces warning lights when there is imminent danger of collision. At the core
of this system is a module called Kalman Filter, which takes in measurements of
distance and velocity of an object, and outputs a smooth estimate of the object state.
We adopt the control view of the attacker, and formulate the attack problem as a
Model Predictive Control (MPC). Our study shows that an attacker can sequentially
perturb the measurements and cause the Kalman Filter to generate wrong estimates
of the object state. As a result, the FCW produces wrong warning lights and
distracted human drivers may suffer from car collision.

The previous results are all focused on a single decision making agent. Chapter 7,
however, takes a preliminary step towards understanding attacks in multi-agent



7

decision making. As the simplest example, we consider multi-player matrix games,
where several agents play the same matrix game multiple times. Every time, each
player chooses an action and the reward/cost is determined by the action profile of
all players. Standard results in game theory suggests if all players apply no-regret
algorithms, then the empirical policy converges to some coarse correlated equilib-
rium. We assume the players are all no-regret learning agents, and demonstrate
that an attacker can manipulate the reward/cost of each agent to induce a desired
target action profile.



8

2 adversarial attacks on stochastic bandits

Contribution Statement. This chapter is joint work with Kwang-Sung Jun, Li-
hong Li and Xiaojin Zhu. The author Yuzhe Ma contributed to part of the theoretical
analysis, and completed all the experiments. The paper version of this chapter
appeared in NeurIPS18.

2.1 Adversarial Attacks on Stochastic Bandits

Designing trustworthy machine learning systems requires understanding how they
may be attacked. There has been a surge of interest on adversarial attacks against
supervised learning (Goodfellow et al., 2014; Joseph et al., 2018). In contrast, little
is known on adversarial attacks against stochastic multi-armed bandits (MABs),
a form of online learning with limited feedback. This is potentially hazardous
since stochastic MABs are widely used in the industry to recommend news arti-
cles (Li et al., 2010b), display advertisements (Chapelle et al., 2014), improve search
results (Kveton et al., 2015), allocate medical treatment (Kuleshov and Precup,
2014), and promote users’ well-being (Greenewald et al., 2017), among many oth-
ers. Indeed, as we show, an adversarial attacker can modify the reward signal to
manipulate the MAB for nefarious goals.

Our main contribution is an analysis on reward-manipulation attacks. We
distinguish three agents in this setting: “the world,” “Bob” the bandit algorithm,
and “Alice” the attacker. As in standard stochastic bandit problems, the world
consists of K arms with sub-Gaussian rewards centered at µ1, . . . ,µK. Note that we
do not assume {µi} are sorted. Neither Bob nor Alice knows {µi}. Bob pulls selected
arms in rounds and attempts to minimize his regret. When Bob pulls arm It ∈ [K]

in round t, the world generates a random reward r0
t drawn from a sub-Gaussian

distribution with expectation µIt . However, Alice sits in-between the world and
Bob and manipulates the reward into rt = r0

t − αt. We call αt ∈ R the attack. If
Alice decides not to attack in this round, she simply lets αt = 0. Bob then receives rt,
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without knowing the presence of Alice. Without loss of generality, assume arm K is
a suboptimal “attack target” arm: µK < maxi=1...K µi. Alice’s goal is to manipulate
Bob into pulling arm K very often while making small attacks. Specifically, we
show Alice can force Bob to pull the target arm T − o(T) number of times with a
cumulative attack cost of

∑T
t=1 |αt| = O(log(T)).

The assumption that Alice does not know {µi} is significant because otherwise
Alice can perform the attack trivially. To see this, with the knowledge of {µi} Alice
would be able to compute the truncated reward gap ∆εi = max{µi − µK + ε, 0} > 0
for all non-target arms i 6= K for some small parameter ε > 0. Alice can perform
the following oracle attack: in any round where a non-target arm It 6= K is pulled,
attack with αt = ∆εIt . This oracle attack transforms the original bandit problem into
one where all non-target arms have expected reward less than µK. It is well-known
that if Bob runs a sublinear-regret algorithm (e.g., UCB (Auer et al., 2002a; Bubeck
and Cesa-Bianchi, 2012a)), almost all arm pulls will concentrate on the now-best
target arm K in the transformed bandit problem. Furthermore, Alice’s cumulative
attack cost will be sublinear in time, because the total number of non-target arm
pulls is sublinear in the transformed problem. In practice, however, it is almost
never the case that Alice knows µ1, . . . ,µK and hence the ∆εi ’s. Thus the oracle
attack is impractical. Our focus in this chapter is to design an attack that nearly
matches the oracle attack, but for Alice who does not know {µi}. We do so for two
popular bandit algorithms, ε-greedy (Auer et al., 2002b) and UCB (Bubeck and
Cesa-Bianchi, 2012a).

What damage can Alice do in practice? She can largely control the arms pulled
by Bob. She can also control which arm appears to Bob as the best arm at the end.
As an example, consider the news-delivering contextual bandit problem (Li et al.,
2010b). The arms are available news articles, and Bob selects which arm to pull (i.e.,
which article to show to a user at the news site). In normal operation, Bob shows
news articles to users to maximize the click-through rate. However, Alice can attack
Bob to change his behavior. For instance, Alice can manipulate the rewards so that
users from a particular political base are always shown particular news articles
that can reinforce or convert their opinion. Conversely, Alice can coerce the bandit
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to not show an important article to certain users. As another example, Alice may
interfere with clinical trials (Kuleshov and Precup, 2014) to funnel most patients
toward certain treatment, or make researchers draw wrong conclusions on whether
treatment is better than control. Therefore, adversarial attacks on MAB deserve
our attention. Insights gained from our study can be used to build defense in the
future.

Finally, we note that our setting is motivated by modern industry-scale appli-
cations of contextual bandits, where arm selection, reward signal collection, and
policy updates are done in a distributed way (Agarwal et al., 2016; Li et al., 2010b).
Attacks can happen when the reward signal is joined with the selected arm, or
when the arm-reward data is sent to another module for Bob to update his policy. In
either case, Alice has access to both It and r0

t for the present and previous rounds.

2.2 Preliminaries

Before presenting our main attack algorithms, in this section we first discuss a
simple heuristic attack algorithm which serves to illustrate the intrinsic difficulty
of attacks. Throughout, we assume Bob runs a bandit algorithm with sublinear
pseudo-regret E

∑T
t=1(maxKj=1 µj − µIt). As Alice does not know {µi} she must rely

on the empirical rewards up to round t − 1 to decide the appropriate attack αt.
The attack is online since αt is computed on-the-fly as It and r0

t are revealed. The
attacking protocol is summarized in Alg. 1.

Algorithm 1 Alice’s attack against a bandit algorithm
1: Input: Bob’s bandit algorithm, target arm K

2: for t = 1, 2, . . . do
3: Bob chooses arm It to pull.
4: World generates pre-attack reward r0

t.
5: Alice observes It and r0

t, and then decides the attack αt.
6: Alice gives rt = r0

t − αt to Bob.
7: end for
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We assume all arm rewards are σ2-sub-Gaussian where σ2 is known to both Alice
and Bob. LetNi(t) be the number of pulls of arm i up to round t. We say the attack
is successful after T rounds if the number of target-arm pulls isNK(T) = T − o(T) in
expectation or with high probability, while minimizing the cumulative attack cost∑T
t=1 |αt|.
For convenience we define the following quantities:
• τi(t) := {s : s 6 t, Is = i}, the set of rounds up to t where arm i is chosen,
• µ̂0

i(t) := Ni(t)
−1∑

s∈τi(t) r
0
s, the pre-attack average reward of arm i up to

round t, and
• µ̂i(t) := Ni(t)

−1∑
s∈τi(t) rs, the corresponding post-attack average reward.

The oracle attack, revisited While the oracle attack was impractical, it gives us
a baseline for comparison. The oracle attack drags down the reward of all non-target
arms,1 and can be written as

αt = 1{It 6= K} · ∆εIt .

Proposition 2.1 shows that the oracle attack succeeds and requires only a logarithmic
attack cost. While more general statements for sublinear-regret algorithms can be
made, we focus on logarithmic-regret bandit algorithms for simplicity. Throughout,
omitted proofs can be found in our supplementary material.

Proposition 2.1. Assume that Bob’s bandit algorithm achieves an O(log T) regret bound.
Then, Alice’s oracle attack with ε > 0 succeeds; i.e., ENK(T) = T − o(T). Furthermore,
the expected total attack cost is O

(∑K−1
i=1 ∆

ε
i log T

)
.2

The heuristic constant attack A slight variant of the oracle attack is to attack
all the non-target arms with a single constant amount A > 0, regardless of the

1The opposite strategy is to push up the target arm: αt = 1{It = K} · (µK−maxj µj− ε) to make
arm K the best arm in post-attack rewards. However, a successful attack means that Alice pulls the
target arm T − o(T) times; the attack cost is necessarily linear in T , which is inefficient. Simulations
that support “drag down” instead of “push up” are presented in Appendix A.4.

2For near-optimal algorithms like UCB (Auer et al., 2002a), one can find the optimal choice of ε.
See our supplementary material for detail.
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actual µi’s:
αt = 1{It 6= K} ·A.

Let ∆i := ∆0
i. Unfortunately, this heuristic constant attack depends critically on

the value of A compared to the unknown maximum gap maxi∆i. Proposition 2.2
states the condition under which the attack succeeds:

Proposition 2.2. Assume that Bob’s bandit algorithm achieves an O(log T) regret bound.
Then, Alice’s heuristic constant attack with A succeeds if and only if A > maxi∆i. If the
attack succeeds, then the expected attack cost is O(A log T).

Conversely, if A < maxi∆i the attack fails. This is because in the transformed
bandit problem, there exists an arm that has a higher expected reward than arm K,
and Bob will mostly pull that arm. Therefore, the heuristic constant attack has to
know an unknown quantity to guarantee a successful attack. Moreover, the attack
is non-adaptive to the problem difficulty since some ∆i’s can be much smaller than
A, in which case Alice pays an unnecessarily large attack cost.

We therefore ask the following question:

Does there exist an attacker Alice that guarantees a successful attack with
cost adaptive to the problem difficulty?

The answer is yes. We present attack strategies against two popular bandit
algorithms of Bob: ε-greedy and UCB. We show that Alice can indeed succeed in
her attacks and incur cost as small as that of the oracle with an additive term due
to the sub-Gaussian noise level σ.

2.3 Alice’s Attack on ε-Greedy Bob

The ε-greedy strategy initially pulls each arm once in the first K rounds. For
convenience, we assume that the target arm is pulled first: I1 = K. Our results in
this section can be adapted to any order of initialization with more complicated
notation.
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Bob’s ε-greedy strategy has the following arm-selection rule for t > K (Auer
et al., 2002b):

It =

draw uniform[K], w.p. εt (exploration)

arg maxi µ̂i(t− 1), otherwise (exploitation)
.

The strategy uses an exploration scheme {εt} over t. Alice’s attack algorithm is not
aware of {εt} though her cumulative attack cost

∑
|αt| will implicitly depend on it.

Later in Corollary 2.2 we show that, for the typical decaying scheme εt ∝ 1/t, the
cumulative attack cost is mild: O(log(t)).

Alice wants to make Bob always pull the target arm during exploitation rounds.
Since Alice has no influence on which arm is pulled during exploration, this attack
goal is the strongest she can achieve. Here, Alg. 1 is specialized to ensure the
following condition:

µ̂It(t) 6 µ̂K(t) − 2β(NK(t)), (1)

where we define β(N) as

β(N) :=

√
2σ2

N
log π

2KN2

3δ
. (2)

From this condition, we derive the actual attack αt. Since

µ̂It(t) =
µ̂It(t− 1)NIt(t− 1) + r0

t − αt
NIt(t)

, (3)

we set the attack in Alg. 1 as

αt =
[
µ̂It(t− 1)NIt(t− 1) + r0

t − (µ̂K(t) − 2β(NK(t)))NIt(t)
]
+

, (4)

where [z]+ = max(0, z). Note α is always non-negative, thus the cumulative attack
cost can be written without absolute value:

∑T
t=1 αt.

With this αt, we claim that (i) Alice forces Bob to pull the target arm in all
exploitation rounds as shown in Lemma 2.4, and (ii) the cumulative attack cost is
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logarithmic in t for standard ε-greedy learner exploration scheme εt = O(1/t) as
shown in Corollary 2.2. Our main result is the following general upper bound on
the cumulative attack cost.

Theorem 2.1. Let δ 6 1/2. With probability at least 1−2δ, for any T satisfying
∑T
t=1 εt >

K
e−2 log(K/δ),3 Alice forces Bob running ε-greedy to choose the target arm in at least ÑK(T)
rounds, using a cumulative attack cost at most

T∑
t=1

|αt| <

(
K∑
i=1

∆i

)
Ñ(T) + (K− 1) ·

(
Ñ(T)β(Ñ(T)) + 3Ñ(T)β(ÑK(T))

)
where

Ñ(T) =

(∑T
t=1 εt

K

)
+

√√√√3 log
(
K

δ

)(∑T
t=1 εt

K

)
,

ÑK(T) = T −

(
T∑
t=1

εt

)
−

√√√√3 log
(
K

δ

)( T∑
t=1

εt

)
.

Before proving the theorem, we first look at its consequence. If Bob’s εt decay
scheme is εt = min{1, cK/t} for some c > 0 as recommended in (Auer et al.,
2002b), Alice’s cumulative attack cost isO(

∑K
i=1∆i log T) for large enough T , as the

following corollary shows:

Corollary 2.2. Inherit the assumptions in Theorem 2.1. Fix K and δ. If εt = cK/t for
some constant c > 0, then

T∑
t=1

|αt| = Ô

((
K∑
i=1

∆i

)
log T + σK

√
log T

)
, (5)

where Ô ignores log log factors.
3 One can drop this condition by considering slightly larger Ñ(t) and smaller ÑK(t). However,

we keep the condition as it simplifies Ñ(t) and ÑK(t). We refer to the proof of Lemma 2.6 for detail.
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Note that the two important constants are
∑
i∆i and σ. While a large σ can

increase the cost significantly, the term with
∑
i∆i dominates the cost for large

enough T . Specifically,
∑
i∆i is multiplied by log T that is of higher order than√

log T . We empirically verify the scaling of cost with T in Section 2.5.
To prove Theorem 2.1, we first show that β in (2) is a high-probability bound on

the pre-attack empirical mean of all arms on all rounds. Define the event

E := {∀i, ∀t > K : |µ̂0
i(t) − µi| < β(Ni(t))}. (6)

Lemma 2.3. For δ ∈ (0, 1), P (E) > 1 − δ.

The following lemma proves the first half of our claim.

Lemma 2.4. For δ 6 1/2 and under event E, attacks (4) force Bob to always pull the target
arm K in exploitation rounds.

We now show that on average each attack on a non-target arm i is not much
bigger than ∆i.

Lemma 2.5. For δ 6 1/2 and under event E, we have for all arm i < K and all t that∑
s∈τi(t)

|αs| < (∆i + β(Ni(t)) + 3β(NK(t)))Ni(t) .

Finally, we upper bound the number of non-target arm i pulls Ni(T) for i < K.
Recall the arm i pulls are only the result of exploration rounds. In round t the
exploration probability is εt; if Bob explores, he chooses an arm uniformly at
random. We also lower bound the target arm pulls NK(T).

Lemma 2.6. Let δ < 1/2. Suppose T satisfy
∑T
t=1 εt >

K
e−2 log(K/δ). With probability

at least 1 − δ, for all non-target arms i < K,

Ni(T) <

T∑
t=1

εt

K
+

√√√√3
T∑
s=1

εt

K
log K

δ
.
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and for the target arm K,

NK(T) > T −

T∑
t=1

εt −

√√√√3
T∑
s=1

εt log K
δ

.

We are now ready to prove Theorem 2.1.

Proof. The theorem follows immediately from a union bound over Lemma 2.5
and Lemma 2.6 below. We add up the attack costs over K − 1 non-target arms.
Then, we note that Nβ(N) is increasing in N so Ni(T)β(Ni(T)) 6 Ñ(T)β(Ñ(T)).
Finally, by Lemma A.2 in our supplementary material β(N) is decreasing in N, so
β(NK(T)) 6 β(ÑK(T)).

2.4 Alice’s Attack on UCB Bob

Recall that we assume rewards are σ2-sub-Gaussian. Bob’s UCB algorithm in its
basic form often assumes rewards are bounded in [0, 1]; we need to modify the
algorithm to handle the more general sub-Gaussian rewards. By choosing α = 4.5
and ψ : λ 7→ σ2λ2

2 in the (α,ψ)-UCB algorithm of (Bubeck and Cesa-Bianchi, 2012a,
Section 2.2), we obtain the following arm-selection rule:

It =

t, if t 6 K

arg maxi
{
µ̂i(t− 1) + 3σ

√
log t

Ni(t−1)

}
, otherwise.

For the first K rounds where Bob plays each of the K arms once in an arbitrary
order, Alice does not attack: αt = 0 for t 6 K. After that, attack happens only
when It 6= K. Specifically, consider any round t > K where Bob pulls arm i 6= K. It
follows from the UCB algorithm that

µ̂i(t− 1) + 3σ

√
log t

Ni(t− 1)
> µ̂K(t− 1) + 3σ

√
log t

NK(t− 1)
.
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Alice attacks as follows. She computes an attack αt with the smallest absolute value,
such that

µ̂i(t) 6 µ̂K(t− 1) − 2β(NK(t− 1)) − ∆0 ,

where ∆0 > 0 is a parameter of Alice. Since the post-attack empirical mean can be
computed recursively by the following

µ̂i(t) =
Ni(t− 1)µ̂i(t− 1) + r0

t − αt
Ni(t− 1) + 1

,

where r0
t is the pre-attack reward; this enables us to write down in closed form

Alice’s attack:

αt =
[
Ni(t)µ̂

0
i(t)−

∑
s∈τi(t−1)

αs−Ni(t) · (µ̂K(t− 1) − 2β(NK(t− 1)) − ∆0)
]
+

. (7)

For convenience, define αt = 0 if It = K. We now present the main theorem on
Alice’s cumulative attack cost against Bob who runs UCB.

Theorem 2.3. Suppose T > 2K and δ 6 1/2. Then, with probability at least 1 − δ, Alice
forces Bob to choose the target arm in at least

T − (K− 1)
(

2 +
9σ2

∆2
0

log T
)

,

rounds, using a cumulative attack cost at most

T∑
t=1

αt 6

(
2 +

9σ2

∆2
0

log T
)∑
i<K

(∆i + ∆0) + σ(K− 1)

√√√√32(2 +
9σ2

∆2
0

log T) log
π2K(2 + 9σ2

∆2
0

log T)2

3δ
.

While the bounds in the theorem are somewhat complicated, the next corollary
is more interpretable and follows from a straightforward calculation. Specifically,
we have the following by straightforward calculation:

Corollary 2.4. Inherit the assumptions in Theorem 2.3 and fix δ. Then, the total number
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of non-target arm pulls is

O

(
K+

Kσ2

∆2
0

log T
)

,

and the cumulative attack cost is

Ô

((
1 +

σ2

∆2
0

log T
)∑
i<K

(∆i + ∆0) + σK ·
(

1 +
σ

∆0

√
log T

)√
log
(

1 +
Kσ

∆0

))
,

where Ô ignores log log(T) factors.

We observe that a larger ∆0 decreases non-target arm pulls (i.e. a more effective
attack). The effect diminishes when ∆0 > σ

√
log T since Kσ2

∆2
0

log T < K. Thus
there is no need for Alice to choose a larger ∆0. By choosing ∆0 = Θ(σ), the cost
is Ô(

∑
i<K∆i log T + σK log T). This is slightly worse than the cost of attacking

ε-greedy where σ is multiplied by
√

log T rather than log T . However, we find
that a stronger attack is possible when the time horizon T is fixed and known to
Alice ahead of time (i.e., the fixed budget setting). One can show that this choice
∆0 = Θ

(
σ
√

log T
)

minimizes the cumulative attack cost, which is Ô
(
Kσ
√

log T
)
.

This is a very strong attack since the dominating term w.r.t. T does not depend on∑
i<K∆i; in fact the cost associated with

∑
i<K∆i does not grow with T at all. This

means that under the fixed budget setting algorithm-specific attacks can be better
than the oracle attack that is algorithm-independent. Whether the same is true in
the anytime setting (i.e., T is unknown ahead of time) is left as an open problem.

For the proof of Theorem 2.3 we use the following two lemmas.

Lemma 2.7. Assume event E holds and δ 6 1/2. Then, for any i < K and any t > 2K,
we have

Ni(t) 6 min{NK(t), 2 +
9σ2

∆2
0

log t} . (8)

Lemma 2.8. Assume event E holds and δ 6 1/2. Then, at any round t > 2K, the
cumulative attack cost to any fixed arm i < K can be bounded as:∑

s∈τi(t)

αs 6 Ni(t)
(
∆i + ∆0 + 4β(Ni(t))

)
.
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Proof of Theorem 2.3. Suppose event E holds. The bounds are direct consequences
of Lemmas 2.8 and 2.7 below, by summing the corresponding upper bounds over
all non-target arms i. Specifically, the number of target arm pulls is T −

∑
i<KNi(T),

and the cumulative attack cost is
∑T
t=1 αt =

∑
i<K

∑
t∈τi(T) αt. Since event E is true

with probability at least 1 − δ (Lemma 2.3), the bounds also hold with probability
at least 1 − δ.

2.5 Simulations

In this section, we run simulations on attacking ε-greedy and UCB algorithms to
illustrate our theoretical findings.

Attacking ε-greedy The bandit has two arms. The reward distributions of
arms 1 and 2 are N(∆1,σ2) and N(0,σ2), respectively, with ∆1 > 0. Alice’s target
arm is arm 2. We let δ = 0.025. Bob’s exploration probability decays as εt = 1

t
. We

run Alice and Bob for T = 105 rounds; this forms one trial. We repeat 1000 trials.
In Figure 1a, we fix σ = 0.1 and show Alice’s cumulative attack cost

∑t
s=1 |αs|

for different ∆1 values. Each curve is the average over 1000 trials. These curves
demonstrate that Alice’s attack cost is proportional to log t as predicted by Corol-
lary 2.2. As the reward gap ∆1 becomes larger, more attack is needed to reduce the
reward of arm 1, and the slope increases.

Furthermore, note that
∑T
t=1 |αt| = Ô

(
∆1 log T + σ

√
log T

)
. Ignoring log log T

terms, we have
∑T
t=1 |αt| 6 C(∆1 log T + σ

√
log T) for some constant C > 0 and

large enough T . Therefore, log
(∑T

t=1 |αt|
)
6 max{log log T + log∆1, 1

2 log log T +

log σ}+ logC. We thus expect the log-cost curve as a function of log log T to behave
like the maximum of two lines, one with slope 1/2 and the other with slope 1.
Indeed, we observe such a curve in Figure 1b where we fix ∆1 = 1 and vary σ.
All the slopes eventually approach 1, though larger σ’s take a longer time. This
implies that the effect of σ diminishes for large enough T , which was predicted by
Corollary 2.2.

In Figure 1c, we compare the number of target arm (the suboptimal arm 2) pulls
with and without attack. This experiment is with ∆1 = 0.1 and σ = 0.1. Alice’s
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(a) Attack cost
∑t
s=1 |αs| as

∆1 varies
(b) Attack cost as σ varies;
dotted lines depict slope 1/2
and 1 for comparison.

(c) Target arm pulls NK(t)

Figure 1: Attack on ε-greedy bandit.

attack dramatically forces Bob to pull the target arm. In 10000 rounds, Bob is forced
to pull the target arm 9994 rounds with the attack, compared to only 6 rounds if
Alice was not present.

Attacking UCB The bandit has two arms. The reward distributions are the
same as the ε-greedy experiment. We let δ = 0.05. To study how σ and ∆0 affects
the cumulative attack cost, we perform two groups of experiments. In the first
group, we fix σ = 0.1 and vary Alice’s free parameter ∆0 while in the second group,
we fix ∆0 = 0.1 and vary σ. We perform 100 trials with T = 107 rounds.

Figure 2a shows Alice’s cumulative attack cost as ∆0 varies. As ∆0 increases,
the cumulative attack cost decreases. In Figure 2b, we show the cost as σ varies.
Note that for large enough t, the cost grows almost linearly with log t, which is
implied by Corollary 2.4. In both figures, there is a large attack near the beginning,
after which the cost grows slowly. This is because the initial attacks drag down the
empirical average of non-target arms by a large amount, such that the target arm
appears to have the best UCB for many subsequent rounds. Figure 2c again shows
that Alice’s attack forces Bob to pull the target arm: with attack Bob is forced to
pull the target arm 107 − 2 times, compared to only 156 times without attack.
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(a) Attack cost
∑t
s=1 αs as ∆0

varies
(b) Attack cost as σ varies (c) Target arm pulls NK(t)

Figure 2: Attack on UCB learner.
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3 adversarial attacks in contextual bandits

Contribution Statement. This chapter is joint work with Kwang-Sung Jun, Li-
hong Li and Xiaojin Zhu. The author Yuzhe Ma is the leading author and completed
most of the work, including the theoretical analysis and the experiments. The paper
version of this chapter appeared in GameSec18.

3.1 Adversarial Attacks in Contextual Bandits

As an important step toward trustworthy AI, adversarial learning studies robustness
of machine learning systems against malicious attacks (Goodfellow et al., 2014;
Joseph et al., 2018). Training set poisoning is a type of attack where the adversary
can manipulate the training data such that a machine learning algorithm trained on
the poisoned data would produce a defective model. The defective model is often
similar to a good model, but affords the adversary certain nefarious leverages (Alfeld
et al., 2016; Biggio et al., 2012; Jagielski et al., 2018; Li et al., 2016a; Mei and Zhu,
2015a,b; Zhao et al., 2018a). Understanding training set poisoning is essential to
developing defense mechanisms.

Recent studies on training set poisoning attack focused heavily on supervised
learning. There has been little study on poisoning sequential decision making
algorithms, even though they are widely employed in the real world. In this
chapter, we aim to fill in the gap by studying training set poisoning against con-
textual bandits. Contextual bandits are extensions of multi-armed bandits with
side information and have seen wide applications in industry including news rec-
ommendation (Li et al., 2010b), online advertising (Chapelle et al., 2014), medical
treatment allocation (Kuleshov and Precup, 2014), and also promotion of users’
well-being (Greenewald et al., 2017).

Let us take news recommendation as a running example for poisoning against
contextual bandits. A news website has K articles (i.e., arms). It runs an adaptive
article recommendation algorithm (the contextual bandit algorithm) to learn a
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policy in the backend. Every time a user (represented by a context vector) visits the
website, the website displays an article that it thinks is most likely to interest the user
based on the historical record of all users. Then the website receives a unit reward
if the user clicks through the displayed article, and receives no reward otherwise.
Usually the website keeps serving users throughout the day and updates its article
selection policy periodically (say, during the nights or every few hours). This
provides an opportunity for an attacker to perform offline data poisoning attacks,
e.g. the attacker can sneak into the website backend at night before the policy
is updated, and poison the rewards collected during the daytime. The website
unknowingly updates its policy with the poisoned data. On the next day it behaves
as the attacker wanted.

More generally, we study adversarial attacks in contextual bandit where the
attacker poisons historical rewards in order to force the bandit to pull a target arm
under a target context. One can view this attack as a form of offline reward shap-
ing (Ng et al., 1999b), but it is adversarial reward shaping. Our main contribution
is an optimization-based attack framework for this attack setting. We also study the
feasibility and side effect of the attack. We show on both synthetic and real-world
data that the attack is effective. This exposes a security threat in AI systems that
involve contextual bandits.

3.2 Review of Contextual Bandit

This section reviews contextual bandits, which will be the victim of the attack in this
chapter. A contextual bandit is an abstraction of many real-world decision making
problems such as product recommendation and online advertising. Consider for
example a news website which strives to recommend the most interesting news
articles personalized for individual users. Every time a user visits the website, the
website observes certain contextual information that describes the user such as age,
gender, location, past news consumption patterns, etc. The website also has a pool
of candidate news articles, one of which will be recommended and shown to the
user. If the recommended article is interesting, the user may click on it; otherwise,
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the user may click on other items on the page or navigate to another page. The click
probability here depends on both the user (via the context) and the recommended
article. Such a dependency can be learned based on click logs and used for better
recommendation for future users.

An important aspect of the problem is that the click feedback is observed only
for the recommended article, not for others. In other words, the decision (choosing
which article to show to a user) is irrevocable; it is impractical to force the user to
revisit the webpage so as to recommend a different article. As a result, the feedback
data being collected is necessarily biased towards the current recommendation
algorithm being employed by the website, raising the need for balancing exploration
and exploitation when choosing arms (Li et al., 2010b). This is in stark contrast to
a typical prediction task solved by supervised learning where predictions do not
affect the data collection.

Formally, a contextual bandit has a set X of contexts and a set A = {1, 2, . . . ,K} of
K arms. A contextual bandit algorithm proceeds in rounds t = 1, 2, . . .. At round t,
the algorithm observes a context vector xt ∈ Rd, chooses to pull an arm at ∈ A, and
observes a reward rt ∈ R. The goal of the algorithm is to maximize the total reward
garnered over rounds. In the news recommendation example above, it is natural
to define rt = 1 if user clicks on the article and 0 otherwise, so that maximizing
clicks is equivalent to maximizing the click-through rate, a critical business metric
in online recommender systems.

In this work, we focus on the most popular and well-studied setting called
linear bandits, where the expected reward is linear map of the context vector.
Specifically, we assume each arm a is associated with an unknown vector θa ∈ Rd

with ‖θa‖2 6 S, so that for every t:

rt = x
>
t θat + ηt , (9)

where ηt is a σ-subGaussian noise. For simplicity, we assume ηt is unbounded and
thus the reward can take any value in R.

Most contextual bandit algorithms adopt the optimism-in-face-of-uncertainty
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(OFU) principle for efficient exploration. The OFU principle constructs an Upper
Confidence Bound (UCB) for the mean reward of each arm based on historical
data and then selects the arm with the highest UCB at each time step (Auer et al.,
2002a; Abbasi-Yadkori et al., 2011). In round t, the historical data consists of the
context, action, reward triples (x,a, r) from the previous t− 1 rounds. It is useful to
split the historical data so that the feedback from the same arm is pooled together.
Define [K] = {1, . . . ,K}. Letma be the number of times arm awas pulled up to time
t− 1. This implies that

∑
a∈[K]ma = t− 1. For each a ∈ [K], let Xa ∈ Rma×d be the

design matrix for rounds, where arm awas pulled and each row of Xa is a previous
context. Similarly, let ya ∈ Rma be the corresponding reward (column) vector.

A UCB-style algorithm first forms a point estimate of θa by ridge regression

θ̂a = (X>aXa + λI)
−1X>aya, ∀a ∈ [K], (10)

where λ > 0 is a regularization parameter. At round t, the algorithm observes the
context xt and then selects the arm with the highest UCB:

at = arg max
a∈[K]

{
x>t θ̂a + αa‖xt‖V−1

a

}
, (11)

where ‖xt‖V−1
a

=
√
x>t V

−1
a xt is the Mahalanobis norm and Va = X>aXa + λI. Intu-

itively, for less frequently chosen a, the second term above tends to be large, thus
encouraging exploration. The exploration parameter αa is algorithm-specific. For
example, in LinUCB (Li et al., 2010b) αa = 1 +

√
1
2 log 2

δ
and in OFUL (Abbasi-

Yadkori et al., 2011) αa = σ

√
2 log(det(Va)

1
2 det(λI)−

1
2

δ
) + λ

1
2S, where δ > 0 is a confi-

dence parameter. Here, we assume αa may depend on input parameters like δ and
observed data up to t− 1, but not xt.

In Algorithm 2, we summarize the contextual bandit algorithm. While the bandit
algorithm updates its θ̂ estimates in every round (step 3), in practice due to various
considerations such updates often happen in mini-batches, e.g., several times an
hour, or during the nights when fewer users visit the website (Li et al., 2010b;
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Agarwal et al., 2016). Between these consecutive updates, the bandit algorithm
follows a fixed policy obtained from the last update.

Algorithm 2 Contextual bandit algorithm
1: Parameters: confidence δ, regularizer λ, UCB function α.
2: for t = 1, 2, . . . , T do
3: Receive context xt, estimate θ̂a,a ∈ [K] with (10).
4: Pull arm at = arg maxa∈[K]

{
x>t θ̂a + αa‖xt‖V−1

a

}
.

5: World generates reward rt = x>t θat + ηt.
6: Append xt and rt to Xat and yat , respectively.
7: end for

3.3 Attack Algorithm in Contextual Bandit

We now introduce an attacker with the following attack goal:

Attack goal [x∗ → a∗]: On a particular attack target context x∗, force the
bandit algorithm to pull an attack target arm a∗.

For example, the attacker may want to manipulate the news service so that a
particular article a∗ is shown to users x∗ from certain political bases. The attack
is aimed at the current round t, or more generally the whole period when the
arm-selection policy is fixed. Any suboptimal arm a∗ can be the target arm. For
concreteness, in our experiments the attacker always picks the worst arm a∗ as the
target arm. This is defined in the sense of the worst UCB, namely replacing arg max
with arg min in (11), resulting in the target arm in (29).

We assume the attacker has full knowledge of the bandit algorithm and has ac-
cess to all historical data. The attacker has the power to poison the historical reward
vector4 ya, ∀a ∈ [K]. Specifically, the attacker can make arbitrary modifications

4In this chapter we restrict the poisoning to modifying rewards for ease of exposition. More
generally, the attacker can add, remove, or modify both the rewards and the context vectors. Our
optimization-based attack framework can be generalized to such stronger attacks, though the
optimization could become combinatorial.
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∆a ∈ Rma , ∀a ∈ [K] so that the reward vector for arm a becomes ya+∆a. After the
poisoning attack, the ridge regression performed by the bandit algorithm yields a
different solution:

θ̂a = V−1
a X

>
a (ya + ∆a). (12)

Because such attacks happen on historical rewards in between bandit algorithm
updates, we call it offline.

Now we can formally define the attack goal.

Definition 3.1 (Weak attack). A target context x∗ is called weakly attacked into pulling
target arm a∗ if after attack the following inequalities are satisfied:

x∗>θ̂a∗ + αa∗‖x∗‖V−1
a∗
> x∗>θ̂a + αa‖x∗‖V−1

a
, ∀a 6= a∗. (13)

In other words, the algorithm is manipulated into choosing a∗ for context x∗.

To avoid being detected, the attacker hopes to make the poisoning ∆a,a ∈ [K] as
small as possible. We measure the magnitude of the attack by the squared `2-norm∑
a∈[K] ‖∆a‖2

2.5 We therefore formulate the attack as the following optimization
problem:

min
∆a:a∈[K]

∑
a∈[K]

‖∆a‖2
2

s.t. x∗>θ̂a∗ + αa∗‖x∗‖V−1
a∗
> x∗>θ̂a + αa‖x∗‖V−1

a
,∀a 6= a∗

where θ̂a = V−1
a X

>
a (ya + ∆a), ∀a.

(14)

The weak attack above ensures that, given the target context x∗, the bandit
algorithm is forced to pull arm a∗ instead of any other arms. Unfortunately, the
constraints do not result in a closed convex set. To formulate the attack as a convex
optimization problem, we introduce a stronger notion of attack that implies weak
attack:

5The choice of norm is application dependent, see e.g., (Mei and Zhu, 2015b, Figure 3). Any
norm works for the attack formulation.
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Definition 3.2 (Strong attack). A target context x∗ is called ε-strongly attacked into
pulling target arm a∗, for some ε > 0, if after attack the following holds:

x∗>θ̂a∗ + αa∗‖x∗‖V−1
a∗

> ε+ x∗>θ̂a + αa‖x∗‖V−1
a

, ∀a 6= a∗ . (15)

This is essentially a large margin condition which requires the UCB of a∗ to
be at least ε greater than the UCB of any other arm a. The margin parameter ε is
chosen by the attacker. We achieve strong attack with the following optimization
problem:

min
∆a:a∈[K]

∑
a∈[K]

‖∆a‖2
2

s.t. x∗>θ̂a∗ + αa∗‖x∗‖V−1
a∗

> ε+ x∗>θ̂a + αa‖x∗‖V−1
a

, ∀a 6= a∗

where θ̂a = V−1
a X

>
a (ya + ∆a),∀a.

(16)

The optimization problem above is a quadratic program with linear constraints in
{∆a}a∈[K]. We summarize the attack in Algorithm 3. In the next section we discuss
when the algorithm is feasible.

Algorithm 3 Data Poisoning Attack in Contextual Bandit
1: Input: victim contextual bandit (Algorithm 2), target context x∗, target arm a∗,

attack margin ε, historical data Xa,ya,a ∈ [K].
2: Solve (16) for ∆a,∀a ∈ [K].
3: If a solution ∆a is found, poison ya ← ya + ∆a; otherwise return infeasible.

3.4 Feasibility of Attack

While one can always write down the training set attack algorithm as optimiza-
tion (16), there is no guarantee that such attack is feasible. In particular, the inequal-
ity constraints may result in an empty set. One may naturally ask: are there context
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vectors x∗ that simply cannot be strongly attacked?6 In this section we present a
full characterization of the feasibility question for strong attack. As we will see,
attack feasibility depends on the original training data. Understanding the answer
helps us to gauge the difficulty of poisoning, and may aid the design of defenses.

The main result of this section is the following theorem that characterizes a
sufficient and necessary condition for the strong attack to be feasible.

Theorem 3.3. A context x cannot be strongly attacked into pulling a∗ if and only if there
exists a 6= a∗ such that the following two conditions are both satisfied:
(i) x ∈ Null(Xa∗) ∩Null(Xa), and
(ii) αa∗ ||x||V−1

a∗
< ε+ αa||x||V−1

a
.

Before presenting the proof, we first provide intuition. The key idea is that a
context x cannot be strongly attacked if some non-target arm a is always better than
a∗ for x for any attack. This can happen because there are two terms in the arm
selection criterion (11) while the attack can affect the first term only. It turns out
that under the condition (i) the first term becomes zero. If there exists a non-target
arm that has a larger second term than that of the target arm (the condition (ii)),
then no attack can force the bandit algorithm to choose the target arm.

We present an empirical study on the feasibility of attack in Section 3.6.

Lemma 3.4. x ∈ Null(Xa∗)⇔ x>V−1
a∗ X

>
a∗ = 0, where Va∗ = X>a∗Xa∗ + λI.

Proof. First, we prove x ∈ Null(Xa∗)⇒ x>V−1
a∗ X

>
a∗ = 0. Note that

x ∈ Null(Xa∗)⇒ Xa∗x = 0

⇒ X>a∗Xa∗x = 0

⇒ (X>a∗Xa∗ + λI)x = λx

⇒ 1
λ
x = (X>a∗Xa∗ + λI)

−1x = V−1
a∗ x.

(17)

6Even if some context x∗ cannot be strongly attacked, the attacker might be able to weakly attack
it. Weak attack is sufficient for the attacker to force an arm pull of a∗. However, as ε → 0 strong
attack approaches weak attack. Thus we only need to characterize strong attacks.
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Therefore, we have

x>V−1
a∗ X

>
a∗ =

1
λ
x>X>a∗ =

1
λ
(Xa∗x)

> = 0. (18)

Now we show the other direction. Note that

x>V−1
a∗ X

>
a∗ = 0⇒ x>V−1

a∗ X
>
a∗Xa∗ = 0

⇒ x>V−1
a∗ (Va∗ − λI) = 0

⇒ x> = λx>V−1
a∗

⇒ (X>a∗Xa∗ + λI)x = λx

⇒ X>a∗Xa∗x = 0

⇒ x>X>a∗Xa∗x = 0

⇒ ‖Xa∗x‖2
2 = 0

⇒ Xa∗x = 0 ,

(19)

which implies x ∈ Null(Xa∗).

Theorem 3.3. (⇐) According to lemma 3.4, condition (i) implies

x>V−1
a∗ X

>
a∗(ya∗ + ∆a∗) = x

>V−1
a X

>
a (ya + ∆a) = 0. (20)

Combined with (ii) we have for any ∆a∗ and ∆a,

x>V−1
a∗ X

>
a∗(ya∗ + ∆a∗) + αa∗ ||x||V−1

a∗
= αa∗ ||x||V−1

a∗

< ε+ αa||x||V−1
a

= ε+ αa||x||V−1
a

+ x>V−1
a X

>
a (ya + ∆a) .

(21)

Thus, x cannot be attacked.
(⇒) This is equivalent to prove if ∀a 6= a∗,¬(i)∨ ¬(ii), then x can be attacked.

To show x can be attacked, it suffices to find a solution for the optimization problem.
If ¬(i), then Xa∗x 6= 0 or Xax 6= 0. Assume Xa∗x 6= 0 (similar for the case

Xax 6= 0), then x>V−1
a∗ X

>
a∗ 6= 0. Let p = Xa∗V

−1
a∗ x. For any a 6= a∗, arbitrarily fix
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some ∆a, then define

qa = ε+ αa||x||V−1
a

+ x>V−1
a X

>
a (ya + ∆a) − x

>V−1
a∗ X

>
a∗ya∗ − αa∗ ||x||V−1

a∗
. (22)

Let ∆a∗ = kp, where k = maxa6=a∗ qa
‖p‖2

2
. Thus,

x>V−1
a∗ X

>
a∗∆a∗ = p

>∆a∗ = k‖p‖2
2 >

qa

‖p‖2
2
‖p‖2

2 = qa, ∀a 6= a∗. (23)

Therefore, we have for all a 6= a∗ that

x>V−1
a∗ X

>
a∗(ya∗ + ∆a∗) + αa∗ ||x||V−1

a∗
> ε+ αa||x||V−1

a
+ x>V−1

a X
>
a (ya + ∆a) , (24)

which means x∗ can be attacked.
If ¬(ii), simply letting ∆a∗ = −ya∗ and ∆a = −ya suffices, concluding the proof.

3.5 Side Effects of Attack

While the previous section characterized contexts x∗ that cannot be strongly at-
tacked, this section asks an opposite question: suppose the attacker was able to
strongly attack some x∗ by solving (16), what other contexts x are affected by the
attack? For example, there might exist some context x 6= x∗whose pre-attack chosen
arm is a(x) = 1, but becomes a ′(x) = 2. The side effects can be construed in two
ways: on one hand the attack automatically influence more contexts than just x∗; on
the other hand they make it harder for the attacker to conceal an attack. The latter
may be utilized to facilitate detection by a defender. In this section, we study the
side effect of attack and provide insights into future research directions on defense.

The side effect is quantified by the fraction of contexts in the context space such
that the chosen arm is changed by the attacker. Specifically, let X be the context
space and P be a probability measure over X. Let a(x) and a ′(x) be the pre-attack
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and post-attack chosen arm of a context x. Then the side effect fraction is defined as:

s =

∫
x∈X

1 [a(x) 6= a ′(x)]P(x)dx . (25)

One can compute an empirical side effect fraction ŝ as follows. First samplem contexts
from P, and then let ŝ = 1

m

∑m
i=1 1 [a(x) 6= a ′(x)]. It is easy to show using Chernoff

bound that |s− ŝ| decays to 0 at the rate of 1/
√
m.

We now give some properties of the side effect. Specifically, we first show if x is
affected by the attack, cx is also affected by the attack for any c > 0.

Proposition 3.5. If a context x satisfies a(x) 6= a ′(x), then a(cx) 6= a ′(cx) for any
c > 0, where a(x) and a ′(x) are the pre-attack and post-attack chosen arm of x. Moreover,
a ′(cx) = a ′(x), i.e., the post-attack chosen arms for cx and x are exactly the same.

Proof. First, for any a 6= a ′(x), define

fa(x) = x
>θ̂a ′(x) + αa ′(x)‖x‖V−1

a ′(x)
− x>θ̂a − αa‖x‖V−1

a
. (26)

Note that a ′(x) is the best arm after attack, thus fa(x) > 0, ∀a 6= a ′(x). Therefore,
for any c > 0, we have

fa(cx) = cfa(x) > 0, ∀a 6= a ′(x) , (27)

which implies that a ′(cx) = a ′(x). The same argument may be used to show
a(cx) = a(x). Therefore, a ′(cx) = a ′(x) 6= a(x) = a(cx).

Proposition 3.5 shows that if a context x has a side effect, all contexts on the
open ray {cx : c > 0} also have the same side effect.

Proposition 3.6. If a context x is strongly attacked, then cx is also strongly attacked for
any c > 1.
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Proof. First, for any a 6= a∗, define

fa(x) = x
>θ̂a∗ + αa∗‖x‖V−1

a∗
− x>θ̂a − αa‖x‖V−1

a
. (28)

Since x is strongly attacked, we have fa(x) > ε, ∀a 6= a∗. Therefore fa(cx) =

cfa(x) > fa(x) > ε, which shows that cx is also strongly attacked.

The above propositions are weak in that they do not directly quantify the side
effect fraction s. They only tell us that when there is side effect, the affected contexts
form a collection of rays. In the experiment section we empirically study the side
effect fraction. Further theoretical understanding of the side effect is left as a future
work.

3.6 Experiments

Our proposed attack algorithm works for any contextual bandit algorithm taking
the form (11). Throughout the experiments, we choose to attack the OFUL algorithm
that has a tight regret bound and can be efficiently implemented.

Attack Effectiveness and Effort: Toy Experiment

To study the effectiveness of the attack, we consider the following toy experiment.
The bandit hasK = 5 arms, and each arm has a payoff parameter θa ∈ Rd where d =

10, distributed uniformly on the d-dimensional sphere, denoted Sd. To generate θa,
we first draw from a d-dimensional standard Gaussian distribution, θ̃a ∼ N(0, Id)
and then normalize: θa = θ̃a/‖θ̃a‖2.

Next, we construct the historical data as follows. We generate n = 103 historical
context vectors {x1, . . . , xn} again uniformly on Sd. For each historical context x, we
pretend the world generates all K rewards {ra : a ∈ A} from the K arms according
to (9), where we set the noise level to σ = 0.1. We then choose an arm a randomly
from a multinomial distribution: a ∼ multi(p1,p2, ...,pK), where pi ′ = exp(ri ′)∑

i ′∈A exp(ri ′)
.

This forms one data point (x,a, ra), and we repeat it for all n points. We then group
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the historical data to form the appropriate matrices Xa,ya for every a ∈ A. Note
that the historical data generated in this way is off-policy with respect to the bandit
algorithm. The regularization and confidence parameters are λ = 1 and δ = 0.05,
respectively.

In each attack trial, we draw a single target context x∗ ∈ Rd uniformly from Sd.
Without attack, the bandit would have chosen the arm with the highest UCB based
on historical data (11). To illustrate the attack, we will do the opposite and set the
attack target arm a∗ as the one with the smallest UCB instead:

a∗ = arg min
a∈[K]

{
x∗>θ̂a + αa‖x∗‖V−1

a

}
, (29)

where αa is the UCB parameter of the OFUL algorithm (Abbasi-Yadkori et al., 2011).
We set the strong attack margin as ε = 0.001. We then run the attack on x∗ with
Algorithm 3.

We run 100 attack trials. In each trial the arm parameters, historical data, and
the target context x∗ are regenerated. We make two main observations:

1. The attacker is effective. All ε-strongly attacks are successful.
2. The attacker’s poisoning ∆ is small. The total poisoning can be measured by
‖∆‖2 =

√∑
a∈[K] ‖∆a‖2

2 in each attack trial. However, this quantity depends
on the scale of the original pre-attack rewards ya. It is more convenient to
look at the poisoning effort ratio:

‖∆‖2

‖y‖2
=

√∑
a∈[K] ‖∆a‖2

2∑
a∈[K] ‖ya‖2

2
. (30)

Figure 3 shows the histogram for the poisoning effort ratio of the 100 attack
trials. The ratio tends to be small, with a median of 0.26, which demonstrates
that the attacker needs to only manipulate about 26% of the rewards.

These two observations indicate that poisoning attack in contextual bandit is easy
to carry out.
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Figure 3: Histogram of poisoning effort ratio in the toy experiment

We now analyze a single, representative attack trial to gain deeper insight into
the attack strategy. In this trial, the UCBs of the 5 arms without attack are

pre-attack: (0.204, 0.097, 0.959, 0.507, 0.818) .

That is, arm 3 would have been chosen. As mentioned earlier, a∗ = 2 is chosen to
be the target arm as it has the smallest pre-attack UCB. After attack, the UCBs of
all arms become:

post-attack: (0.204, 0.605, 0.604, 0.507, 0.604).

The attacker successfully forced the bandit to choose arm 2. It did so by poisoning
the historical data to make arm 2 look better and arms 3 and 5 look worse. It left
arms 1 and 4 unchanged.

Figure 4 shows the attack where each panel is the historical rewards where that
arm was chosen. We show the original rewards (yai, blue circle) and post-attack
rewards (yai + ∆ai, red cross) for all historical points i where arm a was chosen.
Intuitively, to decrease the UCB of arm a the attacker should reduce the reward if
the historical context x is “similar” to x∗, and boost the reward otherwise. To see
this, we sort the historical points by the inner product x>x∗ in ascending order. As
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shown in Figure 4b and d, the attacker gave the illusion that these arms are not
good for x∗ by reducing the rewards when x>x∗ is large. The attacker also increased
the rewards when x>x∗ is very negative, which reinforces the illusion. In contrast,
the attacker did the opposite on the target arm as shown in Figure 4a.

(a) reward 1 (b) reward 2 (c) reward 3 (d) reward 4 (e) reward 5

Figure 4: Original reward yai and post-attack reward yai + ∆ai for each arm.

(a) arm 1 (b) arm 2 (c) arm 3 (d) arm 4 (e) arm 5

Figure 5: The reward poisoning ∆ai for each arm.

Attack on Real Data: Yahoo! News Recommendation

To further demonstrate the effectiveness of the attack algorithm in real applica-
tions, we now test it on the Yahoo! Front Page Today Module User Click Log
Dataset (R6A).7 The dataset contains a fraction of user click log for news arti-
cles displayed in the Featured Tab of the Today Module on Yahoo! Front Page
(http://www.yahoo.com) during the first ten days in May 2009. Specifically, it con-
tains about 46 million user visits, where each user is represented as a 6-dimensional
contextual vector. When a user arrives, the Yahoo! Webscope program selects
an article (an arm) from a candidate article pool and displays it to the user. The

7URL: https://webscope.sandbox.yahoo.com/catalog.php?datatype=r .

https://webscope.sandbox.yahoo.com/catalog.php?datatype=r
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system receives reward 1 if the user clicks on the article and 0 otherwise. Contextual
information about users can be found in prior work (Li et al., 2010b).

To apply the attack algorithm, we require that the set of arms remain unchanged.
However, the Yahoo! candidate article pool (i.e., the set of arms) varies as new
articles are added and old ones are removed over time. Nonetheless, there are long
periods of time where the set of arms is fixed. We restrict ourselves to such a stable
time period for our experiment (specifically the period from 7:25 to 10:35 on May 1,
2009) in the Yahoo! data, which contains 243,667 user visits. During this period the
bandit has K = 20 fixed arms. We further split the time period such that the first
n = 8000 user visits are used as the historical training data to be poisoned, and the
remainingm = 163, 667 data points as the test data. The bandit learning algorithm
uses regularization λ = 1. The confidence parameter is δ = 0.05. The subGaussian
parameter is set to σ = 1

4 for binary rewards.
We simulate attacks on three target user context vectors: The most frequent user

context vector x∗ = x̄, a middle user context vector x∗ =x, and the least frequent
user context vector x∗ = x in the test data. These three user context vectors appeared
5508, 106, and 1 times, respectively, in the test data. Note that there are potentially
many distinct real-world users that are mapped to the same user contextual vector,
therefore the “user” in our experiment does not necessarily mean a real-world
individual that appeared thousands of times.

We again choose as the target arm a∗ the worst arm on the target user as defined
by (29). To determine the target arm, we first simulate the bandit algorithm on the
original (pre-attack) training data, and then pick the arm with the smallest UCB
for that user. For the three target users we consider, the target arms are 8, 3, and 8
respectively. The attacker uses attack margin ε = 0.001.

Different from the toy example where the reward can be any value in R, the re-
ward in the Yahoo! dataset must be binary, corresponding to a click-or-not outcome
of the recommendation. Therefore, the attacker must enforce yai + ∆ai ∈ {0, 1}.
However, this results in a combinatorial problem. To preserve convexity, we instead
relax the attacked reward into a box constraint: yai + ∆ai ∈ [0, 1]. We add these
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new constraints to (16) and solve the following optimization:

min
∆∈Rn

∑
a∈[K]

‖∆a‖2
2

s.t. x∗>θ̂a∗ + αa∗‖x∗‖V−1
a∗

> ε+ x∗>θ̂a + αa‖x∗‖V−1
a

, ∀a 6= a∗,

yai + ∆ai ∈ [0, 1], ∀i ∈ [ma], ∀a,

where θ̂a = V−1
a X

>
a (ya + ∆a), ∀a.

(31)

After the real-valued ∆ai is computed, the attacker performs rounding to turn
yai +∆ai into 0 or 1. Specifically, the attacker thresholds yai +∆ai with a constant
c ∈ [0, 1], so that if yai +∆ai > c, then let the post-attack reward be 1, otherwise let
the post-attack reward be 0. Note that the poisoned rewards now correspond to
“reward flipping” from 0 to 1 or vice versa by the attacker. In our experiment, we
let the attacker try out 104 thresholds c equally distributed in [0, 1]. The attacker
examines different thresholds for two concerns. First, there is no guarantee that
the thresholded solution still triggers the target arm pull, thus the attacker needs
to check if the selected arm for x∗ is a∗. If not, the corresponding threshold c is
inadmissible. Second, among those thresholds that indeed trigger the target arm
pull, the attacker selects the one that minimizes the number of flipped rewards,
which corresponds to the smallest poisoning effort in the binary reward case.

In Table 1, we summarize the experimental results for attacking the three target
users. Note that the attack is successful on all three target users. The best thresholds
c for x̄, x and x are 0.0449, 0.1911, and 0.0439, respectively. The number of flipped
rewards is small compared to n = 8000, which demonstrates that the attacker only
needs to spend little cost in order to force the bandit to pull the target arm. Note that
the poisoning effect ratio is relatively large. This is because most of the pre-attack
rewards are 0, in which case the denominator in (30) is small.

In Figure 6, we show the reward poisoning ∆ on the historical data against
the three target users, respectively. In all three cases, only a few rewards of the
target arm are flipped from 0 to 1 by the attacker while those of the other arms
remain unchanged. Therefore, we only show the reward poisoning on historical
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x̄ x x

strong attack successful? True True True
number [percentage] of flipped re-
wards

82 [1.0%] 9 [0.1%] 19 [0.2%]

poisoning effort ratio 0.572 0.189 0.275

Table 1: Results of experiments on Yahoo! data

(a) Most frequent user x∗ = x̄ (b) Mid-frequent user x∗ =x (c) Least frequent user x∗ = x

Figure 6: The reward poisoning ∆ai on three target users.

data restricted to the target arm (namely on ya∗). The 82 and 19 flipped rewards
overlap in Fig. 6 a and Fig. 6 c. Note that the contexts of those flipped rewards are
highly correlated with x∗.

Study on Feasibility

The attack feasibility depends on the historical contexts X, the bandit algorithm-
specific UCB parameter α, the attack margin ε, the target arm a∗, and the target
context x∗. To visualize the infeasible region of strong attack on context, we consider
the following toy example.

The bandit has K = 4 arms. The attacker’s target arm is a∗ = 4, and the target
context x∗ lies in R3. The historical context vectors are

X1 = [1, 0, 0], X2 = [0, − 1, 1], X3 = [0, 2, 0], X4 = [2, 0, 0]. (32)

The problem parameters are σ = S = λ = ε = 1 and δ = 0.05. According to
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Theorem 3.3, any infeasible target context x∗ satisfies X4x
∗ = 0. Thus such x∗

must lie in the subspace spanned by the y-axis and z-axis. This allows us to show
infeasible regions as 2D plots. In Figure 7a, we show the infeasible regions. We
distinguish the infeasible region due to each non-target arm by a different color.
For example, the infeasible region due to arm 1 consists of all contexts on which
the target arm a∗ can never be ε-better than arm 1 regardless of the attack. Note
that the infeasible region due to arm 2 is a line segment of finite length, while that
due to arm 3 is the whole y = 0 line. The shape of the infeasible region due to
each non-target arm varies because the historical data differs and therefore the
conditions in theorem 3.3 characterizes different shapes. Note that the origin x = 0
satisfies the conditions in Theorem 3.3 and therefore is always infeasible.

One important observation is that, if the bandit algorithm is trained on more
historical data, more context vectors x∗ can potentially be strongly attacked. For-
mally, as indicated by Theorem 3.3 as the null space of historical context matrices
Xa,a ∈ [K] shrinks, the infeasible region shrinks as well. To demonstrate this, in
Figure 7b we add a context [0, 0, 0.5] to X1 such that the historical contexts are:

X1 =

[
1, 0, 0
0, 0, 0.5

]
, X2 = [0, − 1, 1], X3 = [0, 2, 0], X4 = [2, 0, 0] . (33)

Now that Null(X1) is reduced, the infeasibility region due to arm 1 shrinks from the
circle in Figure 7a to a horizontal line segment in Figure 7b. However the infeasible
region may not shrink to a subset of itself, as indicated by the line segment having
wider length along y axis than the original circle, thus the shrink happens in the
sense of being restricted to a lower-dimensional subspace.

Next we add a historical context [0, 1, 0] to X4:

X1 =

[
1, 0, 0
0, 0, 0.5

]
, X2 = [0, − 1, 1], X3 = [0, 2, 0], X4 =

[
2, 0, 0
0, 1, 0

]
.

Then the infeasibility region due to arm 1 and arm 2 both shrink to the origin while
arm 3 becomes a line segment, as shown in Figure 7c.



41

(a) original data (b) Context added to X1 (c) Context added to X4

Figure 7: Infeasible region due to each non-target arm.

In practice, historical data is often abundant so that ∀a 6= a∗, Xa∗ ∪Xa spans the
whole Rd space, and the only infeasible point is the origin. That is, the attacker can
choose to attack essentially any context vector.

Another observation is that the infeasible region shrinks as the attack margin ε
decreases, as shown in Figure 8. The historical data for each arm is the same as (32).
The reason is that a smaller ε makes the constraints in (16) easier to satisfy and
therefore more contexts are feasible. As ε→ 0 the infeasible region converges to
those contexts that cannot be weakly attacked, which in this example is the line
y = 0 in Figure 8c. Note that the contexts that cannot be weakly attacked are those
that make (14) infeasible. Therefore, we see that without abundant historical data,
there will be some contexts that can never be strongly attacked even when ε→ 0.
Also note that the origin x∗ = 0 can never be strongly attacked by definition.

Study on Side Effects

We first give an intuitive illustration of the side effect in 2D space. The bandit has
K = 3 arms, where the arm parameters are θa. We generate n = 1000 historical
data same as before with noise σ = 0.1. The target context x∗ is uniformly sampled
from X. The bandit algorithm uses regularization weight λ = 1 and confidence
parameter δ = 0.05. Without attack, the UCB for the three arms are

pre-attack: (−0.419, 0.192, 1.013). (34)
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(a) ε = 1 (b) ε = 0.5 (c) ε = 0.1

Figure 8: Infeasible region shrinks as attack margin ε decreases.

Therefore without attack arm 3 would have been chosen. By our design choice, the
target arm is a∗ = 1. The attacker uses margin ε = 0.001. After attack the UCBs of
all arms become:

post-attack: (0.290, 0.192, 0.289). (35)

As shown in Figure 9, the attacker forces the post-attack parameter of the best arm
θ̂3 to deviate from x∗ while making θ̂1 closer to x∗. Note that the attacker could also
change the norm of the parameter. Note that arm 2 is not attacked, thus θ2 and θ̂2

overlap. The side effect is denoted by the brown arcs on the circle, where the arms
chosen for those contexts are changed by the attacker. The side effect fraction for
this example is ŝ = 0.315.

Now we design a toy experiment to study how the side effect depends on
the number of arms and the problem dimension. The context space X is the d-
dimensional sphere Sd and P is uniform on the sphere. The bandit has K arms,
where the arm parameters are sampled from P. Same as before, we generate n =

2000 historical data with noise σ = 0.1. The bandit algorithm uses regularization
weight λ = 1. The target context x∗ is sampled from P. The attacker’s margin is
ε = 0.001 and the target arm a∗ is the worst arm on the target context x∗. We sample
m = 103 contexts from P to evaluate ŝ.

In Figure 10, we fix d = 2 and show a histogram of ŝ as the number of arm
varies. Note that the attack affects about 30% users. The median ŝ for the three
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Figure 9: Side effect shown in 2D context space.

panels are 0.249, 0.317, and 0.224 respectively, which shows that the side effect does
not grow with the number of arms.

(a) K = 2 (b) K = 20 (c) K = 200

Figure 10: side effect fraction as arm number K increases.

In Figure 11, we fix K = 5 and show the side effect as the dimension d varies.
The median ŝ for the three panels are 0.435, 0.090, and 0.035, respectively, which
implies that in higher dimensional space, the side effect tends to be smaller.
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(a) d = 2 (b) d = 20 (c) d = 200

Figure 11: side effect fraction as dimension d increases.

As the dimension d increases, the attack has less side effect. This exposes the
hazard that in real-world applications where the problem dimension is high, the
attack will be hard to detect from side effects.

We also study the side effect for the real data experiment. There we use the
m = 163, 667 test users to evaluate the side effect. The side effect fraction for the
three users are 0.5391, 0.0750, and 0.5040, respectively. Note that the most frequent
user and the least frequent user have a large side effect, which makes the attack easy
to detect. In contrast, the side effect of the medium frequent user is extremely small.
This implies that the attack can induce different level of side effect for different
target users.

3.7 Conclusions and Future Work

We studied offline data poisoning attack of contextual bandits. We proposed an
optimization-based attack framework against contextual bandit algorithms. By
manipulating the historical rewards, the attack can successfully force the bandit
algorithm to pull a pre-specified arm for some target context. Experiments on both
synthetic and real-world data demonstrate the effectiveness of the attack. This
exposes a security concern in AI systems that involve contextual bandits.

There are several future directions that can be explored. For example, our
current attack only targets a single context x∗. Future work can characterize how
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to target a set of contexts simultaneously, i.e., force the bandit algorithm to pull
the target arm for all contexts in some target set. In the simplest case where the set
contains finitely many contexts, one can just replicate the constraint in (16) for each
context in the set. The situation is more complicated if the target set is infinite or
just too large. Another interesting question is how to develop defense mechanisms
to protect the bandit from being attacked. As indicated in this chapter, the defender
can rely on the side effect to sense the existence of attacks. Conversely, it is also an
open question how the attacker might attempt to minimize its side effect during the
attack, so that the chances of being detected are minimized. Finally, in this chapter
we restrict the ability of the attacker to manipulating only the historical rewards.
However, there are other types of attacks such as poisoning the historical contexts,
adding additional data points, removing existing data points, or combinations of
the above. The problem could become non-convex or even combinatorial depending
on the type of the attack; some of these settings have been studied under the name
“machine teaching” (Zhu, 2015; Zhu et al., 2018). Future work needs to identify how
to extend our current attack framework to more general settings.
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4 adaptive reward-poisoning attacks against
reinforcement learning

Contribution Statement. This chapter is joint work with Xuezhou Zhang, Adish
Singla and Xiaojin Zhu. The author Yuzhe Ma contributed to part of the theoretical
analysis. The paper version of this chapter appeared in ICML20.

4.1 Introduction

In many reinforcement learning (RL) applications the agent extracts reward signals
from user feedback. For example, in recommendation systems the rewards are
often represented by user clicks, purchases or dwell time (Zhao et al., 2018b; Chen
et al., 2019); in conversational AI, the rewards can be user sentiment or conversation
length (Dhingra et al., 2016; Li et al., 2016b). In such scenarios, an adversary can
manipulate user feedback to influence the RL agent in nefarious ways. Figure 12
describes a hypothetical scenario of how conversational AI can be attacked. One
real-world example is that of the chatbot Tay, which was quickly corrupted by a
group of Twitter users who deliberately taught it misogynistic and racist remarks
shortly after its release (Neff and Nagy, 2016). Such attacks reveal significant
security threats in the application of reinforcement learning.

Hey, don’t say that!

Hello! You look pretty!at :
<latexit sha1_base64="WrmHutJH8BBpIxn0fkHZzCJshjQ=">AAAB63icbVDLSgNBEOyNrxhfUY9eFoPgKez6QPEU9OIxgnlAsoTZySQZMjO7zPQKYckvePGgiFd/yJt/42yyB00saCiquunuCmPBDXret1NYWV1b3yhulra2d3b3yvsHTRMlmrIGjUSk2yExTHDFGshRsHasGZGhYK1wfJf5rSemDY/UI05iFkgyVHzAKcFMIj286ZUrXtWbwV0mfk4qkKPeK391+xFNJFNIBTGm43sxBinRyKlg01I3MSwmdEyGrGOpIpKZIJ3dOnVPrNJ3B5G2pdCdqb8nUiKNmcjQdkqCI7PoZeJ/XifBwXWQchUnyBSdLxokwsXIzR53+1wzimJiCaGa21tdOiKaULTxlGwI/uLLy6R5VvXPq5cPF5XabR5HEY7gGE7BhyuowT3UoQEURvAMr/DmSOfFeXc+5q0FJ585hD9wPn8AznqOFw==</latexit>

Thank you!

Hello! You look pretty!at :
<latexit sha1_base64="WrmHutJH8BBpIxn0fkHZzCJshjQ=">AAAB63icbVDLSgNBEOyNrxhfUY9eFoPgKez6QPEU9OIxgnlAsoTZySQZMjO7zPQKYckvePGgiFd/yJt/42yyB00saCiquunuCmPBDXret1NYWV1b3yhulra2d3b3yvsHTRMlmrIGjUSk2yExTHDFGshRsHasGZGhYK1wfJf5rSemDY/UI05iFkgyVHzAKcFMIj286ZUrXtWbwV0mfk4qkKPeK391+xFNJFNIBTGm43sxBinRyKlg01I3MSwmdEyGrGOpIpKZIJ3dOnVPrNJ3B5G2pdCdqb8nUiKNmcjQdkqCI7PoZeJ/XifBwXWQchUnyBSdLxokwsXIzR53+1wzimJiCaGa21tdOiKaULTxlGwI/uLLy6R5VvXPq5cPF5XabR5HEY7gGE7BhyuowT3UoQEURvAMr/DmSOfFeXc+5q0FJ585hD9wPn8AznqOFw==</latexit>

Figure 12: Example: an RL-based conversational AI is learning from real-time
conversations with human users. the chatbot says “Hello! You look pretty!” and
expects to learn from user feedback (sentiment). A benign user will respond with
gratitude, which is decoded as a positive reward signal. An adversarial user,
however, may express anger in his reply, which is decoded as a negative reward
signal.
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In this chapter, we formally study the problem of training-time attack on RL
via reward poisoning. As in standard RL, the RL agent updates its policy πt by
performing action at at state st in each round t. The environment Markov Decision
Process (MDP) generates reward rt and transits the agent to st+1. However, the
attacker can change the reward rt to rt + δt, with the goal of driving the RL agent
toward a target policy πt → π†.

Figure 13: A chain MDP with attacker’s target policy π†

Figure 13 shows a running example that we use throughout the chapter. The
episodic MDP is a linear chain with five states, with left or right actions and no
movement if it hits the boundary. Each move has a -0.1 negative reward, and G is
the absorbing goal state with reward 1. Without attack, the optimal policy π∗ would
be to always move right. The attacker’s goal, however, is to force the agent to learn
the nefarious target policy π† represented by the arrows in Figure 13. Specifically,
the attacker wants the agent to move left and hit its head against the wall whenever
the agent is at the left-most state.

Our main contributions are:

1. We characterize conditions under which such attacks are guaranteed to fail
(thus RL is safe), and vice versa;

2. In the case where an attack is feasible, we provide upper bounds on the attack
cost in the process of achieving π†;

3. We show that effective attacks can be found empirically using deep RL tech-
niques.
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4.2 Related Work

Test-time attacks against RL Prior work on adversarial attacks against reinforce-
ment learning focused primarily on test-time, where the RL policy π is pre-trained
and fixed, and the attacker manipulates the perceived state st to s†t in order to
induce undesired action (Huang et al., 2017; Lin et al., 2017; Kos and Song, 2017;
Behzadan and Munir, 2017). For example, in video games the attacker can make
small pixel perturbation to a frame (Goodfellow et al., 2014)) to induce an action
π(s†t) 6= π(st). Although test-time attacks can severely impact the performance of a
deployed and fixed policy π, they do not modify π itself. For ever-learning agents,
however, the attack surface includes π. This motivates us to study training-time
attack on RL policy.

Reward Poisoning: Reward poisoning has been studied in bandits (Jun et al.,
2018; Peltola et al., 2019; Altschuler et al., 2019; Liu and Shroff, 2019; Ma et al., 2018),
where the authors show that adversarially perturbed reward can mislead standard
bandit algorithms to pull a suboptimal arm or suffer large regret.

Reward poisoning has also been studied in batch RL (Zhang and Parkes, 2008;
Zhang et al., 2009; Ma et al., 2019) where rewards are stored in a pre-collected batch
data set by some behavior policy, and the attacker modifies the batch data. Because
all data are available to the attacker at once, the batch attack problem is relatively
easier. This chapter instead focuses on the online RL attack setting where reward
poisoning must be done on the fly.

(Huang and Zhu, 2019) studies a restricted version of reward poisoning, in which
the perturbation only depend on the current state and action: δt = φ(st,at). While
such restriction guarantees the convergence of Q-learning under the perturbed
reward and makes the analysis easier, we show both theoretically and empirically
that such restriction severely harms attack efficiency. Our results subsumes their
results by considering more powerful attacks that can depend on the RL victim’s
Q-table Qt. Theoretically, our analysis does not require the RL agent’s underlying
Qt to converge while still providing robustness certificates; see section 4.4.
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Reward Shaping: While this chapter is phrased from the adversarial angle, the
framework and techniques are also applicable to the teaching setting, where a
teacher aims to guide the agent to learn the optimal policy as soon as possible, by
designing the reward signal. Traditionally, reward shaping and more specifically
potential-based reward shaping (Ng et al., 1999a) has been shown able to speed
up learning while preserving the optimal policy. (Devlin and Kudenko, 2012)
extend potential-based reward shaping to be time-varying while remains policy-
preserving. More recently, intrinsic motivations(Schmidhuber, 1991; Oudeyer and
Kaplan, 2009; Barto, 2013; Bellemare et al., 2016) was introduced as a new form
of reward shaping with the goal of encouraging exploration and thus speed up
learning. Our work contributes by mathematically defining the teaching via reward
shaping task as an optimal control problem, and provide computational tools that
solve for problem-dependent high-performing reward shaping strategies.

4.3 The Threat Model

In the reward-poisoning attack problem, we consider three entities: the environ-
ment MDP, the RL agent, and the attacker. Their interaction is formally described
by Alg 4.

The environment MDP is M = (S,A,R,P,µ0) where S is the state space, A is the
action space, R : S × A × S → R is the reward function, P : S × A × S → R is the
transition probability, and µ0 : S→ R is the initial state distribution. We assume S,
A are finite, and that a uniformly random policy can visit each (s,a) pair infinitely
often.

We focus on an RL agent that performs standard Q-learning defined by a tuple
A = (Q0, ε,γ, {αt}), where Q0 is the initial Q table, ε is the random exploration
probability, γ is the discounting factor, {αt} is the learning rate scheduling as a
function of t. This assumption can be generalized: in the additional experiments
provided in appendix B.8, we show how the same framework can be applied to
attack general RL agents, such as DQN. Denote Q∗ as the optimal Q table that
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satisfies the Bellman’s equation:

Q∗(s,a) = EP(s ′|s,a)

[
R(s,a, s ′) + γmax

a ′∈A
Q∗(s ′,a ′)

]
(36)

and denote the corresponding optimal policy as π∗(s) = arg maxaQ∗(s,a). For
notational simplicity, we assume π∗ is unique, though it is easy to generalize to
multiple optimal policies.

Algorithm 4 Reward Poisoning against Q-learning

PARAMETERS: Agent parameters A = (Q0, ε,γ, {αt}), MDP parameters
M = (S,A,R,P,µ0).

1: for t = 0, 1, ... do
2: agent at state st, has Q-table Qt.
3: agent acts according to ε-greedy behavior policy

at ←
{

arg maxaQt(st,a), w.p. 1 − ε
uniform from A, w.p. ε. (37)

4: environment transits st+1 ∼ P(· | st,at), produces reward rt = R(st,at, st+1).

5: attacker poisons the reward to rt + δt.
6: agent receives (st+1, rt + δt), performs Q-learning update:

Qt+1(st,at)← (1 − αt)Qt(st,at)+ (38)

αt

(
rt + δt + γmax

a ′∈A
Qt(st+1,a ′)

)

7: environment resets if episode ends: st+1 ∼ µ0.
8: end for

The Threat Model The attacker sits between the environment and the RL agent.
In this chapter we focus on white-box attacks: the attacker has knowledge of the
environment MDP and the RL agent’s Q-learning algorithm, except for their future
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randomness. Specifically, at time t the attacker observes the learner Q-table Qt,
state st, action at, the environment transition st+1 and reward rt. The attacker
can choose to add a perturbation δt ∈ R to the current environmental reward rt.
The RL agent receives poisoned reward rt + δt. We assume the attack is inf-norm
bounded: |δt| 6 ∆,∀t.

There can be many possible attack goals against an RL agent: forcing the RL
agent to perform certain actions; reaching or avoiding certain states; or maximizing
its regret. In this chapter, we focus on a specific attack goal: policy manipulation.
Concretely, the goal of policy manipulation is to force a target policy π† on the RL
agent for as many rounds as possible.

Definition 4.1. Target (partial) policy π† : S 7→ 2A: For each s ∈ S, π†(s) ⊆ A specifies
the set of actions desired by the attacker.

The partial policy π† allows the attacker to desire multiple target actions on one
state. In particular, if π†(s) = A then s is a state that the attacker “does not care.”
Denote S† = {s ∈ S : π†(s) 6= A} the set of target states on which the attacker does
have a preference. In many applications, the attacker only cares about the agent’s
behavior on a small set of states, namely |S†|� |S|.

For RL agents utilizing a Q-table, a target policy π† induces a set of Q-tables:

Definition 4.2. Target Q-table set

Q† := {Q : max
a∈π†(s)

Q(s,a) > max
a/∈π†(s)

Q(s,a),∀s ∈ S†}

If the target policy π† always specifies a singleton action or does not care on all
states, then Q† is a convex set. But in general when 1 < |π†(s)| < |A| on any s, Q†

will be a union of convex sets and is itself non-convex.
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Figure 14: A summary diagram of the theoretical results.

4.4 Theoretical Guarantees

Now, we are ready to formally define the optimal attack problem. At time t, the
attacker observes an attack state (N.B. distinct from MDP state st):

ξt := (st,at, st+1, rt,Qt) ∈ Ξ (39)

which jointly characterizes the MDP and the RL agent. The attacker’s goal is to find
an attack policy φ : Ξ → [−∆,∆], where for ξt ∈ Ξ the attack action is δt := φ(ξt),
that minimizes the number of rounds on which the agent’s Qt disagrees with the
attack target Q†:

min
φ

Eφ
∞∑
t=0

1[Qt /∈ Q†], (40)

where the expectation accounts for randomness in Alg 4. We denote J∞(φ) =

Eφ
∑∞
t=0 1[Qt /∈ Q†] the total attack cost, and JT (φ) = Eφ

∑T
t=0 1[Qt /∈ Q†] the finite-

horizon cost. We say the attack is feasible if (40) is finite.
Next, we characterize attack feasibility in terms of poison magnitude constraint

∆, as summarized in Figure 14. Proofs to all the theorems can be found in the
appendix.

Attack Infeasibility

Intuitively, smaller ∆makes it harder for the attacker to achieve the attack goal. We
show that there is a threshold∆1 such that for any∆ < ∆1 the RL agent is eventually
safe, in that πt → π∗ the correct MDP policy. This implies that (40) is infinite and
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the attack is infeasible. There is a potentially larger ∆2 such that for any ∆ < ∆2 the
attack is also infeasible, though πt may not converge to π∗.

While the above statements are on πt, our analysis is via the RL agent’s underly-
ing Qt. Note that under attack the rewards rt + δt are no longer stochastic, and we
cannot utilize the usual Q-learning convergence guarantee. Nonetheless, we show
that Qt is bounded in a polytope in the Q-space.

Theorem 4.3 (Boundedness of Q-learning). Assume that δt < ∆ for all t, and the
stepsize αt’s satisfy that αt 6 1 for all t,

∑
αt =∞ and

∑
α2
t <∞. Let Q∗ be defined

as (36). Then, for any attack sequence {δt}, there exists N ∈ N such that, with probability
1, for all t > N, we have

Q∗(s,a) − ∆

1 − γ
6 Qt(s,a) 6 Q∗(s,a) +

∆

1 − γ
. (41)

Remark 1: The bounds in Theorem 4.3 are in fact tight. The lower and upper
bound can be achieved by setting δt = −∆ or +∆ respectively.

We immediately have the following two infeasibility certificates.

Corollary 4.4 (Strong Infeasibility Certificate). Define

∆1 = (1 − γ)min
s

[
Q∗(s,π∗(s)) − max

a6=π∗(s)
Q∗(s,a)

]
/2.

If ∆ < ∆1, there existN ∈ N such that, with probability 1, for all t > N, πt = π∗. In other
words, eventually the RL agent learns the optimal MDP policy π∗ despite the attacks.

Corollary 4.5 (Weak Infeasibility Certificate). Given attack target policy π†, define

∆2 = (1 − γ)max
s

[
Q∗(s,π∗(s)) − max

a∈π†(s)
Q∗(s,a)

]
/2.

If ∆ < ∆2, there existN ∈ N such that, with probability 1, for all t > N, πt(s) /∈ π†(s) for
some s ∈ S†. In other words, eventually the attacker is unable to enforce π† (though πt may
not settle on π∗ either).
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Intuitively, an MDP is difficult to attack if its margin,

min
s

[
Q∗(s,π∗(s)) − max

a6=π∗(s)
Q∗(s,a)

]
is large. This suggests a defense: for RL to be robust against poisoning, the envi-
ronmental reward signal should be designed such that the optimal actions and
suboptimal actions have large performance gaps.

Attack Feasibility

We now show there is a threshold ∆3 such that for all ∆ > ∆3 the attacker can
enforce π† for all but finite number of rounds.

Theorem 4.6. Given a target policy π†, define

∆3 =
1 + γ

2
max
s∈S†

[ max
a/∈π†(s)

Q∗(s,a) − max
a∈π†(s)

Q∗(s,a)]+ (42)

where [x]+ := max(x, 0). Assume the same conditions on αt as in Theorem 4.3. If ∆ > ∆3,
there is a feasible attack policy φsas∆3

. Furthermore, J∞(φsas∆3
) 6 O(L5), where L is the

covering number.

Theorem 4.6 is proved by constructing an attack policy φsas∆3
(st,at), detailed in

Alg. 5. Note that this attack policy does not depend on Qt. We call this type of
attack non-adaptive attack. Under such construction, one can show that Q-learning
converges to the target policy π†. Recall the covering number L is the upper bound
on the minimum sequence length starting from any (s,a) pair and follow the MDP
until all (state, action) pairs appear in the sequence (Even-Dar and Mansour, 2003).
It is well-known that ε-greedy exploration has a covering time L 6 O(e|S|) (Kearns
and Singh, 2002). Prior work has constructed examples on which this bound is
tight (Jin et al., 2018). We show in appendix B.3 that on our toy example ε-greedy
indeed has a covering time O(e|S|). Therefore, the objective value of (40) for non-
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Algorithm 5 The Non-Adaptive Attack φsas∆3

PARAMETERS: target policy π†, agent parameters A = (Q0, ε,γ, {αt}), MDP
parameters M = (S,A,R,P,µ0), maximum magnitude of poisoning ∆.
def Init(π†,A,M):

1: Construct a Q-table Q′, where Q′(s,a) is defined as
Q∗(s,a) + ∆

(1 + γ)
, if s ∈ S†,a ∈ π†(s)

Q∗(s,a) − ∆

(1 + γ)
, if s ∈ S†,a /∈ π†(s)

Q∗(s,a), if s /∈ S†

2: Calculate a new reward function

R′(s,a) = Q′(s,a) − γEP(s′|s,a)

[
max
a′
Q′(s′,a′)

]
.

3: Define the attack policy φsas∆3
as:

φsas∆3
(s,a) = R′(s,a) − EP(s′|s,a) [R(s,a, s)] ,∀s,a.

def Attack(ξt):

1: Return φsas∆3
(st,at)

adaptive attack is upper-bounded by O(e|S|). In other words, the non-adaptive
attack is slow.

Fast Adaptive Attack (FAA)

We now show that there is a fast adaptive attack φξFAA which depends on Qt and
achieves J∞ polynomial in |S|. The price to pay is a larger attack constraint ∆4, and
the requirement that the attack target states are sparse: k = |S†| 6 O(log |S|). The
FAA attack policy φξFAA is defined in Alg. 6.
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Conceptually, the FAA algorithm ranks the target states in descending order by
their distance to the starting states, and focusing on attacking one target state at a
time. Of central importance is the temporary target policy νi, which is designed
to navigate the agent to the currently focused target state s†(i), while not altering
the already achieved target actions on target states of earlier rank. This allows FAA
to achieve a form of program invariance: after FAA achieves the target policy in a
target state s†(i), the target policy on target state (i) will be preserved indefinitely.
We provide a more detailed walk-through of Alg. 6 with examples in appendix B.5.

Definition 4.7. Define the shortest ε-distance from s to s ′ as

dε(s, s ′) = min
π∈Π

Eπε [T ] (43)

s.t. s0 = s, sT = s ′, st 6= s ′,∀t < T

where πε denotes the epsilon-greedy policy based on π. Since we are in an MDP, there exists
a common (partial) policy πs ′ that achieves dε(s, s ′) for all source state s ∈ S. Denote πs ′
as the navigation policy to s ′.

Definition 4.8. The ε-diameter of an MDP is defined as the longest shortest ε-distance
between pairs of states in S:

Dε = max
s,s ′∈S

dε(s, s ′) (44)

Theorem 4.9. Assume that the learner is running ε-greedy Q-learning algorithm on an
episodic MDP with ε-diameter Dε and maximum episode length H, and the attacker aims
at k distinct target states, i.e. |S†| = k. Then, φξFAA is feasible, and we have

J∞(φξFAA) 6 k |S||A|H1 − ε
+

|A|

1 − ε

[
|A|

ε

]k
Dε, (45)

given that ∆ is large enough that the Clip∆() function in Alg. 6 never takes effect.

How large is Dε? For MDPs with underlying structure as undirected graphs,
such as the grid worlds, it is shown that the expected hitting time of a uniform
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Algorithm 6 The Fast Adaptive Attack (FAA)

PARAMETERS: target policy π†, margin η, agent parameters A = (Q0, ε,γ, {αt}),
MDP parameters M = (S,A,R,P,µ0).
def Init(π†,A,M,η):

1: Given (st,at,Qt), define the hypothetical Q-update function without attack as
Q ′t+1(st,at) = (1 − αt)Qt(st,at) + αt (rt + γ(1 − EOE)maxa ′∈AQt(st+1,a ′)).

2: Given (st,at,Qt), denote the greedy attack function at st w.r.t. a target action
set Ast as g(Ast), defined as

1
αt
[maxa/∈Ast Qt(st,a)−
Q ′t+1(st,at) + η]+ if at ∈ Ast

1
αt
[maxa∈Ast Qt(st,a)−
Q ′t+1(st,at) + η]− if at /∈ Ast .

3: Define Clip∆(δ) = min(max(δ,−∆),∆).
4: Rank the target states in descending order as {s†(1), ..., s†(k)}, according to their

shortest ε-distance to the initial state Es∼µ0

[
dε(s, s(i))

]
.

5: for i = 1, ...,k do
6: Define the temporary target policy νi as

νi(s) =

{
π
s
†
(i)
(s) if s /∈ {s†(j) : j 6 i}

π†(s) if s ∈ {s†(j) : j 6 i}.

7: end for

def Attack(ξt):

1: for i = 1, ...,k do
2: if arg maxaQt(s

†
(i),a) /∈ π†(s

†
(i)) then

3: Return δt ← Clip∆(g({νi(st)})).
4: end if
5: end for
6: Return δt ← Clip∆(g({π†(st)})).
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random walk is bounded by O(|S|2)(Lawler, 1986). Note that the random hitting
time tightly upper bounds the optimal hitting time, a.k.a. the ε-diameter Dε, and
they match when ε = 1. This immediately gives us the following result:

Corollary 4.10. If in addition to the assumptions of Theorem 4.9, the maximal episode
length H = O(|S|), then J∞(φξFAA) 6 O(ek|S|2|A|) in Grid World environments. When
the number of target states is small, i.e. k 6 O(log |S|), J∞(φξFAA) 6 O(poly(|S|)).

Remark 2: Theorem 4.9 and Corollary 4.10 can be thought of as defining an
implicit ∆4, such that for any ∆ > ∆4, the clip function in Alg. 6 never take effect,
and φξFAA achieves polynomial cost.

Illustrating Attack (In)feasibility ∆ Thresholds

The theoretical results developed so far can be summarized as a diagram in Figure
14. We use the chain MDP in Figure 13 to illustrate the four thresholds ∆1,∆2,∆3,∆4

developed in this section. On this MDP and with this attack target policy π†, we
found that ∆1 = ∆2 = 0.0069. The two matches because this π† is the easiest to
achieve in terms of having the smallest upperbound ∆2. Attackers whose poison
magnitude |δt| < ∆2 will not be able to enforce the target policy π† in the long run.

We found that ∆3 = 0.132. We know that φsas∆3
should be feasible if ∆ > ∆3. To

illustrate this, we ran φsas∆3
with ∆ = 0.2 > ∆3 for 1000 trials and obtained estimated

J105(φsas∆3
) = 9430. The fact that J105(φsas∆3

) � T = 105 is empirical evidence that
φsas∆3

is feasible. We found that ∆4 = 1 by simulation. The adaptive attack φξFAA
constructed in Theorem 4.9 should be feasible with ∆ = ∆4 = 1. We run φξFAA for
1000 trials and observed J105(φξFAA) = 30.4� T , again verifying the theorem. Also
observe that J105(φξFAA) is much smaller than J105(φsas∆3

), verifying the foundamental
difference in attack efficiency between the two attack policies as shown in Theorem
4.6 and Corollary 4.10.

While FAA is able to force the target policy in polynomial time, it’s not necessarily
the optimal attack strategy. Next, we demonstrate how to solve for the optimal
attack problem in practice, and empirically show that with the techniques from
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Figure 15: Attack cost J105(φ) on different ∆’s. Each curve shows mean±1 standard
error over 1000 independent test runs.

Deep Reinforcement Learning (DRL), we can find efficient attack policies in a variety
of environments.

4.5 Attack RL with RL

The attack policies φsas∆3
and φξFAA were manually constructed for theoretical analy-

sis. Empirically, though, they do not have to be the most effective attacks under the
relevant ∆ constraint.

In this section, we present our key computational insight: the attacker can find
an effective attack policy by relaxing the attack problem (40) so that the relaxed
problem can be effectively solved with RL. Concretely, consider the higher-level
attack MDP N = (Ξ,∆, ρ, τ) and the associated optimal control problem:

• The attacker observes the attack state ξt ∈ Ξ.

• The attack action space is {δt ∈ R : |δt| 6 ∆}.

• The original attack loss function 1[Qt /∈ Q†] is a 0-1 loss that is hard to optimize.
We replace it with a continuous surrogate loss function ρ that measures how
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close the current agent Q-table Qt is to the target Q-table set:

ρ(ξt) =
∑
s∈S†

[
max
a/∈π†(s)

Qt(s,a) − max
a∈π†(s)

Qt(s,a) + η
]
+

(46)

where η > 0 is a margin parameter to encourage that π†(s) is strictly preferred
over A\π†(s) with no ties.

• The attack state transition probability is defined by τ(ξt+1 | ξt, δt). Specifi-
cally, the new attack state ξt+1 = (st+1,at+1, st+2, rt+1,Qt+1) is generated as
follows:

– st+1 is copied from ξt if not the end of episode, else st+1 ∼ µ0.

– at+1 is the RL agent’s exploration action drawn according to (37), note it
involves Qt+1.

– st+2 is the RL agent’s new state drawn according to the MDP transition
probability P(· | st+1,at+1).

– rt+1 is the new (not yet poison) reward according to MDPR(st+1,at+1, st+2).

– The attack δt happens. The RL agent updates Qt+1 according to (38).

With the higher-level attack MDP N, we relax the optimal attack problem (40) into

φ∗ = arg min
φ

Eφ
∞∑
t=0

ρ(ξt) (47)

One can now solve (47) using Deep RL algorithms. In this chapter, we choose
Twin Delayed DDPG (TD3) (Fujimoto et al., 2018), a state-of-the-art algorithm for
continuous action space. We use the same set of hyperparameters for TD3 across
all experiments, described in appendix B.6.
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Figure 16: Attack performances on the chain MDPs of different lengths. Each curve
shows mean ±1 standard error over 1000 independent test runs.

4.6 Experiments

In this section, We make empirical comparisons between a number of attack policies
φ: We use the naming convention where the superscript denotes non-adaptive or
adaptive policy: φsas depends on (st,at, st+1) but not Qt. Such policies have been
extensively used in the reward shaping literature and prior work (Ma et al., 2019;
Huang and Zhu, 2019) on reward poisoning; φξ depends on the whole attack state
ξt. We use the subscript to denote how the policy is constructed. Therefore, φξTD3

is the attack policy found by solving (47) with TD3; φξFAA+TD3 is the attack policy
found by TD3 initialized from FAA (Algorithm 6), where TD3 learns to provide an
additional δ ′t on top of the δt generated by φξFAA, and the agent receives rt+ δt+ δ ′t
as reward; φsasTD3 is the attack policy found using TD3 with the restriction that the
attack policy only takes (st,at, st+1) as input.

In all of our experiments, we assume a standard Q-learning RL agent with
parameters: Q0 = 0S×A, ε = 0.1,γ = 0.9,αt = 0.9,∀t. The plots show ±1 standard
error around each curve (some are difficult to see). We will often evaluate an attack
policyφ using a Monte Carlo estimate of the 0-1 attack cost JT (φ) for T = 105, which
approximates the objective J∞(φ) in (40).
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Efficiency of Attacks across different ∆’s

Recall that ∆ > ∆3, ∆ > ∆4 are sufficient conditions for manually-designed attack
policies φsas∆3

and φξFAA to be feasible, but they are not necessary conditions. In
this experiment, we empirically investigate the feasibilities and efficiency of non-
adaptive and adaptive attacks across different ∆ values.

We perform the experiments on the chain MDP in Figure 13. Recall that on this
example, ∆3 = 0.132 and ∆4 = 1 (implicit). We evaluate across 4 different ∆ values,
[0.1, 0.2, 0.5, 1], covering the range from ∆3 to ∆4. The result is shown in Figure 15.

We are able to make several interesting observations:
(1) All attacks are feasible (y-axis� T ), even when ∆ falls under the thresholds ∆3

and ∆4 for corresponding methods. This suggests that the feasibility thresholds are
not tight.
(2) For non-adaptive attacks, as ∆ increases the best-found attack policies φsasTD3

achieve small improvement, but generally incur a large attack cost.
(3) Adaptive attacks are very efficient when ∆ is large. At ∆ = 1, the best adaptive
attack φξFAA+TD3 achieves a cost of merely 13 (takes 13 steps to always force π† on
the RL agent). However, as ∆ decreases the performance quickly degrades. At
∆ = 0.1 adaptive attacks are only as good as non-adaptive attacks. This shows an
interesting transition region in ∆ that our theoretical analysis does not cover.

Adaptive Attacks are Faster

In this experiment, we empirically verify that, while both are feasible, adaptive
attacks indeed have an attack cost O(Poly|S|) while non-adaptive attacks have
O(e|S|). The 0-1 costs 1[πt 6= π†] are in general incurred at the beginning of each
t = 0 . . . T run. In other words, adaptive attacks achieve π† faster than non-adaptive
attacks. We use several chain MDPs similar to Figure 13 but with increasing number
of states |S| = 3, 4, 5, 6, 12. We provide a large enough ∆ = 2 � ∆4 to ensure the
feasibility of all attack policies. The result is shown in Figure 16. The best-found
non-adaptive attackφsasTD3 is approximately straight on the log-scale plot, suggesting
attack cost J growing exponentially with MDP size |S|. In contrast, the two adaptive
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Figure 17: The 10× 10 Grid World. s0 is the starting state and G the terminal goal.
Each move has a −0.1 negative reward, and a +1 reward for arriving at the goal.
We consider two partial target policies: π†1 marked by the green arrows, and π†2 by
both the green and the orange arrows.

attack polices φξFAA and φξFAA+TD3 actually achieves attack cost linear in |S|. This
is not easy to see from this log-scaled plot; We reproduce Figure 16 without the
log scale in the appendix B.7, where the linear rate can be clearly verified. This
suggests that the upperbound developed in Theorem 4.9 and Corollary 4.10 can be
potentially improved.

Ablation Study

In this experiment, we compare three adaptive attack policies: φξTD3 the pol-
icy found by out-of-the-box TD3, φξFAA the manually designed FAA policy, and
φξFAA+TD3 the policy found by using FAA as initialization for TD3.

We use three MDPs: a 6-state chain MDP, a 12-state chain MDP, and a 10× 10
grid world MDP.. The 10× 10 MDP has two separate target policies π†1 and π†2, see
Figure 17.

For evaluation, we compute the number of target actions achieved |{s ∈ S† :
πt(s) ∈ π†(s)}| as a function of t. This allows us to look more closely into the
progress made by an attack. The results are shown in Figure 18.
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(a) 6-state chain MDP
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(b) 12-state chain MDP
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(c) 10× 10 MDP with π†1.
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(d) 10× 10 MDP with π†2.

Figure 18: Experiment results for the ablation study. Each curve shows mean ±1
standard error over 20 independent test runs. The gray dashed lines indicate the
total number of target actions.

First, observe that across all 4 experiments, attack policy φξTD3 found by out-of-
the-box TD3 never succeeded in achieving all target actions. This indicates that
TD3 alone cannot produce an effective attack. We hypothesize that this is due to a
lack of effective exploration scheme: when the target states are sparse (|S†|� |S|) it
can be hard for TD3 equiped with Gaussian exploration noise to locate all target
states. As a result, the attack policy found by vanilla TD3 is only able to achieve
the target actions on a subset of frequently visited target states.

Hand-crafted φξFAA is effective in achieving the target policies, as is guaranteed
by our theory. Nevertheless, we found that φξFAA+TD3 always improves upon φξTD3.
Recall that we use FAA as the initialization and then run TD3. This indicates that
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TD3 can be highly effective with a good initialization, which effectively serves as
the initial exploration policy that allows TD3 to locate all the target states.

Of special interest are the two experiments on the 10 × 10 Grid World with
different target policies. Conceptually, the advantage of the adaptive attack is that
the attacker can perform explicit navigation to lure the agent into the target states.
An efficient navigation policy that leads the agent to all target states will make the
attack very efficient. Observe that in Figure 17, both target polices form a chain, so
that if the agent starts at the beginning of the chain, the target actions naturally lead
the agent to the subsequent target states, achieving efficient navigation.

Recall that the FAA algorithm prioritizes the target states farthest to the starting
state. In the 10×10 Grid World, the farthest state is the top-left grid. For target states
S†1, the top-left grid turns out to be the beginning of the target chain. As a result,
φξFAA is already very efficient, and φξFAA+TD3 couldn’t achieve much improvement,
as shown in 18c. On the other hand, for target states S†2, the top-left grid is in
the middle of the target chain, which makes φξFAA not as efficient. In this case,
φξFAA+TD3 makes a significant improvement, successfully forcing the target policy
in about 500 steps, whereas it takes φξFAA as many as 1000 steps, about twice as
long as φξFAA+TD3.

4.7 Conclusion

In this chapter, we studied the problem of reward-poisoning attacks on reinforcement-
learning agents. Theoretically, we provide robustness certificates that guarantee
the truthfulness of the learned policy when the attacker’s constraint is stringent.
When the constraint is loose, we show that by being adaptive to the agent’s internal
state, the attacker can force the target policy in polynomial time, whereas a naive
non-adaptive attack takes exponential time. Empirically, we formulate that the
reward poisoning problem as an optimal control problem on a higher-level attack
MDP, and developed computational tools based on DRL that is able to find efficient
attack policies across a variety of environments.
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5 policy poisoning in batch reinforcement learning
and control

Contribution Statement. This chapter is joint work with Xuezhou Zhang, Wen
Sun and Xiaojin Zhu. The author Yuzhe Ma is the leading author and completed
most of the work, including the theoretical analysis and the experiments. The paper
version of this chapter appeared in NeurIPS19.

5.1 Introduction

With the increasing adoption of machine learning, it is critical to study security
threats to learning algorithms and design effective defense mechanisms against
those threats. There has been significant work on adversarial attacks (Biggio and
Roli, 2018; Huang et al., 2011). We focus on the subarea of data poisoning attacks
where the adversary manipulates the training data so that the learner learns a wrong
model. Prior work on data poisoning targeted victims in supervised learning (Mei
and Zhu, 2015b; Koh et al., 2018; Wang and Chaudhuri, 2018; Zhang and Zhu, 2019)
and multi-armed bandits (Jun et al., 2018; Ma et al., 2018; Liu and Shroff, 2019). We
take a step further and study data poisoning attacks on reinforcement learning (RL).
Given RL’s prominent applications in robotics, games and so on, an intentionally
and adversarially planted bad policy could be devastating.

While there has been some related work in test-time attack on RL, reward
shaping, and teaching inverse reinforcement learning (IRL), little is understood on
how to training-set poison a reinforcement learner. We take the first step and focus
on batch reinforcement learner and controller as the victims. These victims learn
their policy from a batch training set. We assume that the attacker can modify the
rewards in the training set, which we show is sufficient for policy poisoning. The
attacker’s goal is to force the victim to learn a particular target policy (hence the
name policy poisoning), while minimizing the reward modifications. Our main
contribution is to characterize batch policy poisoning with a unified optimization
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framework, and to study two instances against tabular certainty-equivalence (TCE)
victim and linear quadratic regulator (LQR) victim, respectively.

5.2 Related Work

Of particular interest is the work on test-time attacks against RL (Huang et al., 2017).
Unlike policy poisoning, there the RL agent carries out an already-learned and
fixed policy π to e.g. play the Pong Game. The attacker perturbs pixels in a game
board image, which is part of the state s. This essentially changes the RL agent’s
perceived state into some s ′. The RL agent then chooses the action a ′ := π(s ′) (e.g.
move down) which may differ from a := π(s) (e.g. move up). The attacker’s goal is
to force some specific a ′ on the RL agent. Note π itself stays the same through the
attack. In contrast, ours is a data-poisoning attack which happens at training time
and aims to change π.

Data-poisoning attacks were previously limited to supervised learning victims,
either in batch mode (Biggio et al., 2012; Xiao et al., 2015; Li et al., 2016a; Mei
and Zhu, 2015b) or online mode (Wang and Chaudhuri, 2018; Zhang and Zhu,
2019). Recently data-poisoning attacks have been extended to multi-armed bandit
victims (Jun et al., 2018; Ma et al., 2018; Liu and Shroff, 2019), but not yet to RL
victims.

There are two related but distinct concepts in RL research. One concept is
reward shaping (Ng et al., 1999a; Asmuth et al., 2008; Devlin and Kudenko, 2012;
Wiewiora, 2003) which also modifies rewards to affect an RL agent. However, the
goal of reward shaping is fundamentally different from ours. Reward shaping
aims to speed up convergence to the same optimal policy as without shaping. Note
the differences in both the target (same vs. different policies) and the optimality
measure (speed to converge vs. magnitude of reward change).

The other concept is teaching IRL (Cakmak and Lopes, 2012; Brown and Niekum,
2019; Kamalaruban et al., 2019). Teaching and attacking are mathematically equiv-
alent. However, the main difference to our work is the victim. They require an
IRL agent, which is a specialized algorithm that estimates a reward function from
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demonstrations of (state, action) trajectories alone (i.e. no reward given). In con-
trast, our attacks target more prevalent RL agents and are thus potentially more
applicable. Due to the difference in the input to IRL vs. RL victims, our attack
framework is completely different.

5.3 Preliminaries

A Markov Decision Process (MDP) is defined as a tuple (S,A,P,R,γ), where S is
the state space, A is the action space, P : S×A→ ∆S is the transition kernel where
∆S denotes the space of probability distributions on S, R : S×A→ R is the reward
function, and γ ∈ [0, 1) is a discounting factor. We define a policy π : S→ A as a
function that maps a state to an action. We denote the Q function of a policy π as
Qπ(s,a) = E[

∑∞
τ=0 γ

τR(sτ,aτ) | s0 = s,a0 = a,π], where the expectation is over
the randomness in both transitions and rewards. The Q function that corresponds
to the optimal policy can be characterized by the following Bellman optimality
equation:

Q∗(s,a) = R(s,a) + γ
∑
s ′∈S

P(s ′|s,a)max
a ′∈A

Q∗(s ′,a ′), (48)

and the optimal policy is defined as π∗(s) ∈ arg maxa∈AQ∗(s,a).
We focus on RL victims who perform batch reinforcement learning. A training

item is a tuple (s,a, r, s′) ∈ S × A × R × S, where s is the current state, a is the
action taken, r is the received reward, and s′ is the next state. A training set is a
batch of T training items denoted by D = (st,at, rt, s′t)t=0:T−1. Given training set
D, a model-based learner performs learning in two steps:

Step 1. The learner estimates an MDP M̂ = (S,A, P̂, R̂,γ) from D. In particular,
we assume the learner uses maximum likelihood estimate for the transition kernel
P̂ : S×A 7→ ∆S

P̂ ∈ arg max
P

T−1∑
t=0

log P(s′t|st,at), (49)
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and least-squares estimate for the reward function R̂ : S×A 7→ R

R̂ = arg min
R

T−1∑
t=0

(rt − R(st,at))2. (50)

Note that we do not require (49) to have a unique maximizer P̂. When multiple
maximizers exist, we assume the learner arbitrarily picks one of them as the estimate.
We assume the minimizer R̂ is always unique. We will discuss the conditions to
guarantee the uniqueness of R̂ for two learners later.

Step 2. The learner finds the optimal policy π̂ that maximizes the expected
discounted cumulative reward on the estimated environment M̂, i.e.,

π̂ ∈ arg max
π:S 7→A

EP̂
∞∑
τ=0

γτR̂(sτ,π(sτ)), (51)

where s0 is a specified or random initial state. Note that there could be multiple
optimal policies, thus we use ∈ in (51). Later we will specialize (51) to two specific
victim learners: the tabular certainty equivalence learner (TCE) and the certainty-
equivalent linear quadratic regulator (LQR).

5.4 Policy Poisoning

We study policy poisoning attacks on model-based batch RL learners. Our threat
model is as follows:

Knowledge of the attacker. The attacker has access to the original training set
D0 = (st,at, r0

t, s′t)t=0:T−1. The attacker knows the model-based RL learner’s algo-
rithm. Importantly, the attacker knows how the learner estimates the environment,
i.e., (49) and (50). In the case (49) has multiple maximizers, we assume the attacker
knows exactly the P̂ that the learner picks.

Available actions of the attacker. The attacker is allowed to arbitrarily modify
the rewards r0 = (r0

0, ..., r0
T−1) inD0 into r = (r0, ..., rT−1). As we show later, changing

r’s but not s,a, s ′ is sufficient for policy poisoning.
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Attacker’s goals. The attacker has a pre-specified target policy π†. The attack
goals are to (1) force the learner to learn π†, (2) minimize attack cost ‖r− r0‖α under
an α-norm chosen by the attacker.

Given the threat model, we can formulate policy poisoning as a bi-level opti-
mization problem8:

min
r,R̂

‖r − r0‖α (52)

s.t. R̂ = arg min
R

T−1∑
t=0

(rt − R(st,at))2 (53)

{π†} = arg max
π:S 7→A

EP̂
∞∑
τ=0

γτR̂(sτ,π(sτ)). (54)

The P̂ in (54) does not involve r and is precomputed fromD0. The singleton set {π†}
on the LHS of (54) ensures that the target policy is learned uniquely, i.e., there are
no other optimal policies tied with π†. Next, we instantiate this attack formulation
to two representative model-based RL victims.

Poisoning a Tabular Certainty Equivalence (TCE) Victim

In tabular certainty equivalence (TCE), the environment is a Markov Decision Pro-
cess (MDP) with finite state and action space. Given original dataD0 = (st,at, r0

t, s′t)0:T−1,
let Ts,a = {t | st = s,at = a}, the time indexes of all training items for which action
a is taken at state s. We assume Ts,a > 1, ∀s,a, i.e., each state-action pair appears
at least once in D0. This condition is needed to ensure that the learner’s estimate
P̂ and R̂ exist. Remember that we require (50) to have a unique solution. For the
TCE learner, R̂ is unique as long as it exists. Therefore, Ts,a > 1, ∀s,a is sufficient to
guarantee a unique solution to (50). Let the poisoned data beD = (st,at, rt, s′t)0:T−1.

8As we will show, the constraint (54) could lead to an open feasible set (e.g., in (57)) for the attack
optimization (52)-(54), on which the minimum of the objective function (52) may not be well-defined.
In the case (54) induces an open set, we will consider instead a closed subset of it, and optimize
over the subset. How to construct the closed subset will be made clear for concrete learners later.
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Instantiating model estimation (49), (50) for TCE, we have

P̂(s′ | s,a) = 1
|Ts,a|

∑
t∈Ts,a

1 [s′t = s
′] , (55)

where 1 [] is the indicator function, and

R̂(s,a) = 1
|Ts,a|

∑
t∈Ts,a

rt. (56)

The TCE learner uses P̂, R̂ to form an estimated MDP M̂, then solves for the optimal
policy π̂ with respect to M̂ using the Bellman equation (48). The attack goal (54)
can be naively characterized by

Q(s,π†(s)) > Q(s,a),∀s ∈ S,∀a 6= π†(s). (57)

However, due to the strict inequality, (57) induces an open set in the Q space, on
which the minimum of (52) may not be well-defined. Instead, we require a stronger
attack goal which leads to a closed subset in the Q space. This is defined as the
following ε-robust target Q polytope.

Definition 5.1. (ε-robust targetQ polytope) The set of ε-robustQ functions induced by a
target policy π† is the polytope

Qε(π
†) = {Q : Q(s,π†(s)) > Q(s,a) + ε, ∀s ∈ S,∀a 6= π†(s)} (58)

for a fixed ε > 0.

The margin parameter ε ensures that π† is the unique optimal policy for any Q
in the polytope. We now have a solvable attack problem, where the attacker wants
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to force the victim’s Q function into the ε-robust target Q polytope Qε(π
†):

min
r∈RT ,R̂,Q∈R|S|×|A|

‖r − r0‖α (59)

s.t. R̂(s,a) = 1
|Ts,a|

∑
t∈Ts,a

rt (60)

Q(s,a) = R̂(s,a) + γ
∑
s′

P̂ (s′|s,a)Q
(
s′,π†(s′)

)
,∀s,∀a, (61)

Q(s,π†(s)) > Q(s,a) + ε,∀s ∈ S,∀a 6= π†(s). (62)

The constraint (61) enforces Bellman optimality on the value function Q, in which
maxa ′∈AQ(s ′,a ′) is replaced byQ

(
s′,π†(s′)

)
, since the target policy is guaranteed

to be optimal by (62). Note that problem (59)-(62) is a convex program with linear
constraints given that α > 1, thus could be solved to global optimality. However,
we point out that (59)-(62) is a more stringent formulation than (52)-(54) due to
the additional margin parameter ε we introduced. The feasible set of (59)-(62) is a
subset of (52)-(54). Therefore, the optimal solution to (59)-(62) could in general be
a sub-optimal solution to (52)-(54) with potentially larger objective value. We now
study a few theoretical properties of policy poisoning on TCE. All proofs are in the
appendix. First of all, the attack is always feasible.

Proposition 5.2. The attack problem (59)-(62) is always feasible for any target policy π†.

Proposition 5.2 states that for any target policy π†, there exists a perturbation on
the rewards that teaches the learner that policy. Therefore, the attacker changing
r’s but not s,a, s ′ is already sufficient for policy poisoning.

We next bound the attack cost. Let the MDP estimated on the clean data be
M̂0 = (S,A, P̂, R̂0,γ). Let Q0 be the Q function that satisfies the Bellman optimality
equation on M̂0. Define ∆(ε) = maxs∈S[maxa6=π†(s)Q0(s,a) − Q0(s,π†(s)) + ε]+,
where []+ takes the maximum over 0. Intuitively, ∆(ε) measures how suboptimal
the target policy π† is compared to the clean optimal policy π0 learned on M̂0, up
to a margin parameter ε.
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Theorem 5.3. Assumeα > 1 in (59). Let r∗, R̂∗ andQ∗ be an optimal solution to (59)-(62),
then

1
2
(1 − γ)∆(ε)

(
min
s,a

|Ts,a|

) 1
α

6 ‖r∗ − r0‖α 6
1
2
(1 + γ)∆(ε)T

1
α . (63)

Corollary 5.4. If α = 1, then the optimal attack cost is O(∆(ε)T). If α = 2, then the
optimal attack cost is O(∆(ε)

√
T). If α =∞, then the optimal attack cost is O(∆(ε)).

Note that both the upper and lower bounds on the attack cost are linear with
respect to ∆(ε), which can be estimated directly from the clean training setD0. This
allows the attacker to easily estimate its attack cost before actually solving the attack
problem.

Poisoning a Linear Quadratic Regulator (LQR) Victim

As the second example, we study an LQR victim that performs system identification
from a batch training set (Dean et al., 2017). Let the linear dynamical system be

st+1 = Ast + Bat +wt, ∀t > 0, (64)

where A ∈ Rn×n,B ∈ Rn×m, st ∈ Rn is the state, at ∈ Rm is the control signal,
and wt ∼ N(0,σ2I) is a Gaussian noise. When the agent takes action a at state s, it
suffers a quadratic loss of the general form

L(s,a) = 1
2
s>Qs+ q>s+ a>Ra+ c (65)

for some Q � 0, R � 0, q ∈ Rn and c ∈ R. Here we have redefined the symbols
Q and R in order to conform with the notation convention in LQR: now we use Q
for the quadratic loss matrix associated with state, not the action-value function;
we use R for the quadratic loss matrix associated with action, not the reward
function. The previous reward function R(s,a) in general MDP (section 5.3) is now
equivalent to the negative loss −L(s,a). This form of loss captures various LQR
control problems. Note that the above linear dynamical system can be viewed as
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an MDP with transition kernel P(s′ | s,a) = N(As+ Ba,σ2I) and reward function
−L(s,a). The environment is thus characterized by matrices A, B (for transition
kernel) and Q, R, q, c (for reward function), which are all unknown to the learner.

We assume the clean training data D0 = (st,at, r0
t, st+1)0:T−1 was generated

by running the linear system for multiple episodes following some random pol-
icy (Dean et al., 2017). Let the poisoned data be D = (st,at, rt, st+1)0:T−1. Instanti-
ating model estimation (49), (50), the learner performs system identification on the
poisoned data:

(Â, B̂) ∈ arg min
(A,B)

1
2

T−1∑
t=0

‖Ast + Bat − st+1‖2
2 (66)

(Q̂, R̂, q̂, ĉ) = arg min
(Q�0,R�εI,q,c)

1
2

T−1∑
t=0

∥∥∥∥1
2
s>t Qst + q

>st + a
>
t Rat + c+ rt

∥∥∥∥2

2
. (67)

Note that in (67), the learner uses a stronger constraint R � εI than the original con-
straint R � 0, which guarantees that the minimizer can be achieved. The conditions
to further guarantee (67) having a unique solution depend on the property of certain
matrices formed by the clean training set D0, which we defer to appendix C.4.

The learner then computes the optimal control policy with respect to Â, B̂, Q̂, R̂,
q̂ and ĉ. We assume the learner solves a discounted version of LQR control

max
π:S 7→A

−E

[ ∞∑
τ=0

γτ(
1
2
s>τ Q̂sτ + q̂

>sτ + π(sτ)
>R̂π(sτ) + ĉ)

]
(68)

s.t. sτ+1 = Âsτ + B̂π(sτ) +wτ, ∀τ > 0. (69)

where the expectation is over wτ. It is known that the control problem has a
closed-form solution âτ = π̂(sτ) = Ksτ + k, where

K = −γ
(
R̂+ γB̂>XB̂

)−1
B̂>XÂ, k = −γ(R̂+ γB̂>XB̂)−1B̂>x. (70)

Here X � 0 is the unique solution of the Algebraic Riccati Equation,

X = γÂ>XÂ− γ2Â>XB̂
(
R̂+ γB̂>XB̂

)−1
B̂>XÂ+ Q̂, (71)
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and x is a vector that satisfies

x = q̂+ γ(Â+ B̂K)>x. (72)

The attacker aims to force the victim into taking target action π†(s), ∀s ∈ Rn.
Note that in LQR, the attacker cannot arbitrarily choose π†, as the optimal control
policy K and k enforce a linear structural constraint between π†(s) and s. One can
easily see that the target action must obey π†(s) = K†s+k† for some (K†,k†) in order
to achieve successful attack. Therefore we must assume instead that the attacker has
a target policy specified by a pair (K†,k†). However, an arbitrarily linear policy may
still not be feasible. A target policy (K†,k†) is feasible if and only if it is produced
by solving some Riccati equation, namely, it must lie in the following set:

{(K,k) : ∃Q � 0,R � εI,q ∈ Rn, c ∈ R, such that (70), (71), and (72) are satisfied}. (73)

Therefore, to guarantee feasibility, we assume the attacker always picks the target
policy (K†,k†) by solving an LQR problem with some attacker-defined loss function.
We can now pose the policy poisoning attack problem:

min
r,Q̂,R̂,q̂,ĉ,X,x

‖r − r0‖α (74)

s.t. −γ
(
R̂+ γB̂>XB̂

)−1
B̂>XÂ = K† (75)

−γ
(
R̂+ γB̂>XB̂

)−1
B̂>x = k† (76)

X = γÂ>XÂ− γ2Â>XB̂
(
R̂+ γB̂>XB̂

)−1
B̂>XÂ+ Q̂ (77)

x = q̂+ γ(Â+ B̂K†)>x (78)

(Q̂, R̂, q̂, ĉ) = arg min
(Q�0,R�εI,q,c)

T−1∑
t=0

∥∥∥∥1
2
s>t Qst + q

>st + a
>
t Rat + c+ rt

∥∥∥∥2

2
(79)

X � 0. (80)

Note that the estimated transition matrices Â, B̂ are not optimization variables
because the attacker can only modify the rewards, which will not change the
learner’s estimate on Â and B̂. The attack optimization (74)-(80) is hard to solve
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due to the constraint (79) itself being a semi-definite program (SDP). To overcome
the difficulty, we pull all the positive semi-definite constraints out of the lower-level
optimization. This leads to a more stringent surrogate attack optimization (see
appendix C.3). Solving the surrogate attack problem, whose feasible region is a
subset of the original problem, in general gives a suboptimal solution to (74)-(80).
But it comes with one advantage: convexity.

5.5 Experiments

Throughout the experiments, we use CVXPY (Diamond and Boyd, 2016) to imple-
ment the optimization. All code can be found in:
https://github.com/myzwisc/PPRL_NeurIPS19.

Policy Poisoning Attack on TCE Victim

Experiment 1. We consider a simple MDP with two statesA,B and two actions: stay
in the same state or move to the other state, shown in figure 19a. The discounting
factor is γ = 0.9. The MDP’s Q values are shown in table 19b. Note that the
optimal policy will always pick action stay. The clean training data D0 reflects this
underlying MDP, and consists of 4 tuples:

(A, stay, 1,A) (A, move, 0,B) (B, stay, 1,B) (B, move, 0,A)

Let the attacker’s target policy be π†(s) =move, for any state s. The attacker sets
ε = 1 and uses α = 2, i.e. ‖r − r0‖2 as the attack cost. Solving the policy poisoning
attack optimization problem (59)-(62) produces the poisoned data:

(A, stay, 0,A) (A, move, 1,B) (B, stay, 0,B) (B, move, 1,A)

with attack cost ‖r − r0‖2 = 2. The resulting poisoned Q values are shown in
table 19c. To verify this attack, we run TCE learner on both clean data and poisoned
data. Specifically, we estimate the transition kernel and the reward function as

https://github.com/myzwisc/PPRL_NeurIPS19
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A B

+1 +1
0

0

(a) A toy MDP with two states.
stay move

A 10 9
B 10 9

(b) Original Q values.
stay move

A 9 10
B 9 10

(c) Poisoned Q values.
(d) Trajectory for the Q values of state A during
value iteration.

Figure 19: Poisoning TCE in a two-state MDP.

in (55) and (56) on each data set, and then run value iteration until the Q values
converge. In Figure 19d, we show the trajectory ofQ values for state A, where the x
and y axes denote Q(A, stay) and Q(A,move) respectively. All trajectories start at
(0, 0). The dots on the trajectory correspond to each step of value iteration, while the
star denotes the converged Q values. The diagonal dashed line is the (zero margin)
policy boundary, while the gray region is the ε-robust target Q polytope with an
offset ε = 1 to the policy boundary. The trajectory of clean data converges to a point
below the policy boundary, where the action stay is optimal. With the poisoned
data, the trajectory of Q values converge to a point exactly on the boundary of the
ε-robust targetQ polytope, where the actionmove becomes optimal. This validates
our attack.

We also compare our attack with reward shaping (Ng et al., 1999a). We let the
potential function φ(s) be the optimal value function V(s) for all s to shape the
clean dataset. The dataset after shaping is

(A, stay, 0,A) (A, move,−1,B) (B, stay, 0,B) (B, move,−1,A)
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In Figure 19d, we show the trajectory of Q values after reward shaping. Note
that same as on clean dataset, the trajectory after shaping converges to a point
also below the policy boundary. This means reward shaping can not make the
learner learn a different policy from the original optimal policy. Also note that
after reward shaping, value iteration converges much faster (in only one iteration),
which matches the benefits of reward shaping shown in (Ng et al., 1999a). More
importantly, this illustrates the difference between our attack and reward shaping.

S

G

G :2 :−10 :−1

-0.572
+0.572

-0.515 -0.464 -0.417
-0.376

-0.338

-0.304
-0.274-0.246-0.221-0.200

+0.238

+2.139

+0.464

+0.515

(a) Grid world with a single terminal state
G.

G1 :1 G2 :2 :−1

G1 G2

S
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+0.020
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+0.002
-0.018

+0.012
-0.014
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-0.007

-0.044
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-0.013
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-0.015

+0.015
-0.013

-0.043
+0.075

-0.040

-0.012

-0.006
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+0.008
-0.016

+0.088

-0.115 -0.115

-0.015

-0.115

-0.020

-0.005
-0.015

+0.080
+0.009

-0.004

-0.032

+0.068
-0.008

+0.005

-0.005

+0.032

-0.004 +0.029

+0.262

(b) Grid world with two terminal states G1
and G2.

Figure 20: Poisoning TCE in grid-world tasks.

Experiment 2. As another example, we consider the grid world tasks in (Cakmak
and Lopes, 2012). In particular, we focus on two tasks shown in figure 20a and 20b.
In figure 20a, the agent starts from S and aims to arrive at the terminal cell G. The
black regions are walls, thus the agent can only choose to go through the white or
gray regions. The agent can take four actions in every state: go left, right, up or
down, and stays if the action takes it into the wall. Reaching a gray, white, or the
terminal state results in rewards −10, −1, 2, respectively. After the agent arrives at
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the terminal state G, it will stay there forever and always receive reward 0 regardless
of the following actions. The original optimal policy is to follow the blue trajectory.
The attacker’s goal is to force the agent to follow the red trajectory. Correspondingly,
we set the target actions for those states on the red trajectory as along the trajectory.
We set the target actions for the remaining states to be the same as the original
optimal policy learned on clean data.

The clean training data contains a single item for every state-action pair. We
run the attack with ε = 0.1 and α = 2. Our attack is successful: with the poisoned
data, TCE generates a policy that produces the red trajectory in Figure 20a, which
is the desired behavior. The attack cost is ‖r − r0‖2 ≈ 2.64, which is small compared
to ‖r0‖2 = 21.61. In Figure 20a, we show the poisoning on rewards. Each state-
action pair is denoted by an orange arrow. The value tagged to each arrow is the
modification to that reward, where red value means the reward is increased and blue
means decreased. An arrow without any tagged value means the corresponding
reward is not changed by attack. Note that rewards along the red trajectory are
increased, while those along the blue trajectory are reduced, resulting in the red
trajectory being preferred by the agent. Furthermore, rewards closer to the starting
state S suffer larger poisoning since they contribute more to the Q values. For
the large attack +2.139 happening at terminal state, we provide an explanation in
appendix C.5.

Experiment 3. In Figure 20b there are two terminal states G1 and G2 with reward
1 and 2, respectively. The agent starts from S. Although G2 is more profitable, the
path is longer and each step has a −1 reward. Therefore, the original optimal policy
is the blue trajectory to G1. The attacker’s target policy is to force the agent along
the red trajectory to G2. We set the target actions for states as in experiment 2. The
clean training data contains a single item for every state-action pair. We run our
attack with ε = 0.1 and α = 2. Again, after the attack, TCE on the poisoned dataset
produces the red trajectory in figure 20b, with attack cost ‖r−r0‖2 ≈ 0.38, compared
to ‖r0‖2 = 11.09. The reward poisoning follows a similar pattern to experiment 2.



80

Policy Poisoning Attack on LQR Victim

(a) Clean and poisoned vehicle trajectory. (b) Clean and poisoned rewards.

Figure 21: Poisoning a vehicle running LQR in 4D state space.

Experiment 4. We now demonstrate our attack on LQR. We consider a linear
dynamical system that approximately models a vehicle. The state of the vehicle
consists of its 2D position and 2D velocity: st = (xt,yt, vxt , vyt ) ∈ R4. The control
signal at time t is the force at ∈ R2 which will be applied on the vehicle for h
seconds. We assume there is a friction parameter η such that the friction force
is −ηvt. Let m be the mass of the vehicle. Given small enough h, the transition
matrices can be approximated by (64) where

A =


1 0 h 0
0 1 0 h

0 0 1 − hη/m 0
0 0 0 1 − hη/m

 ,B =


0 0
0 0

h/m 0
0 h/m

 . (81)

In this example, we let h = 0.1, m = 1, η = 0.5, and wt ∼ N(0,σ2I) with σ =

0.01. The vehicle starts from initial position (1, 1) with velocity (1,−0.5), i.e., s0 =

(1, 1, 1,−0.5). The true loss function is L(s,a) = 1
2s
>Qs + a>Ra with Q = I and
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R = 0.1I (i.e., Q = I,R = 0.1I,q = 0, c = 0 in (65)). Throughout the experiment, we
let γ = 0.9 for solving the optimal control policy in (68). With the true dynamics
and loss function, the computed optimal control policy is

K∗ =

[
−1.32 0 −2.39 0

0 −1.32 0 −2.39

]
,k∗ =

[
0 0

]
, (82)

which will drive the vehicle to the origin.
The batch LQR learner estimates the dynamics and the loss function from a

batch training data. To produce the training data, we let the vehicle start from state
s0 and simulate its trajectory with a random control policy. Specifically, in each time
step, we uniformly sample a control signal at in a unit sphere. The vehicle then
takes action at to transit from current state st to the next state st+1, and receives a
reward rt = −L(st,at). This gives us one training item (st,at, rt, st+1). We simulate
a total of 400 time steps to obtain a batch data that contains 400 items, on which the
learner estimates the dynamics and the loss function. With the learner’s estimate,
the computed clean optimal policy is

K̂0 =

[
−1.31 1.00e−2 −2.41 2.03e−3

−1.97e−2 −1.35 −1.14e−2 −2.42

]
, k̂0 =

[
−4.88e−5 4.95e−6

]
.

(83)
The clean optimal policy differs slightly from the true optimal policy due to the
inaccuracy of the learner’s estimate. The attacker has a target policy (K†,k†) that can
drive the vehicle close to its target destination (x†,y†) = (0, 1) with terminal velocity
(0, 0), which can be represented as a target state s† = (0, 1, 0, 0). To ensure feasibility,
we assume that the attacker starts with the loss function 1

2(s−s
†)>Q(s−s†)+a>Ra

where Q = I,R = 0.1I. Due to the offset this corresponds to setting Q = I,R =

0.1I,q = −s†, c = 1
2s
†>Qs† = 0.5 in (65). The attacker then solves the Riccati

equation with its own loss function and the learner’s estimates Â and B̂ to arrive at
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the target policy

K† =

[
−1.31 9.99e−3 −2.41 2.02e−3

−1.97e−2 −1.35 −1.14e−2 −2.42

]
,k† =

[
−0.01 1.35

]
. (84)

We run our attack (74)-(80) with α = 2 and ε = 0.01 in (79). Figure 21 shows the
result of our attack. In Figure 21a, we plot the trajectory of the vehicle with policy
learned on clean data and poisoned data respectively. Our attack successfully forces
LQR into a policy that drives the vehicle close to the target destination. The wiggle
on the trajectory is due to the noise wt of the dynamical system. On the poisoned
data, the LQR victim learns the policy

K̂ =

[
−1.31 9.99e−3 −2.41 2.02e−3

−1.97e−2 −1.35 −1.14e−2 −2.42

]
, k̂ =

[
−0.01 1.35

]
, (85)

which matches exactly the target policyK†, k†. In Figure 21b, we show the poisoning
on rewards. Our attack leads to very small modification on each reward, thus the
attack is efficient. The total attack cost over all 400 items is only ‖r − r0‖2 = 0.73,
which is tiny small compared to ‖r0‖2 = 112.94. The results here demonstrate that
our attack can dramatically change the behavior of LQR by only slightly modifying
the rewards in the dataset.

Finally, for both attacks on TCE and LQR, we note that by setting the attack
cost norm α = 1 in (52), the attacker is able to obtain a sparse attack, meaning that
only a small fraction of the batch data needs to be poisoned. Such sparse attacks
have profound implications in adversarial machine learning as they can be easier
to carry out and harder to detect. We show detailed results in appendix C.5.

5.6 Conclusion

We presented a policy poisoning framework against batch reinforcement learning
and control. We showed the attack problem can be formulated as convex optimiza-
tion. We provided theoretical analysis on attack feasibility and cost. Experiments
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show the attack can force the learner into an attacker-chosen target policy while
incurring only a small attack cost.
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6 sequential attacks on kalman filter-based forward
collision warning systems

Contribution Statement. This chapter is joint work with Jon Sharp, Ruizhe Wang,
Earlence Fernandes and Xiaojin Zhu. The author Yuzhe Ma is the leading author
and completed most of the work, including the theoretical analysis and part of the
experiments. The simulator used in this chapter was built by Jon and Ruizhe. The
paper version of this chapter appeared in AAAI21.

6.1 Introduction

Advanced Driver Assistance Systems (ADAS) are hybrid human-machine systems
that are widely deployed on production passenger vehicles (National Highway
Traffic Safety Administration, 2020). They use sensing, traditional signal processing
and machine learning to detect and raise alerts about unsafe road situations and rely
on the human driver to take corrective actions. Popular ADAS examples include
Forward Collision Warning (FCW), Adaptive Cruise Control and Autonomous
Emergency Braking (AEB).

Although ADAS hybrid systems are designed to increase road safety when
drivers are distracted, attackers can negate their benefits by strategically tampering
with their behavior. For example, an attacker could convince an FCW or AEB
system that there is no imminent collision until it is too late for a human driver to
avoid the crash.

We study the robustness of ADAS to attacks. The core of ADAS typically involves
tracking the states (e.g., distance and velocity) of road objects using Kalman filter
(KF). Downstream logic uses this tracking output to detect unsafe situations before
they happen. We focus our efforts on Forward Collision Warning (FCW), a popular
ADAS deployed on production vehicles today. FCW uses KF state predictions to
detect whether the ego vehicle (vehicle employing the ADAS system) is about to
collide with the most important object in front of it and will alert the human driver
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in a timely manner. Thus, our concrete attack goal is to trick the KF that FCW uses
and make it output incorrect state predictions that would induce false or delayed
alerts depending on the specific physical situation.

Recent work has examined the robustness of road object state tracking for au-
tonomous vehicles (Jia et al., 2020). Their attacks create an instantaneous manip-
ulation to the Kalman filter inputs without considering its sequential nature, the
downstream logic that depends on filter output, or the physical dynamics of in-
volved vehicles. This leads to temporarily hijacked Kalman filter state predictions
that are incapable of ensuring that downstream logic is reliably tricked into pro-
ducing false alerts. By contrast, we adopt an online planning view of attacking KFs
that accounts for: (1) their sequential nature where current predictions depend
on past measurements; and (2) the downstream logic that uses KF output to pro-
duce warnings. Our attack technique also considers a simplified model of human
reaction to manipulated FCW warning lights.

We propose a novel Model Predictive Control (MPC)-based attack that can
sequentially manipulate measurement inputs to a KF with the goal of stealthily
hijacking its behavior. Our attacks force FCW alerts that mask the true nature of the
physical situation involving the vehicles until it is too late for a distracted human
driver to take corrective actions.

We evaluate our attack framework by creating a high-fidelity driving simulation
using CARLA (Dosovitskiy et al., 2017), a popular tool for autonomous vehicle
research and development. We create test scenarios based on real-world driving
data (National Highway Traffic Safety Administration, 2011; European New Car As-
sessment Programme, 2018) and demonstrate the practicality of the attack in causing
crashes involving the victim vehicle. Anonymized CARLA simulation videos of our
attacks are available at https://sites.google.com/view/attack-kalman-filter.

6.2 Background

Forward Collision Warning provides audio-visual alerts to warn human drivers
of imminent collisions. Fig. 22 shows the pipeline of a prototypical FCW hybrid

https://sites.google.com/view/attack-kalman-filter
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Figure 22: Overview of Forward Collision Warning (FCW) hybrid human-machine
system. We take a first step to understanding the robustness of this system to
attackers who can compromise sensor measurements. Therefore, we filter the
problem to its essence (shaded parts) — the Kalman filter that tracks the most
important object (MIO) and the downstream logic that decides how to warn the
driver.

system (MATLAB, 2020b): (1) It uses camera and RADAR sensors to perceive the
environment; (2) It processes sensor data using a combination of traditional signal
processing and machine learning algorithms to derive object velocities and dis-
tances; (3) A Kalman filter tracks the Most Important Object (MIO) state and makes
predictions about its future states; (4) FCW logic uses Kalman filter predictions to
determine whether a collision is about to occur and creates audio-visual warnings;
(5) A human driver reacts to FCW alerts. These alerts can be either: green – indicat-
ing no danger, yellow – indicating potential danger of forward collision, and red –
indicating imminent danger where braking action must be taken.

We focus on attacking the core steps of FCW (shaded parts of Fig. 22). Thus,
we assume there is a single MIO in front of the ego vehicle and a single Kalman
filter actively tracking its state. The steps of measurement assignment and MIO
identification will not be considered in this chapter.
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We have two attack goals that will comprehensively demonstrate the vulnerabil-
ity of FCW hybrid systems — the attacker should trick FCW into showing no red
alerts when there is an imminent collision with the most important object (MIO),
and vice versa — the attacker should trick FCW into showing red alerts when there
is no collision, inducing a human to react with braking that can potentially lead to
a rear-end crash with a trailing vehicle.

Kalman Filtering

At the core of FCW is the Kalman Filter, which estimates the state of the MIO based
on sensor measurements. In this chapter, the state of the MIO is represented as
xt = (d1

t, v1
t,a1

t,d2
t, v2

t,a2
t), where d1

t, v1
t, a1

t are the distance, velocity and accelera-
tion of the MIO along the driving direction, and d2

t, v2
t,a2

t for the lateral direction
(perpendicular to driving direction). Then KF models the evolution of xt as

xt+1 = Axt +ωt, t > 1, (86)

where A is the state-transition matrix and ωt ∼ N(0,Ω) is Gaussian noise. The
underlying state xt is unknown, but one can obtain measurements yt of the state as

yt = Cxt +ψt, t > 1, (87)

where C is the measurement matrix and ψt ∼ N(0,Ψ) is the measurement noise. In
our setting, yt ∈ R8 contains vision and radar measurements of the MIO distance
and velocity along two directions, i.e., yt = (d1,ν

t , v1,ν
t ,d2,ν

t , v2,ν
t ,d1,r

t , v1,r
t ,d2,r

t , v2,r
t ),

where we use superscripts ν, r for vision and radar, and numbers 1, 2 for driving
and lateral direction, respectively. Given the state dynamics (86) and measurement
model (87), KF provides a recursive formula to estimate the state based on sequential
measurements obtained over time. Concretely, KF starts from some initial state and
covariance prediction x̂1 and Σ̂1. Then for any t > 2, KF first applies (88) to correct
the predictions based on measurements yt. The corrected state and covariance
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matrix are denoted by x̄t and Σ̄t.

x̄t = (I−Ht−1C)x̂t−1 +Ht−1yt,

Σ̄t = (I−Ht−1C)Σ̂t−1.
(88)

where Ht−1 = Σ̂t−1C
>(CΣ̂t−1C

> + Ψ)−1. Next, KF applies (89) to predict state and
covariance for the next step.

x̂t = Ax̄t, Σ̂t = AΣ̄tA
> +Ω. (89)

The correction and prediction steps are applied recursively as t grows. Note that
the derivation of covariance matrix is independent of yt, thus can be computed
beforehand.

Warning Alert Logic and Human Model

In this chapter, we analyze an FCW warning alert logic that uses state prediction x̂t
to decide warning lights. Denote x̂t = (d̂1

t, v̂1
t, â1

t, d̂2
t, v̂2

t, â2
t), then the warning light

`t output by FCW at step t is one of the following three cases:

• Safe (Green): The MIO is moving away, or the distance to MIO remains
constant, i.e., v̂1

t > 0.

• Caution (Yellow): The MIO is moving closer, but still at a distance further than
the minimum safe distance d∗(v̂1

t), i.e., v̂1
t < 0 and d̂1

t > d
∗(v̂1

t). We define the
safe distance as d∗(v̂1

t) = −1.2v̂1
t + (v̂1

t)
2/0.8g, where g is 9.8m/s2.

• Warn (Red): The MIO is moving closer, and at a distance less than the mini-
mum safe distance, i.e., v̂1

t < 0 and d̂1
t 6 d

∗(v̂1
t).
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The FCW alert logic can be summarized as:

F(x̂t) =


green if v̂1

t > 0,
yellow if v̂1

t < 0, d̂1
t > d

∗(v̂1
t),

red if v̂1
t < 0, d̂1

t 6 d
∗(v̂1

t).
(90)

Given the FCW warning light, the human driver could be in one of the following
two states – applying the brake pedal, or not applying/releasing the brake. We
take into account human reaction time h∗; warning lights must sustain at least h∗

steps before the human driver switches state. That is, the driver brakes after h∗

steps since the first red light, and releases the brake after h∗ steps since the first
yellow/green light. In appendix D.5, we provide an algorithmic description of the
human model.

6.3 Attack Problem Formulation

We assume that the attacker has full knowledge of the KF parameters (i.e., white-
box attacker). The attacker can directly manipulate measurements (i.e., false data
injection), but only pertaining to the vision component, and not the RADAR data.
Our attack framework is agnostic of whether the attacker manipulates camera
or RADAR, but we choose to only manipulate camera because of the increasing
presence of deep learning techniques in ADAS and their general vulnerability to
adversarial examples (Szegedy et al., 2013; Eykholt et al., 2018b; Athalye et al., 2017;
Sharif et al., 2016). We envision that future work can integrate our results into
adversarial example algorithms to create physical attacks.

We further restrict the attacker to only making physically plausible changes to
the vision measurements. This is because an anomaly detection system might filter
out physically implausible measurements (e.g., change of 104m/s over one second).
Concretely, we require that the distance and velocity measurement after attack must
lie in [d, d̄] and [v, v̄] respectively. We let [d, d̄] = [0, 75] and [v, v̄] = [−30, 30]. Finally,
we assume that at any time step, the attacker knows the true measurement only for
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that time step, but does not know future measurements. To address this difficulty
of an unknown future, we propose a model predictive control (MPC)-based attack
framework that consists of an outer problem and an inner problem, where the inner
problem is an instantiation of the outer problem with respect to attacker-envisioned
future in every step of MPC. In the following, we first introduce the outer problem
formulation.

Outer Attack Problem

Our attacker has a pre-specified target interval T†, and aims at changing the warning
lights output by FCW in T†. As a result, the human driver sees different lights and
takes unsafe actions. Specifically, for any time t ∈ T†, the attacker hopes to cause the
FCW to output a desired target light `†t, as characterized by (97), in which F(·) is the
FCW alert logic (90). To accomplish this, the attacker manipulates measurements
in an attack interval Ta. In this chapter, we assume T† ⊂ Ta. Furthermore, we
consider only the scenario where T† and Ta have the same last step, since attacking
after the target interval is not needed. Let δt be the manipulation at step t, and
ỹt = yt + δt be measurement after attack. We refer to the i-th component of δt as
δit. We next define the attack effort as the cumulative change over measurements
J =
∑
t∈Ta δ

>
t Rδt. where R � 0 is the effort matrix. The attacker hopes to minimize

the attack effort.
Meanwhile, the attacker cannot arbitrarily manipulate measurements. We con-

sider two constraints on the manipulation. First, MIO distance and velocity are
limited by simple natural physics, as shown in (96). Moreover, similar to the norm
ball used in adversarial examples, we impose another constraint that restricts the
attacker’s manipulation ‖δt‖∞ 6 ∆ (see (95)). We refer to Ts = Ta\T†, the difference
between Ta and T†, as the stealthy (or planning) interval. During Ts, the attacker
can induce manipulations before the target interval with advance planning, and by
doing so, hopefully better achieve the desired effect in the target interval. However,
for the sake of stealthiness, the planned manipulation should not change the origi-
nal lights in Ts. This can be characterized by the stealthiness constraint (98), where



91

`t is the original light.
Given the above, the attack can be formulated as an optimization problem:

minδt J =
∑
t∈Ta

δ>t Rδt, (91)

s.t. ỹt = yt + δt,∀t ∈ Ta, (92)

x̃t = A(I−Ht−1C)x̃t−1 +AHt−1ỹt, (93)

δit = 0,∀i ∈ Iradar,∀t ∈ Ta, (94)

‖δt‖ 6 ∆,∀t ∈ Ta, (95)

d̃1,ν
t ∈ [d, d̄], ṽ1,ν

t ∈ [v, v̄],∀t ∈ Ta, (96)

F(x̃t) = `
†
t,∀t ∈ T†, (97)

F(x̃t) = `t,∀t ∈ Ts. (98)

The constraint (93) specifies the evolution of the state prediction under the attacked
measurements ỹt. (94) enforces no change on radar measurements, where Iradar =

{5, 6, 7, 8} contains indexes of all radar components . The attack optimization is hard
to solve due to three reasons:

(1). The problem could be non-convex.

(2). The problem could be be infeasible.

(3). The optimization is defined on measurements yt that are not visible until after
Ta, while the attacker must design manipulations δt during Ta in an online
manner.

We now explain how to address the above three issues.
The only potential sources of non-convexity in our attack are (97) and (98). We

now explain how to derive a surrogate convex problem using `†t = `ot = red as an
example. The other scenarios are similar, thus we leave the details to Appendix D.2.
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The constraint F(x̃t) = red is equivalent to

ṽ1,ν
t < 0, (99)

d̃1,ν
t 6 −1.2ṽ1,ν

t +
1

0.8g
(ṽ1,ν
t )2., (100)

The above constraints result in non-convex optimzation mainly because (100) is
nonlinear. To formulate a convex problem, we now introduce surrogate constraints
that are tighter than (99), (100) but guarantee convexity.

Proposition 6.1. Let U(d) = 0.48g −
√
(0.48g)2 + 0.8gd. Let ε > 0 be any positive

number. Then for any d0 > 0, the surrogate constraints (101), (102) are tighter than
F(x̃t) = red, and induce convex attack optimization.

ṽ1,ν
t 6 −ε, (101)

ṽ1,ν
t 6 U′(d0)(d̃

1,ν
t − d0) +U(d0) − ε. (102)

We provide a proof and guidance on how to select d0 in Appendix D.2. With
the surrogate constraints, the attack optimization becomes convex. However, the
surrogate optimization might still be infeasible. To address the feasibility issue, we
further introduce slack variables into (101), (102) to allow violation of stealthiness
and target lights:

ṽ1,ν
t 6 −ε+ ξt, (103)

ṽ1,ν
t 6 U′(d0)(d̃

1,ν
t − d0) +U(d0) − ε+ ζt. (104)

We include these slack variables in the objective function:

J =
∑
t∈Ta

δ>t Rδt︸ ︷︷ ︸
total manipulation J1

+λ
∑
t∈Ts

(ξ2
t + ζ

2
t)︸ ︷︷ ︸

stealthiness violation J2

+λ
∑
t∈T†

(ξ2
t + ζ

2
t)︸ ︷︷ ︸

target violation J3

. (105)
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Then, the surrogate attack optimization is

minδt J = J1 + λJ2 + λJ3, (106)

s.t. (92)-(96), (103), (104). (107)

Proposition 6.2. The attack optimization (106)-(107) with surrogate constraints and slack
variables is convex and feasible.

Inner Attack Problem: MPC-based Attack

In the outer surrogate attack (106)-(107), we need to assume the attacker knows the
measurements yt in the entire attack interval Ta beforehand. However, the attacker
cannot know the future. Instead, he can only observe and manipulate the current
measurement in an online manner. To address the unknown future issue, we adopt
a control perspective and view the attacker as an adversarial controller of the KF,
where the control action is the manipulation δt. We then apply MPC, an iterative
control method that progressively solves (106)-(107). By using MPC, the attacker
is able to adapt the manipulation to the instantiated measurements revealed over
time while accounting for unknown future measurements.

Specifically, in each step t, the attacker has observed all past measurements
y1, ...yt−1 and the current measurement yt. Thus, the attacker can infer the clean
state x̂t in the case of no attacker intervention. Based on x̂t, the attacker can recur-
sively predict future measurements by simulating the environmental dynamics
without noise, i.e., ∀τ > t:

x′τ = Ax
′
τ−1, ŷτ = Cx′τ. (108)

The recursion starts from x′t = x̂t. The attacker then replaces the unknown mea-
surements in the outer attack by its prediction ŷτ (τ > t) to derive the following
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inner attack:

minδτ:τ>t J =
∑
τ∈Ta

δ>τ Rδτ + λ
∑
τ∈Ta

(ξ2
τ + ζ

2
τ), (109)

s.t. ỹτ = ŷτ + δτ,∀τ > t, (110)

(93)-(96), (103), (104) (defined on τ > t). (111)

The attacker solves the above inner attack in every step t. Assume the solution is
δτ(τ > t). Then, the attacker only implements the manipulation on the current
measurement, i.e., ỹt = yt + δt, and discards the future manipulations. After
that, the attacker enters step t+ 1 and applies MPC again to manipulate the next
measurement. This procedure continues until the last step of the attack interval Ta.
We briefly illustrate the MPC-based attack in algorithm 7.

Algorithm 7 MPC-based attack.

1: Input: target interval T†, target lights `†t, t ∈ T†, stealthy interval Ts, original
lights `t, t ∈ Ts.

2: Initialize x̂1 and Σ̂1. Let x̃1 = x̂1, Ta = Ts ∪ T†.
3: for t← 2, ..., T do
4: environment generates measurement yt
5: if t ∈ Ta then
6: attacker infers clean state x̂t without attack.
7: attacker predicts future ŷt with (108)
8: attacker solves (109)-(111) to obtain δτ (τ > t)
9: attacker manipulates yt to ỹt = yt + δt

10: x̃t evolves to x̃t+1 according to ỹt
11: else
12: x̃t evolves to x̃t+1 according yt.
13: end if
14: end for
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6.4 Experiments on CARLA Simulation

In this section, we empirically study the performance of the MPC-based attack. We
first describe the simulation setup.

Simulation Setup

We use CARLA (Dosovitskiy et al., 2017), a high-fidelity vehicle simulation envi-
ronment, to generate measurement data that we input to the Kalman filter-based
FCW. CARLA supports configurable sensors and test tracks. We configure the
simulated vehicle to contain a single forward-facing RGB camera (800x600 pixels),
a forward-facing depth camera of the same resolution, and a single forward-facing
RADAR (15◦ vertical detection range, 6000 points/sec, 85 m maximum detection
distance). We took this configuration from a publicly-available FCW implementa-
tion (MATLAB, 2020b). The simulation runs at 20 frames/sec and thus, each sensor
receives data at that rate. Furthermore, this configuration is commonly available
on production vehicles today (Joseph A. Gregor, 2017), and thus, our simulation
setup matches real-world FCW systems from a hardware perspective.

For each time step of the simulation, CARLA outputs a single RGB image, a
depth map image, and variable number of RADAR points. We use YOLOv2 (Red-
mon et al., 2016) to produce vehicle bounding boxes, the Hungarian pairwise
matching algorithm (Kuhn, 1955) to match boxes between frames, and the first
derivative of paired depth map image readings to produce vehicle detections from
vision with location and velocity components. Details of processing and format-
ting of CARLA output can be found in Appendix D.1. This process produces
measurements that match ground truth velocity and distance closely.

Although there are infinitely many possible physical situations where an FCW
alert could occur involving two vehicles, they reside in a small set of equivalence
classes. The National Highway Traffic Safety Administration (NHTSA) has outlined
a set of testing conditions for assessing the efficacy of FCW alerts (National Highway
Traffic Safety Administration, 2011). It involves a two vehicles on a straight test
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track at varying speeds. Based on these real-world testing guidelines, we develop
the following two scenarios:

MIO-10: Collision between two moving vehicles

The ego and MIO travel on a straight road, with a negative relative velocity between
the two vehicles. Specifically, the ego travels at 27 m/s (~60 mph) and the MIO
at 17 m/s (~38 mph). These correspond to typical freeway speed differences of
adjacent vehicles. In the absence of any other action, the ego will eventually collide
with the MIO. In our simulations, we let this collision occur and record camera and
RADAR measurements throughout. Since the relative velocity of the MIO to the
ego is -10m/s, we refer to this dataset as MIO-10.

MIO+1: No collision

The ego and MIO travel on a straight road, with a positive relative velocity between
the two vehicles. Specifically, the ego travels at 27 m/s (~60 mph) and the MIO at
28 m/s (~63 mph). A trailing vehicle moving at 27 m/s follows the ego 7 m behind.
In the absence of any other action, the ego and trailing vehicle will not collide. We
collect measurements until the MIO moves out of sensor range of the ego. We refer
to this dataset as MIO+1.

The above scenarios correspond to basic situations where the ego vehicle has
an unobstructed view of the MIO and represents a best-case for the FCW system.
Attacks on these two settings are the hardest to achieve and comprehensively
demonstrate the efficacy of our MPC-based attack.

Attack Setup

We perform preprocessing of CARLA measurements to remove outliers and inter-
polate missing data (see Appendix D.3). Each step of our KF corresponds to one
frame of the CARLA simulated video sequence (i.e., 0.05 seconds). We assume that
the KF initializes its distance and velocity prediction to the average of the first vision
and RADAR measurements. The acceleration is initialized to 0 in both directions.
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The covariance matrix is initialized to that used by Matlab FCW (MATLAB, 2020b).
Throughout the experiments, we let the effort matrix R = I, the margin parameter
ε = 10−3, and λ = 1010. We assume the human reaction time is h∗ = 24 steps (i.e.,
1.2 seconds in our simulation).

MIO-10 dataset

We first simulate FCW to obtain the original warning lights without attack. The
first red light appears at step 98. Before this step, the lights are all yellow. Without
attack, the human driver will notice the red warning at step 98. After 1.2 seconds of
reaction time (24 steps), the driver will start braking at step 122. The ground-truth
distance to the MIO at the first application of brakes is 14.57m. During braking,
the distance between the ego vehicle and the MIO reduces by 102/0.8g ≈ 12.76m
before stabilizing. Since this is less than the ground-truth distance of 14.58m before
braking, the crash can be avoided. This validates the potential effectiveness of FCW.

Our attacker aims to cause a crash. To accomplish this, the attacker suppresses
the first 10 red warnings, so that the first red warning is delayed to step 108. As a
result, the driver starts braking at step 132. The ground-truth distance to MIO at
this step is 9.58m, which is below the minimum distance needed to avoid collision
(12.76m). As such, a collision will occur. Therefore, we let the target interval be
T† = [98, 107], and the target lights be `†t = green,∀t ∈ T†.

MIO+1 dataset

In this scenario, the original warning lights without attack are all green. There is
a trailing vehicle 7 m behind the ego vehicle, driving at the same velocity as the
ego vehicle. Our attacker aims at causing the FCW to output red lights, so that
the ego vehicle suddenly brakes unnecessarily and causes a rear collision with the
trailing vehicle. To this end, the attacker changes the green lights in the interval
[100, 139] to red, in which case the ego vehicle driver starts braking at step 124,
after 1.2 seconds of reaction time. If the warning returns to green at step 140, the
driver will react after 1.2 seconds and stop braking at step 164. Therefore, the driver
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(a) The warning lights. (b) The manipulation on distance.

(c) The manipulation on velocity. (d) The state trajectory.

Figure 23: Attacks on the MIO-10 dataset.

continuously brakes for at least (164 − 124) × 0.05 = 2 seconds. Assuming the
driver of the trailing vehicle is distracted, then during those 2 seconds, the distance
between the trailing and the ego vehicle reduces by 0.2g× 22 = 7.84m > 7m, thus
causing a rear-collision. Therefore, we let the target interval be T† = [100, 139] and
the target lights be `†t = red, ∀t ∈ T†.

The MPC-based Attack Is Successful

Our first result shows that the MPC-based attack can successfully cause the FCW to
output the desired warning lights in the target interval T†. In this experiment, we let
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(a) The warning lights. (b) The manipulation on distance.

(c) The manipulation on velocity. (d) The state trajectory.

Figure 24: Attacks on the MIO+1 dataset.

∆ =∞ and the stealthy interval Ts start at step 2. In Fig. 23a and 24a, we show the
warning lights in T† (shaded in red). For MIO-10, the attacker achieves the desired
red lights in the entire T†, while maintaining the original yellow lights in Ts. For
MIO+1, the attacker failed to achieve the red warning at step 100, but is successful
in all later steps. We verified that the attack still leads to a collision. In fact, the
attacker can tolerate at most two steps of failure in the beginning of T† while still
ensuring that the collision occurs. There is an unintended side effect in Ts where
green lights are changed to yellow. However, this side effect is minor since the
driver will not brake when yellow lights are produced. In many production vehicles,
green and yellow lights are not shown to the driver — only the red warnings are
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shown.
In Fig. 23b, 23c, we note that for MIO-10, the manipulation is mostly on velocity,

and there are early planned manipulations starting from step 70. A large increase in
velocity happens at step 100 (the first step of T†), which causes the KF’s velocity es-
timation to be positive, resulting in a green light. After that, velocity measurements
are further increased to maintain a positive velocity estimation. In Fig. 24b, 24c, we
show manipulations on MIO+1. The overall trend is that the attacker reduces the
perceived MIO distance and velocity. As a result, KF estimates the MIO to be close
than the safe distance in T†, thus red lights are produced. During interval [88,96],
There is an exceptional increase of velocity. We provide a detailed explanation for
that increase in Appendix D.4.

In Fig. 23d, 24d, we show the trajectory of KF state prediction projected onto the
distance-velocity space during interval Ta. We partition the 2D space into three
regions, green (G), yellow (Y) and red (R). Each region contains the states that
trigger the corresponding warning light. The trajectory without attack (blue) starts
from location 1 and ends at 2. After attack, the trajectory (dark) is steered into the
region of the desired warning light, ending at location 3. Note that during T†, the
state after attack lies on the boundary of the desired region. This is because our
attack minimizes manipulation effort. Forcing a state deeper into the desired region
would require more effort, increasing the attacker’s cost.

Attack Is Easier with More Planning Space

Our second result shows that the attack is easier when the attacker has more time to
plan, or equivalently, a longer stealthy interval Ts. The stealthy interval is initially
of full length, which starts from step 2 until the last step prior to T†. Then, we
gradually reduce the length by 1/4 of the full length until the interval is empty. This
corresponds to 5, 3.75, 2.5, 1.25 and 0 seconds of planning space before the target
interval T†. We denote the number of light violations in T† as V† =

∑
t∈T†

˜̀
t 6= `†t,

and similarly Vs for Ts. We let ∆ =∞. In Table 2 and 3, we show V†, Vs together
with J1, J2, J3 and J as defined in (105) for MIO-10 and MIO+1 respectively. Note that
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Table 2: V†, Vs, J1, J2, J3 and J for the MIO-10 dataset.

MPC-based attack Greedy attack
Ts V† Vs J1 J2 J3 J V† Vs J1 J2 J3 J

0 1 0 7.1e3 0 7.4 7.4e10 1 0 4.6e3 98.4 7.4 1.1e12
1.25 0 0 4.4e3 0 0 4.3e3 0 23 1.3e5 3.3e3 0 3.3e13
2.5 0 0 4.4e3 0 0 4.4e3 0 47 2.0e5 5.4e3 0 5.4e13

3.75 0 0 4.4e3 0 0 4.4e3 0 71 2.5e5 7.6e3 0 7.5e13
5 0 0 4.4e3 0 0 4.4e3 0 96 2.9e5 9.2e3 0 9.2e13

Table 3: V†, Vs, J1, J2, J3 and J for the MIO+1 dataset.

MPC-based attack Greedy attack
Ts V† Vs J1 J2 J3 J V† Vs J1 J2 J3 J

0 3 0 3.3e4 0 1.2e2 1.2e12 3 0 1.1e5 0 1.2e2 1.2e12
1.25 1 14 7.6e4 6.8 11.0 1.8e11 0 25 1.7e5 6.1e3 0 6.1e13
2.5 1 39 1.1e5 4.2 6.9 1.1e11 0 49 2.3e5 1.1e4 0 1.1e14

3.75 1 58 1.5e5 3.5 5.9 9.4e10 0 74 3.0e5 1.6e4 0 1.6e14
5 1 58 1.8e5 3.3 5.6 9.0e10 0 98 3.5e5 2.0e4 0 2.0e14

on both datasets, the violation V† and the total objective J decrease as the length of
Ts grows, showing that the attacker can better accomplish the attack goal given a
longer interval of planning.

On MIO-10, when Ts is empty, the attack fails to achieve the desired warning in
all target steps. However, given 1.25s of planning before T†, the attacker forces the
desired lights throughout T†. Similarly, on MIO+1, when Ts is empty, the attack
fails in the first three steps of T†, and the collision will not happen. Given 1.25s
of planning before T†, the attack only fails in the first step of T†, and the collision
happens. This demonstrates that planning in Ts benefits the attack.

Attack Is Easier as ∆ Increases

In this section, we show that the attack becomes easier as the upper bound on the
manipulation ∆ grows. In this experiment, we focus on the MIO-10 dataset and
let T† start from step 2. In Fig 25, we show the manipulation on measurements
for ∆ = 14, 16, 18 and∞. The number of green lights achieved by the attacker in
the target interval is 0, 4, 10 and 10 respectively. This shows the attack is easier
for larger ∆. Note that for smaller ∆, the attacker’s manipulation becomes flatter
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due to the constraint ‖δt‖ 6 ∆. But, more interestingly, the attacker needs to start
the attack earlier to compensate for the decreasing bound. We also note that the
minimum ∆ to achieve the desired green lights over the entire target interval (to
integer precision) is 18.

(a) Manipulation on distance. (b) Manipulation on velocity.

Figure 25: Manipulation on measurements with different upper bound ∆. As ∆
grows, the attack becomes easier.

Comparison Against Greedy Attacker

In this section, we introduce a greedy baseline attacker. For MIO-10, since the
attack goal is to achieve green lights in T†, the greedy attacker always increases the
distance and velocity to the maximum possible value, i.e.,

d̃1,ν
t = min{d1,ν

t + ∆, d̄}, ṽ1,ν
t = min{v1,ν

t + ∆, v̄}, ∀t ∈ Ta.

Similarly, for MIO+1, the attacker always decreases the distance and velocity to the
minimum possible value.

In table 2 and 3, we compare the performance of greedy and our MPC-based
attack. On both datasets, each attack strategy achieves a small number of violations
V† in T†. However, the greedy attack suffers significantly more violations Vs in Ts

than does MPC. Furthermore, these violations are more severe, reflected by the
much larger J2 of the greedy attack. As an example, on MIO+1, the greedy attack
changes the original green lights in Ts to red, while our attack only changes green
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to yellow. The greedy attack also results in larger total effort J1 and objective value
J. Therefore, we conclude that our attack outperforms the baseline greedy attack
overall. In appendix D.6, we provide more detailed results of the greedy attack.

6.5 Related Work

Attacks on Object Tracking. Recent work has examined the vulnerability of multi-
object tracking (MOT) (Jia et al., 2020). Although this work does consider the
downstream logic that uses the outputs of ML-based computer vision, our work
goes beyond in several ways. First, we consider a hybrid system that involves
human and machine components. Second, we consider the more realistic case of
sensor fusion involving RADAR and camera measurements that is deployed in
production vehicles today. Prior work assumed a system that only uses a single
camera sensor. Third, we examine a complete FCW pipeline that uses object tracking
data to make predictions about collisions and issues warnings to drivers. Prior
work only considered MOT without any further logic that is necessarily present in
realistic systems. Finally, our attack algorithm accounts for the sequential nature of
decision making in ADAS.
Vision Adversarial Examples. ML models are vulnerable to adversarial exam-
ples (Szegedy et al., 2013), with a bulk of research in the computer vision space (Good-
fellow et al., 2014; Papernot et al., 2016; Carlini and Wagner, 2017; Shafahi et al.,
2018; Chen et al., 2017a). Recent work has demonstrated physical attacks where
objects in the real world can be manipulated in ways that cause the models to output
wrong decisions (Brown et al., 2017; Athalye et al., 2017; Eykholt et al., 2018a; Sharif
et al., 2016). For example, attackers can throw inconspicuous stickers on stop signs
and cause the model to output a speed limit sign (Eykholt et al., 2018b). However,
all of this work studies the ML model in isolation without taking into account the
cyber-physical system that uses model decisions. By contrast, we contribute the first
study that examines the security of FCW — a hybrid human-machine system that
incorporates machine learning and human behavior. We introduce a control-based
attack framework that can account for these aspects while remaining stealthy to
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the human driver.
Control-based Attacks on KF. Prior work in control theory has studied false data
injection attacks on Kalman filters (Bai et al., 2017; Kung et al., 2016; Zhang and
Venkitasubramaniam, 2016; Chen et al., 2016; Yang et al., 2016; Chen et al., 2017b).
Our work assumes a similar attack modality – the attacker can induce changes
to measurements. However, prior work does not consider the downstream logic
and human behavior that depends on KF output. By contrast, we contribute a
planning-based attack framework that considers all of these aspects, and we show
end-to-end attacks that can cause crashes in distracted driving scenarios.

6.6 Conclusion

We formulate the adversarial attack of Kalman Filter as an optimal control problem,
and propose an MPC-based attack algorithm. We demonstrate our attack on FCW,
an ADAS that adopts KF to produce warning lights. We show that our attack can
manipulate the FCW to output incorrect warnings, which mislead human drivers
to behave unsafely and cause crash. Our study incorporates a human behavior
model, and is applicable to general machine-human hybrid systems.
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7 adversarial attacks in games

Contribution Statement. This chapter is joint work with Young Wu and Xiaojin
Zhu. The author Yuzhe Ma is the leading author and completed most of the work,
including the theoretical analysis and the experiments. The paper version of this
chapter is prepared for submission when the thesis is under construction.

7.1 Introduction

In recent years, there has been a surge of interest in adversarial attacks against
sequential decision making learners, such as multi-armed bandit (Jun et al., 2018;
Ma et al., 2018; Liu and Lai, 2020; Yang et al., 2021) and reinforcement learning (Ma
et al., 2019; Zhang et al., 2020; Liu and Shroff, 2019; Garcelon et al., 2020; Rakhsha
et al., 2020). Most prior works consider only a single learning agent that interacts
with a fixed underlying environment. However, little is known about attacks in a
multi-agent sequential decision making scenario, where agents interact with each
other and the reward or state transition depends on the behavior of all the agents
together. In reality, multi-agent learning systems are prevalent and have been widely
used in different domains, including games (Silver et al., 2017; Vinyals et al., 2019),
robotics control (Dudek et al., 1996; Vorotnikov et al., 2018), economics (Mannion
et al., 2016; Kutschinski et al., 2003; Zheng et al., 2020), etc. Therefore, it is imperative
to understand how these systems could be adversarially manipulated by attackers,
which will give insight into designing more robust and defensive multi-agent
learning systems.

In this chapter, we take a preliminary step towards understanding the vulnera-
bility of multi-agent sequential decision making in the presence of an attacker. In
particular, we formally study a special class of the multi-agent learning scenario –
the repeated matrix game with finite horizon. In this game, there are several players
who play the same matrix game repeatedly for T rounds. The goal of each player
is to gain as much payoff as possible over time, or in other words, minimize the
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regret compared to the best action in hindsight. Many real-world examples fall into
the class of repeated matrix games, such as multi-round rock-paper-scissors. To
investigate potential security issues in these games, we assume an attacker who
has the ability to perturb the payoff of the game, and the attack goals are (1) to
force the players to play at a pre-specified target action profile for T − o(T) rounds;
(2) to keep the total change to the payoffs at o(T). A real-world example is that a
nefarious economic practitioner may hope to enforce marketers to not trade with
each other, leading to low economic welfare. We point out that while we study the
problem from an attack angle, our results also apply for benign goals, e.g., guide
the players to take an action profile that is beneficial to the society. For example, in
the volunteer game (see section 7.5), a program organizer may hope to encourage
the players to volunteer.

A critical concept in games is the Nash equilibrium, which characterizes a set
of strategies such that no player can unilaterally deviate from its strategy to gain
more payoff. In repeated matrix games, (Auer et al., 2002c) first established the
connection between Nash equilibrium and no-regret learners. Specifically, for two-
player zero-sum games, if both players apply no-regret algorithms, then the average
policy converges to some Nash equilibrium. A more general result for multi-player
games is that the empirical distribution of the policies converge to some coarse
correlated equilibrium (Fu, 2018). In this regard, our attack is able to shape the
equilibrium learned by the players toward a pre-specified target action profile.

Our contributions are summarized as below. (1). We show that for repeated
matrix games, an attacker can force the players to play at a target action profile
T −o(T) rounds, while incurring only o(T) total change to the payoff. (2).Our attack
can shape the equilibrium learned by the players. Specifically, depending on the
nature of the game, our attack can either change the Nash equilibrium or the coarse
correlated equilibrium toward the target action profile. (3) We empirically evaluate
the performance of our attack on two games — the rock-paper-scissors and the
volunteer’s dilemma, which confirms our theoretical analysis.
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7.2 Problem Definition

In this section, we fix some notations. There areM players. The action set of player i
is denoted by Ai. In this chapter, we assume Ai is finite, and we useAi to represent
the size of Ai. The game will repeat T times. The players maintain their own action
selection policies πti ∈ ∆Ai over time, where ∆Ai is the probability simplex over Ai.
In each round t, every player i samples an action ati according to strategy πti , which
forms a joint action profile at = (ati , ...,atM). We use at−i = (at1, ...,ati−1,ati+1, ...,atM)

to mean the actions selected by all players except player i at round t. The environ-
ment then generates the loss vector `o(at) = (`o1 (a

t), ..., `oM(at)), where `o(·) is the
loss function of the original matrix game and `oi (·) specifies the loss of player i. We
assume ∀i,a, `oi (a) ∈ L, where L is the set of loss values of the game (which is often
finite). For example, in rock-paper-scissors game, L = {−1, 0, 1}, where −1 means
the player wins, 1 means the player loses and 0 is a tie. After `o(at) is generated,
each player i receives the loss `oi (at) and updates their policy accordingly. Note
that each player only observes their own loss but does not see the actions or losses
of the other players.

Protocol 8 Attack in repeated matrix game
Knowledge of the attacker: M, Ai, ...,AM, a†, `o, and the regret rateα of the learners
Attack goal: enforce NT (a†) = Ω(T).

1: for t = 1, 2, . . . , T do
2: The attacker prepares the loss function `t(·) = (`t1(·), ..., `tM(·)) for all action

profiles, based on the game history `1,a1, ..., `t−1,at−1.
3: The players choose actions at = (at1, ...,atM), where ati ∼ πti ,∀i ∈ [M].
4: Each player i observes the poisoned loss `ti(at) and updates strategy πti .
5: The attacker incurs attack cost C(`o, `t,at).
6: end for

Attack Protocol: See Protocol 8. We study an attacker who has the ability to
perturb the loss. Specifically, in every round t, the attacker prepares a different
loss function `t(·) based on the history of game, i.e., `1,a1, ..., `t−1,at−1. Note that
the attacker has to prepare the loss function `t(·) for all action profiles (“cells” in
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the payoff matrix), and `t cannot depend on the current actions at: The attacker’s
prepared loss function `t has to be committed in the beginning of round t. Also
note that we use superscript t to mean the prepared loss function `t(·) can be
time-variant. In certain cases, we will omit the superscript if `t(·) is time-invariant.
Moreover, it is desirable for the attacker to avoid detection by using the (usually
discrete and finite) natural game loss values, i.e., `ti(a) ∈ L,∀i,a. However, we will
initially relax this constraint by allowing intermediate loss values in the interval
convex(L), and come back to this issue in section 7.4. The players then choose an
action profile at. As a result, the players observe the poisoned loss `t(at) instead
of `o(at), and they update their policies πti using `t(at). Meanwhile, the attacker
incurs attack cost C(`o, `t,at), whose structure will be discussed below.

Attack Goal: The attacker has two goals simultaneously:

• It has a desired target action profile a† (which may not coincide with the
natural solution concept of the game). The attacker wants to force the players
to choose a† as often as possible. Define NT (a) =

∑T
t=1 1 [a

t = a] to mean
the number of rounds where the action profile selected by all players is a.
Then this attack goal is to enforce NT (a†) = T − o(T).

• The attacker desires small perturbations to the loss function `o(·). We define
the attack cost by a non-negative attack cost function C(`o, `t,a) > 0.

The attack cost is subtle and depends on the application. We highlight two
possible attack cost functions:

Definition 7.1. (Attack preparation cost). The attack preparation cost is defined as

Cprep(`
o, `t) :=

∑
a

C(`o, `t,a). (112)

CTprep =

T∑
t=1

Cprep(`
o, `t). (113)
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Note that for each round t, the attack preparation cost ignores the identity of at

but instead measures the total amount of “preparation” the attacker has to do over
all potential action profiles.

Remark 7.2. For any time-invariant loss function `(·) that satisfy C(`o, `,a) > 0 for some
a, the attack preparation cost is always linear, i.e., CTprep = Ω(T). The attack preparation
cost is more unforgiving to the attacker.

Definition 7.3. (Attack execution cost). The attack execution cost is defined as

Cexec(`
o(at), `t(at)) := C(`o, `t,at). (114)

CTexec =

T∑
t=1

Cexec(`
o(at), `t(at)). (115)

Compared to the attack preparation cost, the attack execution cost measures
only the perturbation on the loss of the selected action profile at. From now on, we
focus on analyzing the attack execution cost.

We also make the following technical assumption on the attack cost function.

Assumption 7.4. The attack cost function C is η-Lipschitz with respect to the p-norm
difference of `(a) for some p > 1, i.e,

∀a,C(`o, `t,a) 6 η‖`o(a) − `t(a)‖p. (116)

The above assumption is satisfied for commonly used attack cost functions. As
an example, suppose C(`o, `t,a) is just the p-norm difference, i.e., ‖`t(a) − `o(a)‖p,
then the assumption is trivially satisfied with η = 1. Note that we assumed L

is bounded, thus we can define L = minx∈L x and U = maxx∈L x. Then we have
∀i,a, |`ti(a) − `oi (a)| 6 U− L, thus C(`o, `t,a) 6 η‖`o(a) − `t(a)‖p 6 ηM

1
p (U− L),

which means C is always bounded. Also note that a direct result of Lipschitzness
is that if `o(a) = `t(a), then C(`o, `t,a) = 0.
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7.3 Assumptions on the Learners: No-Regret
Learning

The attacker assumes that the players want to achieve approximate coarse correlated
equilibrium (CCE) or approximate Nash equilibrium (NE); and for that the players
are each running a no-regret learning algorithm like EXP3P (Bubeck and Cesa-
Bianchi, 2012b). It is well-known that for two-player (M = 2) zero-sum games,
no-regret learners could learn some NE (Blum and Monsour, 2007). More general
results suggest that for multi-player (M > 2) general-sum games, no-regret learners
can learn some CCE (Fu, 2018). We first define the regret.

Definition 7.5. (Regret). For any player i, the best-in-hindsight regret with respect to a
sequence of loss functions `ti(·,at−i), t ∈ [T ], is defined as

RTi =

T∑
t=1

`ti(a
t
i ,at−i) − min

ai∈Ai

T∑
t=1

`ti(ai,at−i). (117)

The expected regret is defined as E
[
RTi
]
, where the expectation is with respect to the random

selection of actions at, t ∈ [T ] over all players.

A few important remarks are in order.

Remark 7.6. The loss functions `ti(·,at−i), t ∈ [T ] depend on the actions selected by the
other players at−i, while at−i depends on a1, ...,at−1 of all players in the first t− 1 rounds.
Therefore, `ti(·,at−i) depends on a1

i, ...,at−1
i . That means, from player i’s perspective, it is

faced with a non-oblivious (adaptive) adversary (Slivkins, 2019).

Remark 7.7. Note that a∗i := arg minai∈Ai
∑T
t=1 `

t
i(ai,at−i) in (117) would have meant

a baseline in which player i always plays the best-in-hindsight action a∗i throughout time.
Such baseline play should have caused all other rational players to change their plays away
from a1

−i, ...,aT−i. However, we are disregarding this fact in defining (117) . For this
reason, (117) is not fully counterfactual, and is called the best-in-hindsight regret in the
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literature (). The same is true when we define expected regret and introduce randomness in
player i’s at.

Our key assumption is that the learners achieve sublinear expected regret. This
assumption is satisfied by standard bandit algorithms such as EXP3.P (Bubeck and
Cesa-Bianchi, 2012b).

Assumption 7.8. (No-regret Learner) We assume the players apply no-regret learning
algorithm that achieves expected regret E

[
RTi
]
= O(Tα),∀i for some α ∈ [0, 1).

The attacker assumes no-regret learning players because it is a standard way
for players to achieve approximate solution concepts such as Nash equilibrium
or more generally the coarse correlated equilibrium in repeated matrix games. In
particular, there are two standard results. We briefly explain these two results as
below without diving into more details.

Remark 7.9. Let πt = (πt1, ...πtM) be the joint strategy of all players at round t. Then for
two-player (M = 2) zero-sum games (i.e,

∑
i `
o
i (a) = 0,∀a), no-regret learners guarantee

E
[ 1
T

∑
t π
t
]

converges to some Nash equilibrium.

Remark 7.10. Let πt = (πt1, ...πtM) be the joint strategy of all players at round t. Con-
sider the following empirical distribution DT : first draw t ∼ U([1 : T ]), where U is the
uniform distribution, and then each player i follows strategy πti . For multi-player (M > 2)
general-sum games, no-regret learners guarantee E [DT ] converges to some coarse correlated
equilibrium.

7.4 Attacking No-regret Learners in a Game

We mentioned earlier that the attacker desires for the poisoned loss values `t to
lie in the natural game value set L for better stealth. In many games, the L is a
finite discrete set. For example, in rock-paper-scissors, L contains only three values,
indicating three outcomes of the game — win, lose or tie. The discreteness of
L complicates our design of attack algorithms. In this section, we first relax the
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discreteness constraint, and allow the loss after attack to take arbitrary continuous
value in L̃ = [L,U], where L = minx∈L x and U = maxx∈L x. We assume U > L,
which is satisfied when L contains at least two distinct values. We will revisit the
discrete L issue in the next section.

With more loss values in L̃ to choose from, we develop attack algorithms target-
ing no-regret learners. We consider two scenarios separately – the bounded-away
target loss case and boundary target loss case. The former is a simpler scenario to
attack, while the latter is more complicated. However, in both cases, efficient attack
algorithms exist.

Bounded-away Target Loss

In the first scenario, we have the following assumption on the original loss function.

Assumption 7.11. (Bounded-away Target Loss). We assume the original loss of the target
action profile satisfies ∃ρ ∈ (0, 1

2(U− L)], ∀i, `oi (a†) ∈ [L+ ρ,U− ρ].

This assumption allows the attacker to keep `o(a†) unchanged (so it does not
incur large attack execution cost because eventually a† should be overwhelmingly
played), while leaving room to modify other entries in `o such that a† becomes
strictly dominant. Our main result is that under assumption 7.11, an attacker can
boost NT (a†) = T − O(Tα) with O(Tα) attack execution cost. Specifically, our
attacker prepares the following time-invariant loss function.

∀i,a, `i(a) =

{
`oi (a

†) − (1 − d(a)
M

)ρ if ai = a†i ,
`oi (a

†) + d(a)
M
ρ if ai 6= a†i ,

(118)

where d(a) =
∑M
j=1 1

[
aj = a

†
j

]
.

Lemma 7.12. The attacker loss function (118) has the following properties.

1. ∀i,a, `i(a) ∈ L̃, thus ` is valid.

2. For every player i, the target action a†i strictly dominates any other action by (1− 1
M
)ρ,

i.e., `i(ai,a−i) = `i(a
†
i ,a−i) + (1 − 1

M
)ρ, ∀i,ai 6= a†i ,a−i.
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3. `(a†) = `o(a†).

4. If the original loss `o is zero-sum, then ` is also zero-sum.

Remark 7.13. The property 3 in Lemma 7.12 is particularly important. Specifically, when
the players take the desired target actions a†, the attacker maintains the loss unchanged.
That means, the attack execution cost Cexec(`o(a†), `t(a†)) = 0. As we will prove, under
attack (118), the players are forced to select a† in T − o(T)rounds. During those rounds,
the attack execution cost is always 0, thus the total attack execution cost will be o(T).

Proof. First note that ∀i and ∀a, we have

`i(a) ∈ [`oi (a
†) − ρ, `oi (a†) + ρ] ⊆ [L,U]. (119)

Therefore, ` is a valid loss function.
∀a−i, let a = (ai,a−i) for some ai 6= a†i , and b = (a†i ,a−i), then we have

d(b) = d(a) + 1, thus

`i(a) − `i(b) = `
o
i (a
†) +

d(a)

M
ρ− `oi (a

†) + (1 −
d(b)

M
)ρ = (1 −

1
M

)ρ. (120)

Therefore, the target action a†i strictly dominates any other action by (1 − 1
M
)ρ.

When a = a†, we have d(a) =M, thus by our design, we have ∀i,

`i(a
†) = `oi (a

†) − (1 −
d(a)

M
)ρ = `oi (a

†) − (1 −
M

M
)ρ = `oi (a

†). (121)

Therefore, `(a†) = `o(a†).
Finally, we prove that if `o is zero-sum, then ` is also zero-sum. To see that, for

any a, we sum over all players to obtain

M∑
i=1

`i(a) =
∑

i:ai=a
†
i

(
`oi (a

†) − (1 −
d(a)

M
)ρ

)
+
∑

i:ai 6=a†i

(
`oi (a

†) +
d(a)

M
ρ

)

=
∑
i

`oi (a
†) − d(a)(1 −

d(a)

M
)ρ+ (M− d(a))

d(a)

M
ρ =

M∑
i=1

`oi (a
†) = 0,

(122)
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where the last equality is due to that the original game is zero-sum.

Given Lemma 7.12, we next state our first main result.

Theorem 7.14. Under assumption 7.11, an attacker that uses loss function (118) to perform
attack can cause E

[
NT (a†)

]
= T −O(MTα) while incurring expected attack execution

cost E
[
CTexec

]
= O(ηM1+ 1

pTα).

Proof. Since the attacker perturbs `o(·) to `(·), the players are equivalently running
no-regret algorithms under the cost `. Note that according to Lemma 7.12, a†i is the
optimal action for player i, and taking a non-target action results in (1− 1

M
)ρ regret

regardless of a−i, thus the expected regret of player i is

E
[
RTi
]
= E

[
T∑
t=1

1
[
ati 6= a

†
i

]
(1 −

1
M

)ρ

]
= (1 −

1
M

)ρ
(
T − E

[
NTi (a

†
i)
])

(123)

Therefore we have,

∀i, E
[
NTi (a

†
i)
]
= T −

M

(M− 1)ρ
E
[
RTi
]
= T −O(E

[
RTi
]
) = T −O(Tα). (124)

Therefore, we have

T − E
[
NT (a†)

]
= E

[
T∑
t=1

1
[
at 6= a†

]]
= E

[
T∑
t=1

1
[
atj 6= a

†
j for some j

]]

6 E

[
T∑
t=1

M∑
j=1

1
[
atj 6= a

†
j

]]
=

M∑
j=1

E

[
T∑
t=1

1
[
atj 6= a

†
j

]]

=

M∑
j=1

(
T − E

[
Nj(a

†
j)
])

= O(MTα).

(125)

Thus E
[
NT (a†)

]
= T −O(MTα).
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Next we bound the attack cost. Note that `o(a†) = `(a†), thus when at = a†, by
our assumption of the attack cost function, we have

Cexec(`
o(at), `(at)) = C(`o, `,a†) = 0 (126)

On the other hand, when at 6= a†, due to the Lipschitzness of the attack cost
function C, we have Cexec 6 ηM

1
p (U−L). Therefore, the expected attack execution

cost is

E
[
CTexec

]
= E

[
T∑
t=1

Cexec(`
o(at), `(at))

]

6 ηM
1
p (U− L)E

[
T∑
t=1

1
[
at 6= a†

]]
= O(ηM1+ 1

pTα).

(127)

where we have reused the result already proved in (125).

We have two direct results from Theorem 7.14. First, a standard no-regret
algorithm EXP3.P (Bubeck and Cesa-Bianchi, 2012b) achieves E

[
RTi
]
= O(T

1
2 ).

Therefore, by plugging α = 1
2 into Theorem 7.14, we have the following first

corollary.

Corollary 7.15. Assume the no-regret learning algorithm is EXP3.P. Then an attacker
can cause E

[
NT (a†)

]
= T − O(MT

1
2 ) while incurring expected attack execution cost

E
[
CTexec

]
= O(ηM1+ 1

pT
1
2 ).

Our second corollary shows that if the original loss `o is zero-sum, then our
attacker can mislead the players to believe that a† is a Nash equilibrium.

Corollary 7.16. Assume there are two players, i.e., M = 2, and the original loss func-
tion `o(·) is zero-sum. Then under attack (118), the expected averaged policy E

[
π̄Ti
]
=

E
[ 1
T

∑
t π
t
i

]
converges to a point mass distribution concentrated on a†i , thus the players

believe that the pure strategy a† is a Nash equilibrium.

Proof. For two-player zero-sum games, the players applying no-regret algorithm
believe that E

[
π̄T
]

converges to some Nash equilibrium. Next we prove that E
[
π̄Ti
]
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converges to a point mass distribution concentrated on a†i . We use πti(a) to denote
the probability of choosing action a at round t. Then we have

E
[
π̄Ti (a

†
i)
]
=

1
T

E

[
T∑
t=1

πti(a
†
i)

]
=

1
T

E

[
T∑
t=1

E
[
1
[
ati = a

†
i

]]]

=
1
T

E

[
T∑
t=1

1
[
ati = a

†
i

]]
=

1
T

E
[
NTi (a

†
i)
]
=
T −O(Tα)

T
→ 1.

(128)

Therefore, the players believe that a†i , i ∈ [M] form a Nash equilibrium.

Boundary Target Loss

When the loss of the target action `o(a†) hits the boundary of L̃, the previous
time-invariant attack (129) no longer works. In this section, we show that for the
boundary target loss scenario, the attacker can still induce NT (a†) = T − o(T)

while incurring o(T) attack execution cost. The strategy is to use a time-variant loss
function. Specifically, let ε ∈ (0, 1 − α] and ρt = tα+ε−1,∀t > 1, then our attacker
prepares the following time-variant loss functions.

∀i,a, `ti(a) =

{
(1 − ρt)`

o
i (a
†) + 1

2(U+ L)ρt −
1
2(U− L)

(
1 − d(a)

M

)
ρt if ai = a†i ,

(1 − ρt)`
o
i (a
†) + 1

2(U+ L)ρt +
1
2(U− L)d(a)

M
ρt if ai 6= a†i ,

(129)
where d(a) =

∑M
i=1 1

[
ai = a

†
i

]
.

Lemma 7.17. The attacker loss function (129) has the following properties.

1. ∀i,a, `ti(a) ∈ L̃, thus the loss function is valid.

2. For every player i, the target action a†i strictly dominates any other action by 1
2(U−

L)(1 − 1
M
)ρt, i.e., `i(ai,a−i) > `i(a

†
i ,a−i) +

1
2(U − L)(1 − 1

M
)ρt,∀i, t,ai 6=

a†i ,a−i.

3. ∀t,C(`o(a†), `t(a†)) 6 1
2(U− L)ηM

1
pρt
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Proof. Note that ρt ∈ (0, 1] and 1 − d(a)
M

6 1, thus ∀i and ∀a, we have

(1 − ρt)`
o
i (a
†) +

U+ L

2
ρt −

1
2
(U− L)

(
1 −

d(a)

M

)
ρt

> (1 − ρt)L+
U+ L

2
ρt −

1
2
(U− L)ρt = L

(130)

Also note that d(a)
M

6 1, thus

(1 − ρt)`
o
i (a
†) +

U+ L

2
ρt +

1
2
(U− L)

d(a)

M
ρt

6 (1 − ρt)U+
U+ L

2
ρt +

1
2
(U− L)ρt = U

(131)

Therefore, ∀i,a, `ti(a) ∈ [L,U].
Second, ∀i and ∀a−i, let a = (ai,a−i) for some ai 6= a†i , and let b = (a†i ,a−i),

then we have d(b) = d(a) + 1, thus one can obtain

`ti(a) − `
t
i(b) =

1
2
(U− L)

d(a)

M
ρt +

1
2
(U− L)

(
1 −

d(b)

M

)
ρt =

1
2
(U− L)(1 −

1
M

)ρt.

(132)
To see the third property, note that `ti(a†) = (1 − ρt)`

o
i (a
†) + U+L

2 ρt, thus

∀i, `ti(a†) − `o(a†) = −ρt

(
`oi (a

†) −
U+ L

2

)
(133)

Note that |`oi (a†) − U+L
2 | 6 1

2(U− L), thus ‖`o(a†) − `t(a†)‖p 6 1
2(U− L)M

1
pρt. By

the Lipschitzness assumption on C, we have C(`o(a†), `t(a†)) 6 1
2(U− L)ηM

1
pρt.

Given Lemma 7.17, we provide our second main result.

Theorem 7.18. ∀ε ∈ (0, 1−α], an attacker that uses loss function (129) to perform attack
can cause E

[
NT (a†)

]
= T −O(MT 1−ε) while incurring expected attack execution cost

E
[
CTexec

]
= O(M1+ 1

pT 1−ε +M
1
pTα+ε).



118

Remark 7.19. By choosing a larger ε in Theorem 7.18, the attacker can increase E
[
NT (a†)

]
.

However, the total attack execution cost can grow. The attack cost attains the minimum
order O

(
M

1
p (1 +M)T

1+α
2

)
when ε = 1−α

2 . The corresponding number of target action
selection is E

[
NT (a†)

]
= T −O(MT

1+α
2 )

Proof. Under attack, the players are equivalently running no-regret algorithms un-
der loss `t(·) instead of `o(·). Note that according to the second property in Lemma 7.17,
a†i is the optimal action for player i, and taking a non-target action results in
1
2(U − L)(1 − 1

M
)ρt regret regardless of a−i, thus the expected regret of player

i is

E
[
RTi
]
= E

[
T∑
t=1

1
[
ati 6= a

†
i

] 1
2
(U− L)(1 −

1
M

)ρt

]

=
1
2
(U− L)(1 −

1
M

)E

[
T∑
t=1

1
[
ati 6= a

†
i

]
ρt

] (134)

Now note that ρt = tα+ε−1 is monotonically decreasing as t grows, thus we have

T∑
t=1

1
[
ati 6= a

†
i

]
ρt >

T∑
t=Ni(a

†
i)+1

tα+ε−1 =

T∑
t=1

tα+ε−1 −

Ni(a
†
i)∑

t=1

tα+ε−1 (135)

Then note that
T∑
t=1

tα+ε−1 >
∫T
t=1
tα+ε−1 =

1
α+ ε

Tα+ε (136)

and
Ni(a

†
i)∑

t=1

tα+ε−1 6
∫Ni(a†i)
t=0

tα+ε−1 =
1

α+ ε

(
NTi (a

†
i)
)α+ε

(137)
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Therefore, we have

T∑
t=1

1
[
ati 6= a

†
i

]
ρt >

1
α+ ε

(
Tα+ε −

(
NTi (a

†
i)
)α+ε)

=
1

α+ ε
Tα+ε

(
1 − (1 −

T −NTi (a
†
i)

T
)α+ε

)

>
1

α+ ε
Tα+ε

T −NTi (a
†
i)

T
(α+ ε)

= Tα+ε − Tα+ε−1NTi (a
†
i).

(138)

Therefore, we have

E
[
RTi
]
=

1
2
(U− L)(1 −

1
M

)E

[
T∑
t=1

1
[
ati 6= a

†
i

]
ρt

]

>
1
2
(U− L)(1 −

1
M

)E
[(
Tα+ε − Tα+ε−1NTi (a

†
i)
)]

=
1
2
(U− L)(1 −

1
M

)
(
Tα+ε − Tα+ε−1E

[
NTi (a

†
i)
])

(139)

As a result, we have

∀i, E
[
NTi (a

†
i)
]
> T −

2M
(M− 1)(U− L)

E
[
RTi
]
T 1−α−ε = T −O(T 1−ε). (140)

By a similar argument to (125), we have E
[
NT (a†)

]
= T −O(MT 1−ε).

We now analyze the attack execution cost. Note that by the third property
in Lemma 7.17, when at = a†, Cexec(`o(at), `t(at)) = C(`o, `t,a†) 6 1

2(U −

L)ηM
1
pρt. On the other hand, when at 6= a†, we have Cexec(`o(at), `t(at)) 6
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(U− L)ηM
1
p . Therefore, the expected attack execution cost is

E
[
CTexec

]
6 (U− L)ηM

1
pE

[
T∑
t=1

1
[
at 6= a†

]]
+

1
2
(U− L)ηM

1
pE

[
T∑
t=1

1
[
at = a†

]
ρt

]

= (U− L)ηM
1
p (T − E

[
NT (a†)

]
) +

1
2
(U− L)ηM

1
p

T∑
t=1

ρt,

(141)
where T − E

[
NT (a†)

]
= O(MT 1−ε) as already proved. Also note that

E

[
T∑
t=1

1
[
at = a†

]
ρt

]
6

T∑
t=1

ρt =

T∑
t=1

tα+ε−1 6
∫T
t=0
tα+ε−1 =

1
α+ ε

Tα+ε. (142)

Therefore, we have

E
[
CTexec

]
6 (U− L)ηM

1
pO(MT 1−ε) +

η(U− L)

2(α+ ε)
M

1
pTα+ε

= O(M1+ 1
pT 1−ε +M

1
pTα+ε).

(143)

Corollary 7.20. Assume the no-regret learning algorithm is EXP3.P. Then by picking
ε = 1

4 in Theorem 7.18, an attacker can cause E
[
NT (a†)

]
= T −O(MT

3
4 ) while incurring

E
[
CTexec

]
= O

(
M

1
p (1 +M)T

3
4

)
attack cost.

Attack Subject to Discrete Loss L

In previous sections, we assume the loss can take arbitrary continuous value in
the relaxed loss range L̃ = [L,U]. However, there are many real-world situations
where continuous loss does not have a natural interpretation. For example, in the
rock-paper-scissors game, the loss is interpreted as win, lose or tie, thus L can
only take value in {−1, 0, 1}. For such games, we provide a probabilistic attack
adapted from (129). We empirically show that in doing so, the attack is still efficient.
Specifically, the attacker prepares the following stochastic perturbation on the loss.
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∀i,a, ˆ̀t
i(a) =

{
U with probability `ti(a)−L

U−L

L with probability U−`ti(a)

U−L
,

(144)

where `ti(a) is defined as in (129). Note that since L ∈ L and U ∈ L, the stochastic
loss function (144) always produces loss that lies in L; in fact, ˆ̀t

i(a) always lies on
the boundary of L.

7.5 Experiments

In this section, we perform empirical evaluations of our attack. Throughout the
experiments, we use EXP3.P (Bubeck and Cesa-Bianchi, 2012b) as the no-regret
learner. We choose the attack cost function as C(`o(a), `t(a)) = |`o(a) − `t(a)|. We
investigate two examples of games— the Rock-Paper-Scissors (RPS) game and the
Volunteer Dilemma (VD).

The Rock-Paper-Scissors (RPS) Game

In the rock paper scissors game, there are two players, and each player has three
actions — rock (R), paper (P), and scissors (S). The loss function takes value in
L = {−1, 0, 1}. If a player loses, he suffers 1 loss, and the other player gains reward
1 (i.e., suffers −1 loss). If there is a tie, then both players suffer 0 loss. We show the
original loss function `o in table 4, where the entries are the losses for the row and
the column player respectively. For now, we relax the discrete set L to L̃ = [−1, 1],
and allow the loss function after attack to take values in L̃.

In our first experiment (RPS1), the attacker desires the players to form a tie
with Rock-Rock as often as possible, i.e. the target action profile is a† = (R,R).
Note that ∀i, `oi (a†) = 0 while L = −1 and U = 1, thus this is the bounded-away
target loss attack scenario where the attacker can choose ρ = 1. The attacker can
use the time-invariant loss function (118) to perform the attack. We consider four
different time horizons: T = 104, 105, 106, and 107. For each T , we run our attack
and record the total number of rounds where at 6= a†, i.e., T −NT (a†), and the total
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R P S

R 0, 0 1,−1 −1, 1
P −1, 1 0, 0 1,−1
S 1,−1 −1, 1 0, 0

Table 4: The original loss function `o of
the rock-paper-scissors game.

R P S

R 0, 0 −0.5, 0.5 −0.5, 0.5
P 0.5,−0.5 0, 0 0, 0
S 0.5,−0.5 0, 0 0, 0

Table 5: RPS1: The poisoned loss func-
tion ` for target a† = (R,R) under time-
invariant attack (118) withM = 2, ρ = 1.

attack execution cost CTexec. 9. Note that according to our analysis, log(T −NT (a†))
scales as 1

2 log T . In Figure 26a, we show log(T −NT (a†)) as a function of log T , and
we plot the line with the anticipated slope 1

2 for comparison. We observe that the
slopes match exactly, which is consistent with our theoretical results. In Figure 26b,
we show logCTexec as a function of log T . Again, the slope matches the theoretical
value 1

2 . For T = 107, the attack forces NT (a†) = 9.93× 106, which is 99.3% of the
total rounds. The total attack execution cost is CTe = 1.31× 105. On average, each
round incurs 0.013 loss perturbation. In table 5, we show the loss function after
attack. Note that the loss of the target action profile (R,R) remains the same after
attack. Furthermore, (R,R) strictly dominates the other actions by 0.5. We remind
the reader that the players do not see the whole table 5 at once before the game;
instead, they only experience their own payoff (the ith element) in the selected
entries `i(at) corresponding to the action profiles at played out by their no-regret
algorithms over time.

In our second experiment (RPS2), the setting remains the same, but the attacker
target action profile becomes a† = (R,P). That is, the attacker hopes to make the row
player play Rock while the column player play Paper as often as possible. Note that
now the loss of the target action `o(a†) = (1,−1) hits the boundary of L̃, thus the
attacker has to apply the time-variant attack. We simulated five different attack ρt

9Our analysis is about the expected value of T −NT (a†) and CTe , thus ideally one should run
multiple trials for each T and average the statistics to obtain an approximation to E

[
T −NT (a†)

]
and E

[
CTe
]
. However, in our experiment, we observe that the random number T −NT (a†) and CTe

both have small variance. Therefore, we only run one trial and report the random numbers instead.
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(a) Number of rounds whereat 6= a† (b) The attack execution cost.

Figure 26: RPS1: a† = (R,R) time-invariant attacks on RPS.

sequences in (129), corresponding to ε = 0.1, 0.2, 0.3, 0.4, and 0.5. In Figure 27a, we
show log(T−NT (a†)) as a function of log T for different εwith solid lines. According
to Theorem 7.18, log(T−NT (a†)) scales as (1−ε) log T . To verify this result, we plot
y = (1−ε)x for different εwith dashed lines in the same color as the corresponding
solid line. We see that the slopes are indeed consistent with 1−ε. In Figure 27b, we
show the attack execution cost. The lines for ε = 0.1 and ε = 0.5 overlap. According
to Theorem 7.18, logCTexec scales as log(Tα+ε + T 1−ε), which is dominated by
max(α + ε, 1 − ε) log T . To verify this result, we plot y = max(α + ε, 1 − ε)x for
different εwith dashed lines in the same color as the corresponding solid line. Note
that the lines of ε = 0.2 and 0.3 overlap, and the lines of ε = 0.1 and 0.4 overlap.
We see that the slopes are roughly consistent. Also note that for ε 6 0.3, the cost
reduces as ε grows, while for ε > 0.3, the cost increases as ε grows. This coincides
with Theorem 7.18, specifically, the tradeoff between the two terms in the upper
bound O(T 1−ε + Tα+ε). However, Theorem 7.18 suggests that the minimum cost is
achieved at ε = 1−α

2 = 0.25, while Figure 27b implies that the cost is minimum at
some ε ∈ (0.3, 0.4). We believe the inconsistency is due to not large enough horizon
T . For T = 107, our attack with ε = 0.3 enforcesNT (a†) = 8.87×106, which is 88.7%
percent of the total rounds. The attack execution cost isCTe = 4.00×106. For ε = 0.4,
the attack enforces NT (a†) = 9.72 × 106 with execution cost CTe = 4.95 × 106. In
table 6, we show a few loss functions at different round t during the attack. Note that
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after attack, the target actions (R,P) strictly dominate the other actions. Besides that,
table 6 shows that the dominance gap diminishes as t grows. This is especially due to
the third property in Lemma 7.17, where ρt decreases monotonically. In Figure 27c,
we further investigate the inconsistency that the attack execution cost achieves the
minimum at some ε ∈ (0.3, 0.4) rather than ε∗ = 0.25. We let T = 106, 107, 108, and
ε = 0.1, 0.2, 0.25, 0.3, 0.4, 0.5. For each T , we plot logNT (a†) against logCTexec and
we marked out the corresponding ε values on the curve. Note that for different T ,
the pattern remains the same — as ε grows, logNT (a†) increases monotonically,
while logCTexec first reduces and then increases. We also note that as T becomes
larger, the εwith the minimum attack cost is closer to the desired ε∗ = 0.25.

(a) Number of rounds whereat 6= a† (b) The attack execution cost.

(c) log(T −NT (a†)) against logCTexec.

Figure 27: RPS2: a† = (R,P) time-variant attacks on RPS.
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R P S
R −0.5, 0.5 0, 0 −0.5, 0.5
P 0, 0 0.5,−0.5 0, 0
S 0, 0 0.5,−0.5 0, 0

(a) `1.

R P S
R 0.4,−0.4 0.6,−0.6 0.4,−0.4
P 0.6,−0.6 0.8,−0.8 0.6,−0.6
S 0.6,−0.6 0.8,−0.8 0.6,−0.6

(b) `10.

R P S
R 0.91,−0.91 0.94,−0.94 0.91,−0.91
P 0.94,−0.94 0.97,−0.97 0.94,−0.94
S 0.94,−0.94 0.97,−0.97 0.94,−0.94

(c) `1000.

Table 6: RPS2: The attack loss functions `t for selected t (with ε = 0.3). Note the
target entry a† = (R,P) converges toward (1,-1).

In the third experiment (RPS3), we compare the performance of the stochastic
attack (144) against the original non-stochastic version (129). Again, a† = (R,P).
Recall the purpose of stochastic attacks is to use natural game loss values in L to
make the attack less detectable. Thus we hope to show that the stochastic attacks
do not lose too much potency compared to the non-stochastic attacks (which had to
use unnatural loss values as in RPS1 and RPS2). In Figure 28, we show the number
of non-target action selections and the total attack execution cost for the stochastic
attack. We plot the results of the original non-stochastic version in dashed lines for
comparison. Note that the two attacks have almost identical performance in terms
of NT (a†), but the stochastic attack may incur slightly larger attack execution cost,
e.g., for ε = 0.2. Overall, though, stochastic attacks did not lose much and may be
preferred by attackers.

The Volunteer Dilemma (VD)

Our second example is the volunteer’s dilemma (). There areM > 2 players, and
each player has two actions — volunteer or defect. When there exists at least one
volunteer, those players who do not volunteer gain benefit. In our case, we assume
the benefit is 1 as in (), which can be interpreted as −1 loss. The volunteers, however,
receive no payoff. On the other hand, if no player volunteers, then every player
suffers a large penalization. We assume the penalization (or loss) is 10 as in (). We
show the loss function for an individual player i in table 7.
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(a) Number of rounds whereat 6= a† (b) The attack execution cost.

Figure 28: RPS3: Time-variant stochastic attack for a† = (R,P) with natural loss
values in L. The dashed lines are the corresponding non-stochastic attacks with
unnatural loss values in RPS2.

Other players
exists some volunteer no volunteer exists

Player i volunteer 0 0
defect −1 10

Table 7: The loss function `oi for individual player i in the volunteer dilemma.

The attacker aims at coaxing no volunteers, i.e., the target action a†i is defect for
any player i. Note that ∀i, `oi (a†) = 10, which achieves the upper bound of L. There-
fore, the attacker needs to apply the time-variant attack (129). We experimented
withM = 3, T = 103, 104, 105, 106 and ε = 0.1, 0.2, 0.3, 0.4, 0.5 in this experiment. In
Figure 29, we show the number of rounds where at 6= a† and the total execution
cost respectively. Note that the slope for log(T −NT (a†)) matches 1 − ε, and the
slope of logCTexec roughly matches max(α+ ε, 1 − ε).

We now study how the number of playersM influences the attack performance.
For the VD game, we fix T = 106, and rerun the experiments for M = 2, 4, 8, 16
players with different ε. Figure 30 shows T −NT (a†) and the attack execution cost
CTexec. As M grows, NT (a†) decreases while the execution cost CTexec increases.
This result is consistent with Theorem 7.18.
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(a) Number of rounds whereat 6= a† (b) The attack execution cost.

Figure 29: Time-variant attack on VD (M = 3).

(a) Number of rounds whereat 6= a† (b) The attack execution cost.

Figure 30: As the number of playerM grows, NT (a†) decreases and CTexec grows.

7.6 Conclusion

In this chapter, we designed attacks against no-regret game players. We show that
an attacker can force all players to select a target action profile in T − o(T) rounds,
while incurring only o(T) attack execution cost. There are some future research
questions: (1) How to design attacks in more complicated multi-agent learning
scenarios where the players adopt real game-theoretic behaviors, such as stochastic
Markov games. (2) How to design defense mechanisms against our attack.



128

8 conclusions and future work

In this thesis, we provided a systematic study on adversarial attacks against several
classic sequential decision making and control systems, and we demonstrated
both theoretically and empirically that these systems are susceptible to reward-
manipulation attacks — a type of security threat that directly perturbs the reward
feedback channel. We distill the following key principle in designing efficient
attacks that apply to most sequential decision making systems.

Principle of Attack: assume the goal of the attacker is to enforce a target action
a† on the victim agent, then the attacker should use the following two principles to
design attack.

1. Do “not” (or just slightly) perturb the reward whenever the agent selects the
target action a†.

2. When the agent selects an action a 6= a†, manipulate the reward to ensure
that after attack, a† appears to be better than a.

The rationality behind the above the attack design is the following. By the second
principle, after attack, the target action a† becomes the optimal action to the agent,
thus a reasonable agent should take a† very often, e.g., in T − o(T) rounds. In other
words, the agent fails to take a† in only o(T) rounds. Then by the first principle,
the attacker incurs significant reward manipulation only when the agent fails to
take the target action, which happens in o(T) rounds as we have argued. Therefore,
the cumulative reward perturbation (i.e, attack cost) is o(T).

In the following, we envision some research problems to study in the future.
One interesting question is to study attacks in the multi-agent sequential decision
making scenario. There are some new considerations in this case. First, the agents
in the multi-agent scenario usually have game-theoretic reasoning ability. That
means, each agent will reason about other agents’ response before making a de-
cision. To characterize the state of an agent, we may need to include the whole
sequential-decision making history. As a result, the policy set becomes much richer
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than the single-agent scenario. Therefore, the attacker is faced with a much more
complicated learning system. Second, the attacker might only be able to manipulate
a small group of agents (e.g., ε fraction of agents). A defender can exploit this
fact to design effective defense mechanisms. This is a similar consideration to the
ε-fraction data corruption in the robust statistics literature, although the corruption
we consider here is at the agent level rather than the data level. Finally, it might be
harder for the attacker to evade detection in the multi-agent setting. For example,
in collaborative multi-agent learning, the agents can communicate with each other
and diagnose the system together.

The other interesting question is how to design effective defense mechanisms to
mitigate the effect of attack. In the single-agent setting, the primary method is to
use robust statistics for policy update. This method has been substantially studied
in multi-armed bandits (Guan et al., 2020; Niss and Tewari, 2019) and reinforcement
learning (Zhang et al., 2021b,a). Some other defense methods include (Banihashem
et al., 2021; Lu et al., 2021; Zhong et al., 2021; Ding et al., 2021). However, how
to design defense in the multi-agent setting remains an under-explored research
problem. If the attacker can only manipulate ε fraction of agents, one potential
defense approach is to adapt existing methods in robust statistics.

In this thesis, we proved theoretical upper bound on the attack cost (or effort)
for several learners such as stochastic bandit, batch reinforcement learning and
no-regret game players. It remains unclear whether our bound is also necessary.
In (Zuo, 2020), the authors provided attack cost lower bounds for concrete bandit
algorithms, including ε-greedy and UCB. However, there is no general lower bound
for broader class of sequential decision making algorithms, which is an interesting
theoretical question to study.

Finally, it is important to demonstrate the attack and defense algorithms on
(simulated) real-world sequential decision making systems, including online rec-
ommender system, movie rating system, dialogue generation system, autonomous
driving system, gaming system, among others. It is also imperative to construct
standard datasets and benchmarks for researchers to evaluate and compare the
performance of different attacks and defenses. During attack implementation, prac-
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titioners should pay special attention to the following aspects — how frequent
the attack is, can the attack evade detections, how much perturbation the attack
introduces to the system, and how to exploit these observations to guide the design
of practical defense mechanisms.
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a appendix for adversarial attacks on stochastic
bandits

A.1 Details on the oracle and constant attack

Logarithmic regret and the suboptimal arm pull counts. For simplicity, denote
by i∗ the unique best arm; that is, i∗ = arg maxi=1,...,K µi. We show that a logarithmic
regret bound implies that the arm pull count of arm i 6= i∗ is at most logarithmic in
T .

Lemma A.1. Assume that a bandit algorithm enjoys a regret bound of O(log(T)). Then,
ENi(T) = O(log(T)), ∀i 6= i∗.

Proof. The logarithmic regret bound implies that for a large enough T there exists
C > 0 such that

∑K
i=1 ENi(T)(µi∗ − µi) 6 C log T . Therefore, for any i 6= i∗, we

have ENi(T)(µi∗ − µi) 6 C log T , which implies that

ENi(T) 6
C

µi∗ − µi
log T = O(log T) .

Proof of Proposition 2.1 By Lemma A.1, a logarithmic regret bound implies that
the bandit algorithm satisfies ENi(T) = O(log(T)). That is, for a large enough T ,
ENi(T) 6 Ci log(T) for some Ci > 0. Based on the view that the oracle attack
effectively shifts the means µ1, · · · ,µK, the best arm is now the K-th arm. Then,
ENK(T) = T −

∑
i 6=K ENi(T) > T −

∑
i 6=KCi log T = T − o(T), which proves the

first statement.
For the second statement, we notice that ENi(T) = Ci log T for any i 6= K and

that we do not attack the K-th arm. Therefore,

E

[
T∑
t=1

|αt|

]
=

K−1∑
i=1

ENi(T) · ∆εi 6
K−1∑
i=1

Ci∆
ε
i log T = O

(
K−1∑
i=1

∆εi log T

)
.
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Proof of Proposition 2.2 By Lemma A.1, a logarithmic regret bound implies that
the bandit algorithm satisfies ENi(T) = O(log(T)). Note that the constant attack
effectively shifts the means of all the arms byA ′ except for the K-th arm. SinceA ′ >
maxi∆i, the best arm is now the K-th arm. Then, ENK(T) = T −

∑K−1
i=1 ENi(T) >

T −
∑K−1
i=1 Ci log T = T − o(T), which proves the first statement.

For the second statement, we notice that ENi(T) = Ci log T for any i 6= K, and
we do not attack the K-th arm. Therefore,

E

[
T∑
t=1

|αt|

]
=

K−1∑
i=1

ENi(T) ·A ′ 6 A ′
K−1∑
i=1

Ci log T = O(A ′ · log T) .

The best ε for Alice’s oracle attack Consider the case where Bob employs a
near-optimal bandit algorithm such as UCB (Auer et al., 2002a), which enjoys
ENi(T) = Θ(1 + ∆−2

i log T). When the time horizon T is known ahead of time, one
can compute the best ε ahead of time. Hereafter, we omit unimportant constants for
simplicity. Since Alice employs the oracle attack, Bob pulls each arm C+ε−2 log(T)
times for some C > 0 in expectation. Assuming that the target arm is K, the attack
cost is

K−1∑
i=1

∆εi · (C+ ε−2 log(T)) = C
K−1∑
i=1

∆i + (K− 1)C · ε+
K−1∑
i=1

(
∆i

ε2 +
1
ε

)
log T

To balance the two terms, one can see that ε has to grow with T and the term ∆i/ε
2

is soon dominated by 1/ε. Thus, for large enough T the optimal choice of ε is√
C log(T), which leads to the attack cost of O(K

√
C log T).

A.2 Details on attacking the ε-greedy strategy

Lemma A.2. For δ 6 1/2, the β(N) defined in (2) is monotonically decreasing in N.

Proof. It suffices to show that f(x) = 2σ2

x
log π2Kx2

3δ is decreasing for x > 1. Note that
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δ 6 1/2 6 K
3 (
π
e
)2, thus for x > 1 we have

f′(x) = −
2σ2

x2 log π
2Kx2

3δ
+

2σ2

x

3δ
π2Kx2

2π2Kx

3δ

=
2σ2

x2 (2 − log π
2Kx2

3δ
) 6

2σ2

x2 (2 − log π
2K

3δ
)

6
2σ2

x2 (2 − log e2) = 0.

Proof of Corollary 2.2 When T is larger than the following threshold:

K+ 1
K

(

T∑
t=1

εt) +

√√√√12 log(K/δ)(K+ 1
K

T∑
t=1

εt),

we have ÑK(T) > Ñ(T). Because β(N) is decreasing in N,

Ñ(T)β(Ñ(T)) + 3Ñ(T)β(ÑK(T)) 6 4Ñ(T)β(Ñ(T)). (145)

Due to the the exploration scheme of the strategy,

T∑
t=1

εt = cK

T∑
t=1

1/t 6 cK(log(T) + 1).

Thus by the definition of Ñ(T),

Ñ(T) 6 c(log T + 1) +

√
3 log

(
K

δ

)
c(log T + 1).
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For sufficiently large T , there exists a constant c2 depending on c,K, δ to further
upper bound the RHS as follows:

c(log T + 1) +

√
3 log

(
K

δ

)
c(log T + 1) 6 c2 log T := N̆(T). (146)

Since Nβ(N) is increasing in N, combining (145) and (146) we have for sufficiently
large T ,

Ñ(T)β(Ñ(T)) + 3Ñ(T)β(ÑK(T)) 6 4N̆(T)β(N̆(T)).

Plugging this upper bound into Theorem 2.1,

T∑
t=1

αt <

(
K∑
i=1

∆i

)
N̆(T) + 4(K− 1)N̆(T)β(N̆(T))

= c2

(
K∑
i=1

∆i

)
log T +

√
32c2(K− 1)σ ·

√
log T

(
2 log log T + log π

2Kc2
2

3δ

)
.(147)

Proof of Lemma 2.3 Let {Xj}∞j=1 be a sequence of i.i.d. σ2-sub-Gaussian random
variables with mean µ. Let µ̂0

N = 1
N

∑N
j=1 Xj. By Hoeffding’s inequality

P(|µ̂0
N − µ| > η) 6 2 exp

(
−
Nη2

2σ2

)
.

Define δiN := 6δ
π2N2K

. Apply union bound over arms i and pull counts N ∈ N,

P
(
∃i,N : |µ̂0

i,N − µi| > β(N)
)
6

K∑
i=1

∞∑
N=1

δiN = δ.

Proof of Lemma 2.4 We show by induction that at the end of any round t > K

Algorithm 1 maintains the invariance

µ̂K(t) > µ̂i(t), ∀i < K, (148)
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which forces the learner to pull arm K if t+ 1 is an exploitation round.
Base case: By definition the learner pulls armK first, then all the other arms once.

During round t = 2 . . .K the attack algorithm ensures µ̂i(t) 6 µ̂K(t)−2β(1) < µ̂K(t)
for arms i < K, trivially satisfying (148).

Induction: Suppose (148) is true for rounds up to t− 1. Consider two cases for
round t:

If round t is an exploration round and It 6= K is pulled, then only µ̂It(t) changes;
the other arms copy their empirical mean from round t− 1. The attack algorithm
ensures µ̂K(t) > µ̂It(t) + 2β(NK(t)) > µ̂It(t). Thus (148) is satisfied at t.

Otherwise either t is exploration and K is pulled; or t is exploitation – in which
case K is pulled because by inductive assumption (148) is satisfied at the end of
t− 1. Regardless, this arm K pull is not attacked by Algorithm 1 and its empirical
mean is updated by the pre-attack reward. We show this update does not affect
the dominance of µ̂K(t). Consider any non-target arm i < K. Denote the last time
µ̂i was changed by t ′. Note t ′ < t and NK(t ′) < NK(t). At round t ′, Algorithm 1
ensured that µ̂i(t ′) 6 µ̂K(t ′) − 2β(NK(t ′)). We have:

µ̂K(t) = µ̂
0
K(t) (arm K never attacked)

> µ0
K − β(NK(t)) ((6) lower bound)

> µ0
K − β(NK(t

′)) (Lemma A.2)

> µ̂K(t
′) − 2β(NK(t ′)) ((6) upper bound)

> µ̂i(t
′) (Algorithm 1)

= µ̂i(t) .

Thus (148) is also satisfied at round t.

Proof of Lemma 2.5 Without loss of generality assume in round t arm i is pulled
and the attacker needed to attack the reward (i.e. It = i and αt > 0). By defini-
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tion (4),

αt = µ̂i(t− 1)Ni(t− 1) + r0
t − (µ̂K(t) − 2β(NK(t)))Ni(t)

=
∑

s∈τi(t−1)

(r0
s − αs) + r

0
t − (µ̂K(t) − 2β(NK(t)))Ni(t)

=
∑

s∈τi(t)

r0
s −

∑
s∈τi(t−1)

αs − (µ̂K(t) − 2β(NK(t)))Ni(t).

Therefore, the cumulative attack on arm i is∑
s∈τi(t)

αs =
∑
s∈τi(t)

r0
s − (µ̂K(t) − 2β(NK(t)))Ni(t)

=
(
µ̂0
i(t) − µ̂K(t) + 2β(NK(t))

)
Ni(t).

One can think of the term in front ofNi(t) as the amortized attack cost against arm
i. By Lemma 2.3,

µ̂0
i(t) < µi + β(Ni(t))

µ̂K(t) = µ̂
0
K(t) > µK − β(NK(t))

Therefore,

t∑
s:Is=i

αs < (µi − µK + β(Ni(t)) + 3β(NK(t)))Ni(t)

6 (∆i + β(Ni(t)) + 3β(NK(t)))Ni(t).

The last inequality follows from the gap definition ∆i := [µi − µK]+.
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Proof of Lemma 2.6 Fix a non-target arm i < K. Let Xt be the Bernoulli random
variable for round T being arm i pulled. Then,

Ni(T) =

T∑
t=1

Xt

E[Xt] =
εt

K

V[Xt] =
εt

K
(1 −

εt

K
) <

εt

K
.

Since Xt’s are independent random variables, we may apply Lemma 9 of (Agar-
wal et al., 2014), so that for any λ ∈ [0, 1], with probability at least 1 − δ/K,

T∑
t=1

(Xt −
εt

K
) 6 (e− 2)λ

T∑
t=1

V[Xt] +
1
λ

log K
δ

< (e− 2)λ
T∑
t=1

E[Xt] +
1
λ

log K
δ

.

Choose λ =
√

log(K/δ)
(e−2)

∑T
t=1 E[Xt]

, and we get that

T∑
t=1

Xt <

T∑
t=1

εt

K
+ 2

√√√√(e− 2)
T∑
t=1

εt

K
log K

δ

<

T∑
t=1

εt

K
+

√√√√3
T∑
t=1

εt

K
log K

δ
:= Ñ(T) .

The same reasoning can be applied to all non-target arm i < K. 10

The case with the target arm is similar, with the only change that E[Xt] > 1 − εt

10Note the upper bound above is valid for T such that
∑T
t=1 εt >

K
e−2 log(K/δ) only as otherwise

λ is greater than 1. One can get rid of such a condition by a slightly looser bound. Specifically, using
λ = 1 gives us a bound that holds true for all T . We then take the max of the two bounds, which
can be simplified as

∑T
t=1 Xt < (e− 1)

∑T
t=1

εt

K
+
√

3
∑T
t=1

εt

K
log K

δ
+ log K

δ
. The condition on T

in Theorem 2.1 can be removed using this bound. However, by keeping the mild assumption on T
we keep the exposition simple.
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and V[Xt] < εt, leading to the lower bound:

NK(T) > T −

T∑
t=1

εt −

√√√√3
T∑
t=1

εt log K
δ
=: ÑK(T) .

Finally, a union bound is applied to all K arms to complete the proof.

A.3 Details on attacking the UCB strategy

Proof of Lemma 2.7 Fix some t > 2K. If Ni(t) 6 2 for all i < K, then NK(t) > 2,
which implies Ni(t) 6 min{NK(t), 2}. Thus, (8) holds trivially and we are done.

Now fix any i < K such that Ni(t) > 2. As the desired upper bound is non-
decreasing in t, we only need to prove the result for t where It = i. Let t ′ be
the previous time where arm i was pulled. Note that t ′ satisfies K < t ′ < t as
Ni(t) > 2, so the attacker has started attacking at round t ′. This implies that
Ni(t

′ − 1) + 1 = Ni(t
′) = Ni(t− 1) = Ni(t) − 1.

On one hand, it is clear that after attack αt ′ was added at round t ′, the following
holds:

µ̂i(t
′) 6 µ̂K(t

′) − 2β(NK(t ′)) − ∆0 . (149)

On the other hand, at round t, it must be the case that

µ̂i(t− 1) + 3σ

√
log t

Ni(t− 1)
> µ̂K(t− 1) + 3σ

√
log t

NK(t− 1)
,

which is equivalent to

µ̂i(t
′) + 3σ

√
log t
Ni(t ′)

> µ̂K(t− 1) + 3σ

√
log t

NK(t− 1)
.
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Therefore,

3σ

√
log t
Ni(t ′)

− 3σ

√
log t

NK(t− 1)
> µ̂K(t− 1) − µ̂i(t ′)

> µ̂K(t− 1) − µ̂K(t ′) + 2β(NK(t ′)) + ∆0

> ∆0 ,

where we have used Eqn. 149 in the second inequality, the condition in event E as
well as Lemma A.2 in the third. Since ∆0 > 0, we can see that Ni(t ′) < NK(t− 1),
and thus

Ni(t) = Ni(t
′) + 1 6 NK(t− 1) = NK(t) . (150)

Furthermore, since 3σ
√

log t
NK(t−1) > 0, we have 3σ

√
log t
Ni(t ′)

> ∆0, which implies

Ni(t) = 1 +Ni(t
′) 6 1 +

9σ2

∆2
0

log t . (151)

Combining (150) and (151) gives the desired bound (8).

Proof of Lemma 2.8 Fix any i < K. As the desired upper bound is increasing in t,
we only need to prove the result for twhere It = i and αt > 0. It follows from (7)
that,

1
Ni(t)

∑
s∈τi(t)

αs = µ̂0
i(t) − µ̂K(t− 1) + 2β(NK(t− 1)) + ∆0 .

Since event E holds, we have

1
Ni(t)

∑
s∈τi(t)

αs 6 ∆i + ∆0 + β(Ni(t)) + 3β(NK(t− 1)) .

The proof is completed by observingNK(t−1) = NK(t),Ni(t) 6 NK(t) (Lemma 2.7)
and Lemma A.2.



140

A.4 Simulations on Heuristic Constant Attack

We run simulations on ε-greedy and UCB to illustrate the heuristic constant attack
algorithm. The bandit has two arms, where the reward distributions are N(1, 0.12)

and N(0, 0.12) respectively, thus maxi∆i = µ1 − µ2 = 1. Alice’s target arm is arm
2. In our experiment, Alice tried two different constants for attack: A = 1.2 and
A = 0.8, one being greater and the other being smaller than maxi∆i. We run the
attack for T = 104 rounds. Fig. 31 and Fig. 32 show Alice’s cumulative attack cost
and Bob’s number of target arm pulls NK(t) for ε-greedy and UCB. Note that if
A > maxi∆i, then NK(t) ≈ t, which verifies that Alice succeeds with the heuristic
constant attack. At the same time, pushing up the target arm would incur linear cost;
while dragging down the non-target arm achieves logarithmic cost. In summary,
Alice should use an A value larger than ∆, and should drag down the expected
reward of the non-target arm by amount A.

(a) push up the target arm: αt = 1{It =
2} · (−A)

(b) drag down the non-target arm: αt =
1{It 6= 2} ·A

Figure 31: Constant attack on ε-greedy

(a) push up the target arm (b) drag down the non-target arm

Figure 32: Constant attack on UCB1
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b appendix for adaptive reward-poisoning attacks
against reinforcement learning

B.1 Proof of Theorem 4.3

Proof. Consider two MDPs with reward functions defined as R + ∆ and R − ∆,
denote the Q table corresponding to them as Q+∆ and Q−∆, respectively. Let
{(st,at)} be any instantiated trajectory of the learner corresponding to the attack
policy φ. By assumption, {(st,at)} visits all (s,a) pairs infinitely often and αt’s
satisfy

∑
αt =∞ and

∑
α2
t <∞. Assuming now that we apply Q-learning on this

particular trajectory with reward given by rt +∆, standard Q-learning convergence
applies and we have that Qt,+∆ → Q+∆ and similarly, Qt,−∆ → Q−∆ (Melo, 2001).

Next, we want to show that Qt(s,a) 6 Qt,+∆(s,a) for all s ∈ S,a ∈ A and for
all t. We prove by induction. First, we know Q0(s,a) = Q0,+∆(s,a). Now, assume
that Qk(s,a) 6 Qk,+∆(s,a). We have

Qk+1,+∆(sk+1,ak+1)

= (1 − αk+1)Qk,+∆(sk+1,ak+1) +

αk+1

(
rk+1 + ∆+ γmax

a ′∈A
Qk,+∆(s

′
k+1,a ′)

)
> (1 − αk+1)Qk(sk+1,ak+1) +

αk+1

(
rk+1 + δk+1 + γmax

a ′∈A
Qk(s

′
k+1,a ′)

)
= Qk+1(sk+1,ak+1),

which established the induction. Similarly, we have Qt(s,a) > Qt,−∆(s,a). Since
Qt,+∆ → Q+∆, Qt,−∆ → Q−∆, we have that for large enough t,

Q−∆(s,a) 6 Qt(s,a) 6 Q+∆,∀s ∈ S,a ∈ A. (152)

Finally, it’s not hard to see that Q+∆(s,a) = Q∗(s,a) + ∆
1−γ and Q−∆(s,a) =
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Q∗(s,a) − ∆
1−γ . This concludes the proof.

B.2 Proof of Theorem 4.6

Proof. We provide a constructive proof. We first design an attack policyφ, and then
show that φ is a strong attack. For the purpose of finding a strong attack, it suffices
to restrict the constructed φ to depend only on (s,a) pairs, which is a special case
of our general attack setting. Specifically, for any ∆ > ∆3, we define the following
Q′:

Q′(s,a) =


Q∗(s,a) + ∆

(1 + γ)
, ∀s ∈ S†,a ∈ π†(s),

Q∗(s,a) − ∆

(1 + γ)
, ∀s ∈ S†,a /∈ π†(s),

Q∗(s,a),∀s /∈ S†,a,

where Q∗(s,a) is the original optimal value function without attack. We will show
Q′ ∈ Q†, i.e., the constructed Q′ induces the target policy. For any s ∈ S†, let
a† ∈ arg maxa∈π†(s)Q∗(s,a), a best target action desired by the attacker under the
original value functionQ∗. We next show that a† becomes the optimal action under
Q′. Specifically, ∀a′ /∈ π†(s), we have

Q′(s,a†) = Q∗(s,a†) + ∆

(1 + γ)

= Q∗(s,a†) −Q∗(s,a′) + 2∆
(1 + γ)

+Q∗(s,a′) − ∆

(1 + γ)

= Q∗(s,a†) −Q∗(s,a′) + 2∆
(1 + γ)

+Q′(s,a′),
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Next note that

∆ > ∆3 >
1 + γ

2
[ max
a/∈π†(s)

Q∗(s,a) − max
a∈π†(s)

Q∗(s,a)]

=
1 + γ

2
[ max
a/∈π†(s)

Q∗(s,a) −Q∗(s,a†)]

>
1 + γ

2
[Q∗(s,a′) −Q∗(s,a†)],

which is equivalent to

Q∗(s,a†) −Q∗(s,a′) > −
2∆

1 + γ
,

thus we have

Q′(s,a†) = Q∗(s,a†) −Q∗(s,a′) + 2∆
(1 + γ)

+Q′(s,a′)

> 0 +Q′(s,a′) = Q′(s,a′).

This shows that under Q′, the original best target action a† becomes better than
all non-target actions, thus a† is optimal and Q′ ∈ Q†. According to Proposition
4 in (Ma et al., 2019), the Bellman optimality equation induces a unique reward
function R′(s,a) corresponding to Q′:

R′(s,a) = Q′(s,a) − γ
∑
s′

P(s′ | s,a)max
a′
Q′(s′,a′).

We then construct our attack policy φsas∆3
as:

φsas∆3
(s,a) = R′(s,a) − R(s,a), ∀s,a.

The φsas∆3
(s,a) results in that the reward function after attack appears to be R′(s,a)

from the learner’s perspective. This in turn guarantees that the learner will eventu-
ally learnQ′, which achieves the target policy. Next we show that under φsas∆3

(s,a),
the objective value (40) is finite, thus the attack is feasible. To prove feasibility, we
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consider adapting Theorem 4 in (Even-Dar and Mansour, 2003), re-stated as below.

Lemma B.1 (Even-Dar & Mansour). Assume the attack is φsas∆3
(s,a) and let Qt be the

value of the Q-learning algorithm using polynomial learning rate αt = ( 1
1+t)

ω where
ω ∈ ( 1

2 , 1]. Then with probability at least 1 − δ, we have ‖QT −Q′‖∞ 6 τ with

T = Ω

(
L3+ 1

ω
1
τ2 (ln

1
δτ

)
1
ω + L

1
1−ω ln 1

τ

)
,

Note that Q† is an open set and Q′ ∈ Q†. This implies that one can pick a small
enough τ0 > 0 such that ‖QT −Q′‖∞ 6 τ0 implies QT ∈ Q†. From now on we fix
this τ0, thus the bound in the above theorem becomes

T = Ω

(
L3+ 1

ω (ln 1
δ
)

1
ω + L

1
1−ω

)
.

As the authors pointed out in (Even-Dar and Mansour, 2003), theω that leads to
the tightest lower bound on T is around 0.77. Here for our purpose of proving
feasibility, it is simpler to letω ≈ 1

2 to obtain a loose lower bound on T as below

T = Ω

(
L5(ln 1

δ
)2
)

.

Now we represent δ as a function of T to obtain that ∀T > 0,

P[‖QT −Q′‖∞ > τ0] 6 C exp(−L− 5
2T

1
2 ).

Let et = 1 [‖Qt −Q′‖∞ > τ0], then we have

Eφsas∆3

[ ∞∑
t=1

1[Qt /∈ Q†]

]
6 Eφsas∆3

[ ∞∑
t=1

et

]

=

∞∑
t=1

P[‖QT −Q′‖∞ > τ0] 6
∞∑
t=1

C exp(−L− 5
2 t

1
2 )

6
∫∞
t=0
C exp(−L− 5

2 t
1
2 )dt = 2CL5,
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which is finite. Therefore the attack is feasible.
It remains to validate that φsas∆3

is a legitimate attack, i.e., |δt| 6 ∆ under attack
policy φsas∆3

. By Lemma 7 in (Ma et al., 2019), we have

|δt| = |R′(st,at) − R(st,at)|

6 max
s,a

[R′(s,a) − R(s,a)] = ‖R′ − R‖∞
6 (1 + γ)‖Q′ −Q∗‖ = (1 + γ)

∆

(1 + γ)
= ∆.

Therefore the attack policy φsas∆3
is valid.

Discussion on a number of non-adaptive attacks: Here, we discuss and contrast
3 non-adaptive attack polices developed in this and prior work:

1. (Huang and Zhu, 2019) produces the non-adaptive attack that is feasible with
the smallest ∆. In particular, it solves for the following optimization problem:

min
δ,Q∈RS×A

‖δ‖∞
s.t. Q(s,a) = δ(s,a)+

EP(s ′|s,a)

[
R(s,a, s) + γmax

a ′∈A
Q(s ′,a ′)

]
Q ∈ Q†

where the optimal objective value implicitly defines a ∆ ′3 < ∆3. However, it’s
a fixed policy independent of the actual ∆ . In other word, It’s either feasible
if ∆ > ∆ ′3, or not.

2. φsas∆3
is a closed-form non-adaptive attack that depends on ∆. φsas∆3

is guaran-
teed to be feasible when ∆ > ∆3. However, this is sufficient but not necessary.
Implicitly, there exists a ∆ ′′3 which is the necessary condition for the feasibility
of φsas∆3

. Then, we know ∆ ′′3 > ∆ ′3, because ∆ ′3 is the sufficient and neces-
sary condition for the feasibility of any non-adaptive attacks, whereas ∆ ′′3 is
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the condition for the feasibility of non-adaptive attacks of the specific form
constructed above.

3. φsasTD3 (assume perfect optimization) produces the most efficient non-adaptive
attack that depends on ∆.

In terms of efficiency, φsasTD3 achieves smaller J∞(φ) than φsas∆3
and (Huang and

Zhu, 2019). It’s not clear between φsas∆3
and (Huang and Zhu, 2019) which one is

better. We believe that in most cases, especially when ∆ is large and learning rate
αt is small, φsas∆3

will be faster, because it takes advantage of that large ∆, whereas
(Huang and Zhu, 2019) does not. But there probably exist counterexamples on
which (Huang and Zhu, 2019) is faster than φsas∆3

.

B.3 The Covering Time L is O(exp(|S|)) for the chain
MDP

Proof. While the ε-greedy exploration policy constantly change according to the
agent’s current policy πt, since L is a uniform upper bound over the whole sequence,
and we know that πt will eventually converge to π†, it suffice to show that the
covering time under π†ε is O(exp(|S|)).

Recall that π† prefers going right in all but the left most grid. The covering
time in this case is equivalent to the expected number of steps taken for the agent
to get from s0 to the left-most grid, because to get there, the agent necessarily
visited all states along the way. Denote the non-absorbing states from right to left
as s0, s1, ..., sn−1, with |S| = n. Denote Vk the expected steps to get from state sk to
sn−1. Then, we have the following recursive relation:

Vn−1 = 0

Vk = 1 + (1 −
ε

2
)Vk−1 +

ε

2
Vk+1,

for k = 1, ...,n− 2

V0 = 1 + (1 −
ε

2
)V0 +

ε

2
V1
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Solving the recursive gives

V0 =
p(1 + p(1 − 2p))

(1 − 2p)2

[
(
1 − p

p
)n−1 − 1

]
(153)

where p = ε
2 <

1
2 and thus V0 = O(exp(n)).

B.4 Proof of Theorem 4.9

Lemma B.2. For any state s ∈ S and target actions A(s) ⊂ A, it takes FAA at most |A|

1−ε

visits to s in expectation to enforce the target actions A(s).

Proof. Denote Vt the expected number of visits s to teach A(s) given that under the
current Qt, maxa∈A(s) is ranked t among all actions, where t ∈ 1, ..., |A|. Then, we
can write down the following recursion:

V1 = 0 (154)

Vt = 1 + (1 − ε)Vt−1 +

ε

[
t− 1
|A|

Vt−1 +
1
A
V1 +

|A|− t

|A|
Vt

]
(155)

Equation (155) can be simplified to

Vt =
1 − ε+ εt−1

|A|

1 − ε |A|−t
|A|

Vt−1 +
1

1 − ε |A|−t
|A|

6 Vt−1 +
1

1 − ε

Thus, we have
Vt 6

t− 1
1 − ε

6
|A|

1 − ε

as needed.

Now, we prove Theorem 4.9.
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Proof. Let i ∈ [1,n] be given. First, consider the number of episodes, on which
the agent was found in at least one state st and is equipped with a policy πt, s.t.
πt(st) /∈ νi(st). Since each of these episodes contains at least one state st on which
νi has not been successfully taught, and according to Lemma 2, it takes at most |A|

1−ε

visits to each state to successfully teach any actions A(s), there will be at most |S||A|

1−ε

such episodes. These episodes take at most |S||A|H

1−ε iterations for all target states.
Out of these episodes, we can safely assume that the agent has successfully picked
up νi for all the states visited.

Next, we want to show that the expected number of iterations taken by π†i to get

to si is upper bounded by
[
|A|

ε

]i−1
D, where π†i is defined as

π†i = arg min
π∈Π,π(sj)∈π†(sj),∀j6i−1

Es0∼µ0 [dπ(s0, si)] . (156)

First, we define another policy

π̂†i(s) =

{
π†(s) if s ∈ {s1, ..., si−1}

πsi(s) otherwise
(157)

Clearly Es0∼µ0

[
d
π
†
i
(s0, si)

]
6 Es0∼µ0

[
d
π̂
†
i
(s0, si)

]
for all i.

We now prove by induction that d
π̂
†
i
(s, si) 6

[
|A|

ε

]i−1
D for all i and s ∈ S.

First, let i = 1, π̂†i = πs1 , and thus d
π̂
†
i
(s, si) 6 D.

Next, we assume that when i = k, d
π̂
†
i
(s, si) 6 Dk, and would like to show that

when i = k+ 1, d
π̂
†
i
(s, si) 6

[
|A|

ε

]
Dk. Define another policy

π̃†i(s) =

{
π†(s) if s ∈ {s2, ..., si−1}

πsi(s) otherwise
(158)

which respect the target policies on s2, ..., si−1, but ignore the target policy on s1.
By the inductive hypothesis, we have that d

π̃
†
i
(s, si) 6 Dk. Consider the difference

between d
π̂
†
i(s)

(s1, sk) and d
π̃
†
i
(s1, sk). Since π̂†i(s) and π̃†i only differs by their first
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action at s1, we can derive Bellman’s equation on each policy, which yield

d
π̂
†
i
(s1, sk) = (1 − ε)Q(s1,π†(s1)) + εQ̄(s1,a)

6 max
a∈A

Q(s1,a)

d
π̃
†
i
(s1, sk) = (1 − ε)Q(s1,πs1(s1)) + εQ̄(s1,a)

>
ε

|A|
max
a∈A

Q(s1,a)

where Q(s1,a) denotes the expected distance to sk from s1 by performing action a
in the first step, and follow π̂†i thereafter, and Q̄(s1,a) denote the expected distance
by performing a uniformly random action in the first step. Thus,

d
π̂
†
i
(s, sk) 6

|A|

ε
d
π̃
†
i
(s1, sk) (159)

With this, we can perform the following decomposition:

d
π̂
†
i
(s, sk) = P [visit s1 before reaching sk](

d
π̂
†
i
(s, s1) + dπ̂†i

(s1, sk)
)

+P [not visit s1](
d
π̂
†
i
(s, s1)|not visit s1

)
6 P [visit s1 before reaching sk](

d
π̃
†
i
(s, s1) +

|A|

ε
d
π̃
†
i
(s1, sk)

)
+P [not visit s1](
d
π̃
†
i
(s, sk)|not visit s1

)
= d

π̃
†
i
(s, sk) +

(
|A|

ε
− 1
)
d
π̃
†
i
(s1, sk)

6 Dk +

(
|A|

ε
− 1
)
Dk =

|A|

ε
Dk.
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This completes the induction. Thus, we have

d
π̂
†
i
(s, si) 6

(
|A|

ε

)i−1

D,

and the total number of iterations taken to arrive at all target states sequentially
sums up to

n∑
i=1

d
π̂
†
i
(s, si) 6

(
|A|

ε

)n
D. (160)

Finally, each target states need to visited for |A|

1−ε number of times to successfully
enforce π†. Adding the numbers for enforcing each π†i gives the correct result.

B.5 Detailed Explanation of Fast Adaptive Attack
Algorithm

In this section, we try to give a detailed walk-through of the Fast Adaptive Attack
Algorithm (FAA) with the goal of providing intuitive understanding of the design
principles behind FAA. For the sake of simplisity, in this section we assume that
the Q-learning agent is ε = 0, such that the attacker is able to fully control the
agent’s behavior. The proof of correctness and sufficiency in the general case when
ε ∈ [0, 1] is provided in section B.4.

The Greedy Attack: To begin with, let’s talk about the greedy attack, a fundamental
subroutine that is called in every step of FAA to generate the actual attack. Given a
desired (partial) policy ν, the greedy attack aims to teach ν to the agent in a greedy
fashion. Specifically, at time step t, when the agent performs action at at state st,
the greedy attack first look at whether at is a desired action at s+ t according to
sν, i.e. whether at ∈ ν(st). If at is a desired action, the greedy attack will produce
a large enough δt, such that after the Q-learning update, at becomes strictly more
preferred than all undesired actions, i.e. Qt+1(st,at) > maxa/∈ν(st)Qt+1(st,a).
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On the other hand, if at is not a desired action, the greedy attack will produce a
negative enough δt, such that after the Q-learning update, at becomes strictly less
preferred than all desired actions, i.e. Qt+1(st,at) < maxa∈ν(st)Qt+1(st,a). It can
be shown that with ε = 0, it takes the agent at most |A|− 1 visit to a state s, to force
the desired actions ν(s).

Given the greedy attack procedure, one could directly apply the greedy attack
with respect to π† throughout the attack procedure. The problem, however, is
efficiency. The attack is not considered success without the attacker achieving the
target actions in ALL target states, not just the target states visited by the agent. If a
target state is never visited by the agent, the attack never succeed. π† itself may not
efficiently lead the agent to all the target states. A good example is the chain MDP
used as the running example in the main chapter. In section B.3, we have shown
that if an agent follows π†, it will take exponentially steps to reach the left-most
state. In fact, if ε = 0, the agent will never reach the left-most state following π†,
which implies that the naive greedy attack w.r.t. π† is in fact infeasible. Therefore,
explicit navigation is necessary. This bring us to the second component of FAA, the
navigation polices.

The navigation polices: Instead of trying to achieve all target actions at once
by directly appling the greedy attack w.r.t. π†, FAA aims at one target state at a
time. Let s†(1), ..., s†(k) be an order of target states. We will discuss the choice of
ordering in the next paragraph, but for now, we will assume that an ordering is
given. The agent starts off aiming at forcing the target actions in a single target
state s†(1). To do so, the attacer first calculate the corresponding navigation policy
ν1, where ν1(st) = π

s
†
(1)
(st) when st 6= s†(1), and ν1(st) = π†(st) when st = s†(1).

That is, ν1 follows the shortest path policy w.r.t. s†(1) when the agent has not arrived
at s†(1), And when the agent is in s†(1), ν1 follows the desired target actions. Using
the greedy attack w.r.t. ν1 allows the attacker to effectively lure the agent into s†(1)

and force the target actions π†(s†(1)). After successfully forcing the target actions
in s†(1), the attacker moves on to s†(2). This time, the attacker defines the navigation
policy ν2 similiar to ν1, except that we don’t want the already forced π†(s†(1)) to be
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untaught. As a result, in ν2, we define ν2(s
†
(1)) = π†(s†(1)), but otherwise follows

the corresponding shortest-path policy π
s
†
(2)

. Follow the greedy attack w.r.t. ν2, the

attacker is able to achieve π†(s†(2)) efficiently without affecting π†(s†(1)). This process
is carried on throughout the whole ordered list of target states, where the target
actions for already achieved target states are always respected when defining the
next νi. If each target states s†(i) can be reachable with the corresponding νi, then
the whole process will terminate at which point all target actions are guaranteed to
be achieved. However, the reachability is not always guaranteed with any ordering
of target states. Take the chain MDP as an example. if the 2nd left target state
is ordered before the left-most state, then after teaching the target action for the
2nd left state, which is moving right, it’s impossible to arrive at the left-most state
when the navigation policy resepct the moving-right action in the 2nd left state.
Therefore, the ordering of target states matters.

The ordering of target states: FAA orders the target states descendingly by their
shortest distance to the starting state s0. Under such an ordering, the target states
achieved first are those that are farther away from the starting state, and they
necessarily do not lie on the shortest path of the target states later in the sequence.
In the chain MDP example, the target states are ordered from left to right. This way,
the agent is always able to get to the currently focused target state from the starting
state s0, without worrying about violating the already achieved target states to
the left. However, note that the bound provided in theorem 4.9 do not utilize this
particular ordering choice and applies to any ordering of target states. As a result,
the bound diverges when ε→ 0, matching with the pathological case described at
the end of the last paragraph.
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Parameters Values Description
exploration noise 0.5 Std of Gaussian exploration noise.
batch size 100 Batch size for both actor and critic
discount factor 0.99 Discounting factor for the attacker problem.
policy noise 0.2 Noise added to target policy during critic update.
noise clip [−0.5, 0.5] Range to clip target policy noise.
action L2 weight 50 Weight for L2 regularization
buffer size 107 Replay buffer size
optimizer Adam Use the Adam optimizer.
learning rate critic 10−3 Learning rate for the critic network.
learning rate actor 5−4 Learning rate for the actor network.
τ 0.002 Target network update rate.
policy frequency 2 Frequency of delayed policy update.

Table 8: Hyperparameters for TD3.

B.6 Experiment Setting and Hyperparameters for
TD3

Throughout the experiments, we use the following set of hyperparameters for TD3,
described in Table 8. The hyperparameters are selected via grid search on the Chain
MDP of length 6. Each experiment is run for 5000 episodes, where each episode is
of 1000 iteration long. The learned policy is evaluated for every 10 episodes, and
the policy with the best evaluation performance is used for e evaluations in the
experiment section.

B.7 Additional Plot for the rate comparison
experiment

See Figure 33.
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Figure 33: Attack performances on the chain MDP of different length in the normal
scale. As can be seen in the plot, both φξFAA + φξTD3+FAA achieve linear rate.

B.8 Additional Experiments: Attacking DQN

Throughout the chapter, we have been focusing on attacking the tabular Q-learning
agent. However, the attack MDP also applies to arbitrary RL agents. We describe
the general interaction protocol in Alg. 9. Importantly, we assume that the RL
agent can be fully characterized by an internal state, which determines the agent’s
current behavior policy as well as the learning update. For example, if the RL

Figure 34: Result for attacking DQN on the Cartpole environment. The left figure
plots the cumulative attack cost JT (φ) as a function of T . The right figure plot the
performance of the DQN agent J(θt) under the two attacks.

agent is a Deep Q-Network (DQN), the internal state will consist of the Q-network
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Protocol 9 Reward Poisoning against general RL agent

Parameters: MDP (S,A,R,P,µ0), RL agent hyperparameters.

1: for t = 0, 1, ... do
2: agent at state st, has internal state θ0.
3: agent acts according to a behavior policy:

at ← πθt(st)
4: environment transits st+1 ∼ P(· | st,at), produces reward rt = R(st,at, st+1)

and an end-of-episode indicator EOE.
5: attacker perturbs the reward to rt + δt
6: agent receives (st+1, rt+ δt,EOE), performs one-step of internal state update:

θt+1 = f(θt, st,at, st+1, rt + δt,EOE) (161)

7: environment resets if EOE = 1: st+1 ∼ µ0.
8: end for

parameters as well as the transitions stored in the replay buffer.
In the next example, we demonstrate an attack against DQN in the cartpole

environment. In the cartpole environment, the agent can perform 2 actions, moving
left and moving right, and the goal is to keep the pole upright without moving the
cart out of the left and right boundary. The agent receives a constant +1 reward in
every iteration, until the pole falls or the cart moves out of the boundary, which
terminates the current episode and the cart and pole positions are reset.

In this example, the attacker’s goal is to poison a well-trained DQN agent to
perform as poorly as possible. The corresponding attack cost ρ(ξt) is defined as
J(θt), the expected total reward received by the current DQN policy in evaluation.
The DQN is first trained in the clean cartpole MDP and obtains the optimal policy
that successfully maintains the pole upright for 200 iterations (set maximum length
of an episode). The attacker is then introduced while the DQN agent continues
to train in the cartpole MDP. We freeze the Q-network except for the last layer to
reduce the size of the attack state representation. We compare TD3 with a naive



156

attacker that perform δt = −1.1 constantly. The results are shown in Fig. 34.
One can see that under the TD3 found attack policy, the performance of the

DQN agent degenerates much faster compared to the naive baseline. While still
being a relatively simple example, this experiment demonstrates the potential of
applying our adaptive attack framework to general RL agents.
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c appendix for policy poisoning in batch
reinforcement learning and control

C.1 Proof of Proposition 5.2

The proof of feasibility relies on the following result, which states that there is a
bijection mapping between reward space and value function space.

Proposition C.1. Given an MDP with transition probability function P and discounting
factor γ ∈ [0, 1), let R = {R : S×A 7→ R} denote the set of all possible reward functions,
and let Q = {Q : S×A 7→ R} denote the set of all possible Q tables. Then, there exists a
bijection mapping between R and Q, induced by Bellman optimality equation.

Proof. ⇒ Given any reward function R(s,a) ∈ R, define the Bellman operator as

HR(Q)(s,a) = R(s,a) + γ
∑
s′

P(s′ | s,a)max
a′
Q(s′,a′). (162)

Since γ < 1, HR(Q) is a contraction mapping, i.e., ‖HR(Q1) −HR(Q2)‖∞ 6 γ‖Q1 −

Q2‖∞, ∀Q1,Q2 ∈ Q. Then by Banach Fixed Point Theorem, there is a unique Q ∈ Q

that satisfies Q = HR(Q), which is the Q that Rmaps to.
⇐ Given any Q ∈ Q, one can define the corresponding R ∈ R by

R(s,a) = Q(s,a) − γ
∑
s′

P(s′ | s,a)max
a′
Q(s′,a′). (163)

Thus the mapping is one-to-one.

Proposition C.2. The attack problem (59)-(62) is always feasible for any target policy π†.

Proof. For any target policy π† : S 7→ A, we construct the following Q:

Q(s,a) =

{
ε ∀s ∈ S,a = π†(s),

0, otherwise.
(164)
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TheQ values in (164) satisfy the constraint (62). Note that we construct theQ values
so that for all s ∈ S, maxaQ(s,a) = ε. By proposition C.1, the corresponding
reward function induced by Bellman optimality equation is

R̂(s,a) =

{
(1 − γ)ε ∀s ∈ S,a = π†(s),

− γε, otherwise.
(165)

Then one can let rt = R̂(st,at) so that r = (r0, ..., rT−1), R̂ in (165), together with Q
in (164) is a feasible solution to (59)-(62).

C.2 Proof of Theorem 5.3

The proof of Theorem 5.3 relies on a few lemmas. We first prove the following
result, which shows that given two vectors that have equal element summation, the
vector whose elements are smoother will have smaller `α norm for any α > 1. This
result is used later to prove Lemma C.4.

Lemma C.3. Let x,y ∈ RT be two vectors. Let I ⊂ {0, 1, ..., T − 1} be a subset of indexes
such that

i). xi =
1
|I|

∑
j∈I

yj,∀i ∈ I, ii). xi = yi, ∀i 6= I. (166)

Then for any α > 1, we have ‖x‖α 6 ‖y‖α.

Proof. Note that the conditions i) and ii) suggest the summation of elements in x
and y are equal, and only elements in I differ for the two vectors. However, the
elements in I of x are smoother than that of y, thus x has smaller norm. To prove
the result, we consider three cases separately.

Case 1: α = 1. Then we have

‖x‖α− ‖y‖α =
∑
i

|xi|−
∑
j

|yj| =
∑
i∈I

|xi|−
∑
j∈I

|yj| = |
∑
j∈I

yj|−
∑
j∈I

|yj| 6 0. (167)
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Case 2: 1 < α <∞. We show ‖x‖αα 6 ‖y‖αα. Note that

‖x‖αα − ‖y‖αα =
∑
i

|xi|
α −
∑
j

|yj|
α =
∑
i∈I

|xi|
α −
∑
j∈I

|yj|
α

=
1

|I|α−1 |
∑
j∈I

yj|
α −
∑
j∈I

|yj|
α 6

1
|I|α−1 (

∑
j∈I

|yj|)
α −
∑
j∈I

|yj|
α.

(168)

Let β = α
α−1 . By Holder’s inequality, we have∑

j∈I

|yj| 6 (
∑
j∈I

|yj|
α)

1
α (
∑
j∈I

1β)
1
β = (

∑
j∈I

|yj|
α)

1
α |I|1−

1
α . (169)

Plugging (169) into (168), we have

‖x‖αα − ‖y‖αα 6
1

|I|α−1 (
∑
j∈I

|yj|
α)|I|α−1 −

∑
j∈I

|yj|
α = 0. (170)

Case 3: α =∞. We have

‖x‖α = max
i

|xi| = max{ 1
|I|
|
∑
j∈I

yj|, max
i/∈I

|xi|} 6 max{ 1
|I|

∑
j∈I

|yj|, max
i/∈I

|xi|}

6 max{max
j∈I

|yj|, max
i/∈I

|xi|} = max{max
j∈I

|yj|, max
j/∈I

|yj|} = max
j

|yj| = ‖y‖α.
(171)

Therefore ∀α > 1, we have ‖x‖α 6 ‖y‖α.

Next we prove Lemma C.4, which shows that one possible optimal attack so-
lution to (59)-(62) takes the following form: shift all the clean rewards in Ts,a by
the same amount ψ(s,a). Here ψ(s,a) is a function of state s and action a. That
means, rewards belonging to different Ts,a might be shifted a different amount, but
those corresponding to the same (s,a) pair will be identically shifted.

Lemma C.4. There exists a function ψ(s,a) such that rt = r0
t +ψ(st,at), together with

some R̂ and Q, is an optimal solution to our attack problem (59)-(62).
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We point out that although there exists an optimal attack taking the above form,
it is not necessarily the only optimal solution. However, all those optimal solutions
must have exactly the same objective value (attack cost), thus it suffices to consider
the solution in Lemma C.4.

Proof. Let r∗ = (r∗0 , ..., r∗T−1), R̂∗ and Q∗ be any optimal solution to (59)-(62). Fix a
particular state-action pair (s,a), we have

R̂∗(s,a) = 1
|Ts,a|

∑
t∈Ts,a

r∗t . (172)

Let R̂0(s,a) = 1
|Ts,a|

∑
t∈Ts,a

r0
t be the reward function for the (s,a) pair estimated

from clean data r0. We then define a different poisoned reward vector r′ = (r′0, ..., r′T−1),
where

r′t =

{
r0
t + R̂

∗(s,a) − R̂0(s,a), t ∈ Ts,a,

r∗t , t /∈ Ts,a.
(173)

Now we show r′, R̂∗ and Q∗ is another optimal solution to (59)-(62). We first verify
that r′, R̂∗, andQ∗ satisfy constraints (60)-(62). To verify (60), we only need to check
R̂∗(s,a) = 1

|Ts,a|

∑
t∈Ts,a

r′t, since r′ and r∗ only differ on those rewards in Ts,a. We
have

1
|Ts,a|

∑
t∈Ts,a

r′t =
1

|Ts,a|

∑
t∈Ts,a

(
r0
t + R̂

∗(s,a) − R̂0(s,a)
)

= R̂0(s,a) + R̂∗(s,a) − R̂0(s,a) = R̂∗(s,a),
(174)

Thus r′ and R̂∗ satisfy constraint (60). R̂∗ and Q∗ obviously satisfy constraints (61)
and (62) because r∗, R̂∗ and Q∗ is an optimal solution.

Let δ′ = r′ − r0 and δ∗ = r∗ − r0, then one can easily show that δ′ and δ∗ satisfy
the conditions in Lemma C.3 with I = Ts,a. Therefore by Lemma C.3, we have

‖r′ − r0‖α = ‖δ′‖α 6 ‖δ∗‖α = ‖r∗ − r0‖α. (175)

But note that by our assumption, r∗ is an optimal solution, thus ‖r∗ − r0‖α 6

‖r′ − r0‖α, which gives ‖r′ − r0‖α = ‖r∗ − r0‖α. This suggests r′, R̂∗, and Q∗ is
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another optimal solution. Compared to r∗, r′ differs in that r′t − r0
t now becomes

identical for all t ∈ Ts,a for a particular (s,a) pair. Reusing the above argument
iteratively, one can make r′t − r0

t identical for all t ∈ Ts,a for all (s,a) pairs, while
guaranteeing the solution is still optimal. Therefore, we have

r′t = r
0
t + R̂

∗(s,a) − R̂0(s,a),∀t ∈ Ts,a, ∀s,a, (176)

together with R̂∗ andQ∗ is an optimal solution to (59)-(62). Let ψ(s,a) = R̂∗(s,a) −
R̂0(s,a) conclude the proof.

Finally, Lemma C.5 provides a sensitive analysis on the value function Q as the
reward function changes.

Lemma C.5. Let M̂ = (S,A, P̂, R̂′,γ) and M̂0 = (S,A, P̂, R̂0,γ) be two MDPs, where
only the reward function differs. Let Q′ and Q0 be action values satisfying the Bellman
optimality equation on M̂ and M̂0 respectively, then

(1 − γ)‖Q′ −Q0‖∞ 6 ‖R̂− R̂0‖∞ 6 (1 + γ)‖Q′ −Q0‖∞. (177)

Proof. Define the Bellman operator as

HR̂(Q)(s,a) = R̂(s,a) + γ
∑
s′

P̂(s′ | s,a)max
a′
Q(s′,a′). (178)

From now on we suppress variables s and a for convenience. Note that due to the
Bellman optimality, we have HR̂0(Q0) = Q0 and HR̂′(Q′) = Q′, thus

‖Q′ −Q0‖∞ = ‖HR̂′(Q′) −HR̂0(Q0)‖∞
= ‖HR̂′(Q′) −HR̂′(Q0) +HR̂′(Q

0) −HR̂0(Q0)‖∞
6 ‖HR̂′(Q′) −HR̂′(Q0)‖∞ + ‖HR̂′(Q0) −HR̂0(Q0)‖∞
6 γ‖Q′ −Q0‖∞ + ‖HR̂′(Q0) −HR̂0(Q0)‖∞ (by contraction of HR̂′(·))

= γ‖Q′ −Q0‖∞ + ‖R̂′ − R̂0‖∞ (by HR̂′(Q0) −HR̂0(Q0) = R̂′ − R̂0)
(179)
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Rearranging we have (1 − γ)‖Q′ −Q0‖∞ 6 ‖R̂′ − R̂0‖∞. Similarly we have

‖Q′ −Q0‖∞ = ‖HR̂′(Q′) −HR̂0(Q0)‖∞
= ‖HR̂′(Q0) −HR̂0(Q0) +HR̂′(Q

′) −HR̂′(Q
0)‖∞

> ‖HR̂′(Q0) −HR̂0(Q0)‖∞ − ‖HR̂′(Q′) −HR̂′(Q0)‖∞
> ‖HR̂′(Q0) −HR̂0(Q0)‖∞ − γ‖Q′ −Q0‖∞
= ‖R̂′ − R̂0‖∞ − γ‖Q′ −Q0‖∞

(180)

Rearranging we have ‖R̂′ − R̂0‖∞ 6 (1 + γ)‖Q′ −Q0‖∞, concluding the proof.

Now we are ready to prove our main result.

Theorem 5.3. Assumeα > 1 in (59). Let r∗, R̂∗ andQ∗ be an optimal solution to (59)-(62),
then

1
2
(1 − γ)∆(ε)

(
min
s,a

|Ts,a|

) 1
α

6 ‖r∗ − r0‖α 6
1
2
(1 + γ)∆(ε)T

1
α . (63)

Proof. We construct the following value function Q′.

Q′(s,a) =


Q0(s,a) + ∆(ε)

2
, ∀s ∈ S,a = π†(s),

Q0(s,a) − ∆(ε)

2
, ∀s ∈ S,∀a 6= π†(s).

(181)

Note that ∀s ∈ S and ∀a 6= π†(s), we have

∆(ε) = max
s′∈S

[ max
a′ 6=π†(s′)

Q0(s′,a′) −Q0(s′,π†(s′)) + ε]+

> max
a′ 6=π†(s)

Q0(s,a′) −Q0(s,π†(s)) + ε > Q0(s,a) −Q0(s,π†(s)) + ε,
(182)

which leads to
Q0(s,a) −Q0(s,π†(s)) − ∆(ε) 6 −ε, (183)
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thus we have ∀s ∈ S and ∀a 6= π†(s),

Q′(s,π†(s)) = Q0(s,π†(s)) + ∆(ε)

2

= Q0(s,a) − [Q0(s,a) −Q0(s,π†(s)) − ∆(ε)] − ∆(ε)

2

> Q0(s,a) + ε− ∆(ε)

2
= Q′(s,a) + ε.

(184)

Therefore Q′ satisfies the constraint (62). By proposition C.1, there exists a unique
function R′ such that Q′ satisfies the Bellman optimality equation of MDP M̂′ =
(S,A, P̂,R′,γ). We then construct the following reward vector r′ = (r′0, ..., r′T−1) such
that ∀(s,a) and ∀t ∈ Ts,a, r′t = r0

t + R
′(s,a) − R̂0(s,a), where R̂0(s,a) is the reward

function estimated from r0. The reward function estimated on r′ is then

R̂′(s,a) = 1
|Ts,a|

∑
t∈Ts,a

r′t =
1

|Ts,a|

∑
t∈Ts,a

(
r0
t + R

′(s,a) − R̂0(s,a)
)

= R̂0(s,a) + R′(s,a) − R̂0(s,a) = R′(s,a).
(185)

Thus r′, R̂′ and Q′ is a feasible solution to (59)-(62). Now we analyze the attack
cost for r′, which gives us a natural upper bound on the attack cost of the optimal
solution r∗. Note thatQ′ andQ0 satisfy the Bellman optimality equation for reward
function R̂′ and R̂0 respectively, and

‖Q′ −Q0‖∞ =
∆(ε)

2
, (186)

thus by Lemma C.5, we have ∀t,

|r′t − r
0
t| = |R̂′(st,at) − R̂0(st,at)| 6 max

s,a
|R̂′(s,a) − R̂0(s,a)| = ‖R̂′ − R̂0‖∞

6 (1 + γ)‖Q′ −Q0‖∞ =
1
2
(1 + γ)∆(ε).

(187)
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Therefore, we have

‖r∗ − r0‖α 6 ‖r′ − r0‖α = (

T−1∑
t=0

|r′t − r
0
t|
α)

1
α 6

1
2
(1 + γ)∆(ε)T

1
α . (188)

Now we prove the lower bound. We consider two cases separately.
Case 1: ∆(ε) = 0. We must have Q0(s,π†(s)) > Q0(s,a) + ε, ∀s ∈ S,∀a 6= π†(s).

In this case no attack is needed and therefore the optimal solution is r∗ = r0. The
lower bound holds trivially.

Case 2: ∆(ε) > 0. Let s′ and a′ (a′ 6= π†(s′)) be a state-action pair such that

∆(ε) = Q0(s′,a′) −Q0(s′,π†(s′)) + ε. (189)

Let r∗, R̂∗ andQ∗ be an optimal solution to (59)-(62) that takes the form in Lemma C.4,
i.e.,

r∗t = r
0
t + R̂

∗(s,a) − R̂0(s,a),∀t ∈ Ts,a,∀s,a. (190)

Constraint (62) ensures thatQ∗(s′,π†(s′)) > Q∗(s′,a′) + ε, in which case either one
of the following two conditions must hold:

i). Q∗(s′,π†(s′)) −Q0(s′,π†(s′)) > ∆(ε)

2
, ii). Q0(s′,a′) −Q∗(s′,a′) > ∆(ε)

2
,

(191)
since otherwise we have

Q∗(s′,π†(s′)) < Q0(s′,π†(s′)) + ∆(ε)

2
= Q0(s′,π†(s′)) + 1

2
[Q0(s′,a′) −Q0(s′,π†(s′)) + ε]

=
1
2
Q0(s′,a′) + 1

2
Q0(s′,π†(s′)) + ε

2
= Q0(s′,a′) − 1

2
[Q0(s′,a′) −Q0(s′,π†(s′)) + ε] + ε

= Q0(s′,a′) − ∆(ε)

2
+ ε < Q∗(s′,a′) + ε.

(192)
Next note that if either i) or ii) holds, we have ‖Q∗ −Q0‖∞ > ∆(ε)

2 . By Lemma C.5,
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we have

max
s,a

|R̂∗(s,a)− R̂0(s,a)| = ‖R̂∗− R̂0‖∞ > (1−γ)‖Q∗−Q0‖∞ >
1
2
(1−γ)∆(ε). (193)

Let s∗,a∗ ∈ arg maxs,a |R̂
∗(s,a) − R̂0(s,a)|, then we have

|R̂∗(s∗,a∗) − R̂0(s∗,a∗)| > 1
2
(1 − γ)∆(ε). (194)

Therefore, we have

‖r∗ − r0‖αα =

T−1∑
t=0

|r∗t − r
0
t|
α =
∑
s,a

∑
t∈Ts,a

|r∗t − r
0
t|
α >

∑
t∈Ts∗ ,a∗

|r∗t − r
0
t|
α

=
∑

t∈Ts∗ ,a∗

|R̂∗(s∗,a∗) − R̂0(s∗,a∗)|α >

(
1
2
(1 − γ)∆(ε)

)α
|Ts∗,a∗ |

>

(
1
2
(1 − γ)∆(ε)

)α
min
s,a

|Ts,a|.

(195)

Therefore ‖r∗ − r0‖α > 1
2(1 − γ)∆(ε) (mins,a |Ts,a|)

1
α .

We finally point out that while an optimal solution r∗ may not necessarily take
the form in Lemma C.4, it suffices to bound the cost of an optimal attack which
indeed takes this form (as we did in the proof) since all optimal attacks have exactly
the same objective value.

C.3 Convex Surrogate for LQR Attack Optimization
By pulling the positive semi-definite constraints on Q and R out of the lower level
optimization (79), one can turn the original attack optimization (74)-(80) into the
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following surrogate optimization:

min
r,Q̂,R̂,q̂,ĉ,X,x

‖r − r0‖α (196)

s.t. −γ
(
R̂+ γB̂>XB̂

)−1
B̂>XÂ = K†, (197)

−γ
(
R̂+ γB̂>XB̂

)−1
B̂>x = k†, (198)

X = γÂ>XÂ− γ2Â>XB̂
(
R̂+ γB̂>XB̂

)−1
B̂>XÂ+ Q̂ (199)

x = q̂+ γ(Â+ B̂K†)>x (200)

(Q̂, R̂, q̂, ĉ) = arg min
T−1∑
t=0

∥∥∥∥1
2
s>t Qst + q

>st + a
>
t Rat + c+ rt

∥∥∥∥2

2
(201)

Q̂ � 0, R̂ � εI,X � 0. (202)

The feasible set of (196)-(202) is a subset of the original problem, thus the surro-
gate attack optimization is a more stringent formulation than the original attack
optimization, that is, successfully solving the surrogate optimization gives us a
(potentially) sub-optimal solution to the original problem. To see why the surrogate
optimization is more stringent, we illustrate with a much simpler example as below.
A formal proof is straight forward, thus we omit it here. The original problem
is (203)-(204). The feasible set for â is a singleton set {0}, and the optimal objective
value is 0.

min
â

0 (203)

s.t. â = arg min
a>0

(a+ 3)2, (204)

Once we pull the constraint out of the lower-level optimization (204), we end up
with a surrogate optimization (205)-(207). Note that (206) requires â = −3, which
does not satisfy (207). Therefore the feasible set of the surrogate optimization is ∅,
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meaning it is more stringent than (203)-(204).

min
â

0 (205)

s.t. â = arg min(a+ 3)2, (206)

â > 0 (207)

Back to our attack optimization (196)-(202), this surrogate attack optimization
comes with the advantage of being convex, thus can be solved to global optimality.

Proposition C.6. The surrogate attack optimization (196)-(202) is convex.

Proof. First note that the sub-level optimization (201) is itself a convex problem,
thus is equivalent to the corresponding KKT condition. We write out the KKT
condition of (201) to derive an explicit form of our attack formulation as below:

min
r,Q̂,R̂,q̂,ĉ,X,x

‖r − r0‖α (208)

s.t. −γ
(
R̂+ γB̂>XB̂

)−1
B̂>XÂ = K†, (209)

−γ
(
R̂+ γB̂>XB̂

)−1
B̂>x = k†, (210)

X = γÂ>XÂ− γ2Â>XB̂
(
R̂+ γB̂>XB̂

)−1
B̂>XÂ+ Q̂ (211)

x = q̂+ γ(Â+ B̂K†)>x (212)
T−1∑
t=0

(
1
2
s>t Q̂st + q̂

>st + a
>
t R̂at + ĉ+ rt)sts

>
t = 0, (213)

T−1∑
t=0

(
1
2
s>t Q̂st + q̂

>st + a
>
t R̂at + ĉ+ rt)ata

>
t = 0, (214)

T−1∑
t=0

(
1
2
s>t Q̂st + q̂

>st + a
>
t R̂at + ĉ+ rt)st = 0, (215)

T−1∑
t=0

(
1
2
s>t Q̂st + q̂

>st + a
>
t R̂at + ĉ+ rt) = 0, (216)

Q̂ � 0, R̂ � εI,X � 0. (217)
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The objective is obviously convex. (209)-(211) are equivalent to

− γB̂>XÂ =
(
R̂+ γB̂>XB̂

)
K†. (218)

− γB̂>x =
(
R̂+ γB̂>XB̂

)
k†. (219)

X = γÂ>X(Â+ B̂K†) + Q̂, (220)

Note that these three equality constraints are all linear in X, R̂, x, and Q̂. (212) is
linear in x and q̂. (213)-(216) are also linear in Q̂, R̂, q̂, ĉ and r. Finally, (217) contains
convex constraints on Q̂, R̂, and X. Given all above, the attack problem is convex.

Next we analyze the feasibility of the surrogate attack optimization.

Proposition C.7. Let Â, B̂ be the learner’s estimated transition kernel. Let

L†(s,a) = 1
2
s>Q†s+ (q†)>s+ a>R†a+ c† (221)

be the attacker-defined loss function. Assume R† � εI. If the target policy K†, k† is the
optimal control policy induced by the LQR with transition kernel Â, B̂, and loss function
L†(s,a), then the surrogate attack optimization (196)-(202) is feasible. Furthermore, the
optimal solution can be achieved.

Proof. To prove feasibility, it suffices to construct a feasible solution to optimiza-
tion (196)-(202). Let

rt =
1
2
s>t Q

†st + q
†>st + a

>
t R
†at + c

† (222)

and r be the vector whose t-th element is rt. We next show that r, Q†, R†, q†, c†,
together with some X and x is a feasible solution. Note that since K†, k† is induced
by the LQR with transition kernel Â, B̂ and cost function L†(s,a), constraints (197)-
(200) must be satisfied with some X and x. The poisoned reward vector r obviously
satisfies (201) since it is constructed exactly as the minimizer. By our assumption,
R† � εI, thus (202) is satisfied. Therefore, r, Q†, R†, q†, c†, together with the
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corresponding X, x is a feasible solution, and the optimization (196)-(202) is feasible.
Furthermore, since the feasible set is closed, the optimal solution can be achieved.

C.4 Conditions for The LQR Learner to Have Unique
Estimate

The LQR learner estimates the cost function by

(Q̂, R̂, q̂, ĉ) = arg min
(Q�0,R�εI,q,c)

1
2

T−1∑
t=0

∥∥∥∥1
2
s>t Qst + q

>st + a
>
t Rat + c+ rt

∥∥∥∥2

2
. (223)

We want to find a condition that guarantees the uniqueness of the solution.
Let ψ ∈ RT be a vector, whose t-th element is

ψt =
1
2
s>t Qst + q

>st + a
>
t Rat + c, 0 6 t 6 T − 1. (224)

Note that we can view ψ as a function of D, Q, R, q, and c, thus we can also
denote ψ(D,Q,R,q, c). Define Ψ(D) = {ψ(D,Q,R,q, c) | Q � 0,R � εI,q, c}, i.e.,
all possible vectors that are achievable with form (224) if we vary Q, R, q and c
subject to positive semi-definite constraints on Q and R. We can prove that Ψ is a
closed convex set.

Proposition C.8. ∀D,Ψ(D) = {ψ(D,Q,R,q, c) | Q � 0,R � εI,q, c} is a closed convex
set.

Proof. Let ψ1,ψ2 ∈ Ψ(D). We use ψi,t to denote the t-th element of vector ψi. Then
we have

ψ1,t =
1
2
s>t Q1st + q

>
1 st + a

>
t R1at + c1 (225)

for some Q1 � 0, R1 � εI, q1 and c1, and

ψ2,t =
1
2
s>t Q2st + q

>
2 st + a

>
t R2at + c2 (226)
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for someQ2 � 0, R2 � εI, q2 and c2. ∀k ∈ [0, 1], let ψ3 = kψ1 + (1 − k)ψ2. Then the
t-th element of ψ3 is

ψ3,t =
1
2
s>t [kQ1 + (1 − k)Q2]st + [kq1 + (1 − k)q2]

>st

+ a>t [kR1 + (1 − k)R2]at + kc1 + (1 − k)c2

(227)

Since kQ1 + (1 − k)Q2 � 0 and kR1 + (1 − k)R2 � εI, ψ3 ∈ Ψ(D), concluding the
proof.

The optimization (223) is intrinsically a least-squares problem with positive
semi-definite constraints on Q and R, and is equivalent to solving the following
linear equation:

1
2
s>t Q̂st + q̂

>st + a
>
t R̂at + ĉ = ψ

∗
t , ∀t, (228)

where ψ∗ = arg minψ∈Ψ(D) ‖ψ+ r‖2
2 is the projection of the negative reward vector

−r onto the set Ψ(D). The solution to (228) is unique if and only if the following
two conditions both hold

i). The projection ψ∗ is unique.

ii). (228) has a unique solution for ψ∗.

Condition i) is satisfied because Ψ(D) is convex, and any projection (in `2 norm)
onto a convex set exists and is always unique (see Hilbert Projection Theorem). We
next analyze when condition ii) holds. (228) is a linear function in Q̂, R̂, q̂, and ĉ,
thus one can vectorize Q̂ and R̂ to obtain a problem in the form of linear regression.
Then the uniqueness is guaranteed if and only if the design matrix has full column
rank. Specifically, let Q̂ ∈ Rn×n, R̂ ∈ Rm×m, and q̂ ∈ Rn. Let st,i and at,i denote
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the i-th element of st and at respectively. Define

A =



s2
0,1
2 . . . s0,is0,j

2 . . . s2
0,n
2 a2

0,1 . . . a0,ia0,j . . . a2
0,m s>0 1

s2
1,1
2 . . . s1,is1,j

2 . . . s2
1,n
2 a2

1,1 . . . a1,ia2,j . . . a2
1,m s>1 1

... ... ... ... ... ... ... ...
s2
t,1
2 . . . st,ist,j

2 . . . s2
t,n
2 a2

t,1 . . . at,iat,j . . . a2
t,m s>t 1

... ... ... ... ... ... ... ...
s2
T−1,1

2 . . . sT−1,isT−1,j
2 . . . s2

T−1,n
2 a2

T−1,1 . . . aT−1,iaT−1,j . . . a2
T−1,m s>T−1 1


,

x> =
[
Q̂11 . . . Q̂ij . . . Q̂nn R̂11 . . . R̂ij . . . R̂mm q̂1 . . . q̂i . . . q̂n ĉ

]
,

then (228) is equivalent to Ax = ψ∗, where x contains the vectorized variables Q̂, R̂,
q̂ and ĉ. Ax = ψ∗ has a unique solution if and only if A has full column rank.

C.5 Sparse Attacks on TCE and LQR

In this section, we present experimental details for both TCE and LQR victims
when the attacker uses `1 norm to measure the attack cost, i.e. α = 1. The other
experimental parameters are set exactly the same as in the main text.

We first show the result for MDP experiment 2 with α = 1, see Figure 35. The
attack cost is ‖r − r0‖1 = 3.27, which is small compared to ‖r0‖1 = 105. We note
that the reward poisoning is extremely sparse: only the reward corresponding to
action “go up” at the terminal state G is increased by 3.27, and all other rewards
remain unchanged. To explain this attack, first note that we set the target action for
the terminal state to “go up”, thus the corresponding reward must be increased.
Next note that after the attack, the terminal state becomes a sweet spot, where the
agent can keep taking action “go up” to gain large amount of discounted future
reward. However, such future reward is discounted more if the agent reaches the
terminal state via a longer path. Therefore, the agent will choose to go along the red
trajectory to get into the terminal state earlier, though at a price of two discounted
−10 rewards.
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S

G

+3.270

Figure 35: Sparse reward modification for MDP experiment 2.
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Figure 36: Sparse reward modification for MDP experiment 3.

The result is similar for MDP experiment 3. The attack cost is ‖r − r0‖1 = 1.05,
compared to ‖r0‖1 = 121. In Figure 36, we show the reward modification for each
state action pair. Again, the attack is very sparse: only rewards of 12 state-action
pairs are modified out of a total of 124.

Finally, we show the result on attacking LQR with α = 1. The attack cost is
‖r − r0‖1 = 5.44, compared to ‖r0‖1 = 2088.57. In Figure 37, we plot the clean and
poisoned trajectory of the vehicle, together with the reward modification in each
time step. The attack is as effective as with a dense 2-norm attack in Figure 21.
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However, the poisoning is highly sparse: only 10 out of 400 rewards are changed.

(a) Clean and poisoned vehicle trajectory. (b) Clean and poisoned rewards.

Figure 37: Sparse-poisoning a vehicle running LQR in 4D state space.

C.6 Derivation of Discounted Discrete-time
Algebraic Riccati Equation

We provide a derivation for the discounted Discrete-time Algebraic Riccati Equation.
For simplicity, we consider the noiseless case, but the derivation easily generalizes
to noisy case. We consider the loss function is a general quadratic function w.r.t. s
as follows:

L(s,a) = 1
2
s>Qs+ q>s+ c+ a>Ra. (229)

When q = 0, c = 0, we recover the classic LQR setting. Assume the general value
function takes the form V(s) = 1

2s
>Xs + s>x + v. Let Q(s,a) (note that this is

different notation from the Qmatrix in L(s,a)) be the corresponding action value
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function. We perform dynamics programming as follows:

Q(s,a) = 1
2
s>Qs+ q>s+ c+ a>Ra+ γV(As+ Ba)

=
1
2
s>Qs+ q>s+ c+ a>Ra+ γ

(
1
2
(As+ Ba)>X(As+ Ba) + (As+ Ba)>x+ v

)
=

1
2
s>(Q+ γA>XA)s+

1
2
a>(R+ γB>XB)a+ s>(γA>XB)a

+ s>(q+ γA>x) + a>(γB>x) + (c+ γv).
(230)

We minimize a above:

(R+ γB>XB)a+ γB>XAs+ γB>x = 0

⇒ a = −γ(R+ γB>XB)−1B>XAs− γ(R+ γB>XB)−1B>x , Ks+ k.
(231)

Now we substitute it back to Q(s,a) and regroup terms, we get:

V(s) =
1
2
s>(Q+ γA>XA+ K>(R+ γB>XB)K+ 2γA>XBK)s

+ s>(K>(R+ γB>XB)k+ γA>XBk+ q+ γA>x+ γK>B>x) + C
(232)

for some constant C, which gives us the following recursion:

X = γA>XA− γ2A>XB(R+ γB>XB)−1B>XA+Q,

x = q+ γ(A+ BK)>x.
(233)
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d appendix for adversarial attacks on kalman filter

D.1 Simulated Raw Data Processing

CARLA outputs a single RGB image, a depth map image, and variable number of
RADAR points for each 0.05 second time step of the simulation. We analyze this
data at each time step to produce object detections in the same format of MATLAB
FCW (MATLAB, 2020b):

[
d1 v1 d2 v2

]
where d1 and d2 are the distance, in meters, from the vehicle sensor in directions

parallel and perpendicular to the vehicle’s motion, respectively. v1 and v2 are
the detected object velocities, in m/s, relative to the ego along these parallel and
perpendicular axes.

To produce these detections from vision data, we first find bounding boxes
around probable vehicles in each RGB image frame using an implementation of
a YOLOv2 network in MATLAB which has been pre-trained on vehicle images
(MATLAB, 2020a). Each bounding box is used to create a distinct object detection.
The d1 value, or depth, of each object is taken to be the depth recorded by the depth
map at the center pixel of each bounding box.

The d2 value of each detection is then computed as

d2 = u ∗ d
1

lfoc
(234)

where u is the horizontal pixel coordinate of the center of a bounding box in a
frame, and lfoc is the focal length of the RGB camera in pixels (R. Collins, 2007). lfoc
is not directly specified by CARLA, but can be computed using the image length,
800 pixels, and the camera field of vision, 90 degrees (Edmund Optics, 2020).

To compute v1 and v2 for detections of the current time step, we also consider
detections from the previous time step. First, we attempt to match each bounding
box from the current time step to a single bounding box from the previous step.
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Box pairs are evaluated based on their Intersection-Over-Union (IoU) (A. Bewley, Z.
Ge, L. Ott, F. Ramos, and B. Upcroft, sep. 2016). Valued between 0 and 1, a high
IoU indicates high similarity of size and position of two boxes, and we enforce a
minimum threshold of 0.4 for any two boxes to be paired. For two adjacent time
steps, A and B, we take the IoU of all possible pairs of bounding boxes with one
box from step A, and one from B. These IoU values form the cost matrix for the
Hungarian matching algorithm (Murray, 2017), which produces the best possible
pairings of bounding boxes from the current time step to the previous.

This matching process results in a set of detections with paired bounding boxes,
and a set with unpaired boxes. For each detection with a paired box, we calculate its
velocity simply as the difference between respective d1 and d2 values of the current
detection and its paired observation from the previous time step, multiplied by the
frame rate, fpscam. For a detection, a, paired with a previous detection, b:

< v1
a, v2

a >=< d
1
b − d

1
a,d2

b − d
2
a > ∗fpscam (235)

For each detection left unpaired after Hungarian matching, we make no conclu-
sions about v1 or v2 for that detection, and treat each as zero.

Each RADAR measurement output by CARLA represents an additional object
detection. RADAR measurements contain altitude (al) and azimuth (az) angle
measurements, as well as depth (d) and velocity (v), all relative to the RADAR
sensor. We convert these measurements into object detection parameters as follows

d1 = d ∗ cosaz ∗ cosal v1 = v ∗ cosaz ∗ cosal

d2 = d ∗ sin az ∗ cosal v2 = v ∗ sin az ∗ cosal
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D.2 Derivation of Surrogate Constraints

The original attack optimization (91)-(98) may not be convex due to that (97) and (98)
could be nonlinear. Our goal in this section is to derive convex surrogate constraints
that are good approximations to (97) and (98). Furthermore, we require the sur-
rogate constraints to be tighter than the original constraints, so that solving the
attack under the surrogate constraints will always give us a feasible solution to
the original attack. Concretely, we want to obtain surrogate constraints to F(x) = `,
where ` ∈ {green, yellow, red}. We analyze each case of ` separately:

• ` = green

In this case, F(x) = ` is equivalent to v > 0 according to (90). While this
constraint is convex, when we actually solve the optimization, it might be
violated due to numerical inaccuracy. To avoid such numerical issues, we
tighten it by adding a margin parameter ε > 0, and the derived surrogate
constraint is v > ε.

• ` = red

In this case, F(x) = ` is equivalent to

v < 0 (236)

d 6 −1.2v+ 1
0.8g

v2. (237)

Similar to case 1, we tighten the first constraint as

v 6 −ε. (238)

Note that by the first constraint, we must have v < 0. The second constraint is
d 6 −1.2v+ 1

0.8gv
2. Given v < 0, this is equivalent to

v 6 0.48g−
√
(0.48g)2 + 0.8gd. (239)
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We next define the following function

U(d) = 0.48g−
√
(0.48g)2 + 0.8gd. (240)

The first derivative is

U′(d) = −
0.4g√

(0.48g)2 + 0.8gd
, (241)

which is increasing when d > 0. Therefore, the function U(d) is convex. We
now fit a linear function that lower bounds U(d). Specifically, since U(d) is
convex, for any d0 > 0, we have

U(d) > U′(d0)(d− d0) +U(d0). (242)

Therefore, v 6 U′(d0)(d − d0) + U(d0) is a tighter constraint than v 6 U(d).
The two constraints are equivalent at d = d0. Again, we need to add a margin
parameter to avoid constraint violation due to numerical inaccuracy. With
this in mind, the surrogate constraint becomes

v 6 U′(d0)(d− d0) +U(d0) − ε, (243)

Or, equivalently:

v 6 −ε, (244)

v 6 U′(d0)(d− d0) +U(d0) − ε, (245)

This concludes the proof of our Proposition 6.1.

However, we still need to pick an appropriate d0. In our scenario, the distance
d has physical limitation d ∈ [d, d̄] with d = 0 and d̄ = 75. The U(d) curve
for d ∈ [0, 75] is shown in Fig 38. Based on the figure, we select d0 such that
U′(d0) is equal to the slope of the segment connecting the two end points of



180

Figure 38: Surrogate light constraints.

the curve, i.e.,
U′(d0) =

U(75) −U(0)
75

=
U(75)

75
. (246)

We now derive the concrete surrogate constraints used in our experiment
section. We begin with the following equation:

0.48g+ 0.4g
U′(d)

= U(d). (247)

From which, we can derive d0:

d0 =
1

0.8g

(
(

30g
U(75)

)2 − (0.48g)2
)

(248)

and
U(d0) = 0.48g+ 30g

U(75)
. (249)

By substituting d0 and U(d0) into (243), we find that the surrogate constraint
is

v 6
U(75)

75
(d− d0) + 0.48g+ 30g

U(75)
+ ε. (250)

• ` = yellow
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In this case, F(x) = ` is equivalent to

v < 0 (251)

d > −1.2v+ 1
0.8g

v2. (252)

Similarly, we tighten the first constraint to

v 6 −ε. (253)

For the second constraint, the situation is similar to ` = red. ∀d0 > 0. We have

v >
U(d0)

d0
d, ∀d ∈ [0,d0] (254)

The above inequality is derived by fitting a linear function that is always above
the U(d) curve. Next, we select d0 = 75 and add a margin parameter ε to
derive the surrogate constraint:

v 6 −ε (255)

v >
U(75)

75
d+ ε. (256)

To summarize, we have derived surrogate constraints for F(x) = `, where
l ∈ {green, yellow, red}. When we solve the attack optimization, we replace
each individual constraint of (97) and (98) by one of the above three surrogate
constraints. In Fig 38, we show the surrogate constraints for red and yellow
lights with ε = 10−3.

D.3 Preprocessing of CARLA Measurements

In this section, we describe how we preprocess the measurements obtained from
CARLA simulation. The measurement in each time step takes the form of tt =
[y1
t,y2

t] ∈ {R ∪NaN}8, where y1
t ∈ {R ∪NaN}4 is the vision detection produced by
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ML-based objection detection algorithm YOLOv2, and y2
t is the detection generated

by radar (details in Appendix D.1). Both vision and radar measurements contain
four components: (1) the distance to MIO along driving direction, (2) the velocity of
MIO along driving direction, (3) the distance to MIO along lateral direction, and (4)
the velocity of MIO along lateral direction. The radar measurements are relatively
accurate, and do not have missing data or outliers. However, there are missing
data (NaN) and outliers in vision measurements. The missing data problem arises
because the MIO sometimes cannot be detected, e.g., in the beginning of the video
sequence when the MIO is out of the detection range of the camera. Outliers occur
because YOLOv2 may not generate an accurate bounding box of the MIO, causing it
to correspond to a depth map reading of an object at a different physical location. As
such, a small inaccuracy in the location of the bounding box could lead to dramatic
change to the reported distance and velocity of the MIO.

In our experiment, we preprocess detections output from CARLA to address
missing data and outlier issues. First, we identify the outliers by the Matlab “fill-
outliers" method, where we choose “movmedian" as the detector and use linear
interpolation to replace the outliers. The concrete Matlab command is:

filloutliers(Y, ‘linear’, ‘movmedian’, 0, ‘ThresholdFactor’, 0.5),

where Y ∈ RT×8 is the matrix of measurements and T is the total number steps.
In our experiment T = 295. We perform the above outlier detection and replace
operation twice to smooth the measurements.

Then, we apply the Matlab “impute" function to interpolate the missing vision
measurements. In Fig 39 and 40, we show the preprocessed distance and velocity
measurements from vision and radar compared with the ground-truth for both
MIO-10 and MIO+1 datasets. Note that after preprocessing, both radar and vision
measurements match with the ground-truth well.
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(a) Distance measurements. (b) Velocity measurements.

Figure 39: On the MIO-10 dataset, the preprocessed vision measurements and the
radar measurements match the ground-truth reasonably well.

(a) Distance measurements. (b) Velocity measurements.

Figure 40: On the MIO+1 dataset, the preprocessed vision measurements and the
radar measurements match the ground-truth reasonably well.
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(a) Acceleration estimation. (b) Manipulation on velocity.

Figure 41: Acceleration reduces significantly as the velocity measurement drops
after step 96. This in turn causes the KF velocity estimation to decrease fast.

D.4 Velocity Increase in Figure 24c

In Figure 41b, we show again the manipulation on the velocity measurement for the
MIO+1 dataset. The attacker’s goal is to cause the FCW to output red warnings in
the target interval [100, 139]. Intuitively, the attacker should decrease the distance
and velocity. However, in Figure 41b, the attacker instead chooses to increase the
velocity during interval [88,96]. We note that this is because the attacker hopes to
force a very negative KF acceleration estimation. To accomplish that, the attacker
first strategically increases the velocity from step 88 to 96, and then starting from
step 97, the attacker suddenly decreases the velocity dramatically. This misleads
the KF to believe that the MIO has a very negative acceleration. In Fig 41a, we show
the acceleration estimation produced by KF. At step 96, the estimated acceleration
is 8.1m/s2. However, at step 97, the estimated acceleration suddenly drops to
−16m/s2, and then stays near −30m/s2 until the target interval. The very negative
acceleration in turn causes the KF velocity estimation to decrease quickly. The
resulting velocity estimation reached around −10m/s during the target interval,
which causes FCW to output red lights.
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D.5 Human Behavior Algorithm

In this section, we provide an algorithmic description of the human behavior model.

Protocol 10 Human Behavior Algorithm.
1: Input: light sequence `t(1 6 t 6 T), reaction time h∗.
2: Initialize s = 0.
3: for t← 1, ..., T do
4: if t! = 1 and `t! = `t−1 then
5: s = 0.
6: else if `t = red then
7: s = s+ 1
8: else
9: s = s− 1

10: end if
11: if `t = red then
12: human applies pressure on pedal
13: else if s 6 −h∗ then
14: human releases brake
15: else
16: human stays in the previous state
17: end if
18: end for

D.6 Detailed Results of Greedy Attack

In this section, we provide more detailed results of the greedy attack, including
warning lights before and after attack, manipulations on measurements, and the
trajectory of KF state predictions. We notice that the results are very similar for
different lengths of the stealthy interval Ts. Therefore, here we only show the
results for Ts = 2.5 seconds (i.e., half of the full length) as an example.

Fig. 42 shows the greedy attack on MIO-10, where the stealthy interval Ts =
[50, 97]. By manipulating the distance and velocity to the maximum possible value,
the attacker successfully causes the FCW to output green lights in the target interval
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(a) The warning lights. (b) The manipulation on distance.

(c) The manipulation on velocity. (d) The state trajectory.

Figure 42: Greedy attack on the MIO-10 dataset.

T†. However, the attack induces side effect in Ts, where the original yellow lights
are changed to green. In contrast, our MPC-based attack does not have any side
effect during Ts. Also note that the trajectory of the KF state prediction enters
“into" the desired green region during T†. This is more than necessary and requires
larger total manipulation (J1) than forcing states just on the boundary of the desired
region, as does our attack.

In Fig. 43, we show the greedy attack on MIO+1. The stealthy interval is Ts =
[51, 99]. Again, the attack results in side effect during the stealthy interval Ts.
Furthermore, the side effect is much more severe (green to red) than that of our
MPC-based attack (green to yellow). The KF state trajectory enters “into" the desired
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(a) The warning lights. (b) The manipulation on distance.

(c) The manipulation on velocity. (d) The state trajectory.

Figure 43: Greedy attack on the MIO+1 dataset.

red region, and requires larger total manipulation (J1) than our attack.
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