Detecting Manipulated Remote Call Streams
Jonathon T. Giffin Somesh Jha Barton P. Miller

Computer Sciences Department
University of Wisconsin, Madison
{giffin,jha,bart}@cs.wisc.edu

Abstract

In the Internet, mobile code is ubiquitous and includes such examples as browser plug-ins, Java applets, and document macros. In
this paper, we address an important vulnerability in mobile code security that exists in remote execution systems such as Condor,

Globus, and SETI@Home. These systems schedule user jobs for execution on remote idle machines. However, they send most of
their important system calls back to the local machine for execution. Hence, an evil process on the remote machine can manipulate

a user’s job to send destructive system calls back to the local machine. We have developed techniques to remotely detect such
manipulation.

Before the job is submitted for remote execution, we construct a model of the user’s binary program using static analysis. This
binary analysis is applicable to commodity remote execution systems and applications. During remote job execution, the model
checks all system calls arriving at the local machine. Execution is only allowed to continue while the model remains valid. We begin
with a finite-state machine model that accepts sequences of system calls and then build optimizations into the model to improve its
precision and efficiency. We also propose two program transformations, renaming and null call insertion, that have a significant
impact on the precision and efficiency. As a desirable side-effect, these techniques also obfuscate the program, thus making it harder
for the adversary to reverse engineer the code. We have implemented a simulated remote execution environment to demonstrate how
optimizations and transformations of the binary program increase the precision and efficiency. In our test programs, unoptimized
models increase run-time by 0.5% or less. At moderate levels of optimization, run-time increases by less than 13% with precision
gains reaching 74%.

1 Introduction cess can be subverted to make malicious requests to the
local machine.

Qode moves aroupd the Internet in many forms, includ- e popular Condor remote scheduling system [26]

ing browser plug-ins, Java applets, document macrogg g example of a remote execution environment. Con-

operating system updates, new device drivers, andg 5ji0ws a user to submit a job (program), or possibly

remote execution systems such as Condor [26], Globug, 5y jobs, to Condor to run on idle machines in their

[13,14], SETI@Home [32], and others [1,11,35]. |5ca1 environment and on machines scattered world-

M'obile code traditionally raises two 'basic trust iSSU‘?S:wide, Condor jobs can execute on any compatible
will the code imported to my machine perform mali-

, i : ' machine with no special privilege, since the jobs send
cious actions, and will my remotely running code exe- e file-access and other critical system calls to execute
cute without malicious modification? We are addressingy, their home machines. The home or local machine
an important variant of the second case: the safety of MYcts as a remote procedure call (RPC) server for the
code that executes remotely and rnake; frequent ServiG@mote job, accepting remote call requests and process-
requests back to my local machine (Figure 1). In thisjng each call in the context of the user of the local sys-
case, we are concerned that a remotely executing prQam  This type of remote execution, with frequent

interactions between machines, differs from execution
of “mobile agents” [17,30], where the remote job exe-

This work is supported in part by Office of Naval Research grantcytes to completion before attempting to contact and
N00014-01-1-0708, Department of Energy grants DE-FG02- report back to the local machine
93ER25176 and DE-FG02-01ER25510, Lawrence Livermore . . ' .
National Lab grant B504964, and NSF grant EIA-9870684. If the remote job is subverted, it can request the

The U.S. Government is authorized to reproduce and distributdocal machine to perform dangerous or destructive
reprints for Governmental purposes, notwithstanding any copyrightactions via these system calls. Subverting a remote job
notices affixed thereon. is not a new idea and can be done quickly and easily

The views and conclus!ons contained herein are those qf the{Nith the right tools [16,27]. In this paper, we describe
authors and should not be interpreted as necessarily representing the

official policies or endorsements, either expressed or implied, of thdl€Chniques to (_jeteCt Wh_en _the remote jOb_ is making
above government agencies or the U.S. Government. requests that differ from its intended behavior. We are




Any program model representing sequences of
remote system calls is valid. Previous model construc-
tion techniques include human specification [22] and
dynamic analysis. A dynamic analyzer completes train-
ing runs over multiple execution traces to build proba-
bility distributions indicating the likelihood of each call
sequence [12,15,39]. False alarms occur if the training
runs do not exercise all possible program control flows.
Static analysis produces non-probabilistic models repre-
Figure 1: Remote execution with system calls being senting all control flow paths _through an executable.

executed on home (local) machine. These models are conservative, producing no false
alarms [36,37] but potentially accepting an attack

addressing the issue of the local host’s safety; we are not-Juence as valid,

protecting the remote job from inappropriate access tq[ | ﬁ)ur modils are f|n|:e(-js':cate TﬁCht;T‘es- We duse Cc?n'
its data nor are we detecting modification of its calcu- rol flow graphs generated irom the binary code under

lated result (beyond those which would appear as imipz_inalyms to construct either a non-deterministic finite-

propriate remote system calls). state automato_n or a push-down automaton to mirror the
) L flow of control in the executable. Automata are natural
A local machine that accepts calls as valid without

first verifying that the remote job generated the CaIISstructures to represent sequences of remote call names,

. L o with push-down automata being more precise. We
during correct execution is vulnerable to maliciously

generated calls. Conventional authentication methodg.e velop several optimizations to further increase preci-

: o o . ; Sion while maintaining run-time efficiency.
using secret data fail in this inherently risky environ- ; .
ment. An attacker knows everything present in the \_N_e evaluatg Qurprogra_m_models using two ”?e”'cs-
remote code, including an authentication mechanism OpreC|5|onandeff|C|encyPreC|S|0n measures how tightly
key, and can manipulate this code at will. Thus,the r_npdel fits the application it_represents. Improving
although the local machine must distrust calls fromPrectsion reduces the opportunity for an attack to be

remotely executing code, it has little ability to validate accepted as valid by the model. Efficiency rates the run-

these requests. This vulnerability currently exists in thet'_me impact of model operation. To evaluate our tech-

thousands of machines worldwide running Condor, Glo-Naues and models, we built a prototype static analyzer

bus, Java applets, and similar systems. Our technique%nd_ model builder for a _'slmulated remote execution
address this deficiency. environment. We read binary programs on SPARC

Solaris machines and produce a model for operation by

Our basic approach to detecting malicious system_ . . e
PP 9 YS'eM, simulated local agent. The agent receives notifications

call streams is to perform a pre-execution static analy5|? L
. rom the application when system calls are encountered
of the binary program and construct a model represent-

ing all possible remote call streams the process coulé1urlng execution and operates the model accordingly.

generate. As the process executes remotely, the Iocalt tOurtmod?Is alr\lerﬁlmezt.INog—ddgtgylnlsltlc f'?'t%’]
agent operates the model incrementally, ensuring that ate adtomaton ( ) models a 270 0r 1ess 1o the
any call received remains within the model. Should afun-times of our test applications. In the less precise

call fall outside the set of expected next calls determined\“:A models, optimizations become invaluable. Moder-

by the model, we consider the remote process manipu‘?‘te optimization levels improve precision up to 74%
hile keeping run-time overheads below 13%. Opti-

lated. Reasonably, a precise model should closely mirrof’ ;
the execution behavior of the application. mized push-down automaton models are more precise,

0 -
As others have noticed [23,36,37], specification of abut keep overheads as low as 1%. The precision values

program’s intended behavior can be used for host-ba\seOf these opt[m|zed models approach zero, indicating lit-
tle opportunity for an adversary to begin an attack.

intrusion detection. Our approach brings four benefits to . :
PP g Other strategies have been used to counter mobile

these intrusion detection systems: . i )
. . . code manipulation exploits. Generally orthogonal, one
» Direct operation on binary code. : ; . .
Aut ted fructi ¢ ificati finds the greatest security level when incorporating
:% o.ma-e c??sl ruc |Ion of specilications. components of all three areas into a solution.
© E |m|n§tlon 0 _a S€ alarms. Replication A form of the Byzantine agreement
*  Protection against new types of attacks. [24], a remote call will be accepted as genuine if a
We further address an important new source of V”'”eraf‘najority of replicated processes executing on different

bilities: request verification when even cryptographic 5 chines generate the identical call. Sometimes used to
authentication mechanisms cannot be trusted.
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verify the results returned by mobile agents [31], such
techniques appear limited in an environment with fre-
guent system call interactions over a wide network.

Obfuscation A program can be transformed into Remote Calls
one that is operationally equivalent but more difficult to 1) Application
analyze [7,8,30,38]. We are applying a variant of such Process
techniques to improve our ability to construct precise
state machines and hamper an adversary’s ability tc
understand the semantics of the program. Even though i
has been popular in recent years to discount obfuscatiol
based upon Barak et. al. [5], in Section 3.4.2 we discuss
why their theoretical results do not directly apply in our
context.

SandboxingRunning a program in an environment
where it can do no harm dates back to the early days o

. : . éram is context-free. A push-down automaton-a finite-
the Multics operating system project [29]. CRISIS, for.state machine that includes a run-time stack—defines a

example, maintgins Per-process permiss_ions that Iim'Eontext-free language. However, such automata are pro-
system access in WebOS [6]. Our techniques could b?’libitively expensive to operate incrementally [36,37]

considered a variety of sandboxing, based on stron nd stack growth potentially consumes all system

analysis of the binary program and construction of &, rces. We usstack abstractionshat over-approxi-

verifying model to support that analysis. ~ mate a context-free language with a regular language.
This paper makes contributions in several areas: oy pysh-down automata with bounded run-time stack

~ Binary analysis We target commodity computa- are less expensive to operate and require finite
tional Grid environments where the availability of reggurces.

source code for analysis cannot be assumed. Further, our \y/o provide background on the Condor system
analysis is not restricted to a particular source languag&emote execution in the computational Grid environ-

so our techniques have wide applicability. ment, and security exploits in Section 2. Section 3 pre-
Model optimizations We develop and use tech- sents our analysis techniques in an algorithmic fashion.

niques to increase the precision of the finite-stategxperimental results are found in Section 4 and compar-

machines we generate, limiting the opportunities for anjson to previous work in Section 5. Related work can be

attacker to exploit a weakness of the model. In particutgund in Section 6. We conclude in Section 7 with

lar, we reduce the number of spurious control flows ingescriptions of several areas of continuing work.

the generated models witdead automata removal

automata inlining the bounded stack modelnd the 2 Threats

hybrid model Argument recoveryeduces opportunities

for exploit. We also present a linear tingsreduction ~Remote execution is becoming a common scenario. An

algorithm to simplify our non-deterministic state important class of remotely executing jobs require a
machines. communication path back to the local machine that orig-
Reduced model non-determinism with obfuscatorynated the job; the job sends its critical system calls,
benefits Many different call sites in a program generate such as those for file access or netwprk communication,
requests with the same name. (All opens, for example.?aCk t_o.the local ma}chlne to execute in the context of the
Our technique otall site renaminggives us a great abil- Submitting user. This type of remote execution occurs in
ity to reduce the non-determinism of our models bythe Condor distributed scheduling system [26], Globus
uniquely naming every call site in the program andcomputational Grid infrastructure [13,14], and Java
rewriting the executable. We further insemtll calls— applets.
dummy remote system calls—at points of high non-deter- ~ The implementation associated with our research
minism to provide a degree of context sensitivity to thetakes place in the context of Condor. Condor schedules
model. Call site renaming and null call insertion addi-jobs on hosts both within the originator’s organization
tionally obfuscate the code and the remote call stream2nd on machines belonging to other organizations. In
With binary rewriting, other obfuscation techniques areaddition to scheduling these remote jobs, Condor check-
likewise possible. points and migrates the jobs as necessary for reliability
Context-free language approximatioris general, and performance reasons. It is possible for a given job to
the language generated by the execution trace of a pro-

Local Host Remote Host

Malicious

Figure 2: Grid environment exploit. A lurker process
attaches to the remote job, inserting code that takes control of
the network link.



execute, at different times, on several hosts in severa'
different administrative domains.

Condor is a prevalent execution environment, par-
ticularly for scientific research. For example, in the year
2000, researchers used Condor to solve a 32-year-oli
unsolved combinatorial optimization problem called @
nug30 [2]. Remote jobs ran on 2510 processors acros:
the United States and Italy and outside the administra-
tive control of the program’s authors. Furthermore, the
network path between each remote process and its origi
nating host included public Internet links. A malicious
third party with access to either the execution machineg-igure 3: Our static analyzer reads a binary program and
or network links could have manipulated the originating Produces a local checking agent and a modified application
machine, as we now detail. that executes remotely. The checlfingl agent incorporates a

Remote system calls in Condor are simply a variant model of the application.
of a remote procedure call (RPC). A cliesttiblibrary is ) o .
linked with the application program instead of the stan-Servers with whom the original applets communicate
dard system call library. The stub functions within this [16].

library package the parameters to the call into a mes- ) ) ] )
sage, send the message over the network to the submia Generating Models Using Static Analysis

ting machine, and await any result.|écal agenton the  \ye start with the binary program that is submitted for
submitting machine services such calls, unpacking theyecytion. Before execution, we analyze the program to
request, executing the call, and packaging and sendingr,qyce two components: a checking agent and a modi-
any result back to the remote machine. fied application (see Figure 3). Tithecking agenis a
This RPC model exposes the submitting machine tqqpca| agent that incorporates the model of the applica-
several vulnerabilities. These vulnerabilities have thejgn. As the agent receives remote system calls for exe-
common characteristic that a malicious entity on thecytion, it first verifies the authenticity of each call by
remote machine can control the job, and therefore congperating the model. Execution continues only while the
trol its remote system call stream. This malicious systemyodel remains in a valid state. Theodified application
call stream could cause a variety of bad things to b§s the original program with its binary code rewritten to
done to the submitting user. The simplest case of a ma”'rmprove model precision while also offering a modicum
cious remote host is when the host’s owner (with admin-of opfuscation. The modified application executes

istrative privileges) takes control of the remote job. remotely, transmitting its remote system calls to the
More complex and harder-to-track cases might bechecking agent.

caused by previous malicious remote jobs. A previously ¢ various models are finite-state machinesn-
discovered vulnerability in Condor had this characteris-yaterministic finite automatgNFA) and push-down
tic [27]. When a remote job executes, it is typically run 5 ;omata(PDA). Each edge of an automaton is labeled
as a common, low privilege user, such as “nobody.” Ayith an alphabet symbehere the identity of a remote

malicious user could submit a job that forks (creates 8ystem call. The automaton héisal states or states
new process) and then terminates. The child procesghere operation of the automaton may successfully

remains running, but it appears to Condor as if the jobygage  The ordered sequences of symbols on all con-
has terminated. When a new job is scheduled to run oRecteq sequences of edges from the entry state to a final
Fhat host, the Iqulng process detectg the newly arriveqaie define thdanguageaccepted by the automaton.
job anq dynamically attaches to the job a_nq takes congy, 4 given application, the language defined by a per-
trol of it. The lurker can then generate malicious remotetat model of the application is precisely all possible

calls that will be executed to the detriment of the goq,ences of remote system calls that could be gener-
machine that originated the innocent job (see Figure 2) 5¢aq by the program in correct execution with an arbi-
Similar results are possible with less unusualygry input.

attacks. If the call stream crosses any network thatis not ~,struction of the automaton modeling the appli-
secure, a machine on the network may impersonate thg,;iqn progresses in three stages:

application process, generating spoofed calls that ma
be treated by the local host as genuine. Imposter applets
have successfully used impersonation attacks against the

A control flow graph(CFG) is built for each proce-
dure in the binary. Each CFG represents all possible
execution paths in a procedure.



Figure 4: Code Example (a) This C code writes tadout

main (int argc, char **argv) {

if (argc > 1) {
write(1,argv[1],10);
line(1);
end(1);

}else {
write(1,“none\n”,6);
close(1);

line (int fd) {
write(fd, “\n”, 1);
}

end (int fd) {
line(fd);
close(fd);

main:
save
cmp %i0, 1
ble L1main
mov 1, %00
Id [%i1+4], %01
call write
mov 10, %02
call line
mov 1, %00
call end
mov 1, %00
b L2main
nop
L1imain:
sethi %hi(Dnone), %01
or %01, %lo(Dnone), %01
call write
mov 6, %02
call close
mov 1, %00
L2main:
ret
restore

@

(b)

a command line argument as text or the strigé\n " if no

argument is provided. (b) The SPARC assembly codador. We do not show the assembly code for line or end.

Figure 5: Control Flow Graph for main . Control transfers in

| CFG ENTRY
+E
save
cmp %i0, 1
ble
mov 1, %00
€
3 -
Id h%|1+4], %01
cal ert%
Sethi %6hi(Dnone), %ol 0 0L e
or %01, %lo(Dnone), %ol v wite
call wrlge call line
mov 6, /002_ mov 1, %00
— wiite v line
call close
call end
mov 1, %00 mov 1, %00
v end
close b
nop
XE
ret
restore
vE
[ CFGEXIT |

2. We convert the collection of CFGs into a collection
of local automata Each local automaton models
the possible streams of remote system calls gener-
ated in a single procedure.

3. We compose these automata at points of function
calls internal to the application, producing iarer-
procedural automatomodeling the application as
a whole.

The interprocedural automaton is the model incorpo-

rated into the checking agent.

Figure 4(a) shows an example C language program
that writes a string to the standard output. The main
function translates to the SPARC code in Figure 4(b)
when compiled. We include the C code solely for the
reader’s ease; the remainder of this section demonstrates
analysis of the binary code that a compiler and assem-
bler produces from this source program.

3.1 From Binary Code to CFGs

We use a standard tool to read binary code and generate
CFGs. TheExecutable Editing Librarf{EEL) provides

an abstract interface to parse and editvite) SPARC
binary executables [25]. EEL builds objects representing
the binary under analysis, including the CFG for each

SPARC code have one delay slot. Outgoing edges of each procedure_ and aall graphrepresenting the interproce-
basic block are labeled with the name of the call in the block.dural calling structure of the program. Nodes of the

CFG, or basic blocks,contain linear sequences of
instructions and edges between blocks represent control



line

write

Figure 6: Local Automata. The local automata for each of
the three functions given in Figure 4 aftaeduction.

Figure 7: Final NFA Model. The automaton produced
following call site replacemeng-reduction has not been
performed. The dotted line represents a path not present in the

flow; i.e. the possible paths followed at branches.
Figure 5 shows the CFG fatain from Figure 4.

original program but accepted by the model.

set of states in a strongly connected component made of

3.2 From CFGs to Local Automata

e-edges are reachable from one another without consum-

For each procedure, we use its CFG to construct an NFAng an input symbol and collapses them to a single state.

representing all possible sequences of calls the procel.
dure can generate. This is a natural translation of the¢g,

CFG into an NFA that retains the structure of the CFG

and labels the outgoing edges of each basic block witl g

the name of the function call in that block, if such a call
exists. Outgoing edges of blocks without a function call
are labeledt. The automaton mirrors the points of con-
trol flow divergence and convergence in the CFG anc
the possible streams of calls that may arise when tra

versing such flow paths. 4.

Formally, we convert each control flow graph
G = Lv,Elinto an NFA given byA = (Q %,3,q, F) Q

being the set of stateX the input alphabethe transi- g

tion relation,qg the unique entry state, arilthe set of

accepting states; where: 6

Q=V

Abstract the automaton to a directed graph.

Using only e-edges, calculate thetrongly con-
nected components the graph.

All states in the same strongly connected compo-
nent may reach any other by a sequencetednsi-
tions, so the states are collapsed together. We now
have adirected acyclic grapi{DAG) over the col-
lapsed states, with the remainiagdges those that
connect strongly connected components.

For all none-edgese originating at a state in the
DAG, add copies o€ originating from all statem
such tham reaches by a sequence afedges.
Remove thes-edges that connect strongly con-
nected components.

Remove unreachable states and edges from the
graph.

> = {ID|Br OV, v contains a call labeled D
gy = Vo is the unique CFG entry
F = {v|vis a CFG exit

s & tifno call ats

6= O
s~ tUEL > t if call labeled ID ats

To reduce space requirements, each NFAgis
reduced and minimized. The classieakduction algo-

The resultant graph is the reduced automaton (Figure 6).
Using standard algorithms and data structures, ssur
reduction procedure runs in linear time.

Automaton minimization recognizes equivalent
states, where equivalence indicates that all sequences of
symbols accepted following the states are identical.
Such states are collapsed together, reducing the overall
size and complexity of the automaton. A¥(n log n)
algorithm exists to minimize deterministic automata

rithm simultaneously determinizes the automaton, a'}18], but it is not easily abstracted to an NFA. Our proto-

exponential process [19]. We develop a linear tiene
reduction algorithm, shown below, thdbes not deter-

type uses a®(n?) version of the algorithm suitable for
an NFA.

minizethe automaton. The algorithm recognizes that a



3.3 From Local Automata to an Interprocedural
Automaton

Constructing an Interprocedural NFANe extend the
notion of a single procedure NFA model to a model of
the entire application. The local automata are composec
to form one global NFA bycall site replacementWe
replace every edge representing a procedure call witt
control flow through the automaton modeling the callee,
a common technique used elsewhere to construct systet
dependence graphs [20] and also used by Wagner an
Dean in their work [36,37]. clos

write,

1. Add aneedge from the source state of the call
edge to the entry state of the called automaton.
2. Add eedges from every final state of the called

automaton back to the destination state of the call Figure 8: PDA Model. Thee-edges into and out of a called
edge. automaton are paired so that only a return edge corresponding

3. Remove the original call edge. to the edge traversed at call initiation can be followed.

Where there was an edge representing a called functiopushes the return state identifier onto the PDA stack,
control now flows through the model of that function. just as the executing program pushes the return address
Recursion is handled just as any other function call. Calbnto the run-time stack. Theedges returning control
site replacement reintroducegdges, so the automaton flow from the callee pop the identifier from the PDA
is reduced as before. Figure 7 presents the final automatack, mirroring the application’s pop of the return
ton, withoute-reduction for clarity. address from its run-time stack. Such a pop edge is tra-
There is no replication of automata. Call site versed only when the identifier on the edge matches the
replacement links multiple call sites to the same procesymbol at the top of the stack. The identifiers on ¢he
dure to thesamelocal automaton. Every final state of edges define matched sets of edges. Only return edges
the called automaton hasedges returning to all call that correspond to a particular entry edge may be tra-
sites.Impossible pathexist: control flow may enter the versed when exiting the called automaton. Since a PDA
automaton from one call site but return ongedge to  tracks this calling context, impossible paths cannot
another (Figure 7). Such behavior is impossible in actuagxist.
program execution, but a malicious user manipulating  We link local automata using modified call site
the executing program may use such edges in the modeéplacement:
as an exploit. In applications with thousands of proce-

dures and thousands more call sites, such imprecisio H ¢ I ed
must be addressed. the target of a non-system call edge.

Constructing an Interprocedural PDAntroduction  -Of €ach non-system call edge, do steps 2, 3, and 4:
of impossible paths is a classical program analysis prop2: Add ane-edge from the source state of the edge to
lem arising fromcontext insensitivanalysis (see e.g. the entry state of the destination automaton. Label
[28]). A push-down automaton eliminates impossible.  the&edge withpush X whereX is the identifier at
paths by additionally modeling the state of the applica (e target of the call edge.
tion's run-time stack. An executing application cannot/3: Add ane-edge from each final state of the destina-
follow an impossible path because the return site loca  tion automaton to the target of the call edge. Label

1. Uniquely mark each local automaton state that is

tion is stored on its run-time stack. A PDA @ntext eache-edge withpop X whereX is the identifier
sensitive including a model of the stack to precisely from step 2. -
mirror the state of the running application. 4. Delete the original call edge.

This is an interprocedural change. We construct .
local automata as before. Thedges added during call Formally, let ~the interprocedural PDA be

: . X . P =(QZT,d0qyZyF), whereQ is the set of stateg,
site replaceme_nt_, though, now conta’m an Identlfleris the input alphabet] is the stack alphabed is the
uniquely specifying each call edge’s return state

. N . “transition relationgg is the unique entry stat&, is the
((:le?uers 8e). tlcz)afhhe_egr?t? I'nslglg tgf tsh%urccaenggaafstgcr:g?oninitial stack configuration, an# is the set of accepting
9 y states. Given local NFA models, = (Q;, Z;, 3, qq ;, F;)



for the procedures, the PDR for the program is given
by:

Q:EilQi
=[5

I = {ID | ID is the destination identifier of a call edge

do = Vo Of the initially executed automaton

Z,=10

F = F, are the final states of the initially executed
automaton

5a,a¢) = (pe) if O st.qsp 03, foraa
remote call

5(a, & €) = (p, ID) if O,r st.q3r 03, wherea
is a procedure call with = q, , ands identi-
fied byID

(. & ID) = (p,€) if O,r st.r 3 p 08, wherea
is a procedure call withn 0 F,  arglis identi-
fied byID

The initially executed automaton, here denoted\gyis

that modeling the function to which the operating sys-

tem first transfers control, e.gstart  Or main .
Unfortunately, a PDA is not a viable model in an

operational setting. In a straightforward operation of the

automaton, the run-time stack may grow until it con-
sumes all system resources. In particular, the stack si
is infinite in the presence of left recursion. To counter

left recursion challenges, Wagner and Dean operate th

PDA with an algorithm similar to thgost* algorithm

used in the context of model checking of push-down

systems [10]. They demonstrate the algorithm to be pro
hibitively expensive [36,37]. Addressing imprecision
requires a more reasonable approach.

3.4 Optimizations to Address Sources of Impre-
cision

iy

optimizations to reduce the effect of return edges upon
the paths in the model.

Dead Automata RemovaA leaf automatonis a
local automaton that contains no function call edges.
Any leaf automaton that contains no remote system call
edges is dead—it models no control flow of interest. Any
other local automaton that contains a call edge to the
dead leaf may replace that call edge withegedge. This
continues, recursively, backward up the call chain. To
eliminate impossible paths introduced by linking to a
dead automaton, we insert this dependency calculation
step prior to call site replacement.

Automata Inlining Recall that in call site replace-
ment, all calls to the same function are linked to the
same local automaton. Borrowing a suitable phrase from
compilers, we usautomata inliningto replace each call
site with a splice to ainiquecopy of the called automa-
ton. Impossible paths are removed from this call site at
the expense of a larger global automaton. In theory, the
global automaton may actually be smaller and less
dense because false edges introduced by impossible
paths will not be present, however we have generally
found that the state space of the automaton does
increase significantly in practice.

Single-Edge Replaceme#n inlining special case,
single-edge replacement is a lightweight inlining tech-
nigue used when the called automaton has exactly one
edge. The function call edge is simply replaced with a
py of the edge in the callee. This is inexpensive inlin-
ing, for no states nog-edges are added, yet the model
%ealizes inlining gains.

Bounded Stack ModdRevisiting the idea of a PDA
model, we find that both the problems of infinite left
recursion and, more generally, unbounded stacks may
be solved simply by limiting the maximum size of the
run-time stack. For sombB, we model only the topN
elements of the stack; all pop edges are traversed when
the stack becomes empty. The state space of the run-
time automaton is now finite, requiring only finite mem-
ory resources. Correspondingly, the language accepted

Imprecisions in the models arise from impossible pathsby the bounded-stack PDA is regular, but more closely

context insensitive analysis, and malicious argumeﬂﬁpproximates a context-free language than a regular
manipulation. We develop several optimizations that targa_

get these particular sources of imprecision while main-

T e Unfortunately, a bounded stack introduces a new
taining efficiency.

problem at points of left recursion. Any recursion

3.4.1 Impossible Paths deeper than the_ maximum helgh_t of .the sFack destroys
] ) ) ~all context sensitivity: the stack first fills with only the

Discarding push-down automata as not viable requiregecyrsive symbol; then, unwinding recursion clears the

impossible paths to be readdressed. Impossible path§ack. Al stack symbols prior to entering recursion are

arise at the final states of automata that are spliced intgyg;.

multiple call sites. Thes-return edges introduce diver- Hybrid Model This recursion effect seems to be the

gent_ cor_wtrol flow where no such divergence exists in theopposite of what is desired. For many programs, recur-
application. We have developed several NFA modelgjo wpically involves a minority of its functions. We



All call sites are thus differentiated. Two separate
calls to the same function now appear as calls to differ-
ent functions. The random names label edges in the
automaton and serve as the input symbol at model run-
time. Renaming reduces non-determinism, for the
model knows precisely where the program is in execu-
tion after every received call. Comparing Figure 9 with
Figure 6, we see that the automaton fiztin becomes
fully deterministic with renamed call sites.

This is an alphabet change, moving from symbols
indicating call names to the potentially larger set of
symbols defining individual call sites. An attacker must
specify attacks given this randomly generated alphabet,
trzpus requiring analysis to recover the transformations.
Further, only remote calls that are actually used in the
program may be used in an attack. Renamed calls are

consider that it may be more precise to discard recursivéJenerated from call sites, blocking from use any unused
Y P Femote call stub still linked into the application.

symbols rather than symbols prior to entering recursion. . . .
y y b 9 Call site renaming produces equivalent but less

Our hybrid model uses both NFA and PDA edges durmghuman-readable program text, acting as a simplistic

interprocedural construction to accomplish this. Call site b tion techni 81 The checkin nt main
replacement uses simpkedges when the procedure obfuscation technique [8]. The checking age a

call is on a recursive cycle. A stack symbol is used only;[/"’il('jnS Ithf trair;sformratm:nrsri reﬁO\I/eriy b%/ ainmdailllcl[ouslill(n(lil-
when a call is not recursive. Recursion then adds nor rrl:at qu:J ne?n P Ogivan tr? ayits xto £ th ca e” i Et?
symbols to the PDA stack, leaving the previous context c1Ot€ call names given the context ot the ca N

sensitivity intact. As in the bounded-stack PDA, the program. Since We can rewrite the binary code, further
hybrid automaton defines a regular language that Over(_)bfuscatlon techniques are applicable: arguments may

approximates the context-free grammar accepted by ge reorde_zred and mixed with dummy arguments on a
true PDA per-call-site basis, for example. More general methods

to obscure control flow are similarly possible, although
3.4.2 Context Insensitivity we have not pursued such techniques.

Regardless of the technique used to construct the inteﬁ -tf?e (r)ergﬁztaeasr?re?l{ t?gtakrgf/.ezl.tr?éeifnenct;;bﬁlci)tmzlfe;-
procedural model, the analysis basis for all local models Y 9 P P y

is context insensitive. We take all control flow paths asSpeCIfIC class of obfuscating transformations [5]. They

equally likely irrespective of the previous execution flow ;jefmen an robfu:c?:]et: prrc1)gbram ?ns at \:jlr:)ual :I?C;:mt(h’
and do not evaluate predicates at points of divergenceiE'f’ a ytpd0per yr r(; can elco bpu c m y? §¥r mg the
This straightforward analysis leads to a degree of nonoPruscated program can aiso be computed 1ro €
determinism in the local automata that we seek tolnput—output behavior of the program. In contrast to

reduce. Reducing non-determinism decreases the size Bl?eir work, we require that it is computationally hard for

the frontier of possible current states in the automaton " adversary to recover the original system calls corre-

run-time. There are, in turn, fewer outgoing edges frong‘:;?:)r:gtgz tggvr:rréz?eg Ciﬁ\l/lz,rtlI'?H,eltr:asn;cr)nr?npu:‘i?gt}ilrlly
the frontier, improving efficiency and precision. Y 9 '

. : . Hence, our obfuscation requirement is much weaker
Renaming During program analysis, every remote

call site is assigned a randomly generated name Wthan the "virtual blackbox’ requireme_nt_ imposed 'by
produce a stub function with this random name ihatgarak et. al. However, we are not clalmlng' theoretical
behaves as the original call and rewrite the binary pro_guarantees of the strengt.h of our ob fuscatpn transfor-

T mation but merely observing that the theoretical results
gram so that the randomly named function is called.

. . resen Barak et. al. do not directl ly in our
That is, rather than calling a remote system call stutp esented by Barak et. al. do not directly apply in ou

. context.
named, saywrite , the call is to a stub namedogs . We

are essentially passing all call site names through a ones— steer:1|I cC:}I"sS tlhnaste;::::sgtem:g %?J:Is_:uerg%nrsen;?t?he
time encryption function. The key is stored at the CheCk_c%eckin a0ent—provides similar effecfs We place the
ing agent (on the submitting machine), which translates 9 ag provide - We p
the random name back to the original call name beforeca“S within the application so that each provides execu-

execution.

Figure 9: The automaton for main after call site renaming.
Edges labeled with function calls internal to the application
are not renamed, as these edges are splice points for call si

replacement.



tion context to the checking agent, again reducing non- sethi %hi(Dnone), %01
determinism.

For example, null calls may be placed immediately or %01, %lo(Dnone), %01
following each call site of a frequently called function. _
Recall that we introduce impossible paths during call call write

site replacement, and specifically where we link the final Figure 10: Register Slicing.We iterate backwards through
states of a local automaton to the function call return i instructions that modify registe1 prior to the call site.
states. Inserting the null calls at the function call return
fgti Srndlsziltugwiihsz ;Qllekoe(:grrt])elggszgnosﬁlO'?r:)é tshemggﬁnstructions that do not affect the valu@1are ignored.

path y YMOOL 1, this caseDnone is a static memory location indicating
corresponding to the null call at the true return site will

be transmitted. The other impossible paths exiting fro where in the data space the string febren * resides.
' P P 9 MOMpe recover the string by first simulating the instructions
the called automaton are broken.

h . . | . ”sethi and or in software to compute the memory
There is a run-time element to renaming and nullyyyress and then reading the string from the data space.
call insertion. While reducing non-determinism, the

. . A similar analysis is used to determine possible tar-
possible paths through the automaton remain unchange y P

. ets of indirect calls. Every indirect call site is linked to
(a_lthough they are labeled dlfferen'gly). To an att.aCkerevery function in the program that has its address taken.
with knowledge of the transformations, the available

We identify such functions by slicing backward on the
?egister written at every program point to determine if
the value written is an entry address. Our register slicing

f th Il stream before any remot I n . . :
of the call stream before any remote calls occa is intraprocedural, making this a reasonable computa-
attacker who assumes control after one or more remot on

callswill be restricted because operation of the modelto ™~
that point will have been more precise.

those in the originalprovided the attacker takes control

3.5 Unresolved Issues
3.4.3 Argument Manipulation Dynamic Linking A dynamically linked application

A remote system call exists within a calling context thatloadf]_ shgred_ object dcccj)de ava|IabIe| gn tuehremo(jte
influences the degree of manipulation available to gnachine Into its own address space. Although this code

malicious process. For example, at a call siteden, a iIs non-local, we can fairly assume that the remote

malicious process could alter the name of the file passemaCh'ne provides sFandard I|br§r|es to ensure correct
as the first argument to the call. A model that checksexecution of remote jobs. Analysis of the local standard

only the names of calls in the call stream would a(:(:ep1!|brar|es would then provide accurate models of dynam-

the open call as valid even though it has been mali/c@lly linked functions.

ciously altered. The context of the open call, however,  Although straightforward, we have not yet imple-
may present additional evidence to the checking agerfi?énted support for dynamically linked applications.

that enables such argument modifications to be detecteg®me libraries on Solaris 8, such &sslso , use
or prevented. indirect calls extensively. As we improve our handling

Argument RecoveryAs local automata are con- of indirect calls, we expect to handle these applications.

structed, we recover all statically determined arguments  Signal Handling During execution, receipt of a sig-
by backward slicing on the SPARC argument registersn@l will cause control flow to jump in and out of a signal
In backward register slicingwe iterate through the pre- handler rega_rqiless of the previous execut!on state. This
vious instructions that affect a given register value [34].Ntry and exitis undetectable to the checking agent save
Essentially, we are finding the instructions that comprisé€ alarms it may generate. As we already instrument
an expression tree. We simulate the instructions in softthe binary, we expect to insert null calls at the entry and
ware to recover the result, used here as an argument to®it Points of all signal handlers to act as out-of-band
call. We successfully recover numeric arguments knowrpofuflcatlons of signal hancﬂer activity. These instrumen-
statically and strings resident in the data space of théations have not yet been implemented.
application. The checking agent stores all recovered Multithreading Both kernel and user level thread
arguments so that they are unavailable for manipulatiorfWaps are invisible to the checking agent; thread swaps
In Figure 10, the backward slice of registes1 at will likely cause the run-time model to fail, and this
the point of the second call terite  in function main remains an area for future research. User level thread

iterates through the two instructions that affect the valueScheduling would allow instrumentation of the schedul-
of %o1 Only the emphasized instructions are inspectediNg routines so that the checking agent could swap to the
corresponding model for the thread. A kernel scheduling



monitor would require kernel modifications and is cur- original system call proceeds in the rewritten applica-
rently not under consideration. tion.

Interpreted LanguagesPrograms written in lan- Our analyzer and simulated execution environment
guages such as SML [3] and Java are compiled into amun on a Sun Ultra 10 440 Mhz workstation with 640
intermediate form rather than to native binary code. ToMb of RAM running Solaris 8. To simulate a wide-area
execute the program, a native-code run-time interpretenetwork, we add a delay per received remote system call
reads this intermediate representation as data and exeguivalent to the round trip time between a computer in
cutes specific binary code segments based upon thigladison, Wisconsin and a computer in Bologna, Italy
input. Binary code analysis will build a model of the (127 ms). We do not include a delay for data transfer, for
interpreter that accepts all sequences of remote calls thate do not statically know what volume of data will be
could be generated anycompiled program. A precise transferred. Null calls require no reply, so the delay
model for a specific application can be built either with added per null call is the average time to ealld with a
knowledge of the intermediate representation and th&0 byte buffer argument (1f). During evaluation, the
way it is interpreted by the run-time component or by collection of Solaris libc kernel trap wrapper functions
partial evaluation of the interpreter [21]. However, if the defines our set of remote system calls.
program is compiled into native code before execution,  We present the analysis results for six test programs
as is common in many Java virtual machine implemen<{see Table 1 for program descriptions and workloads
tations [33], our techniques could again be used to conand Table 2 for statistics). All workloads used default

struct program-specific models of execution. program options; we specified no command line
switches.
4 Experimental Results As we have not implemented general support for

dynamically linked functions, we statically link all pro-

andefficiency A precise model is one that incorporates grams. However, several network libraries, such as

all sequences of calls that may be generated by an appliesovso . can only be dynamically linked on

cation but few or no sequences that cannot. An ef'ficien?Olaris machines. We analyze these libraries using the

model is one that adds only a small run-time overhead>2M€ techniques as for an application program, but store

Only efficient models will be deployed, and only precise the generated automata for Iqter use. When our analysis
models are of security interest. of a program such as procmail or finger reveals a call to

This section looks first at a prototype tool we used dynamically linked function, we read in the stored

. . local automaton and continue. We currently ignore the
to evaluate our techniques and models. We examinge . : . : . )

. S indirect calls in dynamically linked library functions
metrics that measure precision and propose a method {0 . :
. . . unless the monitor generates an error at run-time at the
identify unsafe states in an automaton. Our tests show

that although null call insertion markedly improves themdwect call location.

precision of our models, care must be used so that thgf 2 Metrics to Measure Precision and Efficiency
additional calls do not overwhelm the network. We

finally examine optimizations, including renaming, e wish to analyze both the precision of our models and
argument recovery, and stack abstractions that improv&€ efficiency with which the monitor may operate them.

We evaluate our techniques using two critepgecision

the quality of our models. Precision dictates the degree to which an adversary is
limited in their attacks, and thus the usefulness of the
4.1 Experimental Setup model as a counter-measure. Efficient operation is a

. . . requirement for deployment in real remote execution
We implemented an analyzer and a run-time monitor for "
. . . environments.
a simulated remote execution environment to test the . .-
For comparison, we measure automaton precision

precision and efficiency of our automaton models. The . W 4D . b hi
analyzer examines the submitted binary program an(?smg agner and Deaniynamic average branching

outputs an automaton and a modified binary. The autom_actormetric [36,37]. This metric first partitions the sys-

aton is read and operated by a stand-alone process, (M calls into two sets, dangerous and safe. Then, during

monitor, that acts as the checking local agent, communi-&PPlication execution and model operation, the number
cating with the modified program using message-passgf dangerous calls that would next be accepted by the

ing inter-process communication. The monitor is not aanth}I_ IS counte(cji foIIov;/rl]ng eacg opfratlon.t_The tot;:
RPC server and only verifies that the system callcOUNt IS averaged over the number ot operations on the

encountered by the program is accepted by the model ﬁnodel. Smaller numbers are favorable and indicate that
the monitor successfully updates the automaton, th&" adversary has a small opportunity for exploit.



Program Description Workload
entropy Calculates the conditional probabilities of papkempute one conditional probability from 100,900
header fields from tcpdump data. data records.
randoml Generates a randomized sequence of numbersRendomize the numbers 1-999.
three seed values.
gzip Compresses and decompresses files. Compress a single 13 Mb text file.
GNU finger Displays information about the users of a compyter. Display information for three users, “bart, “jha,”
and “giffin.”
finger Displays information about the users of a computer. Display information for three users, “bart,] “jha,”
and “giffin.”
procmail Processes incoming mail messages. Process a single incoming message.
Table 1: Test program descriptions and test workloads.
Program Source Lines of Code Compiler Ngmber <_)f Func- Instl.'uctions
Language (Source) tions (Binary) (Binary)
entropy C 1,047 gcc 868 58,141
random1 Fortran 172 fo0 1,232 133,632
gzip C 8,163 gcc 883 56,686
GNU finger C 9,504 cc 1,469 95,534
finger C 2,456 gcc 1,370 90,48¢
procmail C 10,717 cc 1,551 107,16

Table 2: Test programs statistics Source code line counts do not include library code. Statistics for the binary programs include
code in statically linked libraries.

Program | No model Sl % increass NuII_caIIs % increass UL Fa"S % increass UL Fa"S % increase
calls fan-in 10 fan-in 5 fan-in 2
entropy 208.33 208.48 0.1 % 208,50 0.1% 20841 0.0% 28y.27 3719 %
gzip 81.49 81.61 0.1 % 82.16 0.8 % 82.p6 0.99 67547 728.9 %
random1 9.68 9.69 0.1% 10.80 1159 10192 12.8% 10.68 104 %
GNU finger 55.22 55.30 0.1% 5546  0.4% 56)23 1.8% 55.50 05 %
finger 30.23| 30.25 0.1% 30.28 0.2 % 329 78% 33.72 11.6 %
procmail 20.90, 21.00 0.5% 21.04 0.7 % 2108 09% 21.00 0.6 %

Table 3: NFA run-time overheads.Absolute overheads indicate execution time in seconds.

Our efficiency measurements are straightforwardlyzer includes renaming, argument recovery, dead
Using the UNIX utility time , we measure each applica- automaton removal, and single-edge replacement. Using
tion’s execution time in the simulated environment with- the NFA model, we compare the results of several null
out operating any model. This is a baseline measureall placement strategies against this baseline and con-
indicating delay due to simulated network transit over-sider the trade-off between performance and efficiency
head, equivalent to a remote execution environment'slue to the null call insertion.
run-time conditions. We then turn on checking and vari-  We use four different null call placement strategies.
ous optimizations to measure the overhead introduceéirst, no calls are inserted. Second, calls are inserted at
by our checking agent. We find the NFA model efficient the entry point of every function with fan-in of 10 or
to operate but the bounded PDA disappointingly slow.more—that is, the functions called by 10 or more other
However, the extra precision gained from inclusion offunctions in the application. Third, we insert calls at the
null calls into the bounded PDA model dramatically entry point of every function with a fan-in of 5 or
improves efficiency. greater. Fourth, we instrument functions with a fan-in of

2 or more. We have tried three other placement strate-
4.3 The NFA Model gies but found they occasionally introduced a glut of

We evaluate the models of the six test programs withnull calls that would overwhelm the network: adding
respect to precision and efficiency. Our baseline anacalls to all functions on recursive cycles; to all functions



_ Program NuII_caIIs Null (_:alls Null (_:alls

g 12 ] NFA Precision fan-in 10 fan-in 5 fan-in 2

& 10- entropy 0.0 0.0 1198.3

2 g gzip 3.9 9.3 4350.5

5 E random1 223.9 296.6 314.8

g 67 GNU finger 09 83 129

% 4- finger 0.8 144.0 270.9

2 2 procmail 4.1 12.6 17.7

S o L[ [lm= I_i—\* i L I L Table 4: Null call bandwidth requirements, in Kbps.The

. %, programs used NFA models with baseline optimizations.
Q)[‘/.O,OJ/ 08/10 %O'O/IZZG/V(/ f//zg//?g& ,O/.OO/)?®./

O No null calls time resulting from operation of models with null calls.
= Null calsin functions with fan-in >= 10 Table 4 lists the bandwidth requirements of each inser-
= Null callsinfunctionswith fan-in>= 5 tion level for null calls that each consume 100 bytes of
m Null callsin functions with fan-in >= 2 bandwidth.

* Value < 0.001 . .
ue We make two primary observations from these

Figure 11: NFA precision.Models included all baseline results. Firstour NFA model is incredibly efficient to
optimizations. operate at run-time when no null calls have been
inserted Second,nserting null calls in functions with
whose modeling automaton’s entry state is also a finafan-in 5 or greater is a good balance between precision
state, ensuring every call chain generates at least or@2in and additional overhead in our six test programs
symbol; and to functions with fan-in of 1 or more. As Unfortunately, two programs require moderate bandwith
we expected, this sequence of greater instrumentatiofit this instrumentation level. We believe the varying
increases the precision and quality of the automatdandwidth needs among our test programs are due in
while negatively impacting performance as the extrapart to our naive null call insertion strategies. We expect
calls require additional network activity. More gener- that an algorithm such as that developed by Ball and
ally, the problem of selecting good null call insertion Larus [4] will reduce bandwidth requirements and
points is similar to that of selecting optimal locations to improve consistency among a collection of programs.
insert functions for program tracing, a topic of previous o
research [4]. We will investigate the use of such selec4.4 Effects of Optimizations
tion algorithms for our future implementations. We analyzed procmail further to evaluate renaming,
We found that null call insertion dramatically argument recovery, and our stack abstractions. We did
improved precision. Figure 11 shows the dynamic avernot analyze automaton inlining here, for it surprisingly
age branching factor for the six test programs at each oproved to be an inefficient optimization. Inlining added
the null call placement strategies. Instrumenting at thesignificant overhead to model construction but delivered
maximum level improves precision over non-instru- little gain in precision. Similarly, we found the run-time
mented models by an order of magnitude or more. Evertharacteristics of the hybrid model to be nearly identical
though null call insertion adds edges to the local automio those of the bounded PDA. We will not examine
ata, we observe that the number of edges in the finaihlining or the hybrid model in any greater detail.
automaton are usually significantly lower, indicating To see the effects of renaming and argument recov-
that call site replacement introduces fewer impossibleery, we selectively turned off these optimizations. The
paths. The edge count in procmail’s model drops by argraph in Figure 12 measures average branching factor
order of magnitude even though the state counidependent on use of call site renaming and of argument
increases modestly. We believe these results demonecovery in the program procmail. As we expected, both
strate the great potential of introducing null calls. renaming and argument recovery reduced the impreci-
Although unfortunate, null call insertion has the sion in the model. The reduction produced by renaming
expected detrimental effect on application run-times.is solely due to the reduction in non-determinism. Argu-
Each null call encountered during execution dropsment recovery reduces imprecision by removing argu-
another call onto the network for relay to the checkingments from manipulation by an adversary. Renaming
agent. The application need not wait for a response, buand argument recovery together reduce imprecision
each call is still an expensive kernel trap and adds to netmore than either optimization alone.
work traffic. Table 3 shows the additional execution



.. this transition value is an important area for future
NFA Precision - research.

Effects of Optimizations (procmail)
4.5 Discussion on Metrics

'\‘-\-.\. Measuring precision with the dynamic average branch-
'\-\.\. ing factor metric ignores several important consider-

N ations:

- —* 1. An attack likely consists of a sequence of system
calls and is not a single call in isolation. A call may
be dangerous only when combined with other calls.

. . . . 2. The attacker could steer execution through one or

B - - " more “safe” system calls to reach a portion of the
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0 /Vo,7 R, ) @% mo_del that accepts an attack sequence. Pgrhaps a
S e G %, typical run of the program does not reach this area

—e— Nonull calls "o of the model, so the dangerous edges do not appear
—a— Null callsin functions with fan-in >= 10 in the dynamic average branching factor. Such safe
—— Null callsin functions with fan-in>=5 edges should not cover the potential for an attack

+— Null callsin functions with far-in >= 2 downstream in the remote call sequence.

Figure 12: Precision improvements with renamed call sites e do not see any obvious dynamic metric that easily
and argument recovery. overcomes these objections. The straightforward static
analogue to dynamic average branching factastédic
At first glance, it may seem counter-intuitive that @verage branching factothe same count averaged over
argument recovery should reduce imprecision to dhe entire automaton with all states weighted equally.
greater degree than renaming. Argument recovery is!n€ prior complaints remain unsatisfied.
after all, a subset of renaming; static arguments distin- We propose a metric that combines static and
guish the call site. However, an attacker cannot manipudynamic measurements. Ouaverage adversarial
late a recovered argument, so system calls that wer@pportunitymetric requires two stages of computation:
dangerous with unknown arguments become of ndirst, the automaton modeling the application is com-
threat with argument recovery. posed with a set of attack automata to identify all model
We analyzed the bounded PDA model for procmail States with attack potential; then, the monitor maintains
with stack bounds from 0 to 10. Figure 13 shows the@ count of the dangerous states encountered during run-
average branching factors of our PDA at varying levelstime. "Attack potential” indicates a known attack is pos-
of null call instrumentation and bounded stack depth.Sible beginning at the current stateaira state reach-

Figures 14 and 15 show the run-time overheads of thes@bleé from it We are locating those positions in the
models at two different time scales. model where an adversary could successfully insert an

Null call insertion has a surprising effect on opera- attack and counting visits to those states at run-time.

tion of the bounded stack models. The added precision . . Lo
of the null calls actually decreases run-time overheads? Comparison with Existing Work

We were surprised to discover cases wteebounded-  \we measured dynamic average branching factor and
stack PDA with null call instrumentation was nearly as execution overhead for comparison with the earlier work
efficient to operate as an NFA modélut at a higher  of \agner and Dean. We compare only the NFA model,
level of precision. Observe that higher levels of null call 55 it is the only model our work has in common with
instrumentation actually reduce the execution times, agheir own. They analyzed four programs; two of them,
operation of the models becomes more precise. procmail and finger intersect our own experimental set.
Increasing the stack size produces a similar effectaAithough we do not know what version of finger Wag-
The plOtS for instrumentation in functions with fan-in of ner and Dean used, we Compared their numbers against
5 in Figure 14 and in functions with fan-in of 10 in our analysis of GNU finger. We used call site renaming,
Figure 15 show a common pattern. Up until a stackargument recovery, and single-edge replacement. The
bound of size 6, the model’s efficiency improves. More results for Wagner and Dean include argument recovery.
execution context is retained, so fewer paths in thQThey have no ana|ogue to renaming or edge rep|ace-
model are possible. As the state grows past a bound of gnent). On the two programs, we observed a significant
the cost of increased state begins to dominate. Findingiscrepancy between their reported precision values and
those we could generate. Upon investigation, it appears



PDA Precision - Effect of Stack Depth (procmail)
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Figure 13: Effect of stack depth and null call insertion upon PDA precisionBaseline optimizations were used.
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Figure 14: Effect of stack depth and null call insertion upon PDA run-time overhead, 7 second time scaBaseline
optimizations were used. This time scale shows trends for null call insertion for fan-ins of 5 and 2.
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Figure 15: Effect of stack depth and null call insertion upon PDA run-time overhead, 700 second time scal€he source data
is identical to that of Figure 14. This time scale shows trends for no null call insertion and insertion for fan-in of 10.
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to be caused by the differences in library code between & 4] 8 4]
our respective test platforms. Wagner and Dean ana- o | f,_) |
lyzed programs compiled on Red Hat Linux, but we use g Z—H 5 2
Solaris 8. Solaris is an older operating system and > ]l [+ = e
i_ncludes more e>§tensive library cc_)de in its star_ldard < Finger Procmail Finger Procmail
libraries. Solaris libc, for example, is structured differ-
ently than glibc on Linux and includes functionality not =3 Full Solarislibe = Our NFA Model
found in glibc. To see the differences, compare == glibc Emulation mm \Wagner and Dean
Figure 17, the automaton for the socket system call in ™= Wagner and Dean * Value<=0.01

glibc, with Figure 16, the automaton for the same func- * Vdue<=001

tion in Solaris libc. In this case, the Solaris socket func- Figure 18: Comparison of our baseline NFA models with

tion includes code maintaining backwards compatibility the prior results of Wagner and Dean.

with an earlier method of resolving the device path for a

networking protocol. While socket has the greatest dif-jgn¢ fnction in glibc. We instrumented the code of the
ference of the functions we have inspected, we havyenrified functions so that each generates a remote sys-
found numerous other library functions with a similar o call event in a manner similar to glibc. As we

gharacteristic. Simply, Linux and Solaris h_ave diﬁere”texpected, the average branching factor of each model
library code and we have found the Solaris code to b%ropped significantly (Figure 18). Because we inten-
the more complex. _ o tionally instrument the library functions incorrectly, the

library code base, we identified several functions inpejieve the change in precision values reinforces our
Solaris libc that differed significantly from the equiva- pypothesis.



Our model operation improves significantly over techniques from this area, such as replication, are useful
the work of Wagner and Dean. Figure 18 also showsn our setting.
overheads in each of the two programs attributed to
model operation. Our gain is partly due to implementa-7 Future Work

tion: Wagner and Dean wrote their monitor in Java. OurW i . b f fronts. F
code runs natively and is highly efficient, introducing ' c (t:on Inue progkr_esslng on adnum _e; 0 tror][ S- t;)re-
only negligible delay. most, we are working to expand our infrastructure base

of static analysis techniques to include points-to analy-

sis for binaries and regular expression construction for
6 Related Work arguments. Standard points-to analysis algorithms are
There are three areas with techniques and goals similatesigned for a higher-level source language and often
to those considered in this paper: applications of staticely on datatype properties evident from the syntax of
analysis to intrusion detection, statistical anomaly-the code. We will adapt the algorithms to the weakly-
detection-based intrusion detection, and secure agentriyped SPARC code. For arguments, we envision using
We compare the techniques presented in this paper withtronger slicing techniques to build regular expressions
the existing research in the three areas. for arguments not statically determined. Better code

Our work applies and extends the techniquesanalyses will produce more precise models.
described by Wagner and Dean [36,37]. To our knowl-  We have two research areas targeting run-time over-
edge, they were the first to propose the use of static anahead reductions in our complex models. To reduce the
ysis for intrusion detection. However, they analyzed Cimpact of null call insertions, we will investigate adapta-
source code by modifying a compiler and linker to con-tions of the Ball and Larus algorithm to identify optimal
struct application models. Our analysis is performed orcode instrumentation points for minimum-cost code
binaries, independent of any source language or comprofiling [4]. To reduce the overhead of our PDA mod-
piler, removing the user’s burden to supply their sourceels, we will collapse all run-time values at the same
code. We also propose several optimizations and proautomaton state into a single value with a DAG repre-
gram transformations that improve model precision andsenting all stack configurations. When traversing outgo-
efficiency. We believe the optimizations proposed in thising edges, a single update to the DAG is equivalent to an
paper are important contributions and can be used bindividual update to each previous stack. Our hope is to
other researchers working in this area. make our complex and precise models attractive for real
There is a vast body of work applying dynamic environments.

analysis to intrusion detection. In statistical anomaly-  We will add general support for dynamically linked
detection-based intrusion detection systems such aapplications and signal handlers to our analysis engine,
IDES [9], a statistical model of normal behavior is con- enabling analysis of larger test programs.
structed from a collection of dynamic traces of the pro- To better measure the attack opportunities afforded
gram. For example, a sequence of system calls, such @8/ our models, we will implement the average adversar-
that produced by the utilitiesrace andtruss , can be jal opportunity metric and create a collection of attack
used to generate a statistical model of the program (segutomata. Having an accurate measure of the danger
Forrest et al. [12]). Behaviors that deviate from the stainherent in an automaton better enables us to develop
tistical model are flagged as anomalous but are not gtrategies to mitigate the possible harm.
guarantee of manipulation. Theoretically, we can use a
statistical program model in our checking agent. Practi-Acknowledgments
cally, however, these models suffer from false alarm , ) ,
rates: i.e. they reject sequences of system calls that refiVé thank David Wagner for patiently answering ques-
resent acceptable but infrequent program behaviofions about his work and for prqwdlng h_|s s.pecn‘|cat|on
Human inspection of jobs flagged as anomalous is inapgf dangerous system calls. David Melski pointed out the
propriate in our setting so we did not pursue this'levance of the Ball and Larus research [4]. We had
approach. many insightful discussions with Tom Reps regarding

The literature on safe execution of mobile agents orStatic analysis. Hong Lin initially researched solutions

malicious hosts (also known as secure agentry) is vast® the remote_ code manipulation vulnerability. Glenn
( gentry) Ammons provided helpful support for EEL. We thank

The reader is referred to the excellent summary on vari-h h b f the WISA it t Wi
ous techniques in the area of secure agentry b); € other meémbers of the WISA Security group at Wis-

Schneider [31]. We are currently exploring Whetherconsin for their valuable feedback and suggestions.
Lastly, we thank the anonymous referees for their useful

comments.



Avalilability

Our research tool remains in development and we are
not distributing it at this time. Contact Jonathon Giffin,

giffin@cs.wisc.edu

, for updates to this status. [11]
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	Abstract
	In the Internet, mobile code is ubiquitous and includes such examples as browser plug-ins, Java a...
	Before the job is submitted for remote execution, we construct a model of the user’s binary progr...
	1 Introduction
	Figure�1: Remote execution with system calls being executed on home (local) machine.
	Figure�2: Grid environment exploit. A lurker process attaches to the remote job, inserting code t...

	2 Threats
	Figure�3: Our static analyzer reads a binary program and produces a local checking agent and a mo...

	3 Generating Models Using Static Analysis
	Figure�4: Code Example. (a) This C code writes to stdout a command line argument as text or the s...
	Figure�5: Control Flow Graph for main. Control transfers in SPARC code have one delay slot. Outgo...
	1. A control flow graph (CFG) is built for each procedure in the binary. Each CFG represents all ...
	2. We convert the collection of CFGs into a collection of local automata. Each local automaton mo...
	3. We compose these automata at points of function calls internal to the application, producing a...
	Figure�6: Local Automata. The local automata for each of the three functions given in Figure�4 af...

	3.1 From Binary Code to CFGs
	3.2 From CFGs to Local Automata
	Figure�7: Final NFA Model. The automaton produced following call site replacement. e-reduction ha...
	1. Abstract the automaton to a directed graph.
	2. Using only e-edges, calculate the strongly connected components of the graph.
	3. All states in the same strongly connected component may reach any other by a sequence of e-tra...
	4. For all non-e-edges e originating at a state n in the DAG, add copies of e originating from al...
	5. Remove the e-edges that connect strongly connected components.
	6. Remove unreachable states and edges from the graph.

	3.3 From Local Automata to an Interprocedural Automaton
	1. Add an e-edge from the source state of the call edge to the entry state of the called automaton.
	2. Add e-edges from every final state of the called automaton back to the destination state of th...
	3. Remove the original call edge.
	Figure�8: PDA Model. The e-edges into and out of a called automaton are paired so that only a ret...

	1. Uniquely mark each local automaton state that is the target of a non-system call edge.
	2. Add an e-edge from the source state of the edge to the entry state of the destination automato...
	3. Add an e-edge from each final state of the destination automaton to the target of the call edg...
	4. Delete the original call edge.

	3.4 Optimizations to Address Sources of Imprecision
	3.4.1 Impossible Paths
	Figure�9: The automaton for main after call site renaming. Edges labeled with function calls inte...

	3.4.2 Context Insensitivity
	3.4.3 Argument Manipulation
	Figure�10: Register Slicing. We iterate backwards through the instructions that modify register %...
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	4 Experimental Results
	4.1 Experimental Setup
	Table 1: Test program descriptions and test workloads.
	Table 2: Test programs statistics. Source code line counts do not include library code. Statistic...
	Table 3: NFA run-time overheads. Absolute overheads indicate execution time in seconds.
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	Figure�11: NFA precision. Models included all baseline optimizations.
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	Figure�12: Precision improvements with renamed call sites and argument recovery.
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	2. The attacker could steer execution through one or more “safe” system calls to reach a portion ...
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