Statistical Machine Learning for NLP

Xiaojin Zhu

jerryzhu@cs.wisc.edu
Department of Computer Sciences
University of Wisconsin-Madison, USA

CCF/ADL46 2013

Outline

(1) Basics of Statistical Learning

- Probability
- Statistical Estimation
- Regularization
- Decision Theory
(2) Graphical Models
- Directed Graphical Models (Bayesian Networks)
- Undirected Graphical Models (Markov Random Fields)
- Factor Graph
- Markov Chain Monte Carlo
- Belief Propagation
- Mean Field Algorithm
- Maximizing Problems (Viterbi)
(3) Bayesian Non-Parametric Models
- Dirichlet Processes

Outline

(1) Basics of Statistical Learning

- Probability
- Statistical Estimation
- Regularization
- Decision Theory
(2) Graphical Models
- Directed Graphical Models (Bayesian Networks)
- Undirected Graphical Models (Markov Random Fields)
- Factor Graph
- Markov Chain Monte Carlo
- Belief Propagation
- Mean Field Algorithm
- Maximizing Problems (Viterbi)
(3) Bayesian Non-Parametric Models
- Dirichlet Processes

Outline

(1) Basics of Statistical Learning

- Probability
- Statistical Estimation
- Regularization
- Decision Theory
(2) Graphical Models
- Directed Graphical Models (Bayesian Networks)
- Undirected Graphical Models (Markov Random Fields)
- Factor Graph
- Markov Chain Monte Carlo
- Belief Propagation
- Mean Field Algorithm
- Maximizing Problems (Viterbi)
(3) Bayesian Non-Parametric Models
- Dirichlet Processes

Probability

- The probability of a discrete random variable A taking the value a is $P(A=a) \in[0,1]$.
- Sometimes written as $P(a)$ when no danger of confusion.
- Normalization $\sum_{\text {all } a} P(A=a)=1$.
- Joint probability $P(A=a, B=b)=P(a, b)$, the two events both happen at the same time.
- Marginalization $P(A=a)=\sum_{\text {all } b} P(A=a, B=b)$, "summing out B".
- Conditional probability $P(a \mid b)=\frac{P(a, b)}{P(b)}, a$ happens given b happened.
- The product rule $P(a, b)=P(a) P(b \mid a)=P(b) P(a \mid b)$.

Bayes Rule

- Bayes rule $P(a \mid b)=\frac{P(b \mid a) P(a)}{P(b)}$.
- In general, $P(a \mid b, C)=\frac{P(b \mid a, C) P(a \mid C)}{P(b \mid C)}$ where C can be one or more random variables.
- Bayesian approach: when θ is model parameter, D is observed data, we have

$$
p(\theta \mid D)=\frac{p(D \mid \theta) p(\theta)}{p(D)}
$$

- $p(\theta)$ is the prior,
- $p(D \mid \theta)$ the likelihood function (of θ, not normalized: $\int p(D \mid \theta) d \theta \neq 1$),
- $p(D)=\int p(D \mid \theta) p(\theta) d \theta$ the evidence,
- $p(\theta \mid D)$ the posterior.

Independence

- The product rule can be simplified as $P(a, b)=P(a) P(b)$ iff A and B are independent
- Equivalently, $P(a \mid b)=P(a), P(b \mid a)=P(b)$.

Probability density

- A continuous random variable x has a probability density function (pdf) $p(x) \in[0, \infty]$.
- $p(x)>1$ is possible! Integrates to 1 .

$$
\int_{-\infty}^{\infty} p(x) d x=1
$$

- $P\left(x_{1}<X<x_{2}\right)=\int_{x_{1}}^{x_{2}} p(x) d x$
- Marginalization $p(x)=\int_{-\infty}^{\infty} p(x, y) d y$

Expectation and Variance

- The expectation ("mean" or "average") of a function f under the probability distribution P is

$$
\begin{aligned}
& \mathbb{E}_{P}[f]=\sum_{a} P(a) f(a) \\
& \mathbb{E}_{p}[f]=\int_{x} p(x) f(x) d x
\end{aligned}
$$

- In particular if $f(x)=x$, this is the mean of the random variable x.
- The variance of f is

$$
\operatorname{Var}(f)=\mathbb{E}\left[(f(x)-\mathbb{E}[f(x)])^{2}\right]=\mathbb{E}\left[f(x)^{2}\right]-\mathbb{E}[f(x)]^{2}
$$

- The standard deviation is $\operatorname{std}(f)=\sqrt{\operatorname{Var}(f)}$.

Multivariate Statistics

- When x, y are vectors, $\mathbb{E}[x]$ is the mean vector
- $\operatorname{Cov}(x, y)$ is the covariance matrix with i, j-th entry being $\operatorname{Cov}\left(x_{i}, y_{j}\right)$.

$$
\operatorname{Cov}(x, y)=\mathbb{E}_{x, y}[(x-\mathbb{E}[x])(y-\mathbb{E}[y])]=\mathbb{E}_{x, y}[x y]-\mathbb{E}[x] \mathbb{E}[y]
$$

Some Discrete Distributions

- Dirac or point mass distribution $X \sim \delta_{a}$ if $P(X=a)=1$
- Binomial. n (number of trials) and p (head probability)

$$
f(x)= \begin{cases}\binom{n}{x} p^{x}(1-p)^{n-x} & \text { for } x=0,1, \ldots, n \\ 0 & \text { otherwise }\end{cases}
$$

- Bernoulli. Binomial with $n=1$.
- Multinomial $p=\left(p_{1}, \ldots, p_{d}\right)^{\top}$ (d-sided die)

$$
f(x)= \begin{cases}\binom{n}{x_{1}, \ldots, x_{d}} \prod_{k=1}^{d} p_{k}^{x_{k}} & \text { if } \sum_{k=1}^{d} x_{k}=n \\ 0 & \text { otherwise }\end{cases}
$$

More Discrete Distributions

- Poisson. $X \sim \operatorname{Poisson}(\lambda)$ if

$$
f(x)=e^{-\lambda} \frac{\lambda^{x}}{x!}
$$

for $x=0,1,2, \ldots$.

- λ the rate or intensity parameter
- mean: λ, variance: λ
- If $X_{1} \sim \operatorname{Poisson}\left(\lambda_{1}\right)$ and $X_{2} \sim \operatorname{Poisson}\left(\lambda_{2}\right)$ then $X_{1}+X_{2} \sim \operatorname{Poisson}\left(\lambda_{1}+\lambda_{2}\right)$.
- This is a distribution on unbounded counts with a probability mass function "hump" (mode at $\lceil\lambda\rceil-1$).

Some Continuous Distributions

- Gaussian (Normal): $X \sim N\left(\mu, \sigma^{2}\right)$ with parameters $\mu \in \mathbb{R}$ (the mean) and σ^{2} (the variance)

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) .
$$

- σ is the standard deviation.
- If $\mu=0, \sigma=1, X$ has a standard normal distribution.
- (Scaling) If $X \sim N\left(\mu, \sigma^{2}\right)$, then $Z=(X-\mu) / \sigma \sim N(0,1)$
- (Independent sum) If $X_{i} \sim N\left(\mu_{i}, \sigma_{i}^{2}\right)$ are independent, then $\sum_{i} X_{i} \sim N\left(\sum_{i} \mu_{i}, \sum_{i} \sigma_{i}^{2}\right)$

Some Continuous Distributions

- Multivariate Gaussian. Let $x, \mu \in \mathbb{R}^{d}, \Sigma \in S_{+}^{d}$ a symmetric, positive definite matrix of size $d \times d$. Then $X \sim N(\mu, \Sigma)$ with PDF

$$
f(x)=\frac{1}{|\Sigma|^{1 / 2}(2 \pi)^{d / 2}} \exp \left(-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right) .
$$

- μ is the mean vector, Σ is the covariance matrix, $|\Sigma|$ its determinant, and Σ^{-1} its inverse

Marginal and Conditional of Gaussian

- If two (groups of) variables x, y are jointly Gaussian:

$$
\left[\begin{array}{l}
x \tag{1}\\
y
\end{array}\right] \sim N\left(\left[\begin{array}{l}
\mu_{x} \\
\mu_{y}
\end{array}\right],\left[\begin{array}{cc}
A & C \\
C^{\top} & B
\end{array}\right]\right)
$$

- (Marginal) $x \sim N\left(\mu_{x}, A\right)$
- (Conditional) $y \mid x \sim N\left(\mu_{y}+C^{\top} A^{-1}\left(x-\mu_{x}\right), B-C^{\top} A^{-1} C\right)$

More Continuous Distributions

- The Gamma function (not distribution) is $\Gamma(\alpha)=\int_{0}^{\infty} y^{\alpha-1} e^{-y} d y$ with $\alpha>0$.
- Generalizes factorial: $\Gamma(n)=(n-1)$! when n is a positive integer.
- $\Gamma(\alpha+1)=\alpha \Gamma(\alpha)$ for $\alpha>0$.
- X has a Gamma distribution $X \sim \operatorname{Gamma}(\alpha, \beta)$ with shape parameter $\alpha>0$ and scale parameter $\beta>0$

$$
f(x)=\frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha-1} e^{-x / \beta}, x>0
$$

- Conjugate prior for Poisson rate.

More Continuous Distributions

- Beta. $X \sim \operatorname{Beta}(\alpha, \beta)$ with parameters $\alpha, \beta>0$, if

$$
f(x)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1}, x \in(0,1)
$$

A draw from a beta distribution can be thought of as generating a (biased) coin.

- $\operatorname{Beta}(1,1)$ is uniform in $[0,1]$.
- $\operatorname{Beta}(\alpha<1, \beta<1)$ has a U-shape.
- $\operatorname{Beta}(\alpha>1, \beta>1)$ is unimodal with mean $\alpha /(\alpha+\beta)$ and mode $(\alpha-1) /(\alpha+\beta-2)$.
- Beta distribution is conjugate to the binomial and Bernoulli distributions. A draw from the corresponding Bernoulli distribution can be thought of as a flip of that coin.

More Continuous Distributions

- Dirichlet. Multivariate version of beta. $X \sim \operatorname{Dir}\left(\alpha_{1}, \ldots, \alpha_{d}\right)$ with parameters $\alpha_{i}>0$, if

$$
f(x)=\frac{\Gamma\left(\sum_{i}^{d} \alpha_{i}\right)}{\prod_{i}^{d} \Gamma\left(\alpha_{i}\right)} \prod_{i}^{d} x_{i}^{\alpha_{i}-1}
$$

where $x=\left(x_{1}, \ldots, x_{d}\right)$ with $x_{i}>0, \sum_{i}^{d} x_{i}=1$.

- The support is called the open $(d-1)$ dimensional simplex.
- Dirichlet is conjugate to multinomial.
- Dice factory (Dirichlet) and die rolls (multinomial)
- Modeling bag-of-word documents. Also in Dirichlet Processes.

Outline

(1) Basics of Statistical Learning

- Probability
- Statistical Estimation
- Regularization
- Decision Theory
(2) Graphical Models
- Directed Graphical Models (Bayesian Networks)
- Undirected Graphical Models (Markov Random Fields)
- Factor Graph
- Markov Chain Monte Carlo
- Belief Propagation
- Mean Field Algorithm
- Maximizing Problems (Viterbi)
(3) Bayesian Non-Parametric Models
- Dirichlet Processes

Parametric Models

- A statistical model \mathcal{H} is a set of distributions.
- In machine learning, we call \mathcal{H} the hypothesis space.
- A parametric model can be parametrized by a finite number of parameters: $f(x) \equiv f(x ; \theta)$ with parameter $\theta \in \mathbb{R}^{d}$:

$$
\mathcal{H}=\left\{f(x ; \theta): \theta \in \Theta \subset \mathbb{R}^{d}\right\}
$$

where Θ is the parameter space.

Parametric Models

- We denote the expectation

$$
\mathbb{E}_{\theta}(g)=\int_{x} g(x) f(x ; \theta) d x
$$

- \mathbb{E}_{θ} means $\mathbb{E}_{x \sim f(x ; \theta)}$, not over different θ 's.
- For parametric model $\mathcal{H}=\{N(\mu, 1): \mu \in \mathbb{R}\}$, given iid data x_{1}, \ldots, x_{n}, the optimal estimator of the mean is $\widehat{\mu}=\frac{1}{n} \sum x_{i}$.
- All (parametric) models are wrong. Some are more useful than others.

Nonparametric model

- A nonparametric model cannot be parametrized by a fixed number of parameters.
- Model complexity grows indefinitely with sample size
- Example: $\mathcal{H}=\left\{P: \operatorname{Var}_{P}(X)<\infty\right\}$.
- Given iid data x_{1}, \ldots, x_{n}, the optimal estimator of the mean is again $\widehat{\mu}=\frac{1}{n} \sum x_{i}$.
- Nonparametric makes weaker model assumptions and thus is preferred.
- But parametric models converge faster and are more practical.

Estimation

- Given $X_{1} \ldots X_{n} \sim F \in \mathcal{H}$, an estimator $\widehat{\theta}_{n}$ is any function of $X_{1} \ldots X_{n}$ that attempts to estimate a parameter θ.
- This is the "learning" in machine learning!
- Example: In classification $X_{i}=\left(x_{i}, y_{i}\right)$ and $\hat{\theta}_{n}$ is the learned model.
- $\widehat{\theta}_{n}$ is a random variable because the training set is random.
- An estimator is consistent if $\widehat{\theta}_{n} \xrightarrow{P} \theta$.
- Consistent estimators learn the correct model with more training data eventually.

Bias

- Since $\widehat{\theta}_{n}$ is a random variable, it has an expectation $\mathbb{E}_{\theta}\left(\widehat{\theta}_{n}\right)$
- \mathbb{E}_{θ} is w.r.t. the joint distribution $f\left(x_{1}, \ldots, x_{n} ; \theta\right)=\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)$.
- The bias of the estimator is

$$
\operatorname{bias}\left(\widehat{\theta}_{n}\right)=\mathbb{E}_{\theta}\left(\widehat{\theta}_{n}\right)-\theta
$$

- An estimator is unbiased if $\operatorname{bias}\left(\widehat{\theta}_{n}\right)=0$.
- The standard error of an estimator is $\operatorname{se}\left(\hat{\theta}_{n}\right)=\sqrt{\operatorname{Var}_{\theta}\left(\hat{\theta}_{n}\right)}$
- Example: Let $\hat{\mu}=\frac{1}{n} \sum_{i} x_{i}$, where $x_{i} \sim N(0,1)$. Then the standard deviation of x_{i} is 1 regardless of n. In contrast, $\operatorname{se}(\hat{\mu})=1 / \sqrt{n}=n^{-\frac{1}{2}}$ which decreases with n.

MSE

- The mean squared error of an estimator is

$$
\operatorname{mse}\left(\widehat{\theta}_{n}\right)=\mathbb{E}_{\theta}\left(\left(\widehat{\theta}_{n}-\theta\right)^{2}\right)
$$

- Bias-variance decomposition

$$
\operatorname{mse}\left(\hat{\theta}_{n}\right)=\operatorname{bias}^{2}\left(\hat{\theta}_{n}\right)+\operatorname{se}^{2}\left(\hat{\theta}_{n}\right)=\operatorname{bias}^{2}\left(\widehat{\theta}_{n}\right)+\operatorname{Var}_{\theta}\left(\hat{\theta}_{n}\right)
$$

- If $\operatorname{bias}\left(\widehat{\theta}_{n}\right) \rightarrow 0$ and $\operatorname{Var}_{\theta}\left(\hat{\theta}_{n}\right) \rightarrow 0$ then $\operatorname{mse}\left(\widehat{\theta}_{n}\right) \rightarrow 0$.
- This implies $\widehat{\theta}_{n} \xrightarrow{P} \theta$, so that $\widehat{\theta}_{n}$ is consistent.

Maximum Likelihood

- Let $x_{1}, \ldots, x_{n} \sim f(x ; \theta)$ where $\theta \in \Theta$.
- The likelihood function is

$$
L_{n}(\theta)=f\left(x_{1}, \ldots, x_{n} ; \theta\right)=\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)
$$

- The log likelihood function is $\ell_{n}(\theta)=\log L_{n}(\theta)$.
- The maximum likelihood estimator (MLE) is

$$
\widehat{\theta}_{n}=\operatorname{argmax}_{\theta \in \Theta} L_{n}(\theta)=\operatorname{argmax}_{\theta \in \Theta} \ell_{n}(\theta)
$$

MLE examples

- The MLE for p (head) from n coin flips is count(head) $/ n$
- The MLE for $X_{1}, \ldots, X_{N} \sim N\left(\mu, \sigma^{2}\right)$ is $\widehat{\mu}=1 / n \sum_{i} X_{i}$ and $\widehat{\sigma}^{2}=1 / n \sum\left(X_{i}-\widehat{\mu}\right)^{2}$.
- The MLE does not always agree with intuition. The MLE for $X_{1}, \ldots, X_{n} \sim$ uniform $(0, \theta)$ is $\widehat{\theta}=\max \left(X_{1}, \ldots, X_{n}\right)$.

Properties of MLE

- When \mathcal{H} is identifiable, under certain conditions (see Wasserman Theorem 9.13), the MLE $\widehat{\theta}_{n} \xrightarrow{P} \theta^{*}$, where θ^{*} is the true value of the parameter θ. That is, the MLE is consistent.
- Asymptotic Normality: Let $s e=\sqrt{\operatorname{Var}_{\theta}\left(\hat{\theta}_{n}\right)}$. Under appropriate regularity conditions, se $\approx \sqrt{1 / I_{n}(\theta)}$ where $I_{n}(\theta)$ is the Fisher information, and

$$
\frac{\widehat{\theta}_{n}-\theta}{s e} \rightsquigarrow N(0,1)
$$

- The MLE is asymptotically efficient (achieves the Cramér-Rao lower bound), "best" among unbiased estimators.

Frequentist statistics

- Probability refers to limiting relative frequency.
- Data are random.
- Estimators are random because they are functions of data.
- Parameters are fixed, unknown constants not subject to probabilistic statements.
- Procedures are subject to probabilistic statements, for example 95\% confidence intervals trap the true parameter value 95
- Classifiers, even learned with deterministic procedures, are random because the training set is random.
- PAC bound is frequentist. Most procedures in machine learning are frequentist methods.

Bayesian statistics

- Probability refers to degree of belief.
- Inference about a parameter θ is by producing a probability distributions on it.
- Starts with prior distribution $p(\theta)$.
- Likelihood function $p(x \mid \theta)$, a function of θ not x.
- After observing data x, one applies the Bayes rule to obtain the posterior

$$
p(\theta \mid x)=\frac{p(\theta) p(x \mid \theta)}{\int p\left(\theta^{\prime}\right) p\left(x \mid \theta^{\prime}\right) d \theta^{\prime}}=\frac{1}{Z} p(\theta) p(x \mid \theta)
$$

- $Z \equiv \int p\left(\theta^{\prime}\right) p\left(x \mid \theta^{\prime}\right) d \theta^{\prime}=p(x)$ is the normalizing constant or evidence.
- Prediction by integrating parameters out:

$$
p(x \mid \text { Data })=\int p(x \mid \theta) p(\theta \mid \text { Data }) d \theta
$$

Frequentist vs Bayesian in machine learning

- Frequentists produce a point estimate $\hat{\theta}$ from Data, and predict with $p(x \mid \hat{\theta})$.
- Bayesians keep the posterior distribution $p(\theta \mid$ Data), and predict by integrating over θ s.
- Bayesian integration is often intractable, need either "nice" distributions or approximations.
- The maximum a posteriori (MAP) estimate

$$
\theta^{M A P}=\operatorname{argmax}_{\theta} p(\theta \mid x)
$$

is a point estimate and not Bayesian.

Outline

(1) Basics of Statistical Learning

- Probability
- Statistical Estimation
- Regularization
- Decision Theory
(2) Graphical Models
- Directed Graphical Models (Bayesian Networks)
- Undirected Graphical Models (Markov Random Fields)
- Factor Graph
- Markov Chain Monte Carlo
- Belief Propagation
- Mean Field Algorithm
- Maximizing Problems (Viterbi)
(3) Bayesian Non-Parametric Models
- Dirichlet Processes

Regularization for Maximum Likelihood

- Recall the MLE $\widehat{\theta}_{n}=\operatorname{argmax}_{\theta \in \Theta} \ell_{n}(\theta)$
- Can overfit.
- Regularized likelihood

$$
\widehat{\theta}_{n}=\operatorname{argmin}_{\theta \in \Theta}-\ell_{n}(\theta)+\lambda \Omega(\theta)
$$

- $\Omega(\theta)$ is the regularizer, for example $\Omega(\theta)=\|\theta\|^{2}$.
- Coincides with MAP estimate with prior distribution $p(\theta) \propto \exp (-\lambda \Omega(\theta))$

Graph-based regularization

- Nodes: $x_{1} \ldots x_{n}, \theta=\mathbf{f}=\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right)$
- Edges: similarity weights computed from features, e.g.,
- k-nearest-neighbor graph, unweighted (0,1 weights)
- fully connected graph, weight decays with distance

$$
w=\exp \left(-\left\|x_{i}-x_{j}\right\|^{2} / \sigma^{2}\right)
$$

- ϵ-radius graph
- Assumption Nodes connected by heavy edge tend to have the same value.

Graph energy

- f incurs the energy

$$
\sum_{i \sim j} w_{i j}\left(f\left(x_{i}\right)-f\left(x_{j}\right)\right)^{2}
$$

- smooth f has small energy
- constant f has zero energy

An electric network interpretation

- Edges are resistors with conductance $w_{i j}$
- Nodes clamped at voltages specified by f
- Energy = heat generated by the network in unit time

The graph Laplacian

We can express the energy of f in closed-form using the graph Laplacian.

- $n \times n$ weight matrix W on $X_{l} \cup X_{u}$
- symmetric, non-negative
- Diagonal degree matrix $D: D_{i i}=\sum_{j=1}^{n} W_{i j}$
- Graph Laplacian matrix Δ

$$
\Delta=D-W
$$

- The energy

$$
\sum_{i \sim j} w_{i j}\left(f\left(x_{i}\right)-f\left(x_{j}\right)\right)^{2}=f^{\top} \Delta f
$$

Graph Laplacian as a Regularizer

- Regression problem with training data $x_{i} \in \mathbb{R}^{d}, y_{i} \in \mathbb{R}, i=1 \ldots n$
- Allow $f\left(X_{i}\right)$ to be different from Y_{i}, but penalize the difference with a Gaussian log likelihood
- Regularizer $\Omega(\mathbf{f})=f^{\top} \Delta f$

$$
\min _{f} \sum_{i=1}^{n}\left(f\left(x_{i}\right)-y_{i}\right)^{2}+\lambda f^{\top} \Delta f
$$

- Equivalent to MAP estimate with
- Gaussian likelihood $y_{i}=f\left(x_{i}\right)+\epsilon_{i}$ where $\epsilon_{i} \sim N\left(0, \sigma^{2}\right)$, and
- Gaussian Random Field prior $p(f)=\frac{1}{Z} \exp \left(-\lambda f^{\top} \Delta f\right)$

Graph Spectrum and Regularization

Assumption: labels are "smooth" on the graph, characterized by the graph spectrum (eigen-values/vectors $\left\{\left(\lambda_{i}, \phi_{i}\right)\right\}_{i=1}^{n}$ of the Laplacian L):

- $L=\sum_{i=1}^{n} \lambda_{i} \phi_{i} \phi_{i}{ }^{\top}$
- a graph has k connected components if and only if $\lambda_{1}=\ldots=\lambda_{k}=0$.
- the corresponding eigenvectors are constant on individual connected components, and zero elsewhere.
- any \mathbf{f} on the graph can be represented as $\mathbf{f}=\sum_{i=1}^{n} a_{i} \phi_{i}$
- graph regularizer $\mathbf{f}^{\top} L \mathbf{f}=\sum_{i=1}^{n} a_{i}^{2} \lambda_{i}$
- smooth function \mathbf{f} uses smooth basis (those with small λ_{i})

Example graph spectrum

The graph

Eigenvalues and eigenvectors of the graph Laplacian

$\lambda_{1}=0.00$

$\lambda_{6}=0.38$
$\lambda_{12}=2.21$

$\lambda_{16}=3.34$

$\lambda_{2}=0.00$

$\lambda_{7}=0.66$

$\lambda_{17}=3.62$

$\lambda_{3}=0.04$

$\overbrace{\lambda_{14}=2.62}^{\infty}$

$\lambda_{4}=0.17$

Outline

(1) Basics of Statistical Learning

- Probability
- Statistical Estimation
- Regularization
- Decision Theory
(2) Graphical Models
- Directed Graphical Models (Bayesian Networks)
- Undirected Graphical Models (Markov Random Fields)
- Factor Graph
- Markov Chain Monte Carlo
- Belief Propagation
- Mean Field Algorithm
- Maximizing Problems (Viterbi)
(3) Bayesian Non-Parametric Models
- Dirichlet Processes

Comparing Estimators

- Training set $D=\left(x_{1}, \ldots, x_{n}\right) \sim p(x ; \theta)$
- Learned model: $\hat{\theta} \equiv \hat{\theta}(D)$ an estimator of θ based on data D.
- Loss function $L(\theta, \hat{\theta}): \Theta \times \Theta \mapsto \mathbb{R}_{+}$
- squared loss $L(\theta, \hat{\theta})=(\theta-\hat{\theta})^{2}$
- 0-1 loss $L(\theta, \hat{\theta})= \begin{cases}0 & \theta=\hat{\theta} \\ 1 & \theta \neq \hat{\theta}\end{cases}$
- KL loss $L(\theta, \hat{\theta})=\int p(x ; \theta) \log \left(\frac{p(x ; \theta)}{p(x ; \hat{\theta})}\right) d x$
- Since D is random, both $\hat{\theta}(D)$ and $L(\theta, \hat{\theta})$ are random variables

Risk

- The risk $R(\theta, \hat{\theta})$ is the expected loss

$$
R(\theta, \hat{\theta})=\mathbb{E}_{D}[L(\theta, \hat{\theta}(D))]
$$

- \mathbb{E}_{D} averaged over training sets D sampled from the true θ
- The risk is the "average training set" behavior of a learning algorithm when the world is θ
- Not computable: we don't know which θ the world is in.
- Example: Let $D=X_{1} \sim N(\theta, 1)$. Let $\hat{\theta}_{1}=X_{1}$ and $\hat{\theta}_{2}=3.14$. Assume squared loss. Then $R\left(\theta, \hat{\theta}_{1}\right)=1$ (hint: variance), $R\left(\theta, \hat{\theta}_{2}\right)=\mathbb{E}_{D}(\theta-3.14)^{2}=(\theta-3.14)^{2}$.
- Smart learning algorithm $\hat{\theta}_{1}$ and a dumb one $\hat{\theta}_{2}$. However, for tasks $\theta \in(3.14-1,3.14+1)$ the dumb algorithm is better.

Minimax Estimator

- maximum risk

$$
R^{\max }(\hat{\theta})=\sup _{\theta} R(\theta, \hat{\theta})
$$

- The minimax estimator $\hat{\theta}^{\text {minimax }}$ minimizes the maximum risk

$$
\hat{\theta}^{\text {minimax }}=\arg \inf _{\hat{\theta}} \sup _{\theta} R(\theta, \hat{\theta})
$$

- The infimum is over all estimators $\hat{\theta}$.
- The minimax estimator is the "best" in guarding against the worst possible world.

Outline

(1) Basics of Statistical Learning

- Probability
- Statistical Estimation
- Regularization
- Decision Theory

(2) Graphical Models

- Directed Graphical Models (Bayesian Networks)
- Undirected Graphical Models (Markov Random Fields)
- Factor Graph
- Markov Chain Monte Carlo
- Belief Propagation
- Mean Field Algorithm
- Maximizing Problems (Viterbi)
(3) Bayesian Non-Parametric Models
- Dirichlet Processes

The envelope quiz

The envelope quiz

- Random variables $E \in\{1,0\}, B \in\{r, b\}$
- $P(E=1)=P(E=0)=1 / 2$
- $P(B=r \mid E=1)=1 / 2, P(B=r \mid E=0)=0$
- We ask: $P(E=1 \mid B=b) \geq 1 / 2$?
- $P(E=1 \mid B=b)=\frac{P(B=b \mid E=1) P(E=1)}{P(B=b)}=\frac{1 / 2 \times 1 / 2}{3 / 4}=1 / 3$
- Switch.
- The graphical model:

Probabilistic Reasoning

- The world is reduced to a set of random variables x_{1}, \ldots, x_{n}
- e.g. $\left(x_{1}, \ldots, x_{n-1}\right)$ a feature vector, $x_{n} \equiv y$ the class label
- Inference: given joint distribution $p\left(x_{1}, \ldots, x_{n}\right)$, compute $p\left(X_{Q} \mid X_{E}\right)$ where $X_{Q} \cup X_{E} \subseteq\left\{x_{1} \ldots x_{n}\right\}$
- e.g. $Q=\{n\}, E=\{1 \ldots n-1\}$, by the definition of conditional

$$
p\left(x_{n} \mid x_{1}, \ldots, x_{n-1}\right)=\frac{p\left(x_{1}, \ldots, x_{n-1}, x_{n}\right)}{\sum_{v} p\left(x_{1}, \ldots, x_{n-1}, x_{n}=v\right)}
$$

- Learning: estimate $p\left(x_{1}, \ldots, x_{n}\right)$ from training data $X^{(1)}, \ldots, X^{(N)}$, where $X^{(i)}=\left(x_{1}^{(i)}, \ldots, x_{n}^{(i)}\right)$

It is difficult to reason with uncertainty

- joint distribution $p\left(x_{1}, \ldots, x_{n}\right)$
- exponential naïve storage (2^{n} for binary r.v.)
- hard to interpret (conditional independence)
- inference $p\left(X_{Q} \mid X_{E}\right)$
- Often can't afford to do it by brute force
- If $p\left(x_{1}, \ldots, x_{n}\right)$ not given, estimate it from data
- Often can't afford to do it by brute force

Graphical models

- Graphical models: efficient representation, inference, and learning on $p\left(x_{1}, \ldots, x_{n}\right)$, exactly or approximately
- Two main "flavors":
- directed graphical models = Bayesian Networks (often frequentist instead of Bayesian)
- undirected graphical models = Markov Random Fields
- Key idea: make conditional independence explicit

Outline

(1) Basics of Statistical Learning

- Probability
- Statistical Estimation
- Regularization
- Decision Theory
(2) Graphical Models
- Directed Graphical Models (Bayesian Networks)
- Undirected Graphical Models (Markov Random Fields)
- Factor Graph
- Markov Chain Monte Carlo
- Belief Propagation
- Mean Field Algorithm
- Maximizing Problems (Viterbi)
(3) Bayesian Non-Parametric Models
- Dirichlet Processes

Bayesian Network

- Directed graphical models are also called Bayesian networks
- A directed graph has nodes $X=\left(x_{1}, \ldots, x_{n}\right)$, some of them connected by directed edges $x_{i} \rightarrow x_{j}$
- A cycle is a directed path $x_{1} \rightarrow \ldots \rightarrow x_{k}$ where $x_{1}=x_{k}$
- A directed acyclic graph (DAG) contains no cycles
- A Bayesian network on the DAG is a family of distributions satisfying

$$
\left\{p \mid p(X)=\prod_{i} p\left(x_{i} \mid P a\left(x_{i}\right)\right)\right\}
$$

where $P a\left(x_{i}\right)$ is the set of parents of x_{i}.

- $p\left(x_{i} \mid P a\left(x_{i}\right)\right)$ is the conditional probability distribution (CPD) at x_{i}
- By specifying the CPDs for all i, we specify a particular distribution $p(X)$

Example: Alarm

Binary variables

$$
\begin{gathered}
\mathrm{P}(\mathrm{~B})=0.001 \\
\mathrm{P}(\mathrm{~A} \mid \mathrm{B}, \mathrm{E})=0.95 \\
\mathrm{P}(\mathrm{~A} \mid \mathrm{B}, \sim \mathrm{E})=0.94 \\
\mathrm{P}(\mathrm{~A} \mid \sim \mathrm{B}, \sim \mathrm{E})=0.29 \\
\mathrm{P}(\mathrm{~J} \mid \mathrm{A})=0.001 \\
\mathrm{P}(\mathrm{~J} \mid \sim \mathrm{A})=0.05
\end{gathered}
$$

Example: Naive Bayes

- $p\left(y, x_{1}, \ldots x_{d}\right)=p(y) \prod_{i=1}^{d} p\left(x_{i} \mid y\right)$
- Used extensively in natural language processing
- Plate representation on the right

No Causality Whatsoever

$$
\mathrm{P}(\mathrm{~B})=\mathrm{ab}+(1-\mathrm{a}) \mathrm{c}
$$

$$
\mathrm{P}(\mathrm{~A} \mid \mathrm{B})=\mathrm{ab} /(\mathrm{ab}+(1-\mathrm{a}) \mathrm{c})
$$

$$
\mathrm{P}(\mathrm{~A} \mid \sim \mathrm{B})=\mathrm{a}(1-\mathrm{b}) /(1-\mathrm{ab}-(1-\mathrm{a}) \mathrm{c})
$$

The two BNs are equivalent in all respects

- Bayesian networks imply no causality at all
- They only encode the joint probability distribution (hence correlation)
- However, people tend to design BNs based on causal relations

Example: Latent Dirichlet Allocation (LDA)

A generative model for $p(\phi, \theta, z, w \mid \alpha, \beta)$:
For each topic t
$\phi_{t} \sim \operatorname{Dirichlet}(\beta)$
For each document d
$\theta \sim$ Dirichlet (α)
For each word position in d topic $z \sim \operatorname{Multinomial}(\theta)$ word $w \sim \operatorname{Multinomial}\left(\phi_{z}\right)$
Inference goals: $p(z \mid w, \alpha, \beta), \operatorname{argmax}_{\phi, \theta} p(\phi, \theta \mid w, \alpha, \beta)$

Example: Latent Dirichlet Allocation (LDA)

A generative model for $p(\phi, \theta, z, w \mid \alpha, \beta)$:
For each topic t
$\phi_{t} \sim \operatorname{Dirichlet}(\beta)$
For each document d
$\theta \sim$ Dirichlet (α)
For each word position in d topic $z \sim \operatorname{Multinomial}(\theta)$ word $w \sim \operatorname{Multinomial}\left(\phi_{z}\right)$
Inference goals: $p(z \mid w, \alpha, \beta), \operatorname{argmax}_{\phi, \theta} p(\phi, \theta \mid w, \alpha, \beta)$

Example: Latent Dirichlet Allocation (LDA)

A generative model for $p(\phi, \theta, z, w \mid \alpha, \beta)$:
For each topic t
$\phi_{t} \sim \operatorname{Dirichlet}(\beta)$
For each document d
$\theta \sim$ Dirichlet (α)
For each word position in d topic $z \sim \operatorname{Multinomial}(\theta)$ word $w \sim \operatorname{Multinomial}\left(\phi_{z}\right)$
Inference goals: $p(z \mid w, \alpha, \beta), \operatorname{argmax}_{\phi, \theta} p(\phi, \theta \mid w, \alpha, \beta)$

Example: Latent Dirichlet Allocation (LDA)

A generative model for $p(\phi, \theta, z, w \mid \alpha, \beta)$:
For each topic t
$\phi_{t} \sim \operatorname{Dirichlet}(\beta)$
For each document d
$\theta \sim$ Dirichlet (α)
For each word position in d
topic $z \sim \operatorname{Multinomial}(\theta)$
word $w \sim \operatorname{Multinomial}\left(\phi_{z}\right)$
Inference goals: $p(z \mid w, \alpha, \beta), \operatorname{argmax}_{\phi, \theta} p(\phi, \theta \mid w, \alpha, \beta)$

Example: Latent Dirichlet Allocation (LDA)

A generative model for $p(\phi, \theta, z, w \mid \alpha, \beta)$:
For each topic t
$\phi_{t} \sim \operatorname{Dirichlet}(\beta)$
For each document d
$\theta \sim$ Dirichlet (α)
For each word position in d topic $z \sim \operatorname{Multinomial}(\theta)$ word $w \sim \operatorname{Multinomial}\left(\phi_{z}\right)$
Inference goals: $p(z \mid w, \alpha, \beta), \operatorname{argmax}_{\phi, \theta} p(\phi, \theta \mid w, \alpha, \beta)$

Example: Latent Dirichlet Allocation (LDA)

A generative model for $p(\phi, \theta, z, w \mid \alpha, \beta)$:
For each topic t
$\phi_{t} \sim \operatorname{Dirichlet}(\beta)$
For each document d
$\theta \sim$ Dirichlet (α)
For each word position in d topic $z \sim \operatorname{Multinomial}(\theta)$ word $w \sim \operatorname{Multinomial}\left(\phi_{z}\right)$
Inference goals: $p(z \mid w, \alpha, \beta), \operatorname{argmax}_{\phi, \theta} p(\phi, \theta \mid w, \alpha, \beta)$

Example: Latent Dirichlet Allocation (LDA)

A generative model for $p(\phi, \theta, z, w \mid \alpha, \beta)$:
For each topic t
$\phi_{t} \sim \operatorname{Dirichlet}(\beta)$
For each document d
$\theta \sim$ Dirichlet (α)
For each word position in d topic $z \sim \operatorname{Multinomial}(\theta)$ word $w \sim \operatorname{Multinomial}\left(\phi_{z}\right)$
Inference goals: $p(z \mid w, \alpha, \beta), \operatorname{argmax}_{\phi, \theta} p(\phi, \theta \mid w, \alpha, \beta)$

Example: Latent Dirichlet Allocation (LDA)

A generative model for $p(\phi, \theta, z, w \mid \alpha, \beta)$:
For each topic t
$\phi_{t} \sim \operatorname{Dirichlet}(\beta)$
For each document d
$\theta \sim$ Dirichlet (α)
For each word position in d topic $z \sim \operatorname{Multinomial}(\theta)$ word $w \sim \operatorname{Multinomial}\left(\phi_{z}\right)$
Inference goals: $p(z \mid w, \alpha, \beta), \operatorname{argmax}_{\phi, \theta} p(\phi, \theta \mid w, \alpha, \beta)$

Some Topics by LDA on the Wish Corpus

"troops"

"election"

"love"

Conditional Independence

- Two r.v.s A, B are independent if $P(A, B)=P(A) P(B)$ or $P(A \mid B)=P(A)$ (the two are equivalent)
- Two r.v.s A, B are conditionally independent given C if $P(A, B \mid C)=P(A \mid C) P(B \mid C)$ or $P(A \mid B, C)=P(A \mid C)$ (the two are equivalent)
- This extends to groups of r.v.s
- Conditional independence in a BN is precisely specified by d-separation ("directed separation")

d-Separation Case 1: Tail-to-Tail

- A, B in general dependent
- A, B conditionally independent given C (observed nodes are shaded)
- An observed C is a tail-to-tail node, blocks the undirected path $A-B$

d-Separation Case 2: Head-to-Tail

- A, B in general dependent
- A, B conditionally independent given C
- An observed C is a head-to-tail node, blocks the path $A-B$

d-Separation Case 3: Head-to-Head

- A, B in general independent
- A, B conditionally dependent given C , or any of C's descendants
- An observed C is a head-to-head node, unblocks the path A-B

d-Separation

- Any groups of nodes A and B are conditionally independent given another group C, if all undirected paths from any node in A to any node in B are blocked
- A path is blocked if it includes a node x such that either
- The path is head-to-tail or tail-to-tail at x and $x \in \mathrm{C}$, or
- The path is head-to-head at x, and neither x nor any of its descendants is in C .

d-Separation Example 1

- The undirected path from A to B is unblocked by E (because of C), and is not blocked by F
- A, B dependent given C

d-Separation Example 2

- The path from A to B is blocked both at E and F
- A, B conditionally independent given F

Outline

(1) Basics of Statistical Learning

- Probability
- Statistical Estimation
- Regularization
- Decision Theory
(2) Graphical Models
- Directed Graphical Models (Bayesian Networks)
- Undirected Graphical Models (Markov Random Fields)
- Factor Graph
- Markov Chain Monte Carlo
- Belief Propagation
- Mean Field Algorithm
- Maximizing Problems (Viterbi)
(3) Bayesian Non-Parametric Models
- Dirichlet Processes

Markov Random Fields

- Undirected graphical models are also called Markov Random Fields
- The efficiency of directed graphical model (acyclic graph, locally normalized CPDs) also makes it restrictive
- A clique C in an undirected graph is a fully connected set of nodes (note: full of loops!)
- Define a nonnegative potential function $\psi_{C}: X_{C} \mapsto \mathbb{R}_{+}$
- An undirected graphical model is a family of distributions satisfying

$$
\left\{p \left\lvert\, p(X)=\frac{1}{Z} \prod_{C} \psi_{C}\left(X_{C}\right)\right.\right\}
$$

- $Z=\int \prod_{C} \psi_{C}\left(X_{C}\right) d X$ is the partition function

Example: A Tiny Markov Random Field

- $x_{1}, x_{2} \in\{-1,1\}$
- A single clique $\psi_{C}\left(x_{1}, x_{2}\right)=e^{a x_{1} x_{2}}$
- $p\left(x_{1}, x_{2}\right)=\frac{1}{Z} e^{a x_{1} x_{2}}$
- $Z=\left(e^{a}+e^{-a}+e^{-a}+e^{a}\right)$
- $p(1,1)=p(-1,-1)=e^{a} /\left(2 e^{a}+2 e^{-a}\right)$
- $p(-1,1)=p(1,-1)=e^{-a} /\left(2 e^{a}+2 e^{-a}\right)$
- When the parameter $a>0$, favor homogeneous chains
- When the parameter $a<0$, favor inhomogeneous chains

Log Linear Models

- Real-valued feature functions $f_{1}(X), \ldots, f_{k}(X)$
- Real-valued weights w_{1}, \ldots, w_{k}

$$
p(X)=\frac{1}{Z} \exp \left(-\sum_{i=1}^{k} w_{i} f_{i}(X)\right)
$$

Example: The Ising Model

This is an undirected model with $x \in\{0,1\}$.

$$
p_{\theta}(x)=\frac{1}{Z} \exp \left(\sum_{s \in V} \theta_{s} x_{s}+\sum_{(s, t) \in E} \theta_{s t} x_{s} x_{t}\right)
$$

- $f_{s}(X)=x_{s}, f_{s t}(X)=x_{s} x_{t}$
- $w_{s}=-\theta_{s}, w_{s t}=-\theta_{s t}$

Example: Image Denoising

[From Bishop PRML]

noisy image

$\operatorname{argmax}_{X} P(X \mid Y)$

$$
\begin{gathered}
p_{\theta}(X \mid Y)=\frac{1}{Z} \exp \left(\sum_{s \in V} \theta_{s} x_{s}+\sum_{(s, t) \in E} \theta_{s t} x_{s} x_{t}\right) \\
\theta_{s}= \begin{cases}c & y_{s}=1 \\
-c & y_{s}=0\end{cases}
\end{gathered}
$$

Example: Gaussian Random Field

$$
p(X) \sim N(\mu, \Sigma)=\frac{1}{(2 \pi)^{n / 2}|\Sigma|^{1 / 2}} \exp \left(-\frac{1}{2}(X-\mu)^{\top} \Sigma^{-1}(X-\mu)\right)
$$

- Multivariate Gaussian
- The $n \times n$ covariance matrix Σ positive semi-definite
- Let $\Omega=\Sigma^{-1}$ be the precision matrix
- x_{i}, x_{j} are conditionally independent given all other variables, if and only if $\Omega_{i j}=0$
- When $\Omega_{i j} \neq 0$, there is an edge between x_{i}, x_{j}

Conditional Independence in Markov Random Fields

- Two group of variables A, B are conditionally independent given another group C , if:
- A, B become disconnected by removing C and all edges involving C

Outline

(1) Basics of Statistical Learning

- Probability
- Statistical Estimation
- Regularization
- Decision Theory
(2) Graphical Models
- Directed Graphical Models (Bayesian Networks)
- Undirected Graphical Models (Markov Random Fields)
- Factor Graph
- Markov Chain Monte Carlo
- Belief Propagation
- Mean Field Algorithm
- Maximizing Problems (Viterbi)
(3) Bayesian Non-Parametric Models
- Dirichlet Processes

Factor Graph

- For both directed and undirected graphical models
- Bipartite: edges between a variable node and a factor node
- Factors represent computation

Outline

(1) Basics of Statistical Learning

- Probability
- Statistical Estimation
- Regularization
- Decision Theory
(2) Graphical Models
- Directed Graphical Models (Bayesian Networks)
- Undirected Graphical Models (Markov Random Fields)
- Factor Graph
- Markov Chain Monte Carlo
- Belief Propagation
- Mean Field Algorithm
- Maximizing Problems (Viterbi)
(3) Bayesian Non-Parametric Models
- Dirichlet Processes

Inference by Monte Carlo

- Consider the inference problem $p\left(X_{Q}=c_{Q} \mid X_{E}\right)$ where $X_{Q} \cup X_{E} \subseteq\left\{x_{1} \ldots x_{n}\right\}$

$$
p\left(X_{Q}=c_{Q} \mid X_{E}\right)=\int 1_{\left(x_{Q}=c_{Q}\right)} p\left(x_{Q} \mid X_{E}\right) d x_{Q}
$$

- If we can draw samples $x_{Q}^{(1)}, \ldots x_{Q}^{(m)} \sim p\left(x_{Q} \mid X_{E}\right)$, an unbiased estimator is

$$
p\left(X_{Q}=c_{Q} \mid X_{E}\right) \approx \frac{1}{m} \sum_{i=1}^{m} 1_{\left(x_{Q}^{(i)}=c_{Q}\right)}
$$

- The variance of the estimator decreases as $O(1 / m)$
- Inference reduces to sampling from $p\left(x_{Q} \mid X_{E}\right)$
- We discuss two methods: forward sampling and Gibbs sampling

Forward Sampling: Example

To generate a sample $X=(B, E, A, J, M)$:
(1) Sample $B \sim \operatorname{Ber}(0.001)$: $r \sim U(0,1)$. If $(r<0.001)$ then $B=1$ else $B=0$
(2) Sample $E \sim \operatorname{Ber}(0.002)$
(3) If $B=1$ and $E=1$, sample $A \sim \operatorname{Ber}(0.95)$, and so on
(9. If $A=1$ sample $J \sim \operatorname{Ber}(0.9)$ else $J \sim \operatorname{Ber}(0.05)$
(0. If $A=1$ sample $M \sim \operatorname{Ber}(0.7)$ else $M \sim \operatorname{Ber}(0.01)$

Inference with Forward Sampling

- Say the inference task is $P(B=1 \mid E=1, M=1)$
- Throw away all samples except those with $(E=1, M=1)$

$$
p(B=1 \mid E=1, M=1) \approx \frac{1}{m} \sum_{i=1}^{m} 1_{\left(B^{(i)}=1\right)}
$$

where m is the number of surviving samples

- Can be highly inefficient (note $P(E=1)$ tiny)
- Does not work for Markov Random Fields

Gibbs Sampler: Example $P(B=1 \mid E=1, M=1)$

- Gibbs sampler is a Markov Chain Monte Carlo (MCMC) method.
- Directly sample from $p\left(x_{Q} \mid X_{E}\right)$
- Works for both graphical models
- Initialization:
- Fix evidence; randomly set other variables
- e.g. $X^{(0)}=(B=0, E=1, A=0, J=0, M=1)$

Gibbs Update

- For each non-evidence variable x_{i}, fixing all other nodes X_{-i}, resample its value $x_{i} \sim P\left(x_{i} \mid X_{-i}\right)$
- This is equivalent to $x_{i} \sim P\left(x_{i} \mid \operatorname{MarkovBlanket}\left(x_{i}\right)\right)$
- For a Bayesian network MarkovBlanket $\left(x_{i}\right)$ includes x_{i} 's parents, spouses, and children

$$
P\left(x_{i} \mid \operatorname{MarkovBlanket}\left(x_{i}\right)\right) \propto P\left(x_{i} \mid P a\left(x_{i}\right)\right) \prod_{y \in C\left(x_{i}\right)} P(y \mid P a(y))
$$

where $P a(x)$ are the parents of x, and $C(x)$ the children of x.

- For many graphical models the Markov Blanket is small.
- For example, $B \sim P(B \mid E=1, A=0) \propto P(B) P(A=0 \mid B, E=1)$

$$
\mathrm{P}(\mathrm{~B})=0.001
$$

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~A} \mid \mathrm{B}, \mathrm{E})=0.95 \\
& \mathrm{P}(\mathrm{~A} \mid \mathrm{B}, \sim \mathrm{E})=0.94 \\
& \mathrm{P}(\mathrm{~A} \mid \sim \mathrm{B}, \mathrm{E})=0.29 \\
& \mathrm{P}(\mathrm{~A} \mid \sim \mathrm{B}, \sim \mathrm{E})=0.001
\end{aligned}
$$

Gibbs Update

- Say we sampled $B=1$. Then
$X^{(1)}=(B=1, E=1, A=0, J=0, M=1)$
- Starting from $X^{(1)}$, sample $A \sim P(A \mid B=1, E=1, J=0, M=1)$ to get $X^{(2)}$
- Move on to J, then repeat $B, A, J, B, A, J \ldots$
- Keep all later samples. $P(B=1 \mid E=1, M=1)$ is the fraction of samples with $B=1$.

Gibbs Example 2: The Ising Model

This is an undirected model with $x \in\{0,1\}$.

$$
p_{\theta}(x)=\frac{1}{Z} \exp \left(\sum_{s \in V} \theta_{s} x_{s}+\sum_{(s, t) \in E} \theta_{s t} x_{s} x_{t}\right)
$$

Gibbs Example 2: The Ising Model

- The Markov blanket of x_{s} is A, B, C, D
- In general for undirected graphical models

$$
p\left(x_{s} \mid x_{-s}\right)=p\left(x_{s} \mid x_{N(s)}\right)
$$

$N(s)$ is the neighbors of s.

- The Gibbs update is

$$
p\left(x_{s}=1 \mid x_{N(s)}\right)=\frac{1}{\exp \left(-\left(\theta_{s}+\sum_{t \in N(s)} \theta_{s t} x_{t}\right)\right)+1}
$$

Gibbs Sampling as a Markov Chain

- A Markov chain is defined by a transition matrix $T\left(X^{\prime} \mid X\right)$
- Certain Markov chains have a stationary distribution π such that $\pi=T \pi$
- Gibbs sampler is such a Markov chain with $T_{i}\left(\left(X_{-i}, x_{i}^{\prime}\right) \mid\left(X_{-i}, x_{i}\right)\right)=p\left(x_{i}^{\prime} \mid X_{-i}\right)$, and stationary distribution $p\left(x_{Q} \mid X_{E}\right)$
- But it takes time for the chain to reach stationary distribution (mix)
- Can be difficult to assert mixing
- In practice "burn in": discard $X^{(0)}, \ldots, X^{(T)}$
- Use all of $X^{(T+1)}, \ldots$ for inference (they are correlated); Do not thin

Collapsed Gibbs Sampling

- In general, $\mathbb{E}_{p}[f(X)] \approx \frac{1}{m} \sum_{i=1}^{m} f\left(X^{(i)}\right)$ if $X^{(i)} \sim p$
- Sometimes $X=(Y, Z)$ where Z has closed-form operations
- If so,

$$
\begin{aligned}
\mathbb{E}_{p}[f(X)] & =\mathbb{E}_{p(Y)} \mathbb{E}_{p(Z \mid Y)}[f(Y, Z)] \\
& \approx \frac{1}{m} \sum_{i=1}^{m} \mathbb{E}_{p\left(Z \mid Y^{(i)}\right)}\left[f\left(Y^{(i)}, Z\right)\right]
\end{aligned}
$$

if $Y^{(i)} \sim p(Y)$

- No need to sample Z : it is collapsed
- Collapsed Gibbs sampler $T_{i}\left(\left(Y_{-i}, y_{i}^{\prime}\right) \mid\left(Y_{-i}, y_{i}\right)\right)=p\left(y_{i}^{\prime} \mid Y_{-i}\right)$
- Note $p\left(y_{i}^{\prime} \mid Y_{-i}\right)=\int p\left(y_{i}^{\prime}, Z \mid Y_{-i}\right) d Z$

Example: Collapsed Gibbs Sampling for LDA

Collapse θ, ϕ, Gibbs update:

$$
P\left(z_{i}=j \mid \mathbf{z}_{-i}, \mathbf{w}\right) \propto \frac{n_{-i, j}^{\left(w_{i}\right)}+\beta n_{-i, j}^{\left(d_{i}\right)}+\alpha}{n_{-i, j}^{(\cdot)}+W \beta n_{-i, .}^{\left(d_{i}\right)}+T \alpha}
$$

- $n_{-i, j}^{\left(w_{i}\right)}$: number of times word w_{i} has been assigned to topic j, excluding the current position
- $n_{-i, j}^{\left(d_{i}\right)}$: number of times a word from document d_{i} has been assigned to topic j, excluding the current position
- $n_{-i, j}^{(\cdot)}$: number of times any word has been assigned to topic j, excluding the current position
- $n_{-i,:}^{\left(d_{i}\right)}$: length of document d_{i}, excluding the current position

Summary: Markov Chain Monte Carlo

- Forward sampling
- Gibbs sampling
- Collapsed Gibbs sampling
- Not covered: block Gibbs, Metropolis-Hastings, etc.
- Unbiased (after burn-in), but can have high variance

Outline

(1) Basics of Statistical Learning

- Probability
- Statistical Estimation
- Regularization
- Decision Theory
(2) Graphical Models
- Directed Graphical Models (Bayesian Networks)
- Undirected Graphical Models (Markov Random Fields)
- Factor Graph
- Markov Chain Monte Carlo
- Belief Propagation
- Mean Field Algorithm
- Maximizing Problems (Viterbi)
(3) Bayesian Non-Parametric Models
- Dirichlet Processes

The Sum-Product Algorithm

- Also known as belief propagation (BP)
- Exact if the graph is a tree; otherwise known as "loopy BP", approximate
- The algorithm involves passing messages on the factor graph
- Alternative view: variational approximation (more later)

Example: A Simple HMM

- The Hidden Markov Model template (not a graphical model)

Example: A Simple HMM

- Observing $x_{1}=R, x_{2}=G$, the directed graphical model

- Factor graph

Messages

- A message is a vector of length K, where K is the number of values x takes.
- There are two types of messages:
(1) $\mu_{f \rightarrow x}$: message from a factor node f to a variable node x $\mu_{f \rightarrow x}(i)$ is the i th element, $i=1 \ldots K$.
(2) $\mu_{x \rightarrow f}$: message from a variable node x to a factor node f

Leaf Messages

- Assume tree factor graph. Pick an arbitrary root, say z_{2}
- Start messages at leaves.
- If a leaf is a factor node $f, \mu_{f \rightarrow x}(x)=f(x)$

$$
\begin{aligned}
& \mu_{f_{1} \rightarrow z_{1}}\left(z_{1}=1\right)=P\left(z_{1}=1\right) P\left(R \mid z_{1}=1\right)=1 / 2 \cdot 1 / 2=1 / 4 \\
& \mu_{f_{1} \rightarrow z_{1}}\left(z_{1}=2\right)=P\left(z_{1}=2\right) P\left(R \mid z_{1}=2\right)=1 / 2 \cdot 1 / 4=1 / 8
\end{aligned}
$$

- If a leaf is a variable node $x, \mu_{x \rightarrow f}(x)=1$

Message from Variable to Factor

- A node (factor or variable) can send out a message if all other incoming messages have arrived
- Let x be in factor f_{s}. ne $(x) \backslash f_{s}$ are factors connected to x excluding f_{s}.

$$
\begin{gathered}
\mu_{x \rightarrow f_{s}}(x)=\prod_{f \in n e(x) \backslash f_{s}} \mu_{f \rightarrow x}(x) \\
\mu_{z_{1} \rightarrow f_{2}}\left(z_{1}=1\right)=1 / 4 \\
\mu_{z_{1} \rightarrow f_{2}}\left(z_{1}=2\right)=1 / 8
\end{gathered}
$$

Message from Factor to Variable

- Let x be in factor f_{s}. Let the other variables in f_{s} be $x_{1: M}$.

$$
\mu_{f_{s} \rightarrow x}(x)=\sum_{x_{1}} \ldots \sum_{x_{M}} f_{s}\left(x, x_{1}, \ldots, x_{M}\right) \prod_{m=1}^{M} \mu_{x_{m} \rightarrow f_{s}}\left(x_{m}\right)
$$

- In this example

$$
\begin{aligned}
\mu_{f_{2} \rightarrow z_{2}}(s)= & \sum_{s^{\prime}=1}^{2} \mu_{z_{1} \rightarrow f_{2}}\left(s^{\prime}\right) f_{2}\left(z_{1}=s^{\prime}, z_{2}=s\right) \\
= & 1 / 4 P\left(z_{2}=s \mid z_{1}=1\right) P\left(x_{2}=G \mid z_{2}=s\right) \\
& +1 / 8 P\left(z_{2}=s \mid z_{1}=2\right) P\left(x_{2}=G \mid z_{2}=s\right)
\end{aligned}
$$

- We get $\mu_{f_{2} \rightarrow z_{2}}\left(z_{2}=1\right)=1 / 32, \mu_{f_{2} \rightarrow z_{2}}\left(z_{2}=2\right)=1 / 8$

Up to Root, Back Down

- The message has reached the root, pass it back down

$$
\begin{aligned}
& \mu_{z_{2} \rightarrow f_{2}}\left(z_{2}=1\right)=1 \\
& \mu_{z_{2} \rightarrow f_{2}}\left(z_{2}=2\right)=1
\end{aligned}
$$

$\begin{array}{rlrl}P(x \mid z=1)= & (1 / 2,1 / 4,1 / 4) & P(x \mid z=2)=(1 / 4,1 / 2,1 / 4) \\ \mathrm{R} & \mathrm{G} & \mathrm{B} & \mathrm{R} \\ \mathrm{R} & \mathrm{G} & \mathrm{B}\end{array}$

$$
\pi_{1}=\pi_{2}=1 / 2
$$

Keep Passing Down

- $\mu_{f_{2} \rightarrow z_{1}}(s)=\sum_{s^{\prime}=1}^{2} \mu_{z_{2} \rightarrow f_{2}}\left(s^{\prime}\right) f_{2}\left(z_{1}=s, z_{2}=s^{\prime}\right)$
$=1 P\left(z_{2}=1 \mid z_{1}=s\right) P\left(x_{2}=G \mid z_{2}=1\right)$
$+1 P\left(z_{2}=2 \mid z_{1}=s\right) P\left(x_{2}=G \mid z_{2}=2\right)$.
- We get

$$
\begin{aligned}
& \mu_{f_{2} \rightarrow z_{1}}\left(z_{1}=1\right)=7 / 16 \\
& \mu_{f_{2} \rightarrow z_{1}}\left(z_{1}=2\right)=3 / 8
\end{aligned}
$$

From Messages to Marginals

- Once a variable receives all incoming messages, we compute its marginal as

$$
p(x) \propto \prod_{f \in n e(x)} \mu_{f \rightarrow x}(x)
$$

- In this example
$P\left(z_{1} \mid x_{1}, x_{2}\right) \propto \mu_{f_{1} \rightarrow z_{1}} \cdot \mu_{f_{2} \rightarrow z_{1}}=\binom{1 / 4}{1 / 8} \cdot\binom{7 / 16}{3 / 8}=\binom{7 / 64}{3 / 64} \Rightarrow\binom{0.7}{0.3}$ $P\left(z_{2} \mid x_{1}, x_{2}\right) \propto \mu_{f_{2} \rightarrow z_{2}}=\binom{1 / 32}{1 / 8} \Rightarrow\binom{0.2}{0.8}$
- One can also compute the marginal of the set of variables x_{s} involved in a factor f_{s}

$$
p\left(x_{s}\right) \propto f_{s}\left(x_{s}\right) \prod_{x \in \operatorname{ne}(f)} \mu_{x \rightarrow f}(x)
$$

Handling Evidence

- Observing $x=v$,
- we can absorb it in the factor (as we did); or
- set messages $\mu_{x \rightarrow f}(x)=0$ for all $x \neq v$
- Observing X_{E},
- multiplying the incoming messages to $x \notin X_{E}$ gives the joint (not $p\left(x \mid X_{E}\right)$):

$$
p\left(x, X_{E}\right) \propto \prod_{f \in \operatorname{ne}(x)} \mu_{f \rightarrow x}(x)
$$

- The conditional is easily obtained by normalization

$$
p\left(x \mid X_{E}\right)=\frac{p\left(x, X_{E}\right)}{\sum_{x^{\prime}} p\left(x^{\prime}, X_{E}\right)}
$$

Loopy Belief Propagation

- So far, we assumed a tree graph
- When the factor graph contains loops, pass messages indefinitely until convergence
- But convergence may not happen
- But in many cases loopy BP still works well, empirically

Outline

(1) Basics of Statistical Learning

- Probability
- Statistical Estimation
- Regularization
- Decision Theory
(2) Graphical Models
- Directed Graphical Models (Bayesian Networks)
- Undirected Graphical Models (Markov Random Fields)
- Factor Graph
- Markov Chain Monte Carlo
- Belief Propagation
- Mean Field Algorithm
- Maximizing Problems (Viterbi)
(3) Bayesian Non-Parametric Models
- Dirichlet Processes

Example: The Ising Model

The random variables x take values in $\{0,1\}$.

$$
p_{\theta}(x)=\frac{1}{Z} \exp \left(\sum_{s \in V} \theta_{s} x_{s}+\sum_{(s, t) \in E} \theta_{s t} x_{s} x_{t}\right)
$$

The Conditional

- Markovian: the conditional distribution for x_{s} is

$$
p\left(x_{s} \mid x_{-s}\right)=p\left(x_{s} \mid x_{N(s)}\right)
$$

$N(s)$ is the neighbors of s.

- This reduces to (recall Gibbs sampling)

$$
p\left(x_{s}=1 \mid x_{N(s)}\right)=\frac{1}{\exp \left(-\left(\theta_{s}+\sum_{t \in N(s)} \theta_{s t} x_{t}\right)\right)+1}
$$

The Mean Field Algorithm for Ising Model

- Gibbs sampling would draw x_{s} from

$$
p\left(x_{s}=1 \mid x_{N(s)}\right)=\frac{1}{\exp \left(-\left(\theta_{s}+\sum_{t \in N(s)} \theta_{s t} x_{t}\right)\right)+1}
$$

- Instead, let μ_{s} be the estimated marginal $p\left(x_{s}=1\right)$
- Mean field algorithm:

$$
\mu_{s} \leftarrow \frac{1}{\exp \left(-\left(\theta_{s}+\sum_{t \in N(s)} \theta_{s t} \mu_{t}\right)\right)+1}
$$

- The μ 's are updated iteratively
- The Mean Field algorithm is coordinate ascent and guaranteed to converge to a local optimal (more later).

Outline

(1) Basics of Statistical Learning

- Probability
- Statistical Estimation
- Regularization
- Decision Theory
(2) Graphical Models
- Directed Graphical Models (Bayesian Networks)
- Undirected Graphical Models (Markov Random Fields)
- Factor Graph
- Markov Chain Monte Carlo
- Belief Propagation
- Mean Field Algorithm
- Maximizing Problems (Viterbi)
(3) Bayesian Non-Parametric Models
- Dirichlet Processes

Maximizing Problems

Recall the HMM example

$$
\pi_{1}=\pi_{2}=1 / 2
$$

There are two senses of "best states" $z_{1: N}$ given $x_{1: N}$:
(1) So far we computed the marginal $p\left(z_{n} \mid x_{1: N}\right)$

- We can define "best" as $z_{n}^{*}=\arg \max _{k} p\left(z_{n}=k \mid x_{1: N}\right)$
- However $z_{1: N}^{*}$ as a whole may not be the best
- In fact $z_{1: N}^{*}$ can even have zero probability!
(2) An alternative is to find

$$
z_{1: N}^{*}=\arg \max _{z_{1: N}} p\left(z_{1: N} \mid x_{1: N}\right)
$$

- finds the most likely state configuration as a whole
- The max-sum algorithm solves this, generalizes the Viterbi algorithm for HMMs

Intermediate: The Max-Product Algorithm

Simple modification to the sum-product algorithm: replace \sum with max in the factor-to-variable messages.

$$
\begin{aligned}
\mu_{f_{s} \rightarrow x}(x) & =\max _{x_{1}} \ldots \max _{x_{M}} f_{s}\left(x, x_{1}, \ldots, x_{M}\right) \prod_{m=1}^{M} \mu_{x_{m} \rightarrow f_{s}}\left(x_{m}\right) \\
\mu_{x_{m} \rightarrow f_{s}}\left(x_{m}\right) & =\prod_{f \in n e\left(x_{m}\right) \backslash f_{s}} \mu_{f \rightarrow x_{m}}\left(x_{m}\right) \\
\mu_{x_{\text {leaf }} \rightarrow f}(x) & =1 \\
\mu_{f_{\text {leaf }} \rightarrow x}(x) & =f(x)
\end{aligned}
$$

Intermediate: The Max-Product Algorithm

- As in sum-product, pick an arbitrary variable node x as the root
- Pass messages up from leaves until they reach the root
- Unlike sum-product, do not pass messages back from root to leaves
- At the root, multiply incoming messages

$$
p^{\max }=\max _{x}\left(\prod_{f \in n e(x)} \mu_{f \rightarrow x}(x)\right)
$$

- This is the probability of the most likely state configuration

Intermediate: The Max-Product Algorithm

- To identify the configuration itself, keep back pointers:
- When creating the message

$$
\mu_{f_{s} \rightarrow x}(x)=\max _{x_{1}} \ldots \max _{x_{M}} f_{s}\left(x, x_{1}, \ldots, x_{M}\right) \prod_{m=1}^{M} \mu_{x_{m} \rightarrow f_{s}}\left(x_{m}\right)
$$

for each x value, we separately create M pointers back to the values of x_{1}, \ldots, x_{M} that achieve the maximum.

- At the root, backtrack the pointers.

Intermediate: The Max-Product Algorithm

- Message from leaf f_{1}

$$
\begin{aligned}
& \mu_{f_{1} \rightarrow z_{1}}\left(z_{1}=1\right)=P\left(z_{1}=1\right) P\left(R \mid z_{1}=1\right)=1 / 2 \cdot 1 / 2=1 / 4 \\
& \mu_{f_{1} \rightarrow z_{1}}\left(z_{1}=2\right)=P\left(z_{1}=2\right) P\left(R \mid z_{1}=2\right)=1 / 2 \cdot 1 / 4=1 / 8
\end{aligned}
$$

- The second message

$$
\begin{aligned}
& \mu_{z_{1} \rightarrow f_{2}}\left(z_{1}=1\right)=1 / 4 \\
& \mu_{z_{1} \rightarrow f_{2}}\left(z_{1}=2\right)=1 / 8
\end{aligned}
$$

Intermediate: The Max-Product Algorithm

$$
\begin{aligned}
& \mu_{f_{2} \rightarrow z_{2}}\left(z_{2}=1\right) \\
= & \max _{z_{1}} f_{2}\left(z_{1}, z_{2}\right) \mu_{z_{1} \rightarrow f_{2}}\left(z_{1}\right) \\
= & \max _{z_{1}} P\left(z_{2}=1 \mid z_{1}\right) P\left(x_{2}=G \mid z_{2}=1\right) \mu_{z_{1} \rightarrow f_{2}}\left(z_{1}\right) \\
= & \max (1 / 4 \cdot 1 / 4 \cdot 1 / 4,1 / 2 \cdot 1 / 4 \cdot 1 / 8)=1 / 64
\end{aligned}
$$

Back pointer for $z_{2}=1$: either $z_{1}=1$ or $z_{1}=2$

Intermediate: The Max-Product Algorithm

The other element of the same message:

$$
\begin{aligned}
& \mu_{f_{2} \rightarrow z_{2}}\left(z_{2}=2\right) \\
= & \max _{z_{1}} f_{2}\left(z_{1}, z_{2}\right) \mu_{z_{1} \rightarrow f_{2}}\left(z_{1}\right) \\
= & \max _{z_{1}} P\left(z_{2}=2 \mid z_{1}\right) P\left(x_{2}=G \mid z_{2}=2\right) \mu_{z_{1} \rightarrow f_{2}}\left(z_{1}\right) \\
= & \max (3 / 4 \cdot 1 / 2 \cdot 1 / 4,1 / 2 \cdot 1 / 2 \cdot 1 / 8)=3 / 32
\end{aligned}
$$

Back pointer for $z_{2}=2: z_{1}=1$

Intermediate: The Max-Product Algorithm

$$
\begin{gathered}
z_{1} \\
P\left(z_{1}\right) P\left(x_{1} \mid z_{1}\right) \\
\left.\mu_{f_{2}} \rightarrow z_{1}\right) P\left(x_{2} \mid z_{2}\right) \\
P(x \mid z=1)=(1 / 2,1 / 4,1 / 4) \\
\mathrm{R} \quad \mathrm{G} \quad \mathrm{~B} \\
z_{2} \\
\pi_{1}=\pi_{2}=1 / 2
\end{gathered}
$$

At root z_{2},

$$
\begin{gathered}
\max _{s=1,2} \mu_{f_{2} \rightarrow z_{2}}(s)=3 / 32 \\
z_{2}=2 \rightarrow z_{1}=1 \\
z_{1: 2}^{*}=\arg \max _{z_{1: 2}} p\left(z_{1: 2} \mid x_{1: 2}\right)=(1,2)
\end{gathered}
$$

In this example, sum-product and max-product produce the same best sequence; In general they differ.

From Max-Product to Max-Sum

The max-sum algorithm is equivalent to the max-product algorithm, but work in log space to avoid underflow.

$$
\begin{aligned}
\mu_{f_{s} \rightarrow x}(x) & =\max _{x_{1} \ldots x_{M}} \log f_{s}\left(x, x_{1}, \ldots, x_{M}\right)+\sum_{m=1}^{M} \mu_{x_{m} \rightarrow f_{s}}\left(x_{m}\right) \\
\mu_{x_{m} \rightarrow f_{s}}\left(x_{m}\right) & =\sum_{f \in n e\left(x_{m}\right) \backslash f_{s}} \mu_{f \rightarrow x_{m}}\left(x_{m}\right) \\
\mu_{x_{\text {leaf }} \rightarrow f}(x) & =0 \\
\mu_{f_{\text {leaf }} \rightarrow x}(x) & =\log f(x)
\end{aligned}
$$

When at the root,

$$
\log p^{\max }=\max _{x}\left(\sum_{f \in n e(x)} \mu_{f \rightarrow x}(x)\right)
$$

The back pointers are the same.

Outline

(1) Basics of Statistical Learning

- Probability
- Statistical Estimation
- Regularization
- Decision Theory
(2) Graphical Models
- Directed Graphical Models (Bayesian Networks)
- Undirected Graphical Models (Markov Random Fields)
- Factor Graph
- Markov Chain Monte Carlo
- Belief Propagation
- Mean Field Algorithm
- Maximizing Problems (Viterbi)

(3) Bayesian Non-Parametric Models

- Dirichlet Processes

Stochastic Process

- Infinite collection of random variables indexed by a set $\{\mathbf{x}\}$.
- $\mathbf{x} \in \mathbb{R}$ for "time"
- More generally, $\mathbf{x} \in \mathbb{R}^{d}$ (e.g., space and time).

Outline

(1) Basics of Statistical Learning

- Probability
- Statistical Estimation
- Regularization
- Decision Theory
(2) Graphical Models
- Directed Graphical Models (Bayesian Networks)
- Undirected Graphical Models (Markov Random Fields)
- Factor Graph
- Markov Chain Monte Carlo
- Belief Propagation
- Mean Field Algorithm
- Maximizing Problems (Viterbi)
(3) Bayesian Non-Parametric Models
- Dirichlet Processes

Base Distribution

- Let H be a base distribution over a probability space Θ.
- Example: $\Theta=\mathbb{R}^{d}$.
- An element $\theta \in \mathbb{R}^{d}$ is an index to the stochastic process
- $H=N(0, \Sigma)$ is a base distribution over Θ, but not a stochastic process.
- $H(\theta)=N(\theta ; 0, \Sigma)$ is not a random variable (it is a fixed value for a given θ)

Stick-Breaking Construction of Dirichlet Process

$$
\begin{aligned}
\beta_{k} & \sim \operatorname{Beta}(1, \alpha) \\
\pi_{k} & =\beta_{k} \prod_{i=1}^{k-1}\left(1-\beta_{i}\right) \\
\theta_{k}^{*} & \sim H \\
G & =\sum_{k=1}^{\infty} \pi_{k} \delta_{\theta_{k}^{*}}
\end{aligned}
$$

- δ_{z} is the point mass function on z
- π_{1}, π_{2}, \ldots are stick fragments which tend to (but not always) get smaller. Sum to 1.
- Each fragment is associated with an index θ_{k}^{*} sampled from the base distribution H
- G is a sample from a Dirichlet Process $G \sim D P(\alpha, H)$

Properties of G

- G is a probability measure on Θ (naturally normalized), similar to the base distribution H.
- With probability one, G is a discrete measure (true even if H is a continuous measure, e.g. Gaussian).
- θ 's drawn from G have repeats. Useful to model clusters.

More Properties of Dirichlet Process

$G \sim D P(\alpha, H)$

- Marginals of G are Dirichlet-distributed: Let A_{1}, \ldots, A_{r} be any finite measurable partition of Θ, then

$$
\left(G\left(A_{1}\right), \ldots, G\left(A_{r}\right)\right) \sim \operatorname{Dirichlet}\left(\alpha H\left(A_{1}\right), \ldots, \alpha H\left(A_{r}\right)\right)
$$

- For any measurable $A \subseteq \Theta$,

$$
\mathbb{E}[G(A)]=H(A) \mathbb{V}[G(A)]=\frac{H(A)(1-H(A))}{1+\alpha}
$$

- As $\alpha \rightarrow \infty, G(A) \rightarrow H(A)$ for any measurable A.

The Posterior of G

- Let $G \sim D P(\alpha, H)$ the prior.
- Suppose we observe $\theta_{1}, \ldots, \theta_{n} \sim G$.
- The posterior distribution of G given $\theta_{1}, \ldots, \theta_{n}$ is another DP:

$$
G \mid \theta_{1}, \ldots, \theta_{n} \sim D P\left(\alpha+n, \frac{\alpha}{\alpha+n} H+\frac{1}{\alpha+n} \sum_{i=1}^{n} \delta_{\theta_{i}}\right)
$$

- The predictive distribution of θ_{n+1} is

$$
\theta_{n+1} \sim \frac{\alpha}{\alpha+n} H+\frac{1}{\alpha+n} \sum_{i=1}^{n} \delta_{\theta_{i}}
$$

- There is a chance that $\theta_{n+1}=\theta_{i}$ for some $i \leq n$ (i.e. repeating).

The Blackwell-MacQueen Urn Scheme

- Assume samples from H do not repeat (e.g. Gaussian)
- Let $\theta_{1}^{*} \ldots \theta_{m}^{*}$ be the unique values in $\theta_{1} \ldots \theta_{n}$
- Let $n_{k}=\sum_{i=1}^{n} 1_{\theta_{i}=\theta_{k}^{*}}$ for $k=1 \ldots m$.
- θ_{n+1} is generated with the following procedure:
(1) With probability $\alpha /(\alpha+n)$, draw a new value from H and assign it to θ_{n+1};
(2) Otherwise, reuse value θ_{k}^{*} with probability n_{k} / n.
(3) We add θ_{n+1} to the samples, and repeat this process.

The Chinese Restaurant Process

- The equality relationship in $\theta_{1} \ldots \theta_{n}$ defines a partition of n items.
- The first customer sits at the first table.
- With probability $\alpha /(\alpha+n)$ the $(n+1)$-th customer sits at a new table; otherwise he joins an existing table with probability proportional to the number of people already sitting there.
- Chinese Restaurant Process (CRP) defines a distribution over partitions of items.
- CRP + (for a new table draw a dish $\theta \sim H$; all customers sitting on this table eat the dish) $=\mathrm{DP}$

Dirichlet Process Mixture Models (DPMMs)

- Infinite mixture models: unlimited number of clusters

$$
\begin{aligned}
G & \sim D P(\alpha, H) \\
\theta_{i} & \sim G \\
\mathbf{x}_{i} & \sim F(\theta)
\end{aligned}
$$

where $F(\theta)$ is an appropriate distribution parametrized by θ (e.g. multinomial).

- Each observation \mathbf{x}_{i} has its own parameter θ_{i}.
- Many of the θ_{i} 's are identical, naturally inducing a clustering structure over \mathbf{x}.
- Given $\mathbf{x}_{1} \ldots \mathbf{x}_{n}, \alpha, H, F$, use MCMC to infer $\theta_{1} \ldots \theta_{n}$

References

- Bishop, Pattern Recognition and Machine Learning. Springer 2006.
- Hastie, Tibshirani, Friedman. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Second Edition, 2009.
- Koller \& Friedman, Probabilistic Graphical Models. MIT 2009.
- Murphy, Machine Learning: a Probabilistic Perspective, 2012.
- Wasserman, All of Statistics: A Concise Course in Statistical Inference. Springer 2003.

