Two Formal Analyses of Attack Graphs

An attack graph is a succinct representation of all paths through a system that end in a state where an intruder has successfully achieved his goal. Today Red Teams determine the vulnerability of networked systems by drawing gigantic attack graphs by hand. Constructing attack graphs by hand is tedious, error-prone, and impractical for large systems. By viewing an attack as a violation of a safety property, we can use off-the-shelf model checking technology to produce attack graphs automatically: a successful path from the intruder's viewpoint is a counterexample produced by the model checker. In this paper we present an algorithm for generating attack graphs using model checking as a subroutine. Security analysts use attack graphs for detection, defense and forensics. In this paper we present a minimization analysis technique that allows analysts to decide which minimal set of security measures would guarantee the safety of the system. We provide a formal characterization of this problem: we prove that it is polynomially equivalent to the minimum hitting set problem and we present a greedy algorithm with provable bounds. We also present a reliability analysis technique that allows analysts to perform a simple cost-benefit trade-off depending on the likelihoods of attacks. By interpreting attack graphs as Markov Decision Processes we can use the value iteration algorithm to compute the probabilities of intruder success for each attack the graph.
Download:[PS,PDF]
Somesh Jha
Last modified: Mon Mar 31 09:56:10 CST 2003