 Universal Plug and Play Connects
Smart Devices — 8

WinHEC 99 White Paper

Windows® Hardware Engineering Conference:
Advancing the Platform
[image: image10.jpg]

Universal Plug and Play Connects
Smart Devices

Abstract

In this paper we describe how to approach a Universal Plug and Play implementation for a smart object to demonstrate an application of this promising new technology. We present the challenges to design, suggest how to approach the process, and offer implementation guidelines. A Web-enabled camera from Axis Communications is used as an example to demonstrate the procedure. Sample code and XML statements characterizing the device are included to show how simply an implementation can be done.

January 14, 2000, the authors;

Bengt Christensson, CTO, Axis Communications, Inc,, bengt.christensson@axis.com
Olof Larsson, Software Architect, Axis Communications, Inc., olof.larsson@axis.com
Contents

3Introduction

Trends Influencing UPnP
3
Universal Plug and Play Applications
3
Technology Trends in UPnP
4
Ubiquitous Communications
4
Useful Bandwidth Now Available to Homes
4
Focus Shifting from Connectivity to Services
4
Challenges to Designers
4
Scalability
4
Robustness – “always on”
4
Interoperability
5
Security
5
Simplicity
5
Lightweight Cost-Effective Technology
5
Building Network Applications
5
Solutions to Date
6
Ad hoc (serverless, peer-to-peer)
6
Configured (server based)
6
Universal Plug and Play Addresses Both Environments
6
Client Components
7
Smart Object Components
7
Protocol Requirements
8
Automatic Networking
8
Scalability
8
Standards
8
Implementation Guidelines
8
Clients
8
Smart Objects
8
XML Describes Services
9
Smart Object Implementation
9
Announce
9
Discovery
9
Response to Discovery
9
Autonet
9
XML for Product Description
10
Code Walkthrough
11
Product Implementation Example - Axis Camera
12
XML Entries
13
XSL Entries
15
Style Sheet About.xsl
15
Style Sheet Manipulation.xsl
17
References
23
About Axis Communications
23

Disclaimer and Copyright

Author’s Disclaimer and Copyright: The contents of this paper represent the opinions and experience of Axis Communications based on information available at the time of publishing. Axis is a registered trademark and ThinServer is a trademark of Axis Communications, Inc.

WinHEC Conference Sponsors’ Disclaimer: The contents of this document have not been authored or confirmed by Microsoft or the WinHEC 99 conference co-sponsors (hereinafter “WinHEC Sponsors”). Accordingly, the information contained in this document does not necessarily represent the views of the WinHEC Sponsors and the WinHEC Sponsors cannot make any representation concerning its accuracy. THE WinHEC SPONSORS MAKE NO WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS INFORMATION.

Microsoft, DirectX, MS‑DOS, Win32, Windows, and Windows NT are registered trademarks of Microsoft Corporation. Other product and company names mentioned herein may be the trademarks of their respective owners.

Introduction

Universal Plug and Play represents an important, innovative step in the development of networks. According to Microsoft’s vision, Universal Plug and Play (UPnP) extends the Plug and Play (PnP) principles of simplicity and automation to embrace all device connections, implemented using open hardware and software standards and protocols.

Universal Plug and Play offers the following capabilities:

· Extends the discovery and enumeration of devices to include networked devices and services, such as network-attached printers, Internet gateways, and consumer electronics equipment.

· Peer-to-peer model makes it possible for devices to be discovered and used directly by other devices, with or without the presence of a PC.

· Incorporates capabilities discovery, enabling enumeration of each device’s unique characteristics, including communications protocols.

· Universal Plug and Play initiatives are being developed to support key existing industry standards such as TCP/IP, HTML, XML, HTTP, DNS, LDAP, and others.

· To avoid costly rewiring in the home, Universal Plug and Play supports existing network media, plus new standards such as PLC, RF, and cable.

· UPnP is equally adaptable to both dynamic home environments and fixed, configured corporate networks.

Companies supporting Universal Plug and Play are developing a new generation of easily networked devices and services and evolving sophisticated technologies for implementing home networks. Similarly, Universal Plug and Play will also provide many advantages in the business world, simplifying the process of connecting and managing many users on the corporate network.

Trends Influencing UPnP

Industry forecasts indicate explosive growth in the number of homes with multiple PCs, and many homes will be geographically served by commodity broadband Internet access (cable, xDSL) by shortly after the turn of the century. Set-top boxes, networked entertainment appliances, and other smart devices are evolving with the growth of the Internet and improved bandwidth availability to the home. Moreover, anticipating the increased demand for new services, PC manufacturers are beginning to ship PCs with built-in support for Ethernet, IEEE 1394, radio frequency (RF), power line carrier (PLC), or phone line connectivity that makes it possible to add home networking without adding new wires.

As these trends converge to create a requirement for home networking, simplicity of installation and usage, low cost, security, and reliability all become critical elements of any solution that addresses this market. In the emerging home and small business network environment, Universal Plug and Play enables end users to simply plug in network-ready devices which are then automatically deployed.

Universal Plug and Play Applications

Sharing simultaneous access to the Internet is a major driving factor for home networking, especially as today’s analog connections are replaced by higher-speed "always-on" connections such as Universal ADSL, cable modem, or satellite. Consumers in the home environment want to be able to easily share applications and printers, move files or back up data, saving time and money. Moreover, appliances such as telephones, televisions, printers, and game consoles should be able to transparently exchange and replicate relevant data between themselves and PCs on the network.

In the realm of home entertainment, home networks can enable popular multi-player network games, either within the home or over the Internet. Additionally, easy-to-install home networks will foster development of smart objects including remote controllers and home automation systems such as environmental control and security systems.

Technology Trends in UPnP

Ubiquitous Communications

Today advanced personal communications capabilities are being delivered into homes through traditional wire-based telephone services, personal wireless devices such as digital cell phones, and PC-based software and devices. Connectivity options are expanding rapidly as demand for Internet access continues to grow exponentially.

A global communications software infrastructure has been determined – TCP/IP and the Web. Now home and small business users alike want to easily connect multiple devices to each other and to the Internet. Newer technologies are becoming available to utilize existing home wiring but provide sophisticated high speed services and support for UPnP. These include the Home Phoneline Networking Association (HomePNA) standard for data networking on telephone wiring, HomeRF for wireless networking, and powerline carrier protocols.

Useful Bandwidth Now Available to Homes

At last we appear to be on the verge of providing useful bandwidth to the home. Newly available consumer-priced, high-speed, 24-hour data services (including cable modems, xDSL, and satellite) are opening up wide bandwidth access to the Web previously unattainable through much slower telephone-based analog modems.

New digital voice and video services over IP are being introduced into the home. All digital services--data, voice, video--need to be accessible anywhere in the home by any device. This mandates that all devices must have a high-speed connection to the home network.

Focus Shifting from Connectivity to Services

Current technology trends are motivating consumers to link together PCs, telephones, consumer electronics, and other media devices within their homes. As information, communications, audio, and video data streams switch from analog to digital, new roles and uses for PCs and other computing devices emerge within the home office and in the home entertainment center.

Challenges to Designers

Because it is based on standard Internet protocols, Universal Plug and Play can work with a broad range of devices, from large PCs to small consumer electronics devices. UPnP also eliminates the need for complex testing to ensure devices can work together. The key UPnP challenges include:

Scalability

UPnP must function in small network environments that are peer-to-peer connected with no server available. However, for upward scalability, when a server is available, UPnP should be able to use its services. Also, it must be possible to attach a wide variety of devices, even wireless devices such as palmtops and digital telephones, without the presence of a PC. Moreover, devices must not be required to run Windows in order to be hooked to the network.

Robustness – “always on”

Consumer style networking needs to be ubiquitous, robust and ad hoc to be attractive and practical. ADSL and cable technologies are a new platform for delivering broadband services to meet the demand for high-speed Internet access for homes and small businesses. ADSL not only delivers higher speed, but also provides an “always on” service that does not risk call blocking in the telephone network.

Interoperability

It must be economical for all the various devices and systems to interoperate with each other. All types of networked and traditional peripheral devices, including PCs, new smart appliances, home automation systems, networked peripherals and Web-based services are encompassed by Universal Plug and Play.

Security

Security is an important issue for UPnP, especially for home networking applications, in three key areas:

· Authorization: who is allowed to use the system for what purposes.

· Service deliverables: who has access to particular information. There must be mechanisms to secure the services for subscribers.

· Encryption of data: protection of information sent over the network will become a major concern.

UPnP does not itself provide security, but rather it relies on other mechanisms for security. As use of internetworking expands to greater home usage, security is likely to be an issue for the next development activity of this new initiative.

Simplicity

Successful implementation in the small office and in homes depends on achieving simplicity, reliability, and low cost. All the components must work together smoothly for ultimate ease of use. Most home users want to just plug it in and have it work immediately with no hassles. UPnP is based on straight-forward, innovative mechanisms for discovery and connectivity that provide a basis for enabling device services.

In larger company environments and remote offices, network administrators are straining to keep up with connection of additional devices—even sometimes still handing out IP addresses manually. The simpler connection method of UPnP will offer welcome relief.

Lightweight Cost-Effective Technology

One can envision a whole new category of devices, or smart objects, that might be networked. The challenge for designers lies in ensuring that embedded hardware and software provide a cost-effective solution to these needs. Unlike traditional PC-based solutions, smart objects have radically less systems resources at hand. Typically, they are based on a low-cost micro controller, ASICs and some 200-1000 k bytes of RAM and Flash memory.

Implementing Universal Plug and Play requires very little development work and requires only a very small amount of system resources and footprint. Furthermore, the XML-based description principle provides a straightforward method to enable flexible device functionality without invoking unnecessary overhead for added systems resources.

Building Network Applications

Delivery of services, rather than just connectivity, is the defining motif of the next generation of networking capabilities. This mandates that designers offer options for tailoring services and provide flexibility in how applications are built. UPnP offers a tier of capabilities ranging from sophisticated public or corporate networks to a simple home network environment that allows transparent operation based on IP protocols.

Potentially this approach can save enterprises considerable money because it enables more remote diagnostics, and furthermore, users can do more self-configuration of their PCs and can plug into the corporate network without MIS assistance.

Solutions to Date

Network solutions to date have primarily been either ad hoc networks or configured networks.

Ad hoc (serverless, peer-to-peer)

In this environment there is no intuitive naming—IP addresses are assigned manually. ARP (Address Resolution Protocol) is used to relate the IP address of a device to its fixed, unique Ethernet address. For example, if you are requesting a web page from someone’s personal web server, your computer knows only the web server’s IP address.

In this serverless, ad hoc environment, discovery is achieved via protocols such as SLP (Service Location Protocol) developed by Sun Microsystems, and SMB (Server Message Block) used by Microsoft to share files between computers. To determine if a certain IP address is reachable/available on the network, Ping, or ICMP ECHO, is the protocol used. Flood-ping can be used to scan the addresses in the current network segment to determine what IP addresses are already used.

Configured (server based)

In server-based systems, the Dynamic Host Configuration Protocol (DHCP) provides a framework for passing configuration information to hosts on a TCP/IP network, and allocates temporary or permanent network (IP) addresses to hosts. DHCP is based on the Bootstrap Protocol (BOOTP), a transport mechanism for a collection of configuration information.

Reverse Address Resolution Protocol (RARP) addresses the problem of network address discovery, and includes an automatic IP address assignment mechanism. Configured systems are structured to utilize various directory services (LDAP, NDS) and may use SLP or Salutation to discover other devices on the network.

Universal Plug and Play Addresses Both Environments

Universal Plug and Play works in both these environments, providing support for both configured server-based networks and ad hoc peer-to-peer, environments.

Ad Hoc
Configured

Address
AutoNet
DHCP

Naming
Multicast DNS
DNS

Discovery
Simple Discovery
Directory Service

Client Components

[image: image1.png]

The elements of a client developed to conform to Universal Plug and Play are shown in Figure 1.

Figure 1 Client Components

Smart Object Components

[image: image2.wmf]Client Components

Client Components

NIC

TCP/IP stack

NDIS

XML

Simple

Discovery

UPnP

provider

WINSOCK

LDAP

Applications

ADSI

The elements of a smart object developed to conform to Universal Plug and Play are shown in Figure 2.

Figure 2 Smart Object Components

Using XML for device description involves the elements of Simple discovery, which takes about 4k bytes of code; and handling the HTTP activities, which requires 20k bytes. Implementing the TCP/IP stack to support these protocols and implement the domain name service that allows automated naming and generation of addresses takes another 40k bytes of code.

Protocol Requirements

Automatic Networking

Automatic network introduction requires that devices and their related services have the ability to be self-describing and allow automatic configuration. When a device is plugged into the network, the device automatically must configure itself and acquire a TCP/IP address. The device then announces its presence to other devices already on the network using a simple discovery protocol based on the Internet HTTP protocol and is immediately ready to share its services with any device that requests them.

Since developers are not required to develop specific device drivers, the task of preparing a device for operation in this network environment is fairly simple. Moreover, in configured networks, dynamic detection allows an operating system to immediately begin using added devices or stop using removed devices without rebooting.

Scalability

Devices must support automatic discovery, identification, and configuration to achieve Universal Plug and Play in the home environment, but must also operate correctly in a managed corporate network. Devices can be networked instead of being attached directly to a PC, and devices are all autonomous citizens on the network, able to talk with each other and exchange information.

Universal Plug and Play provides a unified way of performing directory services with automatic configuration. Capability for simple discovery mechanism used in the home environment provides the ability for any device to become a node on the global Internet. Additionally, directory services can be leveraged if they are available in the corporate environment.

Standards

Universal Plug and Play provides a common set of interfaces for accessing devices and services, enabling the operational unification of diverse media types. Communications protocols for Universal Plug and Play are based on industry standards, especially key Internet standards such as TCP/IP, HTML, XML, HTTP, DNS, LDAP, and others. Individual implementations for particular networks and buses will build on established protocols, and new protocols proposed for Universal Plug and Play are being submitted to the RFC process for public comment and input.

Implementation Guidelines

Clients

Minimal effort is required for implementing a client in Universal Plug and Play. A simple discovery client must be described using Simple Discovery for object usage. UDP (User Datagram Protocol) and IGMP (Internet Group Management Protocol) multicast send/receive capability must be implemented as part of the client. A Web browser is used to specify the activity to access other devices and services on the network.

Smart Objects

Simple discovery for a smart object device is almost trivial to implement, requiring perhaps only one manweek of effort. UDP and IGMP multicast send/listen capability must be included in the implementation.

XML Describes Services

XML (Extensible Markup Language) is an emerging standard that, within the context of UPnP, is used to provide the description of services and capabilities of smart devices. If a client selects a smart object, its features can be made visible by using XML to allow manipulation of the device. For example, if the device is a camera, the client’s browser can direct the camera to zoom in/out or adjust contrast using the mechanism of XML.

Smart Object Implementation

UDP and IGMP multicast send/receive capability are required before Simple Discovery can be initiated. When a Simple Discovery-enabled device is started, it sends an IGMP packet that opens up the IP addresses used for multicast.

Announce

The first part of the messaging protocol process is Announce, basically a small multicast packet sent out so that other devices can find it on the network. The multicast message packet essentially says, “I am here, I am, (say), a camera, and you can reach me at this IP address or URL.”

Discovery

The second part of the protocol is Discovery, where the device (smart object) listens for a discovery packet coming from an Simple Discovery client, i.e., the device announces itself, then listens for discovery. Discovery is also sent out by multicast.

Discovery probes can be general, i.e., a Simple Discovery client can send out a discovery packet that has the * in it that indicates all Simple Discovery devices should answer, such as, “Any device out there that has Simple Discovery should answer this packet.” Discovery questions may also be specific, such as, “Is there a printer out there?” or “Is there a camera on the network?” The requesting device can also restrict a discovery search by IP address. For example, the device might send out a message that only cameras can answer and only if they have an IP address in a specified range.

Response to Discovery

Any smart object must listen to the multicast address and then parse the information from a Simple Discovery request to decide if this request is for its kind of device. If so, the smart object must then send back a response packet containing the following information:

· The IP address or URL where it can be reached

· Identification of its own device type

· The discovery packet ID so the requesting client knows which request is being answered

Autonet

Autonet uses a predefined set of IP addresses and, when a device is connected to the network, it pings an address in this address space. If it gets no replies, the device assumes that the address is available and assigns it to itself. To make this functionality even more useful it is combined with Multicast DNS, in which the device itself holds its own name. Thus it is not even necessary to determine what IP address the device assigned to itself, because its name can always be used instead.

XML for Product Description

Both the Announce and Discovery packets also contain a link or a URL to an XML file that is used to describe the actual device. XML, which is much more general than HTML, contains all the facts about the device. XML can also have URLs that point to appropriate style sheets (XSL files) that are used for optimal presentation.

XSL style sheets are used to present the data in different ways, i.e., the style sheets are applied to present different views of the same data. For example, if the device contains a file system, one style sheet can show the file selections; another shows the file sizes in some sort of diagram; yet another style sheet could make thumbnails of these image files.

Figure 3 shows a diagram of Universal Plug and Play activity for an ad hoc environment.

[image: image3.wmf]Smart Object Components

Smart Object Components

Physical media

Device functions

HTTP (20k)

Simple

Discovery (4k)

XML

description

 TCP/IP stack (40k)

DHCP

DHCP

AutoNet

AutoNet

Figure 3 UPnP in action – ad hoc

Figure 4 shows a diagram of Universal Plug and Play activity for a configured environment.

[image: image4.wmf]UPnP in action - ad hoc

UPnP in action - ad hoc

1. DHCP broadcast

1. DHCP broadcast

(timeout)

(timeout)

2. Assign AutoNet address

2. Assign AutoNet address

3. DNS name multicast

3. DNS name multicast

4. Announce service

4. Announce service

(timeout - wait for requests)

(timeout - wait for requests)

5. Discover service

5. Discover service

7. Response to discover

7. Response to discover

8. Get_HTTP XML

8. Get_HTTP XML

9. XML content

9. XML content

Figure 4 UPnP in action - configured

Code Walkthrough

Following is an example of the code required for implementation of a smart object, in this case a Web-enabled Axis 200 network camera available from Axis Communications.

const char ssdp_announce_text[] =

 "ANNOUNCE * HTTP/1.1\r\n"

 "Host: *\r\n"

 "Location: http://%d.%d.%d.%d/pub/description.xml\r\n"

 "Object-Class: Camera\r\n";

const char ssdp_discover_response_text[] =

 "HTTP/1.1 302 Found\r\n"

 "Request-ID: %s\r\n"

 "Location: http://%d.%d.%d.%d/pub/description.xml\r\n"

 "Object-Class: Camera\r\n";

static void ssdp_init(void)

{

 ssdp_register_ports();

 /* Open up for SSDP multicasts.

 Tell the UDP layer that you want

 the packets sent to this address */

 ssdp_send_service_announce();

 /* Tell the world that you exist by

 sending an SSDP announce message */

}

void ssdp_parse_incoming_packet(ssdp_request_to_answ request_to_answ)

{

 ssdp_discover_item discover_item = { NULL, 0, NULL, 0, 0 };

 if (!ssdp_parse_object_class(&request_to_answ, &discover_item))

 {

 /* It was not a valid discovery packet */

 return;

 }

 /* Check if it is a wild card object class search */

 if (*(discover_item.object_class) != '*')

 {

 /* Not wildcard, try to match object types */

 if (strncasecmp(discover_item.object_class,

 ssdp_this_object_type, discover_item.object_class_len) != 0)

 {

 /* Wrong object type, do not answer */

 return;

 }

 }

 if (!ssdp_parse_host(&request_to_answ, &discover_item))

 {

 /* Host field not found in packet */

 return;

 }

 /* Check if it is a wild card host search */

 if (*(discover_item.host) != '*')

 {

 /* Not wildcard, try to match IP addresses */

 if (!ssdp_match_host(&discover_item))

 {

 return;

 }

 }

 if (!ssdp_parse_request_id(&request_to_answ, &discover_item))

 {

 /* Request-ID field not found */

 return;

 }

 ssdp_send_discover_reply(request_to_answ, discover_item);

}

Product Implementation Example - Axis Camera

Based on its ThinServer™ Technology, Axis has a line of smart objects featuring print servers, scanner servers, storage servers and camera servers. Implementation of a smart object in the form of a Web-enabled camera available from Axis Communications is described here. The device incorporates an embedded minimized RISC design that provides all the functions required for the camera to function as a stand alone network device directly attached to a network.

Unlike other networked camera solutions, the Axis camera is a self-contained smart object that connects directly to an Ethernet network. It has it own IP address and built-in web server for application integration and management. Compressed images can be streamed from the camera to an application (e.g. browser, application server), or be retrieved from the application. It also has built-in scripting capabilities to enable connection and handling sensor-trigged events, such as taking pictures at a certain event, store images on a file server, and send an email to an operator with a link to the images. Axis also provides a rich set of applications and ActiveX plug-ins to also allow more refined controls such as pan/tilt and zoom.

Main application areas are remote surveillance, where traditional CCTV-based systems can be replaced with more efficient and intelligent networked solutions.

Universal Plug and Play protocol with XML description and XSL style sheets for presentation are a part of the implementation.

[image: image5.wmf]UPnP in action - configured

UPnP in action - configured

1. DHCP broadcast

1. DHCP broadcast

2. Address from DHCP server

2. Address from DHCP server

3. Name unicast to DNS server

3. Name unicast to DNS server

4. Announce service to listener

4. Announce service to listener

6. Directory updated by listener

6. Directory updated by listener

5. Listener Get_HTTP XML

5. Listener Get_HTTP XML

8. LDAP query directory

8. LDAP query directory

7. Device specific negotiation

7. Device specific negotiation

Server

[image: image6.wmf]Client Components

Client Components

NIC

TCP/IP stack

NDIS

XML

Simple

Discovery

UPnP

provider

WINSOCK

LDAP

Applications

ADSI

Figure 5 The AXIS 200+ Network Camera

The camera is used throughout this white paper as an example of a UPnP enabled smart object. Axis other networking products, such as its print server and storage servers, are also UPnP enabled, operating and implemented according to the same principles described here.

Read more about Axis family of network camera solutions at http://www.axis.com/products/camera_servers/
And the other products at

http://www.axis.com/products/
XML Entries

Following is a sample of XML entries used for manipulating the activity of a smart object, in this case a Web-enabled Axis 200 network camera available from Axis Communications. This sample code is provided as an illustration, and does not reflect the final design of the UPnP XML description.

<?xml version="1.0"?>

<!-- the namespaces below reflect

 W : Windows device description namespace

 LSCam : Namespace agreed to by the society of still live camera manufacturers and users (?)

 MSFT : Intranet namespace

 Axis : Manufacturer's namespace

-->

<ROOT xmlns:W = "urn:www.microsoft.com:Windows"

 xmlns:LSCam = "urn:www.w3c.org:Schema:LiveStillCamera"

 xmlns:MSFT = "urn:mscominternal:Geography"

 xmlns:Axis = "urn:www.axis.com:Camera"

>

<!-- Device description -->

<W:DeviceType> LiveStillCamera </W:DeviceType>

<W:DeviceDesc>

 <W:Name> Sentry </W:Name>

 <W:Manufacturer>

 <W:Name> Axis Communications </W:Name>

 <W:URL> http://www.axis.com </W:URL>

 </W:Manufacturer>

 <W:ModelName> NetEye </W:ModelName>

 <W:ModelNumber> 200 </W:ModelNumber>

 <W:SerialNumber> 00408C242A27 </W:SerialNumber>

 <W:ProductNumber> 0064-1 3B </W:ProductNumber>

 <W:Support>

 <W:Region> USA </W:Region>

 <W:Number> 1-800-444-AXIS </W:Number>

 <W:Number> 1-617-938-1188 </W:Number>

 <W:Fax> 1-617-938-6161 </W:Fax>

 </W:Support>

 <W:Support>

 <W:Region> Europe </W:Region>

 <W:Number> +46 46 270 18 0Q </W:Number>

 <W:Fax> +46 46 13 61 30 </W:Fax>

 </W:Support>

 <W:FAQ>

 <W:InstallFAQ> http://www.axis.com/ftp/pub/axis/manuals/cam_200/latest/html/qi </W:InstallFAQ>

 <W:SupportFAQ> http://www.axis.com/techsup/cam_servers/faq.html </W:SupportFAQ>

 </W:FAQ>

 <W:Update>

 <W:DriverUpdate> http://www.axis.com/ftp/axis/driverUp.exe </W:DriverUpdate>

 <W:FirmwareUpdate> http://www.axis.com/ftp/axis/firmwareUp.exe </W:FirmwareUpdate>

 </W:Update>

 <Axis:Description> Network Snapshot Camera for Internet/Intranet </Axis:Description>

</W:DeviceDesc>

<Axis:CorpInfo>

 <Axis:Logo> http://www.axis.com/products/img/triangle.gif </Axis:Logo>

 <Axis:Thumbnail> http://www.axis.com/products/cam_200p/200p.jpg </Axis:Thumbnail>

</Axis:CorpInfo>

<W:Location>

 <MSFT:Bldg> 2 </MSFT:Bldg>

 <MSFT:Wing> Main </MSFT:Wing>

 <MSFT:Room> 1123 </MSFT:Room>

</W:Location>

<!-- Camera's current status -->

<W:Status>

 <W:Standby> On </W:Standby>

</W:Status>

<!-- Images of various resolutions can be emitted -->

<LSCam:Image>

 <W:ImageResolution>

 <W:Width> 704 </W:Width>

 <W:Height> 576 </W:Height>

 </W:ImageResolution>

 <W:URL> http://157.56.24.44/hugesize.jpg </W:URL>

 <Axis:GenTime> 18 </Axis:GenTime>

</LSCam:Image>

<LSCam:Image>

 <W:ImageResolution>

 <W:Width> 352 </W:Width>

 <W:Height> 288 </W:Height>

 </W:ImageResolution>

 <W:URL> http://157.56.24.44/fullsize.jpg </W:URL>

 <Axis:GenTime> 0.5 </Axis:GenTime>

</LSCam:Image>

<LSCam:Image>

 <W:ImageResolution>

 <W:Width> 176 </W:Width>

 <W:Height> 144 </W:Height>

 </W:ImageResolution>

 <W:URL> http://157.56.24.44/halfsize.jpg </W:URL>

 <Axis:GenTime> 0.3 </Axis:GenTime>

</LSCam:Image>

<!-- Configuration UI -->

<W:ConfigUI>

 <W:Screen> 640x480 </W:Screen>

 <W:XSL> http://www.axis.com/Config/NetEye200/UI.xsl </W:XSL>

</W:ConfigUI>

<!-- UI to know more about the device -->

<W:About>

 <W:Source> Axis </W:Source>

 <W:Screen> 640x480 </W:Screen>

 <W:XSL> http://157.56.24.44/About.xsl </W:XSL>

</W:About>

<W:About>

 <W:Source> Windows </W:Source>

 <W:Screen> 640x480 </W:Screen>

 <W:XSL> http://amarg5/UIServer/Windows/All/About.xsl </W:XSL>

</W:About>

<!-- UI for various devices to view the images -->

<W:UI>

 <W:Screen> 640x480 </W:Screen>

 <W:Name> Native </W:Name>

 <W:HTML> http://157.56.24.44 </W:HTML>

</W:UI>

<W:UI>

 <W:Screen> 640x480 </W:Screen>

 <W:Name> Manipulation </W:Name>

 <W:XSL> http://157.56.24.44/Manipulation.xsl </W:XSL>

</W:UI>

<W:UI>

 <W:Screen> 640x480 </W:Screen>

 <W:Name> Liveshot </W:Name>

 <W:XSL> http://157.56.24.44/LiveShot.xsl </W:XSL>

</W:UI>

</ROOT>

XSL Entries

XML doesn't provide any layout information like HTML. XML is a format for computers to parse and "understand". The beauty of this is that from the same XML file you can generate web material, printed material, CD material, etc., by applying different style sheets (XSL). In our example we apply two different style sheets to produce two fundamentally different views of the XML file. The first style sheet, “About.xsl,” views camera facts and support information. The second style sheet, “Manipulation.xsl,” lets you play around with the image that the camera produces.

The XSL example included here is an illustration, these style sheets are likely to change.

Style Sheet About.xsl

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl">

<xsl:template match="/">

<HTML>

<HEAD>

<STYLE>

BODY {font:8pt Verdana;}

.title {font:bold 60pt Verdana; color:#CCEEFF; z-index:-1;}

.welcome1 {font:bold 12pt Verdana; color:darkslateblue;}

.welcome2 {font:bold 18pt Verdana; color:darkslateblue;}

.heading {font:bold 8pt Verdana; color:maroon; margin-left:20; margin-top:10;}

TABLE {margin-left:30;}

.attr {font:bold 8pt Verdana; width:160;}

.value {font:8pt Verdana; width:320;}

.credits {font:bold 8pt Verdana;;}

</STYLE>

</HEAD>

<BODY BGCOLOR="#ffffff" LINK="#000066" VLINK="#666666" TEXT="#000000">

<!-- // frame -->

<DIV STYLE="position:absolute; top:20; left:20; width:640; height:480; border:1px navy solid">

<xsl:apply-templates select="ROOT/W:DeviceDesc" />

<xsl:apply-templates select="ROOT/W:Status" />

<xsl:apply-templates select="ROOT/Axis:CorpInfo" />

</DIV> <!-- // end frame -->

</BODY>

</HTML>

</xsl:template>

<!-- // Device description -->

<xsl:template match="W:DeviceDesc">

 <CENTER>

 <DIV CLASS="title"><xsl:value-of select="W:Name" /></DIV>

 </CENTER>

 <DIV CLASS="heading">Description</DIV>

 <DIV STYLE="margin-left:30">

 <xsl:value-of select="Axis:Description" />

 </DIV>

 <DIV CLASS="heading">Identification</DIV>

 <TABLE CELLPADDING="0" CELLSPACING="2" BORDER="0">

 <TR><TD CLASS="attr"> Manufacturer </TD><TD CLASS="value">

 <xsl:element name="A">

 <xsl:attribute name="HREF"><xsl:value-of select="W:Manufacturer/W:URL"/></xsl:attribute>

 <xsl:value-of select="W:Manufacturer/W:Name"/>

 </xsl:element>

 </TD></TR>

 <TR><TD CLASS="attr"> Model </TD><TD CLASS="value">

 <xsl:value-of select="W:ModelName"/>

 <xsl:value-of select="W:ModelNumber"/>

 </TD></TR>

 <TR><TD CLASS="attr"> Product number </TD><TD CLASS="value"> <xsl:value-of select="W:ProductNumber"/></TD></TR>

 <TR><TD CLASS="attr"> Serial number </TD><TD CLASS="value"> <xsl:value-of select="W:SerialNumber"/> </TD></TR>

 </TABLE>

 <DIV CLASS="heading">Support</DIV>

 <TABLE CELLPADDING="0" CELLSPACING="2" BORDER="0">

 <TR><TD CLASS="attr"> Hotline </TD><TD CLASS="value">

 <xsl:apply-templates select="W:Support[W:Region='USA']" />

 </TD></TR>

 <TR><TD CLASS="attr"> FAQ </TD><TD CLASS="value">

 <xsl:element name="A">

 <xsl:attribute name="HREF"><xsl:value-of select="W:FAQ/W:InstallFAQ"/></xsl:attribute>

 Installation

 </xsl:element>

 <xsl:entity-ref name="nbsp"/>

 <xsl:element name="A">

 <xsl:attribute name="HREF"><xsl:value-of select="W:FAQ/W:SupportFAQ"/></xsl:attribute>

 Technical support

 </xsl:element>

 </TD></TR>

 <TR><TD CLASS="attr"> Updates </TD><TD CLASS="value">

 <xsl:element name="A">

 <xsl:attribute name="HREF"><xsl:value-of select="W:Update/W:DriverUpdate"/></xsl:attribute>

 Drivers

 </xsl:element>

 <xsl:entity-ref name="nbsp"/>

 <xsl:element name="A">

 <xsl:attribute name="HREF"><xsl:value-of select="W:Update/W:FirmwareUpdate"/></xsl:attribute>

 Firmware

 </xsl:element>

 </TD></TR>

 </TABLE>

</xsl:template>

<!-- // Support numbers -->

<xsl:template match="W:Support">

 <xsl:apply-templates select="W:Number"/>

 <xsl:apply-templates select="W:Fax"/>

</xsl:template>

<xsl:template match="W:Number">

 [<xsl:value-of select="."/>]

</xsl:template>

<xsl:template match="W:Fax">

 [<xsl:value-of select="."/> (Fax)]

</xsl:template>

<!-- // Status -->

<xsl:template match="W:Status">

 <DIV CLASS="heading">Status</DIV>

 <DIV STYLE="margin-left:30">

 The status is <xsl:value-of select="W:Standby" />

 </DIV>

</xsl:template>

<!-- // Corporate Info -->

<xsl:template match="Axis:CorpInfo">

 <CENTER CLASS="credits">

 Axis Communications

 <xsl:element name="IMG">

 <xsl:attribute name="SRC"><xsl:value-of select="Axis:Logo"/></xsl:attribute>

 </xsl:element>

 </CENTER>

 <xsl:element name="IMG">

 <xsl:attribute name="STYLE">

 position:absolute; top:85; left:405;

 </xsl:attribute>

 <xsl:attribute name="SRC"><xsl:value-of select="Axis:Thumbnail"/></xsl:attribute>

 </xsl:element>

</xsl:template>

</xsl:stylesheet>

Style Sheet Manipulation.xsl

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl">

<xsl:template match="/">

<HTML>

<HEAD>

<STYLE>

BODY {font:8pt Verdana;}

XMP {font:8pt Lucida Console; background:azure;}

.actionEl {font:7pt Tahoma; padding: 8 4 8 2; background:#EEEEFF;}

.actionEl1 {font:7pt Tahoma; padding: 22 4 10 38; background:#EEEEFF;}

</STYLE>

<SCRIPT LANGUAGE="JScript">

<xsl:comment><![CDATA[

;;

var g_ZoomStrength = 0;

// zoom in

function zoomIn() {

 if (g_ZoomStrength > 30) return;

 g_ZoomStrength++;

 var factor = (imagePreview.width + 30)/imagePreview.width;

 // increase image size

 imagePreview.width += 30;

 imagePreview.height *= factor;

}

// zoom out

function zoomOut() {

 if (g_ZoomStrength < -8) return;

 g_ZoomStrength--;

 var factor = (imagePreview.width - 30)/imagePreview.width;

 // decrease image size

 imagePreview.width -= 30;

 imagePreview.height *= factor;

}

// show the image at actual size

function actualsize() {

 g_ZoomStrength = 0;

 imagePreview.width = nativeSizeX;

 imagePreview.height = nativeSizeY;

}

function min (x, y) {return (x<y) ? x : y;}

function max (x, y) {return (x>y) ? x : y;}

function bestFactor () {

 // play some games to get around rounding error effects

 var xfactor = (imageContainer.clientWidth - 5)/nativeSizeX;

 var yfactor = (imageContainer.clientHeight - 5)/nativeSizeY;

 var factor = min(xfactor, yfactor);

 return factor;

}

// show the image at best size

function bestsize () {

 var factor = bestFactor();

 imagePreview.width = nativeSizeX * factor;

 imagePreview.height = nativeSizeY * factor;

}

function startsize () {

 var factor = bestFactor();

 imagePreview.width = nativeSizeX * factor;

 imagePreview.height = nativeSizeY * factor;

}

// filters

function Fgrayscale() {

 if (imagePreview.filters.gray.enabled==0) {imagePreview.filters.gray.enabled=1;}

 else {imagePreview.filters.gray.enabled=0;}

}

function Finvert() {

 if (imagePreview.filters.invert.enabled==0) {imagePreview.filters.invert.enabled=1;}

 else {imagePreview.filters.invert.enabled=0;}

}

function Fflip() {

 if (imagePreview.filters.fliph.enabled==0) {imagePreview.filters.fliph.enabled=1;}

 else {imagePreview.filters.fliph.enabled=0;}

}

function Fnone() {

 imagePreview.filters.gray.enabled =0;

 imagePreview.filters.invert.enabled=0;

 imagePreview.filters.fliph.enabled =0;

}

function refreshImage() {

 imagePreview.src = sourceURL;

}

]]></xsl:comment>

</SCRIPT>

</HEAD>

<BODY BGCOLOR="#ffffff" LINK="#000066" VLINK="#666666" TEXT="#000000">

<!-- // frame -->

<DIV STYLE="position:absolute; top:20; left:20; width:640; height:480; border:1px navy solid">

<!-- // Location information -->

<DIV STYLE="position:absolute; top:0; left:0; width:640; height:20;

 font:bold 8pt Verdana; background:#EEEEEE; color:maroon;">

 <CENTER>

 Live image from

 <xsl:apply-templates select="ROOT/W:Location" />

 </CENTER>

</DIV>

<!-- // image controls -->

<DIV STYLE="position:absolute; top:20; left:0; width:140; height:460; background:#EEEEEE;">

<DIV CLASS="actionEl" STYLE="cursor:hand" ONMOUSEOUT ='this.style.background="#EEEEFF"' ONMOUSEOVER='this.style.background="pink"'

 ONMOUSEDOWN='zoomIn();'>

 Zoom In

</DIV>

<DIV CLASS="actionEl" STYLE="cursor:hand" ONMOUSEOUT ='this.style.background="#EEEEFF"' ONMOUSEOVER='this.style.background="pink"'

 ONMOUSEDOWN='zoomOut();'>

 Zoom Out

</DIV>

<DIV CLASS="actionEl" STYLE="cursor:hand" ONMOUSEOUT ='this.style.background="#EEEEFF"' ONMOUSEOVER='this.style.background="pink"'

 ONMOUSEDOWN='actualsize();'>

 Actual Size

</DIV>

<DIV CLASS="actionEl" STYLE="cursor:hand" ONMOUSEOUT ='this.style.background="#EEEEFF"' ONMOUSEOVER='this.style.background="pink"'

 ONMOUSEDOWN='bestsize();'>

 Best Fit

</DIV>

<DIV CLASS="actionEl" STYLE="cursor:hand" ONMOUSEOUT ='this.style.background="#EEEEFF"' ONMOUSEOVER='this.style.background="pink"'

 ONMOUSEDOWN='Fgrayscale();'>

 Black/White View

</DIV>

<DIV CLASS="actionEl" STYLE="cursor:hand" ONMOUSEOUT ='this.style.background="#EEEEFF"' ONMOUSEOVER='this.style.background="pink"'

 ONMOUSEDOWN='Finvert();'>

 Negative View

</DIV>

<DIV CLASS="actionEl1" STYLE="cursor:hand" ONMOUSEOUT ='this.style.background="#EEEEFF"' ONMOUSEOVER='this.style.background="pink"'

 ONMOUSEDOWN='Fflip();'>

 Mirror View

</DIV>

<DIV CLASS="actionEl1" STYLE="cursor:hand" ONMOUSEOUT ='this.style.background="#EEEEFF"' ONMOUSEOVER='this.style.background="pink"'

 ONMOUSEDOWN='Fnone();'>

 Normal View

</DIV>

<DIV CLASS="actionEl1" STYLE="cursor:hand" ONMOUSEOUT ='this.style.background="#EEEEFF"' ONMOUSEOVER='this.style.background="pink"'

 ONMOUSEDOWN='refreshImage();'>

 Refresh

</DIV>

</DIV> <!-- // end image controls -->

<!-- // the image itself -->

<DIV ID="imageContainer"

 STYLE="position:absolute; top:40; left:160; width:460; height:420;

 overflow:auto;">

<xsl:apply-templates select="ROOT/LSCam:Image[W:ImageResolution/W:Width=352]" />

</DIV>

</DIV> <!-- // end frame -->

</BODY>

</HTML>

</xsl:template>

<xsl:template match="LSCam:Image">

<xsl:apply-templates select="W:ImageResolution" />

<xsl:apply-templates select="W:URL" />

</xsl:template>

<xsl:template match="W:ImageResolution">

<SCRIPT LANGUAGE="JScript">

var nativeSizeX = <xsl:eval>this.selectSingleNode ("W:Width").text</xsl:eval>;

var nativeSizeY = <xsl:eval>this.selectSingleNode ("W:Height").text</xsl:eval>;

</SCRIPT>

</xsl:template>

<xsl:template match="W:URL">

 <xsl:element name="IMG">

 <xsl:attribute name="ID">imagePreview</xsl:attribute>

 <xsl:attribute name="STYLE">filter: gray(enabled=0) invert(enabled=0) fliph(enabled=0);</xsl:attribute>

 <xsl:attribute name="SRC"><xsl:eval>this.text</xsl:eval></xsl:attribute>

 </xsl:element>

 <SCRIPT LANGUAGE="JScript">

 var sourceURL = <xsl:eval>"\"" + this.text + "\""</xsl:eval>;

 </SCRIPT>

</xsl:template>

<xsl:template match="W:Location">

<xsl:value-of select="MSFT:Bldg"/>/<xsl:value-of select="MSFT:Room"/> (<xsl:value-of select="MSFT:Wing"/>)

</xsl:template>

</xsl:stylesheet>

References

Automatic IP Address Allocation

http://www.ietf.org/internet-drafts/draft-ietf-dhc-ipv-autoconfig-03.txt
Simple service Discovery Protocol

http://search.ietf.org/internet-drafts/draft-cai-ssdp-v1-00.txt
Multicast DNS (name resolution)

http://search.ietf.org/internet-drafts/draft-manning-multicast-dns-01.txt

UPnP in general:

http://www.upnp.org
http://www.micosoft.com/homenet,

http://www.microsoft.com/winhec
About Axis Communications

Axis Communications is a leader in the fast growing industry of network-attached peripherals. The company designs and manufactures network-attached storage devices, CD/DVD servers, scan servers, Web camera servers and print servers based on its ThinServer™ Technology. With an installed base of more than one million units, these Web-enabled products provide users a cost-effective means to access data and applications, with outstanding performance and ease-of-use.

Founded in 1984, Axis Communications employs 300 people worldwide and has its headquarters in Lund, Sweden with offices in the United States, Asia and Europe.

For more information: http://www.axis.com
� EMBED PowerPoint.Slide.8 ���

� EMBED PowerPoint.Slide.8 ���

� EMBED PowerPoint.Slide.8 ���

� EMBED PowerPoint.Slide.8 ���

The main components of the camera include:

Embedded software – RTOS, IP protocol stack, UPnP, HTTP server, video drivers

Hardware – ASIC-based, 10/100 Mbit Ethernet connectivity, image compression hardware, RISC processor, flash and DRAM memory. High-quality CCD color video camera with lens.

Management software – web-based management via built-in GUI

WinHEC 99 White Paper

[image: image7.wmf]Smart Object Components

Smart Object Components

Physical media

Device functions

HTTP (20k)

Simple

Discovery (4k)

XML

description

 TCP/IP stack (40k)

DHCP

DHCP

AutoNet

AutoNet

[image: image8.wmf]UPnP in action - ad hoc

UPnP in action - ad hoc

1. DHCP broadcast

1. DHCP broadcast

(timeout)

(timeout)

2. Assign AutoNet address

2. Assign AutoNet address

3. DNS name multicast

3. DNS name multicast

4. Announce service

4. Announce service

(timeout - wait for requests)

(timeout - wait for requests)

5. Discover service

5. Discover service

7. Response to discover

7. Response to discover

8. Get_HTTP XML

8. Get_HTTP XML

9. XML content

9. XML content

[image: image9.wmf]UPnP in action - configured

UPnP in action - configured

1. DHCP broadcast

1. DHCP broadcast

2. Address from DHCP server

2. Address from DHCP server

3. Name unicast to DNS server

3. Name unicast to DNS server

4. Announce service to listener

4. Announce service to listener

6. Directory updated by listener

6. Directory updated by listener

5. Listener Get_HTTP XML

5. Listener Get_HTTP XML

8. LDAP query directory

8. LDAP query directory

7. Device specific negotiation

7. Device specific negotiation

Server

_984223048.ppt

Smart Object Components

Physical media

Device functions

HTTP (20k)

Simple

Discovery (4k)

XML

description

 TCP/IP stack (40k)

DHCP

AutoNet

_984223368.ppt

UPnP in action - ad hoc

(timeout)

(timeout - wait for requests)

1. DHCP broadcast

2. Assign AutoNet address

3. DNS name multicast

4. Announce service

5. Discover service

7. Response to discover

8. Get_HTTP XML

9. XML content

_984223702.ppt

UPnP in action - configured

6. Directory updated by listener

7. Device specific negotiation

Server

1. DHCP broadcast

2. Address from DHCP server

3. Name unicast to DNS server

4. Announce service to listener

5. Listener Get_HTTP XML

8. LDAP query directory

_984222827.ppt

Client Components

NIC

TCP/IP stack

NDIS

XML

Simple

Discovery

UPnP

provider

WINSOCK

LDAP

Applications

ADSI

