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Abstract This architecture has been adopted by Linux secu-

|_rity modules (LSM) [7], a flexible framework which al-

In systems with shared resources, authorization po di thorizati licies to b ¢ dbv th
icy enforcement ensures that these resources are acccngWS Iverse authorization policies to be enforced by the

sible only to users who are allowed to do so. Recently, r:nuli(' kernel.kLSMI hoo(l;share nﬁ)w I?vz';\]ilable Ias ?art OL
there is growing interest to (i) extend authorization pplic the bqu-?.ﬁ ﬁrn.e ' ?n these oof gElz_a_ve as? ﬁrSmMe
enforcement mechanisms provided by the operating sysh'€ Pasis for the implementation o inux.in '

tem, and (ii) enable user-space servers to enforce authLIJI'-‘eI ref(zrelnce m(gnltrc])r IS |rr.1plerr;nenkted asla Iogdable ker-
rization policies on their clients. A popular mechanism nel module, anauthorization hooksre placed at ap-

for authorization policy enforcement retrofits the code toPropriate locations in the kernel. These hooks define the

be secured withooksto a reference monitor. This is the Nterface (the API) of the reference monitor, and each
basis for the Linux security modules (LSM) framework, hOOk. call poses an authorization query to the reference
and is also the intended usage of the recently—release'aon'tor'

security-enhanced Linux policy management framework Authorization policy enforcement mechanisms have
for user-space servers. Unfortunately, reference monitor policy

hooks are currently placed manually in operating Sys_tradltlonally been confined to the operating system.

tem and user-space server code. This approach is tg!sci\a/\r/?svea:’céesceerc?r/’s :/C;rr]etrfa grb?ﬁ\t”ntgo 'gtni;?i t:u:ﬁ‘gr?;';_
dious, does not scale, and as prior work has shown in P y

the context of LSM, is error-prone. Our research is Ont|on policies via reference monitoring. The reason is that

X - user-space servers, such as X Windows, web-servers, and
techniques to largely automate authorization hook place- ™

' : middle-ware, offer shared resources, such as buffers and
ment. We have devised a technique to do so, and hav(?aches to their clients, and manage multiple clients si-
tested its effectiveness by applying it to determine hook ' y 9 P

placement for the Linux kernel, and cross-validating itmultaneously. Thus, it is paramount to protect these
) o shared resources from unauthorized access. For exam-
with LSM hook placement. Our initial results are en-

. : le, in the X server, the cut-buffer is shared between
couraging, and we have extended our technique to work, . :
clients. Suppose the X server runs on a machine ca-

with user-space servers. In partu_:ulqr, we have applie able of enforcing multi-level security (MLS), then the
the technique to determine authorization hook placeme : . . .
for the X11 server. clients will also have as;pmated security-labels, such
as Top-Secretand Unclassified To enforce end-to-end
security, the X server may wish to enforce an authoriza-
1 Motivation tion policy on its X clients; for instance, it may wish to
ensure that a “cut” operation fromTap-Secretvindow
The goal of an authorization framework is to ensurecan never be followed by a “paste” operation intolam
that security-sensitive operations on system resourees aclassifiedwindow. In fact, efforts are underway to se-
only performed by users who are permitted to do so bycure the X server using a reference monitor-based archi-
the site-specific authorization policy. A popular architec tecture [5, 9]. The recent release of the SELinux pol-
ture for constructing an authorization framework uses a@cy management server [8] is intended to enable devel-
reference monitor, which encapsulates the authorizatioopment of authorization policies in the SELinux policy
policy to be enforced. The system to be secured posesnguage for any user-space application that would ben-
an authorization query to the reference monitor before iefit. As with LSM, this policy management server pro-
performs a security-sensitive operation—it performs thevides answers to authorization queries, and authorization
operation only if the authorization query succeeds. hooks are to be placed at appropriate locations within the
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user-space server. can be used to verify existing placement by comparing it
Unfortunately, there is little work on systematic tech- against the placement produced by our technique.

nigues to place authorization hooks. Instead, placement

is often decided manually and informally. This process . .

suffers from two drawbacks: 3 Overview of our Technique

e Does not scaleThe process of placing hooks for the . . .

. . ; .~ We present a high-level, informal overview of our tech-
Linux kernel (in the context of LSM) was an iterative, . .

; . s ; ique, and refer the interested reader to [1, 2] for de-
time-consuming process. Clearly, it is tedious to repea

: ails. Our technique proceeds in six steps, as shown in
this process for each user-space server that needs to . ; X
) o ig. 1. Where applicable, we illustrate the technique us-
retrofitted for reference monitoring. Automated solu-

tions to determine hook placement are desirable, ing an examples from the X server and the Linux kernel.

o IS Drone to securitv-hole®rior research has shown se- In the discussion below, we will denote the server to be
P Yy ' : = retrofitted with authorization hooks by (if the kernel is
curity holes due to improper hook placement in the Linux

kernel. Zhanget al. [10] demonstrate that inadequate being r.etr(_)ﬁtted, th(_eﬁf refer_s_ tothe ker_nel).
: ; o Step 1: Find security-sensitive operations to be pro-
placement of hooks results in security-sensitive opera; ' . ;
; X i ; .~ _tected. The first step is to determine the set of resources
tions being performed without the appropriate authoriza- .
. . . of the serverY accesses to which must be controlled by
tion query being posed to the reference monitor. Jaeger o . :
e . an authorization policy. We refer to the operations that
et al.[4] also demonstrate similar bugs by comparing the . -,
! g can be performed on these resourcessasirity-sensitive
consistency of hook placements along different program

: . operations In our work so far, we have relied on man-
paths. These bugs are potentially exploitable. : e . - i
. : ual identification of security-sensitive operations. Im-cu
Our research is onechniques to largely automate

placement of authorization hoak&Ve have developed rent \(vork,_ we are investigating heur[stlcs to automati-
cally identify security-sensitive operations as well.

a program analysis-based technique to do so, and have . e : o .
: . Manual identification of security-sensitive operations
conducted two case studies. Our first study was to stud : L : .
) . ; roceeds typically by considering a wide range of poli-
the effectiveness of our algorithms by reproducing hook’. e
i cies thatX must enforce, and determining the set of
placement in LSM [1]. Because the (manual) hook . " . ~
security-sensitive operations based upon these policies.

placementin LSM has been extensively-verified, this en- For instance, aboti00 security-sensitive operations

ables us to evaluate the effectiveness of our technique. . o .
. : . were manually identified for the Linux kernel [6], and

As we will show, our results with this study were encour- . " . ! .
. . 59 security-sensitive operations were manually identi-
aging. In recent work we have enhanced our technlqueﬂ

X ; o ed for the X server [5]. In the rest of this paper, we
and have used it to determine authorization hook place- : . : .
will represent these operations usisgns-serif font
ment for the X11 server [2].

as Resource_Operation. For example, in the case
of Linux, shared resources included files, directories,
2 Benefits to the SELinux Community sockets, and so on, and the security-sensitive operations
identified for Linux includedFile_Write, File_Read,
We believe that our technique benefits the SELinux com+ile_Execute, Dir_Rmdir, Dir_Mkdir, Socket Create
munity in two ways: and Socket Listen, each with their intuitive mean-
e Enables hook placement in user-space serveédsir  ings. Similarly, for the X server, shared resources in-
technigue uses a combination of static and dynamic proelude W ndows, Font s andDr awabl es, and include
gram analysis to determine where a user-space serveecurity-sensitive operations such \Andow_Create,
performs security-sensitive operations. These locationgVindow_Map, andWindow_Enumerate.
are then retrofitted with hooks to a reference monitor. In the case of both the Linux kernel and the X server,
Because our technique is largely automated, it can siga design team (at NSA) manually identified the set of
nificantly reduce the turnaround time of hook placementsecurity-sensitive operations. These security-seesitiv
For example, it took us about a week to use our techoperations are often only accompanied by an infor-
nigue to reconstruct the placement of file-system and netmal English-language description of their meaning (as
working hooks for the LSM framework (with fairly good in [6, 5]), and a precise code-level description is often
precision). We have further refined the basic techniquenot given.
and with these refinements, we were able to determine One of our main contributions is in formalizing
placement of hooks to prote® ndowoperations in the security-sensitive operations using code-level descrip-
X server in a few hours. tions. That is, we characterize security-sensitive op-
e Can be used for verificationWhile the focus of our erations by the actual code-templates (also referred to
work is to develop techniques to determine authorizatioras code-patterns), that are responsible for the security-
hook placement for user-space servers, our technique cagnsitive operation. This is formalized in step 2.
be adapted for verification as well. Thus, for code with Step 2: Infer root-cause of security-sensitive oper-
authorization hooks placed, such as LSM, our techniquations. The second step is to identify theot-cause
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Figure 1: Steps involved in retrofitting a server for authori zation policy enforcement.

of each security-sensitive operation. The root-cause ofensitive operatio®ir_Write in the Linux kernel typi-

a security-sensitive operation is defined as the codeeally corresponds to changed directory contents. Simi-
level constructs thamustbe executed for the security- larly, the security-sensitive operatiddindow_Map i n
sensitive operation to be performed. Formally, eachthe X server results in an X client window being mapped
root-cause is expressed as a conjunction of seeedd-  tothe screen. Thus, if we induce the server to perform the
patterns which represent code-level constructs in termstangible side-effect associated with a security-sergsitiv
of their abstract-syntax-trees (ASTs). Instead of pre-operation, and trace the server as we do so, the code-
senting a formal definition of code-patterns and root-patterns that characterize the security-sensitive ojperat
causes (which can be found in [2]), we present a twomustbe in the trace.

examples—further examples are available in [3]: However, program traces are typically long, and it is

e The security-sensitive operatioBir_Write in the  still challenging to identify the code-patterns that char-
Linux kernel denotes a write operation to a directory. Itsacterize a security-sensitive operation from several-thou
root-cause is identified &ET i node->i ctinme A sand entries in the program trace. We have developed a
CALL address_space._ops->preparewite(). technique (the details of which are in [2]) to compare
The intuition is that writing to a directory usually in- program traces corresponding to different side-effects,
volves adding new content to the data structuresand reduce the portion of the trace that must be exam-
that store directory content (achieved via the call toined to determine root-causes.

preparewrite()), followed by setting the change  ysing this technique identifying root-causes reduces
time (fieldi _cti me of the directory’s inode). to studying fewer thanl0 entries, on average, in a

e The operatiorWindow_Map in the X server, corre- program trace. We have applied this technique to
sponding to mapping an X client window to the screen, isdetermine root-causes of security-sensitive operations
characterized bET xEvent - >uni on->type TO on the W ndow data structure in the X server, and
MapRequest A SET xEvent->uni on->type TO have automatically and precisely identified the root-
MapNoti fy. This intuitively corresponds to an X client causes of these operations. For example, the root-cause
request to the X server for mapping a window, followed of W ndow_Map, discussed earlier, was automatically
by a notification by the server that the operation was sucidentified by our technique.

cessful. Step 3: Find all locations which are security-

For our initial case study, that of placing authoriza- sensitive. Finding root-causes of security-sensitive op-
tion hooks in Linux, we wrote these root-causes manuerations alone does not suffice—we must also find
ally. While it was fairly easy to write root-causes—we al| |ocations in the code of the server where these
wrote aboutl00 in a week corresponding to security- operations may potentially be performed. The third
sensitive operations related to the file-system and netstep uses the results of root-cause analysis to stati-
working subsystem—it was clear that that an automatedally identify all locations in the server where code-
technique was needed if this approach is to scale for usepatterns that characterize a security-sensitive operatio
space servers. The key challenge is to automatically reoccurs; each of these locations performs the opera-
cover the association between security-sensitive operaion. Consider Fig. 2, which shows a snippet of code
tions, and the code-patterns that are their root-causes. from MapSubW ndows, a function in the X server.

A key observation helps us achieve this goal. It is thatlt contains writes ofVapRequest and MapNot i fy
each security-sensitive operation is typically assodiateto event . u. u. t ype, as well as a traversal of the
with a tangible side-effect. For example, the security-children of the window pointepParent. A call
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to the functionMapSubW ndows performs, in addi- to kernel data structures suchiasodes andsocket s

tion to Window_Map, the security-sensitive operation to store security-labels. The same technique can also
Window_Enumerate, corresponding to enumeration of be used with user-space servers. For example, in the
child windows. We automatically identify the set of X server, extra fields can be added to tlé ent and
security-sensitive operations performed by each functiotW ndowdata structures to store security-labels. Because
call using a static analysis algorithm, which searches theve pass both the subject and the object to the reference
code of the server for the code-patterns in the root-causmonitor usingquer y _r ef non, the reference monitor

of a security-sensitive operation. can lookup the corresponding security-labels, and con-
sult the policy.
MapSubW ndows (pParent, pdlient) { Step 5: Generate reference monitor code.This step
Do o e S ot S b) generates code for thguer y r ef mon function. We
{ event.u.u.type = MapRequest; ... generate a template for this function, omitting two details
. event. u.u.type = MapNotify;. .. that must be filled-in manually by a developer. First, the

developer must specify how the policy is to be consulted.

We do not constrain the authorization policy language to
Figure 2: MapSubW ndows be used, and the developer can choose a policy language

and a policy management framework of his choice. For

In addition to identifying the locations where security- €xample, the Tresys SELinux policy management frame-
sensitive operations occur, in this step we also use heurigvork can be used [8].
tics to identify the subject and object associated with Second, he must specify how the security-labels of
the operation. To do so, we identify the variables cor-subjects and objects change in response to an autho-
responding to subject and object data types (such adzation request. For example, in the X server, when
dient andW ndow) in scope. In most cases, this @ security-eventpCl i ent, pW n, Window_Create)
heuristic precisely identifies the subject and the objectsucceeds, corresponding to creation of a new window,
In Fig. 2, the subject is the client requesting the oper-the security-label opW n, the newly-created window,
ation (C i ent), and the object is the window whose must be initialized appropriately. Similarly, a security-
children are to be mappeg®ar ent ), both of which ~ event which copies data frop\W n; to pwW n, may en-
are parameters dfapSubW ndows, and are in scope. tail updating the security-label @W n..

Steps 2 and 3 together identify all locations where the Because security-labels are either stored as a table
server performs security-sensitive operations, and &t eadvithin the reference monitor, or as fields of subject or
location, also help identify the subject and object associobject data structures, as described earlier, the develope
ated with the operation. We have implemented a protomust modify these data structures appropriately to update
type tool, called Ap, that performs these steps. security-labels. Note that while steps 2-4 are policy inde-
Step 4: Instrument the server. Having identified all —pendent, step 5 requires knowledge that depends on the
locations where security-sensitive operations are perspecific policy to be enforced. Steps 4 and 5 together en-
formed, the server can be retrofitted by inserting calls to &ure complete mediation of security-sensitive operations
reference monitor at these locations, to achieve completiglentified by Ab: we have prototyped these steps in a
mediation. Note that if Ao determines that a statement tool called ALPEN (see Fig. 1). While we have not yet
St nt is security-sensitive, it also identifies teecurity- ~ designed APEN to generate code that can be used with
eventthat it generates. A security-event is a trighe, Tresys’ SELinux policy management server, we intend
obj, op), denoting the subjectub requesting operation to do so in the near future.
op to be performed on objeeth;. A statemeniSt nt Step 6: Link the modified server and reference mon-
that generates the security evénib, obj, op) is instru-  itor. The last step involves linking the retrofitted server

mented as shown below. and the reference monitor code to create an executable
that can enforce authorization policies.
i f (query.ref non({sub, obj, op)) == False) A noteworthy feature of our approach is its modular-
thenhandl efailure; el seStnt; ity. In particular, alternate implementations of root-sau

analysis and instrumentation can be used in placeibf A
and ALPEN, respectively. Thus, our technique benefits
directly from improved algorithms for these tasks.

The statemertiandl e_f ai | ur e can be used by the
server to take suitable action against the offending client
either by terminating the client, or by auditing the failed
request. Authorization policies are typically expressed i
terms of security-labels of subjects and objects. Security4 Case Studies
labels can be stored in a table within the reference mon-
itor (generated in step 5), or alternately, with data struc-To understand the effectiveness of our approach, we have
tures used by the server to represent subjects and objectoonducted two case studies. Our first case study was per-
The latter technique is used by LSM, which adds fieldsformed with the Linux2.4 kernel. Our goal here was to



Appears in Second Annual Security-enhanced Linux SympoBialtimore, MD, March 2006

Hook Cat. | Num. Locs.| False Pos] False Neg. 4.2 Placing hooks in the X server
inode (26) 40 13 4 .
socket (12) 12 4 0 Our second case study was to place hooks in the X server.

Note that others [5, 9] have also made similar efforts.
However, our goal was to automate the process as much
as possible. We have so far focused on placing hooks for
security-sensitive operations on th&ndow data struc-
ture. The NSA [5] has identified9 security-sensitive
operations for the X server, of whict2 are related to

W ndows. We were able to precisely identify the root-
causes foll 8 of the 22 security-sensitive operations us-
reproduce, as closely as possible, the hook placement iimg our automated root-cause-finding algorithm.

LSM. The reason we chose versida of the kernel (in- Using AID and ALPEN we have placed hooks to pro-
stead of versior2.6) was because hooks are not placedtect security-sensitivé' ndow operations. We have
by default in versior2.4, thus allowing us to objectively tested the efficacy of our technique by writing policies
evaluate the precision of our technique. As mentionedo prevent a few attacks. For example, we have written
earlier, for this study, we wrote root-causes for security-a policy to prevent an unauthorized X client from setting
sensitive operations manually. However, we soon realproperties belonging to another X client. Similarly, we
ized that this approach would not scale to user-space agrave also written a policy to prevent information leakage
plications. Thus, we designed an automated technique teia an unauthorized “cut-and-paste” operation.

identify root-causes, as discussed in step §f Our As mentioned earlier, our policies are not yet written
second case study used automated root-cause finding e the SELinux policy language. In future work, we in-
determine hook placement for the X11 server. We distend to integrate our technique to work with the SELinux
cuss preliminary results from both case studies below. policy management server, thus enabling enforcement of
policies written in the SELinux policy language.

Figure 3: Results of hook placement using
our technique. False positives count locations
where our technique places an extra hook, while
false negatives count locations with missing
hooks.
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