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Abstract

Effective placement of resources used to support distributed services in the Internet
depends on an accurate representation of Internet topology and routing. Represen-
tations of autonomous system (AS) topology derived solely from routing tables show
only a subset of the connections that actually get used. However, in many cases,
missing connections can be discovered by simple traceroutes. In addition, the differ-
ences between customer-to-provider links, peer-to-peer links, and sibling-to-sibling
links are useful distinctions. We first apply a clustering algorithm to simplify the
AS graph to an AS forest. Then we use two complementary mechanisms to improve
accuracy of an AS forest as a predictor of packet paths. One mechanism uses re-
cent insights that packets flow unidirectionally across customer-provider inter-AS
links. Annotations are added to the AS forest to indicate links that appear to be
peering versus those that appear to be customer-provider links. The other mecha-
nism provides links between trees by remembering the most recently seen similar
traceroute.

1 Introduction

Deploying services broadly across the Internet can provide additional capa-
bilities, improve response times, reduce network congestion and reduce load
over specific, crowded links. Effective placement of resources such as perfor-
mance measurement nodes, proxy caches, application layer multicast distribu-
tion points, and anomaly detection engines would provide more accurate and
more detailed services.

In this paper, we address the problem of effective resource deployment using
client clustering at the AS level. We argue that deployment at the AS level is
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sufficient and appropriate for most services since routing within ASes is typi-
cally very efficient, and consideration of this problem at the router level makes
it intractable for both the purpose of understanding topology and application
of resource placement algorithms. We present a new method of clustering that
generates a forest of trees of ASes. Branches of the tree form progressively
smaller clusters, where each branch consists of ASes that are topologically
near and over which packets are most likely routed. Building and refining the
AS forest consisted of three steps.

1.1 Step 1 - Building a representation of the Internet at the AS level

In step 1, we construct an initial AS forest based on Border Gateway Protocol
(BGP) data. We felt it was important to treat the highly inter-connected
core of the Internet differently than the small ISPs on the edges. A few core
ISPs have connections to hundreds of lower-tier ISPs and to many of the
other core ISPs. It is appropriate to model them as a clique we will call the
forest floor. The floor provides extremely stable routing with professionally
managed fault tolerance and very high bandwidth. This forest floor is the
centroid analogous to the strongly-connected portion of the Internet reported
by Broido and Claffy [1]. From each of those nodes we grow a tree consisting
of the regional, local, and leaf ISPs that are served by that core ISP. The
presumed path of long distance packets would be from a leaf to the forest
floor and then across the heavily connected floor and through the destination
tree to the destination leaf.

Fig. 1. Global Internet viewed as a clique and trees

1.2 Step 2 - Calibrating the relative depths

To assign accurately a depth to each branch of each tree, we needed a mech-
anism for comparing trees. Using 200,000 traceroutes collected from public
traceroute servers, we adjust the depth of each AS so that packet flows seen
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in actual traceroutes would adhere to a pattern noticed by Gao [2] in which
packets flow only uphill, then laterally, then only downhill. Whenever a packet
takes an unexpected hop between trees, we use the opportunity to compare
those depths.

1.3 Step 3 - Adding missing links and an alternate parent

Our traceroute data shows many links that were not present in the BGP
table data. This is consistent with the observations of Jamin et al. [3] and
others since BGP contains only sparse information about non-local links. We
again applied Gao’s observations (but in this case to the traceroute results)
and differentiated customer-to-provider links from sibling-to-sibling links. This
allowed us to add an extra link to each node in each tree for an alternate
parent.

The breakthrough that allows us to dramatically improve the forest is, ironi-
cally, additions that make it no longer a forest of trees. We add up to one extra
link from each customer to an alternate provider based on the preponderance
of traceroutes in our training set. Now that tier-n nodes can have up to 2 par-
ents, trees are now mini-graphs. There are links that connect mini-graphs to
other mini-graphs and we depend on unidirectional notation to avoid cycles.
The result is that our graph correctly classifies 91% of the traceroutes in the
test set.

2 Related Work

The need to separate the Internet into two very different regions, the highly in-
terconnected core versus the periphery of hierarchical trees, was clearly stated
by Broido and Claffy in [1]. They call the core portion the giant component

and include inside it a large number of IP nodes.

An AS-level view of the Internet has much less detail, but would retain its value
as an operational tool. And an AS-level view can be obtained from publicly
available BGP tables like those at Oregon Route-Views [4]. Early researchers
assumed that two ASes were linked if their AS numbers were adjacent in an
AS path. Jamin et al. [3] showed that there are many actual links that do not
show up in BGP. Then Gao and Rexford [5] made a substantial improvement
in AS-graph accuracy when they noticed that customer-to-provider links cre-
ate a hierarchy. Gao [2] went on to identify peer-to-peer and sibling-to-sibling
relationships between Autonomous Systems and proposed a mechanism for
inferring the relationships from the AS paths in BGP Tables. Subramanian et
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al. [6] propose a 5-level classification of AS’s that apply the inter-AS relation-
ships to discover which AS’s are dense core, transit core, outer core, regional,
or customer. We find these classifications to be very helpful in understanding
the flow of traffic through the Internet. We expand on their insights by con-
structing a topology that does not just depend on routing data. In effect, our
traceroutes simulate using far more vantage points.

Initial work on clustering clients and proxy placement was done by Cuñha [7].
That work described a process of using traceroute to generate a tree graph of
client accesses (using IP addresses collected from a Web server’s logs). Proxies
were then placed in the tree using three different algorithms and the effects on
reduction of server load and network traffic were evaluated. More recent work
by Krishnamurthy and Wang in [8] provide new mechanisms for clustering of
clients at the router level.

A number of recent papers have addressed the issue of proxy placement based
on assumptions about the underlying topological structure of the Internet
[9–11]. Li et al. [9] describe an optimal dynamic programming algorithm for
placing multiple proxies in a tree-based topology.

Jamin et al. [10] examine a number of proxy placement algorithms under the
assumption that the underlying topological structure is not a tree. Their re-
sults show quickly diminishing benefits of placing additional mirrors (defined
as proxies which service all client requests directed to them) even using sophis-
ticated and computationally intensive techniques. Qiu et al. [11] also evaluate
the effectiveness of a number of graph theoretic proxy placement techniques.
They find that proxy placement that considers both distance and request load
performs a factor of 2 to 5 better than a random proxy placement. They also
find that a greedy algorithm for mirror placement (one which simply itera-
tively chooses the best node as the site for the next mirror) performs better
than a tree based algorithm.

3 Topologically-guided Clustering

3.1 Finding the centroid

To determine the strongly connected component, we used a composite BGP
table from Oregon Route-Views [4] and computed the portion of the AS list
reachable by ASn in h hops, varying h from 2 to 5. Almost all of the ASes
(94%) can reach the bulk of the Internet (90% of the other ASes) in 5 hops.
The 4 hop results were also not helpful. Many nodes high on the 4 hop list
gained their height solely by virtue of having 2 well-connected neighbors. Fi-
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nally, we found a useful gap in the 3 hop list in which 25 ASes can see 80%
of the other ASes. Since we could visualize 25 trees on a single screenful of
information, we declared those 25 ASes to be our (somewhat arbitrary) back-
bone. Broido and Claffy [1] did their study at IP-level rather than AS-level
and found a giant component containing 8.3% of IP nodes. We chose our back-
bone to be small so that our service placement algorithm would contain more
detail. Other applications of the forest representation may find the Broido and
Claffy characterization more appropriate.

3.2 Definitions

The clustering algorithm uses neighbor sets and a distance function that acts
as the length of a link.

The following definitions are used throughout the rest of this section:

• Depthn is the shortest distance from ASn to a centroid node measured in
AS hops.

• ASn is a neighbor of ASm if it immediately follows or precedes ASm in any
AS path.

• The set of neighbors of ASn is denoted by Nn.
• outdegree(n) of ASn is |Nn|.
• ASm is a candidate parent of ASn if m ∈ Nn and Depthm = Depthn − 1.

The set of candidate parents of ASn is denoted Cn.
• The Hamming distance between ASn and ASm is the number of neighbors

exclusive to only one of them.

dist(n,m) = |Nn ∪ Nm| − |Nn ∩ Nm|

3.3 Clustering ASes using BGP routing data

For each node, we first compute Depthn for each ASn using a variation of
Prim’s [12] Algorithm. Over 51% of the nodes are directly connected to a
backbone node (Depthn ≤ 1) and over 91% of the nodes have Depthn ≤ 2.

Each AS with Depthn > 0 chooses the nearest parent:

nearest(n) = min
m∈Cn

{dist(n,m)}
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Fig. 2. Walk-though of the clustering algorithm

3.4 Initial annotations

The remaining neighbors in Nn consist of nodes that are either one hop farther
from the backbone, the same Depthn, or one hop closer. Here we explicitly
assume that edges that take a packet closer to the backbone are uphill edges.
We eliminate uphill edges that were not the nearest candidate parent. Links to
nodes at the same Depthn are initially assumed to be siblings. Links that are
one hop farther away from the backbone we (initially) assume to be customers.
The initial annotations were very inaccurate. As we will see later, some inac-
curacies stem from BGP’s inability to see links and from mistaken inferences
about which side of a link is a customer versus a provider. Gao [2] tried to
further refine the downhill links by comparing the outdegree of the parent to
that of the child. If the outdegree of the parent was a ratio, R, bigger than
the child, she labeled the link a customer-to-provider link. We used traceroute
data to discover peering, instead.

A demonstration of the algorithm will clarify it. Figure 2 shows Autonomous
Systems numbered 1 through 8. In this example, AS2, AS3, and AS6 have
already been designated as belonging to the backbone and declared to have
depth = 0. When links from those 3 labeled nodes are followed, the newly
discovered nodes are labeled with depth+1 and moved from the unlabeled set
to the labeled set. When all nodes have been labeled, AS7 has been found to
be 3 hops from the backbone.

Now we remove redundant uphill links. The candidate parents for AS1 are AS2
or AS3. The Hamming distance between AS1 and AS2 is 12, since AS2 has 10
neighbors not also linked to AS1 and AS1 has 2 neighbors not also linked to
AS2. This is the closest candidate parent, so the AS1-to-AS2 link is labeled
c → p and the link from AS1 to AS3 is removed. This reflects the assumption
that AS1-to-AS2 is the true link and AS1-to-AS3 is merely a backup link.
Similarly, AS5 is assigned to be a customer of AS6. The link from AS1 to AS5
is now a sibling or peer link since they are at the same depth. Since this link
does not take packets any closer to the backbone, it is not included in the
tree. If subsequent evidence (see section 4.4 ) tells us it is an important link,
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Fig. 3. Customers do not provide transit between providers.

it will be added back.

4 Annotating the AS Forest

To test our AS forest we ran traceroutes. From the list of 882 traceroute
servers, route servers, and looking glass sites from www.traceroute.org, we
chose 135 servers, each in a different AS, 2 or more hops from the centroid.

4.1 Choosing traceroute destinations

For the traceroute destinations, we chose a representative IP address for every
AS. Even when the last hop fails to reach a working IP address, if a prior hop
already shows the desired AS, it is a usable AS trace. In our case, 11% of our
traceroutes did not end in the intended AS.

Over the week of March 11, 2002, we performed 200K traceroutes. Although
this number is comparable to other studies [13,14] and much smaller than one
study [1], our study did not need repetitions of the same routes.

4.2 Noting the relationship between AS’s

The pattern we were hoping to see was the one identified by Gao [2]: each
packet should flow uphill customer to provider, c → p, (or laterally, sibling
to sibling, s ↔ s) until it reaches the highest point needed to reach an AS
(or a sibling or peer of an AS) upstream of the destination. Then the packet
should flow only downhill provider to customer, p → c, until it reaches the
destination.
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Figure 3 shows the phenomenon Gao described. Customer Cust03 does not
want to pay money to ISP02 to receive packets destined for ISP04. In this
annotated graph, the link between Cust03 and Cust05 is completely unknown
by all other nodes. Assume ISP02 would like to send a packet to ISP04. If
Cust03 advertised a willingness to take that packet, Cust03 would be paying
both ISP02 and ISP04 to transit a packet that did not start or end at Cust03.
We accept Gao’s distinction [2] between a peer and a sibling because this
makes the terms accurate, precise, and useful.

• ASes u and v have a peering relationship iff neither u transits traffic for v
nor v transits traffic for u.

• ASes u is a provider of AS v iff u transits traffic for v and v does not transit
traffic for u.

• ASes u and v have a sibling relationship iff both u transits traffic for v and
v transits traffic for u.

The purpose of the peering relationship between Cust03 and Cust05 is to
save the cost (and latency) of passing packets through ISP04. So Cust03 does
not advertise Cust05’s IP addresses (10.20.30/24) to anyone else. It is impor-
tant that ISP02 be unaware of the link. If ISP02 gave packets addressed to
10.20.30/24 to Cust03, Cust03 would be paying the delivery cost and Cust05
would get a free ride.

The link between Cust01 and Cust03 illustrates a sibling relationship. In this
case, Cust03 advertises that he will gladly accept packets for 10.11.12/24.
If ISP04 wanted to send a packet to one of Cust01’s IP addresses the packet
would correctly find the path through Cust03. Our mechanisms for tracing the
route of packets cannot distinguish between sibling relationships and peering
relationships, so we treat all AS connections at the same depth as sibling
relationships.

4.3 Translating IP Traceroute to AS Traceroute

For each line of each traceroute, we translated the router link IP address to
an AS number using the centralized BGP table. Our results sometimes skip
over an AS because packets were lost, we got no response from the router, or
because the router’s interface had an IP address that belongs to the AS at
the other end of the link. Because of route aggregation and other practical
limitations of BGP, our translation from IP address to AS could be wrong
as well. Finally, ISP’s need not use globally-routable IP addresses for links
inside their own domain. If we miss seeing the ingress into the AS, we might
completely miss seeing the AS. Thus, our translated AS path might understate
the length of the true AS path.
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Fig. 4. Seemingly folded path implies one or more depths are incorrect
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Fig. 5. Our early forest predicted only a tiny portion of the non-folded routes seen
by traceroute.

A folded trace is a traceroute result that appeared to flow uphill after having
taken a downhill hop. At that point, our AS forest had only provisional labels
to categorize each link as a customer-provider link or a sibling link. So each
traceroute gives us an opportunity to improve the annotations on our AS
forest. Figure 4 shows evidence of a fold when node H is uphill from node E
after that path had already started downhill.

As other researchers previously noted [3,2], a significant number of AS con-
nections are hidden from most BGP tables. Figure 5 shows the results of the
74,963 unique complete traceroutes when applied to the AS forest derived
solely from BGP information. The majority of the paths were from 3 to 6 AS
hops long. A small number of paths were as long as 12 AS hops and a small
number of IP addresses found routing loops at the inter-AS level.

The Folded traces are the AS paths that appeared to flow uphill after having
taken a downhill hop. These traces indicate that our annotations of one or
more hops are incorrect. The Not Folded traces are the paths that did not
violate the uphill-to-downhill laws but contained links not in our AS forest.
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Fig. 6. Adjusting the annotations in the graph reduced the number of folded (im-
plausible) paths and improved prediction.

This is also an opportunity for us to adjust the depth annotations. For a hop
from ASm to ASn we compare Depthm to Depthn in cases where the AS forest
did not have a link at (m,n). Finally, the Predicted traces are paths that only
contained AS hops in the AS forest.

Figure 6 shows the same paths after the Depthn values have been refined.
In this case, we pause for learning each time a traceroute shows an uphill
hop after the packet had already reached a pinnacle. We used a Current Best

Hypothesis algorithm [15] to test each hop of the traceroute. Imagine a trace
(k, l, ...,m, n) in which l was thought to be downhill from k, but n was thought
to be uphill from m. This folded trace violates one or more of the annotations
we have made. At least one of the links between k and m was annotated A(k, l)
as a p → c link. Choose k and l to be the closest instance of a p → c link. On
the evidence of this traceroute, that could be a false positive. Alternatively,
A(m,n) was c → p, preventing us from using it on the downhill side (a false
negative). A special case where l = m is easily handled.

To choose the appropriate generalization or specialization, we select the link
most refuted by the evidence. That is, we track the failure count F (m,n)
and success count S(m,n) of each annotation. If the total evidence E =
F (k, l) + S(k, l) + F (m,n) + S(m,n) exceeds a a learning rate threshold,
α, we assume that we have seen enough cases to render a judgment. Each
link, (k, l), has an error proportion Err(k, l) = F (k, l)/(F (k, l) + S(k, l)).
If Err(k, l) > Err(m,n) we change (m,n) to s ↔ s by setting Depthm =
Depthn. Alternatively, if the downhill link was more probably incorrect, we
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Fig. 7. Some traceroute results showed links not in BGP

set Depthn = Depthm. Since we have changed the depth of an AS, we correct
all of the annotations of the links to that AS.

Some traceroute results showed links between Autonomous Systems that were
not found in the BGP tables. Local BGP speakers (other than the ones used
in RouteViews) choose not to tell other BGP speakers about private peerings
and exchange points that do not have financial arrangements to provide tran-
sit. When discovered, these links give us an opportunity to compare the depths
between trees. The algorithm found exchange points like the Russian Univer-
sities Federal Network (AS3267) quickly. Depth3267 went from 9 hops from the
backbone to 1. Others like the Milan Interconnection Point (AS16004) rose 4
times. Whenever a Depthn changes, other links become c → p or p → c.

Figure 6 shows the results of learning depths. Each datapoint shows the av-
erage of 10 runs over the same traceroutes using 10-fold cross-validation with
α = 6. Higher values of α would require a larger data set.

Since this fixed many of our mistakenly labeled customer-provider paths, pre-
viously folded paths were now non-folded. We were surprised to see that the
number of correctly predicted paths also improved. We can not yet explain
some of the improvement. Our algorithm had reversed some customer-provider
pairs. Also, there were improvements when unidirectional customer-provider
links were upgraded to bidirectional sibling links. In future work, we will com-
pare Gao’s static (BGP-based) annotations with our dynamic annotations
based on traceroutes.

4.4 Adding learned relatives

In many cases, the traced routes showed links that were not present in our
BGP-based AS forest or even the BGP-based AS graph. We decided to add
the most recent alternate parent to each AS whenever a trace showed an
unexpected uphill hop from that AS. In the example in Figure 7, a traceroute
showed AS E immediately after AS B going uphill. This was so common
in the case of exchange points that we felt compelled to incorporate it into
our representation. We limited the learning to identifying a single alternate
parent for each AS. If we saved all of the alternate parents, the program would
eventually have learned all of the routes seen, but the number of “correct”
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Fig. 8. Results with final AS forest

paths from one AS to another would grow too fast. This would have made our
subsequent service placement algorithm ineffective. We placed no limit on the
number of learned siblings at the same Depthn.

Figure 8 shows the results of allowing each node in the AS forest a list of
siblings and a single, alternate uphill link. We considered more sophisticated
techniques for discovering the best of the discovered links, but were satisfied
that the simplest technique (saving the most recent) was effective and reacted
well dynamically. Again, the results are the average of 10-fold cross validation
with training sets of 67,467 traces and test sets of 7,496 traces. Links with 5
or more AS hops had noticeably higher error rates than shorter paths. Over
91% of the test set traces correctly followed the uphill-then-downhill pattern
and were composed only of links contained in our AS graph.

5 Conclusions

In this paper we have described methods for creating an AS forest based
on BGP routing data and then refined by paths learned from traceroutes.
The mechanism starts with an algorithm for finding the centroid of highly-
connected nodes at the backbone of the Internet. It then grows a tree from each
of those nodes based on BGP information. Rather than depend on subtle clues
inside the BGP table to learn the relationships along the links, our mechanism
learns those links from traceroute results.
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The entire mechanism is suitable for use operationally, since it does not depend
on proprietary information or large collections of route data. The resulting AS
forest is computationally tractable for use in service placement.

We found that the mechanism learned a more accurate AS forest than what
could be gleaned from the BGP tables alone, improving the prediction accu-
racy to 91% when tested against traced routes.
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