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Abstract

A major hurdle in sharing resources between organiza-
tions is heterogeneity. Therefore, in order for two organiza-
tions to collaborate their policies have to be resolved. The
process of resolving different policies is known as policy
reconciliation, which in general is an intractable problem.
This paper addresses policy reconciliation in the context of
security. We present a formal framework and hierarchical
representation for security policies. Our hierarchical repre-
sentation exposes the structure of the policies and leads to
an efficient reconciliation algorithm. We also demonstrate
that agent preferences for security mechanisms can be read-
ily incorporated into our framework. We have implemented
our reconciliation algorithm in a library called the Policy
Reconciliation Engine or PRE. In order to test the imple-
mentation and measure the overhead of our reconciliation
algorithm, we have integrated PRE into a distributed high-
throughput system called Condor.

1. Introduction

Security policy bridges the gap between static imple-
mentations and the broad and diverse security requirements
of user communities. Security policy becomes more com-
plicated in heterogeneous environments. When two or more
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entities share a security association, they must reach agree-
ment on a governing policy (e.g., two end-points in an IPsec
session). These entities express their requirements for the
association through a security policy (called a domain pol-
icy). A reconciliation algorithmfinds a policy that is con-
sistent with all domain policies. Where a consistent policy
can be found, the association is free to proceed. Where one
cannot be found, the participants must alter their require-
ments or abstain from participating.

In the general case, policy reconciliation is in-
tractable [15, 23]. As a result, past investigations have
largely achieved tractability by limiting the policy represen-
tation or by using heuristic algorithms [11, 24, 26, 33]. Such
approaches achieve the stated goals, but fail to efficiently
capture dependencies between different aspects of a policy.
Moreover, these systems do not considerpreferential policy
i.e., it is advantageous (and often necessary) for policy not
only to specify what is legal and illegal, but to state what is
desirable.

This work addresses the limitations of past work by
developing a policy framework based on graphical pol-
icy representations. We exploit the graph representation
to efficiently encode the complex dependencies inherent to
contemporary policy. We formally define the representa-
tion and specify an efficient preference and dependency-
respecting reconciliation algorithm. Before introducing our
formalism, we present an overview of security provisioning
policy and the intuition behind our framework in the follow-
ing section.

1.1. Security Policy

The termsecurity policyhas come to mean different
things to different communities. For example, access con-
trol policy defines who has access to what and under what
circumstances [4, 29, 30]. Other forms of security policy
specify under what conditions credentials are accepted [6],
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Figure 1. A graphical IPsec key management
policy

or how a firewall is configured [3]. In its broadest defini-
tion, security policy is the specification of security relevant
system behavior. This paper addresses session-specific con-
figuration of security services. More commonly known as
security provisioning policy, these configurations define the
guarantees afforded the governed environment by explicitly
identifying the algorithms, parameters, and protocols used
to implement security.

To illustrate the importance and ubiquity of security pro-
visioning policy, consider an email client (e.g., Netscape
Communicator, MS Outlook). A user specifies a provision-
ing policy every time she adds an account. For example,
the connection method (e.g., IMAP over SSL) dictates ex-
actly the set of guarantees you will receive in obtaining and
viewing your mail. Note that the decision to not use any se-
curity service is still a specification of policy. The policies
defined for the applications and services used in an environ-
ment prescribe the security afforded its users.

In practice, provisioning policy is more complicated than
our email example would suggest. It is often important that
particular organization-wide goals are realized in the many
policies implemented by the environment. Lower level poli-
cies must be constructed such that they arecompliantwith
organizational goals [23]. Moreover, where an operation
spans organizations, the policies of each organization must
bereconciledto form a coherent and reasonable policy.

We now introduce our graphical provisioning policy rep-
resentation. A graphical policy is a series of policy opera-
tions represented by cascading circular or square nodes in
a singularly rooted directed acyclic graph (DAG) (formally
this structure is an and-or graph). Policy is read from the
root node. Each node may be a decision (circle) or a collec-
tion (square). A decision node requires that exactly one of

the sub-graphs emanating from the node be resolved, and a
collection node requires all sub-graphs be resolved. All leaf
nodes are added to the policy. Any configuration derived
from a policy respects these two simple rules.

Figure 1 shows a graphical provisioning policy for key
management used in an IPsec VPN. This policy would be
specified by a user or network administrator as part of, for
example, VPN setup. One reads the example policy’s root
(decision node) as:

(configure)Preshare (preshareed keys)or IKE
The right-hand side of the graph (IKE, from the root) de-
picts a complex series of configurations used to specify the
behavior of the Internet Key Exchange (IKE) protocol [16].
The IKE sub-policy consists of three independent configu-
rations. We read the top IKE (collection node) as:

(configure)DH groupand HMACand Encryption
The remainder of the policy is read as a selection of a sin-
gle DH group, a hashing algorithm, and an encryption al-
gorithm. Independent of the encryption algorithm, a mode
(e.g., CBC) must be selected. Moreover, this policy man-
dates the use of CBC mode.

The example policy is used at the point at which an end-
point (host) is connected to the VPN. The policy isevalu-
atedby identifying a subset of nodes and leaves in graph
as defined by the structure of the collection and decision
nodes. The IPsec implementation uses the resulting con-
crete specification, called anevaluated policyor instance,
to implement the IPsec session. For example, one possible
evaluated policy contains:IKE, DH-Group 2, HMAC-MD5,
IDEA-CBC.

Two important factors are highlighted by this example.
First, this is one of many possible policies for IPsec key
management. Depending on the goals of the specified pol-
icy, the specifier may structure the policy in a number of
different ways. For example, inasmuch as it is consistent
with the IPsec implementation, the policy can allow other
encryption modes (e.g., ECB) by adding an additional deci-
sion node.

The second factor of note is that unlike our email policy,
this policy specifies arange of behaviors. That is, the policy
states that there are a set of configurations that are equally
acceptable. The structure of the graph directly mandates
which sets of configurations should be considered accept-
able. Having non-prescriptive policies allow the environ-
ment to make performance and security trade-offs at run
time, and is essential to reconciling policies from different
domains.

Now consider the case where there is not a single source
of policy: for example, where the end-points of the VPN lie
in different administrative domains. Each domain wishes to
exert control over the session as specified through adomain
policy (e.g., similar to Figure 1). Hence, the two parties
must find an evaluated policy that is consistent with the do-



main policies supplied by both. This is performed byrec-
onciling the domain policies. The session can continue only
where a single governing policy can be found. If not, the do-
main policies are incompatible and the end-points must alter
their policies or refrain from participating in the session.

The study of provisioning policy is unlike other policy
efforts in several ways. First and most obviously, provi-
sioning policy is a planning process. Traditional autho-
rization policy systems determine whether a particular ac-
cess is legal with respect to some larger governing policy.
Conversely, provisioning policy attempts to find some con-
figuration that is consistent with a governing provisioning
policy.

Provisioning policy also embodies complex dependen-
cies. That is, decisions about particular aspects of the policy
affect subsequent options. Figure 1 illustrates a very sim-
ple dependency: the decision to use IKE over pre-shared
keys has enormous impact on the further development of
policy. The selection of IKE leads to decisions concern-
ing the kinds of Diffie-Hellman groups to use, what encryp-
tion algorithms are necessary, etc. However, if pre-shared
keys were selected, other configuration values (e.g., Diffie-
Hellman group) should and would not be considered.

Provisioning is also subject to preferential behavior.
That is, there is a often a set of configurations that is most
desired among several choices. Again consider Figure 1.
According to the policy, either group 1 or group 2 is ac-
ceptable. In practice, we have found the vast majority of
IPsec configurations use group 2. As such, we (rightly or
wrongly) may decide that group 2 is best for our environ-
ment, and is thus preferred. However, for compatibility rea-
sons, we do not wish to preclude the use of group 1. Note
that preferential configurations are more than simple default
values, but a partial ordering of the available options. The
existence of preferences is largely ignored by previous work
in this area.

As we demonstrate in the following sections, reconcilia-
tion is made more complex by the introduction/appreciation
of these deeper aspects of policy. While this work aspires to
provide intuitive policy representations, it must do so within
the constraints of these new complex semantics. Hence, our
contribution lies not only in the representation or added se-
mantics, but in the successful marriage of the two.

1.2. Contributions

This paper addresses the aforementioned deficiencies of
existing systems by modeling dependencies and preferences
in a graphical policy framework. The main contributions of
this paper are:
•Graph-based provisioning policy (exposes dependen-
cies): We present a model that represents policies as di-
rected acyclic graphs (DAG). This model captures de-
pendencies between policy components within a schema.

Hence, because policies adhere to the schema, it is impossi-
ble to define a correctly formed policy that is not consistent
with the dependencies.

•Efficient reconciliation: In general, policy reconciliation
is NP -complete [23]. However, a graphical representation
of policies expose their structure and present a basis for an
efficient reconciliation algorithm. We provide an efficient
reconciliation algorithm for our graphical model. Our rec-
onciliation algorithm is linear in the size of the policies.

•Preferential policy: Participant preferences, such as a
server’s preferences for authentication mechanisms, can be
incorporated into our model. An important problem that
arises in this context, is that of resolving multiple partial
orders on the same set (intuitively, these partial orders rep-
resent preferences of different participants). We provide an
efficient algorithm to resolve multiple partial orders and ex-
tend the reconciliation algorithm to handle preferences.

•Implementation and deployment: Based on our hierar-
chical framework, we have implemented a reconciliation
module called thePolicy Reconciliation Engine or PRE,
which is available for download. We have integrated PRE
with Condor [21], a high-throughput scheduling system
used to manage resources in a complex distributed environ-
ment. We show experimentally that the cost of reconcilia-
tion is negligible.

2. Related Work

Other policy systems. Historically, policy systems have
not addressed reconciliation. For example, trust manage-
ment systems, such as KeyNote [5], SPKI/SDSI [12, 13],
Binder [10], and SD3 [18] are concerned with compliance
checking rather than reconciliation. In trust management
systems, policies, called credentials, are simply crypto-
graphic proofs that express authorization delegation. The
compliance checker algorithm searches the available cre-
dentials for an accepting delegation chain that satisfies a
specific request. Credentials can state a set of provision-
ing requirements. An action is only allowed where the pro-
visioning of the environment matches the credential. Such
approaches are useful for managing policy in a widely de-
ployed or loosely organized environments [7]. However,
because credentials mandate provisioning, there is no op-
portunity to perform reconciliation. Other systems simply
assume a singular entity manually performs reconciliation
when issuing policy for a domain [3].

Hardness of reconciliation. While reconciliation has
only recently begun to be explored, the policy community
has already developed a broad characterization of the prob-
lem. Gong and Qian discovered that reconciliation of autho-
rization policy (in their work, called policy composition) is



NP-complete [15]. Similarly, the authors of Ismene found
that reconciliation of general purpose provisioning policy
is also NP-complete [23]. Such results do not mean that
progress cannot be made, but suggests a required shift in
the goals of investigation. Much of the ongoing work in
reconciliation has centered on techniques that alter the envi-
ronment or restrict policy to obtain efficient reconciliation.
However, our paper demonstrates that by using a represen-
tation that exposes structure of the policies, the reconcilia-
tion problem becomes tractable for a larger class of policies.

Other reconciliation approaches. One way to address
the inherent complexity of reconciliation is by essentially
“flattening” the policy representation, i.e., explicitly enu-
merating the various choices. For example, the IPsec Secu-
rity Policy System (SPS) [33] guarantees efficient two-party
reconciliation by intersecting fixed and independent sets of
policy values. The DCCM system extends this approach to
the multi-party environments by providing aChinese menu
reconciliation algorithm [1, 2, 11]. Each participant chooses
values from a fixed set of policy dimensions (e.g., one from
column A, two from column,B, etc . . .). The policy is
reconcilable where an intersection of proposals is found for
each dimension. Conflicts (where no such intersection is
found) are resolved by an unspecified algorithm.

A limitation of both SPS and DCCM is that they as-
sume that there are no dependencies between policy values.
For example, in an IPsec policy, an encryption algorithm
is needed when the ESP transform is selected. Therefore,
to ensure that the resulting policy is enforceable, one must
disallow any policy that defines the ESP transform but no
encryption algorithm. In practice, these systems define pol-
icy as an enumeration of legal policy combinations, such
as ESP-3DES-HMAC-SHA. Since only legal enumerations
are available, no dependency can be violated. However,
the number of enumeration values grows exponentially in
the size of the domains, and therefore the “enumeration ap-
proach” is inherently not scalable.

Ismene policies are defined as expressions of provision-
ing variables [23]. The reconciliation algorithm tries to find
a satisfying truth assignment for the universe of provision-
ing variables. Reconciliation is cast as an instance of sat-
isfaction (over the conjunction of policy proposals). Effi-
ciency is guaranteed by using a pair-wise satisfaction algo-
rithm on restricted policy expressions. The iterative Ismene
n-policy reconciliation algorithm is sound but not complete,
i.e., some collections of reconcilable policies may be re-
jected. Furthermore, like SPS, the Ismene reconciliation al-
gorithm does not consider dependencies. Dependencies are
addressed in Ismene by evaluating the reconciliation result
with respect to a set of “correctness rules” using ananalysis
algorithm. This approach is limited in that it occurs after
the policy has been identified. Hence, reconciliation must
be re-performed after each policy is rejected by analysis.

BANDS [32] addresses multi-domain policy reconcilia-
tion in the context of IPsec by describing the security re-
quirements of each domain in a policy language [14]. The
provisioning policy between two nodes (source and desti-
nation) is proposed by the source node through a gathering
phase where security requirements from all domains along
the path are gathered. From the gathered requirements, a
policy is then proposed and passed along the path to the
destination node. Each domain along the path must verify
the policy against its own security requirements or return an
error to the source node. If the proposed policy reaches the
destination node without an error, it becomes the provision-
ing policy for the session.

A central limitation of the approaches defined above is
that they are not sensitive to the structure of policy. Depen-
dencies between different aspects of policy are either inef-
ficiently encoded or externally evaluated. This is a prime
motivation of the current work. Dependencies are captured
through the graphical structure of the policy schema, and
hence any policy resulting from reconciliation is guaranteed
to be consistent with these dependencies. Previous reconcil-
iation algorithms also make no distinction between recon-
ciliation results. Since no distinction is made, every possi-
ble result is equally desirable. However, environments often
desire to specify default behavior and allow others where
the defaults are inefficient or infeasible. This work allows
such desires to be expressed through preferences.

Other work on representation and analysis of security
policies. Cholvy and Cuppens consider the complexities
of detecting and managing inconsistencies introduced by
access control policy specifications [8]. Our approach dif-
fers not only in problem domain (i.e., provisioning), but in
that we avoid consistency evaluation by encoding depen-
dencies within the policy structure. Hence, collections of
individual policies cannot be inconsistent. Cholvy and Cup-
pens further considered preference in the context of the or-
dered application of access control regulations, but focused
on access control applications.

While it has not been explored for other forms of policy,
graphical representations are well suited to access control
policy [20, 25]. For example, the LaSCO language specifies
access control policy using graphical idioms [17]. The de-
velopers of LaSCO assert that the representation allows not
only specification a more intuitive operation, but permits the
use of well known graph algorithms for subsequent enforce-
ment. We embrace a similar approach by using structural
representation to enforce dependencies.

3. A Formalization of Policy Reconciliation

In this section we provide a precise semantics of policy
reconciliation where the policies are represented hierarchi-
cally. Moreover, we describe how preferences can be incor-
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porated into our framework. Finally, we present an efficient
reconciliation algorithm.

Definition 3.1 A schematais a directed acyclic graph or
DAG S = (N,E, root), whereN is a set of nodes,E ⊆
N × N is a set of edges, androot ∈ N is a distinguished
node. We assume thatroot has no incoming edge. Each
noden has the following attributes associated with it:

• Each node is a∧ or∨ node.

• A tuple of variables (denoted byVarT (n)) 〈V1 :
τ1, · · · , Vk : τk〉 (whereτi is the type of variableVi).
Currently, we only allow typesstring, int, real,
andenum. For anenum typeτi we assume that a set of
values is given, e.g.,τi = {DES, 3DES, AES}.

The set of successors of a noden in a schemataS is denoted
by succS(n). However, when the schemataS is clear from
the context we simply writesucc(n) instead ofsuccS(n).

A schemata is shown in Figure 2. The root node is a∧-
node and represented as a square. The left and right child
of the root are∨-nodes and represent various authentication
and encryption mechanisms respectively. The leaf nodes,
such as the ones labeled withnone and3DES, are∨-nodes
with no successors. The special keywordnone signifies the
fact that an authentication or encryption scheme is not re-
quired. Moreover, there are no variables associated with the
∨-nodes. However, if desired, associated attributes, such as
key size for encryption schemes, can be associated with the
∨-nodes.

Definition 3.2 An instance I of a schemataS =
(N,V, root) is a subgraph(N ′, V ′, root), whereN ′ ⊆ N
andV ′ ⊆ V . Additionally, following conditions need to be
satisfied:

• For a∧-noden ∈ N ′, succ(n) ⊆ N ′. In other words,
all successors of a∧-node are in the instanceI.

• For a∨-noden ∈ N ′, if succ(n) is non-empty, then
|succ(n)∩N ′| = 1. In other words, for a∨-node with
a non-empty set of successors, exactly one successor
is in an instance.

• Consider a noden ∈ N ′ such thatVarT (n) = 〈V1 :
τ1, · · · , Vk : τk〉. In this case,I assigns valuesvi of
type τi to each variableVi in VarT (n). The tuple
of values assigned byI to the noden is denoted by
ValI(n).

Definition 3.3 A policyP for a schemataS = (N,V, root)
is a2-tuple(S, C), whereS : N → 2N andC maps nodes
to a tuple of conditions. For each∨-noden ∈ N , S(n) ⊆
succ(n), andC(n) is a k-tuple of conditions〈c1, · · · , ck〉
whereVar(n) = 〈V1 : τ1, · · · , Vk : τk〉. Moreover, we
assume that the conditionci applies to values of typeτi.
Given a valuevi of typeτi, we usevi |= ci to denote thatvi

satisfiesci.

Two policiesP1 andP2 are shown in figures 3 and 4 re-
spectively. Consider the left child of the root. PolicyP1

specifies that onlyX509, Kerberos , andPassword are al-
lowed successors for the left node. Other edges and nodes
can be interpreted in a similar manner.

Given an instanceI = (N ′, V ′, root) and a policyP =
(S, C), we say thatI satisfiesP (denoted byI |= P ) iff the
following two conditions are satisfied:

• For all∨-nodesn ∈ N ′, (succ(n) ∩ N ′) ⊆ S(n). In
other words, instanceI can only choose successors of
a∨-node from the subsetS(n) provided by the policy
P .

• Let ValI(n) = 〈v1, · · · , vk〉 be the values assigned to
the noden in I, andC(n) = 〈c1, · · · , ck〉 be the condi-
tions assigned to noden by the policyP . In this case,
for 1 ≤ i ≤ k, vi |= ci, or each value assigned in the
instanceI should satisfy the corresponding condition
specified by the policyP .

PolicyP for a schemataS is calledsatisfiableiff there exists
I such thatI |= P .

Next, we define conjunction of two policies. The con-
junction of two policiesP1 = (S1, C1) andP2 = (S2, C2)
(denoted byP1 ∧ P2) is a policy(S′, C ′), where

• For each∨-noden ∈ N , S′(n) = S1(n) ∩ S2(n)
andC ′(n) = 〈c1

1 ∧ c2
1, · · · , c1

k ∧ c2
k〉, whereC1(n) =

〈c1
1, · · · , c1

k〉 andC2(n) = 〈c2
1, · · · , c2

k〉.

Conjunction of the two example policiesP1 andP2 is de-
picted in Figure 5.

Definition 3.4 A set of n policiesP1, · · · , Pn is reconcil-
able iff there exists an instanceI such thatI |= (

∧n
i=1 Pi)

or in other words
∧n

i=1 Pi is satisfiable.

Remark: We have described the semantics of reconcilable
policies using the satisfaction relation|=. One can give an
alternative definition in terms of languages. A schemataS



defines a language of instancesL(S), i.e.,L(S) contains all
instancesI of the schemataI. A policy P for the schemata
S also defines a language of instancesL(P ) ⊆ L(S), i.e.,
L(P ) contains all instancesI such thatI |= P . In this
context, policiesPi, · · · , Pn are reconcilable iff

⋂n
i=1 L(Pi)

is non-empty.

3.1. Resolving multiple partial orders

Later in this section we discuss policy reconciliation in
presence of preferences. In preparation for that, we need
to develop some theory about resolving multiple partial or-
ders. Assume that we are given a finite setS. Suppose
n agents give their preferences on the setS, i.e., agenti
specifies a partial order�i on the setS. Intuitively, an
agenti is an organization or process with a policy, and�i

specifies the preference of the organization or process. The
question is how does one construct asingle partial order
on the setS (denoted by�1,···,n) from then partial orders
�1, · · · ,�n?. Precise definition for combining partial or-
ders is given in [31]. We also provide a a linear time algo-
rithm to compute the combined partial order. For example,
consider two partial orders shown in Figure 6 on the set
{ Kerberos, X509, Password }. Assuming that the
agent giving the partial order(a) has higher preference than
the agent with the partial order(b), the combined partial or-
der is(b). Assuming no order between the agents the com-
bined partial order is(a).

3.2. Reconciliation with preferences

This section describes reconciliation when policies are
allowed to specify preferences. First, we define the concept
of policy with preferences.

Definition 3.5 A policyP for a schemataS = (N,V, root)
is now a3-tuple(S, C, pref ), whereS : N → 2N , C maps
nodes to a tuple of conditions, andpref provides prefer-
ences. For each∨-noden ∈ N , S(n) ⊆ succ(n), pref (n)
is a partial order onS(n), andC(n) is ak-tuple of condi-
tions 〈c1, · · · , ck〉 whereVar(n) = 〈V1 : τ1, · · · , Vk : τk〉.
Moreover, we assume that the conditionci applies to val-
ues of typeτi. Given a valuevi of typeτi, we assume that
vi |= ci.

A policy P induces a partial order�P on the instances
satisfyingP . Given an instanceI, the DAG rooted at a node
n of I is called asub-instance, i.e., a sub-instance consists
of the noden and all of its descendants. The depth of a
sub-instance is the length of the longest path from the root
to one of its leaves. The partial order�P is defined on sub-
instances. Given two sub-instancesSI1 = (N1, V1, root1)
andSI2 = (N2, V2, root2), we say thatSI1 �P SI2 iff the
following conditions are satisfied:

• The roots are the same, i.e.,root1 = root2.

• root1 is a∧-node.
Let the set of successors ofroot1 be{n1, · · · , nk}. Let
I1
i andI2

i (for 1 ≤ i ≤ k) be the sub-instances inSI1

andSI2 that are rooted atni. In this case the condition
is that for all1 ≤ i ≤ k, I1

i �P I2
i .

• root1 is a∨-node.
Let the successors ofroot1 androot2 in SI1 andSI2

ben1 andn2 respectively, andIn1 andIn2 be the sub-
instances rooted atn1 andn2 respectively. In this case,
the condition is the following:

If n1 = n2, thenIn1 �P In2 ; otherwise,
n1 � n2 in the partial orderpref (root1)
given by the policyP .

Notice that�P is inductively defined using the depth of the
sub-instances. Intuitively, the partial order�P extends the
partial orderpref over nodes given by the policyP to sub-
instances.

Next, we extend the definition of conjunction of two
policies to incorporate preferences. The conjunction of two
policiesP1 = (S1, C1, pref 1) andP2 = (S2, C2, pref 2)
(denoted byP1 ∧ P2) is a policy(S′, C ′, pref ′), where

For each∨-noden ∈ N , S′(n) = S1(n)∩S2(n),
pref ′(n) is equal to�1,2, andC ′(n) = 〈c1

1 ∧
c2
1, · · · , c1

k∧c2
k〉, whereC1(n) = 〈c1

1, · · · , c1
k〉 and

C2(n) = 〈c2
1, · · · , c2

k〉.

Givenn reconcilable policiesP1, · · · , Pn, an instanceI
is called amost preferred instanceor MPI if I |= (

∧n
i=1 Pi)

andI is a maximal element in the partial order induced by
the combined policy

∧n
i=1 Pi.

3.3. The Reconciliation Algorithm

Givenn policiesP1, P2, · · · , Pn, the reconciliation algo-
rithm proceeds as follows:

First, we compute the combined policy
P =

∧n
i=1 Pi.

Next, starting from the root the combined policy
P is traversed recursively to find the most
preferred instance according to partial order�P

induced by the combined policy.

The complexity of reconciliation algorithm isO(n(|N |+
|E|), whereN andE are the nodes and edges inP . Details
of the reconciliation algorithm can be found in [31].

Assume that we are given two policiesP1 andP2 shown
in Figures 3 and 4. The combined policyP1 ∧ P2 is shown
in Figure 5. Suppose that the partial order on authentica-
tion mechanisms corresponding to policiesP1 and P2 is



as shown in Figure 6, and the partial order on the encryp-
tion schemes corresponding to the policiesP1 andP2 is as
shown in Figure 7. The partial orders are resolved so that
policy P1 has precedence over policyP2. In this case, the
partial orders on the authentication and encryption schemes
in the combined policyP1 ∧ P2 is the one corresponding
to policy P2, i.e., the partial order labeled(b) in the two
figures. The MPI computed by our algorithm is shown in
Figure 8.

4. Applications of the policy reconciliation
framework

This section illustrates the use of graphical policy in real
application environments. To this end, we show how our
policy reconciliation framework can augment IPsec’s exist-
ing policy negotiation and support the Condor distributed
computing system.

4.1. Graphical Policy in IPsec

The IPsec [19] suite of protocols providessource au-
thentication, data integrityand data confidentialityat the
IP layer. These services are implemented by the Authen-
tication Header (AH) and Encapsulating Security Payload
(ESP) transforms. Although not a security service, PCP im-
plements data compression. Each IPsec node (host or secu-
rity gateway) maintains a security and compression policy
defined in terms of these transforms. Communicating peers
establish one or more pairs of policy instances (an instance
is represented as asecurity association, or SA) by recon-
ciling configured local policies (called proposals). The In-
ternet Key Exchange protocol (IKE) [16] is used to, among
other things, negotiate this governing policy.

IKE policy can be modeled using our graphical ap-
proach. To illustrate, suppose that a host desires the fol-
lowing policy:

• All outgoing data must be protected byESPandAH
protocols, and must be compressed using thePCPpro-
tocol.

• ESP can use3DES, 3IDEAor DES encryption al-
gorithms, and eitherHMAC-MD5 or HMAC-SHAin-
tegrity/authentication algorithms.

• AH can use eitherHMAC-MD5or HMAC-SHA.

• PCPcan use eitherLZSor Deflate.

An IPsec proposal and graphical representation for the
example policy is depicted in Figure 9. The hierarchi-
cal DAG structure is clearly more expressive and efficient,
i.e., one only needs to understand the difference between
∧ (square) and∨ (circle) nodes to interpret policy. Con-
versely, one needs a great deal of domain knowledge to in-

terpret the proposal/transform structure of IPsec. Such intu-
itive representation simplifies specification, and ultimately
reduces policy errors.

Consider an extension to the above policy that states that
the use of 3IDEA must use either 128-bit or 256-bit keys.
In IPsec, attributes such as key length can be specified only
once with each transform. Hence, a separate transform is
required for each key length. More generally, the number
of transforms grows exponentially in the number of inde-
pendent attributes. Conversely, the graphical representation
only needs to introduce a single subgraph that is shared by
the relevant nodes.

4.2. Hierarchically Policy in the Condor system

The second example of the policy reconciliation frame-
work is used in the context of Condor [9], a high-throughput
distributed system designed to efficiently schedule the us-
age of distributed and heterogeneous resources such as idle
CPU cycles and unused memory. Condor allows resources
owners to place various policy requirements on the use of
their resources. Our hierarchical DAG structure can suc-
cinctly encode Condor security policies. The design of the
policy infrastructure and its integration with Condor are de-
tailed in the following section.

5. Implementation

We have implemented our hierarchical reconciliation al-
gorithm in thePolicy Reconciliation Engine (PRE). PRE
reconciles (only) pairs of XML-encoded policies. The re-
striction of PRE to two-policy reconciliation is not a lim-
itation of our approach, but rather an artifact of the ini-
tial target systems’ point-to-point communication models
(IPSec and Condor). We will extend the implementation to
allow multi-party policy reconciliation (e.g., Ismene [23],
DCCM [11]) as future needs dictate.

PRE implements an asymmetric requester/responder
model. In this model, the requester supplies the relevant
policy to the responder. The responder reconciles the re-
ceived policy with local policies as needed, and therecon-
ciled policyis returned to the requester. Both parties subse-
quently use the reconciled policy to control the session. We
chose a requester/responder model because it most faith-
fully represents contemporary use of policy (e.g., IKE pol-
icy negotiation [16]). This model is similar to client/server
communication models. Responders, acting as servers, gov-
ern access to the communication resources and requesters,
acting as clients, submit requests for those resources. In
PRE, the responders assert authority over the resources by
placing a higher preference on their own (local) policy.
Note that the requester may (and often should) validate that
the received reconciled policy is consistent with the origi-
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nally proposed policy. Policy validation interfaces are pro-
vided by PRE.

PRE is both a library and a command line tool. Hence,
it can be directly integrated into an application, or used as
an external policy processor. Reconciliation is a three-step
process in PRE. First, each security policy is parsed into
internal data structures. Then each pair of policies is rec-
onciled using the algorithms defined in section 3.3. Finally,
theverification engineascertains the correctness of therec-
onciled policywith respect to the local security policy (i.e.,
implements the consistency test described above).

The current implementation of PRE contains about 1000
lines of C/C++ code. Source code and documentation for
PRE are available for download.

5.1. Integrating PRE with Condor

Much of our work in policy has been motivated by the
requirements of the Condor system. As described in Sec-
tion 4.2, Condor schedules resources based on the client
requests and other environmental factors. Every Condor
peer has a local security policy that governs the services
providing the authenticity, confidentiality, and integrity of
the session it supports. We have modified the Condor sys-
tem to use PRE-based reconciliation to construct the se-
curity policy used by each session. Past versions of Con-
dor defined security policy using flat structures calledClas-
sAds [28]. ClassAds flexibly communicate resource ad-
vertisements and client requests. However, we found the

structure of ClassAds inherently limiting, i.e., we could not
represent the appropriate range of acceptable or preferen-
tial policies because of their flat structure. Such statements
of policy are, as previously argued, hierarchical in nature.
This need for hierarchical policy drove our efforts, and ul-
timately lead to the development of PRE. For details on the
implementation, we refer readers to [31].

Currently, Condor does not authenticate the policies or
policy exchanges beyond that supported by the underlying
transport layer. In general, how and by whom policies are
issued and authenticated is an environmental and systems
design issue. Environments often require external services
for storing and validation of issued policies (e.g., LDAP col-
lections of signed policies). These issues are defined by the
larger policy architecture, and is beyond the scope of the
current work. Interested readers are referred to [22] for a
taxonomy of policy architectures addressing these issues.

5.2. Performance

Because of the relatively small policy size and the re-
striction to pairwise reconciliation, we did not anticipate
the introduction of PRE into Condor would significantly
impact performance. We sought to measure these costs
through several controlled experiments. These experiments
measured the total execution time of the policy negotiation
protocol defined in the preceding section. All experiments
were executed in an environment consisting of a single Cen-
tral Managerserver(333 Mhz duo-processor/Linux RedHat
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7.2) and eightclients(three Ultra 10 Sparc Sun/Solaris 2.8
and five 750 MHz Pentium III/Linux Redhat 7.2).

The experimental results confirmed our intuition: the av-
erage protocol execution (without I/O), for a policy consist-
ing of authentication, integrityandsecrecy, only uses about
5.2% of the total execution time. When including I/O over-
head, the cost is still small–at about10% of the overall ex-
ecution time. Startup cost (i.e. program initialization) is
the most dominant factor of the overall execution time, fol-
lowed closely by overhead incurred from Condor’s internal
data structures.

5.3. Future work

While the theoretical framework and implementation of
our hierarchical policy model have reached maturity, we
see further exploration of its application to a wide range
of problem domains as essential. Initially, we will seek to
integrate PRE with widely used policy systems. This will
enable us to explore the ways of exploiting the PRE ser-
vices in specific and policy reconciliation in general. One
such work will realize our IPsec policy in software. Integra-
tion with tools such as FreeSwan [27] will provide impor-
tant data-points in the use of extended policy services, and
serve to further demonstrate the power of our approach.

We also seek to apply our work to domains which have
immediate, but as yet unaddressed, requirements for pol-
icy. For example, reconciliation may play an important role
in defining security for peer-to-peer (P2P) systems. Cur-
rently, there are few coherent security models for P2P. The
egalitarian nature of P2P systems mandate autonomy. Each
end-point must be able to assert and realize a set of secu-
rity requirements deemed important. However, autonomy
must be counter-balanced with interoperability. The collec-

tion of participants must be able to negotiate a shared view
of security. This is precisely the definition of reconciliation.
Hence, we claim that the fluid and heterogeneous security
models of P2P systems would be well served by our work.
Moreover, the clarity and succinctness of hierarchical mod-
els may enable more free and open use of security policies
in these large communities.

This paper has discussed reconciliation only in the con-
text of security policy. However, hierarchical policy mod-
els are applicable to other problem domains. To illustrate,
GRID systems share the resources in heterogeneous envi-
ronments. Participants in the GRID have diverse policies
that govern the resource usage. Agreement is often achieved
statically in current GRID systems by mandating the adop-
tion of a single universal policy. This mandate is in di-
rect conflict with the needs of dynamic environments whose
resource constraints and requirements frequently change.
Hence, policy reconciliation systems such as PRE can help
to bridge such a gap between dynamicity and the needs for
agreement. Furthermore, there is often a direct dependence
between resource requirements and security settings and dy-
namic policy reconciliation can act as the agent between the
two. For example, a system that handles sensitive data on
remote hosts will require some minimum security policy be
enforced.

6. Conclusion

Security policy reconciliation is the process of resolv-
ing different security policies. In this paper, we presented
a formal framework for policy reconciliation. We also pre-
sented an efficient algorithm for reconciling different poli-
cies. Two distinguishing features of our work are hierarchi-



cal representation and preferences. We also implemented
a simplified version of our algorithm in a software module
called PRE and incorporated it in Condor. Experimental re-
sults in the context of Condor clearly demonstrate that for
each session the reconciliation overhead is negligible.
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