11 Regression

- The Correlation Coefficient
- The Least-Squares Regression Line
- Features and Limitations of the Least-Squares Line
- Inference in Regression

The Correlation Coefficient

Introduction

A *bivariate* data set consists of \(n \) \((x_1, y_1), \ldots, (x_n, y_n)\).

A *scatterplot* is a *scatterplot* of a bivariate data set.

e.g. Here are data for 13 sparrowhawk colonies relating the % of adult sparrowhawks in a colony that return from the previous year and the number of new adults that join the colony:

<table>
<thead>
<tr>
<th>%Returning adults</th>
<th>74</th>
<th>66</th>
<th>81</th>
<th>52</th>
<th>73</th>
<th>62</th>
<th>52</th>
<th>45</th>
<th>62</th>
<th>46</th>
<th>60</th>
<th>46</th>
<th>38</th>
</tr>
</thead>
<tbody>
<tr>
<td>#New adults</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>11</td>
<td>12</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>18</td>
<td>19</td>
<td>19</td>
<td>20</td>
</tr>
</tbody>
</table>

The right-hand scatterplot, below, is from these data. It shows ···
The Correlation Coefficient

The correlation coefficient, \(r \), measures the \(\quad \)and \(\quad \) of the linear relationship (if any) between \(x \) and \(y \):

\[
r = \frac{\sum_{i=1}^{n}(x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n}(x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n}(y_i - \bar{y})^2}}
\]

\[
= \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{s_x} \right) \left(\frac{y_i - \bar{y}}{s_y} \right) \quad \text{(a form I prefer)}
\]

An Informal Explanation of \(r \)

- Start with a scatterplot.
- Shift reference point to \(\quad \) by subtracting \(\bar{x} \) from each \(x_i \) and \(\bar{y} \) from each \(y_i \).
- Rescale the \(x \)-axis by dividing each \(x \) coordinate by \(\quad \), and rescale the \(y \)-axis by dividing each \(y \) coordinate by \(s_y \).

Now \(x \) coordinates, \(\frac{x_i - \bar{x}}{s_x} \), have mean \(\quad \) and standard deviation \(\quad \). \(y \) coordinates, \(\frac{y_i - \bar{y}}{s_y} \), have the same mean and standard deviation.

- Analyze the sign of the \(i^{th} \) term in the last sum above, \(\left(\frac{x_i - \bar{x}}{s_x} \right) \left(\frac{y_i - \bar{y}}{s_y} \right) \), by quadrant:

\[
\begin{array}{c}
\begin{array}{c}
\text{Random } x \text{ from } [0,9), \text{ standardized}
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{c}
\text{Random } y \text{ from } [0,9), \text{ standardized}
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{c}
50 \text{ Random Points, standardized (} r = 0.09) \n\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{c}
13 \text{ Sparrowhawk Colonies, standardized (} r = -0.75) \n\end{array}
\end{array}
\]

e.g. For the sparrowhawk data, \(r = \quad \). For the random data, \(r = \quad \).
Properties of \(r \)

- \(-1 \leq r \leq 1\), and

\[r = \pm 1 \implies \text{data are } \underline{\text{---------}}: \quad r \approx \pm 1 \implies \text{data are } \underline{\text{-------------}} \]

\[r \neq 0 \implies \text{some linear relationship: } x \text{ and } y \text{ are } \textit{correlated} \]

\[r > 0 \implies \text{slope of line is } \underline{\text{---------}} \]

\[r < 0 \implies \text{slope of line is } \underline{\text{---------}} \]

\[r \approx 0 \implies \text{no linear relationship: } x \text{ and } y \text{ are } \underline{\text{-------------}} \]

- \(r \) doesn’t distinguish between _____ and _____

- \(r \) doesn’t depend on _________ or ___________
Cautions

- r measures strength of a linear relationship; check scatterplot to avoid using r for a ___________

 e.g. The data $\{(-2, 4), (-1, 1), (0, 0), (1, 1), (2, 4)\}$ fit ___________, but $r = 0$ because the data have no ___________ relationship (draw).

 e.g. (from http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient)

- r is not resistant to the influence of ____________; don’t use it for a data set with ___________

 e.g. Adding $(0, 0)$ to the sparrowhawk data changes r to ____________.

- Correlation does not imply causation:

 A ________________ (or lurking) variable is one ____________ under consideration that correlates with both the independent and dependent variables of interest.

 e.g.

 - Increasing ice cream sales are correlated with increasing ____________ rates. Does ice cream cause ____________? ______

 The confounding variable is ____________________________.

 - Sleeping with shoes on is correlated with ____________________________.

 Does sleeping with shoes on cause ____________? ______

 The confounding variable is ____________________________.

 If either the independent variable under study, or a __________ confounding variable, affects the dependent variable, then both will seem to by the (__________) criterion of correlation.

 __ cartoon
The Least-Squares Regression Line

A line is one that describes how a dependent variable, \(y \), changes as an independent variable, \(x \), changes in a data set \((x_1, y_1), \ldots, (x_n, y_n)\). We use it to predict \(y \) for a given \(x \).

The least-squares regression line is the line that the data (according to a reasonable criterion).

Example: Collect and plot a SRS of students’ heights \((x) \) and weights \((y) \).

- How many lines could we fit?
- Why aren’t data on a line?
- Estimate intercept and slope. Units?

Notation includes:

- \(y_i = \beta_0 + \beta_1 x + \epsilon_i \): an unknown true (model) regression line, where \(\beta_0 \) is the \(y \)-intercept, \(\beta_1 \) is the slope, and \(\epsilon_i \) is the \(i \)th random error

- \(y = \hat{\beta}_0 + \hat{\beta}_1 x \): estimated regression line, where
 - \(x \): ___________ variable
 - \(y \): dependent variable
 - \(\hat{\beta}_0 \): estimated \(y \)-intercept
 - \(\hat{\beta}_1 \): estimated ___________

- \((x_i, y_i) \): \(i \)th data point

- \(\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i \): ___________ value of \(y \) given \(x = x_i \):

- \(e_i = y_i - \hat{y}_i \): residual, the difference between observed \(y_i \) and predicted \(\hat{y}_i \); estimates \(\epsilon_i \)

We predict \(y \) from \(x \), so minimize vertical error in the “least squares” sense by minimizing a “sum of squared errors”

\[
SSE = \sum e_i^2 = \sum (y_i - \hat{y}_i)^2 = \sum (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2
\]

(Alas, really it should be called a “sum of squared __________.”) Ten lines of calculus gives:
For the data set \((x_1, y_1), \ldots, (x_n, y_n)\), the least-squares line is \(y = \hat{\beta}_0 + \hat{\beta}_1 x\), where

\[
\hat{\beta}_1 = \frac{s_y r}{s_x} \text{ (slope)}
\]

\[
\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} \text{ (y-intercept)}
\]

e.g. Here again are data for 13 sparrowhawk colonies relating the % of adults in a colony that return from the previous year and the number of new adults that join the colony:

\[
\begin{align*}
 x &= \% \text{Returning adults} & 74 & 66 & 81 & 52 & 73 & 62 & 52 & 45 & 62 & 46 & 60 & 46 & 38 \\
 y &= \# \text{New adults} & 5 & 6 & 8 & 11 & 12 & 15 & 16 & 17 & 18 & 18 & 19 & 20 & 20
\end{align*}
\]

Use a calculator to find the least-squares line:

\[
\begin{align*}
 \bar{x} = \quad \bar{y} = \\
 s_x = \quad s_y = \\
 r = \\
\end{align*}
\]

\[
\Rightarrow
\begin{align*}
 \hat{\beta}_1 = \quad \hat{\beta}_0 = \\
\end{align*}
\]

So our model is \(y = \)

Or we can do it more directly. (Figure out your \underline{___________} labels.)

e.g. Predict the number of new adults in a colony to which 60% of last year’s adults return.

\[\hat{y} = \underline{___________}\]

(Note that this is far from the data set value, \((60, \underline{_______})\).)
Features and Limitations of the Least-Squares Line

Properties of Least-Squares Line

- Write line in point-slope form, \(y - y_0 = m(x - x_0) \),
 to see to see that it passes through ____________.
- The slope, \(\hat{\beta}_1 = \frac{\sum xy}{\sum x^2} \), indicates that a change of ________________ in \(x \) corresponds to a change of ________________ in \(y \).
- The distinction between \(x \) and \(y \) matters because we minimized error in ________________.
- Compare variation in data to variation in modeled values and errors by considering three sums of squares:

<table>
<thead>
<tr>
<th>Sum of squares</th>
<th>Definition</th>
<th>Measures spread of</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td>(\text{SST} = \sum (y_i - \bar{y})^2)</td>
<td>data about ________________</td>
</tr>
<tr>
<td>regression</td>
<td>(\text{SSR} = \sum (\hat{y}_i - \bar{y})^2)</td>
<td>predictions about ________________</td>
</tr>
<tr>
<td>error</td>
<td>(\text{SSE} = \sum (y_i - \hat{y}_i)^2)</td>
<td>data about ________________</td>
</tr>
</tbody>
</table>

 Starting from \(y_i - \bar{y} = (y_i - \bar{y}_i) + (\bar{y}_i - \bar{y}) \) and the solutions for \(\hat{\beta}_0 \) and \(\hat{\beta}_1 \), ten lines of arithmetic gives \(\text{SST} = \text{SSR} + \text{SSE} \). (Recall the __________ identity.)

 The coefficient of determination, \(R^2 \), measures the goodness-of-fit of the model to the data and can be understood as

 \[
 R^2 = \frac{\text{SST} - \text{SSE}}{\text{SST}} = \frac{\text{SSR}}{\text{SST}} = \text{proportion of variability in } y \text{ explained by regression line } (R^2 \in [0, 1])
 \]

Cautions

- Don’t use least-squares line to model ________________ data.
• To extrapolate is to make a prediction \hat{y} (for y) from an x outside the range of x in the data. Don’t extrapolate (even for linear-looking data).

 e.g. · · ·

• Check scatterplot for ________________. Find lines with and without outlier. If they differ much, the outlier is influential \implies report ____________________

 e.g. Adding the outlier (60, 0) to sparrowhawk data changes the line from $y = 31.93 - 0.304x$ to ____________________.

 e.g. Adding the outlier (0, 0) to sparrowhawk data changes the line from $y = 31.93 - 0.304x$ to ____________________.

• Correlation does not imply ____________________.

Inference in Regression

Random Variation in the Least-Squares Estimates

Our linear model is $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$, where β_0 and β_1 are unknown and ε_i is the (random, unexplained) error of the i^{th} measurement.

$\hat{\beta}_0$ and $\hat{\beta}_1$, as estimates of β_0 and β_1 that depend on the data, are _____________________. Similarly, $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$ a random variable for each value of x. (Maybe we should write _______ instead of just \hat{y} to emphasize that there is a different \hat{y} for each _______.)

Simplifying Assumptions for Errors in Linear Models

Assume the linear model is correct and the errors $\varepsilon_1, \cdots, \varepsilon_n$

1. are random and independent

2. all have mean _______

3. all have the same variance _______

4. are normally distributed (so $\varepsilon_i \sim N(_______, _______)$)

Evaluate assumptions with a plot of residuals vs. fitted values and a QQ plot of residuals:
Estimate ε_i by the residual $e_i = \ldots$, and estimate $\sigma^2 = \sigma^2$ from the residuals as

$$\sigma^2 \approx s^2 = \frac{1}{n-2} \sum_{i=1}^{n} (e_i - 0)^2 = \frac{1}{n-2} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \frac{\text{SSE}}{n-2}$$

(Divide by $n-2$ because ____ degrees of freedom are lost in estimating ____ and ____ from data.)

An equivalent expression (easier to find without software) is

$$s^2 = (1 - r^2) \frac{n-1}{n-2} s_y^2$$

e.g. Find the error standard deviation estimate s, given that we found these numbers earlier:

<table>
<thead>
<tr>
<th>n</th>
<th>\bar{x}</th>
<th>s_x</th>
<th>s_y</th>
<th>$\hat{\beta}_0$</th>
<th>$\hat{\beta}_1$</th>
<th>r</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>58.23</td>
<td>13.03</td>
<td>5.29</td>
<td>31.93</td>
<td>-0.3040</td>
<td>-.7485</td>
<td></td>
</tr>
</tbody>
</table>

Now we consider three forms of inference:

- on the slope, β_1, especially for $H_0 : \beta_1 = \ldots$

- on the y-intercept, β_0

- on the mean response, $E(y) = \mu_y = \beta_0 + \beta_1 x$, for a given x
Inference on the slope, β_1

Experts say:

- Confidence interval for β_1: $\hat{\beta}_1 \pm t_{n-2,\alpha/2}s_{\hat{\beta}_1}$, where $s_{\hat{\beta}_1} = \frac{s}{s_x \sqrt{n-1}}$

- Test for $H_0: \beta_1 = \beta_{10}$: $t = \frac{\hat{\beta}_1 - \beta_{10}}{s_{\hat{\beta}_1}} \sim t_{n-2}$ tests $H_0: \beta_1 = \beta_{10}$

Often we want to test $H_0: \beta_1 = 0$ vs. $H_A: \beta_1 \neq 0$. If H_0 is true, y doesn’t __________ and regression ______________. Proceed with regression only if H_0 is __________.

e.g. Find a 95% confidence interval for β_1 and test $H_0: \beta_1 = 0$ for the sparrowhawk data.

Inference on the y-intercept, β_0

Experts say:

- Confidence interval for β_0: $\hat{\beta}_0 \pm t_{n-2,\alpha/2}s_{\hat{\beta}_0}$, where $s_{\hat{\beta}_0} = s \sqrt{\frac{1}{n} + \frac{\bar{x}^2}{(n-1)s_x^2}}$

- Test for $H_0: \beta_0 = \beta_{00}$: $t = \frac{\hat{\beta}_0 - \beta_{00}}{s_{\hat{\beta}_0}} \sim t_{n-2}$ tests $H_0: \beta_0 = \beta_{00}$

e.g. Find a 95% confidence interval for β_0.
Inference on the mean response, $E(y) = \mu_y$, for a given x

Recall that our linear model is $y = \beta_0 + \beta_1 x + \varepsilon$. The mean response at x is $E(y) = \mu = \mu_{\beta_0 + \beta_1 x + \varepsilon} = \mu_{\beta_0 + \beta_1 x}$

To estimate μ_y, use $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$ (draw).

Experts say:

- Confidence interval for $\mu_y = \beta_0 + \beta_1 x$: $[\hat{\beta}_0 + \hat{\beta}_1 x] \pm t_{n-2,\alpha/2} s_{\hat{y}}$, where $s_{\hat{y}} = s\sqrt{\frac{1}{n} + \frac{(x - \bar{x})^2}{(n - 1)s_x^2}}$

- Test for $H_0: \mu_y = \beta_0 + \beta_1 x = \mu_0$: $\frac{\hat{y} - \mu_0}{s_{\hat{y}}} \sim t_{n-2}$ tests $H_0: \mu_y = \mu_0$

 e.g. Find a 95% confidence interval for $\mu_y = \beta_0 + \beta_1 x$ and test $H_0: \mu_y = 18$ for sparrowhawk data.

 e.g. Use R to check most of the inference work above.
Extra Example

e.g. Here are data on the effect of an additive on paint drying time:

<table>
<thead>
<tr>
<th>x = Additive concentration (%)</th>
<th>4.0</th>
<th>4.2</th>
<th>4.4</th>
<th>4.6</th>
<th>4.8</th>
<th>5.0</th>
<th>5.2</th>
<th>5.4</th>
<th>5.6</th>
<th>5.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>y = Drying time (hours)</td>
<td>8.7</td>
<td>8.8</td>
<td>8.3</td>
<td>8.7</td>
<td>8.1</td>
<td>8.0</td>
<td>8.1</td>
<td>7.7</td>
<td>7.5</td>
<td>7.2</td>
</tr>
<tr>
<td>Fitted, \hat{y}</td>
<td></td>
</tr>
<tr>
<td>Residual, $y - \hat{y}$</td>
<td></td>
</tr>
</tbody>
</table>

a. Make a scatterplot.

b. Find the correlation between additive concentration and drying time.

c. Find least-squares line.

d. Find fitted value and residual for each point.

e. If concentration is increased by .1%, by how much will drying time change?

f. Predict drying time for concentration = 4.4%.

g. For what concentration would you predict a drying time of 8.2 hours?

h. Test $H_0 : \beta_1 = 0$.

i. Find 95% confidence intervals for β_0 and β_1.

j. Find a 95% confidence interval for the mean drying time corresponding to an additive concentration of 4.9%.

e.g. Use R to check answers to the example, above (and to practice reading R output).