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Abstract— Effective placement of resources used to sup-
port distributed services in the Internet depends on an accu-
rate representation of Internet topology and routing. Repre-
sentations of autonomous system (AS) level topology derived
solely from BGP tables show only a subset of the connec-
tions that actually get used. However, in many cases, miss-
ing connections can be discovered by simple traceroutes.
In addition, the differences between customer-to-provider
links, peer-to-peer links, and sibling-to-sibling links are use-
ful distinctions for the resource placement problem which
is the focus of our work. Using two complementary mech-
anisms, we improve the accuracy of an AS forest as a pre-
dictor of packet paths. One mechanism uses recent insights
that packets flow unidirectionally across customer-provider
inter-AS links. Annotations are added to the AS forest to
indicate links that appear to be peering versus those that
appear to be customer-provider links. The other mecha-
nism provides links between trees by remembering the most
recently seen similar traceroute. The paper concludes by
applying the annotated AS forest to a problem in resource
placement to show that the representation is amenable to
computationally inexpensive analysis.

I. INTRODUCTION

Deploying services broadly across the Internet can pro-
vide additional capabilities, improve response times, re-
duce network congestion and reduce load over specific,
crowded links. Effective placement of resources such as
performance measurement nodes, proxy caches, applica-
tion layer multicast distribution points, and anomaly de-
tection engines would provide more accurate and more
detailed services.

In this paper, we address the problem of effective re-
source deployment using client clustering at the AS level.
We argue that deployment at the AS level is sufficient and
appropriate for most services since routing within AS’s is
typically very efficient, and consideration of this problem
at the router level makes it intractable for both the purpose
of understanding topology and application of resource
placement algorithms. We present a new method of clus-
tering that generates a forest of trees of AS’s. Branches of
the tree form progressively smaller clusters, where each
branch consists of AS’s that are topologically near and

over which packets are actually routed. Building and re-
fining the AS forest consisted of three steps.

A. Step 1 - Building a representation of the Internet at the
AS level

In step 1, we construct an initial AS forest based on
BGP data. The floor of the forest is the centroid anal-
ogous to the strongly-connected portion of the Internet
reported by Broido and Claffy [1]. From each of those
nodes we grow a tree consisting of other AS’s that most
closely match neighbor sets. The presumed path of long
distance packets would be from a leaf to the forest floor
and then across the heavily connected floor (assumed to
be a clique) and through the destination tree to the desti-
nation leaf. If the trees are accurate enough, the branches
become collection points for traffic.

B. Step 2 - Calibrating the relative depths

To assign accurately a depth to each branch of each
tree, we needed a mechanism for comparing trees. Us-
ing 200,000 traceroutes collected from public traceroute
servers, we adjust the depth of each AS so that packet
flows seen in actual traceroutes would adhere to a pattern
noticed by Gao [2] in which packets flow only uphill, then
laterally, then only downhill. Whenever a packet takes an
unexpected hop between trees, we use the opportunity to
compare those depths.

C. Step 3 - Adding missing links and an alternate parent

Our traceroute data shows many links that were not
present in the BGP table data. This is consistent with the
observations of Jamin et al. [3] and others since BGP
contains only sparse information about non-local links.
We again applied Gao’s observations (but in this case
to the traceroute results) and differentiated customer-to-
provider links from sibling-to-sibling links. This allowed
us to add an extra link to each node in each tree for an
alternate parent.



D. Deploying resources using the AS forest

Finally, we apply the resulting AS forest to the problem
of optimal resource placement. We employ a dynamic
programming solution similar to the ones used by Raz [4]
and Cidon [5] in which each sub-tree calculates the op-
timal use of O to £ servers in its sub-tree. The optimal
placement solution is described in detail in [6].

Il. RELATED WORK

The need to separate the Internet into two very different
regions, the highly interconnected core versus the periph-
ery of hierarchical trees, was clearly stated by Broido and
Claffy in [1]. They call the core portion the giant compo-
nent and include inside it a large number of IP nodes.

An AS-level view of the Internet has much less detail,
but would retain its value as an operational tool. And
an AS-level view can be obtained from publicly avail-
able BGP tables like those at Oregon Route-Views [7].
Early researchers assumed that two AS’s were linked if
their AS numbers were adjacent in an AS path. Jamin
et al. [3] showed that there are many actual links that
do not show up in BGP. Then Gao and Rexford [8]
made a substantial improvement in AS-graph accuracy
when they noticed that customer-to-provider links cre-
ate a hierarchy. Gao [2] went on to identify peer-to-peer
and sibling-to-sibling relationships between Autonomous
Systems and proposed a mechanism for inferring the re-
lationships from the AS paths in BGP Tables.

Initial work on clustering clients and proxy placement
was done by Cufiha [9]. That work described a process of
using traceroute to generate a tree graph of client accesses
(using IP addresses collected from a Web server’s logs).
Proxies were then placed in the tree using three different
algorithms and the effects on reduction of server load and
network traffic were evaluated. More recent work by Kr-
ishnamurthy and Wang in [10] provide new mechanisms
for clustering of clients at the router level.

A number of recent papers have addressed the issue
of proxy placement based on assumptions about the un-
derlying topological structure of the Internet [11], [12],
[13]. Lietal. [11] describe an optimal dynamic program-
ming algorithm for placing multiple proxies in a tree-
based topology.

Jamin et al. [12] examine a number of proxy place-
ment algorithms under the assumption that the underly-
ing topological structure is not a tree. Their results show
quickly diminishing benefits of placing additional mir-
rors (defined as proxies which service all client requests
directed to them) even using sophisticated and computa-
tionally intensive techniques. Qiu et al. [13] also evalu-
ate the effectiveness of a number of graph theoretic proxy
placement techniques. They find that proxy placement
that considers both distance and request load performs a

factor of 2 to 5 better than a random proxy placementz.
They also find that a greedy algorithm for mirror place-
ment (one which simply iteratively chooses the best node
as the site for the next mirror) performs better than a tree
based algorithm.

I1l. TOPOLOGICALLY-GUIDED CLUSTERING

A. Finding the centroid

To determine the strongly connected component, we
computed the portion of the AS list reachable by AS,, in h
hops, varying h from 2 to 5. Almost all of the AS’s (94%)
can reach the bulk of the Internet (90% of the other AS’s)
in 5 hops. The 4 hop results were also not helpful. Many
nodes high on the 4 hop list gained their height solely by
virtue of having 2 well-connected neighbors. Finally, we
found a useful gap in the 3 hop list in which 25 AS’s can
see 80% of the other AS’s. Since we could visualize 25
trees on a single screenful of information, we declared
those 25 AS’s to be our (somewhat arbitrary) backbone.

B. Definitions

The clustering algorithm uses neighbor sets and a dis-
tance function that acts as the length of a link.

The following definitions are used throughout the rest
of this section:

o Depth,, is the shortest distance from AS,, to a cen-
troid node measured in AS hops.

o AS, isaneighbor of AS,, if it immediately follows
or precedes AS,,, in any AS path.

o The set of neighbors of AS,, is denoted by IV,,.

o outdegree(n) of AS, is |N,|.

o AS,, is a candidate parent of AS,, if m € N,, and
Depth,,, = Depth,, — 1. The set of candidate par-
ents of AS,, is denoted C,,.

o The Hamming distance between AS,, and AS,, is
the number of neighbors exclusive to only one of
them.

dist(n,m) = |N, U Np,| — | N N Ny,

C. Clustering AS’s using BGP routing data

For each node, we first compute Depth,, for each AS,,
using Prim’s [14] Algorithm. Over 51% of the nodes are
directly connected to a backbone node (Depth,, < 1) and
over 91% of the nodes have Depth,, < 2.

Each AS with Depth,, > 0 chooses the nearest parent:

nearest(n) = Hliél {dist(n,m)}
meCn



D. Initial annotations

The remaining neighbors in NV,, consist of nodes that
either one hop farther from the backbone, the same
Depth,,, or one hop closer. Here we explicitly assume
that edges that take a packet closer to the backbone are
uphill edges. We eliminate uphill edges that were not
the nearest candidate parent. Links to nodes at the same
Depth, are initially assumed to be siblings. Links that
are one hop farther away from the backbone we (initially)
assume to be customers.

IV. ANNOTATING THE AS FOREST

To test our AS forest we ran traceroutes. From the
list of 882 traceroute servers, route servers, and look-
ing glass sites from www.traceroute.org, we chose 135
servers, each in a different AS, 2 or more hops from the
centroid.

A. Choosing traceroute destinations

For the traceroute destinations, we chose a represen-
tative IP address for every AS. Even when the last hop
fails to reach a working IP address, if a prior hop already
shows the desired AS, it is a usable AS trace. In our case,
11% of our traceroutes did not end in the intended AS.

Over the week of March 11, 2002, we performed 200K
traceroutes. Although this number is comparable to other
studies [15], [16] and much smaller than one study [1],
our study did not need repetitions of the same routes.

B. Noting the relationship between AS’s

The pattern we were hoping to see was the one identi-
fied by Gao [2]: each packet should flow uphill customer
to provider, ¢ — p, (or laterally, sibling to sibling, s < s)
until it reaches the highest point needed to reach an AS
(or a sibling or peer of an AS) upstream of the destina-
tion. Then the packet should flow only downhill provider
to customer, p — ¢, until it reaches the destination.

For each line of each traceroute, we translated the
router link IP address to an AS number using the cen-
tralized BGP table. Our results sometimes skip over an
AS because packets were lost, we got no response from
the router, or because the router’s interface had an IP ad-
dress that belongs to the AS at the other end of the link.
Because of route aggregation and other practical limita-
tions of BGP, our translation from IP address to AS could
be wrong as well. Finally, ISP’s need not use globally-
routable IP addresses for links inside their own domain.
If we miss seeing the ingress into the AS, we might com-
pletely miss seeing the AS. Thus, our translated AS path
might understate the length of the true AS path.

As other researchers previously noted [3], [2], a signif-
icant number of AS connections are hidden from most

Step 1: Predicting paths using onhy BGP data
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Fig. 1. Our early forest predicted only a tiny portion of the non-folded
routes seen by traceroute.

Step 2: After learning depths and siblinngs from traceroutes
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Fig. 2. Adjusting the annotations in the graph reduced the number of
folded (implausible) paths and improved prediction.

BGP tables. Figure 1 shows the results of the 74,963
unique complete traceroutes when applied to the AS for-
est derived solely from BGP information. The majority of
the paths were from 3 to 6 AS hops long. A small number
of paths were as long as 12 AS hops and a small number
of IP addresses found routing loops at the inter-AS level.

The folded traces are the AS paths that appeared to flow
uphill after having taken a downhill hop. At that point,
our AS forest had only provisional labels to categorize
each link as a customer-provider link or a sibling link.
The dark area in the middle of each bar is the paths that
did not violate the uphill-to-downhill laws but contained
links not in our AS forest. For a hop from AS,, to AS,
we compare Depth,, t0 Depth,, in cases where the AS
forest did not have a link at (m, n). Finally, the light area
at the bottom is paths that only contained AS hops in the
AS forest.

Figure 2 shows the same paths after the Depth,, values
have been refined. In this case, we pause for learning each
time a traceroute shows an uphill hop after the packet had
already reached a pinnacle. We used a Current Best Hy-
pothesis algorithm [17] to test each hop of the traceroute.
Imagine a trace (k, !, ..., m,n) in which [ was thought to



be downhill from k&, but n was thought to be uphill from
m. This folded trace violates one or more of the annota-
tions we have made. At least one of the links between &
and m was annotated A(k,[) asap — c link. Choose k
and [ to be the closest instance of a p — ¢ link. On the
evidence of this traceroute, that could be a false positive.
Alternatively, A(m,n) was ¢ — p, preventing us from
using it on the downhill side (a false negative). A special
case where [ = m is easily handled.

To choose the appropriate generalization or specializa-
tion, we select the link most refuted by the evidence.
That is, we track the failure count F(m,n) and success
count S(m,n) of each annotation. If the total evidence
E = F(k,1) + S(k,1) + F(m,n) + S(m,n) exceeds
a a learning rate threshold, «, we assume that we have
seen enough cases to render a judgment. Each link, (k,1),
has an error proportion Err(k,l) = F(k,1)/(F(k,l) +
S(k,1)). If Err(k,l) > Err(m,n) we change (m,n)
to s < s by setting Depth,,, = Depth,,. Alternatively,
if the downhill link was more probably incorrect, we set
Depth,, = Depth,,. Since we have changed the depth
of an AS, we correct all of the annotations of the links to
that AS.

The algorithm found exchange points like the Rus-
sian Universities Federal Network (AS3267) quickly.
Depthsoe7 went from 9 hops from the backbone to 1.
Others like the Milan Interconnection Point (AS16004)
rose 4 times. Whenever a Depth,, changes, other links
become ¢ — porp — c.

Figure 2 shows the results of learning depths. Bars
show the average of 10 runs over the same traceroutes
using 10-fold cross-validation with o« = 6. Higher values
of o would require a larger data set.

Since this fixed many of our mistakenly labeled
customer-provider paths, previously folded paths were
now non-folded. Our algorithm had reversed some
customer-provider pairs. Also, there were improvements
when unidirectional customer-provider links were up-
graded to bidirectional sibling links.

C. Adding learned relatives

In many cases, the traced routes showed links that were
not present in our BGP-based AS forest or even the BGP-
based AS graph. We decided to add the most recent alter-
nate parent to each AS whenever a trace showed an unex-
pected uphill hop from that AS. We limited the learning
to identifying a single alternate parent for each AS. If we
saved all of the alternate parents, the program would even-
tually have learned all of the routes seen, but the number
of “correct” paths from one AS to another would grow
too fast. This would have made our subsequent service
placement algorithm ineffective. We placed no limit on
the number of learned siblings at the same Depth,,.

Step 3: Keeping most recent alternate parent
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Fig. 3. Results with final AS forest

Figure 3 shows the results of allowing each node in the
AS forest a list of siblings and a single, alternate uphill
link. We considered more sophisticated techniques for
discovering the best of the discovered links, but were sat-
isfied that the simplest technique (saving the most recent)
was effective and reacted well dynamically. Again, the re-
sults are the average of 10-fold cross validation with train-
ing sets of 67,467 traces and test sets of 7,496 traces. Over
91% of the test set traces correctly followed the uphill-
then-downhill pattern and were composed only of links
contained in our AS graph. Links with 5 or more AS hops
had noticeably higher error rates.

Now that the AS forest can credibly predict the path of
traceroutes, we turn our attention to the service placement
problem.

V. PLACEMENT OF SERVICES

The goal in creating the augmented AS forest was to
create a more accurate representation of the structure of
the Internet so that our placement algorithm could more
accurately place services.

To measure the effectiveness of our annotated AS for-
est, we consider the problem of placing web caches for
a content provider. We accumulate bytes demanded by
each AS using traffic seen by a set of commercial web
server logs. Figure 4 shows the total traffic normalized
to the traffic that would result if every request had to be
satisfied at the centralized service. In our test data, 3.41
Gigabytes of replies came from 793 of the 12779 clusters.
Using the refined forest produced by the clustering algo-
rithm, on average traffic touched 2.49 AS’s including the
AS at the backbone and the originating AS. Throughout
the rest of this section, we will use the term ASHop to
avoid confusion with router hops. The total cost of traffic
in this test data was 8.48 Gigabyte-ASHops.

A. Placement By Customer

For comparison, we evaluated costs for a placement al-
gorithm that more closely matches the way services might
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Fig. 4. Performance versus BGP-only placement algorithms

be placed opportunistically in a practical case. We ran-
domly chose 50 locations out of the top 200 demand sites
and averaged the results of 10 runs. The top line in Figure
4 shows the savings. On average, placing proxy caches in
15 AS’s would have decreased the total number of byte-
ASHops by 10%. The by-customer algorithm required
50 service locations to reduce the byte-ASHop traffic by
30%.

B. Placement by Out Degree

Figure 4 also shows the results of a placement algo-
rithm that incrementally places each service at the AS
with the highest remaining out degree (computed from
the BGP table alone). This simple algorithm works well
initially but quickly diminishes in utility after it uses up
the innermost AS’s in the centroid. The out-degree-based
algorithm reduced the total traffic by 30% simply by us-
ing the 8 AS’s with the highest out degree. The noticeable
drops at 30 and 37 caches were caused by caches that had
a large downstream demand.

These incremental placement algorithms (demand-
based and out-degree-based) are appropriate for any ser-
vice placement in which it is not economic to move a ser-
vice from one location to another.

C. Simultaneous Placement

Running the dynamic programming algorithm [6] dis-
covered ways to cut the total traffic byte-ASHops by half
using 51 locations.

Perhaps the most useful value to the simultaneous
placement algorithm is the shape of the graph of diminish-
ing returns. By running the algorithm once, one can see
the marginal benefit for the entire range of 0 to n caches.

V1. CONCLUSIONS

In this paper we have described methods for creating
an AS forest based on BGP routing data and then re-
fined by paths learned from traceroutes. The mechanism

starts with an algorithm for finding the centroid of highly§
connected nodes at the backbone of the Internet. It then
grows a tree from each of those nodes based on BGP in-
formation. Rather than depend on subtle clues inside the
BGP table to learn the relationships along the links, our
mechanism learns those links from traceroute results.

The entire mechanism is suitable for use operationally,
since it does not depend on proprietary information or
large collections of route data. The resulting AS forest
is computationally tractable for use in service placement.

We found that the mechanism learned a more accurate
AS forest than what could be gleaned from the BGP tables
alone, improving the prediction accuracy to 91% when
tested against traced routes.
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