
Relational Modeling

Somesh Jha
Computer Science Department

University of Wisconsin
Madison, WI 53703

1 Introduction

Model checking is appropriate for verifying concurrency aspects of a system , e.g., a distributed
system never admits a deadlock. However, model checking is not appropriate for expressing invari-
ants about data structures, e.g., a list is always sorted. For talking about data structures relational
calculus is much more suitable formalism. First, we will discuss a language (called Nitpick) based
on relational calculus. Ladybug is a tool that checks specifications written in Nitpick.

2 Operators and Semantics

There are certain types in our relational calculus language. These types signify a domain of a
certain kind. For example, People is the type that denotes the set of people. Each type has a
domain associated with it. We will use overloading and use the name of the type to also denote
the domain associated with it. For example, People also denotes the set of people. It will be clear
from the context whether we are talking about types or the associated domain. There are four basic
types of entities in our relational language:

• Scalars of type S simply takes value in the domain associated with type S.

• Sets of types S take values in the power set of the domain associated with S.

• A relation allows us to talk about relationships between different types. A relation between
type S to type T will have the type S ↔ T .

• A function from type S to type T will be written as S → T . Function is a special case of
relation. A relation R of type S ↔ T is a function iff every element in S has at most one
element related to it.

We will use a running example to explain various operations in Nitpick. In our example there
are four basic types People, Males, Females, and ℵ. ℵ is the set of natural numbers. Notice that
certain relationships hold between domains associated with types. For example, every male is a
person, so Males is a subset of People or Males ⊆ People (notice that we are talking about do-
main associated with types rather than types). The relations are shown in Figure 2. Frequently, we

1

Name Type
Father People→ Males

Mother People→ Females

Wife Males↔ Females

Husband Females↔ Males

Age People→ ℵ
Brother People↔ Males

Sister People↔ Females

Friend People↔ People

Figure 1: Primitive relations and functions.

will depict a relation of type S ↔ T by drawing two columns, where the left column corresponds
to S and the right column corresponds to T , and an edge between element a and b represents that
(a, b) is in the relation. For example, Figure 2 shows a fragment of the relation Brother. If (a, b)
is an edge in a relation P , we say that a and b are P -related.

Bob

Snake

Trent

Hugh

Alice

Wilma

Marvin

Figure 2: A sample relation

Note: We describe various operators in our relational calculus. The name of the symbol in
Ladybug (the tool we are going to use) is also provided.

2.1 Set Operators

Each relation in the operators given below have the same type, i.e., each relation given below has
type S ↔ T . All the operators given below also apply to sets.

• Union (P ∪Q)
Ladybug: U
{(a, b)|(a, b) ∈ P ∨ (a, b) ∈ Q}

2

Two elements a and b are (P ∪ Q)-related iff a and b are P -related or Q-related. We might
define a relation Parent as

Parent = Father ∪ Mother

Recall that the type of Father is People → Males and the type of Mother is People →
Females. In order to perform the union both relations have to be interpreted as of type
People ↔ People. Fortunately, this can be done because every function is a relation,
Males ⊆ People, and Females ⊆ People.

• Intersection (P ∩Q)
Ladybug: &
{(a, b)|(a, b) ∈ P ∧ (a, b) ∈ Q}
Two elements a and b are (P ∩Q)-related iff a and b are P -related and Q-related. We might
define a relation FriendlyBrother as

FriendlyBrother = Brother ∩ Friend

• Difference (P \Q)
{(a, b)|(a, b) ∈ P ∧ (a, b) 6∈ Q}
Two elements a and b are (P \ Q)-related iff a and b are P -related and not Q-related. We
might define a relation unFriendlyBrother as

unFriendlyBrother = Brother \ Friends

• Subset (P ⊆ Q)
Ladybug: <=
∀(a, b)((a, b) ∈ P ⇒ (a, b) ∈ Q)
Notice that this is a logical formula, i.e, evaluates to true or false. The formula states that
for all elements a and b (of appropriate type of course), if a and b are P -related, then they
are Q-related. For example, we have the following logical-formula

FriendlyBrother ⊆ Brother

• Proper Subset (P ⊂ Q)
Ladubug: <
(P ⊆ Q) ∧ (P 6= Q)
The logical formula states that if a and b are P -related, then they are Q-related, but there
exists two elements a and b such that a and b are Q-related but not P -related. If there exists
a brother who is unfriendly with one of his siblings, we have

FriendlyBrother ⊂ Brother

3

2.2 Exclusive set operators

• x ∈ s
x : scalar S and s : Set S
Ladybug: in or :
The formula is true if x is in the set s.

• x 6∈ s
x : scalar S and s : Set S
Ladybug: not in or !:
The formula is true if x is not in the set s

2.3 Relational Operators

• Universal Relation (Un)
Ladybug: Un
Un : S ↔ T
Un = S × T
S × T is the Cartesian product and has all tuples (a, b) where a ∈ S and b ∈ T .

• Identity Relation (Id)
Ladybug: Id
Id : S ↔ S
Id = {(a, a)|a ∈ S}
Identity relation only relates same elements.

• Domain (DomP)
Ladybug: dom
P : S ↔ T
{a|(a, b) ∈ P}
The set of people that have parents (denoted as not-orphans) is given by the following
equation:

not-orphans = Dom(Parent)

• Range (range P)
Ladybug: ran
P : S ↔ T
{b|(a, b) ∈ P}
Let Parents be the set of all people that are parents. Parents is given by the following
set:

Parents = range (Parent)

• Domain Restriction (s � P)
Ladybug: <:

4

s : set S, P : S → T
{(a, b) ∈ P |a ∈ S}
The domain of P is restricted to be in the set s. Example will be given in the next item.

• Range Restriction (s � P)
Ladybug: >:
s : set T, P : S → T
{(a, b) ∈ P |b ∈ T}
Range of P is restricted to be in the set s.
Let [20] denote the set of numbers {1, 2, · · · , 20}. We have the following equation:

young = Dom(Age � [20])

Based on the set young we have the following derived sets:

youngWives = Dom(young � Husband)

youngHusbands = range (young � Husband)

• Negative Domain Restriction (s � P)
Ladybug: <;
s : set S, P : S → T
{(a, b) ∈ P | a /∈ S}
Force the domain to be not in the set s
We have the following equation:

oldWives = Dom(young � Husband)

• Negative Range Restriction (s � P)
Ladybug: >;
s : set T, P : S → T
{(a, b) ∈ P |b /∈ S}
Force the range to be not in the set s.
The set of people whose age is above 20 is given by the following equation:

old = Dom(Age � [20])

• Relational Override (P ⊕Q)
Ladybug: (+)
P, Q : S ↔ T
{(Dom(Q) � P) ∪Q}
Here is how relational override works: if a ∈ S is in the domain of Q, then it is related to all
the elements that it is Q-related to. Elements that are not in the domain of Q are related to
all the elements that it is P -related to. Succinctly speaking, first look in Q and then in P .

5

• Composition (P ; Q)
Ladybug: ;
P : S ↔ T, Q : T ↔ U
{(a, c)|∃b((a, b) ∈ P ∧ (b, c) ∈ Q)}
We have the following equation:

Dom(Wife; Husband) = MarriedMales

• Transpose (P>)
Ladybug: Tilde character.
P : S ↔ T
{(b, a)|(a, b) ∈ P}

Husband> = Wife

• Transitive Closure (P +)
P : S ↔ S
Ladybug: +
P+ =

⋃
∞

i=1 P i

P i is relation P composed with itself i times.

FriendOfFriend = Friend+

• Reflexive/Transitive Closure (P ?)
P : S ↔ S
Ladybug: ?
P ? = Id ∪ P +

Everybody is their own friend.

FriendofFriend1 = Friend?

• Application (P · x)
P : S ↔ T, x : S
single y such that (x, y) ∈ P

Father.Bob (Father of Bob)

• Image (P · S)
P : S ↔ T, s : set S
range (s � P)

Father.{Bob, Alice} (Fathers of Bob and Alice)

6

• Functional Domain (fdom (P))
P : S ↔ T
Ladybug: fdom
{a||P.a| = 1}
Find elements in domain of P that are related to exactly one element.

siblings = Brother ∪ Sister

singleSibling = fdom (siblings)

• Function Predicate (fun (P))
P : S ↔ T
Ladybug: fun
∀a ∈ S(|P.a| ≤ 1)
The predicate fun returns true iff relation P is a function, i.e., every element of S is P -related
to at most one element of T .

• Injection Predicate (inj (P))
P : S ↔ T
The predicate given above is true iff the transpose of P is a function.

• Surjection Predicate (sur (P))
P : S ↔ T
range (P) = T
For every element b ∈ T there exists at least one element a ∈ S such that (a, b) ∈ P or a
and b are P -related.

• Totality Predicate (tot (P))
P : S ↔ T
DomP = S
The predicate given above is true iff for every element a ∈ S there is at least one element
b ∈ T such that a and b are P -related.

• Singleton Predicate (one (s))
s : set S
|s| ≤ 1
This predicate is true iff set s has at most one element.

3 Nitpick or Ladybug

We will be using Ladybug-an improved version of Nitpick written in JAVA. Ladybug has been
developed by Craig Damon. First, we will describe a small example. Suppose we have two types
Phones and Numbers. Imagine that we have a relation

Called : Phones ↔ Numbers

7

and a function
Net : Numbers → Phones

If a has called a number n, we have (a, n) ∈ Called. Net(n) is the phone associated with the
number n. The relation Connection (with type Phones ↔ Numbers) has the semantics that if
(a, b) ∈ Connection, then a has called b. We have the following relationship:

Connections = Called; Net

Suppose a phone p wants to call a number n. We allow this new connection to be made if n is not
already being called. The operation Join(p, n) can be written as:

n 6∈ range (Called) ⇒ (Called′ = Called ∪ {(p, n)}

Think of Called′ as the relation Called in the next state1. For example, assuming that Net is a
constant function (the value of Net never changes) the value of Connection in the next state is
given by the following equation:

Connection′ = Called′; Net

We want to make sure that no phone is calling itself and that the transpose of the relation Connection
is a function (or a phone can receive only one call). These properties are listed below:

invB = (Dom(Connection) ∩ range (Connection) = ∅)

invC = fun (Connection>)

We want to make sure that if the invariants given above are true before a Join operation they are
true after the operation. This can be written as:

Join(p, n) ∧ invB⇒ invB′

Join(p, n) ∧ invC⇒ invC′

Exercise 1 The expression invB’ is a short hand for the expression corresponding to invBwhere
we use Connection’ instead of Connection. Expand the expression for invB in terms of
Called, Net, and the definition of Join(p,n).

3.1 Ladybug

In ladybug the example given before looks as follows.

[Ph, Num]

Switch = [
Called: Ph <-> Num

1Denoting the value of the entity in the next state by prime is pretty common in formal methods.

8

const Net: Num -> Ph
Conns: Ph <-> Ph

|
Conns = Called ; Net

]

Join (p: Ph; n: Num) = [
Switch

|
not (n in ran Called)
Called’ = Called U {p -> n}

]

invB = [Switch | dom Conns & ran Conns = {}]
invC = [Switch | fun (Conns˜)]

InvB_preserved (p: Ph; n: Num) :: (Join(p,n) and invB) =>invB’
InvC_preserved (p: Ph; n: Num) :: (Join(p,n) and invC) =>invC’

Note: Both the claims (invB and invC) are not true. Ladybug produces a counter-example.
The log file produced by ladybug is shown below.

Welcome to Ladybug 0.8 (beta release), Copyright 1998

Loaded phone-modified.np

Select a claim or schema and choose ’Check’ from the menu
or double click on a claim or schema

Completed translation of InvB_preserved
Required 0:00:00.6 starting at 4:38:42 PM

Found Counterexample to Claim InvB_preserved:
Called : Ph<->Num =
{ }
Called’ : Ph<->Num =
{ p0 -> {n0 } }
Conns : Ph<->Ph =
{ }
Conns’ : Ph<->Ph =
{ p0 -> {p0 } }
n : Num =

9

n0
Net : Num->Ph =
{ n0 -> p0 }
p : Ph =
p0

Found 1 Counterexamples
Checked 2 cases and 5 values
Covered 0% of the total assignment space
Required 0:00:00.0 starting at 4:38:42 PM
Completed translation of InvC_preserved
Required 0:00:00.3 starting at 4:39:01 PM

Found Counterexample to Claim InvC_preserved:
Called : Ph<->Num =
{ p0 -> {n1 } }
Called’ : Ph<->Num =
{ p0 -> {n1 },
p1 -> {n0 } }

Conns : Ph<->Ph =
{ p0 -> {p0 } }
Conns’ : Ph<->Ph =
{ p0 -> {p0 },
p1 -> {p0 } }

n : Num =
n0
Net : Num->Ph =
{ n0 -> p0,
n1 -> p0 }

p : Ph =
p1

Found 1 Counterexamples
Checked 68 cases and 75 values
Covered 1% of the total assignment space
Required 0:00:00.0 starting at 4:39:01 PM

Exercise 2 Explain the counter-examples produced by ladybug. Fix the specification and explain
your fix.

10

4 Further Properties

This section discusses further properties of relational operators. These properties will be useful
while writing or simplifying specifications.

• Reflexive
A relation R : S ↔ S is called reflexive if for every element a ((a, a) ∈ R), i.e., every
element is related to itself.

• Transitive
A relation R : S ↔ S is called transitive if (a, b) ∈ R and (b, c) ∈ R implies that (a, c) ∈ R.

• Symmetric
A relation R : S ↔ S is called symmetric if (a, b) ∈ R implies that (b, a) ∈ R.

Exercise 3 Prove the following properties of relational operators:

• Associativity

P ; (Q; R) = (P ; Q) : R

• Monotonicity

(P ⊆ Q ∧ R ⊆ S) ⇒ (P ; R) ⊆ (Q; S)

• Distributive

P ; (Q ∪R) = (P ; Q) ∪ (P ; R)

• Commutativity of transpose and closure

P ?> = P>?

Next we describe a small example in ladybug which illustrates various features that are id-
iosyncratic to the modeling language used by ladybug.

5 Types and Relations

We have two basic types NAME and DATE. There is one basic function book : NAME→ DATE. There
is a derived set known : Set NAME that satisfies the following equation:

known = Dom(book)

Writing all the state variables and specifications explicitly is cumbersome. Ladybug has a macro
feature (called schemas) which allows us to bundle declarations and assertions at one place. Schemas
can be referred to in other schemas and assertions. No recursion is allowed. For example, the la-
dybug fragment for the types and relation defined above are:

11

[NAME, DATE]

Book = [
book: NAME -> DATE
known: set NAME

|
known = dom book

]

Notice that Book is a schema that defines book, known, and relationship between book and
known

It is very useful to interpret types as entities and relations, functions, and sets as relationships
between entities. For example, our example corresponds to the entity-relationship diagram shown
in Figure 3. These diagrams are very useful in depicting the basic types and relationships between
them.

NAMES

DATE

book

known

known = dom(book)

Figure 3: Entity Relationship Diagram

6 Operations

• Insert
This operation takes a name and a date and inserts it in the book. The operation can be
defined mathematically as:

Insert(n : NAME, d : DATE) ≡ (book′ = book ∪ {n → d})

The schema in ladybug corresponding to this is:

Insert (n: NAME; d: DATE) = [

12

Book
|
book’ = book U {n -> d}

]

Notice that the schema for Insert includes the schema Book which we defined before.
Suppose book already has a pair (n, d) in it and one tries to perform the operation Insert(n, d1).
This operation is only valid if d1 = d (Why?).

• Delete
This operation allows us to delete a set of names from our birthday book. The operation is
define as:

Delete(ns : Set NAME) ≡ (book′ = (ns � book))

The schema for this operation in ladybug looks as follows:

Delete (ns: set NAME) = [
Book

|
book’ = ns <; book

]

• DeleteImplicit
This is another way of expressing the Delete operation.

DeleteImplicit(ns : Set NAME) ≡ (ns � book′ = ∅) ∧

(ns � book = ns � book′)

In ladybug the schema corresponding to this operation is:

DeleteImplicit (ns: set NAME) = [
Book

|
ns <: book’ = {}
ns <; book’ = ns <; book

]

Notice that in ladybug there is an implicit conjunction between various assertions.

• Find
Find operation finds the birthday of a person with a certain name.

Find(n : NAME, d : DATE) ≡ ((d = book.n) ∧ (book.{n} ⊆ d))

The schema corresponding to this in ladybug is:

13

Find (n: NAME; d: DATE) = [
const Book
|
d = book.n
book.{n} <= {d}

]

Notice the statement const Book. This means that all entities inside the schema Book
are held constant by the operation Find.

7 Claims

• Delete undoes Insert
This claim asserts that an Insert operation followed by a Delete operation results in the
same state as we started with.

DeleteUndoesInsert (n: NAME; d: DATE) :: [Book |
Insert (n, d) ; Delete ({n})

=> book’ = book
]

Notice the :: after the name of the claim. This is an indication to ladybug that Delete-
UndoesInsert is a claim.

• DeleteImplicit implies Delete
This says that operation DeleteImplicit is stronger than Delete or the post-condition
of DeleteImplicit is stronger than that of Delete.

Same (ns: set NAME) :: [Book |
DeleteImplicit(ns) => Delete(ns)

]

• Inserting a name makes it known
This assertion states that an Insert operation makes the name it is inserting known.

InsertMakesKnown (n: NAME; d: DATE) :: [
Book

|
Insert (n, d) => n in known’

]

• Inserting something means that we can find it
This claim states that inserting (n, d) into the birthday book means that when we do a Find
on n we get d.

14

InsertWorks (n: NAME; d, d2: DATE) :: [
Book

|
Insert (n, d) ; Find (n, d2) => d = d2

]

8 Counter Example

Consider a state where book = {(n0, d0)}. Let us say we perform an operation Insert(n0, d0).
In this case the value of book in the next state is also {(n0, d0)}. Performing Delete(n0, d0)
results in book′ = ∅, and hence book is not equal to book′.

Welcome to Ladybug 0.8 (beta release), Copyright 1998

Loaded birthday-book.np

Select a claim or schema and choose ’Check’ from the menu
or double click on a claim or schema

Completed translation of DeleteUndoesInsert
Required 0:00:00.8 starting at 6:38:22 PM

Found Counterexample to Claim DeleteUndoesInsert:
book : NAME->DATE =
{ n0 -> d0 }
book’ : NAME->DATE =
{ }
d : DATE =
d0
known : set NAME =
{ n0 }
known’ : set NAME =
{ }
n : NAME =
n0

Found 1 Counterexamples
Checked 2 cases and 6 values
Covered 2% of the total assignment space
Required 0:00:00.0 starting at 6:38:22 PM

15

9 Entire Program

The entire program is shown below.

/*
a version of spivey’s birthday book
*/

[NAME, DATE]

Book = [
book: NAME -> DATE
known: set NAME

|
known = dom book

]

Insert (n: NAME; d: DATE) = [
Book

|

book’ = book U {n -> d}
]

Delete (ns: set NAME) = [
Book

|
book’ = ns <; book

]

DeleteImplicit (ns: set NAME) = [
Book

|
ns <: book’ = {}
ns <; book’ = ns <; book

]

Find (n: NAME; d: DATE) = [
const Book
|
d = book.n

book.{n} <= {d}
]

DeleteUndoesInsert (n: NAME; d: DATE) :: [Book |

16

Insert (n, d) ; Delete ({n})
=> book’ = book

]

Same (ns: set NAME) :: [Book |
DeleteImplicit(ns) => Delete(ns)

]

InsertMakesKnown (n: NAME; d: DATE) :: [
Book

|
Insert (n, d) => n in known’

]

InsertWorks (n: NAME; d, d2: DATE) :: [
Book

|
Insert (n, d) ; Find (n, d2) => d = d2

]

17

