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Basics of Statistical Learning Probability
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Basics of Statistical Learning Probability

Probability

The probability of a discrete random variable A taking the value a is
P (A = a) ∈ [0, 1].

Sometimes written as P (a) when no danger of confusion.

Normalization
∑

all a P (A = a) = 1.

Joint probability P (A = a,B = b) = P (a, b), the two events both
happen at the same time.

Marginalization P (A = a) =
∑

all b P (A = a,B = b), “summing out
B”.

Conditional probability P (a|b) = P (a,b)
P (b) , a happens given b happened.

The product rule P (a, b) = P (a)P (b|a) = P (b)P (a|b).
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Basics of Statistical Learning Probability

Bayes Rule

Bayes rule P (a|b) = P (b|a)P (a)
P (b) .

In general, P (a|b, C) = P (b|a,C)P (a|C)
P (b|C) where C can be one or more

random variables.

Bayesian approach: when θ is model parameter, D is observed data,
we have

p(θ|D) =
p(D|θ)p(θ)
p(D)

,

I p(θ) is the prior,
I p(D|θ) the likelihood function (of θ, not normalized:

∫
p(D|θ) dθ 6= 1),

I p(D) =
∫
p(D|θ)p(θ) dθ the evidence,

I p(θ|D) the posterior.
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Basics of Statistical Learning Probability

Independence

The product rule can be simplified as P (a, b) = P (a)P (b) iff A and
B are independent

Equivalently, P (a|b) = P (a), P (b|a) = P (b).
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Basics of Statistical Learning Probability

Probability density

A continuous random variable x has a probability density function
(pdf) p(x) ∈ [0,∞].

p(x) > 1 is possible! Integrates to 1.∫ ∞
−∞

p(x) dx = 1

P (x1 < X < x2) =
∫ x2
x1
p(x) dx

Marginalization p(x) =
∫∞
−∞ p(x, y) dy
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Basics of Statistical Learning Probability

Expectation and Variance

The expectation (“mean” or “average”) of a function f under the
probability distribution P is

EP [f ] =
∑
a

P (a)f(a)

Ep[f ] =

∫
x
p(x)f(x) dx

In particular if f(x) = x, this is the mean of the random variable x.

The variance of f is

Var(f) = E[(f(x)− E[f(x)])2] = E[f(x)2]− E[f(x)]2

The standard deviation is std(f) =
√

Var(f).
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Basics of Statistical Learning Probability

Multivariate Statistics

When x, y are vectors, E[x] is the mean vector

Cov(x, y) is the covariance matrix with i, j-th entry being
Cov(xi, yj).

Cov(x, y) = Ex,y[(x− E[x])(y − E[y])] = Ex,y[xy]− E[x]E[y]
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Basics of Statistical Learning Probability

Some Discrete Distributions

Dirac or point mass distribution X ∼ δa if P (X = a) = 1

Binomial. n (number of trials) and p (head probability)

f(x) =


(
n
x

)
px(1− p)n−x for x = 0, 1, . . . , n

0 otherwise

Bernoulli. Binomial with n = 1.

Multinomial p = (p1, . . . , pd)
> (d-sided die)

f(x) =


(

n
x1, . . . , xd

)∏d
k=1 p

xk
k if

∑d
k=1 xk = n

0 otherwise
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Basics of Statistical Learning Probability

More Discrete Distributions

Poisson. X ∼ Poisson(λ) if

f(x) = e−λ
λx

x!

for x = 0, 1, 2, . . ..

λ the rate or intensity parameter

mean: λ, variance: λ

If X1 ∼ Poisson(λ1) and X2 ∼ Poisson(λ2) then
X1 +X2 ∼ Poisson(λ1 + λ2).

This is a distribution on unbounded counts with a probability mass
function“hump” (mode at dλe − 1).
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Basics of Statistical Learning Probability

Some Continuous Distributions

Gaussian (Normal): X ∼ N(µ, σ2) with parameters µ ∈ R (the
mean) and σ2 (the variance)

f(x) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
.

σ is the standard deviation.

If µ = 0, σ = 1, X has a standard normal distribution.

(Scaling) If X ∼ N(µ, σ2), then Z = (X − µ)/σ ∼ N(0, 1)

(Independent sum) If Xi ∼ N(µi, σ
2
i ) are independent, then∑

iXi ∼ N
(∑

i µi,
∑

i σ
2
i

)
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Basics of Statistical Learning Probability

Some Continuous Distributions

Multivariate Gaussian. Let x, µ ∈ Rd, Σ ∈ Sd+ a symmetric, positive
definite matrix of size d× d. Then X ∼ N(µ,Σ) with PDF

f(x) =
1

|Σ|1/2(2π)d/2
exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
.

µ is the mean vector, Σ is the covariance matrix, |Σ| its determinant,
and Σ−1 its inverse
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Basics of Statistical Learning Probability

Marginal and Conditional of Gaussian

If two (groups of) variables x, y are jointly Gaussian:[
x
y

]
∼ N

([
µx
µy

]
,

[
A C
C> B

])
(1)

(Marginal) x ∼ N(µx, A)

(Conditional) y|x ∼ N(µy + C>A−1(x− µx), B − C>A−1C)
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Basics of Statistical Learning Probability

More Continuous Distributions

The Gamma function (not distribution) is Γ(α) =
∫∞

0 yα−1e−ydy
with α > 0.

Generalizes factorial: Γ(n) = (n− 1)! when n is a positive integer.

Γ(α+ 1) = αΓ(α) for α > 0.

X has a Gamma distribution X ∼ Gamma(α, β) with shape
parameter α > 0 and scale parameter β > 0

f(x) =
1

βαΓ(α)
xα−1e−x/β, x > 0.

Conjugate prior for Poisson rate.
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Basics of Statistical Learning Probability

More Continuous Distributions

Beta. X ∼ Beta(α, β) with parameters α, β > 0, if

f(x) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1, x ∈ (0, 1).

A draw from a beta distribution can be thought of as generating a
(biased) coin.

Beta(1, 1) is uniform in [0, 1].

Beta(α < 1, β < 1) has a U-shape.

Beta(α > 1, β > 1) is unimodal with mean α/(α+ β) and mode
(α− 1)/(α+ β − 2).

Beta distribution is conjugate to the binomial and Bernoulli
distributions. A draw from the corresponding Bernoulli distribution
can be thought of as a flip of that coin.

Zhu (Univ. Wisconsin) Statistical Machine Learning for NLP CCF/ADL46 2013 17 / 125



Basics of Statistical Learning Probability

More Continuous Distributions

Dirichlet. Multivariate version of beta. X ∼ Dir(α1, . . . , αd) with
parameters αi > 0, if

f(x) =
Γ(
∑d

i αi)∏d
i Γ(αi)

d∏
i

xαi−1
i

where x = (x1, . . . , xd) with xi > 0,
∑d

i xi = 1.

The support is called the open (d− 1) dimensional simplex.

Dirichlet is conjugate to multinomial.

Dice factory (Dirichlet) and die rolls (multinomial)

Modeling bag-of-word documents. Also in Dirichlet Processes.
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Basics of Statistical Learning Statistical Estimation
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Basics of Statistical Learning Statistical Estimation

Parametric Models

A statistical model H is a set of distributions.

In machine learning, we call H the hypothesis space.

A parametric model can be parametrized by a finite number of
parameters: f(x) ≡ f(x; θ) with parameter θ ∈ Rd:

H =
{
f(x; θ) : θ ∈ Θ ⊂ Rd

}
where Θ is the parameter space.
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Basics of Statistical Learning Statistical Estimation

Parametric Models

We denote the expectation

Eθ(g) =

∫
x
g(x)f(x; θ) dx

Eθ means Ex∼f(x;θ), not over different θ’s.

For parametric model H = {N(µ, 1) : µ ∈ R}, given iid data
x1, . . . , xn, the optimal estimator of the mean is µ̂ = 1

n

∑
xi.

All (parametric) models are wrong. Some are more useful than others.
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Basics of Statistical Learning Statistical Estimation

Nonparametric model

A nonparametric model cannot be parametrized by a fixed number of
parameters.

Model complexity grows indefinitely with sample size

Example: H = {P : V arP (X) <∞}.
Given iid data x1, . . . , xn, the optimal estimator of the mean is again
µ̂ = 1

n

∑
xi.

Nonparametric makes weaker model assumptions and thus is
preferred.

But parametric models converge faster and are more practical.
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Basics of Statistical Learning Statistical Estimation

Estimation

Given X1 . . . Xn ∼ F ∈ H, an estimator θ̂n is any function of
X1 . . . Xn that attempts to estimate a parameter θ.

This is the “learning” in machine learning!

Example: In classification Xi = (xi, yi) and θ̂n is the learned model.

θ̂n is a random variable because the training set is random.

An estimator is consistent if θ̂n
P→ θ.

Consistent estimators learn the correct model with more training data
eventually.
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Basics of Statistical Learning Statistical Estimation

Bias

Since θ̂n is a random variable, it has an expectation Eθ(θ̂n)

Eθ is w.r.t. the joint distribution f(x1, . . . , xn; θ) =
∏n
i=1 f(xi; θ).

The bias of the estimator is

bias(θ̂n) = Eθ(θ̂n)− θ

An estimator is unbiased if bias(θ̂n) = 0.

The standard error of an estimator is se(θ̂n) =

√
Varθ(θ̂n)

Example: Let µ̂ = 1
n

∑
i xi, where xi ∼ N(0, 1). Then the standard

deviation of xi is 1 regardless of n. In contrast, se(µ̂) = 1/
√
n = n−

1
2

which decreases with n.
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Basics of Statistical Learning Statistical Estimation

MSE

The mean squared error of an estimator is

mse(θ̂n) = Eθ
(

(θ̂n − θ)2
)

Bias-variance decomposition

mse(θ̂n) = bias2(θ̂n) + se2(θ̂n) = bias2(θ̂n) + Varθ(θ̂n)

If bias(θ̂n)→ 0 and Varθ(θ̂n)→ 0 then mse(θ̂n)→ 0.

This implies θ̂n
P→ θ, so that θ̂n is consistent.
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Basics of Statistical Learning Statistical Estimation

Maximum Likelihood

Let x1, . . . , xn ∼ f(x; θ) where θ ∈ Θ.

The likelihood function is

Ln(θ) = f(x1, . . . , xn; θ) =

n∏
i=1

f(xi; θ)

The log likelihood function is `n(θ) = logLn(θ).

The maximum likelihood estimator (MLE) is

θ̂n = argmaxθ∈ΘLn(θ) = argmaxθ∈Θ`n(θ)
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Basics of Statistical Learning Statistical Estimation

MLE examples

The MLE for p(head) from n coin flips is count(head)/n

The MLE for X1, . . . , XN ∼ N(µ, σ2) is µ̂ = 1/n
∑

iXi and
σ̂2 = 1/n

∑
(Xi − µ̂)2.

The MLE does not always agree with intuition. The MLE for
X1, . . . , Xn ∼ uniform(0, θ) is θ̂ = max(X1, . . . , Xn).
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Basics of Statistical Learning Statistical Estimation

Properties of MLE

When H is identifiable, under certain conditions (see Wasserman

Theorem 9.13), the MLE θ̂n
P→ θ∗, where θ∗ is the true value of the

parameter θ. That is, the MLE is consistent.

Asymptotic Normality: Let se =

√
V arθ(θ̂n). Under appropriate

regularity conditions, se ≈
√

1/In(θ) where In(θ) is the Fisher
information, and

θ̂n − θ
se

 N(0, 1)

The MLE is asymptotically efficient (achieves the Cramér-Rao lower
bound), “best” among unbiased estimators.
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Basics of Statistical Learning Statistical Estimation

Frequentist statistics

Probability refers to limiting relative frequency.

Data are random.

Estimators are random because they are functions of data.

Parameters are fixed, unknown constants not subject to probabilistic
statements.

Procedures are subject to probabilistic statements, for example 95%
confidence intervals trap the true parameter value 95

Classifiers, even learned with deterministic procedures, are random
because the training set is random.

PAC bound is frequentist. Most procedures in machine learning are
frequentist methods.
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Basics of Statistical Learning Statistical Estimation

Bayesian statistics

Probability refers to degree of belief.

Inference about a parameter θ is by producing a probability
distributions on it.

Starts with prior distribution p(θ).

Likelihood function p(x | θ), a function of θ not x.

After observing data x, one applies the Bayes rule to obtain the
posterior

p(θ | x) =
p(θ)p(x | θ)∫
p(θ′)p(x | θ′)dθ′

=
1

Z
p(θ)p(x | θ)

Z ≡
∫
p(θ′)p(x | θ′)dθ′ = p(x) is the normalizing constant or

evidence.

Prediction by integrating parameters out:

p(x | Data) =

∫
p(x | θ)p(θ | Data)dθ
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Basics of Statistical Learning Statistical Estimation

Frequentist vs Bayesian in machine learning

Frequentists produce a point estimate θ̂ from Data, and predict with
p(x | θ̂).

Bayesians keep the posterior distribution p(θ | Data), and predict by
integrating over θs.

Bayesian integration is often intractable, need either “nice”
distributions or approximations.

The maximum a posteriori (MAP) estimate

θMAP = argmaxθp(θ | x)

is a point estimate and not Bayesian.
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Basics of Statistical Learning Regularization
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Basics of Statistical Learning Regularization

Regularization for Maximum Likelihood

Recall the MLE θ̂n = argmaxθ∈Θ`n(θ)

Can overfit.

Regularized likelihood

θ̂n = argminθ∈Θ − `n(θ) + λΩ(θ)

Ω(θ) is the regularizer, for example Ω(θ) = ‖θ‖2.

Coincides with MAP estimate with prior distribution
p(θ) ∝ exp(−λΩ(θ))
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Basics of Statistical Learning Regularization

Graph-based regularization

Nodes: x1 . . . xn, θ = f = (f(x1), . . . , f(xn))
Edges: similarity weights computed from features, e.g.,

I k-nearest-neighbor graph, unweighted (0, 1 weights)
I fully connected graph, weight decays with distance
w = exp

(
−‖xi − xj‖2/σ2

)
I ε-radius graph

Assumption Nodes connected by heavy edge tend to have the same
value.

x2

x3

x1
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Basics of Statistical Learning Regularization

Graph energy

f incurs the energy ∑
i∼j

wij(f(xi)− f(xj))
2

smooth f has small energy

constant f has zero energy
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Basics of Statistical Learning Regularization

An electric network interpretation

Edges are resistors with conductance wij

Nodes clamped at voltages specified by f

Energy = heat generated by the network in unit time

+1 volt

wij
R  =ij

1

1

0
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Basics of Statistical Learning Regularization

The graph Laplacian

We can express the energy of f in closed-form using the graph Laplacian.

n× n weight matrix W on Xl ∪Xu

I symmetric, non-negative

Diagonal degree matrix D: Dii =
∑n

j=1Wij

Graph Laplacian matrix ∆

∆ = D −W

The energy ∑
i∼j

wij(f(xi)− f(xj))
2 = f>∆f
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Basics of Statistical Learning Regularization

Graph Laplacian as a Regularizer

Regression problem with training data xi ∈ Rd, yi ∈ R, i = 1 . . . n

Allow f(Xi) to be different from Yi, but penalize the difference with
a Gaussian log likelihood

Regularizer Ω(f) = f>∆f

min
f

n∑
i=1

(f(xi)− yi)2 + λf>∆f

Equivalent to MAP estimate with
I Gaussian likelihood yi = f(xi) + εi where εi ∼ N(0, σ2), and
I Gaussian Random Field prior p(f) = 1

Z exp
(
−λf>∆f

)
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Basics of Statistical Learning Regularization

Graph Spectrum and Regularization

Assumption: labels are “smooth” on the graph, characterized by the graph
spectrum (eigen-values/vectors {(λi, φi)}ni=1 of the Laplacian L):

L =
∑n

i=1 λiφiφi
>

a graph has k connected components if and only if λ1 = . . . = λk = 0.

the corresponding eigenvectors are constant on individual connected
components, and zero elsewhere.

any f on the graph can be represented as f =
∑n

i=1 aiφi

graph regularizer f>Lf =
∑n

i=1 a
2
iλi

smooth function f uses smooth basis (those with small λi)
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Basics of Statistical Learning Regularization

Example graph spectrum

The graph

Eigenvalues and eigenvectors of the graph Laplacian

λ
1
=0.00 λ

2
=0.00 λ

3
=0.04 λ

4
=0.17 λ

5
=0.38

λ
6
=0.38 λ

7
=0.66 λ

8
=1.00 λ

9
=1.38 λ

10
=1.38

λ
11

=1.79 λ
12

=2.21 λ
13

=2.62 λ
14

=2.62 λ
15

=3.00

λ
16

=3.34 λ
17

=3.62 λ
18

=3.62 λ
19

=3.83 λ
20

=3.96
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Basics of Statistical Learning Decision Theory

Outline

1 Basics of Statistical Learning
Probability
Statistical Estimation
Regularization
Decision Theory

2 Graphical Models
Directed Graphical Models (Bayesian Networks)
Undirected Graphical Models (Markov Random Fields)
Factor Graph
Markov Chain Monte Carlo
Belief Propagation
Mean Field Algorithm
Maximizing Problems (Viterbi)

3 Bayesian Non-Parametric Models
Dirichlet Processes

Zhu (Univ. Wisconsin) Statistical Machine Learning for NLP CCF/ADL46 2013 41 / 125



Basics of Statistical Learning Decision Theory

Comparing Estimators

Training set D = (x1, . . . , xn) ∼ p(x; θ)

Learned model: θ̂ ≡ θ̂(D) an estimator of θ based on data D.

Loss function L(θ, θ̂) : Θ×Θ 7→ R+

squared loss L(θ, θ̂) = (θ − θ̂)2

0-1 loss L(θ, θ̂) =

{
0 θ = θ̂

1 θ 6= θ̂

KL loss L(θ, θ̂) =
∫
p(x; θ) log

(
p(x;θ)

p(x;θ̂)

)
dx

Since D is random, both θ̂(D) and L(θ, θ̂) are random variables
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Basics of Statistical Learning Decision Theory

Risk

The risk R(θ, θ̂) is the expected loss

R(θ, θ̂) = ED[L(θ, θ̂(D))]

ED averaged over training sets D sampled from the true θ

The risk is the “average training set” behavior of a learning algorithm
when the world is θ

Not computable: we don’t know which θ the world is in.

Example: Let D = X1 ∼ N(θ, 1). Let θ̂1 = X1 and θ̂2 = 3.14.
Assume squared loss. Then R(θ, θ̂1) = 1 (hint: variance),
R(θ, θ̂2) = ED(θ − 3.14)2 = (θ − 3.14)2.

Smart learning algorithm θ̂1 and a dumb one θ̂2. However, for tasks
θ ∈ (3.14− 1, 3.14 + 1) the dumb algorithm is better.
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Basics of Statistical Learning Decision Theory

Minimax Estimator

maximum risk
Rmax(θ̂) = sup

θ
R(θ, θ̂)

The minimax estimator θ̂minimax minimizes the maximum risk

θ̂minimax = arg inf
θ̂

sup
θ
R(θ, θ̂)

The infimum is over all estimators θ̂.

The minimax estimator is the “best” in guarding against the worst
possible world.
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Graphical Models
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Graphical Models

The envelope quiz

Random variables E ∈ {1, 0}, B ∈ {r, b}
P (E = 1) = P (E = 0) = 1/2

P (B = r | E = 1) = 1/2, P (B = r | E = 0) = 0

We ask: P (E = 1 | B = b) ≥ 1/2?

P (E = 1 | B = b) = P (B=b|E=1)P (E=1)
P (B=b) = 1/2×1/2

3/4 = 1/3

Switch.

The graphical model:

B

E
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Graphical Models

Probabilistic Reasoning

The world is reduced to a set of random variables x1, . . . , xn
I e.g. (x1, . . . , xn−1) a feature vector, xn ≡ y the class label

Inference: given joint distribution p(x1, . . . , xn), compute
p(XQ | XE) where XQ ∪XE ⊆ {x1 . . . xn}

I e.g. Q = {n}, E = {1 . . . n− 1}, by the definition of conditional

p(xn | x1, . . . , xn−1) =
p(x1, . . . , xn−1, xn)∑

v p(x1, . . . , xn−1, xn = v)

Learning: estimate p(x1, . . . , xn) from training data X(1), . . . , X(N),

where X(i) = (x
(i)
1 , . . . , x

(i)
n )
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Graphical Models

It is difficult to reason with uncertainty

joint distribution p(x1, . . . , xn)
I exponential näıve storage (2n for binary r.v.)
I hard to interpret (conditional independence)

inference p(XQ | XE)
I Often can’t afford to do it by brute force

If p(x1, . . . , xn) not given, estimate it from data
I Often can’t afford to do it by brute force
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Graphical Models

Graphical models

Graphical models: efficient representation, inference, and learning on
p(x1, . . . , xn), exactly or approximately

Two main “flavors”:
I directed graphical models = Bayesian Networks (often frequentist

instead of Bayesian)
I undirected graphical models = Markov Random Fields

Key idea: make conditional independence explicit
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Graphical Models Directed Graphical Models (Bayesian Networks)

Outline

1 Basics of Statistical Learning
Probability
Statistical Estimation
Regularization
Decision Theory

2 Graphical Models
Directed Graphical Models (Bayesian Networks)
Undirected Graphical Models (Markov Random Fields)
Factor Graph
Markov Chain Monte Carlo
Belief Propagation
Mean Field Algorithm
Maximizing Problems (Viterbi)

3 Bayesian Non-Parametric Models
Dirichlet Processes
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Graphical Models Directed Graphical Models (Bayesian Networks)

Bayesian Network

Directed graphical models are also called Bayesian networks

A directed graph has nodes X = (x1, . . . , xn), some of them
connected by directed edges xi → xj

A cycle is a directed path x1 → . . .→ xk where x1 = xk

A directed acyclic graph (DAG) contains no cycles

A Bayesian network on the DAG is a family of distributions satisfying

{p | p(X) =
∏
i

p(xi | Pa(xi))}

where Pa(xi) is the set of parents of xi.

p(xi | Pa(xi)) is the conditional probability distribution (CPD) at xi

By specifying the CPDs for all i, we specify a particular distribution
p(X)

Zhu (Univ. Wisconsin) Statistical Machine Learning for NLP CCF/ADL46 2013 51 / 125



Graphical Models Directed Graphical Models (Bayesian Networks)

Example: Alarm

Binary variables

P(A | B, E) = 0.95
P(A | B, ~E) = 0.94
P(A | ~B, E) = 0.29
P(A | ~B, ~E) = 0.001

P(J | A) = 0.9
P(J | ~A) = 0.05

P(M | A) = 0.7
P(M | ~A) = 0.01

A

J M

B E

P(E)=0.002P(B)=0.001

P (B,∼ E,A, J,∼M)

= P (B)P (∼ E)P (A | B,∼ E)P (J | A)P (∼M | A)

= 0.001× (1− 0.002)× 0.94× 0.9× (1− 0.7)

≈ .000253
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Graphical Models Directed Graphical Models (Bayesian Networks)

Example: Naive Bayes

y y

x x. . .1 d x

d

p(y, x1, . . . xd) = p(y)
∏d
i=1 p(xi | y)

Used extensively in natural language processing

Plate representation on the right
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Graphical Models Directed Graphical Models (Bayesian Networks)

No Causality Whatsoever

P(A)=a
P(B|A)=b
P(B|~A)=c

A

B

B

A

P(B)=ab+(1−a)c
P(A|B)=ab/(ab+(1−a)c)
P(A|~B)=a(1−b)/(1−ab−(1−a)c)

The two BNs are equivalent in all respects

Bayesian networks imply no causality at all

They only encode the joint probability distribution (hence correlation)

However, people tend to design BNs based on causal relations
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Graphical Models Directed Graphical Models (Bayesian Networks)

Example: Latent Dirichlet Allocation (LDA)

θ

Nd
w

D

αβ
T

zφ

A generative model for p(φ, θ, z, w | α, β):
For each topic t

φt ∼ Dirichlet(β)
For each document d

θ ∼ Dirichlet(α)
For each word position in d

topic z ∼ Multinomial(θ)
word w ∼ Multinomial(φz)

Inference goals: p(z | w,α, β), argmaxφ,θp(φ, θ | w,α, β)
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Graphical Models Directed Graphical Models (Bayesian Networks)

Some Topics by LDA on the Wish Corpus

p(word | topic)

“troops” “election” “love”
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Graphical Models Directed Graphical Models (Bayesian Networks)

Conditional Independence

Two r.v.s A, B are independent if P (A,B) = P (A)P (B) or
P (A|B) = P (A) (the two are equivalent)

Two r.v.s A, B are conditionally independent given C if
P (A,B | C) = P (A | C)P (B | C) or P (A | B,C) = P (A | C) (the
two are equivalent)

This extends to groups of r.v.s

Conditional independence in a BN is precisely specified by
d-separation (“directed separation”)

Zhu (Univ. Wisconsin) Statistical Machine Learning for NLP CCF/ADL46 2013 57 / 125



Graphical Models Directed Graphical Models (Bayesian Networks)

d-Separation Case 1: Tail-to-Tail

C

A B

C

A B

A, B in general dependent

A, B conditionally independent given C (observed nodes are shaded)

An observed C is a tail-to-tail node, blocks the undirected path A-B
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Graphical Models Directed Graphical Models (Bayesian Networks)

d-Separation Case 2: Head-to-Tail

A C B A C B

A, B in general dependent

A, B conditionally independent given C

An observed C is a head-to-tail node, blocks the path A-B
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Graphical Models Directed Graphical Models (Bayesian Networks)

d-Separation Case 3: Head-to-Head

A B A B

C C

A, B in general independent

A, B conditionally dependent given C, or any of C’s descendants

An observed C is a head-to-head node, unblocks the path A-B
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Graphical Models Directed Graphical Models (Bayesian Networks)

d-Separation

Any groups of nodes A and B are conditionally independent given
another group C, if all undirected paths from any node in A to any
node in B are blocked

A path is blocked if it includes a node x such that either
I The path is head-to-tail or tail-to-tail at x and x ∈ C, or
I The path is head-to-head at x, and neither x nor any of its

descendants is in C.
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Graphical Models Directed Graphical Models (Bayesian Networks)

d-Separation Example 1

The undirected path from A to B is unblocked by E (because of C),
and is not blocked by F

A, B dependent given C

A

C

B

F

E
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Graphical Models Directed Graphical Models (Bayesian Networks)

d-Separation Example 2

The path from A to B is blocked both at E and F

A, B conditionally independent given F

A

B

F

E

C
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Graphical Models Undirected Graphical Models (Markov Random Fields)

Outline

1 Basics of Statistical Learning
Probability
Statistical Estimation
Regularization
Decision Theory

2 Graphical Models
Directed Graphical Models (Bayesian Networks)
Undirected Graphical Models (Markov Random Fields)
Factor Graph
Markov Chain Monte Carlo
Belief Propagation
Mean Field Algorithm
Maximizing Problems (Viterbi)

3 Bayesian Non-Parametric Models
Dirichlet Processes
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Graphical Models Undirected Graphical Models (Markov Random Fields)

Markov Random Fields

Undirected graphical models are also called Markov Random Fields

The efficiency of directed graphical model (acyclic graph, locally
normalized CPDs) also makes it restrictive

A clique C in an undirected graph is a fully connected set of nodes
(note: full of loops!)

Define a nonnegative potential function ψC : XC 7→ R+

An undirected graphical model is a family of distributions satisfying{
p | p(X) =

1

Z

∏
C

ψC(XC)

}

Z =
∫ ∏

C ψC(XC)dX is the partition function
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Graphical Models Undirected Graphical Models (Markov Random Fields)

Example: A Tiny Markov Random Field

x x1 2

C

x1, x2 ∈ {−1, 1}
A single clique ψC(x1, x2) = eax1x2

p(x1, x2) = 1
Z e

ax1x2

Z = (ea + e−a + e−a + ea)

p(1, 1) = p(−1,−1) = ea/(2ea + 2e−a)

p(−1, 1) = p(1,−1) = e−a/(2ea + 2e−a)

When the parameter a > 0, favor homogeneous chains

When the parameter a < 0, favor inhomogeneous chains
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Graphical Models Undirected Graphical Models (Markov Random Fields)

Log Linear Models

Real-valued feature functions f1(X), . . . , fk(X)

Real-valued weights w1, . . . , wk

p(X) =
1

Z
exp

(
−

k∑
i=1

wifi(X)

)
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Graphical Models Undirected Graphical Models (Markov Random Fields)

Example: The Ising Model

θs
θ

xs xt
st

This is an undirected model with x ∈ {0, 1}.

pθ(x) =
1

Z
exp

∑
s∈V

θsxs +
∑

(s,t)∈E

θstxsxt


fs(X) = xs, fst(X) = xsxt

ws = −θs, wst = −θst
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Graphical Models Undirected Graphical Models (Markov Random Fields)

Example: Image Denoising

[From Bishop PRML] noisy image argmaxXP (X|Y )

pθ(X | Y ) =
1

Z
exp

∑
s∈V

θsxs +
∑

(s,t)∈E

θstxsxt


θs =

{
c ys = 1
−c ys = 0
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Graphical Models Undirected Graphical Models (Markov Random Fields)

Example: Gaussian Random Field

p(X) ∼ N(µ,Σ) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(X − µ)>Σ−1(X − µ)

)

Multivariate Gaussian

The n× n covariance matrix Σ positive semi-definite

Let Ω = Σ−1 be the precision matrix

xi, xj are conditionally independent given all other variables, if and
only if Ωij = 0

When Ωij 6= 0, there is an edge between xi, xj
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Graphical Models Undirected Graphical Models (Markov Random Fields)

Conditional Independence in Markov Random Fields

Two group of variables A, B are conditionally independent given
another group C, if:

A, B become disconnected by removing C and all edges involving C

A
C

B
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Graphical Models Factor Graph

Outline

1 Basics of Statistical Learning
Probability
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Mean Field Algorithm
Maximizing Problems (Viterbi)
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Graphical Models Factor Graph

Factor Graph

For both directed and undirected graphical models

Bipartite: edges between a variable node and a factor node

Factors represent computation

A B

C

(A,B,C)ψ

A B

C

A B

C

(A,B,C)ψf

A B

C

f
P(A)P(B)P(C|A,B)
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Graphical Models Markov Chain Monte Carlo

Outline
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Graphical Models Markov Chain Monte Carlo

Inference by Monte Carlo

Consider the inference problem p(XQ = cQ | XE) where
XQ ∪XE ⊆ {x1 . . . xn}

p(XQ = cQ | XE) =

∫
1(xQ=cQ)p(xQ | XE)dxQ

If we can draw samples x
(1)
Q , . . . x

(m)
Q ∼ p(xQ | XE), an unbiased

estimator is

p(XQ = cQ | XE) ≈ 1

m

m∑
i=1

1
(x

(i)
Q =cQ)

The variance of the estimator decreases as O(1/m)

Inference reduces to sampling from p(xQ | XE)

We discuss two methods: forward sampling and Gibbs sampling
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Graphical Models Markov Chain Monte Carlo

Forward Sampling: Example

P(A | B, E) = 0.95
P(A | B, ~E) = 0.94
P(A | ~B, E) = 0.29
P(A | ~B, ~E) = 0.001

P(J | A) = 0.9
P(J | ~A) = 0.05

P(M | A) = 0.7
P(M | ~A) = 0.01

A

J M

B E

P(E)=0.002P(B)=0.001

To generate a sample X = (B,E,A, J,M):

1 Sample B ∼ Ber(0.001): r ∼ U(0, 1). If (r < 0.001) then B = 1 else
B = 0

2 Sample E ∼ Ber(0.002)

3 If B = 1 and E = 1, sample A ∼ Ber(0.95), and so on

4 If A = 1 sample J ∼ Ber(0.9) else J ∼ Ber(0.05)

5 If A = 1 sample M ∼ Ber(0.7) else M ∼ Ber(0.01)
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Graphical Models Markov Chain Monte Carlo

Inference with Forward Sampling

Say the inference task is P (B = 1 | E = 1,M = 1)

Throw away all samples except those with (E = 1,M = 1)

p(B = 1 | E = 1,M = 1) ≈ 1

m

m∑
i=1

1(B(i)=1)

where m is the number of surviving samples

Can be highly inefficient (note P (E = 1) tiny)

Does not work for Markov Random Fields

Zhu (Univ. Wisconsin) Statistical Machine Learning for NLP CCF/ADL46 2013 77 / 125



Graphical Models Markov Chain Monte Carlo

Gibbs Sampler: Example P (B = 1 | E = 1,M = 1)

Gibbs sampler is a Markov Chain Monte Carlo (MCMC) method.

Directly sample from p(xQ | XE)

Works for both graphical models

Initialization:
I Fix evidence; randomly set other variables
I e.g. X(0) = (B = 0, E = 1, A = 0, J = 0,M = 1)

P(A | B, E) = 0.95
P(A | B, ~E) = 0.94
P(A | ~B, E) = 0.29
P(A | ~B, ~E) = 0.001

P(J | A) = 0.9
P(J | ~A) = 0.05

P(M | A) = 0.7
P(M | ~A) = 0.01

A

J

B

P(E)=0.002P(B)=0.001

E=1

M=1

Zhu (Univ. Wisconsin) Statistical Machine Learning for NLP CCF/ADL46 2013 78 / 125



Graphical Models Markov Chain Monte Carlo

Gibbs Update
For each non-evidence variable xi, fixing all other nodes X−i,
resample its value xi ∼ P (xi | X−i)
This is equivalent to xi ∼ P (xi | MarkovBlanket(xi))
For a Bayesian network MarkovBlanket(xi) includes xi’s parents,
spouses, and children

P (xi | MarkovBlanket(xi)) ∝ P (xi | Pa(xi))
∏

y∈C(xi)

P (y | Pa(y))

where Pa(x) are the parents of x, and C(x) the children of x.
For many graphical models the Markov Blanket is small.
For example, B ∼ P (B | E = 1, A = 0) ∝ P (B)P (A = 0 | B,E = 1)

P(A | B, E) = 0.95
P(A | B, ~E) = 0.94
P(A | ~B, E) = 0.29
P(A | ~B, ~E) = 0.001

P(J | A) = 0.9
P(J | ~A) = 0.05

P(M | A) = 0.7
P(M | ~A) = 0.01

A

J

B

P(E)=0.002P(B)=0.001

E=1

M=1
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Graphical Models Markov Chain Monte Carlo

Gibbs Update

Say we sampled B = 1. Then
X(1) = (B = 1, E = 1, A = 0, J = 0,M = 1)

Starting from X(1), sample A ∼ P (A | B = 1, E = 1, J = 0,M = 1)
to get X(2)

Move on to J , then repeat B,A, J,B,A, J . . .

Keep all later samples. P (B = 1 | E = 1,M = 1) is the fraction of
samples with B = 1.

P(A | B, E) = 0.95
P(A | B, ~E) = 0.94
P(A | ~B, E) = 0.29
P(A | ~B, ~E) = 0.001

P(J | A) = 0.9
P(J | ~A) = 0.05

P(M | A) = 0.7
P(M | ~A) = 0.01

A

J

B

P(E)=0.002P(B)=0.001

E=1

M=1
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Graphical Models Markov Chain Monte Carlo

Gibbs Example 2: The Ising Model

xs

A

B

C

D

This is an undirected model with x ∈ {0, 1}.

pθ(x) =
1

Z
exp

∑
s∈V

θsxs +
∑

(s,t)∈E

θstxsxt


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Graphical Models Markov Chain Monte Carlo

Gibbs Example 2: The Ising Model

xs

A

B

C

D

The Markov blanket of xs is A,B,C,D

In general for undirected graphical models

p(xs | x−s) = p(xs | xN(s))

N(s) is the neighbors of s.

The Gibbs update is

p(xs = 1 | xN(s)) =
1

exp(−(θs +
∑

t∈N(s) θstxt)) + 1
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Graphical Models Markov Chain Monte Carlo

Gibbs Sampling as a Markov Chain

A Markov chain is defined by a transition matrix T (X ′ | X)

Certain Markov chains have a stationary distribution π such that
π = Tπ

Gibbs sampler is such a Markov chain with
Ti((X−i, x

′
i) | (X−i, xi)) = p(x′i | X−i), and stationary distribution

p(xQ | XE)

But it takes time for the chain to reach stationary distribution (mix)
I Can be difficult to assert mixing
I In practice “burn in”: discard X(0), . . . , X(T )

I Use all of X(T+1), . . . for inference (they are correlated); Do not thin
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Graphical Models Markov Chain Monte Carlo

Collapsed Gibbs Sampling

In general, Ep[f(X)] ≈ 1
m

∑m
i=1 f(X(i)) if X(i) ∼ p

Sometimes X = (Y,Z) where Z has closed-form operations

If so,

Ep[f(X)] = Ep(Y )Ep(Z|Y )[f(Y,Z)]

≈ 1

m

m∑
i=1

Ep(Z|Y (i))[f(Y (i), Z)]

if Y (i) ∼ p(Y )

No need to sample Z: it is collapsed

Collapsed Gibbs sampler Ti((Y−i, y
′
i) | (Y−i, yi)) = p(y′i | Y−i)

Note p(y′i | Y−i) =
∫
p(y′i, Z | Y−i)dZ
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Graphical Models Markov Chain Monte Carlo

Example: Collapsed Gibbs Sampling for LDA

θ

Nd
w

D

αβ
T

zφ

Collapse θ, φ, Gibbs update:

P (zi = j | z−i,w) ∝
n

(wi)
−i,j + βn

(di)
−i,j + α

n
(·)
−i,j +Wβn

(di)
−i,· + Tα

n
(wi)
−i,j : number of times word wi has been assigned to topic j,

excluding the current position

n
(di)
−i,j : number of times a word from document di has been assigned

to topic j, excluding the current position

n
(·)
−i,j : number of times any word has been assigned to topic j,

excluding the current position

n
(di)
−i,·: length of document di, excluding the current position
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Graphical Models Markov Chain Monte Carlo

Summary: Markov Chain Monte Carlo

Forward sampling

Gibbs sampling

Collapsed Gibbs sampling

Not covered: block Gibbs, Metropolis-Hastings, etc.

Unbiased (after burn-in), but can have high variance
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Graphical Models Belief Propagation

Outline

1 Basics of Statistical Learning
Probability
Statistical Estimation
Regularization
Decision Theory

2 Graphical Models
Directed Graphical Models (Bayesian Networks)
Undirected Graphical Models (Markov Random Fields)
Factor Graph
Markov Chain Monte Carlo
Belief Propagation
Mean Field Algorithm
Maximizing Problems (Viterbi)

3 Bayesian Non-Parametric Models
Dirichlet Processes
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Graphical Models Belief Propagation

The Sum-Product Algorithm

Also known as belief propagation (BP)

Exact if the graph is a tree; otherwise known as “loopy BP”,
approximate

The algorithm involves passing messages on the factor graph

Alternative view: variational approximation (more later)
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Graphical Models Belief Propagation

Example: A Simple HMM

The Hidden Markov Model template (not a graphical model)

π  = π  = 1/21 2

P(x | z=1)=(1/2, 1/4, 1/4) P(x | z=2)=(1/4, 1/2, 1/4)

1 2

1/4 1/2

R     G     B R     G     B
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Graphical Models Belief Propagation

Example: A Simple HMM

Observing x1 = R, x2 = G, the directed graphical model

z1

x =G2

z2

x =R1

Factor graph
z1f 1 z2f 2

P(z )P(x | z ) P(z | z )P(x | z )1 1 1 2 1 2 2
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Graphical Models Belief Propagation

Messages

A message is a vector of length K, where K is the number of values
x takes.

There are two types of messages:
1 µf→x: message from a factor node f to a variable node x
µf→x(i) is the ith element, i = 1 . . .K.

2 µx→f : message from a variable node x to a factor node f
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Graphical Models Belief Propagation

Leaf Messages

Assume tree factor graph. Pick an arbitrary root, say z2

Start messages at leaves.

If a leaf is a factor node f , µf→x(x) = f(x)

µf1→z1(z1 = 1) = P (z1 = 1)P (R|z1 = 1) = 1/2 · 1/2 = 1/4

µf1→z1(z1 = 2) = P (z1 = 2)P (R|z1 = 2) = 1/2 · 1/4 = 1/8

If a leaf is a variable node x, µx→f (x) = 1

z1f 1 z2f 2

P(z )P(x | z ) P(z | z )P(x | z )1 1 1 2 1 2 2

π  = π  = 1/21 2

P(x | z=1)=(1/2, 1/4, 1/4) P(x | z=2)=(1/4, 1/2, 1/4)

1 2

1/4 1/2

R     G     B R     G     B
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Graphical Models Belief Propagation

Message from Variable to Factor
A node (factor or variable) can send out a message if all other
incoming messages have arrived
Let x be in factor fs. ne(x)\fs are factors connected to x excluding
fs.

µx→fs(x) =
∏

f∈ne(x)\fs

µf→x(x)

µz1→f2(z1 = 1) = 1/4

µz1→f2(z1 = 2) = 1/8

z1f 1 z2f 2

P(z )P(x | z ) P(z | z )P(x | z )1 1 1 2 1 2 2

π  = π  = 1/21 2

P(x | z=1)=(1/2, 1/4, 1/4) P(x | z=2)=(1/4, 1/2, 1/4)

1 2

1/4 1/2

R     G     B R     G     B
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Graphical Models Belief Propagation

Message from Factor to Variable

Let x be in factor fs. Let the other variables in fs be x1:M .

µfs→x(x) =
∑
x1

. . .
∑
xM

fs(x, x1, . . . , xM )

M∏
m=1

µxm→fs(xm)

In this example

µf2→z2(s) =

2∑
s′=1

µz1→f2(s′)f2(z1 = s′, z2 = s)

= 1/4P (z2 = s|z1 = 1)P (x2 = G|z2 = s)

+1/8P (z2 = s|z1 = 2)P (x2 = G|z2 = s)

We get µf2→z2(z2 = 1) = 1/32, µf2→z2(z2 = 2) = 1/8

z1f 1 z2f 2

P(z )P(x | z ) P(z | z )P(x | z )1 1 1 2 1 2 2
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Graphical Models Belief Propagation

Up to Root, Back Down

The message has reached the root, pass it back down

µz2→f2(z2 = 1) = 1

µz2→f2(z2 = 2) = 1

z1f 1 z2f 2

P(z )P(x | z ) P(z | z )P(x | z )1 1 1 2 1 2 2

π  = π  = 1/21 2

P(x | z=1)=(1/2, 1/4, 1/4) P(x | z=2)=(1/4, 1/2, 1/4)

1 2

1/4 1/2

R     G     B R     G     B
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Graphical Models Belief Propagation

Keep Passing Down

µf2→z1(s) =
∑2

s′=1 µz2→f2(s′)f2(z1 = s, z2 = s′)
= 1P (z2 = 1|z1 = s)P (x2 = G|z2 = 1)

+ 1P (z2 = 2|z1 = s)P (x2 = G|z2 = 2).

We get
µf2→z1(z1 = 1) = 7/16
µf2→z1(z1 = 2) = 3/8

z1f 1 z2f 2

P(z )P(x | z ) P(z | z )P(x | z )1 1 1 2 1 2 2

π  = π  = 1/21 2

P(x | z=1)=(1/2, 1/4, 1/4) P(x | z=2)=(1/4, 1/2, 1/4)

1 2

1/4 1/2

R     G     B R     G     B
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Graphical Models Belief Propagation

From Messages to Marginals

Once a variable receives all incoming messages, we compute its
marginal as

p(x) ∝
∏

f∈ne(x)

µf→x(x)

In this example

P (z1|x1, x2) ∝ µf1→z1 · µf2→z1 =
( 1/4

1/8

)
·
( 7/16

3/8

)
=
( 7/64

3/64

)
⇒
(

0.7
0.3

)
P (z2|x1, x2) ∝ µf2→z2 =

( 1/32
1/8

)
⇒
(

0.2
0.8

)
One can also compute the marginal of the set of variables xs involved
in a factor fs

p(xs) ∝ fs(xs)
∏

x∈ne(f)

µx→f (x)
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Graphical Models Belief Propagation

Handling Evidence

Observing x = v,
I we can absorb it in the factor (as we did); or
I set messages µx→f (x) = 0 for all x 6= v

Observing XE ,
I multiplying the incoming messages to x /∈ XE gives the joint (not
p(x|XE)):

p(x,XE) ∝
∏

f∈ne(x)

µf→x(x)

I The conditional is easily obtained by normalization

p(x|XE) =
p(x,XE)∑
x′ p(x′, XE)
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Graphical Models Belief Propagation

Loopy Belief Propagation

So far, we assumed a tree graph

When the factor graph contains loops, pass messages indefinitely until
convergence

But convergence may not happen

But in many cases loopy BP still works well, empirically
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Graphical Models Mean Field Algorithm

Outline

1 Basics of Statistical Learning
Probability
Statistical Estimation
Regularization
Decision Theory

2 Graphical Models
Directed Graphical Models (Bayesian Networks)
Undirected Graphical Models (Markov Random Fields)
Factor Graph
Markov Chain Monte Carlo
Belief Propagation
Mean Field Algorithm
Maximizing Problems (Viterbi)

3 Bayesian Non-Parametric Models
Dirichlet Processes
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Graphical Models Mean Field Algorithm

Example: The Ising Model

θs
θ

xs xt
st

The random variables x take values in {0, 1}.

pθ(x) =
1

Z
exp

∑
s∈V

θsxs +
∑

(s,t)∈E

θstxsxt


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Graphical Models Mean Field Algorithm

The Conditional

θs
θ

xs xt
st

Markovian: the conditional distribution for xs is

p(xs | x−s) = p(xs | xN(s))

N(s) is the neighbors of s.

This reduces to (recall Gibbs sampling)

p(xs = 1 | xN(s)) =
1

exp(−(θs +
∑

t∈N(s) θstxt)) + 1
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Graphical Models Mean Field Algorithm

The Mean Field Algorithm for Ising Model

Gibbs sampling would draw xs from

p(xs = 1 | xN(s)) =
1

exp(−(θs +
∑

t∈N(s) θstxt)) + 1

Instead, let µs be the estimated marginal p(xs = 1)

Mean field algorithm:

µs ←
1

exp(−(θs +
∑

t∈N(s) θstµt)) + 1

The µ’s are updated iteratively

The Mean Field algorithm is coordinate ascent and guaranteed to
converge to a local optimal (more later).

Zhu (Univ. Wisconsin) Statistical Machine Learning for NLP CCF/ADL46 2013 103 / 125



Graphical Models Maximizing Problems (Viterbi)

Outline

1 Basics of Statistical Learning
Probability
Statistical Estimation
Regularization
Decision Theory

2 Graphical Models
Directed Graphical Models (Bayesian Networks)
Undirected Graphical Models (Markov Random Fields)
Factor Graph
Markov Chain Monte Carlo
Belief Propagation
Mean Field Algorithm
Maximizing Problems (Viterbi)

3 Bayesian Non-Parametric Models
Dirichlet Processes
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Graphical Models Maximizing Problems (Viterbi)

Maximizing Problems
Recall the HMM example

π  = π  = 1/21 2

P(x | z=1)=(1/2, 1/4, 1/4) P(x | z=2)=(1/4, 1/2, 1/4)

1 2

1/4 1/2

R     G     B R     G     B

There are two senses of “best states” z1:N given x1:N :
1 So far we computed the marginal p(zn|x1:N )

I We can define “best” as z∗n = arg maxk p(zn = k|x1:N )
I However z∗1:N as a whole may not be the best
I In fact z∗1:N can even have zero probability!

2 An alternative is to find

z∗1:N = arg max
z1:N

p(z1:N |x1:N )

I finds the most likely state configuration as a whole
I The max-sum algorithm solves this, generalizes the Viterbi algorithm

for HMMs
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Graphical Models Maximizing Problems (Viterbi)

Intermediate: The Max-Product Algorithm

Simple modification to the sum-product algorithm: replace
∑

with max in
the factor-to-variable messages.

µfs→x(x) = max
x1

. . .max
xM

fs(x, x1, . . . , xM )

M∏
m=1

µxm→fs(xm)

µxm→fs(xm) =
∏

f∈ne(xm)\fs

µf→xm(xm)

µxleaf→f
(x) = 1

µfleaf→x
(x) = f(x)
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Graphical Models Maximizing Problems (Viterbi)

Intermediate: The Max-Product Algorithm

As in sum-product, pick an arbitrary variable node x as the root

Pass messages up from leaves until they reach the root

Unlike sum-product, do not pass messages back from root to leaves

At the root, multiply incoming messages

pmax = max
x

 ∏
f∈ne(x)

µf→x(x)


This is the probability of the most likely state configuration
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Graphical Models Maximizing Problems (Viterbi)

Intermediate: The Max-Product Algorithm

To identify the configuration itself, keep back pointers:

When creating the message

µfs→x(x) = max
x1

. . .max
xM

fs(x, x1, . . . , xM )

M∏
m=1

µxm→fs(xm)

for each x value, we separately create M pointers back to the values
of x1, . . . , xM that achieve the maximum.

At the root, backtrack the pointers.
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Graphical Models Maximizing Problems (Viterbi)

Intermediate: The Max-Product Algorithm

z1f 1 z2f 2

P(z )P(x | z ) P(z | z )P(x | z )1 1 1 2 1 2 2

π  = π  = 1/21 2

P(x | z=1)=(1/2, 1/4, 1/4) P(x | z=2)=(1/4, 1/2, 1/4)

1 2

1/4 1/2

R     G     B R     G     B

Message from leaf f1

µf1→z1(z1 = 1) = P (z1 = 1)P (R|z1 = 1) = 1/2 · 1/2 = 1/4
µf1→z1(z1 = 2) = P (z1 = 2)P (R|z1 = 2) = 1/2 · 1/4 = 1/8

The second message
µz1→f2(z1 = 1) = 1/4
µz1→f2(z1 = 2) = 1/8
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Graphical Models Maximizing Problems (Viterbi)

Intermediate: The Max-Product Algorithm

z1f 1 z2f 2

P(z )P(x | z ) P(z | z )P(x | z )1 1 1 2 1 2 2

π  = π  = 1/21 2

P(x | z=1)=(1/2, 1/4, 1/4) P(x | z=2)=(1/4, 1/2, 1/4)

1 2

1/4 1/2

R     G     B R     G     B

µf2→z2(z2 = 1)

= max
z1

f2(z1, z2)µz1→f2(z1)

= max
z1

P (z2 = 1 | z1)P (x2 = G | z2 = 1)µz1→f2(z1)

= max(1/4 · 1/4 · 1/4, 1/2 · 1/4 · 1/8) = 1/64

Back pointer for z2 = 1: either z1 = 1 or z1 = 2
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Graphical Models Maximizing Problems (Viterbi)

Intermediate: The Max-Product Algorithm

z1f 1 z2f 2

P(z )P(x | z ) P(z | z )P(x | z )1 1 1 2 1 2 2

π  = π  = 1/21 2

P(x | z=1)=(1/2, 1/4, 1/4) P(x | z=2)=(1/4, 1/2, 1/4)

1 2

1/4 1/2

R     G     B R     G     B

The other element of the same message:

µf2→z2(z2 = 2)

= max
z1

f2(z1, z2)µz1→f2(z1)

= max
z1

P (z2 = 2 | z1)P (x2 = G | z2 = 2)µz1→f2(z1)

= max(3/4 · 1/2 · 1/4, 1/2 · 1/2 · 1/8) = 3/32

Back pointer for z2 = 2: z1 = 1
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Graphical Models Maximizing Problems (Viterbi)

Intermediate: The Max-Product Algorithm

z1f 1 z2f 2

P(z )P(x | z ) P(z | z )P(x | z )1 1 1 2 1 2 2

π  = π  = 1/21 2

P(x | z=1)=(1/2, 1/4, 1/4) P(x | z=2)=(1/4, 1/2, 1/4)

1 2

1/4 1/2

R     G     B R     G     B

µf2→z2 =
( 1/64 →z1=1,2

3/32 →z1=1

)
At root z2,

max
s=1,2

µf2→z2(s) = 3/32

z2 = 2→ z1 = 1

z∗1:2 = arg max
z1:2

p(z1:2|x1:2) = (1, 2)

In this example, sum-product and max-product produce the same best
sequence; In general they differ.
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Graphical Models Maximizing Problems (Viterbi)

From Max-Product to Max-Sum
The max-sum algorithm is equivalent to the max-product algorithm, but
work in log space to avoid underflow.

µfs→x(x) = max
x1...xM

log fs(x, x1, . . . , xM ) +

M∑
m=1

µxm→fs(xm)

µxm→fs(xm) =
∑

f∈ne(xm)\fs

µf→xm(xm)

µxleaf→f
(x) = 0

µfleaf→x
(x) = log f(x)

When at the root,

log pmax = max
x

 ∑
f∈ne(x)

µf→x(x)


The back pointers are the same.
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Bayesian Non-Parametric Models

Outline

1 Basics of Statistical Learning
Probability
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2 Graphical Models
Directed Graphical Models (Bayesian Networks)
Undirected Graphical Models (Markov Random Fields)
Factor Graph
Markov Chain Monte Carlo
Belief Propagation
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Bayesian Non-Parametric Models

Stochastic Process

Infinite collection of random variables indexed by a set {x}.
x ∈ R for “time”

More generally, x ∈ Rd (e.g., space and time).
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Bayesian Non-Parametric Models Dirichlet Processes

Outline
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Bayesian Non-Parametric Models Dirichlet Processes

Base Distribution

Let H be a base distribution over a probability space Θ.

Example: Θ = Rd.

An element θ ∈ Rd is an index to the stochastic process

H = N(0,Σ) is a base distribution over Θ, but not a stochastic
process.

H(θ) = N(θ; 0,Σ) is not a random variable (it is a fixed value for a
given θ)
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Bayesian Non-Parametric Models Dirichlet Processes

Stick-Breaking Construction of Dirichlet Process

βk ∼ Beta(1, α)

πk = βk

k−1∏
i=1

(1− βi)

θ∗k ∼ H

G =

∞∑
k=1

πkδθ∗k

δz is the point mass function on z

π1, π2, . . . are stick fragments which tend to (but not always) get
smaller. Sum to 1.

Each fragment is associated with an index θ∗k sampled from the base
distribution H

G is a sample from a Dirichlet Process G ∼ DP (α,H)
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Bayesian Non-Parametric Models Dirichlet Processes

Properties of G

G is a probability measure on Θ (naturally normalized), similar to the
base distribution H.

With probability one, G is a discrete measure (true even if H is a
continuous measure, e.g. Gaussian).

θ’s drawn from G have repeats. Useful to model clusters.
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Bayesian Non-Parametric Models Dirichlet Processes

More Properties of Dirichlet Process

G ∼ DP (α,H)

Marginals of G are Dirichlet-distributed: Let A1, . . . , Ar be any finite
measurable partition of Θ, then

(G(A1), . . . , G(Ar)) ∼ Dirichlet(αH(A1), . . . , αH(Ar))

For any measurable A ⊆ Θ,

E[G(A)] = H(A) V[G(A)] =
H(A)(1−H(A))

1 + α

As α→∞, G(A)→ H(A) for any measurable A.
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Bayesian Non-Parametric Models Dirichlet Processes

The Posterior of G

Let G ∼ DP (α,H) the prior.

Suppose we observe θ1, . . . , θn ∼ G.

The posterior distribution of G given θ1, . . . , θn is another DP:

G | θ1, . . . , θn ∼ DP

(
α+ n,

α

α+ n
H +

1

α+ n

n∑
i=1

δθi

)

The predictive distribution of θn+1 is

θn+1 ∼
α

α+ n
H +

1

α+ n

n∑
i=1

δθi

There is a chance that θn+1 = θi for some i ≤ n (i.e. repeating).
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Bayesian Non-Parametric Models Dirichlet Processes

The Blackwell-MacQueen Urn Scheme

Assume samples from H do not repeat (e.g. Gaussian)

Let θ∗1 . . . θ
∗
m be the unique values in θ1 . . . θn

Let nk =
∑n

i=1 1θi=θ∗k for k = 1 . . .m.

θn+1 is generated with the following procedure:
1 With probability α/(α+ n), draw a new value from H and assign it to
θn+1;

2 Otherwise, reuse value θ∗k with probability nk/n.
3 We add θn+1 to the samples, and repeat this process.
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Bayesian Non-Parametric Models Dirichlet Processes

The Chinese Restaurant Process

The equality relationship in θ1 . . . θn defines a partition of n items.

The first customer sits at the first table.

With probability α/(α+ n) the (n+ 1)-th customer sits at a new
table; otherwise he joins an existing table with probability
proportional to the number of people already sitting there.

Chinese Restaurant Process (CRP) defines a distribution over
partitions of items.

CRP + (for a new table draw a dish θ ∼ H; all customers sitting on
this table eat the dish) = DP
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Bayesian Non-Parametric Models Dirichlet Processes

Dirichlet Process Mixture Models (DPMMs)

Infinite mixture models: unlimited number of clusters

G ∼ DP (α,H)

θi ∼ G

xi ∼ F (θ)

where F (θ) is an appropriate distribution parametrized by θ (e.g.
multinomial).

Each observation xi has its own parameter θi.

Many of the θi’s are identical, naturally inducing a clustering
structure over x.

Given x1 . . .xn, α,H, F , use MCMC to infer θ1 . . . θn

Zhu (Univ. Wisconsin) Statistical Machine Learning for NLP CCF/ADL46 2013 124 / 125



Bayesian Non-Parametric Models Dirichlet Processes

References

Bishop, Pattern Recognition and Machine Learning. Springer 2006.

Hastie, Tibshirani, Friedman. The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Second Edition, 2009.

Koller & Friedman, Probabilistic Graphical Models. MIT 2009.

Murphy, Machine Learning: a Probabilistic Perspective, 2012.

Wasserman, All of Statistics: A Concise Course in Statistical
Inference. Springer 2003.

Zhu (Univ. Wisconsin) Statistical Machine Learning for NLP CCF/ADL46 2013 125 / 125


	Basics of Statistical Learning
	Probability
	Statistical Estimation
	Regularization
	Decision Theory

	Graphical Models
	Directed Graphical Models (Bayesian Networks)
	Undirected Graphical Models (Markov Random Fields)
	Factor Graph
	Markov Chain Monte Carlo
	Belief Propagation
	Mean Field Algorithm
	Maximizing Problems (Viterbi)

	Bayesian Non-Parametric Models
	Dirichlet Processes


